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1. Abstract

Biological information essential for addressing ecological concerns, assessing population
stock dynamics, and evaluating fishing strategies for a directed fishery proposed for horse clams
were examined. The depth distribution of horse clams appeared to extensively overlap with
geoducks in the subtidal zones. The possible detrimental effect caused by horse clam
exploitation on geoduck populations is, at present, unknown and should be examined in the
future. The current depth restriction for horse clam and geoduck fishing, which is shallower than
10 feet (3.06 m) below chart datum, appears to be inadequate to sufficiently protect the
eelgrass habitat in some areas. A general survey protocol was outlined for obtaining biological
and ecological information, such as horse clam biomass, natural mortality rate, growth, and
eelgrass distribution. A computer stochastic model was developed to evaluate the effect of
alternative fishing schemes and exploitation rates on the reproduction potential of horse clam
populations, based on known natural mortality and growth rates and age at vulnerability to
fishing. Highly precautionary biological reference points were recommended for the initial phase
of the directed fishery.

1.1 Résumé

Cette étude a examiné l’information biologique essentielle pour aborder les
préoccupations écologiques que soulève une pêche dirigée proposée de la fausse-mactre ainsi
que pour évaluer la dynamique des stocks de ce mollusque et les stratégies de pêche possibles.
En zone subtidale, la répartition de la fausse-mactre selon la profondeur semble chevaucher
considérablement celle de la panope du Pacifique.  Actuellement inconnu, l’effet néfaste que
pourrait avoir l’exploitation de la fausse-mactre sur les populations de panopes du Pacifique
devrait être étudié.  La limite actuelle de profondeur maximale de récolte de la fausse-mactre et
de la panope, soit 10 pieds (3,06 m) sous le zéro des cartes, ne semble pas protéger
suffisamment l’habitat de la zostère marine dans certaines régions.  Un protocole général de
relevé a été établi pour obtenir des données biologiques et écologiques, comme la biomasse, la
croissance et le taux de mortalité naturelle de la fausse-mactre ainsi que la répartition de la
zostère marine.  Fondé sur les connaissances concernant la mortalité naturelle, les taux de
croissances et l’âge de vulnérabilité à la pêche de la fausse-mactre, un modèle informatique
stochastique a été mis au point pour évaluer l’effet de divers modes de récolte et taux
d’exploitation sur la capacité de reproduction des populations de ce mollusque.  Des points de
référence biologiques très prudents sont recommandés pour la première phase de la pêche
dirigée.
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2. Introduction

Two horse clam species, Tresus capax and T. nuttallii, have been incidentally
harvested in the subtidal zones of British Columbia (B.C.) since 1979.  Lauzier et al. (1998)
reviewed the biology and fisheries of these two horse clam species.  No commercial harvest of
horse clams exists in the intertidal zone of B.C.  Due to a lack of appropriate stock
assessments, managers have restricted exploitation of horse clams as only incidental by-catch to
the geoduck (Panopea abrupta) in B.C.  This incidental fishery, since 1992, has been a 3-year
rotation fishery, co-incident with the geoduck fishery management plan (Heizer 1999).  Horse
clam catch ceilings, loosely based on historical catches, have been limited to 5 t in Pacific
Fishery Management Area (PFMA) 15 and 24 with high historical landings, to 2 t in PFMA 14,
16, 18 and 25 with moderate historical landings, and to 1 t in PFMA 12, 13, 17, 19, 23, 26,
and 27 with low historical landings (Harbo and Hobbs 1997, Heizer 1999).  Fishing for horse
clams has been restricted to 10 feet (3.06 m) below chart datum in an attempt to protect
eelgrass beds, which support herring spawning and may provide a habitat for horse clams.
There are concerns, however, about the impact of harvesting horse clams in eelgrass beds
which may extend deeper than 10 feet below chart datum.

Commercial harvesters of horse clams now wish to expand the fishery from an
incidental  to a directed fishery for the subtidal horse clam.  A sound management plan for a
directed horse clam fishery requires an evaluation of the stock dynamics, alternative
management options and ecological impacts.  Biological information on natural mortality,
growth, longevity, vulnerability of age to fishing, relative density and extent of eelgrass
distribution have been gathered from some areas.

The objectives of this paper are to review the existing fisheries-related biological data
on horse clams, inspect the extent of overlap between distributions of horse clams and
geoducks, examine the extent of eelgrass distribution, develop a general survey protocol, and
model horse clam stock dynamics to obtain a range of exploitation rates (E) for both species of
horse clams, as required by the fishery managers (Appendix 1).

3. Existing Biological Information

The biology of horse clam has been reviewed by Lauzier et al. (1998).  Here we only
examined biological information essential for addressing the ecological concerns, assessing stock
dynamics, and evaluating fishing strategies.
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3.1. Distribution and Relative Abundance

Two species of horse clams (T. capax and T. nuttallii ) live in mud, sand and gravel
substrates in B.C. waters.  Tresus nuttallii is found from the low intertidal to subtidal depths of
50 m, buried to depth of >1 m, whereas T. capax is found from mid-intertidal to subtidal
depths of 30 m, but may not be buried as deep in the subtidal (Bernard 1983; Haderlie and
Abbott 1980).  Tresus nuttallii may also live above the low intertidal, although this has not
been documented (Lauzier et al. 1998).  Subtidally, the relative composition of the two horse
clam species varies considerably.  In some areas, such as Ritchie Bay, Stubbs Islets, Klaskino
Inlet and Newcastle Island, almost the entire horse clam population was composed of T.
nuttallii, while in Seal Islets T. capax was overwhelmingly dominant (Table 1).  In Comox Bar,
just above half of the horse clam population was composed of T. capax, while in Epper Pass,
Lemmens Inlet and Yellow Bank, more than half of the horse clams were T. nuttallii (Table 1).

Density of horse clam has been estimated in some areas. Horse clam densities estimated
from study plots varied from 0.32/m2 in Ritchie Bay (Campbell et al. 1990) to 4.54/m2 at Seal
Islets (Campbell and Bourne 2000). Goodwin and Shaul (1978) reported mean horse clam
densities of 1.48/m2 in Puget Sound, but much higher densities at Dungeness Spit. Diving
observations in 1988 revealed that the mean density of horse clams was 2.33 pieces /m2 in the
Morfee Island (Harbo and Hobbs 1989).  Estimates of subtidal horse clam density derived from
geoduck surveys were comparatively low along the coast (Lauzier et al. 1998).  As show
factor (percent of neck showing above the substrate at any particular time) was not considered
in these estimates, the true density may have been higher.  These estimated densities may reflect
relative abundances of horse clams in different surveyed areas.  The mean density estimate
varied between 0.01 and 0.12/m2 in Kettle Inlet and Anderson Island in the North Coast,
Hotspring Island, Cumshewa Inlet, and Houston Stewart in the Queen Charlotte Islands, Oyster
River and Duncan Island in the Strait of Georgia, Ahousat and Winter Harbour in the West
Coast of Vancouver Island (Lauzier et al. 1998).  Mean density derived from a geoduck survey
conducted in 1995 in the Yellow Bank/Elbow Bank area was relatively high, ranging from
0.29/m2 in the Epper Pass, 0.46/m2 in the Yellow Bank, 0.58/m2 in the Elbow Bank and
0.81/m2 in the Morfee/Dunlap (C. Hand unpublished data).  The overall mean density was
0.55/m2, more than 5 times as high as in the other geoduck areas surveyed, suggesting that the
Yellow Bank/Elbow Bank area was a relatively high productive horse clam area.  Highest
historic landings of horse calms were produced in this area (Lauzier et al. 1998).

Data from geoduck surveys (C. Hand unpublished data) also indicated that depth
distribution of horse clams and geoducks overlapped extensively (Fig. 1, Table 2), although
variation in abundance with depth appeared to be different between species.  The abundance of
geoduck decreased with depth in most of the areas, whereas changes in abundance of horse
clam by depth were variable.  In Ahousat, Elbow Bank, Hotspring Island, North Epper Pass
and Yellow Bank, horse clams were relatively abundant in the low depths between 0 and 6 m,
whereas in Cumshewa and Kettle Inlet, they were more abundant in the depths between 3 and
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12 m.  Campbell and Bourne (2000) also found that density of horse clams was higher in the
depth of 3-6 m than other sampled depths in Ritchie Bay.  In Anderson Island, horse clam
density was lower in depths <15 m than for depths between 15 and 18 m.  Coincidentally, the
highest density of geoduck, was also found in this depth range in the Anderson Island (Table 2).

3.2. Fishing Selectivity on Size and Age

Divers are generally not able to differentiate between the two species of horse clams or
assess individual size, until animals have been extracted from the substrate.  Also, divers usually
have difficulty in seeing  and/or collecting small horse clams.  Analysis of length or age frequency
distributions should indicate the vulnerability of size or age of horse clams to fishing.

Commercial and biological samples were collected from some areas, and their length or age
frequency distributions were constructed.  Mean shell length (SL) of T. nuttallii varied from
144 to 176 mm with an overall mean of 165.6 mm, whereas for T. capax mean SL varied from
113 to 159.8 mm with an overall mean of 135.9 mm (Table 3). The minimum SL for T.
nuttallii varied between 73 and 140 mm with a mean of 109.1 mm, whereas for T. capax
minimum SL varied between 54 and 154 mm with a mean of 113.7 mm (Table 3).  When
minimum SL was converted to age based on the von Bertalanffy equation established for T.
nuttallii and T. capax in Lemmens Inlet (see Table 5a), equivalent minimum age range was 3.2
to 7.1 years for T. nuttallii and 2.1 to 10.1 years for T. capax.  Ages of horse clam collected
commercially from Comox Bar and Stubbs Island were estimated by counting annuli on the
shells.  The age range was found to be 6-15 and 8-19 years for T. nuttallii and T. capax,
respectively, for the samples from Comox Bar, and to be 4-14 and 6-12 years for T. nuttallii
and T. capax, respectively, for the samples from Stubbs Island (R. Harbo unpublished data).

How well these commercial biosamples represent small horse clams is unknown, as most
young clams might have been disturbed but not harvested.  Horse clams loose the ability to re-
burrow at 60-75 mm SL (Pohlo 1964).  This SL range is approximately equivalent to 2-3 years
of age.  Individuals larger than this size range or older than this age range may die soon after
they have been disturbed or exposed but not harvested.  Thus, the minimum size or age of horse
clams starting to suffer from fishing mortality is probably smaller or younger than what most of
the commercial samples suggested.

Age frequency distributions were constructed from the biological samples collected from
the field studies in Ritchie Bay and Seal Islet by Campbell and Bourne (2000).  Tresus nuttallii
began to be vulnerable to fishing approximately at age 4 years and fully vulnerable at age 7
years in Ritchie Bay, and T. capax started to be vulnerable to fishing at age 3 years and fully
vulnerable at age 4 years in Seal Islet.  This vulnerability information appeared to be reasonable
and was used in the model described below.  The exploitable population of T. nuttallii and T.
capax was almost equivalent to the entire spawning population, as T. nuttallii and T. capax
was found to mature at age 3 and 3-4 years, respectively (Campbell et al. 1990).
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3.3. Natural Mortality Rate and Growth

Instantaneous natural mortality rates (M) were estimated based on age frequency
distributions (Ricker 1975) for T. nuttallii in Klaskino Inlet, Ritchie Bay, Comox Bar and
Stubbs Island, and for T. capax in Seal Islets and Comox Bar (Campbell and Bourne 2000, R.
Harbo unpublished data) (Table 4). Campbell and Bourne (2000) estimated total mortality rate
(Z) by calculating the slope of the regression relationship between the natural log of the
frequency and age of horse clams > 10 years, which would include mature (Campbell et al.
1990) horse clams fully recruited to the fishery and mainly on the descending right limb of the
age frequency curve.  We assumed that the total mortality rate reflected the natural mortality
rate because most of the age frequencies of horse clams sampled were from areas that had little
or no commercial fishing history. Campbell and Bourne (2000) used SYSTAT to calculate the
slope of the regression line and associated 95 % confidence intervals.  M varied from 0.2 to 0.6
with a mean of 0.4 for T. nuttallii.  M also varied for T. capax, being 0.16 in Seal Islets and
0.48 (3 times as high) in the Comox Bar (Table 4).  Approximate 95% confidence intervals
were also estimated for T. nuttallii in Ritchie Bay and Klaskino Inlet, and for T. capax in Seal
Islet (Campbell and Bourne 2000).  Standard deviations were approximately calculated by
dividing the confidence interval (the difference between the upper and lower confidence limit) by
2, resulting in an approximate mean coefficient of variation of 0.3.  This uncertainty about the
estimation of M was simulated in the rotation model described below.

Campbell et al. (1990) and Campbell and Bourne (2000) reported on von Bertalanffy
equation (with associated 95% confidence intervals) (Table 5a).  These uncertainties about the
estimations were also incorporated into the rotation model.  The corresponding standard
deviation was calculated in the same way as described above.

Campbell et al. (1990) and Campbell and Bourne (2000) described the length (SL)
and weight (W) relationship using the model:

ln(W) = lnA + B * ln(SL)

where lnA and B are model parameters (Table 5b).  To simulate the uncertainty about the mean
weight for a given length or age, standard error of the mean weight for a given length was
calculated and used in the rotation model.

Only total wet drained weight was used in this paper.  Total wet drained weights were
not obtained from the samples collected commercially from the Klaskino Inlet.  Instead, they
were estimated from the total wet weight (Campbell and Bourne, 2000).  So the growth models
(von Bertalanffy equation and length-weight model) established for T. nuttallii in Klaskino area
were not considered for use in the rotation model.  A preliminary examination on the impact of
using alternative growth models established for horse clams in different areas was relatively
small, when the percentage of the maximum spawning stock biomass per recruit was to be
maintained above 50% for the stock.  For the same E varying from 0.01 to 0.4 with an interval



7

of 0.01 and same M varying from 0.1 to 0.5 with an interval of 0.05, use of growth models for
T. nuttallii in Ritchie Bay or Newcastle Island resulted in only < + 2% difference in final results,
when compared with the use of the growth models for T. nuttallii in Lemmens Inlet.  Use of
growth models for T. capax in Seal Islet results in  < 3% difference in the final results, as
compared with the use of the growth models for T. capax in Lemmens Inlet.  We chose to use
the von Bertalanffy model and length-weight conversion model established for T. nuttallii and
T. capax in Lemmens Inlet in the rotation model.

3.4. Eelgrass Distribution

Eelgrass beds may provide a good habitat for horse clams (Stout 1967, Wendell et al.
1976) and support herring spawning (Haegele and Hamey 1979, Haegele and Miller 1979).
Eelgrass beds should be well protected. Horse clam fishing is currently restricted to the depths
>10 feet (3.06 m) below chart datum in an attempt to protect eelgrass beds. Examination of the
adequacy of the current protection requires information on the depth distribution of eelgrass.

Unpublished data from geoduck surveys (courtesy C. Hand) provided an opportunity to
preliminarily examine the eelgrass distribution.  Presence of eelgrass in the surveyed quadrats
was noted in the geoduck surveys. We use the percentage of quadrats with presence of eelgrass
to represent the relative quantities of eelgrass in various depth ranges (Fig. 2. Table 6). In
Ahousat, Cumshewa Inlet, Hotspring Island and Kettle Inlet, considerable amount of eelgrass
appeared to exit below 3-4 m. Relatively smaller proportion of eelgrass appeared to extend
beyond 3-4 m in Anderson Island and Yellow Bank/Elbow Bank area. In Cumshewa Inlet,
presence of eelgrass was recorded from 9-15m (not shown in Fig. 2). Eelgrass found in this
depth possibly drifted from shallow waters. No eelgrass was recorded in the Morfee/Dunlap
area. This is only a very rough approximation of depth distribution for eelgrass. Eelgrass density
distribution can not be properly evaluated without quantitative information, such as percentage
of eelgrass coverage.

In the late 1970s a diving transect survey was carried out with a total of 118 quadrats to
investigate vegetation distribution in the Meares Island section of Clayoquot Sound (Yellow
Bank/Elbow Bank area), which is a productive area for horse clams. Eelgrass (sea grass) was
found to be the predominant vegetation, as 104 of the 118 quadrats were dominated by
eelgrass and only 14 quadrats were dominated by other types of vegetation (Haegele and
Hamey 1979, Haegele and Miller 1979). Percentage of eelgrass coverage was recorded for
quadrats with eelgrass as predominant vegetation (Table 7). The depth was known for 80
quadrats out of the 104 quadrats dominated by eelgrass. The survey was largely conducted
shallower than 3.5m depths, as only 7 out of the 80 quadrats were located below 3.5 m.
Apparently, a substantial amount of eelgrass was found deeper than 3.5 m below chart datum.
On average, eelgrass covered 54% of the surveyed quadrats between 0.1 and 3.5 m and
31.4% of the surveyed quadrats between 3.6 and 6 m below chart datum respectively. The
current depth of restriction appears to be inadequate enough to sufficiently protect the eelgrass
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habitat in this area. However, the number of surveyed quadrats below 3.5m was small.

The quantitative relationship between the distribution and abundance of horse clams and
eelgrass requires further investigation as part of ongoing surveys.

4. Surveys

Prior to estimating quotas for a directed commercial fishery on horse clams, stock
biomass and an appropriate E should be determined for specific beds.  To estimate a
precautionary E, data on M, growth, species composition and age vulnerability to fishing are
required for modelling (e.g., the rotation model describe in this paper).  In addition, surveys are
required to estimate the abundance and distribution of horse clams and eelgrass, so that horse
clam biomass can be calculated and an appropriate depth harvesting restriction can be
determined for each area.

4.1. Biomass and distribution estimates

The three main phases that need to be considered in surveying horse clam biomass in
specific areas are as follows.

Phase 1, a preliminary/exploratory phase, should be to establish the general locations and
extent of horse clam beds in a specified area (e.g., PFM area or sub area).  This could be
accomplished by using a combination of existing fishery dependent data (e.g., log book
information, interviews with fishermen) and rapid broad brush (systematic) surveys using timed
swims or some other methods (e.g., Questar Tangent) to establish substrates, existence and
locations of most subtidal horse clam beds in an area.

Phase 2, abundance estimate phase, should establish the extent and biomass of horse clams
in 3-5 randomly selected beds in each specific area using transect surveys.  Transect and
biosample surveys, similar to those used for geoduck (e.g., Campbell et al. 1998; Campbell
and Rajwani 1998; Hand and Dovey 1999), should be conducted to determine the density, bed
size, eelgrass distribution, and age, weight and size composition, through biosamples, for
estimating M and growth.  Although horse clams in the low intertidal zone are not part of the
"exploitable population", they may affect the stock dynamics of the subtidal population through
larval settlement and recruitment mechanisms.  Understanding this influence may help in
managing the subtidal horse clam stocks.  Thus, surveys could extend from the intertidal to the
subtidal zones (at least to depths of about 20 m, which are safe for divers).  Little is known
when horse clams withdraw their siphons from the substrate surface due to physical and or
biological factors as has been noted for geoducks (Turner and Cox 1981).  Since some horse
clam necks may not be visible at any one period this may affect the density estimates of horse
clams, therefore show factor estimates (e.g., Campbell et al. 1998) should be considered, at
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least initially, for these surveys.  The time and cost for the surveys, in general, and individual
transects by depth, in particular, could be recorded for each survey to assist to help in
optimising surveys.

Phase 3, survey evaluation and optimisation phase, should determine the optimal number of
beds per area and transects per bed required for future surveys.  After 3-5 surveys per area
and 3-4 areas have been conducted the data collected could assist in determining the optimal
number of beds, transects and biosamples that could be required to make the surveys as
efficient and representative as possible.  Phases 2-3 could be iterative over a number of years.

4.2. Experimental plots and Adaptive Management

Several long-term experimental plots could be established, at different depths and
substrates, to periodically monitor the effects of different rates of exploitation on horse clam
recruitment, growth and survival rates. The spatial scale of these areas will depend on a number
of factors, including availability of survey resources and sampling sizes required to provide
sufficient power to show statistical differences between treatments and or time series changes in
the population parameters measured.

5. The "Rotation" Model

Population and fishery persistence requires that the harvested stock retains sufficient
amount of spawning stock biomass (SSB) to produce, on average, sufficient amount of offspring
to compensate for the loss due to harvesting. The impact of fishing on the average spawning
capacity can be measured by spawning stock biomass per recruit (SPR), which is defined as the
SSB produced by an average recruit in the whole life-span. To evaluate stock dynamics and
management options, we developed a model named "rotation model".  The model is an
extension of the conventional SPR model (Zhang 1999). It also incorporates uncertainties
inherent in scientific knowledge about the status of the population, whereas the conventional
SPR model is deterministic.

5.1. Spawning Stock Biomass Per Recruit for an Annual Fishery

When a fishery operates on an annual basis with a fixed fishing mortality rate (F), SPR
can be calculated as follows:
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animals being mature at age a, aW  is the average weight of animals at age a, F and M are

instantaneous fishing and natural mortality rates. With a given M, SPR declines monotonically as
F increases. The maximum SPR is obtained when F is zero. When recruitment age, longevity
and M is fixed, the level of fishing mortality determines the percentage of the maximum SPR the
stock is to retain. On the other hand, F can be set once we determine what percentage of the
maximum SPR is to be retained by the stock. Conventionally, Fx% (e.g F40%) denotes a fishing
mortality rate, which will result in x% (e.g 40%) of the maximum SPR. Translation from
percentage of the maximum SPR to percentage of virgin (pristine) SSB relies on the shape of
the underlying stock and recruitment relationship (Shepherd 1982, Mace 1994).

5.2. Spawning Stock Biomasss Per Recruit for a Rotation Fishery

A n-year rotation fishery (n = 1, 2, 3 …) has a fishing cycle of one year of fishing
followed by n-1 years of non-fishing. A 1-year rotation fishery is equivalent to an annual fishery.
Unlike an annual fishery where recruits from any year experience the same amount of fishing
pressure, recruits from different years of a fishing cycle of a multi-year (2 or more) rotation
fishery go through different fishing patterns in their whole lifespan. Suppose that we have a 3-
year rotation fishery on animals, which recruit to the fishery at age 3. Animals which recruit in a
fishing year are susceptible to be harvested when they are 3 years old, 6 years old and so on.
Animals which recruit in the next year are susceptible to be harvested when they are 4 years
old, 7 years old and so on. Animals which recruit in 2 years after the fishing year are susceptible
to be harvested when they are 5 years old, 8 years old and so on. Thus, an average recruit from
different years of a fishing cycle produces different amount of SSB. For a n-year rotation
fishery, there are n different SPRs (SPRi, i = 1, 2 …n) corresponding to n years of a fishing
cycle. We measure the impact of fishing on spawning capacity by calculating the average SPR:

n

SPR
SPR

n

i
i∑

== 1 5.2.1

To simplify the calculation, we use the following procedure to calculate the average SPR
for a n-year rotation fishery. Firstly, let each recruitment contain a constant number of recruits,
R, (for the sake of calculation only, no constant recruitment is assumed for the model).
Secondly, calculate the equilibrium number of animals at each age before a fishery starts (F=0).
Thirdly, calculate the maximum SPR prior to a fishery (F=0). Fourthly, impose a fixed F on the
stock and simulate the dynamic change in the number of animals at each age and year forward
until the number of animals at each age remain unchanged from one fishing year to another.
Lastly, sum up the total SSB present in a whole fishing cycle (composed of n years) and
calculate the average SPR by dividing the summed SSB by Rn × .
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5.3. Required Biological Information

The model requires knowledge on M, growth, ages of animals recruiting to the fishery
and longevity, as the conventional yield per recruit and biomass per recruit models. Because this
model is stochastic in nature, it also needs information on the variation associated with estimate
of M and growth.

All the required information is available for horse clams. Estimates of M, weight from
length, and von Bertalanffy model parameters all have associated uncertainties, which are
incorporated into the model by simulations. In each simulation, M, weight at a given length, each
of the three von Bertalanffy model parameters varied in a normal distribution fashion with the
estimated mean and standard deviation or coefficient of variation.

We assumed the horse clam fishery to be a Type 1 fishery (See Ricker 1975, p.10), in
which M occurs during a time of year other than the fishing season and the population
decreased during the fishing season because of catch removals only.  We used Es instead of
instantaneous fishing mortality rates (F) in the model, not only because E was more easily
comprehended, but E is also more meaningful for a Type 1 fishery. As sizes of horse clams can
not be reliably identified prior to removing individuals from the substrate. Exploitation rate (E)
for each age of animals also varied in each simulation in a normal distribution fashion with
coefficient of variation set arbitrarily to be 0.1 (one third of the coefficient of variation for M).
The normal distribution has the defect of not excluding negative values for M and E.  To restrict
M to a "reasonable" range, M was arbitrarily set to be 30% of the mean or 170% of the mean,
if M fell below 30% or rose above 170% of the mean.  E was arbitrarily set to be 60% of the
mean or 140% of the mean, if E fell below 60% or rose above 140% of the mean.

Recruitment was regarded to occur at an age when horse clams begin to be vulnerable
to fishing. Age frequency distribution suggests that Tresus nuttallii start to be vulnerable to
fishing at age 4 and fully vulnerable at age 7, and T. capax start to be vulnerable at age 3 and
fully vulnerable at age 4.  We assumed vulnerability increased from the age beginning to be
vulnerable to the age fully vulnerable to fishing in a stepwise fashion and the increment in
vulnerability between any two consecutive ages was the same until an age fully vulnerable to
fishing was reached. The mean E on animals younger than fully vulnerable age was adjusted by
timing the vulnerability by the mean E for the fully vulnerable animals. The harvested biomass is
regarded to be the whole SSB, as the age of maturity approximately coincides with the age of
recruitment.

Maximum age was estimated to be 24 years old for T. nuttallii and 21 years old for T.
capax by counting the annuli on the shells (Campbell and Bourne, 2000).  However, annuli
formed on the margin of shells of old horse clam might not have been entirely enumerated, and
older horse clam might not have been sampled.  Conservatively, we set maximum age to be 30
years old for both T. nuttallii and T. capax in the model.
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5.4. Mathematical Calculation

We investigated 3 fishing schemes (1-year, 2-year and 3-year rotation fishery), 9 mean
natural mortality rates (varying from 0.1 to 0.5 with an interval of 0.05) and 40 exploitation rates
(varying from 0.01 to 0.4 with an interval of 0.01). One thousand simulations were carried out
for each combination of fishing scheme, natural mortality rate and exploitation rate for each
species. Therefore, there are 1080 ( 4093 ×× ) combinations for each species of horse clam.
For simplicity, we describe the calculation procedure just for one combination, which has a n-
year rotation fishery (n = 1, 2 or 3), a mean natural mortality rate of M and an exploitation rate
of E for animals fully vulnerable to fishing. Calculation procedure is the same for other
combinations.

The model assumptions are listed in Table 8, parameters values used by the model in
this paper are listed in Table 9 and 10. Some of the symbols, which have been presented in
Table 9 or 10, are used here without redundant explanations.

Each recruitment was arbitrarily set to have a constant  10,000 animals.  Different
number of constant recruits does not affect the final results, as they were expressed in a relative
term.

In simulations, natural mortality rate, average length at each age, average weight for a
given length and age-specific exploitation rate all vary based on the available information or
assumptions.

The natural mortality rate in simulation i (i=1,2…1000), iM , is:

Mi MM ε+= 5.4.1

where M is the mean natural mortality rate and Mε  is a random variable generated from a
normal distribution with mean of  zero and a standard deviation of MM ×cov . iM  is then set to

be minM or maxM , if it is less than minM or larger than maxM :
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Average length of animals at age a in simulation i, iaL , , is calculated based on the von

Bertalanffy model, whose parameters vary in a normal distribution fashion:
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LLL ε+= ∞∞
'

kkk ε+='

ttt ε+= 0
'
0

where Lε , kε  and tε  are random variables from a normal distribution with mean of zero and a

standard deviation of Lσ , kσ  and tσ  respectively.

The average of logarithm of animal weight at age a in simulation i, )(nl ,iaW , is calculated
based on average length at age a:

wiaia LBAW ε+×+= )ln(ln)(nl ,, 5.4.4

where wε  is a random variables from a normal distribution with mean of zero and a standard
deviation, sd, calculated as follows:
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The average weight of animals at age a in simulation i, iaW , , is obtained as follows:

))(nexp(l ,, iaia WW = 5.4.6

Before a fishery starts, the population is assumed to be in an equilibrium state. The
number of animals at each age remains unchanged with years. The number of animals at the
beginning of age a in simulation i, iaN , , is:







>×

=
=

−
− )((

)(

,1

, AraifeN

AraifR
N

iM
ia

ia 5.4.7

where iaN ,1−  is the number of animals at the beginning of age a-1 in simulation i.

The average number of animals at age a in simulation i, iaN , , is
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The maximum spawning stock biomass per recruit in simulation i, iMSPR , is:
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We define the year when a n-year rotation fishery starts as year1. So the fishing year
would be year 1, 1+n , … 1+× nj  (j is a positive integer number). We define the beginning of
an year and age as the time fishing starts. We also define that recruitment occurs at the time
fishing starts.

Exploitation rate on animals of age a in simulation i, iaE ,  is:

Eaia VulEE ε+×=, 5.4.10

where E is the mean exploitation rate for animals fully vulnerable to fishing, aVul  is the

vulnerability of animals at age a to fishing, and Eε  is a random variable from a normal
distribution with mean of zero and standard deviation of aE VulE ××cov . The vulnerability of

animals at age a to fishing is calculated as follows:
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where a is the age of the animals.

iaE ,  is set to be minE  or maxE , if it is less than minE  or larger than maxE ,:
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Calculation of the number of animals at the beginning of age a in year y in simulation i,

iyaN ,, , depends on the age and whether the previous year (y-1) is a fishing year:
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where iyaN ,1,1 −−  is the number of animals at the beginning of age a-1 in year y-1 in simulation i.

The calculation by equation 5.4.13 continues until an equilibrium is reached. At
equilibrium the number of animals at each age remains the same from one fishing year to another
or from one fishing cycle to another:

injainja NN ,1)1(,,1, +×++× == 5.4.14

where j is a positive integer number, 1+× nj  represents a fishing year and 1)1( +×+ nj

represents the next fishing year.

Calculation of the average number of animals at age a in year y in simulation i, iyaN ,, ,
depends on whether the current year (year y) is a fishing year:
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5.4.15

The average spawning stock biomass per recruit in simulation i, ASPRi,is calculated by
dividing the combined biomass by the combined recruits from n recruitments in one fishing cycle:
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5.4.16

where 1+× nj  and nnj +×  represent the fishing year and the last non-fishing year
respectively in a fishing cycle, after the equilibrium has been reached.

The impact of fishing pattern on the stock in simulation i is examined by calculating the

percentage of the maximum spawning stock biomass per recruit, iSPR% :

100% ×=
i

i
i MSPR

ASPR
SPR 5.4.17

The calculations are repeated for another simulation until 1000 simulations have been
carried out.
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5.5 Model Results

The 1000 simulations resulted in 1000 possible consequences, which could be
expressed in a frequency distribution fashion.  For instance, for a 3-year rotation fishery with E
of 10% and M of 0.2, possible percentage of the maximum SPR the stock retains ranged from
66% to 90% with a mean of 78.6% and lower 90% confidence limit of 71.5% (Fig. 3).  Mean
and lower 90% confidence limit for the percentage of the maximum SPR for various Ms and Es
are shown for T. nuttallii in Table 11 and 12, and Fig. 4 as a 1-year rotation fishery, Table 13
and 14, and Fig 5 as a 2-year rotation fishery, in Table 15 and 16, Fig. 6 as a 3-year rotation
fishery, and for T. capax in Table 17 and 18, and Fig. 7 as a 1-year rotation fishery, Table 19
and 20, and Fig 8 as a 2-year rotation fishery, and in Table 21 and 22, Fig. 9 as a 3-year
rotation fishery.

The coefficient of variation was positively correlated with E for a given M and rotation
(Fig. 10), indicating the variation in percentage of the maximum SPR is higher for higher E
values.  Thus, more caution is required using high E values in quota determination.  For a fixed E
and fishing scheme, coefficient of variation varied slightly with M (Fig. 10) and was higher when
M was between 0.2-0.3 than when M was smaller or larger than 0.2-.03.

The lower the M, the lower E should be set for each fishing scheme in order to maintain
percentage of the maximum SPR at a certain level.  When there is a good mixture of the two
species, the lower E should be used to avoid possible over-fishing of the other species, as the
fishery is not able to discriminate between T. nuttallii and T. capax prior to removing
individuals from the substrate.

A target reference point can be set to a certain percentage of the maximum SPR in the
stock.  The corresponding E can be set based on the risks we are willing to take.  To be
precautionary, we may be only willing to take a risk of 10% chance that SSB might fall below
the target level.  For instance, having 90% chance to retain, at least, 75% maximum SPR in a T.
nuttallii stock for a 3-year rotation fishery with estimated mean M of 0.2, then E should be set
at 8-9%, as suggested by the lower 90% confidence limit.  A limit reference point could be set
to a lower percentage, for instance, 55% maximum SPR.  The status of the fishery could be
checked by re-surveys after a fishery has operated for a period.  If the limit reference point is
being approached, actions would have to be taken to reverse the trend.

To examine the difference in overall exploitation rate, and thus overall catch, for
different rotation years, E for 2-year and 3-year rotation fisheries were "standardised" to the E
for 1-year rotation fishery by dividing them by 2 and 3 respectively. To maintain the percentage
of the maximum SPR at a certain level with a given M, the " standardised" E for 3-year rotation
fishery was lower than that for a 2- year rotation fishery, which is lower than E for a 1-year
rotation fishery.  Higher M or lower percentage of the maximum SPR results in higher inter-
rotational differences in overall exploitation rates (Fig. 11).
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6. Discussion

The management unit of bivalves is typically either based on individual areas (each
having several beds), as for the geoduck fishery, or on individual beds, as for the depuration
intertidal clam fishery. As the number of horse clam beds are small, as compared with the
number of geoduck beds, horse clams could be managed on the bed-by-bed basis.

T. nuttallii almost exclusively live subtidally, while T. capax live both intertidally and
subtidally. In most subtidal horse clam beds, T. nuttallii and T. capax co-exist with a varying
degree of mixture. When there is a good mixture of the two species, the lower E should be used
to avoid possible over-fishing of the other species, as the fishery is not able to discriminate
between these two species prior to removing individuals from the substrate. The other
ecological concerns are the potential impacts of horse clam fishery on eelgrass beds and
geoduck stocks

Eelgrass beds support herring spawning (Haegle and Miller 1979) and possibly provide
a good habitat for horse clams (Wendell et. al. 1976). They must be adequately protected. The
extent of eelgrass distribution appear to vary in different areas. No eelgrass presence was
recorded in Morfee/Dunlap area from the geoduck surveys. Eelgrass was found to be present
as deep as 4.5 m in Anderson Island, 6-7 m in Hotspring Island and Kettle Inlet, 7-8 m in
Anderson Island and Elbow Bank, 8-9 m in Epper Pass and Yellow Bank, and 14-15 m in
Cumshewa Inlet in the geouck surveys. The late 1970s survey (Haegele and Hamey 1979,
Haegele and Miller 1979) seemed to reveal that a substantial amount of eelgrass was present
below 3.5 m in the Meares Island section of Clayoquot Sound. The current depth restriction for
horse clam fishing is only 10 feet (3.06 m) below chart datum, which does not appear to be
adequate enough in most of the areas.

 Caution is required in interpreting eelgrass distribution from geoduck survey data since
these surveys did not measure the full extent of eelgrass beds and shallow subtidal and deep
intertidal areas, where eelgrass beds were abundant, could have been avoided. Furthermore,
the geoduck surveys only recorded presence/absence of eelgrass in each surveyed quadrat.
Therefore, eelgrass density distribution could not be adequately evaluated using the data from
the geoduck surveys.  The shortcoming of the late 1970s survey is that the sampling size was
too small in the deep water, as percentage coverage of eelgrass was recorded from only 7
quadrats between 3.5 and 7 m. The adequacy of the current horse clam depth restriction has
yet to be assessed in light of quantified data on eelgrass distribution from future surveys. If we
are to restrict the fishery to a depth, below which there is only marginal amount of eelgrass, (say
10%), we need to record the percentage of eelgrass coverage in each sampling quadrat to a
sufficient depth in future surveys, allowing comparison between the distribution and density of
horse clams and eelgrass at depth.
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A considerable number of horse clams, which may occur in the shallow waters in many
areas without eelgrass, may be protected from harvesting by the current 10 ft depth restriction.
The fishery depth restriction may reduce the risks of recruitment overfishing as these areas may
act as refuges for brood stock.  As they are part of the integral subtidal horse clam population,
their biomass should be surveyed and in some shallow areas which are clearly without eelgrass
beds could be considered as part of the total biomass for setting quota.

Horse clam distribution appears to overlap geoduck distribution.  The detrimental effect
caused by horse clam exploitation on geoduck population, and vice versa, is unknown.
Consequently, the effect of horse clam harvesting on geoduck population should be considered.
A 3-year rotation fishery may be less detrimental than an annual one to both geoduck and horse
clam populations.  However, when we opt for a 3-year rotation fishery, the standardised E
(E/3) would be less than the E for an annual fishery to maintain the same percentage of the
maximum SPR.  For instance, to maintain the percentage of the maximum SPR at 60%, the
standardised E for a 3-year rotation would be about 7% or 11% lower than the E for an annual
fishery, when the M is 0.1 or 0.3.  Thus, yield would also be reduced accordingly.  To choose a
fishing scheme, the managers have to weigh the effect of possibly reducing the detrimental
damage over the effect of  sacrifice of some yield for a multi-year rotation fishery.

The rotation model translates the available information on M, growth and age-based
vulnerability into a management decision rule. The model is also valuable in converting the
uncertainty inherent in scientific knowledge about the status of the fish population into estimates
of biological risk.  Management options can be taken based on the degree of risks managers are
willing to take.  However, a word of caution has to be stressed here.  The model-predicted
probability for possible consequences caused by a management action can not be taken too
literally.  This is only correct, if the stock behaves exactly as assumed and described by the
model.  Surely, this is not the case.  Stock dynamics are regulated by many complex factors,
most of which are unknown.  The model only tries to describe and predict the general behaviour
of the population based on limited amount of knowledge and some assumptions.

To choose a proper E, we need to answer the question: what percentage of the
maximum  SPR the stock should be retained in order to have a viable and sustainable fishery?
To answer this question well, ideally we need to know how resilient the stock is to fishing or
what is the threshold replacement level.  A threshold replacement level is defined as the
percentage of the maximum SPR, at which successive generations can just, on average, replace
each other without surplus production.  The lower this threshold level, the higher the resilience of
the stock to fishing.  In United States, this threshold replacement level is used as a reference
point for defining overfishing for 60% of the stocks under the U.S.  Federal management (Mace
and Sissenwine 1993).  When the percentage of the maximum SPR falls below this level, the
stock is considered to be over-fished.  The levels chosen to represent overfishing by the U.S
Fisheries Management Councils have often been somewhat arbitrary, ranging anywhere from 5-
70%, although usually falling within the range 20-35% (Mace and Sissenwine 1993).  Goodyear
(1989) suggested that this threshold level should be assumed to be, at least, 20% of the
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maximum SPR, when the spawning and recruitment relationship can not be determined.  Mace
and Sissenwine (1993) estimated the threshold replacement levels for various kinds of fin-fish
and one invertebrate species, Atlantic sea scallops (Placopecten magellanicus), by analysing
spawning-recruitment data together with SPR modelling.  They found that the threshold
replacement levels ranged from 2 to 65.4% with a mean of 18.7%.  The threshold replacement
level for the Atlantic sea scallops was found to be only 2.8%.  Frequency distribution of the
threshold replacement levels was highly skewed towards the lower level.  More than 80% of
them was estimated to be below 30%.  Therefore, Mace and Sissenwine (1993) suggested that
the default threshold replacement level should be 30%, when there is no other means to estimate
this level.

Based on simulations on stock-recruitment relations of a variety of groundfish, Clark
(1993) proposed that a target reference point can be set to F40%, a fishing rate which will
produce a SPR being 40% of the maximum. Mace (1994) also recommend to use F40% as a
target fishing rate for fin-fish, when stock and recruitment relationship is unknown. In fact,
recommendations were recently made to set fishing mortality rate to be F40% for geoduch fishery
in Washington, based on the stock assessment paper by Bradbury et. al (1998).

Considerable precaution is required for a new and developing fishery, as the resilience
of the stock is poorly understood.  One of the most important management measures for new
and developing invertebrate fisheries is early control of fishing capacity (Perry et al. 1999).
Thus, we suggest that the limit reference point be set, at least, to 60% of the maximum SPR and
the target reference point be set, at least, to 80% of the maximum SPR.  Experimental plots
could be established to test the impacts of alternative Es on the population. For some beds, E
corresponding to the target reference point and based on the lower 90% confidence limit might
be applied. For another set of beds, E corresponding to the target reference point but based on
the mean value be used. Some other beds may serve as a control with zero exploitation rate.
The stock dynamics of these experimental beds should be monitored. The knowledge out of this
experimental study should enable us to refine Es.

The limit reference point must in no way be regarded as a reference point the fishery
may approach or even reach.  Action must be taken, as soon as there is evidence that the
fishery is approaching the limit reference point.  In the developing (fishing-down) period, large
aggregations are rapidly being reduced and fishermen’s fishing experience and efficiency
increase quickly.  The fishery position relative to the target reference point and limit reference
point based on the CPUE data is difficult to check.  Therefore, the bed should be re-surveyed,
after the fishery has operated for a period, to assess the impact of the fishery on the stock.

Determining a total allowable catch (TAC) requires information on biomass and setting
up an exploitation rate, which requires information on M, growth, ages of animals recruiting to
the fishery and longevity to calculate exploitation rates. Although these parameters have been
estimated from some areas, there are probably considerable geographical variations in some of
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the parameters, especially M. Thus, estimates of parameters obtained from one area should not
be extrapolated to another, unless such extrapolation could be well justified.

M varies greatly for the same horse clam species in different areas and for different
horse clam species in the same area. Although growth is also variable in different areas, the
effect of the known possible range of variation in growth on the consequences to the stock
dynamics is much smaller than the effect of the known possible variation in M.  Use of different
growth models established for T. nuttallii and same E ranging from 1 to 40% only results in a
difference less than + 2% of the maximum SPR for a 3-year rotation fishery.  In contrast, use of
the growth models for T. nuttallii in Lemmens Inlet and an E ranging from 10-20% resulted in a
reduction in the percentage of the maximum SPR by 7.6-12.4% for a 3-year rotation fishery,
when M was decreased from 0.352 as in Comox Bar to 0.2 as in Klaskino Inlet. Knowing
what M is dictates to a great extent what level of E should be set. Estimation of M has a higher
priority than estimation of growth.  When estimation is uncertain, choosing a lower M is more
conservative and precautionary, as the E will decrease according to the model.

Due to the stochastic nature of fish populations, there are almost always uncertainties
associated with parameter estimates.  Whenever possible, variations should also be estimated,
as demonstrated by Campbell et al. (1990) and Campbell and Bourne (2000).  This will allow
the uncertainties to be appropriately incorporated in the calculations of Es.

Ages of animals recruiting to the fishery was estimated in this paper based on the age
frequency distribution derived of the field studies in Ritchie Bay and Seal Islet by Campbell and
Bourne (2000). This parameter should also be examined and refined, during the survey and
subsequent fishery, especially when there is a change in fishing technology or techniques.

The longevity was conservatively set to be 30 years for both T. capax and T. nutallii,
although the oldest T. capax and T. nutallii were estimated to be 21 and 24 years respectively.
The longevity should be kept as 30 years for running the model, unless there is evidence that
they could live even longer.

In short, parameters which should be estimated before a fishery are biomass (density
and bed size) M and growth. Size and age at recruitment to the fishery should be examined,
either at the surveying stage or soon after a fishery has started. Stock and recruitment
relationships should also be investigated, whenever there is an opportunity, as this knowledge
provides a biological basis for setting target and limit reference points. In addition, the impact of
spatial aggregation on the stock dynamics should be studied.

Schnute and Richards (1997) and Schnute et. al. (1999) developed an analytical model
to derive various kinds of biological reference points useful for setting target and limit reference
points. The biological parameters required of this model are recruitment age, the parameters of
von Bertalanffy equation, length and weight equation, natural mortality rate, and the resilience
ratio, φ :
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where 0R  is the recruitment at virgin spawning biomass, 0S , 'R  is the recruitment when

spawning biomass is close to zero, and 'S  is the spawning biomass close to zero. With an
assumption that stock and recruitment relationship can be described by Beverton-Holt or
Ricker stock recruitment model, this analytical model can produce biological reference points
such as harvest rate, catch, biomass, average age and average weight corresponding to MSY.
In addition, the model could also yield information on harvest rate corresponding to a certain
percentage (e,g, 50%) reduction in the spawner-recruit ratio (S/R) from the pristine value

00 / RS .

The parameters required of this analytical model are available for horse clams except for
φ . If we assume a value for φ  and a stock recruitment relationship for horse clam stocks, we
could use this model to derive biological reference points which might help us in setting target
and reference points. Comparison of the mean length from the market and field-survey samples
with the calculated mean length corresponding to MSY might indicate where the current stock is
standing.

7. Recommendation

Surveys should be carried out to determine required biological information such as
density, bed size, M, growth and possibly age at recruitment prior to a directed fishery on horse
clams in particular beds. Percentage of eelgrass coverage at different depth ranges and overlap
distribution of horse clams and geoducks should also be investigated. The limit reference point
should be set, at least, to 60% of the maximum SPR and the target reference point be set, at
least, to 80% of the maximum SPR. Where possible experimental adaptive management of
some plots or beds should be conducted to examine the response of the horse clam populations
to different exploitation rates.
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Table 1. Subtidal species composition of horse clam in B.C.

Collection sample Percent of
Area Year Method Number  T. nuttallii  T. capax       Source
Comox Bar 1983 Commercial 195 42.1 57.9 Bourne and Harbo (1987)
Epper Pass 1990 Commercial 123 76.4 23.6 Harbo (unpublished data)
Klaskino Inlet 1993 Commercial 296 >99 <1 Campbell and Bourne (2000)
Lemmens Inlet 1989 Commercial 783 78.3 21.7 Campbell (1989)
Newcastle Island 1989 Commercial 103 100 0 Campbell (1989)
Ritchie Bay 1993 Biosample 511 99.2 0.8 Campbell and Bourne (2000)
Seal Islets 1993 Biosample 602 0.5 99.5 Campbell and Bourne (2000)
Stubbs Island 1983 Commercial 93 93.5 6.5 Bourne and Harbo (1987)
Yellow Bank 1990 Commercial 125 76 24 Harbo (unpublished data)

Table 2. Percentage of geoduck and horse clam in different depth range. (Number is the total number of observed
animals in the entire depth range presented. (C. Hand Unpublished data)

Depth Anderson Cumshewa Duncan Elbow Hotspring Kettle Morfee/ N. Epper Yellow
Species Range (m) Ahousat Island Inlet Island Bank Island Inlet Dunlap Pass Bank
Geoduck 0-3 1.28 3.15 0.48 1.53 6.02 4.56 1.32 2.00 2.00

3-6 2.86 9.16 10.65 6.80 21.20 11.86 4.84 9.19 9.19
6-9 4.33 21.32 17.80 11.41 13.59 20.95 7.82 9.70 8.48 8.48
9-12 22.71 12.88 47.76 19.00 18.89 23.19 22.30 19.79 18.04 18.04
12-15 35.19 18.17 22.17 25.78 18.06 39.44 22.86 31.63 27.96 27.96
15-18 33.62 35.32 1.14 35.48 22.24 40.87 38.88 34.32 34.32

 Number 9693 15465 4579 12816 2629 11801 11740 2980 1303 6325

Horse Clam 0-3 48.47 12.01 2.35 9.72 43.11 32.90 5.88 21.26 21.26
3-6 21.07 15.16 26.52 25.39 26.46 16.23 18.83 25.29 25.29
6-9 2.50 15.41 20.68 12.78 14.04 23.62 7.50 28.67 21.09 21.09
9-12 6.97 14.48 44.61 15.60 7.65 18.77 29.76 23.58 15.30 15.30
12-15 6.79 4.06 5.84 13.11 3.62 8.47 14.93 30.51 11.34 11.34
15-18 14.20 38.87 0.00 23.40 5.13 23.11 17.24 5.72 5.72

Number 499 109 970 487 1412 1278 248 1540 400 1273
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Table 3. Length frequency distribution for horse clam samples in B.C.

Collection Sample Shell length (mm) Standard
Area Year Method Species Number Mean Range Deviation Source
Comox Bar 1983 Commercial T. nuttallii 82 158.2 140-188 12.2 Bourne and Harbo (1987)

T. capax 114 156.2 132-192 10.8
Epper Pass 1990 Commercial T. nuttallii 94 167 97-192 Harbo (unpublished data)

T. capax 29 171 154-185
Klaskino Inlet 1993 Commercial T. nuttallii 332 176 Campbell and Bourne (2000)
Lemmens Inlet 1989 Commercial T. nuttallii 490 170.2 73--207 21.6 Campbell (1989)

T. capax 203 137 54-161 16.2
Lemmens Inlet 1989 Biological T. nuttallii 72 167 96-195 20.4 Campbell (1989)

T. capax 34 136.4 65-178 21.7
Morfee Island 1988 Commercial Horse Clam 372 159.8 99-197 Harbo and Hobbs (1989)
Newcastle Island 1989 Commercial T. nuttallii 103 144 93-191 15.4 Campbell (1989)
Ritchie Bay 1993 Biological T. nuttallii 507 159 Campbell and Bourne (2000)
Seal Islets 1993 Biological T. capax 599 113 Campbell and Bourne (2000)
Stubbs Island 1983 Commercial T. nuttallii 87 163.2 135-190 10.4 Bourne and Harbo (1987)

T. capax 6 149.8 138-169 11.3
Yellow Bank 1990 Commercial T. nuttallii 95 171 130-194 Harbo (unpublished data)

T. capax 30 174 154-194

Table 4. Estimates of natural mortality rates (M) for subtidal horse clams in B.C.

Method Sample Natural 95% confidence Approximate
Area Year of Collection Species mortality interval Standard Deviation Source
Comox Bar 1983 Commercial T. nuttallii 0.352 Harbo (unpublished data)
Klaskino Inlet 1993 Commercial T. nuttallii 0.2 0.06-0.33 0.0675 Campbell and Bourne (2000)
Ritchie Bay 1993 Biological T. nuttallii 0.44 0.26-0.63 0.0925 Campbell and Bourne (2000)
Stubbs Island 1983 Commercial T. nuttallii 0.613 Harbo (unpublished data)
Comox Bar 1983 Commercial T. capax 0.475 Harbo (unpublished data)
Seal Islets 1993 Biological T. capax 0.16 0.05-0.26 0.0525 Campbell and Bourne (2000)
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Table 5. Growth models for some subtidal horse clam populations in B.C.
        a. parameters of von Bertalanffy equation (values in brackets are approximate 95% confidence intervals).
        b. length (L) and total wet drained weight (W) relationship: ln(W) = lnA+B*ln(L)

a. von Bertalanffy equation

Area Year Method of Collection Species Linf k t0 Sorce

Klaskino Inlet 1993 Commercial Sample T. nuttallii 231 (+ 6) 0.116 (+ 0.01) -0.5 (+ 0.23) Campbell and Bourne (2000)
Lemmens Inlet 1989 Commercial Sample T. nuttallii 202 (+ 3) 0.167 (+ 0.006) 0.5 (+ 0.05) Campbell et. al. (1990)
Newcastle Island 1989 Commercial Sample T. nuttallii 183 (+ 5) 0.168 (+ 0.012) 0.51 (+ 0.1) Campbell et. al. (1990)
Ritchie Bay 1993 Biological Sample T. nuttallii 200 (+ 13) 0.139 (+ 0.024) -0.15 (+ 0.33) Campbell and Bourne (2000)
Lemmens Inlet 1989 Commercial Sample T. capax 195 (+ 7) 0.154 (+ 0.016) -0.01 (+ 0.18) Campbell and Bourne (2000)
Seal Islets 1993 Biological Sample T. capax 192 (+ 5) 0.148 (+ 0.013) -0.13 (+ 0.22) Campbell and Bourne (2000)

b. Length and weight ralationship

Area Year Method of Collection Species lnA B Source

Klaskino Inlet 1993 Commercial Sample T. nuttallii -9.743 3.185 Campbell and Bourne (2000)
Lemmens Inlet 1989 Commercial Sample T. nuttallii -10.029 3.219 Campbell et. al. (1990)
Newcastle Island 1989 Commercial Sample T. nuttallii -9.31 3.087 Campbell et. al. (1990)
Ritchie Bay 1993 Biological Sample T. nuttallii -10.115 3.213 Campbell and Bourne (2000)
Lemmens Inlet 1989 Commercial Sample T. capax -10.167 3.289 Campbell and Bourne (2000)
Seal Islets 1993 Biological Sample T. capax -9.125 3.084 Campbell and Bourne (2000)
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Table 6. Percentage of quadrat with eelgrass at different depth ranges. (N=Number quadrats, %=percentage of quadrats with eelgrass).

Depth Anderson Cumshewa Hotspring North Epper Yellow
Range (m) Ahousat Island Inlet Elbow Bank Island Kettle Inlet Pass Bank

N % N % N % N % N % N % N % N %
0-1 3 0.0 19 21.1 23 8.7 13 100.0 49 4.1 27 11.1 7 100.0 1 100.0
1-2 6 16.7 19 52.6 28 32.1 10 100.0 61 11.5 24 4.2 3 100.0 5 100.0
2-3 11 27.3 53 34.0 29 27.6 7 100.0 89 9.0 67 10.4 6 100.0 18 94.4
3-4 12 16.7 44 31.8 56 26.8 9 55.6 101 7.9 67 10.4 6 16.7 24 75.0
4-5 17 17.6 61 3.3 68 16.2 43 46.5 98 6.1 78 5.1 7 28.6 25 24.0
5-6 63 1.6 80 17.5 22 13.6 72 5.6 76 5.3 11 18.2 19 0.0
6-7 66 0.0 95 6.3 24 8.3 81 1.2 98 2.0 28 0.0 30 0.0
7-8 114 2.6 108 0.0 47 6.4 13 0.0 23 4.3
8-9 87 0.0 27 14.8 28 3.6
9-10 80 3.8
10-11 76 2.6
11-12 98 2.0
12-13 80 8.8
13-14 67 0.0
14-15 56 1.8
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Table 7. Percentage of eelgrass coverage for the quadrats dominated by ellgrass
        at different depth ranges in the Meares Island Section of Clayoquot Sound

Depth Range (m) % of eelgrass coverage Number quadrats
0.1 - 0.5 30 2
0.6 - 1 53 18

1.1 - 1.5 58 19
1.6 - 2 57 11

2.1 - 2.5 59 10
2.6 - 3 50 3

3.1 - 3.5 38 5
3.6 - 4 60 1

4.1 - 4.5 25 2
4.6 - 5 20 2

5.1 - 5.5 10 1
5.6 - 6 60 1

Table 8. Assumptions for the rotation model

1) The fishery is a type 1 fishery (Ricker 1975). Natural mortality occurs during a time of
year other than the fishing season. The population decreases during the short fishing
season because of catch removals only.

2) Growth is not affected by fishing. Growth follows the Von Bertalanfy model with model
parameters variations independent from each other.

3) Recruitment occurs in a knife-edge fashion at the time fishing begins.
4) All recruited animals experience the same natural mortality rate.
5) Exploitation rate increases in a step-wise fashion from the age beginning to be

vulnerable to the age fully vulnerable to fishing.
6) Exploitation rate varies between different age classes in a normal distribution fashion

between a set minimum and maximum rate.
7) All animals above the maximum age are dead.
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Table 9. Parameters used for the rotation model for T. nuttallii

R, Annual Recruit 10000
n,  Years of Rotation  1, 2, 3 years
Amax, Longevity  30 years old
Ar, Age of recruitment 4 years old
M, Natural Mortality 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

xyS , Coefficient of variation  for M 0.3
Mmin, Minimum M M×3.0
Mmax, Maximum M M×7.1
E, Exploitation rate 0.01, 0.02… 0.4

Ecov , Coefficient of variation  for E 0.1

aVul Vulnerability of age a to fishing

Emin, Minimum E aVulE ××6.0

Emax, Maximum E aVulE ××4.1

Asv, Age starting to be vulnerable to fishing 4
Afv,  Age starting to be fully vulnerable to fishing 7

Von Bertalanfy Equation parameters

∞L  202

Lσ ,  Standard deviation for ∞L 1.5
k 0.167

kσ , Standard deviation for k 0.003

ot  0.5

tσ ,  Standard deviation for  ot 0.025

Parameters for calculating Weight (W) from Length (L)
)ln(ln)ln( LBAW ×+=

lnA -10.029
B 3.219

xyS , Standard error of estimate 0.118

ns,  Number of samples for the estimation 146
)(nl L ,  Mean of ln(L) from the sample 4.815

SS, Sum of squares of ln(L): ∑ − 2))(nl)(ln( LLi 29.096
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Table 10. Parameters used for the rotation model for T. capax

R, Annual Recruit 10000
n,  Years of Rotation  1, 2, 3 years
Amax, Longevity  30 years old
Ar, Age of recruitment 3 years old
M, Natural Mortality 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

Mcov , Coefficient of variation  for M 0.03
Mmin, Minimum M M×3.0
Mmax, Maximum M M×7.1
E, Exploitation rate 0.01, 0.02… 0.4

Ecov , Coefficient of variation  for E 0.01

aVul Vulnerability of age a to fishing

Emin, Minimum E aVulE ××6.0

Emax, Maximum E aVulE ××4.1

Asv, Age starting to be vulnerable to fishing 3
Afv,  Age starting to be fully vulnerable to fishing 4

Von Bertalanfy Equation parameters

∞L  195

Lσ ,  Standard deviation for ∞L 3.5
k 0.154

kσ , Standard deviation for k 0.008

ot  -0.01

tσ ,  Standard deviation for  ot 0.09

Parameters for calculating Weight (W) from Length (L)
)ln(ln)ln( LBAW ×+=

lnA -9.865
B 3.29

xyS , Standard error of estimate 0.227

ns,  Number of samples for the estimation 73
)(nl L ,  Mean of ln(L) from the sample 4.835

SS, Sum of squares of ln(L): ∑ − 2))(nl)(ln( LLi 3.474
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Table 11. Average percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 1-year rotation fishery on T. nuttallii.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 90.0 91.6 93.0 94.0 95.0 95.6 96.1 96.6 97.0
0.02 81.2 84.1 86.6 88.6 90.4 91.6 92.6 93.5 94.1
0.03 73.3 77.6 80.9 83.7 85.9 87.6 89.3 90.3 91.5
0.04 66.6 71.7 75.5 79.3 81.7 84.4 86.0 87.9 88.9
0.05 60.7 66.2 71.1 74.6 78.1 80.8 83.1 85.0 86.6
0.06 55.3 61.3 66.6 71.1 75.0 78.0 80.8 82.5 84.4
0.07 50.8 57.6 62.9 67.3 71.6 75.0 77.5 79.7 81.7
0.08 46.6 53.2 59.5 64.4 68.7 72.1 75.3 77.9 80.3
0.09 43.2 50.1 56.0 61.2 65.7 69.9 73.1 75.9 77.6
0.1 39.6 46.5 53.1 58.3 63.3 67.4 70.5 74.0 76.0
0.11 37.1 44.1 50.6 55.7 60.9 65.3 68.5 72.3 74.8
0.12 34.1 41.1 47.8 53.7 58.8 62.6 67.5 69.7 72.5
0.13 31.9 39.0 45.6 51.4 56.4 60.5 65.3 68.2 71.3
0.14 29.5 36.7 43.5 49.7 54.0 58.4 63.3 66.6 69.1
0.15 27.8 34.7 41.5 47.3 52.6 57.4 61.7 65.2 67.4
0.16 26.2 32.5 39.2 45.3 51.1 55.4 59.0 62.9 66.5
0.17 24.3 31.5 37.4 43.4 49.3 54.0 57.6 61.8 64.6
0.18 22.8 29.7 35.6 42.3 47.7 52.1 56.1 60.5 63.6
0.19 21.8 28.2 34.3 40.8 45.8 50.4 55.4 59.3 62.2
0.2 20.5 26.9 33.2 39.2 44.7 49.4 53.6 58.1 61.2
0.21 19.4 25.7 32.0 37.7 42.9 48.2 53.2 56.1 59.7
0.22 18.4 24.6 30.7 36.6 42.6 47.0 51.2 54.7 58.6
0.23 17.5 23.7 29.7 35.4 41.1 45.4 50.1 53.9 57.0
0.24 16.6 22.3 28.3 34.2 39.2 44.3 48.7 52.7 56.6
0.25 15.8 21.5 27.3 32.9 38.5 43.4 47.4 52.1 55.6
0.26 15.0 21.0 26.5 32.1 37.3 42.1 46.8 51.0 55.3
0.27 14.3 20.0 25.5 31.3 36.3 40.8 45.7 49.7 53.7
0.28 13.8 19.1 24.8 30.2 35.9 40.3 44.9 48.4 52.5
0.29 13.1 18.0 23.9 29.6 34.2 39.0 43.8 47.5 51.3
0.3 12.5 18.0 23.2 28.3 33.4 38.1 42.8 46.6 50.7
0.31 12.2 17.0 22.2 27.6 32.5 37.4 41.4 45.9 49.3
0.32 11.5 16.7 21.9 27.0 31.6 36.2 40.4 44.5 48.9
0.33 11.1 16.1 21.0 25.8 30.7 36.0 40.4 43.9 47.9
0.34 10.7 15.3 20.3 25.5 30.4 34.8 39.3 43.6 47.2
0.35 10.3 14.9 19.6 24.7 29.6 34.3 38.8 43.0 46.7
0.36 10.0 14.5 19.3 24.5 28.4 33.9 38.0 41.0 45.5
0.37 9.7 13.9 18.6 23.2 28.7 33.0 37.4 41.2 45.0
0.38 9.2 13.5 18.3 23.0 27.7 32.4 36.7 41.0 44.4
0.39 9.0 13.2 18.0 22.5 26.9 31.0 36.0 40.7 43.7
0.4 8.7 12.8 17.1 22.2 26.7 30.9 35.3 38.9 43.4
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Table 12. Lower 90% confidence limit of percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 1-year rotation fishery on T. nuttallii.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 88.2 89.3 90.4 91.3 92.3 93.0 93.6 94.3 94.9
0.02 78.1 79.9 81.7 83.6 85.4 86.7 87.8 89.1 89.7
0.03 69.1 71.9 74.4 76.6 79.0 80.9 83.1 84.4 85.4
0.04 61.3 64.8 67.3 71.0 73.0 76.3 77.8 80.5 81.4
0.05 54.9 58.5 62.0 64.7 67.8 70.7 73.7 76.2 77.6
0.06 49.1 52.5 56.4 60.3 64.2 67.4 70.3 72.5 74.5
0.07 44.2 48.3 52.2 55.7 60.1 62.8 65.5 68.2 70.1
0.08 39.7 43.6 48.1 52.2 56.1 59.0 62.6 65.7 68.2
0.09 36.0 40.1 44.5 48.0 52.6 56.3 60.1 62.9 64.1
0.1 32.7 36.5 41.3 44.6 49.1 53.2 56.2 61.0 62.3
0.11 29.9 34.3 38.4 41.7 46.9 50.8 54.0 58.7 61.2
0.12 26.9 30.9 35.3 39.4 44.0 46.9 53.1 54.7 57.7
0.13 25.0 29.0 32.5 36.7 41.2 44.8 49.8 53.0 55.9
0.14 22.7 26.8 30.8 35.6 38.5 42.6 46.9 50.7 53.1
0.15 21.0 24.6 28.8 32.3 37.8 41.3 45.8 48.8 50.3
0.16 19.6 22.5 26.3 31.2 36.0 38.8 41.8 46.5 48.9
0.17 17.7 21.6 24.8 28.8 33.2 37.5 39.7 44.9 47.3
0.18 16.5 19.8 23.2 27.4 31.8 35.5 39.1 43.2 46.9
0.19 15.6 19.1 21.8 26.4 29.7 33.5 38.1 42.7 44.5
0.2 14.6 17.3 21.0 25.2 29.0 32.1 35.6 40.0 43.4
0.21 13.5 16.6 19.8 23.5 27.0 31.5 35.8 38.0 41.8
0.22 12.8 15.4 18.5 22.4 26.7 30.1 33.8 36.1 40.7
0.23 11.9 14.6 17.8 21.5 25.5 28.1 32.0 36.2 38.1
0.24 11.1 13.4 16.5 20.4 24.3 27.5 31.1 34.9 37.8
0.25 10.4 12.9 16.1 19.0 23.1 27.0 30.0 33.7 37.5
0.26 9.7 12.6 15.7 18.7 21.6 25.2 29.2 33.1 37.7
0.27 9.2 11.6 14.4 17.8 20.7 23.6 28.5 32.2 35.4
0.28 8.9 11.3 14.1 16.9 20.6 23.2 27.0 30.4 33.9
0.29 8.5 10.0 12.9 16.6 18.6 22.2 26.3 28.2 32.0
0.3 7.9 10.2 12.5 15.3 18.4 21.2 25.7 27.6 32.0
0.31 7.7 9.4 11.6 14.8 17.8 21.1 24.1 27.8 30.7
0.32 7.1 9.1 11.6 14.3 16.9 19.6 22.6 26.0 30.1
0.33 6.8 8.8 10.5 13.3 16.3 19.7 23.5 25.4 29.2
0.34 6.3 8.4 10.3 12.7 15.9 18.9 22.1 25.4 28.9
0.35 6.3 8.1 10.2 12.5 14.7 18.4 21.8 24.6 28.0
0.36 6.0 7.6 9.7 12.4 14.2 18.0 21.7 23.0 26.4
0.37 5.8 7.4 9.3 11.3 15.1 17.2 20.6 22.9 26.0
0.38 5.4 7.1 9.2 11.9 13.7 16.9 20.4 23.4 25.8
0.39 5.3 6.7 8.9 11.0 13.2 15.8 18.9 23.2 25.3
0.4 5.0 6.6 8.2 10.9 12.9 15.6 18.8 21.6 24.5
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Table 13. Average percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 2-year rotation fishery on T. nuttallii.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 94.7 95.6 96.3 97.0 97.3 97.7 98.0 98.3 98.5
0.02 89.8 91.3 92.9 94.0 94.8 95.6 96.0 96.6 97.0
0.03 85.0 87.6 89.5 91.2 92.7 93.4 94.4 95.0 95.5
0.04 80.5 84.0 86.2 88.5 90.1 91.2 92.5 93.5 94.2
0.05 76.4 80.3 83.5 85.9 87.8 89.3 90.8 91.9 92.9
0.06 72.6 77.3 80.5 83.4 85.8 87.6 89.1 90.2 91.5
0.07 69.0 73.8 77.7 81.1 83.4 85.4 87.3 89.0 90.2
0.08 65.7 70.6 75.3 78.7 81.5 84.0 86.1 87.3 88.9
0.09 62.3 68.1 72.5 76.1 79.7 82.1 84.3 85.9 87.3
0.1 59.5 65.5 70.4 74.4 77.8 80.7 82.7 84.5 86.2
0.11 56.5 62.6 67.9 72.4 75.9 78.9 81.3 83.8 85.1
0.12 54.0 60.1 66.0 70.6 74.4 77.2 80.3 82.2 84.2
0.13 51.5 57.8 63.9 68.4 73.1 75.5 78.5 80.7 82.9
0.14 49.3 56.1 61.8 66.5 71.1 74.3 77.2 79.5 81.6
0.15 47.1 53.7 59.8 65.3 69.3 72.6 76.2 78.1 80.6
0.16 44.9 51.3 57.9 63.7 67.9 71.4 74.6 77.5 79.7
0.17 42.9 49.9 56.2 61.7 66.4 70.7 73.8 76.2 78.5
0.18 41.0 48.3 54.6 60.1 65.1 68.9 72.3 75.5 77.3
0.19 39.4 46.7 52.7 58.5 63.4 68.1 71.4 74.1 76.5
0.2 37.9 45.1 51.8 57.0 62.1 66.3 70.0 72.8 75.5
0.21 36.3 43.3 49.7 55.8 60.9 65.0 69.1 71.4 74.6
0.22 34.8 41.6 49.0 54.2 59.5 63.9 67.5 70.3 73.3
0.23 33.3 40.7 47.3 53.5 58.5 62.4 66.6 69.2 72.4
0.24 32.0 39.7 46.5 51.6 57.0 61.8 65.2 68.4 71.5
0.25 30.7 37.9 44.6 50.6 56.1 60.3 64.2 67.8 70.9
0.26 29.7 36.3 43.6 49.8 54.8 59.9 63.5 67.2 70.1
0.27 28.8 35.6 42.3 48.1 53.2 58.2 62.4 65.6 69.0
0.28 27.3 34.0 41.2 47.3 52.7 57.3 61.4 64.6 67.8
0.29 26.6 33.6 40.4 46.3 51.2 56.4 60.9 64.2 66.6
0.3 25.3 32.6 39.1 45.7 50.4 55.2 59.3 63.4 66.3
0.31 24.6 31.6 38.1 44.2 49.8 54.5 58.7 62.5 65.2
0.32 23.5 30.8 37.3 43.4 48.5 53.3 58.2 61.8 65.3
0.33 23.0 29.7 36.7 42.1 47.5 52.8 57.1 60.8 64.6
0.34 22.3 28.8 35.2 41.9 46.6 52.0 55.6 60.2 63.3
0.35 21.3 28.0 34.2 41.0 45.8 50.7 55.4 58.5 62.8
0.36 20.7 27.1 33.7 40.1 45.4 49.8 54.2 58.3 62.2
0.37 19.7 26.8 32.7 39.3 44.5 48.8 53.9 57.0 61.4
0.38 19.3 25.8 32.4 38.0 44.0 48.5 52.8 57.3 60.4
0.39 18.7 25.1 31.6 37.6 42.8 47.5 52.7 56.8 59.7
0.4 18.3 24.3 30.0 36.9 42.0 47.4 52.1 55.8 59.4
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Table 14. Lower 90% confidence limit of percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 2-year rotation fishery on T. nuttallii.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 93.7 94.3 94.9 95.6 95.9 96.3 96.8 97.1 97.3
0.02 87.9 89.0 90.2 91.2 92.1 93.0 93.4 94.3 94.9
0.03 82.2 84.0 85.7 87.3 89.0 89.5 90.8 91.6 92.0
0.04 77.1 79.8 81.4 83.6 85.2 86.1 87.7 89.1 90.2
0.05 72.4 75.0 77.7 79.8 81.7 83.3 85.3 86.9 88.0
0.06 67.9 71.4 73.6 76.6 79.0 80.9 82.5 84.0 85.4
0.07 64.0 66.9 70.3 73.4 75.6 77.7 79.8 81.8 83.7
0.08 60.2 63.3 67.0 70.1 73.0 75.5 77.9 79.1 81.1
0.09 56.4 60.3 63.3 66.9 70.3 72.8 75.4 77.1 78.7
0.1 53.5 57.5 61.0 64.7 67.8 70.7 72.5 74.9 76.9
0.11 49.8 54.2 57.9 61.7 65.2 68.2 71.0 74.1 75.6
0.12 47.3 51.0 55.7 59.9 63.1 66.2 69.4 71.5 73.9
0.13 44.9 48.7 53.9 57.0 61.4 63.1 66.9 69.3 71.9
0.14 42.3 46.5 50.5 54.6 59.1 61.7 64.8 67.4 69.9
0.15 40.1 44.0 48.0 52.9 56.4 60.0 63.4 65.0 68.8
0.16 37.6 40.9 46.0 51.3 54.8 58.0 61.4 64.7 67.8
0.17 35.5 39.4 43.8 48.0 52.7 57.1 60.5 63.9 65.9
0.18 33.8 38.0 42.4 46.1 51.4 55.2 59.3 62.5 64.0
0.19 32.2 36.2 40.0 45.2 49.3 53.8 57.2 60.3 63.0
0.2 30.6 34.8 39.1 43.3 47.3 52.0 55.7 58.5 61.6
0.21 29.0 32.6 37.3 41.7 46.0 50.1 54.3 56.1 60.0
0.22 27.3 31.4 36.2 40.0 44.9 48.7 52.8 54.7 58.2
0.23 26.1 30.4 34.0 39.4 43.6 46.6 50.7 53.0 57.3
0.24 24.7 29.5 34.0 36.9 41.7 45.8 49.7 52.6 55.6
0.25 23.3 27.4 31.3 35.8 40.7 43.4 47.8 52.1 55.4
0.26 22.2 25.5 31.2 34.7 39.1 44.2 47.6 51.5 53.7
0.27 21.7 25.3 29.8 33.2 37.0 42.3 46.8 49.1 52.4
0.28 20.1 23.5 28.1 32.4 36.9 40.8 44.5 47.3 50.9
0.29 19.5 23.0 27.4 31.2 34.6 40.5 44.1 48.3 49.7
0.3 18.4 22.1 26.3 30.7 34.2 38.1 42.3 46.6 49.5
0.31 17.9 21.2 25.1 29.2 33.8 37.3 41.5 45.8 47.7
0.32 16.6 20.9 24.7 28.4 32.5 35.8 41.2 45.5 48.5
0.33 16.0 19.9 23.5 27.7 31.5 35.9 39.6 43.2 48.0
0.34 15.6 19.2 22.1 28.1 30.1 34.9 37.5 42.3 44.5
0.35 14.8 18.2 21.4 26.2 28.8 33.5 37.4 40.8 45.2
0.36 14.3 17.4 21.6 25.3 29.4 31.7 36.5 40.6 44.2
0.37 13.5 17.1 20.0 24.8 27.3 31.0 35.8 38.8 43.4
0.38 13.2 16.4 20.0 23.7 28.2 31.2 35.8 39.8 42.7
0.39 12.7 15.7 19.2 23.1 26.9 30.2 35.4 39.0 40.5
0.4 12.4 15.0 18.0 22.5 25.5 30.5 34.4 38.1 41.3
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Table 15. Average percentage of maximum spawning stock biomass per recruit in association with instantaneous natural
mortality rate and exploitation rate for 3-year rotation fishery on T. nuttallii.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 96.4 97.1 97.5 97.9 98.3 98.5 98.7 98.8 99.0
0.02 93.0 94.1 95.2 96.0 96.5 97.0 97.4 97.8 98.0
0.03 89.6 91.4 92.9 93.9 94.9 95.6 96.1 96.6 97.0
0.04 86.4 88.7 90.5 92.0 93.2 94.2 94.8 95.5 96.0
0.05 83.4 86.0 88.4 90.2 91.6 92.8 93.7 94.5 95.1
0.06 80.5 83.7 86.3 88.3 90.0 91.3 92.4 93.4 94.1
0.07 77.8 81.2 83.9 86.4 88.7 90.0 91.3 92.4 93.2
0.08 75.1 79.0 82.3 85.1 86.8 89.0 90.1 91.5 92.2
0.09 72.4 76.7 80.5 83.2 85.6 87.6 89.0 90.4 91.4
0.1 70.0 74.3 78.6 81.7 84.0 86.2 87.8 89.2 90.2
0.11 67.5 72.4 76.4 79.8 82.8 84.8 86.9 88.1 89.4
0.12 65.3 70.7 75.0 78.4 81.5 83.7 85.9 87.3 88.6
0.13 63.1 68.3 73.4 76.9 80.0 82.4 84.7 86.4 88.0
0.14 60.9 66.5 71.4 74.9 78.5 81.1 83.4 85.3 86.7
0.15 58.7 64.5 69.8 74.1 77.1 80.0 82.5 84.5 86.0
0.16 57.0 62.7 68.1 72.6 76.2 78.9 81.5 83.7 85.4
0.17 55.0 61.4 66.9 71.2 75.1 78.4 80.6 82.9 84.5
0.18 53.4 59.5 65.0 69.9 73.6 76.9 79.8 81.8 83.3
0.19 51.4 58.1 63.8 68.3 72.2 75.3 78.3 81.1 82.9
0.2 49.8 56.6 62.6 67.4 70.8 75.0 77.5 80.3 82.3
0.21 48.4 54.8 60.7 66.5 69.9 73.8 76.5 79.2 81.5
0.22 46.6 53.6 59.6 64.8 69.1 73.1 75.9 78.3 80.6
0.23 45.3 52.1 58.1 63.5 68.1 72.1 75.5 77.9 79.6
0.24 43.9 51.0 57.3 62.6 66.5 70.5 73.9 76.8 79.1
0.25 42.2 49.1 56.3 61.4 65.7 69.7 72.5 76.0 78.3
0.26 41.1 48.4 54.3 60.4 65.2 69.2 71.8 74.8 77.7
0.27 39.9 47.0 53.1 59.1 64.7 67.6 71.5 74.2 76.5
0.28 38.7 45.5 52.3 57.9 62.7 66.6 70.8 73.3 76.4
0.29 37.0 44.7 51.3 57.1 62.0 66.3 70.1 72.3 75.7
0.3 36.5 43.4 50.3 55.8 61.0 65.5 68.9 72.0 74.5
0.31 35.1 42.5 49.1 54.6 59.3 64.2 68.0 70.9 74.0
0.32 34.3 41.6 48.0 54.3 58.9 63.6 67.2 71.4 73.6
0.33 33.0 40.5 47.1 53.6 58.0 62.6 66.7 69.6 72.8
0.34 31.9 39.5 46.2 52.2 57.5 62.0 65.5 68.6 71.8
0.35 31.1 38.8 45.4 51.0 56.5 61.3 64.8 68.5 71.2
0.36 30.0 37.4 44.4 50.7 55.3 60.5 64.4 67.6 70.2
0.37 29.4 36.8 43.4 49.2 55.0 59.9 63.2 67.4 70.4
0.38 28.4 36.0 42.4 48.7 54.3 58.8 62.4 66.4 69.6
0.39 27.9 35.0 41.7 47.9 53.7 57.8 61.9 66.1 68.5
0.4 26.8 34.2 40.7 46.8 52.6 56.5 61.3 64.8 67.6
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Table 16. Lower 90% confidence limit of percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 3-year rotation fishery on T. nuttallii.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 95.7 96.2 96.6 96.9 97.3 97.6 97.8 97.9 98.2
0.02 91.6 92.4 93.4 94.1 94.6 95.2 95.8 96.2 96.4
0.03 87.7 89.0 90.3 91.2 92.2 92.9 93.6 94.2 94.8
0.04 83.9 85.5 87.0 88.4 89.5 90.9 91.8 92.3 93.0
0.05 80.4 82.1 84.2 85.7 87.2 88.8 89.8 90.9 91.6
0.06 77.0 79.3 81.3 83.2 84.8 86.3 87.5 89.1 89.8
0.07 73.9 76.2 78.1 80.4 83.0 84.3 85.8 87.6 88.5
0.08 70.8 73.5 76.1 78.7 80.1 82.9 84.1 86.0 86.6
0.09 67.9 70.7 73.8 76.2 78.6 80.6 82.7 84.2 85.1
0.1 65.2 67.6 71.5 74.3 76.2 78.5 80.1 81.9 83.4
0.11 62.3 65.5 68.3 71.4 74.5 76.7 78.9 80.4 82.2
0.12 59.6 63.2 66.9 69.6 72.8 74.9 77.7 79.6 80.7
0.13 57.2 60.7 64.8 67.5 71.1 73.4 76.2 78.0 80.1
0.14 55.0 58.1 62.5 64.9 68.6 71.0 73.9 75.9 77.9
0.15 52.5 55.9 60.1 63.5 66.4 69.6 72.6 74.8 76.2
0.16 50.6 54.0 57.9 62.4 65.9 67.9 71.0 73.8 76.0
0.17 48.5 52.8 56.5 60.2 63.9 68.3 69.8 72.7 74.7
0.18 46.6 50.2 54.3 58.9 61.7 65.0 69.0 71.1 72.5
0.19 44.5 48.5 53.1 56.4 60.4 63.5 66.2 69.9 72.8
0.2 42.6 47.1 51.3 55.3 58.4 62.7 65.5 69.5 71.2
0.21 41.6 45.0 48.7 54.4 56.8 61.3 64.1 67.2 70.2
0.22 39.4 43.4 47.7 52.0 56.3 61.1 63.2 66.0 69.0
0.23 37.8 42.2 46.1 50.8 55.1 59.0 62.6 65.4 66.5
0.24 36.5 40.6 45.6 49.3 52.3 57.0 60.5 64.2 66.7
0.25 34.9 38.6 44.3 48.0 52.4 56.0 58.2 62.8 65.6
0.26 33.6 37.7 42.2 47.3 51.1 55.4 57.2 60.9 64.4
0.27 32.5 36.5 40.5 45.8 51.3 52.9 56.9 60.2 62.9
0.28 31.4 35.3 39.4 44.3 48.3 51.3 56.6 58.5 62.7
0.29 29.6 34.1 39.1 42.9 47.7 51.2 55.2 57.7 62.1
0.3 29.1 32.8 37.6 42.3 46.5 50.5 53.6 57.4 60.4
0.31 27.9 32.0 36.4 40.0 44.0 48.8 52.4 55.1 58.9
0.32 26.9 30.7 35.2 40.8 44.2 48.3 51.3 57.2 58.9
0.33 25.6 29.8 33.9 39.3 42.8 47.3 51.2 54.4 57.0
0.34 24.6 29.0 33.2 38.2 42.2 45.4 48.8 52.3 56.6
0.35 23.8 28.6 32.1 36.2 40.6 45.4 48.3 53.2 55.3
0.36 23.0 27.1 31.3 35.7 39.3 44.7 48.1 51.5 54.1
0.37 22.0 26.3 30.0 34.4 39.3 44.4 46.4 52.0 54.9
0.38 21.3 25.1 28.8 33.7 38.6 42.3 44.9 50.2 53.5
0.39 20.7 24.5 28.9 32.9 38.4 40.9 44.6 49.5 51.8
0.4 19.8 23.6 27.8 32.0 36.7 38.6 44.2 47.5 50.5
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Table 17. Average percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 1-year rotation fishery on T. capax.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 88.3 90.0 91.4 92.6 93.5 94.3 95.0 95.4 95.8
0.02 78.1 81.2 83.7 85.8 87.5 88.8 90.0 91.1 91.9
0.03 69.2 73.3 77.2 79.9 82.3 84.1 85.5 87.2 88.2
0.04 61.9 66.6 70.7 74.4 77.1 79.3 81.8 83.1 84.8
0.05 55.3 60.5 65.3 69.3 72.4 75.7 77.4 79.8 81.6
0.06 49.5 55.0 60.2 64.8 68.2 71.8 73.9 75.9 78.4
0.07 44.4 50.5 56.1 60.4 64.6 67.7 70.5 73.3 75.2
0.08 40.2 46.4 51.7 56.7 60.7 64.7 67.4 70.5 72.7
0.09 36.2 42.4 48.1 52.9 57.5 61.4 64.4 67.8 69.7
0.1 33.0 39.0 44.8 50.4 54.3 58.6 61.6 65.0 67.6
0.11 30.0 36.3 41.8 46.6 51.6 55.8 59.4 62.1 64.6
0.12 27.1 33.4 39.1 44.6 48.7 52.8 56.4 59.5 62.8
0.13 25.0 30.9 36.8 42.2 46.7 50.1 54.7 57.9 60.8
0.14 22.8 28.7 34.4 39.9 44.3 48.2 52.0 55.4 58.6
0.15 20.9 26.6 32.1 37.4 42.1 46.1 50.7 53.3 56.5
0.16 19.2 24.6 30.3 35.7 40.6 44.4 48.4 51.3 54.4
0.17 17.8 23.2 28.9 33.3 38.0 42.9 46.5 49.6 52.9
0.18 16.6 21.7 26.7 31.6 36.4 41.0 44.7 48.3 51.0
0.19 15.2 20.3 25.1 30.4 34.7 39.0 43.0 46.5 49.4
0.2 14.1 18.9 23.9 28.7 33.2 37.4 41.2 44.5 48.4
0.21 13.2 17.9 22.8 27.2 31.4 35.9 39.9 43.1 46.1
0.22 12.2 16.6 21.2 26.0 30.6 34.5 38.1 41.8 44.7
0.23 11.2 15.8 20.3 24.7 29.1 32.9 36.5 40.6 43.3
0.24 10.6 14.6 19.3 23.6 27.9 32.0 35.5 39.2 41.7
0.25 10.0 14.0 17.8 22.3 26.9 30.2 34.4 37.9 41.1
0.26 9.4 13.0 17.3 21.4 25.6 29.4 33.5 36.5 39.9
0.27 8.7 12.3 16.3 20.8 24.5 28.3 32.5 36.0 39.1
0.28 8.2 11.9 15.5 19.7 23.1 27.7 31.2 34.2 37.7
0.29 7.7 11.2 14.9 18.8 22.7 26.4 30.0 33.9 36.7
0.3 7.2 10.7 14.2 17.9 21.8 25.5 28.7 32.3 35.7
0.31 6.9 10.1 13.4 17.2 20.8 24.4 28.1 31.5 33.9
0.32 6.4 9.4 13.0 16.7 20.0 23.8 27.0 30.4 34.1
0.33 6.1 8.9 12.5 15.7 19.5 22.2 25.9 29.5 32.5
0.34 5.7 8.6 12.0 15.5 18.8 22.1 25.5 28.8 31.7
0.35 5.5 8.4 11.2 14.5 17.9 21.4 24.9 28.0 30.8
0.36 5.2 7.7 10.9 13.9 17.5 20.7 23.9 27.1 29.9
0.37 4.9 7.5 10.4 13.5 16.8 19.5 23.4 26.0 29.6
0.38 4.7 7.2 10.1 13.1 16.2 19.5 22.0 25.7 28.1
0.39 4.5 6.8 9.8 12.5 15.7 19.0 22.1 24.6 27.5
0.4 4.2 6.6 8.8 12.1 14.7 18.1 21.0 23.9 26.9
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Table 18. Lower 90% confidence limit of percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 1-year rotation fishery on T. capax.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 86.4 87.6 88.7 89.7 90.8 91.6 92.5 92.9 93.5
0.02 74.8 76.8 78.9 80.7 82.7 83.7 85.1 86.3 87.3
0.03 64.8 67.6 70.4 73.1 75.1 77.0 78.5 80.8 81.8
0.04 56.9 59.7 62.9 65.7 68.2 70.1 73.2 74.6 77.2
0.05 49.7 53.0 56.2 59.7 62.6 65.9 67.6 70.3 72.4
0.06 43.9 46.6 50.6 54.3 57.1 60.2 63.3 64.5 68.0
0.07 38.2 41.6 45.6 49.0 53.3 55.7 58.2 61.9 63.5
0.08 33.8 37.2 40.6 45.1 48.5 52.1 54.3 58.4 60.4
0.09 29.8 33.2 37.0 40.4 44.7 48.6 50.1 54.8 56.0
0.1 26.5 29.6 33.7 37.9 41.0 45.1 47.2 51.1 54.3
0.11 23.8 27.3 30.3 33.2 37.8 42.0 44.4 47.1 50.1
0.12 20.7 24.3 28.3 32.2 35.3 38.1 41.1 44.2 47.9
0.13 19.0 22.2 25.4 29.8 32.4 35.4 39.8 42.6 45.7
0.14 17.1 19.7 23.5 26.9 30.1 34.0 36.5 39.6 42.7
0.15 15.3 18.1 21.3 24.9 28.4 31.5 35.5 37.1 40.4
0.16 14.0 16.3 19.4 23.5 26.9 29.2 32.9 35.1 37.5
0.17 12.5 15.2 18.4 21.5 23.8 28.2 30.9 33.0 36.0
0.18 11.7 13.6 16.5 19.4 22.8 26.8 29.3 32.5 34.5
0.19 10.4 12.8 15.0 18.4 21.3 24.7 27.3 30.7 32.6
0.2 9.6 11.4 14.2 16.8 19.6 22.4 25.8 28.6 31.6
0.21 8.9 10.8 13.5 15.8 18.3 21.4 24.8 26.5 29.4
0.22 7.9 9.8 11.8 14.3 17.5 20.2 22.2 26.2 27.6
0.23 7.1 9.1 11.1 13.9 16.4 19.0 20.9 24.3 26.6
0.24 6.8 8.2 10.7 12.6 15.1 18.4 19.9 23.6 24.8
0.25 6.2 7.8 9.2 11.8 14.1 16.6 19.3 22.2 24.5
0.26 5.9 6.8 9.3 11.1 13.4 15.7 18.4 20.5 23.0
0.27 5.3 6.7 8.2 10.7 12.3 15.5 18.0 20.6 23.2
0.28 4.9 6.3 7.8 9.8 11.2 14.4 16.5 18.7 21.3
0.29 4.6 5.6 7.0 9.3 11.2 13.1 16.2 19.2 21.0
0.3 4.1 5.6 6.8 8.7 11.1 12.7 14.5 17.3 19.8
0.31 4.0 5.1 6.4 8.1 9.8 11.7 13.9 16.3 17.9
0.32 3.7 4.6 5.8 7.7 9.1 11.7 13.9 15.4 18.5
0.33 3.4 4.4 5.8 7.1 8.8 10.1 12.4 15.0 16.8
0.34 3.2 4.2 5.6 6.8 8.5 10.1 12.4 14.3 16.5
0.35 3.1 3.9 5.0 6.1 7.7 9.6 12.3 13.8 15.2
0.36 2.7 3.4 4.7 6.2 7.4 9.1 11.2 13.3 15.4
0.37 2.6 3.4 4.6 5.6 6.9 8.0 10.4 12.3 14.7
0.38 2.5 3.2 4.3 5.4 6.7 8.1 9.4 11.9 14.1
0.39 2.4 3.0 4.3 5.0 6.4 8.3 10.2 11.5 13.1
0.4 2.2 3.0 3.3 4.9 6.0 7.5 8.9 10.6 12.2
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Table 19. Average percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 2-year rotation fishery on  T. capax.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 93.8 94.8 95.6 96.2 96.7 97.1 97.3 97.7 97.8
0.02 88.1 89.9 91.3 92.6 93.4 94.3 94.8 95.4 95.9
0.03 82.8 85.3 87.3 88.9 90.3 91.5 92.5 93.3 93.9
0.04 77.7 80.9 83.4 85.7 87.6 88.8 90.1 91.0 91.7
0.05 73.1 76.8 79.9 82.5 84.6 86.4 87.8 88.8 90.2
0.06 68.8 72.8 76.6 79.4 81.6 84.0 85.3 86.8 88.2
0.07 64.7 69.5 73.3 76.5 79.1 81.6 83.3 84.5 86.3
0.08 60.9 66.2 69.9 74.0 76.8 78.9 81.2 83.1 84.4
0.09 57.7 62.8 67.6 71.4 74.4 76.8 79.0 81.1 82.7
0.1 54.2 59.9 64.6 68.3 72.1 75.1 77.3 79.3 81.1
0.11 51.1 57.0 61.6 66.1 69.7 72.8 75.2 77.7 79.5
0.12 48.3 54.3 59.6 64.0 67.5 70.7 73.2 75.7 78.0
0.13 45.6 51.8 57.1 61.7 65.5 68.7 71.5 73.9 76.0
0.14 43.2 49.4 54.6 59.6 63.3 67.1 70.3 72.8 74.7
0.15 40.8 47.1 52.5 57.2 61.6 65.3 68.7 70.7 73.5
0.16 38.7 44.8 50.7 56.0 59.6 63.4 66.9 69.8 71.8
0.17 36.4 42.7 48.7 53.4 57.8 62.1 64.9 67.7 70.2
0.18 34.6 40.8 46.8 51.9 56.3 60.0 64.2 66.6 69.0
0.19 32.7 39.1 45.0 50.2 55.0 58.6 62.3 65.0 67.8
0.2 31.1 37.2 43.4 48.5 52.6 57.5 60.9 63.8 66.2
0.21 29.4 35.8 41.4 46.8 51.7 55.5 58.7 61.9 65.0
0.22 27.8 33.9 40.1 45.3 49.4 54.0 58.1 60.9 63.8
0.23 26.6 32.9 38.7 43.8 48.1 53.0 56.6 59.4 62.5
0.24 25.2 31.1 37.2 42.7 47.2 51.3 55.3 58.3 61.4
0.25 24.1 30.3 35.7 40.6 45.4 49.7 53.6 57.7 60.1
0.26 22.7 28.8 34.1 40.1 44.8 49.0 52.2 56.0 59.0
0.27 21.8 27.5 32.8 38.8 43.5 47.5 51.3 54.7 57.9
0.28 20.7 26.2 32.2 37.3 42.0 46.2 50.0 53.4 56.6
0.29 19.9 25.5 30.5 36.5 41.1 44.9 49.2 52.3 55.7
0.3 18.7 24.4 29.9 34.7 39.5 43.9 47.2 52.0 54.3
0.31 17.8 23.5 29.1 34.0 38.8 43.1 46.7 51.0 53.7
0.32 17.0 22.6 27.7 32.7 37.6 41.0 45.6 49.6 52.3
0.33 16.3 21.5 26.9 31.8 35.9 40.3 44.9 48.7 51.5
0.34 15.6 20.7 25.6 30.6 35.8 39.5 43.8 47.0 50.4
0.35 14.8 19.9 25.3 29.7 34.5 38.9 42.2 46.1 50.1
0.36 14.2 19.3 24.0 29.0 33.6 37.7 41.5 45.0 49.0
0.37 13.7 18.5 23.4 28.6 33.0 37.1 40.9 44.6 47.5
0.38 13.0 17.6 22.6 27.6 31.7 36.2 39.8 43.1 47.1
0.39 12.4 17.0 21.8 26.5 30.8 34.9 39.1 42.2 45.6
0.4 12.0 16.5 21.0 25.9 30.2 34.8 38.1 42.0 45.3
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Table 20. Lower 90% confidence limit of percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 2-year rotation fishery on T. capax.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 92.82 93.43 94.11 94.72 95.19 95.59 95.90 96.33 96.54
0.02 86.22 87.34 88.48 89.76 90.51 91.46 91.99 92.79 93.41
0.03 80.16 81.83 83.34 84.65 86.14 87.42 88.53 89.66 90.26
0.04 74.23 76.58 78.39 80.48 82.66 83.53 85.19 86.26 87.04
0.05 69.01 71.77 73.66 76.20 78.47 80.29 81.59 82.91 84.77
0.06 64.31 66.95 69.78 72.01 74.08 77.13 78.20 80.15 82.04
0.07 59.76 62.79 65.94 68.35 70.80 73.50 75.34 76.67 78.77
0.08 55.50 59.07 62.00 65.53 68.19 69.85 72.36 74.64 76.09
0.09 52.10 55.42 58.95 62.09 64.68 66.99 69.15 72.06 73.94
0.1 48.68 51.77 55.00 58.35 61.71 65.41 67.21 69.34 71.46

0.11 45.12 48.83 51.80 55.67 59.00 62.09 64.44 67.51 69.53
0.12 42.25 45.28 49.93 52.82 55.80 59.41 61.90 64.66 67.23
0.13 39.35 42.99 46.99 50.23 53.54 56.57 59.65 62.33 64.29
0.14 36.88 40.76 43.98 47.86 50.56 55.03 58.75 60.94 62.32
0.15 34.42 38.13 41.75 45.15 49.49 52.94 56.22 58.05 61.48
0.16 32.20 35.57 40.06 44.18 46.92 50.37 53.77 56.94 59.21
0.17 30.12 33.79 38.00 40.96 45.02 49.09 51.44 53.79 56.72
0.18 28.02 31.76 35.67 39.36 43.11 46.06 50.81 52.72 55.38
0.19 25.99 29.62 33.61 37.45 41.29 45.16 48.49 51.70 53.45
0.2 24.76 27.95 32.23 35.84 39.22 44.21 46.98 49.79 51.55

0.21 23.06 27.01 29.33 33.03 38.42 41.15 43.61 46.68 50.70
0.22 21.66 24.83 28.89 32.63 35.50 39.45 43.39 45.44 48.87
0.23 20.23 23.79 27.41 31.11 33.53 38.53 41.80 44.01 46.71
0.24 19.07 22.01 25.88 29.74 33.44 36.51 40.20 42.58 45.96
0.25 17.86 21.57 24.29 27.32 31.32 33.91 37.99 42.00 44.69
0.26 16.99 20.34 22.60 27.20 31.06 34.17 36.89 40.60 44.04
0.27 16.16 18.55 21.48 26.11 29.06 32.09 35.86 39.44 42.42
0.28 15.16 17.46 21.36 24.38 27.74 31.24 34.50 36.74 40.49
0.29 14.30 17.01 19.31 24.27 27.25 29.96 33.67 35.44 39.23
0.3 13.21 15.83 18.66 22.13 25.40 28.80 31.07 36.48 38.24

0.31 12.67 15.39 18.33 21.77 25.00 28.24 30.87 35.52 37.37
0.32 11.83 14.16 17.34 20.24 23.45 26.46 29.82 33.93 35.90
0.33 11.15 13.81 16.55 19.68 22.51 25.64 29.34 33.16 34.97
0.34 10.57 12.92 15.52 18.32 22.22 24.45 27.66 30.68 33.33
0.35 9.82 12.52 14.93 17.23 20.62 23.81 26.02 30.34 33.28
0.36 9.28 11.68 14.00 16.92 20.31 23.02 25.96 28.86 32.95
0.37 9.11 11.10 13.78 16.72 20.03 22.45 24.53 28.13 30.47
0.38 8.44 10.22 12.73 16.34 18.38 21.39 24.30 26.51 30.20
0.39 7.92 9.98 12.31 14.71 17.03 20.03 23.44 26.03 28.42
0.4 7.70 9.70 11.58 14.44 17.09 20.59 22.95 25.68 28.33
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Table 21. Average percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 3-year rotation fishery on T. capax.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 95.8 96.5 97.0 97.4 97.7 98.0 98.2 98.4 98.6
0.02 91.8 93.1 94.1 94.9 95.6 96.0 96.5 96.9 97.2
0.03 88.0 89.8 91.1 92.4 93.4 94.1 94.8 95.3 95.7
0.04 84.2 86.6 88.6 90.1 91.3 92.3 93.1 93.8 94.5
0.05 80.8 83.5 85.9 87.8 89.3 90.5 91.6 92.4 93.0
0.06 77.4 80.6 83.5 85.5 87.3 88.8 90.0 90.7 91.6
0.07 74.2 77.8 80.9 83.4 85.4 86.9 88.5 89.7 90.5
0.08 71.1 75.2 78.7 81.0 83.4 85.1 86.8 88.0 89.3
0.09 68.1 72.4 76.3 79.3 81.7 83.9 85.3 86.6 88.0
0.1 65.5 70.0 73.8 77.0 79.8 82.1 83.6 85.6 86.7
0.11 62.9 67.9 71.5 74.9 77.5 80.6 82.5 84.1 85.2
0.12 60.2 65.3 69.9 73.2 76.6 78.6 80.9 82.9 84.1
0.13 57.9 63.3 67.6 71.6 74.5 77.2 79.4 81.3 83.0
0.14 55.6 60.8 66.0 69.9 73.1 76.0 78.0 80.1 81.8
0.15 52.9 58.8 63.8 68.1 71.5 74.5 77.0 78.8 80.9
0.16 50.9 56.6 62.2 66.3 70.2 72.7 75.6 77.6 79.5
0.17 49.0 54.9 60.1 64.6 68.4 71.6 74.2 76.7 78.6
0.18 47.2 53.1 58.9 63.3 66.9 69.9 73.0 75.5 77.2
0.19 45.3 51.5 56.8 61.7 65.0 69.6 71.4 74.4 76.0
0.2 43.5 49.7 55.2 59.8 64.1 67.7 70.3 73.0 74.7
0.21 41.9 48.0 53.5 58.3 62.9 66.2 69.2 71.7 74.1
0.22 40.1 46.7 52.1 57.3 61.2 64.8 68.2 70.4 73.0
0.23 38.6 44.7 50.5 55.4 59.9 63.5 66.7 69.4 71.9
0.24 36.9 43.3 49.2 54.3 58.9 62.3 65.5 68.0 71.0
0.25 35.5 42.0 48.1 53.0 56.9 61.2 64.6 67.4 69.8
0.26 34.2 40.7 46.3 51.9 56.0 59.8 62.9 66.0 68.8
0.27 33.0 39.2 45.3 50.4 54.4 59.0 62.7 65.2 67.6
0.28 31.7 38.2 44.0 49.1 53.9 57.8 61.3 64.3 67.1
0.29 30.4 36.4 42.6 47.8 53.0 56.8 60.1 63.6 66.5
0.3 29.2 35.4 41.5 46.9 51.1 56.0 58.6 62.1 65.2
0.31 28.3 34.6 40.3 45.6 50.7 54.7 57.4 61.4 64.3
0.32 27.1 33.3 39.2 44.4 49.2 53.7 57.3 60.3 63.2
0.33 26.1 32.4 38.5 43.5 48.1 52.7 56.2 60.0 62.4
0.34 25.1 31.3 37.2 43.0 46.8 51.4 55.4 58.5 61.7
0.35 23.8 30.3 36.3 41.3 46.3 50.4 54.8 58.0 60.2
0.36 23.2 29.5 35.5 39.9 45.1 49.2 53.7 57.0 59.4
0.37 22.6 28.5 34.2 39.8 44.4 48.8 52.6 55.8 58.8
0.38 21.4 27.4 33.7 38.4 43.7 47.7 51.9 54.7 57.3
0.39 20.7 26.4 32.7 37.4 42.4 46.9 50.9 53.9 56.7
0.4 20.0 25.8 31.6 36.6 41.5 46.3 50.0 53.1 56.6
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Table 22. Lower 90% confidence limit of percentage of maximum spawning stock biomass per recruit in association with
instantaneous natural mortality rate and exploitation rate for 3-year rotation fishery on T. capax.

Exploitation Instantaneous Natural Mortality Rate
Rate 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 95.1 95.5 96.0 96.4 96.7 97.0 97.3 97.4 97.7
0.02 90.4 91.3 92.2 92.8 93.5 94.0 94.6 95.1 95.4
0.03 86.0 87.1 88.2 89.5 90.5 91.3 92.0 92.7 93.2
0.04 81.6 83.4 84.8 86.4 87.4 88.6 89.5 90.4 91.3
0.05 77.7 79.6 81.4 83.1 84.7 86.0 87.3 88.2 88.8
0.06 74.0 76.2 78.5 80.2 81.9 83.6 85.0 85.4 86.9
0.07 70.3 72.6 75.2 77.4 79.2 80.7 83.1 84.2 85.4
0.08 66.8 69.6 72.2 74.1 76.5 78.4 80.5 81.8 83.2
0.09 63.5 66.3 69.3 72.1 74.6 76.6 78.4 79.4 81.5
0.1 60.6 63.4 66.4 69.1 71.7 74.1 75.5 78.6 79.6
0.11 57.7 60.9 63.2 66.0 68.5 72.2 74.4 76.4 77.5
0.12 54.8 58.1 61.4 64.7 67.9 69.4 72.0 74.0 75.4
0.13 52.3 55.7 59.0 62.3 64.9 67.7 70.3 72.3 73.9
0.14 49.9 53.1 57.2 60.2 63.0 66.2 68.1 70.3 72.3
0.15 46.7 50.7 54.2 58.1 60.9 63.9 66.3 68.8 71.1
0.16 44.7 48.5 52.4 56.2 59.1 61.8 64.6 66.9 69.1
0.17 42.5 46.1 49.8 53.8 57.4 60.6 62.9 65.8 67.8
0.18 40.9 44.6 48.9 52.0 55.1 57.7 61.6 64.9 66.5
0.19 39.1 42.8 46.2 50.2 53.1 58.3 59.2 63.0 64.6
0.2 37.0 40.5 44.6 47.8 52.1 55.4 57.9 61.1 62.3
0.21 35.5 38.9 42.5 46.2 50.2 53.8 56.8 59.4 62.0
0.22 33.6 37.5 41.2 45.5 48.3 52.3 55.5 57.2 60.6
0.23 31.9 35.2 39.1 43.3 46.9 50.2 53.7 56.1 59.3
0.24 30.3 33.5 37.9 41.6 45.8 48.9 52.1 54.2 58.3
0.25 28.6 32.6 36.7 40.1 43.1 47.5 51.0 53.6 56.2
0.26 27.7 31.3 34.7 38.9 42.5 45.8 48.4 52.0 54.7
0.27 26.4 29.8 33.8 38.0 40.8 45.2 48.7 50.3 53.1
0.28 24.9 28.5 32.2 36.6 40.3 43.5 47.0 49.5 52.2
0.29 24.0 26.6 31.1 34.7 40.0 42.5 45.8 49.1 51.9
0.3 23.0 26.0 29.7 34.0 36.8 41.7 43.1 47.5 50.6
0.31 21.9 24.9 28.4 32.7 36.8 39.9 42.4 46.1 48.8
0.32 21.0 24.1 27.4 30.7 35.1 39.3 42.5 44.6 48.4
0.33 20.0 23.0 27.4 30.4 33.8 37.7 40.7 45.3 47.6
0.34 18.8 22.1 26.0 30.2 32.6 36.0 39.7 42.8 46.9
0.35 17.9 21.2 25.1 27.9 32.3 35.7 39.8 42.3 43.8
0.36 17.2 20.5 24.1 27.1 31.2 33.7 38.3 41.5 43.2
0.37 16.5 19.5 23.1 26.4 30.1 33.7 37.2 40.2 42.7
0.38 15.5 18.5 22.2 25.5 29.5 32.6 36.8 38.1 41.0
0.39 15.1 17.7 21.7 24.7 28.2 32.2 35.5 37.7 40.1
0.4 14.2 17.2 20.5 23.2 27.5 31.3 33.7 36.6 40.5
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Fig .  1 .  Re la t ive  percentage of  geoducks and horse  c lams in  d i f ferent  depth  ranges.  
(See  Tab le  2  fo r  va lues )
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Fig.  2 .  Percentage of  quadrats  wi th  presence of  ee lgrass in  d i f ferent  dpeth ranges.  
(See  Tab le  6  fo r  va lues )

D
e

p
th

 R
a

n
g

e
 (

m
)

0-1

2-3

3-4

5-6

 7-8

8-9

Ahousat Anderson Cumshawa E lbow Hotspr ing Kett le EpperPass Yel lowBank

1-2

4-5

 6-7



46

0

50

100

150

200

250

300

66 69 72 75 78 81 84 87 90

% of Maximum SPR

Fig. 3. Frequency distribution of percentage of maximum spawning stock biomass per recruit (SPR) retained in 
the stock for a 3-year rotation fishery on T. nuttallii  with natural mortality of 0.2 and exploitation rate of 10%

Fr
eq

ue
nc

y

Number = 1000
Mean = 78.6

Lower 90% Confidence Limit = 71.5



47

Fig. 4. Percentage of maximum spawning stock biomass per recruit in association with instantaneous natural mortality rate and exploitation rate
for 1-year rotation fishery on T. nuttallii.  (Top: mean; Bottom: Lower bound of 90% confidence interval)
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Fig. 5. Percentage of maximum spawning stock biomass per recruit in association with instantaneous natural mortality rate and exploitation rate
for 2-year rotation fishery on T. nuttallii.  (Top: mean; Bottom: Lower bound of 90% confidence interval)
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Fig. 6. Percentage of maximum spawning stock biomass per recruit in association with instantaneous natural mortality rate and exploitation rate for
3-year rotation fishery on T. nuttallii.  (Top: mean; Bottom: Lower bound of 90% confidence interval)
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Fig. 7. Percentage of maximum spawning stock biomass per recruit in association with instantaneous natural mortality rate and exploitation rate for 1-year rotation
fishery on T. capax.  (Top: mean; Bottom: Lower bound of 90% confidence interval)
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Fig. 8. Percentage of maximum spawning stock biomass per recruit in association with instantaneous natural mortality rate and exploitation rate for 2-year rotation
fishery on T. capax.  (Top: mean; Bottom: Lower bound of 90% confidence interval)
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Fig. 9. Percentage of maximum spawning stock biomass per recruit in association with instantaneous natural mortality rate and exploitation rate for 3-year rotation
fishery on T. capax.  (Top: mean; Bottom: Lower bound of 90% confidence interval)
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