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Abstract

We develop a model for estimating growth of Atlantic cod in NAFO Subdivision 3Ps
and Divisions 3KL during 1997-1999. We use tag-returns from the commercial, sentinel,
and food fisheries in these regions during 1997-1999. The returns are from numerous
tagging experiments conducted in 3Ps and 3KL during 1997-1999. Many of the tags that
are returned supply the length of the fish at capture, and we use this information to
estimate growth based on known lengths-at-release and times-at-liberty. We use the Von
Bertalanffy growth model, modified to accommodate seasonal variations in growth. We
also incorporate a measurement bias component in our estimation because the tag-return
data suggest that there is some bias in the lengths-at-capture reported by fishermen. The
basic approach we use has been studied fairly extensively in the fisheries literature, and
we present a review of this literature. Important biases in estimating growth from tagging
data have been identified in the literature, and we assess the magnitude of the bias in our
analysis using a simple simulation. The conclusion from our simulation is that the bias
may not be substantial for our population. We use the estimated model to predict cod
growth for times-at-liberty ranging from 0-3 years, and for fish lengths ranging between 40
and 90 cm. For example, we estimate that a 40 cm fish will grow 22 ¢cm during 1997-1999,
but in the same period a 90 cm fish will grow only 10 cm.

Résumé

Nous avons élaboré un modéle pour 'estimation de la croissance de la morue de
I’Atlantique de la sous-division 3Ps et des divisions 3KL. de FOPANO de 1997 & 1999.
L’information des retours d’étiquettes de marquage obtenue des péches commerciale, sen-
tinelle et alimentaire a été utilisée dans cette région pour la méme période. Les étiquettes
provenaient de diverses expériences de marquage faites dans la méme zone et au méme
moment. Bon nombre des étiquettes obtenues étaient accompagnées de la longueur du
poisson & la capture et nous avons utilisé cette donnée pour estimer la croissance & partir
de la longueur connue au moment de la remise a 'eau et de la période s’étant écoulée
avant la recapture. Nous nous sommes servis du modele de croissance de Von Bertalanfty,
modifié pour tenir compte des variations de croissance saisonniéres. Nous avons aussi
ajouté a nos estimations une composante pour le biais des mesures car les données des re-
tours d’étiquettes portent & croire & un certain biais du niveau des longueurs a la capture
signalées par les pécheurs. La démarche que nous avons utilisée a fait I'objet d’études
assez exhaustives mentionnées dans la littérature et nous en présentons un examen. Des
biais importants affectant I’estimation de la croissance & partir des recaptures de poissons
marqués sont mentionnés dans les publications et nous en avons évalué 'importance pour
notre analyse a l’aide d’une simulation simple. Selon cette derniére, le biais ne serait
pas important pour la population étudiée. Nous avons appliqué le modeéle a la prévision
de la croissance des morues pour des périodes de liberté allant de 0 & 3 ans et pour des
longueurs de 40 & 90 cm. Ainsi, pour la période de 1997 a 1999, nous avons estimé a 22
cm la croissance d’un poisson de 40 cm, mais & seulement 10 cm celle d’un poisson de 90
cm.



1 Introduction

It is possible to estimate the exploitation rate by a commercial fishery using data from
fish tagging experiments. Essentially, the fraction of tags caught in the commercial fishery
and returned by fishermen provides an estimate of the fishery exploitation rate, assuming
that the fishery equally exploits tagged and un-tagged fish, and that the tag reporting
rate is known. The exploitation rate can then be used, in conjunction with estimates of
the total landings by the fishery, to estimate stock size (see Cadigan and Brattey, 2000).

The cod fisheries in NAFO Subdivision 3Ps and Divisions 3KL are size-selective; that
is, not all sizes of cod are exploited equally. The differences in exploitation are usually ex-
pressed as a function of fish length, so that the exploitation rate depends on the length of
fish when captured. Selectivity has been considered by Hoenig and Myers (1997), although
they only examined tag-returns within a short time following release, in which case growth
is not important. We use all of the tags returned from 3Ps and 3KL during 1997-1999 to
maximize precision; however, growth is important when fish are caught after a relatively
long time-at-liberty. For the tagging experiments we consider length is accurately mea-
sured by trained technicians when fish are tagged; however, length measurements are not
available for many of the tagged fish recaptured by fishermen. In addition, the methods
used by fishermen and other individuals to measure length have considerable measurement
error. This is evidenced by numerous negative estimated growth increments between the
time-of-release and the time-of-capture. We need better estimates of fish length at the
time-of-capture to get more reliable estimates of the length component (i.e. selectivity)
of exploitation.

In this paper we develop a model for estimating growth of Atlantic cod in 3Ps and 3KL
during 1997-1999. We use tag-returns from the commercial, sentinel, and food fisheries
in these regions during 1997-1999. The returns are from numerous tagging experiments
conducted in 3Ps and 3KL during 1997-1999. These experiments are described elsewhere
(Brattey 1999; Brattey et al. 1999; Brattey 2000). The purpose of this paper is to specify
a model that we can use to estimate the length of a fish at a known time-of-capture. This
information will be used in Cadigan and Brattey (2000) to estimate the length-selectivity
of recent commercial cod fisheries in 3Ps and 3KL.

2 The data

We analyze the tag-returns from 55 tagging experiments conducted in 3Ps and 3KL during
1997-1999. Most cod for tagging were captured with hand-lines, but some trap-caught
and otter-trawled cod were also tagged. The length of each cod (nearest cm) was recorded.
Only cod with a fork length exceeding 45 cm and in excellent condition were tagged and
released. For analysis, groups of cod tagged in the same general area over a time frame of
a few days to weeks were classified as a single experiment which was assigned a four digit
sequential identifier; the first two digits representing the year of capture and the second
two digits incrementing annually from 01 onwards (i.e. 9701, 9702...). The locations of
experiments are shown in Figure 1.



For our growth analysis we used only those tags that were returned with an estimated
length and a capture date. We grouped capture times into weeks, to be consistent with
other analyses of this data. We grouped tag-returns into three broad geographical areas,
similar to those in Cadigan and Brattey (1999). We use these regions to investigate
whether growth rates vary geographically. The regions (see Figure 1) are denoted as

Region 1: 3Ps
Region 2: Southern 3L .
Region 3: Northern 3L and 3K

Southern 3L consists of units 3Lf, 3Lj, and 3Lq, which is the inshore area covering St.
Mary’s Bay up to and including Conception Bay. Northern 3L and 3K includes Trinity
Bay (3Lb), Bonavista Bay (3La) and areas northwards (3K).

Some fish in 3Ps and 3KL migrate between regions. For our growth analyses we only
use tag information from fish that were captured in the same region they were released
in. We assume that if a fish is tagged and released in a region, and also caught there,
then that fish has spent most of its life in that region. If there is inter-regional variation
in growth rates that is determined only by factors existing in the region (so that a fish
that migrates into a region assumes the growth rate for that region) then the subsetting
procedure we use should tend to isolate fish that have experienced only one regional
growth rate. A total of 1798 tags were available from fish tagged and released in 3Ps and
3KL in 1997-1999. Of these, 1578 were returned from the same region of release. We
estimate growth from the information fishermen supplied with these 1578 tags.

There are a some known problems with these data that we wish to highlight. On
several occasions tags have been received with information that we known is not correct.
We speculate that sometimes fishermen do not immediately record all the information
(length, date, place of capture) about the tagged fish that they caught, and they guess
about some of the required information when they send tags in later. Such guesses can be
highly inaccurate. Another problem is that for some of the tag-returns, length-at-capture
was entered into the tagging database as missing if it was less than the length-at-release.
This will result in biased measurements of fish growth, which we must also accommodate
in our model. In future we will remove this bias component by going back over the
recapture lengths and entering all of them into our database, irrespective of whether they
are smaller than the length-at-release.

3 Exploratory and nonparametric analyses

The data set we use for estimating fish growth has not been examined previously, so
initially we conducted some exploratory analyses to determine the potential growth signal
in these data, and to elucidate potential problems in using these data to estimate growth.

Growth is primarily a function of time-at-liberty and fish length. Naturally, we expect
a fish to grow less in a short period of time than in a longer period of time. Also, we expect
the growth rate to decrease as growth increases; that is, for a fixed period of time we expect



a small fish to grow more than a large fish. Our first analysis is to examine the estimated
growth increments over time, for ten length-at-release intervals. These intervals were
chosen so that there is a reasonable amount of data to explore the relationship between
growth, length, and time-at-liberty. The estimated growth increment (G) is defined as

GG = the reported length at the time-of-capture minus the known length-at-release

Note that G is the response variable we consider. The observed G’s are shown in Figs.
2-4. Growth may also vary geographically which is why we stratified these plots by region.
The plots indicate that most (70.3%) of our data is for region 1 (see Fig. 2). Only 2.2% of
the tags were returned from region 2 (see Fig. 3), and 27.5% were returned from region 3
(see Fig. 3). These figures also show a large number of negative G’s. For all three regions
32% of the tagged fish caught were reported to have decreased in length, which is not
possible.

We assume that growth (in length) is a non-decreasing function of time-at-liberty
(t), so negative growth can result only from errors in the recapture length measurements
obtained from fishermen. In Figs. 2-4 the solid lines mark estimates from local linear
regression smoothers (see Cleveland and Devlin, 1988). We used the S-plus loess function
for smoothing. The numbers at the top of the plots are the smoother predicted growth
increments at ¢t = 2,20,60 and 120 weeks. These values of ¢ were arbitrarily chosen to
demonstrate the relationship between average reported growth and ¢. Broadly speaking
these data do suggest some of the growth features we expect; that is, growth increases
with ¢, and also with length-at-release (/). Figs. 2-4 do not suggest vastly different
growth rates between regions. Figs. 2 and 4 suggest that there is possible bias in the
growth measurements because the smoother predicted growth at ¢ = 2 is usually negative,
and this trend increases with length. We expect that little or no growth occurs within
the first two weeks following release, so Figs. 2 and 4 suggest that fishermen tend to
under-report fish lengths, and the amount of under-reporting may depend on the size of
the fish.

To further investigate this bias we examine growth within 5 weeks following release
(i.e. t <5), which we denote as G*. We choose this time scale so that our analyses are
based on reasonable sample sizes. Note that some growth may occur within 5 weeks, and
otherwise we expect G* to be more positive than negative because of the data recording
problem mentioned in Section 2.1 (i.e. some negative G’s were not entered into the
database). We first examine the regional relationship between G* and [.. These data
are plotted in Fig. 5 for regions 1-3 in the upper three panels, and for all regions in the
bottom panel. There is a consistent trend in G* versus [, in regions 1 and 3; that is, G*
is approximately zero for [, < 60 cm, and decreases to about —5 cm for [, > 70 cm. This
suggests little or no bias in G for [, < 60 but a bias of —5 c¢m for [, > 70. The data for
region 2 are probably too sparse to detect this trend.

Overall the regional nonparametric regressions are not significantly different. Some
statistics from the regressions are presented in Table 1. The statistic proposed by Cleve-
land and Devlin (1988) that we use to test whether there are significant regional differences



Table 1. Statistics from the regional nonparametric regression analyses of
cod growth increments within 5 weeks after release, and length-
at-release. The sample size is n. SSFE is the regression error sum
of squares, H denotes the hat matrix, 6; = tr{(I — H)(I — H)'},
and 6y = tr{(I — H)(I — H)'}?

Region n SSE tr(H) o1 0o

1 81 3339.79 5.46 75.06 74.73

2 13 13.80 6.14 6.27 5.98

3 128 3330.59 5.84 121.64 121.29
sum 222 6684.18 17.44 202.97 202.00
all regions 222 6932.97 5.74 215.76 215.42

in the relationship between G* and [, is

(SSEun — SSEgum) /(61,01 — 01 5um) (1)
SSEsum/51,sum ’

_248.79/12.97

 6684.18/202.97

If G* = f(l,)+¢, where f(l,) is a smooth function in /, and Var(¢e) is constant, then F' has
an approximate F-distribution. The loess function does not output all of the information
required to compute the numerator degrees of freedom suggested by Cleveland and Devlin
(1988) for this F statistic; however, a good approximation is df,um = 61 = 12.97.
The loess function does produce the denominator degrees of freedom, which is dfg., =
83 sum/62,sum = 203.94. Using these values we compute Pr(F > F,,) = 0.866, and this
p-value suggests that there is little evidence in our data that the bias in G* as a function
of [, varies between the three regions.

The bias in our measurements of G may also change annually. One such cause could
be an annual change in the number of negative growth increments entered as missing in
our database. To investigate for this we examine the relationship between G* and [, for
each year. Scatter plots of these data are presented in Fig. 6. The smoothers suggest
substantial annual variation in the bias as a function of [,. We assess the statistical
significance of the annual variation using (1). The regression statistics are presented in
Table 2, and Fys = 2.2. The Pr(F > Fy) = 0.013, and this suggests that the annual
differences in the relationship between bias and [, are statistically significant.

A related problem is whether the bias changes within a year. We propose a seasonal
model for fish growth later, and we wish to be sure that the seasonal effects we demonstrate
are related to growth and not bias. Scatter plots of bias versus tag-return week are
presented in Fig. 7. There is little evidence of a seasonal trend in bias, especially in 1999
which is the year in which most of our data comes from.

Another potential source of variation in bias are fishing gear effects. Fishermen may
know more precisely the length of fish that a particular type of gear (e.g. gillnets) has

Fobs =

= (.583.
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Table 2. Statistics from the annual nonparametric regression analyses of
cod growth increments within 5 weeks after release, and length
at release. The sample size is n. SSFE is the regression error sum
of squares, H denotes the hat matrix, 6; = tr{({ — H)(I — H)'},
and 6y = tr{(I — H)(I — H)'}?

Year n SSE tr(H) o1 P
1997 43 1359.72 5.55 36.96 36.64
1998 26 558.42 5.26 20.26 19.96
1999 153 4231.22 5.78 146.71 146.36
sum 222 6149.36 16.59 203.93 202.96
all years 222 6932.97 5.74 215.76 215.42

caught, compared to other types of gear (e.g. traps). In this case if a fishermen makes a
guess about the length of a fish then the guess would tend to be more accurate if the fish
was caught in a gillnet compared to a trap. In Fig. 8 we present boxplots of G* for each
type of gear used in 3Ps and 3KL. If gear type is not reported then it is coded as unknown,
while the “other” category represents a wide variety of gears that are occasionally used.
Only 2% of the data were from “other” gears. The majority of the tags were from fish
caught by gillnets (73%). We tested whether the bias (e.g. F(G*)) depended on gear type
using a standard ANOVA procedure, and the p-value is 0.45. This indicates no significant
difference in bias among gear types.

4 Growth model

In the previous section we have demonstrated that the growth increment data from tag-
returns have the characteristics we expect, but also that there will be some additional
challenges in modelling this data because of bias. In this section we present a review
of the literature relevant to our problem, and then propose a parametric growth model
suitable for our data.

Our notation is somewhat nonstandard compared to that used in the fisheries litera-
ture. We conform to the standard practise of using Greek symbols for parameters that are
to be estimated. We use upper case for random variables, and lower case for scalar fixed
quantities, like observations. If a letter or symbol is followed by a (-) then that indicates
it is a function of (-), and one has to look to the right to determine what is random or
not.

4.1 Review

There is an extensive amount of literature related to estimating growth. We focus on the
literature dealing with growth analyses based on individual fish growth increment data.



The other important approach to estimating fish growth is based on comparing time-series
of estimates of mean length-at-age from sampling programs. The time-series are usually,
but not always, annual. We do not attempt a comprehensive literature review here, but
present information to convey the common issues that other researchers have dealt with,
as well as assess the relevance of these issues to our method of estimating growth.

A review of several growth models useful for fish populations is presented in both
Seber and Wild (1989) and Gamito (1998). The Von Bertalanffy equation (VONB)

L(a) = Ao(1 — €79 2)

is commonly used in fisheries. In this model L(a) denotes the length at age a, and
Ao denotes the length that is approached as a — oco. A fairly detailed mathematical
description of the derivation of a generalized version of (2) is given by Bhattacharya
(1966). Chen et al. (1992) concluded that the VONB model proved to be the best growth
model among a variety of polynomial alternatives in a study 16 fish populations; however,
the VONB model is not without opponents (see Roff, 1980).

For growth increment data the common form of the VONB equation used (see Fabens,
1965) is

G(t) = (Ao = 1) (1 — ™), (3)

where G(t) is the growth that has occurred over a time interval t. Recall that [, was
defined as the length-at-release (i.e. at ¢t = 0). It is easy to see from (3) that G(0) = 0,
and as t — oo G(t) — A — I,; that is, length = G(t) + [, — Ay as t — oo. This is
exactly what (2) says. Note that OG(t)/0t = G (t) < G(c0) — G(t) which suggests that
smaller fish should grow faster than larger fish. Hence, the VONB equation has the basic
feature we require for a growth model. Estimation of (3) using nonlinear least squares is
commonly referred to as Fabens’ method.

Much of the literature we found concerning estimation using (3) with tagging data con-
cerned the effect of individual variability in the VONB parameters. Individual variability
is modelled by assuming that each fish has its own VONB growth curve with parameters
Li, and K;. Population variability in L;,, and K; is usually modelled by assuming that
these parameters are random; that is, L is random with mean u_ and variance o2,
and Kj; is random with mean x and variance o2. It is sometimes also assumed that L.,
and K; are correlated. We first deal with the case when the growth rate before tagging
is unrelated to the growth rate following tagging, then we consider the case when growth

rates before and after tagging are related.

Remark 1 We use the i subscript to emphasize that the parameters are different for each
idividual; however, these random parameters are independent and identically distributed

(7id) so we drop the i subscript when referring to expectations that are the same for all
the Lo ’s and K;’s.

Researchers have realized that if the growth parameters are random in (3) then the
growth function G*(t) = (koo — I;)(1 — e7**) differs from E [(Loo — I.)(1 — e X*)], and
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that estimators of u., and k obtained using nonlinear least squares based on G*(t) have
asymptotically non-negligible biases. Sainsbury (1980) has shown that the bias is positive
for u., and negative for k (see also Maller and deBoer, 1988). The biases can be consid-
erable when using the growth increment model (3) rather than (2). The magnitude of the
bias depends on the values of p, k, o2 and 2. Sainsbury (1980) presented one example
where the bias in predicting mean length was 13% when an age-length relationship was
constructed from the analysis of growth increment data. Unbiased estimation is possible
using G*(t) when growth before tagging is unrelated to growth following tagging only if
02 = 0. For this situation Kirkwood and Somers (1984) proposed a weighted least-squares
approach, and Somers and Kirkwood (1991) extended this approach to include random
error in length measurements. Xiao (1994) considered the case when L., and K have a
bivariate normal distribution, and concluded that correlation between L., and K may not
be that important. For estimation Xiao (1994) used (3) with measurement error in the
growth increment.

Other authors have pointed out that in the stochastic setting when growth is the same
before and after tagging then serious biases may result even if K is not random. Let L,
be a fishes length at age a when released, and L. be a fishes length at age a + ¢ when
captured. If these lengths are given by the VONB stochastic growth model:

L, = L(a) + &, (4)
= LOO<]. — 67Ka) + €1,

Le=Loo {1 — e K} 1oy,
={Lo — L(a)} (1 — e %) + &y,

where the €’s are iid measurement errors, then F(L. — L,) does not equal G*(¢) when
Var(e) > 0, even if 02 = g% = 0. The expected difference is importantly different in that
it involves the age-at-release, which is usually unknown.

Francis (1988) considered (2) and (3) to be different models, although most of his
interpretations of the differences were based on the fact that (2) and (3) are usually
used with different types of data; that is, (2) is used with time-series of mean lengths-
at-age, and (3) is used with samples of measurements of growth increments over time.
Interestingly, Sainsbury (1980) also contained a discussion of the effects of an animals
age on a growth increment analysis. He predicted that, when more than one cohort is
present in the population, the effect is to introduce a nonlinearity in the relationship
between growth increment and initial length. He also felt that without age-composition
information there is little that can be done, except to recognize that sources of variation
are present in the data that cannot be controlled for.

James (1991) argued that there can only be one growth model given by (2), and that
(3) is “merely a construct to be used for estimating parameters in that model”. James
(1991) showed that when there is measurement error in both L, and L., or when ago >0

or 02 > 0, then the estimating equations derived from least squares minimization of

g =l. — I, and (3) are not unbiased. Unbiased estimating equations are usually required

for estimators to be consistent. James (1991) proposed unbiased estimating equations
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that were found to perform well in simulations (see also Kimura et al, 1993) when the
time-at-liberty varied over a wide range. These new equations are not unbiased when
o2 > 0; however, James (1991) also presented some limited simulations that suggested
the bias in the estimators may be low even if o2 is large. The new point from James
(1991) is that measurement error in lengths, in addition to intrapopulation variability
in K, can lead to asymptotically biased estimators. Also, James (1991) suggested that
variability in K’ may not be as important as measurement error and variability in L., at
least not for the estimators he proposed.

Palmer et al. (1991) considered both errors in length measurements and intrapopula-
tion variability in the VONB equation, including correlation between L., and K. They
postulated a stochastic growth model with individual specific parameters (e.g. L and
K;) which where treated as unknown random nuisance parameters. For tagging data
Palmer et al. (1991) considered the initial age a as missing data having a random dis-
tribution. For tag-return data Palmer et al. (1991) proposed a nonparametric approach
to modelling the age distribution of tagged animals. Palmer et al. (1991) used the EM
algorithm approach for estimation based on the marginal distribution of growth after
integrating over the densities of the random growth parameters and a.

Wang et al. (1995) considered intrapopulation variability in L., and measurement
error. They used a transformation of variables approach to derive the model distribution
of length-at-release and length-at-capture based on the distributions of L., and A - a
random variable representing age-at-release. In an example, Wang et al. (1995) used a
normal distribution for L., and a gamma distribution for A. In a simulation study they
concluded that their procedure performed better than Fabens’ method, even if the shape
of the growth curve was mis-specified. Wang et al. (1995) also presented a discussion
about their rationale for treating K as fixed. They concluded that in practise it is difficult
to estimate o2 with tag-return data because there are only two growth measurements per
fish. They also felt that L., was more important than K when extrapolating growth.

Wang and Thomas (1995) also examined the effect of intrapopulation variability in
VONB growth model parameters. Their main point was that E {Ly|L(a) =1} # E(Le)-
The difference between these two expectations depends on a. For example, if we know
that all fish were age 2 at the time of tagging, then E {L.|L(a) =1} = 1/(1 — e k).
This is relevant because one approach to estimation with (4) is to use the conditional
distribution of the growth increment; that is, if G = L. — L, then one approach to
estimation is to use the conditional distribution of G|L, = [,; however, this distribution
is dependent on a, and we need to know the age-at-release to estimate parameters in the
standard manner. Wang and Thomas (1995) also showed using simulations that Fabens’
method and the methods outlined in Sainsbury (1980) and Kirkwood and Somers (1984)
produced substantially (% error>100) biased estimates of y, and k. The biases in Fabens’
estimators of A\, and k were substantially larger when both L., and K were random than
when only L., was random.

Wang (1998) presented a simplified approach to the estimation of VONB growth pa-
rameters in which E {L.|L(a) =1,} was approximated as ., + S(I, — [,) where [, is
the average length-at-release and ( is a parameter used to model the dependence of
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E{Ly|L(a) = 1.} on l,.. For example, if both L, and L., have a bivariate normal distri-
bution then § = cov(Leo, Ly)/Var(L,). In a simulation study Wang (1998) showed that
estimators of p and x based on the approximation to E {L|L(a)} were much less bi-
ased than Fabens’ estimators. The estimators also tended to be more efficient than those
proposed by James (1991).

Another stochastic aspect of growth modelling was considered by Prajneshu and Venu-
gopalan (1999). They objected to the fact that the VONB model predicts future growth
with complete certainty. They preferred the approach where the growth rate G' (t) is mod-
elled as a stochastic process G (t) = k{G(c0) — G(t)} + K (t), where K(t) is a zero-mean
stochastic process with Cov{ K (t1), K(t2)} decreasing as |t; — 5| increases. Wang (1999)
considered a similar framework, although he allowed for a more arbitrary growth rate
model, in which x was replaced by a function of covariates. Wang (1999) also considered
measurement, errors in lengths, and he extended the estimating equations approach of
James (1991) to the stochastic growth model. Autocorrelation in errors between growth
and the VONB curve was also mentioned by Millar (1992), although he explored this only
in a simulation-based sensitivity analysis. Stochastic growth is another plausible mecha-
nism that can be considered to explain the variability observed in our growth increment
data. Note that some of the bias caused by ignoring intrapopulation variability in growth
parameters are attenuated when the time correlation between VONB parameters is re-
duced (see Wang et al., 1995), so this may be important when considering variability in
growth parameters.

The potential for non-random sources of variability in the growth rates of cod in 3Ps
and 3KL have been suggested in the literature. Lilly (1998) documented several ancillary
sources of information that suggest cod growth rates in 3Ps may vary seasonally, with
lower growth rates in the winter and early spring. Millar and Myers (1990) found that
12% of the residual variation in fitting a VONB growth curve to average length-at-age
data for 3Ps cod could be explained by a model that included a total biomass effect and
a water temperature effect. In 3K and 3L the proportion of variation explained by these
two factors was 48% and 33%, respectively. Shelton et al. (1999) reviewed the literature
related to the effect of temperature on cod growth, and also studied the relationship
between the area of the cold intermediate layer (CIL) and weight increments for cod
in 2J3KL. They concluded that the CIL accounted for 41% of the variability in weight
increments. We will not consider the influence of such exogenous factors on growth here,
but we conclude from these studies that growth rates in 3Ps and 3KL. may vary seasonally
and annually because of, for example, changes in temperature. Models for seasonal growth
rates have been proposed by Pitcher and Macdonald (1973), Cloern and Nichols (1978),
and Pauly et al. (1992), among others.

4.2 Simulation study of intrapopulation variability in growth

The problem of intrapopulation variability in VONB growth parameters essentially in-
volves how to interpret tag-return data in terms of (2). This is important if the desire is
to make inferences about the growth of a non-sampled individual; however, our problem
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involves reasonably predicting the length of a fish following tagging, in which case (3)
may be a reasonable model even if population growth follows (2) with variability in the
parameters. The biases considered in the above literature usually involve parameters,
whereas what is more relevant to us is the bias in predicting the growth increment of a
fish.

In this section we present a simple simulation study to assess the relevance of intrapop-
ulation variability to the estimation of length-at-capture from a known (no measurement
error) length-at-release. Our intent is to decide what method of estimation to use with
our data. We simulate the biases in Fabens’ estimators of A\, and k, and also assess the
utility of the estimators presented in James (1991) and Wang (1998). We use a similar
procedure as in Wang and Thomas (1995) to generate simulated growth data.

We generated simulated data as follows. Preliminary analyses using Fabens’ method
suggested that A\, for our data is in the range of 115 — 140, and « is in the range of
0.002 — 0.005 on a weekly scale. The steps in our simulation were:

Step 1. We generated L.’s from a normal distribution with mean p,, = 130 and a
standard error of 13; that is, a 10% coefficient of variation (CV). We generated
values for K from a gamma distribution with mean x = 0.102, and a 10% CV. This
value for « is 0.002 converted to an annual scale (i.e. x52).

Step 2. We generated lengths-at-tagging using (4) and the random values for L., and K
from Step 1, but with no measurement errors.

Step 3. To use (4) we also needed to specify the age-at-tagging. We speculated that the
ages of most fish when tagged (a) were in the range of 5 — 12 years, and we decided
to generate lengths-at-tagging using a uniform distribution for a over 5 — 12.

Step 4. Individual lengths-at-capture were simulated using different VONB parameters
than those in Step 1. These parameters were generated similarly to those in Step 1,
but the new parameters were constrained to be correlated (coefficient = 0.5) with
those in Step 1. As a result, our simulation has the feature that growth before and
after tagging is autocorrelated, but not perfectly so.

Step 5. Random times-at-liberty (¢) were drawn from a distribution based on the actual
t’s in our data set. This distribution is shown as a solid line in Fig. 9.

Step 6. Fish lengths at the time-of-capture were computed using the second equation in

(4).

Step 7. The reported lengths-at-capture were modelled with normally distributed mea-
surement error (CV= 10%).

The sample size in our simulation was 1000. This is less than the sample size in
our data set (1578), but our simulation model is considerably more simple than the
model we eventually chose for our data, so we reduce the sample size to compensate. In
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future research we will perform a simulation analysis based on the chosen model. We
estimate biases and standard errors using 500 simulated (replicate) data sets. VONB
growth parameters, age-at-release, and age-at-capture were randomly generated in each
simulation.

We study four methods of estimation. The standard one is Fabens’ method, which is
nonlinear least squares using (3). The second method is maximum likelihood assuming L,
and €9 are normally distributed; this method is similar to Somers and Kirkwood (1991).
The third method is the estimating equations approach by James (1991). The fourth
method is Wang’s (1998) approach based on a linear approximation to F(Ls|L(a) = 1,.).
Wang’s (1988) method performed very poorly in our simulations. The reason seems to
be related to confounding between his § parameter and A\,,. We will not report on this
method further. The simulated biases and standard errors for the other estimators of Ay
and k are presented in Table 3. The bias in Fabens’ estimator of )\, is substantial. James’

Table 3. Simulation averages for 3 estimators of von Bertalanfty
growth parameters (standard deviations in parantheses).
Population values are A\, = 130, and x = 0.104.

Method Ao Y%bias K Y%bias
Faben (1065) | 156.78 (25.32) 21| 0.073 (0.020) 29
James (1991) | 125.93 (68.26) 2300254 (0.195) 145

Somers and 156.47 (24.04) 20 | 0.073 (0.020) -29
Kirkwood (1998)

(1991) method seems preferable for estimating A\, whereas Fabens’ method seems better
for estimating k.

Of concern to us is which method is better for predicting lengths-at-capture. To
assess this we computed the bias and mean square error (mse) for estimated lengths-
at-capture. We computed the average bias for 10 cm release length intervals, and for 4
time-at-liberty intervals. The number of simulated growth predictions for each length and
time class are presented in Table 4a. In this table we have used the set notation [z,y)
which means z € [z,y) if and only if 2 > z and z < y. The average release length is
almost 75 cm. Average population growth is presented in Table 4b. Our interest is to use
growth measurements to accurately predict the growth shown in Table 4b. The simulation
biases using Fabens’ method are presented in Table 4c. The biases are generally small
compared to average growth (see Table 4b). An important issue when considering the
other estimation methods is mse, which we present in Table 4d for Fabens’ method. The
precision of our growth predictions decreases with time-at-liberty, as expected.

We have already mentioned that the results for Wang’s (1998) method were discourag-
ing. The results for James’ (1991) method were also discouraging. Non-convergence was a
problem when finding the roots of his estimating equations. Over 30% of the simulations
did not converge. The non-converged results are excluded from further analysis (and also
Table 3). The mse’s are presented in Table 5 for the converged simulations . These values
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Table 4a. Number of simulated growth predictions
for each length and time-at-liberty class.

Time at liberty

Length (cm) | [0,0.5) [0.5,1.5) [1.5,2.5) [2.5,3)
[25,35) 9 9 4 1
[35,45) 1180 960 542 70
[45, 55) 10845 8846 5093 638
[55, 65) 25428 20490 12070 1401
[65,75) 32314 26394 15303 1765
[75,85) 32916 26567 15734 1857
[85,95) 23249 18816 10885 1299
(95, 105) 9655 7890 4599 576

105, 115) 2147 1718 1015 130
115, 125) 232 201 115 9
125, 135) 10 11 5 1

Table 4b. Average simulated population growth for
each length and time-at-liberty class.

Time at liberty

Length (cm) | [0,0.5) [0.5,1.5) [1.5,2.5) [2.5,3)
[25,35) 1.36 729 1497 14.66
35, 45) 1.45 717 1274 1732
[45, 55) 1.45 700 1250 16.87
[55, 65) 1.35 653  11.64 15.69
(65, 75) 1.18 574 1023 13.78
[75,85) 1.02 4.97 881 11.88
85, 95) 0.89 4.30 7.68  10.43
[95,105) 0.78 3.80 6.73  9.05

105, 115) 0.68 3.32 596  7.93
115, 125) 0.61 2.87 509  6.25
125, 135) 0.43 2.40 496  3.88

14



Table 4c. Simulated biases in Faben’s estimator of
growth. Biases are computed for each
length and time-at-liberty class.

Time at liberty

Length (cm) | [0,0.5) [0.5,1.5) [1.5,2.5) [2.5,3)
[25,35) 0.25 1.39 183  3.92
[35,45) 0.08 0.53 1.03  1.42
[45, 55) 0.02  -0.01 0.11  0.30
[55, 65) 005  -019  -020  -0.09
[65,75) 0.03  -0.08 0.00  0.13
[75,85) -0.01 0.03 0.16  0.34
[85,95) 0.02  -0.01 0.07  0.13
(95, 105) 004 017  -0.18  -0.09

[105,115) | -0.08  -0.36  -0.57 -0.61
[115,125) | -0.13 056  -0.96 -0.50
[125,135) | -0.10  -1.10  -1.89  1.70

Table 4d. Simulated mse in Faben’s estimator of
growth. Mse’s are computed for each
length and time-at-liberty class.

Time at liberty

Length (cm) | [0,0.5) [0.5,1.5) [1.5,2.5) [2.5,3)
25, 35) 0.16 149 6.09 1551
[35,45) 0.07 1.31 384 6.71
[45, 55) 0.06 1.00 279  5.14
[55, 65) 0.06 1.10 3.06  5.05
[65,75) 0.06 1.04 303  5.38
[75,85) 0.05 0.92 277  4.96
[85,95) 0.05 0.85 2.62  4.58
(95, 105) 0.05 0.95 272 4.76

105, 115) 0.07 1.25 388  6.69
[115, 125) 0.10 1.70 431 1078
125, 135) 0.07 2.48 649  6.29
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Table 5. Simulated mse in Jame’s (1991) estimator
of growth. Mse’s are computed for each
length and time-at-liberty class.

Time at liberty

Length (cm) | [0,0.5) [0.5,1.5) [1.5,2.5) [2.5,3)
[25,35) 210 14840  148.97 644.22
[35,45) 434 5628  97.57 12391
[45, 55) 242 2564 4851  55.50
[55, 65) 110 1045 1815 19.95
[65,75) 0.30 2.77 496  6.52
[75,85) 0.08 1.67 594  12.41
85, 95) 0.43 780 2220 37.76
(95, 105) 147 2222 5514 8214
105, 115) 2.92 4175 104.37 140.77
115, 125) 409 6335  213.39 189.36
[125,135) 466 5755  739.80 270.40

greatly exceed those for Fabens’ method (see Table 4d), and suggest that James’ (1991)
method is not suitable for our data. This is probably due to the short times-at-liberty for
many of the tag-returns (see Fig. 9).

The results in Table 3 suggest that the weighted least-squares approach similar to
Somers and Kirkwood (1991) produces similar results as Fabens’ method in our simula-
tion. The mse’s are presented in Table 6. These values are very similar to those in Table
4d, and do not suggest that the weighted least-squares approach offers much improved es-
timators of VONB growth parameters. The reason for the similarity is that error variance
component was usually estimated to be much greater than VONB variance component
(median ratio was 18.6). In this case the variance model is approximately constant, and
one expects the estimates to be similar to un-weighted least-squares estimates.

Our conclusion from the simulation exercise is that Fabens’ method is better than
the methods of Wang (1998) or James (1991) to estimate parameters for our tagging
data. Wang’s (1998) and James’ (1991) approaches did not work well possibly because of
the relatively short times-at-liberty (see Fig. 9) and because we allowed pre- and post-
release VONB growth parameters to vary somewhat (i.e. 0.5 correlation). Our results
are preliminary, and further investigation is required; however, for the current assessment
we will use Fabens’ approach for estimation. For our final model we will also assess the
impact of intrapopulation variability in (3) using the weighted least-squares approach.
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Table 6. Simulated mse in Somers and Kirkwood’s
(1991) estimator of growth. Mse’s are
computed for each length and time-at-
liberty class.

Time at liberty

Length (cm) | [0,0.5) [0.5,1.5) [1.5,2.5) [2.5,3)
25, 35) 0.17 151 153 14.00
35, 45) 0.07 1.31 384 7.3
[45, 55) 0.06 1.01 281  5.16
[55, 65) 0.06 1.10 3.06  5.07
65, 75) 0.06 1.04 3.03 541
[75,85) 0.05 0.93 278  4.98
85, 95) 0.05 0.85 2.62  4.60
(95, 105) 0.05 0.94 274 AT

105, 115) 0.07 1.23 380  6.85
[115,125) 0.10 1.61 430 10.64
[125,135) 0.07 2.66 588  5.77

5 Von Bertalanfty growth model with regional growth
rates

In this section we investigate whether growth rates vary for the three regions we identified
in Section 2. We estimate the parameters of (3) using tags from fish that were released
and returned in the same region. This is the same data that is shown in Figs. 2-4. Recall
from the analyses in Section 3 (also see Figs. 5-6) that we have good reason to suspect
that the growth increment measurements are biased, and that the bias is a function of
length-at-capture. We also suspect that the bias function changes annually. Fortuitously
we can estimate this bias, because fish caught within a short time following release should
not grow much, and the growth increments reported for such fish can be used to estimate
bias. We use a parametric model for bias, which we add to (3) when estimating growth
rates.
The bias function we use is

] —
b(l; By, By, B2) = B, + 1ﬁ41re;<pp((l _%2))‘

If lin — B9 << 0 and lyyax — By >> 0 then b(l; 3,, B, By) ranges from 3, to 5, + 3, with an
inflection at (,. This is basically the behavior we observe in Fig. 6. We estimate 3, and
(3, separately each year. Preliminary analysis did not suggest that (3, varied significantly
from year to year. The bias is a function of the length of fish at capture, so we must use
(3) to model [. Hence, our model for the random variable G, representing the growth
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increment of a fish reported in year y is

E(Gy) =b {lr + ()\’LOO - lr)(]- - G_Hit);ﬁyovﬁyla ﬁ2} + ()\’LOO - lT‘)(]' -

There are 13 unknown parameters to estimate in this model: 3, ,, 3, ; fory = 1997, ..., 1999,
By, and A\, k; for the three regions i. We assume that the bias is the same in each region,
but varies annually.

We estimate the bias and VONB growth parameters using nonlinear least-squares. To
make the assessment of the regional differences in VONB growth parameters easier we
actually estimate A\, and « for region 1 (i.e. A\jo and k), and the differences in A\, and
k between regions 2 and 3, and region 1; that is, Ajoc — A1 and k; — k1, for ¢ = 2 and 3.
If the differences are significant then we conclude that the population parameter values
are different. This is the procedure advocated by Cerrato (1990). We do the same for
the bias parameters, except for 3,. Estimates and some inference results are presented
in Table 7. The 3, parameters in 1997 and 1999 are significantly different (see P-value

e .

Table 7. Estimation results for the regional von Bertalanffy
analysis of cod growth increments (cm).

Approx. T Approx.

Parameter Estimate Std Err  Ratio  Prob>|t|
Moo 118.15 14.13  8.36 <0.01
A200 — Moo -29.56 3794 -0.78 0.44
A300 — Moo -8.23 39.26  -0.21 0.83
K1 0.0023  0.0006  3.78 <0.01
Ko — K1 0.0034  0.0080 0.42 0.67
K3 — K1 0.00025 0.0022  0.11 0.91
Brogs.o 0.087 0572 -0.15 0.88
B1999.1 -4.68 0.641 -7.30 <0.01
o 64.10 0.928 69.1 <0.01
Brooro — Bross o 197 0966 -2.04 0.04
B1roo7.1 — B1999.1 0.69 1.048  0.66 0.51
Bro9s.0 — Brogs o 131 0810 -1.61 0.11
Brogs.r — Broso 230 0.980 2.35 0.02

for B1997.0 — B1g99,0 in Table 7), and 3, in 1998 and 1999 are also significantly different.
The differences in VONB growth parameters between regions 2 and 3 and region 1 are
not significant.

While the VONB parameters for regions 2 and 3 are not significantly different from
those for region 1, they could be different from each other. We use an F statistic based
on a likelihood-ratio test (see Seber and Wild, 1989) to investigate whether there are
any differences among the growth parameters for the three regions. First we fit a model
with these parameters constrained to be equal for all regions (“no region” model). These
results are presented in Table 8. The SSE for the “no region” model is 79150.72, while
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Table 8. Estimation results for the von Bertalanffy analysis
of cod growth increments (cm).

Approx. T Approx.

Parameter Estimate Std Err Ratio  Prob>|t|
Ao 116.12 12.893  9.01 <0.01
K 0.0023 0.0006  4.01 <0.01
Broso.o 0.055  0.568 -0.10 0.923
B1999.1 -4.692 0.630 -7.45 <0.01
o 63.927 0.881 72.54 <0.01
Brooro — Brggoo | -2.011  0.962  -2.09 0.04
B1oor.1 — B1o99.1 0.778 1.037  0.75 0.45
Brooso — Brogso | -1.350  0.808 -1.67 0.09
Broos.1 — Brogon 2341  0.968  2.42 0.02

the SSE for the regional model is 79090.74. The test statistic for regional growth rates
is F,ps = 0.3, and the p-value for this test statistic is Pr(Fy 1565 > Fops) = 0.88, so these
data do not suggest that growth rates are different among the three regions. As in the
regional analysis, the annual biases are significantly different in the “no region” model.

The next step is to examine whether growth rates vary annually or seasonally. When
doing this we assume growth rates are constant throughout 3Ps and 3KL. A model com-
bining regional and annual/seasonal growth rates contains too many parameters for us
to reasonably estimate because of the small number of tag-returns in 3KL. This is the
same as assuming there are no annual-regional interactions.

6 Von Bertalanffy growth model with annual growth
rates

We will first develop a VONB growth model in which the growth rates can vary annually,
much in line with Millar and Myers (1990). Equation (3) implies that the growth rates
are the same for fish released at the same time, apart from a proportionality constant
depending on [.. We will retain this feature in our model. Note that fish of different
length may occupy different habitats and experience different annual fluctuations in length
(i.e. length-year interaction); however, we will not explore this here. We model annual
variations in growth rates by modifying the x parameter.

The VONB growth equation is the solution (see Bhattacharya, 1966) of the differential
equation L(t) = k{\e — L(t)}, where L(t) = dL(t)/dt. The modification we propose is
L(t) = K(t) {\so — L(t)}. The solution to this differential equation using the boundary
condition L(0) =0 is

L(t) = Ao {1 — e KW (5)
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If K(t) = & is constant then K(t) = st and L(t) is given by (2). For annually varying
growth rates we use K(t) = r,, where r, is constant for year y. The solution to this
VONB differential equation requires some additional notation. Let ¢, denote the release
time for tagging experiment x. Let ¢ denote the capture time. Both ¢ and ¢, are in weeks
from the beginning of the year. The VONB annual growth equation is given by (5), with

Ky(t — tz), iftey, t, €y,
K(t) = #y(52 — ta) + Kyt ift, €y, t€y+1, (6)
Ky(D2 — ty) + 52Kyt1 + Kyyot, ift, €y, tey+2.

We use the same procedure as before, and estimate k1999 and the differences k1997 —K1999
and Ki1g9s — K1999. Estimates and some inference results are presented in Table 9. There

Table 9. Estimation results for the annual von Bertalanffy
analysis of cod growth increments (cm).

Approx. T Approx.

Parameter Estimate Std Err  Ratio  Prob>|t|
Aoo 115.16 1234  9.34 <0.01
K1997 — K1999 0.00008 0.00059  0.14 0.89
K1998 — K1999 -0.0015 0.00096 -1.56 0.12
K1999 0.0031 0.00094  3.33 <0.01
B1999,0 -0.320 0.621 -0.52 0.61
Broso. 4551 0.640 -T.12 <0.01
By 64.007 0.909 70.38 <0.01
Brooro — Brgsso | -2.138  1.006 -2.13 0.03
Brogr.1 — B1999.1 0.849 1.037  0.82 0.41
Brogso — Brogen | 0492 0.985 -0.50 0.62
B1os.1 — B1999.1 1.979 0.969  2.04 0.04

is only weak evidence that the growth rates vary annually; that is, the P-value is 0.12 for
the k1998 — k1999 term. The bias functions are plotted in Fig. 10. They can be compared
to the nonparametric estimates in Fig. 6. The bias increases with fish length, and is
largest in 1997. Fig. 6 suggests this as well. The growth rates estimated from this model
are shown in Fig 11. In this figure weeks are cumulative since 1997. We have plotted
estimated growth rates for 36 hypothetical fish to demonstrate the model. For example, a
40 cm fish released in week 20 (end of May, 1997) is estimated to grow a little over 21 cm
by week 150 (mid Nov, 1999), whereas a 90 cm fish released at the same time is estimated
to grow only 7 cm by week 150. This is exactly the information we require to estimate
the length-at-capture for the tag-returns.

We assess the validity of the model using residual plots. We examined many residual
diagnostics, but to save space we present only the residual plot that suggests the largest de-
parture in our model assumptions. In Fig. 12 we plot weekly averaged standardized resid-
uals. The kernel regression smoother bandwidth we use minimizes the cross-validation
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statistic (see Hérdle, 1991). Particularly in 1998 and 1999, the smoother highlights the
seasonal pattern in the residuals; that is, the annual model tends to over-estimate growth
in the first part of the year (negative residuals), and under-estimate growth in the second
part of the year (positive residuals). Residual plots versus release length, time-at-liberty,
and predicted value did not suggest any further deviations in model assumptions.

7 Von Bertalanffy growth model with annual /seasonal
growth rates

We introduce a simple modification to allow for seasonal growth. We model a period of
no growth followed by a growth period. Pitcher and Macdonald (1973) referred to this as
switched growth. We estimate the break-points between the growth and no growth periods
(similar to (3, in the bias model). There are three additional parameters to estimate for
our data, which are the break-points in growth during 1997-1999.

The growth model involves a simple modification of (6). Let 2, = max(x,0), and let
6, denote the growth break-point in year y, measured from weeks since the beginning of
the year. The seasonal model for K(¢) is

Ry {(t - 9y)+ - (t:r - 9y)+}a ift e Y, ty € Y,
K(t) = Ky {52 =0y — (tz — Oy) 1} + Kys1(t = Oyi1)4, ift, €y, t€Yy+1, (7)
Ry {52_91/_ (tx_9y>+}+’{y+l(52_9y+l> it teyt2
+ Kyp2(t — Oys2), ==Y yrs

To assess annual differences in 6,’s we estimate 61999 and the differences 61997 — 81999
and 61998 — O1999. Estimation results are presented in Table 10. The SSE for the annual
model is 78960.48, and the SSE for the seasonal model is 76744.34. Note that the annual
model is nested within the seasonal model, because they are the same if all 6 = 0. The
F statistic for the seasonal model is F,, = 15.05, with a p-value < 0.001 obtained from
Pr(F51564 > Fops). This is a significant amount of “explained” variability compared to
the annual model.

The gradients for the 6, parameters are fairly large, and this causes problems when
computing the approximate standard errors, so it is difficult to interpret the significance
of the differences in growth break-points. The F-test is a better approach in this situation.
The p-value for the overall test that 6,’s differ is 0.38, and this suggests the differences
in break-points are not significant. Note that the usual procedure following this is to test
whether any pairs of break-points are different; however, we will not pursue this. The
results suggest that growth starts around week 30 (late July), but could occur a month
earlier.

The estimate of A\, is considerably larger than in Table 7. To some extent length-
dependent bias is confounded with \,,. To assess whether the differences in estimates of
Moo Might be related to differences in estimates of the bias function, we plot the estimated
bias function from the seasonal model in Fig. 13, and compare it with Fig. 10. The bias
functions are almost identical for 1999, and differ in magnitude by no more than 1 cm
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Table 10. Estimation results for the seasonal von Bertalanffy
analysis of cod growth increments (cm).

Approx. T Approx.

Parameter Estimate Std Err  Ratio Prob>|t|
Ao 137.66 17.43 7.90 <0.01
K1997 — K1999 -0.0026 0.0010 -2.14 0.03
K1998 — K1999 -0.0031 0.0012  -2.53 0.01
K1999 0.0066  0.0015 3.64 <0.01
01997 — 01999 -5.901 3.093 -1.91 0.06
61998 — B1999 -4.091 4.641  -0.88 0.38
01999 30.90 1.817 17.01 <0.01
B1o90.0 0218 0377 -0.58 0.56
Broso. 4631 0426 -10.88 <0.01
o 64.89 0.568 114.28 <0.01
Brooro — Brogeo | -1.485 0702 -2.11 0.03
Broor.1 — B1o99.1 0.085 0.719 0.12 0.91
B1o9s.0 — B1999.0 -0.682 0.707  -0.97 0.33
Broos.1 — Brogo 1712 0749 2.29 0.02

in 1997 and 1998. It seems unlikely that this could cause the differences in estimates of
Aso’s. The estimators for Ay, and &, tend to be highly correlated so the growth curves may
be similar, even if the parameter estimates are not. Growth estimates from the seasonal
model are presented in Fig. 14. On a broad scale these estimates are similar to those in
Fig. 11, but substantial deviations do occur. For example, compare the growth at week
150 for an 80 or 90 cm fish released in week 20. The seasonal model estimates 3-4 cm
more growth than the annual model. These are interesting differences that are worthy of
further investigation.

Weekly-averaged standardized residuals are shown in Fig. 15. Autocorrelation is still
evident in the residuals, but to a lesser extent than in Fig. 12. Further refinement of the
seasonal model may substantially improve model fit, and this will be an area for future
research.

7.1 Intrapopulation variability

In Section 5 we concluded that Fabens’ method of estimation was the best approach
for our tagging data, but that weighted least-squares similar to Somers and Kirkwood
(1991) worked almost as well. In this section we use the weighted least squares approach
to test for the potential sensitivity of our results to intrapopulation variability. The
variance model we use is based on the assumption that A in (3) is random, and that
there is measurement error in the lengths-at-capture. The variance model appropriate
for these assumptions is Var[G(t)] = o2 + 02 {1 —e ¥ (t)}2. We estimated (5) using
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maximum likelihood assuming growth measurements were normally distributed with this
variance function. Estimation results are presented in Table 11. The o2 parameter

Table 11. Estimation results for the seasonal von Bertalanffy
analysis of cod growth increments (cm), assuming
intrapopulation variability in L..’s.

Approx. T Approx.

Parameter | Estimate Std Err Ratio Prob>|t|
Aoo 139.05 23.40 5.94 <0.01
K1997 — K1999 -0.0012 0.0009 -1.41 0.16
K1998 — K1999 -0.0018  0.0011  -1.59 0.11
K1999 0.0046  0.0015 3.05 <0.01
B1007 — B1000 4.649 3481  -1.34 0.18
01908 — 1999 1.459 5.086 -0.29 0.77
601999 29.65 2.114  14.02 <0.01
B1999.0 -0.233 0377  -0.62 0.54
B1999.1 -4.560 0.435 -10.50 <0.01
Oy 64.89 0.607 106.99 <0.01
Bioo7.0 — B1999.0 -1.509 0.643 -2.35 0.02
Broor.1 — B1999.1 0.0887  0.6705 0.13 0.89
Bioeso — Brogeo | -0.6133  0.6775  -0.91 0.37
B1o9s1 — B1o90.1 1.655 0.762 2.17 0.03
o2 42.85 1454 2947 <0.01
o2 826.4 475.6 1.74 0.08

estimate is large; however, one must remember that in Var[G(t)] this term is multiplied
by {1—e % (t)}Q which is very small. The likelihood-ratio test statistic for H, : 02, = 0 is
22.37, and the chi-square approximate p-value for this statistic is < 0.0001. This suggests
that o2 is significantly different from zero. The estimate of A\, is smaller than in Table
10.

The estimated bias functions are shown in Fig. 16. The bias functions are more similar
to the annual model (Fig. 10) that the seasonal model with no intrapopulation variation
in growth (Fig. 13). Estimated growth curves are shown in Fig. 17. Growth in this
figure tends to lie between the growth suggested in Figs. 11 and 14. For completeness
we present weekly-averaged standardized residual plots in Fig. 18; they appear similar to
those in Fig. 15.

We also examined length-stratified plots of standardized residuals versus time-at-
liberty, which are presented in Fig. 19. While the residual variation in these plots is
large, they do not suggest any systematic mis-specification of our model. Another aspect
of the model is the potential for a nonlinear relationship between length-at-release and
growth. This could be caused by age-at-length effects not included in our model. To
address this we plotted residuals versus length-at-release for each release year. These
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plots are presented in Fig. 20. There is some evidence of a relationship between residual
and length. Growth tended to be under-estimated for large fish in 1997-1998, and over-
estimated for large fish in 1999. This could indicate nonlinearity in the length component
of (3) that is possibly related to different age-distributions in 1997-1999 for these large
fish. It could also be that there is confounding between length-effects and season-effects
not captured by our simplistic switched growth model, so we will not explore length-
effects further until we refine our seasonal growth model. There is also the problem that
nonlinearity in growth rates and length will be, to some extent, confounded with the
relationship between bias and length.

Our final residual analysis is useful for assessing our assumption about the variance in
reported growth. It is often observed in fisheries that the error variability increases with
the model mean. A common diagnostic to assess this is to plot standardized residuals
versus the predicted value of the observation. If our stochastic assumptions are correct
then the plot should resemble a “shot-gun blast”. This is exactly what we see in Fig.
21, and we conclude that our error assumptions seem reasonable. Some of the types of
heterogeneity suggested in the literature would not be obvious in Fig. 21 however, and
this deserves further attention in future research.

8 Discussion

The seasonal growth model we have developed is useful for predicting the length of a fish
for times-at-liberty up to almost three years, based on a known initial length. Without
further assumptions the growth rates are only applicable to the tagged fish used in our
analyses. We wish to apply the growth rates to all the tagged fish released in 3Ps and
3KL during 1997-1999. To do so we must assume that the age-at-length distributions for
all of the tagged fish are the same as the age-at-length distributions for the tagged fish in
our study. This is probably not correct because of the highly length selective exploitation
that occurs using gillnets. In conjunction with population variability in growth rates,
length selective exploitation may mean that at different times we exploit the slower, or
faster, growing components of the population. The problem will be attenuated when the
tagged fish cover a wide range of lengths; however, the problem will still exist. Future
research is required that focuses on the impact of gear selectivity on estimates of growth
rates, and methods for dealing with this problem.

The same problem exists when extrapolating the growth rates in this study to the
total populations of cod in 3Ps and 3KL during 1997-1999. For this extrapolation there
may be more difficulty, because the method of capturing tagged fish becomes important.
One assumption necessary for this extrapolation is that the age-at-length distributions
for the entire population is the same as the age-at-length distribution caught for tagging.

Our analyses indicate that there is considerable room for improvement in the quality of
the growth data from the tagging program. The large number of recaptures with negative
growth increments and large variation in growth increments even for short times-at-liberty
indicates that fishermen and other individuals returning tags must be better educated
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in the importance of measuring and reporting recapture lengths accurately. They also
need to be encouraged to routinely write down recapture information immediately after
a tagged fish is caught and to refrain from guessing lengths at some later date instead of
reporting them as unknown. Many individuals retain their tags until the end of the fishing
season and send them in all at once. This sometimes results in poor quality recapture
information, such as a broad time interval during which tagged fish were caught rather
than a specific date for each tag, a broad recapture area rather than an exact location, as
well as inaccurate recapture lengths.

More can also be done to improve the growth model. In reality growth will vary more
smoothly than the switched growth seasonal model; however, it is a useful first approxi-
mation. A likely problem with our seasonal model is that K (t) is not allowed to smoothly
increase and decrease. A more reasonable model might have K () increasing to a maxi-
mum at some point in the year, and then declining again. Both Pitcher and Macdonald
(1972) and Cloern and Nichols (1978) presented parametric models of this type; however,
adapting their approaches when growth rates vary annually presents additional challenges
which we do not pursue here. Also worth mentioning here is the nonparametric monotone
regression-spline approach to modelling human growth by Ramsay (1998,1999), and tech-
niques by Heckman and Ramsay (1999). We can use these methods to nonparametrically
model K () as a monotone and possibly periodic increasing function of ¢. This will be
another focus of future research.
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Figure 1: Map of Newfoundland showing the locations of tagging experiments during
1997-1999. NAFO subdivisions are delineated with solid lines.
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Figure 2: Reported growth of cod in 3PS from tagging data. The solid line marks a
local linear smooth of the data. The numbers are the smoother predicted growth at 2,
20, 60, and 120 weeks following release.
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Figure 10: Estimates of the bias in growth increments reported by the commercial fisheries

in 3PS and 3KL during 1997-1999, based on the annual Von Bertalanfty growth model.
The dotted lines mark the -5 and 0 cm growth increments.
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Figure 11: Estimated growth rates for cod in 3PS and 3KL during 1997-1999, based on
the annual Von Bertalanffy growth model. The time scale is weeks since the beginning of
1997. Each solid line represents the growth for a fish. The intersection of a solid line zero
growth line (dotted) is the release week. Growth is estimated up to week 150 (mid Nov,
1999). Dotted lines mark 10 and 20 cm growth. The vertical dotted lines mark the year
boundaries.

39



weekly average

standardized growth residuals

20 40 60 80 100 120 140

week

Figure 12: Weekly averaged standardized residuals (obs.-exp./std) from the annual Von
Bertalanfty growth model. The dotted line joins the averages. The solid line represents a
kernel smooth of the individual residuals. The vertical lines mark the bondaries between
1997-1998 and 1998-1999.
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Figure 13: Estimates of the bias in growth increments reported by the commercial fisheries
in 3PS and 3KL during 1997-1999, based on the seasonal Von Bertalanffy growth model.
The dotted lines mark the -5 and 0 cm growth increments.
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Figure 14: Estimated growth rates for cod in 3PS and 3KL during 1997-1999, based on
the seasonal Von Bertalanffy growth model. The time scale is weeks since the beginning
of 1997. Each solid line represents the growth for a fish. The intersection of a solid line
zero growth line (dotted) is the release week. Growth is estimated up to week 150 (mid
Nov, 1999). Dotted lines mark 10 and 20 cm growth. The vertical dotted lines mark the
year boundaries.
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Figure 15: Weekly averaged standardized residuals (obs.-exp./std) from the seasonal Von
Bertalanfty growth model. The dotted line joins the averages. The solid line represents a
kernel smooth of the individual residuals. The vertical lines mark the bondaries between
1997-1998 and 1998-1999.
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Figure 16: Estimates of the bias in growth increments reported by the commercial fisheries
in 3PS and 3KL during 1997-1999, based on the seasonal Von Bertalanffy growth model
with intrapopulation variability in A\,,. The dotted lines mark the -5 and 0 cm growth
increments.
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Figure 17: Estimated growth rates for cod in 3PS and 3KL during 1997-1999, based on
the seasonal Von Bertalanffy growth model with intrapopulation variability in A,,. The
time scale is weeks since the beginning of 1997. Each solid line represents the growth for a
fish. The intersection of a solid line zero growth line (dotted) is the release week. Growth
is estimated up to week 150 (mid Nov, 1999). Dotted lines mark 10 and 20 cm growth.
The vertical dotted lines mark the year boundaries.
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Figure 18: Weekly averaged standardized residuals (obs.-exp./std) from the seasonal Von
Bertalanffy growth model with intrapopulation variability in A,,. The dotted line joins
the averages. The solid line represents a kernel smooth of the individual residuals. The
vertical lines mark the bondaries between 1997-1998 and 1998-1999.
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Figure 19: Standardized residuals (obs.-exp./std) from the seasonal Von Bertalanffy
growth model with intrapopulation variability in A, versus time-at-liberty. Each panel
is for a length class at release. The solid line represents a local linear regression smooth
of the residuals. The dotted line is a horizontal line at zero. The vertical lines mark the
boundaries between 1997-1998 and 1998-1999.
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Figure 20: Average standardized residuals (obs.-exp./std) from the seasonal Von Berta-
lanffy growth model with intrapopulation variability in A\, versus length-at-release.
Residuals are averaged by one cm length classes. Each panel is for the release year,
and the bottom panel is for all years. The solid line represents a kernel smooth of the
residuals. The dotted line is the horizontal axis.
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