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PREFACE

This Bulletin is the author’s third that deals with the general field of biological
statistics of fish populations. The earlier ones date from 1948 and 1958, respectively,
and both are long out of print. The present work began as a revision of the 1958 text,
but so many changes, additions, and deletions proved desirable that it has become
in many respects a new work. Even so, the text does not attempt to include all the
developments in this field in recent years. The general plan and arrangement of
materials is similar to that of the 1958 Bulletin, but it proved impossible to indicate
which passages are new and which are quotations from the earlier volumes. However,
where Examples are repeated this has been indicated. Methods which seem con-
ceptually similar are presented in the same chapter, proceeding from the simpler to
the more complex as far as possible. Some attention is given also to the historical
development of each topic, and this will be considered in somewhat greater detail
elsewhere. The amount of space that each topic receives varies with its importance
and with its availability. Procedures described in standard western journals are not,
as a rule, given detailed development: usually only the formulae most useful for
estimating population statistics are quoted, and a discussion of sampling error and
of the conditions which make them usable. More extended treatment is given to
methods taken from obscure sources and new developments or new aspects of existing
methods. This plan does not give ideal balance, but it does perhaps make for maximum
usefulness within a limited compass.

In selecting illustrative examples, no attempt has been made to give representa-
tion to effort in fishery research on a geographical basis: rather, examples close at
hand have usually been selected. The examples from “borrowed™ data involve risks
of misinterpretation, and are used here to illustrate methodology rather than as a
factual treatment of the situations concerned; although, at the same time, 1 have tried
to be as realistic as possible. Some examples have been simplified for presentation
here, and others have been invented, in order to keep the text within bounds. How-
ever, the practicing biologist quickly discovers that the situations he has to tackle
tend to be more complex than those in any handbook, or else the conditions ditter
from any described to date and demand modifications of existing procedures. It can
be taken as a general rule that experiments or observations which seem simple and
straightforward will prove to have important complications when analyzed carefully
— complications that stem from the complexity and variability of the living organ-
ism, and from the changes that take place in it, continuously, from birth to death.
Two general precautions should always be taken. Firstly, divide up any body of data
into different categories, for example by the size, age, sex, or history of the fish in-
volved, and compare statistics calculated from the two or more subsets obtained in
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each such category. Secondly, divide the data on the basis of time (successive hours,
days, or seasons), and make similar comparisons.

From the point of view of fishery management, information from computations
of the kinds described in this Bulletin provide only a part of the basic information
upon which policy can be based. Sometimes, to be sure, they can provide the greater
part of the necessary information. In other situations they have as yet given only
equivocal answers to important questions. This is particularly true where several
species are possible occupants of and competitors for an important environment, and
their relative abundance may vary with the intensity of the fishery or with physical
changes. The fishery administrator has also the problem (often not an easy one) of
selecting an objective which his regulations are designed to serve, and this involves
questions of economics and public policy not touched on here. However, there is no
question that the increase of biological information has already improved, and will
continue to improve, the precision and effectiveness of fishery management.

Some attempt has been made to meet the needs of the beginning student of fishery
biology by working out certain examples in detail, even where this consists largely of
standard mathematical procedures. To be used as an introductory text book, however,
this Bulletin should be “cut down” by omitting less frequently used methods and by
choosing one among several alternative procedures where these exist. The choice
would depend partly on local problems and interests.

This Bulletin is of course not intended as a complete text book for fishery biolo-
gists. Methods of measuring fish, determining their age, marking, tagging, collecting,
and tabulating catch statistics — all these are mentioned only incidentally, although
they provide the data from which the vital statistics of a stock must be estimated.
Books that treat these matters include Chugunova (1959), Gulland (1966), Lagler (1956),
Rounsefell and Everhart (1953), Royce (1972), and the International Biological Pro-
gram handbook edited by Ricker (1971a). Nor are we concerned here with other
animals and plants of the environment, with the flow of nutrient energy which main-
tains an aquatic population, or with the overall productivity of bodies of water. These
subjects are discussed in most textbooks of ecology, and various aspects pertinent to
fish production are treated in works by Dickie and Paloheimo (1974), Gulland (1971),
Moiseev (1969), Nikolsky (1965), Regier (1974), Ricker (1946, 1969b), Walford (1958),
Weatherley (1972), and Winberg (1956).

The 1958 Bulletin included a list of individuals who had assisted in various ways.
Some of the same people have made further contributions, and I wish to acknowledge
also discussions or written comments from K. R. Allen, D. H. Cushing, J. A.
Gulland, G. J. Paulik, H. A. Regier, and B. J. Rothschild.

Computer calculations in this Bulletin have been done by K. R. Allen or J. A. C.
Thomson. A. A. Denbigh assisted in preparing the new figures. Mrs Barbara Korsvoll
prepared the typescript and has assisted with many of the computations.
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CHAPTER 1. — INTRODUCTION

1.1. THE PROBLEMS

The topics which can be considered as biological statistics of a fish population
include the following:

1. The abundance of the population, usually somewhat restricted as to age
or size.

2. The total mortality rate at successive ages, or even within each year.

The fraction of the total mortality ascribable to each of several causes. It is
possible at times to distinguish (a) deaths caused by fishing, (b) deaths caused
by predation other than human, (¢) deaths from disease, parasites, or senility;
(b) and (c¢) together comprise “‘natural” mortality.

4. The rate of growth of the individual fish. In human populations the rate of
growth of individuals is not generally regarded as a vital statistic. However
growth rate among fishes is much more variable than in man, and it may be
even more sensitive than mortality to changes in abundance and to environ-
mental variability.

5. The rate of reproduction, particularly as it is related to stock density.

6. The overall rate of surplus production of a stock, which is the resultant of
growth plus recruitment less natural mortality.

Historically, age and rate of growth were the first of these subjects to receive
wide attention, possibly because they require less extensive field work. Most of the
methods now in use for estimating growth rate had been evolved by 1910, and their
potential sources of error have received close consideration.

The development of procedures for estimating population size and survival
rate started early but progressed much more slowly. In the past 25 years there has
been much activity along theoretical lines, and numerous new applications. An
investigator now has a number of methods from which to choose one best suited to
the population he is studying, and he can increasingly use one method to check
another.

At first the study of reproduction or “year-class strength™ was considered mainly
in relation to environmental factors, but its relation to stock density has attracted
much attention in recent years.

Finally, the overall production of a fish stock. in relation to density and to rate
of fishing, has interested a number of authors since the middle 1920s, and there is
now a considerable body of information and a corresponding methodology.
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1.2. DEFINITIONS, USAGES, AND GLOSSARY

The list below includes only a part of the varied terminology which has been used
in fish population analysis. More extended descriptions of some terms are given in
later sections. If a special symbol is associated with a term, it is shown in parentheses.
Terms marked with an asterisk are not used in this book, at any rate not in a context
where strict definition is called for.

ABSOLUTE RECRUITMENT: The number of fish which grow into the catchable size
range in a unit of time (usually a year).

AGE: The number of years of life completed, here indicated by an arabic numeral,
followed by a plus sign if there is any possibility of ambiguity (age 5, age 5+)1.

ANNUAL (or seasonal) GROWTH RATE (h): The increase in weight of a fish per year (or
season), divided by the initial weight. X

ANNUAL (or seasonal) TOTAL MORTALITY RATE (A): The number of fish which die
during a year (or season), divided by the initial number. Also called: actual
mortality rate, *coefficient of mortality (Heincke).

AVAILABILITY: 1. (r): The fraction of a fish population which lives in regions where
it is susceptible to fishing during a given fishing season (Marr 1951). This frac-
tion receives recruits from or becomes mingled with the non-available part of
the stock at other seasons, or in other years. (Any more or less completely iso-
lated segment of the population is best treated as a separate stock.)

2. (C/f or Y/f): Catch per unit of effort.

Biomass (B): The weight of a fish stock, or of some defined portion of it.

CATCHABILITY (g): The fraction of a fish stock which is caught by a defined unit of
the fishing effort. When the unit is small enough that it catches only a small part
of the stock — 0.01 or less — it can be used as an instantaneous rate in comput-
ing population change. (For fractions taken of various portions of the stock, see
“vulnerability.”) Also called: catchability coefficient, *force of fishing mortality
(Fry 1949, p. 24; in his Appendix, however, Fry defines the force of fishing
mortality as equivalent to our rate of fishing, F).

CATCH CURVE: A graph of the logarithm of number of fish taken at successive ages
or sizes.

CATCH PER UNIT OF EFFORT (C/f or Y /f): The catch of fish, in numbers or in weight,
taken by a defined unit of fishing effort. Also called: catch per effort, fishing
success, availability (2).

CONDITIONAL FISHING MORTALITY RATE (m): The fraction of an initial stock which
would be caught during the year (or season) if no other causes of mortality

1 While the above is recommended, other usages exist. Roman numerals are frequently used in
North America, but their cumbersomeness seems to outweigh any advantage. Some have used either
roman or arabic numerals to indicate year of life, rather than years completed. For anadromous
fishes both the actual age and the age at seaward migration are frequently indicated. Several conven-
tions are employed for this purpose, and it seems necessary to specify each time which one is being
used.



operated (= 1 -e‘F). Also called: annual fishing mortality rate, seasonal fishing
mortality rate.

CONDITIONAL NATURAL MORTALITY RATE (#): The fraction of an initial stock that
would die from causes other than fishing during a year (or season), if there were
no fishing mortality (= 1-e™). Also called: annual natural mortality rate,
seasonal natural mortality rate.

CRITICAL SIZE: The average size of the fish in a year-class at the time when the instan-
taneous rate of natural mortality equals the instantaneous rate of growth in
weight for the year-class as a whole. Also called: *optimum size.

EFFECTIVE FISHING EFFORT (F/g): Fishing effort adjusted, when necessary, so that each
increase in the adjusted unit causes a proportional increase in instantaneous rate
of fishing.

EFFECTIVENESS OF FISHING: A general term referring to the percentage removal of fish
from a stock, but not as specifically defined as either rate of exploitation or
instantaneous rate of fishing.

EQuiLIBRIUM CATCH (Cg): The catch (in numbers) taken from a fish stock when it is
in equilibrium with fishing of a given intensity, and (apart from the effects of
environmental variation) its abundance is not changing from one year to the next,

EquiLiBrIUM YIELD (Yg): The yield in weight taken from a fish stock when it is in
equilibrium with fishing of a given intensity, and (apart from effects of environ-
mental variation) its biomass is not changing from one year to the next. Also
called: sustainable yield, equivalent sustainable yield. (See also SURPLUS PRO-
DUCTION.)

ExpLOITATION RATIO (E): The ratio of fish caught to total mortality (= F/Z when
fishing and natural mortality take place concurrently). Also called: *rate of
exploitation.

FisH STOCK : See STOCK.

FisHING EFFORT (f): 1. The total fishing gear in use for a specified period of time. When
two or more kinds of gear are used, they must be adjusted to some standard type
(see Section 1.7).
2. Effective fishing effort.

*FISHING INTENSITY: 1. Effective fishing effort.
2. Fishing effort per unit area (Beverton and Holt).
3. Effectiveness of fishing.

*FISHING POWER (of a boat, or of a fishing gear): The relative vulnerability of the stock
to different boats or gears. Usually determined as the catch taken by the given
apparatus, divided by the catch of a standard apparatus fishing at nearly the
same time and place.

FISHING success: Catch per unit of effort.

INSTANTANEOUS RATES (in general): See Section 1.4. Also called: logarithmic, expo-
nential, or compound-interest rates.



INSTANTANEOUS RATE OF FISHING MORTALITY (F): When fishing and natural mortality
act concurrently, F is equal to the instantaneous total mortality rate, multiplied
by the ratio of fishing deaths to all deaths. Also called: rate of fishing; instan-
taneous rate of fishing; *force of fishing mortality (see under CATCHABILITY).

INSTANTANEOUS RATE OF GROWTH (G): The natural logarithm of the ratio of final
weight to initial weight of a fish in a unit of time, usually a year. When applied
collectively to all fish of a given age in a stock, the possibility of selective mortality
must be considered (Section 9.4).

INSTANTANEOUS RATE OF MORTALITY (Z): The natural logarithm (with sign changed)
of the survival rate. The ratio of number of deaths per unit of time to population
abundance during that time, if all deceased fish were to be immediately replaced
so that population does not change. Also called: *coefficient of decrease (Bara-
nov).

INSTANTANEOUS RATE OF NATURAL MORTALITY (M): When natural and fishing mortality
operate concurrently it is equal to the instantaneous total mortality rate, multi-
plied by the ratio of natural deaths to all deaths. Also called: *force of natural
mortality (Fry).

INSTANTANEOUS RATE OF RECRUITMENT (z): Number of fish that grow to catchable
size per short interval of time, divided by the number of catchable fish already
present at that time. Usually given on a yearly basis: that is, the figure just
described is divided by the fraction of a year represented by the “short interval”
in question. This concept is used principally when the size of the vulnerable stock
is not changing or is changing only slowly, since among fishes recruitment is not
usually associated with stock size in the direct way in which mortality and growth
are.

INSTANTANEOUS RATE OF SURPLUS PRODUCTION: Equal to rate of growth plus rate of
recruitment less rate of natural mortality — all in terms of weight and on an
instantaneous basis. In a ‘“balanced” or equilibrium fishery, this increment
replaces what is removed by fishing, and rate of surplus production is numerically
equal to rate of fishing. Also called: *instantaneous rate of natural increase
(Schaefer).

MAINTAINABLE YIELD: “The largest catch that can be maintained from the population,
at whatever level of stock size, over an indefinite period. It will be identical to the
sustainable yield for populations below the level giving the MSY, and equal to
the MSY for populations at or above this level” (Gulland).

MAXIMUM EQUILIBRIUM CATCH (see MAXIMUM SUSTAINABLE YIELD).

MAXIMUM SUSTAINABLE YIELD (MSY OR Y): The largest average catch or yield that can
continuously be taken from a stock under existing environmental conditions.
(For species with fluctuating recruitment, the maximum might be obtained by
taking fewer fish in some years than in others.) Also called : maximum equilibrium
catch (MEC); maximum sustained yield; sustainable catch.

*MECHANICAL INTENSITY OF FISHING: Fishing effort (1).
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NATURAL MORTALITY: Deaths from all causes except man’s fishing, including preda-
tion, senility, epidemics, pollution, etc.

NET INCREASE (OR DECREASE): New body substance elaborated in a stock, less the
loss from all forms of mortality.

PARAMETER: A “‘constant” or numerical description of some property of a population
(which may be real or imaginary). Cf. statistic.

Pieces: Individual items, as in the expression “two dollars a piece” (German Stiick).
Individual fish.

PropucTiON: 1. (sense of Ivlev). The total elaboration of new body substance in a
stock in a unit of time, irrespective of whether or not it survives to the end of
that time. Also called: *net production (Clarke et al. 1946); *total production.

2. *Yield.

RATE OF EXPLOITATION (1): The fraction, by number, of the fish in a population at a
given time, which is caught and killed by man during the year immediately follow-
ing (= FA/Z when fishing and natural mortality are concurrent). The term may
also be applied to separate parts of the stock distinguished by size, sex, etc. (See
also ““rate of utilization.”) Also called: *fishing coefficient (Heincke).

RATE OF FISHING (F): INSTANTANEOUS RATE OF FISHING MORTALITY.
*RATE OF NATURAL INCREASE: INSTANTANEOUS RATE OF SURPLUS PRODUCTION.

RATE OF REMOVAL: An inexactly-defined term that can mean either rate of exploita-
tion or rate of fishing — depending on the context (see Section 1.4.3).

RATE OF UTILIZATION: Similar to rate of exploitation, except that only the fish landed
are considered. The distinction between catch and landings is important when
considerable quantities of fish are discarded at sea.

RECRUITMENT: Addition of new fish to the vulnerable population by growth from
among smaller size categories (Section 11.1).

RECRUITMENT CURVE, REPRODUCTION CURVE: A graph of the progeny of a spawning
at the time they reach a specified age (for example, the age at which half of the
brood has become vulnerable to fishing), plotted against the abundance of the
stock that produced them.

SEcULAR: Pertaining to the passage of time.

StaTisTIC: The estimate of a parameter which is obtained by observation, and which
in general is subject to sampling error.

Stock: The part of a fish population which is under consideration from the point of
view of actual or potential utilization.

Success (of fishing): Catch per unit of effort.

SURPLUS PRODUCTION (Y): Production of new weight by a fishable stock, plus recruits
added to it, less what is removed by natural mortality. This is usually estimated
as the catch in a given year plus the increase in stock size (or less the decrease).
Also called: natural increase, sustainable yield, equilibrium catch (Schaefer).
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SURVIVAL RATE (S): Number of fish alive after a specified time interval, divided by the
initial number. Usually on a yearly basis.

SUSTAINABLE YIELD: Equilibrium yield.

UsaBLE sToCK: The number or weight of all fish in a stock that lie within the range
of sizes customarily considered usable (or designated so by law). Also called:
*standing crop.

UTILIZED STOCK, UTILIZED POPULATION (V): The part, by number, of the fish alive at
a given time, which will be caught in future.

VIRTUAL POPULATION: Utilized stock.

VULNERABILITY: A term equivalent to CATCHABILITY but usually applied to separate
parts of a stock, for example those of a particular size, or those living in a par-
ticular part of the range.

YEAR-CLASS: The fish spawned or hatched in a given year. In the northern hemisphere,
when spawning is in autumn and hatching in spring, the calendar year of the
hatch is commonly used to identify the year-class (except usually for salmon).
Also called: brood, generation.

In the above, only the kinds of “rates” are defined which are most frequently
used. In general, for any process there will be an absolute rate, a relative rate and an
instantaneous rate (Sections 1.4, 1.5).

1.3. SyMmBOLS

The symbols used are those of the “international” system (Gulland 1956a) as far
as possible, but quite a number of additional ones are required, of which those more
frequently used are shown below. The predecessors of this bulletin (Ricker 1948, 1958a)
used essentially the system recommended by Widrig (1954a, b), and their symbols are
indicated below in square brackets.

a 1. a coefficient used in the Ricker recruitment curve (Section 11.6.2)

2. the multiplier in the functional weight-length relationship (Section 9.3.1)
1. the slope of any line

2. the exponent in the functional weight-length relationship (Section 9.3.1)
2.71828 ...

fishing effort

annual growth rate

1. Ford growth coefficient (Section 9.6.4)

2. arate; used in various connections

length of a fish

conditional rate of fishing mortality

S

>~ >N o

conditional rate of natural mortality
catchability [c]

_ 3 3™



1. availability (1).

2. rate of accession (Section 5.3)

standard deviation

1. a point in time (often used as a subscript)

2. an interval of time (also Af)

3. age

1. rate of exploitation of a fish stock, or expectation of capture by man (u
of Ricker 1948)

2. the ratio of number of recoveries to number of marked fish released
(= R/M)

expectation of natural death (v of Ricker 1948)

weight of a fish

instantaneous rate of emigration

1. instantaneous rate of immigration

2. instantaneous rate of recruitment

annual (or seasonal) mortality rate [a]

annual (or seasonal) rate of disappearance of fish

weight (biomass) of a group of fish; for example of a year—class, or of an
entire stock

catch, in numbers — usually for a whole year

number of fish examined for tags or marks

escapement (of salmon, etc., past a fishery)

number of eggs

exploitation ratio (= F/Z)

(as subscript) an equilibrium level (see Appendix I1I)

L=

instantaneous rate of fishing mortality [p]
instantaneous rate of growth [g]

1. Brody growth coefficient (Section 9.6.1)
2. any rate
3. cumulative catch (Chapter 6)

mean length at recruitment, in Baranov’s yield equation
asymptotic length, in the Brody-Bertalanffy growth equation

1. instantaneous rate of natural mortality [q]
2. number of fish marked or tagged (also M)

number of fish in a year—class, population, or sample

1. abundance of a parental stock or generation
2. level of statistical probability

the constant which appears in the integration of Baranov's yield computation -

7



R 1. number of recruits to the catchable stock
2. number of recaptures of marked or tagged fish
3. multiple correlation coefficient

S rate of survival (= —logeZ) [s]
S’ apparent survival rate (= —logeZ’)

U instantaneous rate of “other loss” (includes emigration and, for tagged fish,
the shedding of tags)

V1. utilized stock, virtual population
2. variance

» the mean asymptotic weight which corresponds to L,

w

Y yield, catch by weight

Z instantaneous rate of (total) mortality [/]

Z' instantaneous rate of disappearance (total losses) from a stock

(=F+M+U=Z+1)
— (over a symbol) a mean value
X summation symbol

1.4. NUMERICAL REPRESENTATION OF MORTALITY

1.4.1. TOTAL MORTALITY RATE. The mortality in a population, from all causes,
can be expressed numerically in two different ways.

(a) Simplest and most realistic perhaps is the annual expectation of death of an
individual fish, or actual mortality rate, expressed as a fraction or percentage. This is
the fraction of the fish present at the start of a year which actually die during the year.

(b) If the number of deaths in a small interval of time is at all times proportional
to the number of fish present at that time, the fraction which remains at time ¢, of the
fish in a population at the start of a year (t =0),is:

— = (1.1)

The parameter Z is called the instantaneous mortality rate. If the unit of time is 1 year,
then at the end of the year (when 7 = 1):

— =eZ (1.2)

But Nj/No=S =1-A;hence 1 -A =eZ orZ = -loge (1 — A); hence the instan-
taneous mortality rate is equal to the natural logarithm (with sign changed) of the
complement of the annual expectation of death.

The instantaneous rate Z also represents the number of fish (including new
recruits) which would die during the year if recruitment were to exactly balance
mortality from day to day, expressed as a fraction or multiple of the steady density of
stock.



The concept of an “instantaneous” rate apparently continues to trouble students. Imagine a
year of a fish’s life to be divided into a large number » of equal time intervals, and let the quantity
Z/n represent the expectation of death of the fish during each such interval; or, in other words,
Z/n is the fraction of a large population which would actually die during each time interval one-nth
of a year long. In such a relationship, Z is the instantaneous rate of mortality, expressed on a yearly
basis. The interval 1/n year is made short (n made large) so that the change in size of population
during each interval will be negligible; that is, Z/n must be a small fraction. But of course the cumu-
lative effect of the death of Z/n of the fish over a large number of nths of a year is quite important.
This can be illustrated by a numerical example. Let n = 1000 and Z = 2.8. Then during 1/1000 of a
year 2.8/1000 = 0.28%, of the average number of fish present die. Since this is a very small number
of deaths, the difference between average number and initial number can be ignored; and, of a popu-
lation of, say, 1,000,000 initially, about 2800 will die and 997,200 will remain alive. During the next
thousandth of the year 0.28%, of 997,200 = 2793 die and hence 994,407 survive. Repeated 1000
times, this process leaves 1,000,000 (1 - 0.0028)1000 = 60,000 survivors. The mortality for the year
is therefore 940,000 fish, and the annual mortality rate is A = 0.940, as compared with the instan-
taneous rate of Z = 2.8. This relation is not quite exact, because 1000 divisions of the year are scarcely
enough to compute the relative sizes of these two rates with 3-figure accuracy. The value appropriate
to an indefinitely large number of divisions of the year is given by the relationship: (1 - A) = e
where e = 2.71828. In this example, for Z = 2.8, A = 0.9392, so that the approximate calculation
was not far off. Obviously there is no limit to the possible size of Z, but A cannot exceed unity — that
is, no more fish can die than are actually present. On the other hand, when Z and A are small they
approach each other in magnitude. The table of Appendix I shows that when Z = 0.1 there is only
59, difference between them.

It has been suggested that mortality should not really be divided up into time
periods of less than a day, because of probable diurnal fluctuations in predation, etc.,
and hence that a calculus of finite differences should be employed. Actually, even 365
divisions of the year is close enough to an “indefinitely large number™ to make the
exponential relationship between Z and A accurate enough for our purposes. A more
penetrating consideration is that we are not, after all, interested in dividing up the
fish’s year into astronomically equal time intervals; for our purpose a physiological
time scale would be more appropriate, or perhaps one based on the diurnal and
seasonal variation in activity of the fish’s predacious enemies. It is only when total
mortality is subdivided into components whose effect may vary seasonally in different
ways, that time by the sun becomes important.

1.4.2. SUBDIVISIONS OF MORTALITY. There can be several causes of death among
the fish in a population: removals by man (fishing), predation, disease, accident, etc.,
each with its own rate. In practice we usually consider a division into only two types:
fishing, and natural mortality (which includes everything else). Each kind of mortality
has its own instantaneous rate, and the sum of these is the instantaneous total mor-
tality rate. If F represents the instantaneous rate of fishing mortality, the expression
e’V represents the survival rate if there were no natural mortality, and 1 — et is the
corresponding conditional mortality rate if no other source of mortality existed, here
represented by m. Similarly, if M is the instantaneous rate of natural mortality,
1 — e ™M is the canditional natural mortality rate. When fishing and natural mortality
act concurrently, they are competing for the same fish. so the conditional mortality
rates cannot be added. However, an expectation of death can easily be computed for
each cause of mortality, as described in Section 1.5.2, and these are additive. The
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expectation of death by fishing is known as the rate of exploitation. The three kinds of
mortality rates can be summarized as follows:

Symbol
I. Instantaneous mortality rates
Total . . . . . . . . . . . . . . . V4
From fishing (“rate of fishing”) . .. . . . . . R F
From natural causes . .. . . . . . . . . . M
II. Conditional mortality rates
From fishing . . . m
From natural causes . . . . n
III. Actual mortality rates (expectations of death)
Total .. .. . . A
From fishing (“‘rate of exploitation’) u
From natural causes . . . . ... . . . -4 v

1.4.3. POPULAR USAGE. For popular descriptive purposes the usefulness of # and
F — rate of exploitation and rate of fishing — depends partly on the kind of fishery
involved. If fishing occurs at a time when there is little or no recruitment, then a rate
of exploitation of, say, 659, shows the fraction of the vulnerable stock being utilized
each year; and to say that the rate of fishing is 1059, means little to the layman. The
situation is different, however, when fishing, recruitment, and natural mortality take
place throughout the same period of time: in that event, for example, with a 659
rate of exploitation and 109, natural mortality, the year’s catch equals 1.21 times the
stock on hand at any given time. In such a case the rate of fishing, 1219, seems the
more concrete and realistic description of the effectiveness of the fishery.

1.5. RECRUITMENT, STOCK, AND CATCH IN NUMBERS

1.5.1. TYPES OF IDEAL FISH POPULATIONS. A useful classification of fish popula-
tions is shown below. It is similar to that proposed by Ricker (1944, 1958a), but with
different numbering.

Type 1. Natural mortality occurs during a time of year other than the fishing season. The popu-
lation decreases during the fishing season because of catch removals only.

Type 2. Natural mortality occurs along with the fishing; each cccurs at a constant instantaneous
rate, or the two rates vary in parallel fashion. This is the type which has been most used in production
computations.

The above types can be further divided on the basis of when recruitment occurs:

Type A. Recruitment takes place at a time of year when there is no mortality.

Type B. Recruitment is at an even absolute (linear) rate throughout the year, or is proportional
to the rate of fishing throughout the fishing season.

Recruitment types A and B can be combined with fishing types 1 or 2. All these
“types” are ideal rather than real, and will be approximated rather than met by

actual fisheries.

1.5.2. RELATIONSHIPS BETWEEN PARAMETERS. For all of the above t 'ypes of fisheries,
the following relationships exist between the mortality and survival rates:

Instantaneous total mortality rate: Z=F+M (1.3)
Actual total mortality rate: A=1l-eZ=u+y (14
Survival rate: S =eZ (1.5)
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For Type 1 fisheries it is convenient to start the biological year at the time fishing
begins, and to consider that natural mortality occurs after fishing ends. We have then
the following relationships, additional to (1.3)—(1.5):

Rate of exploitation: u=m=1-¢F (1.6)
Conditional natural mortality rate: n=1-eM (1.7)
Expectation of natural death: v =n(l-u) (1.8)

For Type 2 fisheries, in which fishing and natural mortality operate concurrently,
the following relationships hold:

Conditional fishing mortality rate: m=1-¢F (1.9)

Conditional natural mortality rate: n=1-eM (1.10)

Rate of exploitation: : u = FA/Z (1.11)

Expectation of natural death: v = MA/Z (1.12)
Expressions (1.9)-(1.12) also imply the following:

§=§=¥ (1.13)

m-+n-mn=A (1.14)

Notice particularly that expressions (1.3)—(1.5) and (1.14) do not require that
fishing and natural mortality occur at rates which are proportional within the year.
For example, a simple calculation will show that a 509, conditional rate of natural
mortality (n), combined with a 509, conditional rate of fishing mortality (m), gives a
759, total mortality rate (A), regardless of whether the two causes of death operate
concurrently, or consecutively, or in any intermediate fashion. On the other hand,
differences in the seasonal incidence of the two kinds of mortality can cause striking
changes in the relative magnitudes of the annual expectations of death (u and v),
though the latter always add up to A. Expression (1.13) pertains only to the situation
where fishing and natural mortality are distributed proportionally within the year
(though it is not necessary that each be of a constant maggitude on an astronomical
time scale.)

To obtain a good approximation to either the Type 1 or Type 2 fishery it is
legitimate to set the limits of the fishery year in as convenient a manner as possible.
For example, to increase the resemblance to Type 2 it may be possible to arrange the
statistical year so that the mean time of fishing is at the middle of that year, with times
of little fishing distributed as symmetrically as possible at the beginning and at the
end.

If fishing is so distributed, seasonally, that neither the Type 1 nor Type 2 model
is realistic, the year can be divided into two or more parts and separate values of F,
M, etc., computed for each.
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1.5.3. SINGLE AGE-GRouPs. Consider a single age-group of fish in the recruited
(fully vulnerable) part of a stock. Its abundance during a year decreases from N to
NS, according to equation (1.2); for example, from the point A to the point B; in
Fig. 1.1. The average abundance during the year is the area of the figure under AB,,
divided by the length of the base (which is unity). In our symbols, this is:

t=1

- ‘ eZ 1 N(I - eZ) NA
N = Ne-zdt=N(————)=-———=— 1.15
/ z z Z z (1.13)
=0
A
80 |-
60 -
B
By
40 [~ TS~
\s\\\\~ c
B.z ‘\s\§ ~—
20 |- e R
- N It I
~Sa----cs
====-4C
| 1 1 1 84
2 3 4 5 6 7

Fic. 1.1. Exponential decrease in a stock from an initial abundance of 100 at
age 2, when the annual mortality rate is 0.2 (AC) and when it is 0.5 (AB). The
broken lines indicate population structure during a period of transition from the
smaller to the larger mortality. (Redrawn from fig. 8 of Baranov 1918, by S. D.
Gerking.)

The total deaths, which equal NA by definition, are therefore Z times the average
population. Since the mortality is at each instant divided between natural causes and
fishing in the ratio of F to M, then natural deaths are M/(F 4+ M) = M/Z times
NA, or (from 1.15) M times the average population; that is:

M oona=-MNA _ R (1.16)
F+M z
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Similarly the catch is F times the average population:

NFA
Z

C=FN = (1.17)

This is often known as Baranov’s catch equation. It has also been derived stochastically
by Rothschild (1967).

1.5.4. SEVERAL AGE-GROUPS. A few kinds of commercial fish stocks consist of
single age-groups, to which the above expressions apply directly. More commonly
a stock consists of a mixture of ages, so that in order to obtain expressions for mortal-
ity, etc., of whole populations, consideration must be given to the recruits to the
stock, and the manner in which recruitment occurs. We will begin by considering
the equilibrium situation, first described in detail by Baranov (1918), where recruit-
ment is the same in all years; and with the further simplification that survival rate
is the same throughout life.

1.5.5. INSTANTANEOUS RECRUITMENT. Consider R recruits added to the catchable
stock of a species each year. Suppose the stock is of Type A, so that the recruits
become catchable during a brief interval of time, or for practical purposes all at
one instant. With a constant rate of survival, S, the recruits decrease in 1 year to
ReZ or RS, in 2 years to RS2, in r years to RS’. Under these equilibrium conditions
the total population present just after recruitment in any year is found by summing
the converging geometric series:

N =R + ReZ + ReZ 4 .
=R(1+S+82+..)

= R( i::m) B (11-{3) ;2 (1.18)

At any other time of year the population will of course be somewhat less than this.
For example, at the half year it will be:

N = Re05Z 4 Re!5Z 4 Re252 .
= Re¥5Z (1 +e?+e2Z 4 .. )

Re-0-5Z

= (1.19)
Similarly, immediately before the annual influx of recruits the stock would be:
Re-Z RS
N — = —
A A (1.20)

which is its least value.



The average size of the stock over the course of a year (unit time), during which
it decreases from R/A to RS/A, is of course:

=1
/ ez dr =
=0

1.5.6. CoNTINUOUS RECRUITMENT. Consider a fishery of Type 2B, in which R
recruits enter a catchable stock at a steady absolute rate throughout the year, instead
of all at once. Suppose further that the stock is in equilibrium at density N, with
the number of recruits just balancing the number of deaths at all times. From (1.15),
the number of fish that die in the course of a year is the product of the number
present times the instantaneous mortality rate:

N = =

X

>~
> o
N>
N[ =

(1.21)

Total deaths = NZ (1.22)

Considering the fish on hand at the start of a year, the number of them that will
die during the year is of course:

Deaths of “old” fish = NA (1.23)
The mortality among recruits must therefore be the difference between these two, or:
Deaths of the year’s recruits = N(Z — A) (1.24)

But under equilibrium conditions the annual number of recruits must be the same
as the number of deaths, i.e.:

R =Nz (1.25)

Hence the number of recruits which die during their year of recruitment (expression
1.24) can also be written (substituting N = R/Z):

R(Z-A)

1.26
V4 (1.26)
The number of recruits which survive the year is therefore:
R(Z-A) RA
R-—=2"2)_ 24
Z 7 (1.27)

The development of expression (1.27) just given is that of Ricker (1944). Beverton (1954, p. 140)
has developed it directly from the differential equation relating size of stock, Ny, to instantaneous
mortality rate, Z, and to recruitment, R:

N,

=-ZN .
ar ++R (1.28)
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where R is the number of recruits which enter at a uniform absolute rate over a unit of time (in this
case, a year). Integrating the above gives the expression for number of catchable fish at time 7 as:

R
N, = 7 + Ke-Zt (1.29)

where K is an integration constant. If we consider a stock consisting of a single year’s recruits, so that
N; = 0 when ¢ = 0, the constant K is equal to -R/Z. Hence the general expression for the number
of surviving recruits at time ¢ becomes:
R R
N, = = - Ze-Zt = —(] —e-Zt
t 7 Z ( ) (1.30

NI &

When t = 1 year, this number of survivors is:
R R(1-S) RA
] —e-Z) = - T9) A
Z(1 &) Z

= (1.31)

as in (1.27) above.

During their second year of life the above survivors (expression 1.27) are subject
to the full mortality rate A, so that RA2/Z die and RAS/Z survive. The total popula-
tion of all ages, at the beginning of any year, is therefore found by summing the

geometric series:

_RA_ RAS  RAS
z 'z

z
-S= R
RA(I ) _RA _R (1.32)
1-S z
But since recruitment and mortality are continuous, the population is the same at
all times of year, and (1.32) represents the stock continuously on hand, N.

Since (1.32) is the same as (1.21), it appears that, regardless of the manner in
which recruitment occurs, under equilibrium conditions the average stock on hand over
the course of a year will be equal to R /Z. A practical corollary is the fact that numerical
examples in which recruitment is instantaneous (which are somewhat easier to con-
struct) are for many purposes acceptable models of populations in which recruitment
actually occurs along with the fishing.

1.5.7. STOCKS IN WHICH MORTALITY RATE CHANGES WITH AGE. When mortality
and survival rate change with the age of the fish, whether because of a variable rate
of natural mortality or variation in rate of fishing, no simple expressions for catch,
etc., in the whole stock are possible: the contribution of each year-class must be
summed separately. For example, with R recruits per year and continuous recruit-
ment, the stock is:

R S,A S A
Rﬁ_{_ SzA1+RS32 1_|_R 4535, 1y

(1.33)
Zl Zl Zl Zl
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and the catch is:
FiRA; 4 F,RS,A; I F3RS3S,A,
Zl Zl Zl

4. (1.34)

If, in addition, the number of recruits varies, the R terms too would have to carry
separate subscripts. Numerical calculations where these parameters vary are most
easily carried out in tabular form (e.g. Tables 8.2-8.4) though general formulae
have been given for the situation when Z changes once (Ricker 1944, p. 32).

1.6. GROWTH AND YIELD IN WEIGHT

From the time they are hatched, the individual fish in a brood increase in size,
at the same time as they are reduced in numbers. The mass of the whole brood,
at a given time, is determined by the resultant of the forces of growth and of mortal-
ity. Since man is usually interested in the weight, rather than the number, of fish
which he can catch, the individual rate of increase in weight must be balanced against
the rate of decrease in numbers in order to obtain an expression from which to com-
pute weight yields.

1.6.1. USE OF OBSERVED AVERAGE WEIGHTS. Possibly the simplest way to take
growth into account in constructing such a population model is to combine schedules
of age distribution with observed information on the average size of fish at successive
ages. An example is shown in Table 10.1 of Chapter 10. This procedure presents a
difficulty when any considerable deviation from the existing mortality rate is being
examined. For example, as mortality rate increases, the fish caught of a given age
will be smaller, on the average, because they decrease in numbers more quickly and
fewer survive to the larger sizes reached later in the year. (This is distinct from any
actual change in rate of growth that may occur.)

1.6.2. RATE OF GROWTH. When growth is exponential, it may be treated in the
same manner as mortality. There is a relative rate of growth, h, and a corresponding
instantaneous rate of growth, G. If w, is the weight of a fish at time 7, and wy is its
weight at ¢ = 0, then the equation of exponential growth is:

— = 0 (1.35)

If the initial weight is taken as unity, at the end of a unit of time the weight is €9,
and it has increased by ¢% — 1; hence:

h=¢e6-1
and
G = loge(h + 1)

= loge(w:/wp) when ¢t = 1 (1.36)

For example, a fish which grew from 2 to 5 kg in unit time (say a year) would
have an absolute growth of 3 kg per year. Its relative or annual growth rate is k = 3 /2
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= 1.5 or 1509, per year. Its instantaneous rate of growth is G = loge(5/2) = 0.916
(on a yearly basis). Pairs of values of 4 + 1 and G are shown in columns 12 and 13
of Appendix L

In practice, growth is not usually exponential over any very long period of the
life of a fish, but any growth curve can be treated in this way if it is divided up into
short segments.

1.6.3. CHANGE IN STOCK SIZE WITHIN A YEAR. The simplest way to relate growth
to mortality is to calculate the mean instantaneous rate of growth (G) for each year
separately, and combine it with the instantaneous mortality rate (Z) for the year, to
give the instantaneous rate of change in bulk, G — Z. With time (¢) measured in years,
and putting By for the initial biomass of the year-class and B, for its biomass at
any fraction ¢ of a year later:

B,
2! = G2y 1.37
B, (.37

provided that the rates of growth and mortality do not change with the seasons. If the
proviso holds, the average biomass of the year-class during the year can be found
from:
=1
B = [ Be-2r dr

=0
G-Z _ — e~HZ-G)
_ Bole 1) Bol—e )

1.38
G-Z Z-G (1.38)

When G - Z is negative, this expression can be evaluated from column 4 of Appendix
L, putting Z - G for the Z of column 1. When G - Z is positive, the required values
are given in column 5, and Z of column 1 is equated to G - Z.

If growth and mortality are not constant, but vary seasonally in parallel fashion,
then (1.38) can be used to compute an average stock size, which can be thought of
as based on the fish’s physiological and ecological time scale instead of on astronom-
ical time. Whatever time scale is used, the average biomass of the year-class, B, can be
multiplied by any instantaneous rate or combination of rates, to show the mass of
fish involved in the activity in question, just as with mean numbers in Section 1.5:

ZB = total mortality, by weight (1.39)
FB = weight of catch (1.40)
MB = weight of fish that die “naturally” (1.41)

GB = production, or total growth in weight of fish during the year,
including growth in the part of the population which dies before
the year is finished (1.42)

(G—M)ﬁ = excess of growth over natural mortality (1.43)

(G-Z)B = net increase in weight of a year-class during the year (a
negative value of course indicates a decrease) (1.44)
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The restriction on seasonal incidence of growth and mortality may sometimes
be serious, but the above expressions will be useful, at least as an approximation,
in most cases. There is often some tendency for the two opposed effects to vary in
a parallel fashion; for example, both growth and mortality may tend to be less in
winter than in summer. During their first year of life both growth and mortality rate of
a fish tend to change rapidly. Sometimes a quantitative seasonal breakdown can be
obtained for both, and can be used to calculate production more accurately (Ricker
and Foerster 1948).

1.6.4. CHANGE IN STOCK SIZE FROM YEAR TO YEAR. The restriction that seasonal
incidence of growth and mortality be proportional is not necessary for computing
the mass of the stock from one year to the next. That is, the weight of a year-class at
age t + 1 is related to that at age ¢ as follows:

Bt+l = B‘CG"Z (145)

regardless of how growth and mortality are distributed during the year.

In general, in the life history of a brood there will be one to several years during
which G -Z is positive and total bulk is increasing, followed by several years in
which G - Z is negative and bulk is decreasing. In an unfished population, the mean
length or weight of the fish in a year-class when G = Z (growth just balancing mor-
tality) is called the critical size (Ricker 1945c). The same term is applied to the fish
in exploited populations at the point where G = M, that is, where the instantaneous
rate of growth is equal to the instantaneous rate of natural mortality.

1.7. Fi1sHING EFFORT AND CATCH PER UNIT OF EFFORT

For greatest ease in estimating biological statistics, a fishery should ideally be
prosecuted exclusively by one kind of gear, which should be strictly additive in
effect — that is, each additional unit should increase the instantaneous rate of fish-
ing by the same amount. Further, the investigator should have a record of all gear
fished, and it should preferably fish for only one kind of fish. It usually happens
that these conditions are not satisfied, and much ingenuity has been devoted to
obtaining the best representative figure from incomplete or otherwise unsatisfactory
data. Good reviews of some of the problems are by Widrig (1954a), Gulland (1955a),
and Beverton and Parrish (1956).

1.7.1. MEASURES OF FISHING EFFORT. In general there can be more than one
measure of fishing effort. A simple index is the number of vessels in use, or the num-
ber of anglers on a lake. If the vessels differ in size, their total displacement is often
used, since the larger vessels usually catch more fish. If possible, number of vessels
or tonnage should be multiplied by time — either days at sea, or days or hours of
actual fishing, and so on. The measure of effort used will depend partly on what
information is available, but the aim is always to have a figure which is proportional
to the rate of fishing, F, as closely as possible, at least on a long-term average basis.
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1.7.2. INCOMPLETE RECORD OF EFFORT. If records of catch are complete but
records of effort are incomplete, a good plan is to compute the catch per unit effort
for as much of the data as possible. This catch/effort, divided into the residual catch,
will give an estimated effort figure for the latter, which can be added to the known
effort to obtain a total. Sometimes effort records are complete and catch records
incomplete, permitting the same procedure in reverse.

1.7.3. DIFFERENT KINDS OF FISHING GEAR. When different kinds of fishing are
conducted on the same stock, the effort and catch taken by each is tabulated sepa-
rately. For an overall picture, it is necessary to relate all kinds of effort to some
standard unit. This is best done from a comprehensive series of fishing comparisons
of the different gears under the same conditions. However, sometimes the gears are
so unlike that this is impossible. If one kind of gear predominates over the others
in a fishery, it may be sufficient to proceed as in the paragraph above: the effort of
all other gears is scaled to terms of the dominant gear by dividing their gross catch
by the catch/effort of the dominant gear. This has been done for many years for
the Pacific halibut, for example (Thompson et al. 1931). When two or more very
different gears are in extensive use — gillnets and traps, for example — it may be im-
possible to obtain a really satisfactory comparative measure of total effort from
year to year, particularly if the two gears tend to select different sizes of fish, or if
they are operated at different times of year.

1.7.4. VARIATION IN EFFICIENCY OF GEAR, AND GEAR SATURATION. With most
kinds of gear, the fishing effort depends on the length of time it is in use, though
“fixed” gears like traps often fish continuously. However, from the time they are set
to the time they are lifted, some kinds of gear decrease in efficiency. For example,
baits can be eaten off hooks by trash fish or invertebrates, nets can become fouled
and so are more easily avoided by the fish, etc. Also, the mere fact that some fish
are already caught can reduce efficiency: the fish already hooked leave fewer vacant
hooks on a set-line; in most kinds of traps, fish can leave as well as enter, and a point
of saturation may even be reached, so that effort depends partly on how often they
are emptied; in a gillnet, the presence of some fish already caught tends to scare
others away, so that saturation may be reached long before the net is full of fish
(Van Oosten 1936, Kennedy 1951). The extra time needed to lift or clear a net, when
fish are abundant, may appreciably decrease the time it is in the water and fishing,
hence decrease the effectiveness of a “net-day” or “trap-day.” Thus the catch per
unit time, for many kinds of gear, tends to decrease from the time they are set to
the time they are lifted, and the speed of this decrease is partly a function of the
abundance of the fish.

The reverse phenomenon is also sometimes encountered: for example, in trapping
for sunfishes near their spawning beds, the presence of fish in a trap appears to attract
others to it, so that dozens of fish may be taken in one small trap while adjacent
ones are nearly empty. Some Mississippi River fishermen are said to “bait” their
traps with a mature female during the spawning season.
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All such effects demand care in assessing the fishing power of a unit of gear,
and standardizing it in some way.

1.7.5. VARIATION IN VULNERABILITY OF THE STOCK. Statements so far have con-
cerned only the simple situation where the whole of a fish stock is equally vulnerable
to the fishing in progress. In large-scale fisheries this is unlikely to be the true situation,
for several possible reasons. _

No trouble arises if a portion of a species lives completely outside the range of
fishing operations and never mingles with or contributes recruits to the fished popu-
lation. In that event consideration can be restricted to the vulnerable part of the stock,
and the rest is ignored for purposes of current vital statistics. Other possibilities
present greater problems:

1. Different portions of a fish stock, even one which is uniformly abundant
throughout its range, may be fished at differing intensities in different places because
of economic considerations or legal restrictions. If the various portions of the stock
intermingle at any time of year, it is necessary somehow to compute average statistics
of mortality, etc.

2. A situation similar to but more extreme than the above is where some parts
of the range of a population contain fish too sparsely concentrated, in too deep water,
or too remote from a harbor to be fished at all, yet these fish mingle with the fished
stock at times of year other than the fishing season. For example, in trawl fisheries,
and particularly in Danish seining, some parts of the fishing grounds are too rough
to be fished without loss of gear, and these areas provide “refuges” where a part of
the stock is not accessible.

Where a stock can be divided fairly sharply into a vulnerable and an invulnerable
portion, each year, the fraction which is exposed to fishing is called the availability of
the population that year (Marr 1951).

3. Catchability can also vary within a year because of seasonal physiological or
behavior changes, and if a short fishing season is not exactly synchronized with this
behavior each year, the result is between-year differences in catchability.

4. Fish of different sizes may be caught with varying efficiency — either as a
result of selectivity of gear or because of differences in distribution or habitat. As
they grow, their vulnerability to the gear in use changes.

The feature common to all the above effects is that different parts of the stock
are subjected to different rates of removal by the fishery; that is, they differ in
vulnerability. This complicates the estimation of vital statistics, and introduces errors
which may be difficult to detect.

If these stocks are treated as though the fishery were directed against a single
compact population, the effects above give to estimated vital statistics a somewhat
fictitious character. One can’t be sure that they are really what they seem to be. For
example, some fisheries attack only the part of a stock which is fairly densely aggre-
gated at the edge of a bank, or along a temperature boundary. Decline in catch per
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unit effort during a season can give an estimate of the stock in that area (Chapter 6),
but the total population on which such fishing can draw, over the years, is consider-
ably greater because of replenishment of the area in the off season. Again, if fish of
certain sizes are more vulnerable than others, a Petersen tagging experiment (Section
3.2) is apt to overemphasize the vulnerable ones both in respect to tags put out and
recaptures made; hence the estimate of rate of exploitation is too high and the popu-
lation estimate is too low. However, for some purposes systematic bias of such kinds
is not too great a handicap, provided it does not vary from year to year. It is secular
changes in biological statistics that are of most interest, and changes will show up
even in the biased statistics.

When there are year-to-year variations in the distribution of the fishing, or in the
distribution and availability of the stock, or in the vulnerability of the stock as affected
by weather or age composition, the situation is more serious. Such variability makes
for changes in the estimated statistics that are not easy to distinguish from true
changes in the population parameters. Comprehensive treatments of the theory of
variability in these respects have been given by Widrig (1954a, b) and by Gulland
(1955a).

Most of Widrig’s discussion is in terms of effect No. 2, the availability, r, of the stock in different
years. However, his treatment seems equally applicable to other kinds of variaticn in the vulner-
ability. Consider a static r;, representing the ratio of the catchability of the whole stock in year i to
an arbitrarily chosen standard catchability gs; so that:

ri = 4i/gs (1.46)

Then r' can be substituted for r in Widrig’s computations, and the latter become applicable to a
wider class of phenomena — some of which, in practice, are very difficult to distinguish from avail-
ability anyway.

1.7.6. CATCH PER UNIT EFFORT AS AN INDEX OF ABUNDANCE. When a single homo-
geneous population is being fished, and when effort is proportional to rate of fishing,
it is well established that catch per unit effort is proportional to the mean stock
present during the time fishing takes place (Ricker 1940) — whether or not recruitment
from younger sizes takes place during that time. If the stock is not homogeneous —
not all equally vulnerable to fishing — total catch divided by total effort is propor-
tional to stock size only in special circumstances: when the relative quantities of
fishing effort attacking different subsections of the stock do not change from year to
year, or when the relative size of the stock in the different subsections does not change
(Widrig 1954a).

Narrowing the discussion to geographical subdivisions of a population, for many
kinds of fishing the vulnerability of a stock in different subareas will tend to vary
approximately as stock density (fish present per unit area). If these are in direct pro-
portion, then an overall C/f that is proportional to total stock size can be obtained
by adding the C/f values for individual subareas, weighting each as the size of its
subarea (Helland-Hansen 1909, p. 8, Widrig 1954b, Gulland 1955a,expression 2.4).
However, if vulnerability does not vary as density, then there is no completely satis-
factory substitute for a determination of absolute stock size separately in each subarea
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in each year. This rather gloomy conclusion is indicated, in effect, by Gulland’s ex-
pression (2.2). The least tractable populations are of those pelagic species which appear
in varying proportions in different parts of their range in different years.

1.7.7. COMPETITION BETWEEN UNITS OF GEAR. The term “‘gear competition” has
been used and discussed by a number of writers, but some confusion has resulted
from inadequate definition. The sections above have dealt with the subject by im-
plication, but a specific treatment may be useful. At least three kinds of effects have
been included under the term:

1. A fish population is exploited by a fishery whose units of gear are scattered
randomly over it, so that all fish are exposed to the possibility of capture at short
intervals of time and there is no possibility of local depletion occurring. Further, the
units of gear do not interfere with each other in respect to the mechanics of their
operation. In such a situation, today’s catch by any new unit of gear reduces to-
morrow’s catch by the others, and thus in a sense it may be said to “‘compete” with
them. The competition takes the form of a faster reduction in the size of the population
as a whole. As the fishing season progresses, each unit catches fewer and fewer fish
(or at any rate fewer than it would have caught had there been no previous fishing
that year); and the more gear present, the more rapid is this decrease in catch.

2. If fishing gear is dispersed unequally over the population, its action tends
to produce local reductions in abundance greater than what the population as a
whole is experiencing, leading to a different type of competition. Suppose that a
population is vulnerable to fishing only in certain parts of its range (for example,
only near the shore of a lake; or on only the smoother ocean bottoms). Then fishing
in such areas produces a local depletion of the supply; additional nets set in the same
region increase the local depletion and catch per unit effort will fall off in proportion
to the local abundance. The magnitude of this fall will be cushioned if some fish from
the rest of the stock keep wandering into the fishing area and so keep the supply there
from dropping as far as it otherwise would. However, competition between units of
gear is intensified because catch per unit effort reflects the size of only the immediately
available restricted portion of the stock, rather than the stock as a whole.

3. Finally, if the setting of an additional unit of gear interferes directly with
other gear, there exists “physical”” competition between them, which is independent
of population abundance, even locally. For example, too many anglers at a pool may
frighten the fish; setting a new gillnet near one already in operation may scare fish
away from the latter; or much fishing of a schooling fish may disperse the schools
and so reduce fishing success more than proportionally to actual decrease in abun-
dance. (There can also, of course, be physical cooperation between different units
of gear.)

Competition of type 1 above can be considered normal and inevitable. It might
be better not to call it competition at all, since the term is usually meant to suggest
effects of types 2 or 3. Competition of types 2 and 3 may or may not be present in any
given situation — it depends entirely on the nature of the fishery.
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1.7.8. COMPETITION BETWEEN SPECIES. When more than one species is caught by
the same gear, particularly the baited types (longlines and some traps), there can be
competition between species for the gear. In general, the more individuals of other
species present, the less efficient such gear becomes for catching the species of interest
(Gulland 1964a, Ketchen 1964).

Rothschild (1967) examined the mathematical aspects of this situation for baited-
hook types of gear and derived a stochastic expression for the probability of capture.
When two species are involved, the instantaneous rate of capture of species 1 is
estimated by:

)\'l = -y [lOge(n()/N)] (1.47)
N- o
where:
ng = the number of empty fishless hooks
n; = the number of hooks carrying species 1

N = the total number of hooks

The instantaneous rate of capture of species 2 is the same as (1.47), with the subscript
1 changed to 2.

The probability of species 1 being caught on any hook in a (hypothetical) situation
where species 2 is absent is:

Py = 1-¢e* (1.48)

This can be called the conditional rate of capture of species 1, and is analogous to
the conditional rate of fishing mortality (Section 1.5.2).

The above expressions can also be used where three or more species are caught,
by letting n; be the catch of any species of interest, and n, the catch of all other species.

Rothschild assumes that no baits are removed from the hooks by ‘“bites” that
catch no fish, which is somewhat unrealistic. His analysis can be extended to the
situation where some baits are removed from hooks without capture. Suppose that
in addition to its ;) captures, species 1 has eaten na; baits without capture; similarly
species 2 has taken ma, baits without capture; and no baits are lost by any other
process. The number of fishless hooks can be divided into ne which have lost their bait
and ng — ne which still have their bait. Hence:

may + nyay = ne (1.49)

In general @; and a, will be unknown, but some idea of the severity of competition can
be had by assuming a; = a, = a; in which event, from (1.49):

He
n + np

a=

(1.50)

Thus a can be evaluated if a record is kept of empty hooks. We can then sub-
stitute ny (1 4+ a) for n; and ny — ne for ny in expression (1.47) to obtain the
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instantaneous rate of removal of baits (including captures) by species 1; call this
M1a- The conditional probability of removal of baits (including captures) for species

1 then becomes: »
I-ePa (1.51)

and the conditional rate of capture of species 1 is:

1-eMa
Potg =——— 1.52
o1 gy (1.52)

Expression (1.52) of course represents a situation at the other extreme from
(1.48), because it takes no account of the possibility that baits may simply fall off the
hooks, or that some may be eaten by species that are never captured.

1.8. MAXIMUM SUSTAINABLE YIELD

Much of the work on vital statistics has devolved about or been stimulated by
attempts to estimate the maximum equilibrium catch or maximum sustainable yield
for the stock. Some of this background is necessary for appreciation of the value or
significance of some of the methods which will be described.

A simple approach is shown in Fig. 1.2 (cf. Russell 1931, Schaefer 1955). The
usable stock of a species is defined as the weight of all fish larger than a minimum
useful size. This stock loses members by natural deaths and, if there is a fishery, also
by the catch which man takes. The usable stock is replenished by recruitment from
smaller size categories, and by growth of the already-recruited members.

If a stock is not fished, all growth and recruitment is balanced by natural mor-
tality. If fishing begins, it tips the balance toward greater removals, and occasionally
fishing may steadily reduce the usable stock until it is commercially extinct. Much
more often a new balance is established, because the decreased abundance of the
stock results in (1) a greater rate of recruitment, or (2) a greater rate of growth, or
(3) a reduced rate of natural mortality.

Ideally, the effects of concurrent variation of all three of these rates, with respect
to size of the population, should be studied in order to define equilibrium yield and
compute its maximum value. In actual practice to date, it has been necessary to
abstract one or two variables for consideration, keeping the others constant, or else
to consider only the net result of all three. The various proposals for estimating
maximum sustainable yield differ principally in respect to which of these three rates
is permitted to vary with stock density, and in what way.

1. One group of methods assumes that rate of growth and rate of natural mor-
tality are invariable. The absolute number of recruits is considered unvarying from
year to year2, a condition which means that rate of recruitment increases when the
usable stock decreases, but only in a definite and narrowly-prescribed fashion. Such
methods are treated in Chapter 10; their greatest usefulness has been for describing

2 More exactly, the assumption is that the absolute number of recruits does not vary with stock
density, but it may fluctuate from year to year in response to environmental variability.
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Fic. 1.2. Diagram of the dynamics of a fish stock (fish of usable
sizes), when there is no fishing and when there is a fishery.
(From Ricker 1958c.)

the short-term reactions of stocks to fishing, but they may have value in showing the
direction in which rate of fishing should be adjusted in order to move toward maxi-
mum sustainable yield.

2. Variation in recruitment is approached empirically in Chapters 11 and 12. The
results can be used directly to compute maximum sustainable yield in situations
where, as in the method above, the rates of growth and of natural mortality do not
vary with size of stock.

3. At least one author has considered rate of growth as the primary variable in
the adjustment of a stock to fishing pressure (Nikolsky 1953), particularly for fresh-
water fishes having comparatively short life histories. While this does not lend itself
very well to general regulation, Nikolsky suggests the determination of maximum
rate of growth for each species, and regulation of abundance until something close
to the maximum is achieved.

4. Finally, several authors have attempted to relate surplus production (potential
sustainable yield) of a stock directly to its abundance, without any direct information
on the rates of growth, recruitment, or natural mortality. Chapter 13 describes these
computations.

In addition to predicting the result of increasing or decreasing rate of fishing,
most of the methods outlined can also be used to predict the effect of varying the
minimum size of fish which is used by the fishery.

1.9. SAMPLING ERROR

In all of the methods of estimation to be discussed in subsequent chapters, the
probable size of the sampling error is an important consideration. It must be evaluated,
at least approximately, before any confidence can be placed in an estimate. When a
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computation of survival rate, for example, is calculated from recapture of only a few
marked fish, or from an age-class with only a few representatives in a sample, it must
be accepted with caution.

Available estimates of sampling variability or error are of two general sorts.
One type depends on random distribution of the fish or random selection of all
pertinent types of fish by the fishing apparatus, and is computed from the frequency
distributions which are appropriate in the individual case (usually Gaussian, Poisson,
binomial, or hypergeometric). Examples of variances or standard deviations calcu-
lated on this basis are expressions (3.2), (3.4), (3.6), (3.8), (5.2), (5.14), (5.15), (5.16).

For small samples the positive and negative limits demarcating zones of equal
confidence are not even approximately symmetrical about the observed value. In such
cases it is frequently useful to use the asymmetrical confidence limits calculated for
binomial distributions by Clopper and Pearson (1934), and for Poisson distributions
by Garwood (1936) or Ricker (1937). The latter are given in Appendix I here; they
are especially simple to use, and can be employed as an approximation even when
the binomial charts are more appropriate. Both types are available in graphical form
in a paper by Adams (1951).

For larger samples a general idea of sampling variability can be had by regarding
the observed ratio of (say) the marked fish to the total fish in a sample (R/C) as
though it were the true ratio u which exists in the population. The expectation of
marked fish to be obtained is Cu, and its variance is given by the well-known formula:

V = Cu(l -u) (1.53)

With large R, this is approximated by:
V =R(1-R/C) (1.54)

and the standard deviation is the square root of this. In the (very frequent) event
that R/C is small, this means that the standard deviation of the number of marked
fish retaken is a little less than its own square root. Even when R/C is not especially
small, this rule is good enough for orientation, so as to have in mind the order of size
of the sampling variability to be expected. Similarly, the number of fish, n, of a given
age in a sample can be regarded as having associated with it approximate limits of
confidence set by the normal frequency distribution with v/n as standard deviation —
provided it is not too small — less than 10, say. (For small numbers the binomial or
Poisson limits should be used.)

The second general type of estimate of sampling variability is calculated from some
form of replication in the data themselves. Such estimates will include part or all of
the variation which arises from non-random distribution of the different categories of
fish in the population being sampled: effects of grouping, for example. Objective
estimates of variability are involved in the methods of estimating confidence limits
used in Examples 3.6 and 6.1, and could be applied to 3.7, 11.1, etc. These estimates
tend to be more realistic than those based directly on random sampling theory,
though of course they are not necessarily exact; they are to be preferred when available.
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Limits of confidence, of either type above, should preferably be calculated for
statistics whose distribution is as nearly “normal” as possible. For example, in esti-
mating population size, N, by most of the available methods, estimates of the reciprocal
of N tend to be distributed nearly symmetrically about their mean. Confidence limits
computed from the normal curve are likely to apply fairly well to 1/N, whereas they
do not apply at all well to N (DeLury 1958). Hence computations of confidence limits
should be made in the first instance for 1 /N, and then inverted to give the appropriate
asymmetrical limits for N itself. Similar situations often occur where the logarithms
of variates will have an approximately symmetrical or even nearly normal distribution,
whereas the variates themselves do not.

No kind of estimate of sampling variability can reflect or adjust for all the
systematic errors which may so easily arise from non-random fish distributions or
behavior. Systematic error usually tends to be larger than sampling error, and
discussions of various kinds occupy much of the text to follow. Even if not larger,
systematic effects are not removed by using more observations or making bigger
experiments of the same type, so they deserve the closest attention.

Finally, in complex situations an elementary but very useful procedure is to
introduce a series of deviations of known size into the data and see what effect each
has on the final result.
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CHAPTER 2. — ESTIMATION OF SURVIVAL RATE AND
MORTALITY RATE FROM AGE COMPOSITION

2.1. SURVIVAL ESTIMATED FROM THE ABUNDANCE OF SUCCESSIVE AGE-GROUPS

2.1.1. SiMPLE SITUATIONS. The general method of estimating survival is by com-
paring the number of animals alive at successive ages. Long known in human demo-
graphy, this procedure became available to students of fish populations as soon as
age determinations began to be made on a large scale and from representative samples.
This occurred early in this century for North Sea species; the voluminous literature
on the plaice Pleuronectes platessa contains early estimates of mortality and survival,
as well as doubts concerning the representativeness of the samples available (Heincke
1913a; Wallace 1915).

If the initial number of fish of two broods, now age ¢ and age ¢ + 1, was the
same, and if they have been subjected to similar mortality rates at corresponding ages,
then an estimate of survival rate from age ¢ to age ¢t + 1 is obtained from the ratio:

S = Nep 2.1
N;
where N represents the number found, of each age, in a representative sample. Gulland
(1955a, Part II1) and Jones (1956) show that (2.1) is not the best estimate of S, but
is somewhat too large. However, the estimate of instantaneous mortality rate cor-
responding to S, which is:

Z = —(logeN; 11 —log.Ny) 2.2

is without appreciable bias. Since it is usually desirable to use estimates of S and Z
that conform exactly to Z = -logeS, the estimates (2.1) and (2.2) are both com-
monly used.

In practice the samples available are often taken throughout a fishing season,
so estimates from (2.1) and (2.2) pertain to the time interval approximately from
the middle of one season to the middle of the next. Such estimates are represented
here by S and Z.

If it can be assumed that survival is constant over a period of years, a combined
estimate can be made from a series of estimates of the form (2.1), by one of several
methods.

2.1.2. COMBINED ESTIMATES OF SURVIVAL RATE — HEINCKE’S METHOD. In any
random sample of a population the older ages will tend to be scarcer than the
younger; therefore, because of sampling variability, an S estimated from them is
less reliable than one from younger ages. A formula that weights successive ages as
their abundance was proposed by Heincke (1913b). Let the ages representatively
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sampled be numbered in succession starting with zero for the youngest, so that suc-
cessive numbers of fish are Nj, Nj, N,, etc.; =N is the sum of these. Heincke’s
estimate was of the mortality rate A:

N
A=22 2.3
N 23)
Since S = 1 - A, the corresponding estimate of survival rate becomes:
S = M (2.4)
ZN

Note that it is not necessary to know the number of fish in each age older than that
coded as 0, but only their total. Hence this formulacan be used when age determinations
of older fish are unreliable. But much obviously depends on the representativeness
of the youngest age used.

EXAMPLE 2.1. SURVIVAL RATE OF ANTARCTIC FIN WHALES, BY AGE COMPOSITION.
(From Ricker 1958a; data from Hylen et al. 1955.)

Age frequencies of male fin whales in Norwegian catches sampled in the 1947—
48 to 1952-53 seasons is given by the above authors as follows:

Age 0 1 2 .3 4 5 6+
Frequency (%) 0.3 2.3 12.7 17.2 24.1 14.1 29.5

Ages 4 and 5 are regarded as likely to be accurately determined, and they may possi-
bly be representatively sampled, so that survival between these ages can be estimated
from (2.1) as:

S = 141 _ 0.585

1

[\

Alternatively, assuming a constant survival rate, ages 5 and older can be compared
with age 4 using (2.4):
14.1 + 29.5

= = 0.643
24.1 4 14.1 4+ 29.5

This gives a larger figure than the simple comparison, and might suggest that older
whales really survive better than the age 4-5 group. However, strictly from these
data, without considering any accessory information that may be available, there
is no way to be sure that age 4 was as vulnerable to whaling as age 5, since the next
younger age (3) is obviously much less vulnerable. It might be safer therefore to
consider only whales of age 5 and older; again using (2.4):

_ 29.5
14.1 4+ 29.5
The effect of any increase in whaling effort over the time these stocks were being

recruited would be to make this survival estimate greater than the average one pre-
vailing at the time the samples were taken (Section 2.6; see also Hylen et al.).

= 0.676
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2.1.3. COMBINED ESTIMATES OF SURVIVAL RATE — ROBSON AND CHAPMAN'S
METHOD. According to Robson and Chapman (1961) the best estimate of S from age
census data is:

T

= - 2-5
IN4+T-1 (23)

with sampling variance estimated as:

s(s-il_) 2.6)
SN+ T-2

T = Ny + 2N, 4+ 3N; + ...

SN = No+ N 4+ N, + ...

An example of the application of these formulae is given in Example 4.3, below.

All the above formulae involving more than two ages assume that survival
rate is constant at all ages, that all year-classes are recruited at the same abundance,
and that all ages are equally vulnerable to the sampling apparatus. When these condi-
tions don’t apply, estimates of S are biased and confidence limits from their estimated
variance are, in general, too narrow. Robson and Chapman give a %2 formula for
testing whether these assumptions may not have been fulfilled. Actually in most
stocks differences in year-class strength will be the major source of variability in
samples of moderate to large size, in which case the best estimate of S will be obtained
from a catch curve with equal weighting, described in Section 2.2.

2.1.4. ESTIMATES OF SURVIVAL RATE FROM A PORTION OF AN AGE SERIES. For one
reason or another we may wish to estimate survival rate from only a portion of an
age series. If only 2 years are involved expression (2.1) can be used. For 3 years the
expression:

_ Neyi + N
Nr+ Nr+l + N1+2

is possible, and similarly for 4 or more; however (2.7), like (2.1), has a small positive
bias. Robson and Chapman (1961, p. 184) give suitable unbiased formulae analogous
to (2.5) and (2.6). In practice, however, the method of Section 2.2 will usually be
best, for reasons given above.

Q@.7)

2.1.5. SURVIVAL RATE FROM MEAN AGE. Expression (2.5) can be derived approx-
imately from a consideration of the mean age of the fish in a catch, still assuming con-
stant recruitment and survival rate. If the calendar age (in years completed) of the
first completely vulnerable age-group in a sample be called coded age 0, and it con-
tains Ny fish. the numbers of fish to be expected at subsequent ages are shown in
Table 2.1. The number of fish actually observed, that corresponds to the sum of
column 2 of the Table, is Ny + Ny + N> + ... = IN of expression (2.5). Similarly
the observed sum corresponding to the sum of column 3 is Ny + 2Ny +3N; + ...
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= T of expression (2.5). An estimate of the mean coded age in the population is the
quotient of these, and thus is an estimate of S/A:
T NS /No_S

Mean coded age = — = — (2.8)
N A2 A A

To obtain an expression for S from (2.8), invert both sides and add 1:

IN _T+32N

14+ 2.9
T T (2.9)

A 1
=14+ ==
S S
Inverting the second and fourth terms of (2.9) gives (2.5), except for the minor ad-
justment of -1 in the denominator of the latter. Thus an expiession for annual mortal-
ity rate is:
1

A=1-S=
1 + (mean coded age)

(2.10)

TasBLE 2.1. Computation of mean age of the fish in a population.

1 2 3
Coded

age Frequency Product

0 No 0

1 NoS NoS

2 NpS? - 2NpS?

3 NoS3 3NpS3

etc. etc. etc.

Totals No(l +S+82+..) NoS(1 + 2S + 382+ ...)

_No _No _ _NoS _ NoS
T1-ST A T (a-82 A?

2.1.6. MEAN TIME SPENT IN THE FISHERY. The mean coded age of the fish in a
sample is not necessarily the same thing as the mean time they have spent in the
fishery. In a Type 1 population, if recruitment is the same in successive years and
occurs instantaneously at the start of coded age 0, the mean time spent in the fishery
by the fish in a sample taken immediately after recruitment will evidently be equal
to the mean coded age, S/A. Throughout the year this mean time will increase, until
immediately before the next annual recruitment it will be 1 + S/A = 1/A.

In a Type 2 population, suppose that the constant number R recruits of each
year-class enter the vulnerable stock uniformly over 1 year’s time, and let time 0
be the start of that year. In that event the total number of fish present at any moment
will be, from (1.32), equal to R/Z. The sum of the products of (time since recruit-
ment) and (number present), or tR,, is:

/tR,dt = R/te‘z‘dt = ;2 (2.11)
0 0
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The mean time that a fish spends in the fishery is (2.11) divided by R /Z, or:
Mean time = E/B -1 (2.12)
72/ 7z Z

This result should not be confused with mean coded age, nor should it be applied
to stocks in which recruitment is markedly seasonal (see above). However, if a Type
1 population were to be sampled throughout a year in proportion to its abundance,
the mean time that the fish sampled had spent in the fully-recruited phase would be
equal to 1/Z.

2.2. SiMPLE CATCH CURVES

Edser (1908) was apparently the first to point out that when catches of North
Sea plaice (Pleuronectes platessa) were grouped into size-classes of equal breadth,
the logarithms of the frequency of occurrence of fish in each class form a curve
which has a steeply ascending left limb, a dome-shaped upper portion, and long
descending right limb which in his example was straight or nearly so through its
entire length. This was soon recognized as a convenient method of representing
catches graphically. Heincke (1913b) plotted a number of curves of this type and,
combining them with information on rate of growth, computed mortality rates for
a series of size intervals of the plaice, equating these approximately to age. Baranov
(1918) later gave the name carch curve to the graph of log frequency against size,
and elaborated the theory of estimating mortality and survival from it in the situation
where fish increase in size by a constant absolute amount from year to year.

The same kind of plotting is useful for the simpler situation where age rather
than length is considered.! Most recent authors plot log frequency against age directly,
and the name catch curve has been applied to this kind of graph as well (Ricker
1948). The catch curve has a considerable advantage over the simple ratios of Section
2.1, and over arithmetic plots of abundance at successive ages, when any kind of
variation in survival rate has to be examined.

The upper line of Fig. 2.1 is an example of a straight catch curve, pertaining
to the bluegills (Lepomis macrochirus) in a small Indiana lake (Ricker 1945a). Rate
of survival, S, from such a curve can be computed in two slightly different ways.
The flatter the right limb, the greater is the survival rate. The difference in logarithm
between age 7 and age 7~ 1 is of course negative; it can be written with a positive
mantissa and then antilogged, giving S directly. Alternatively we could follow Baranov
in keeping the difference of (base 10) logarithm at its negative numerical magnitude,
changing the sign, and multiplying by 2.3026, which gives the instantaneous rate of
mortality, Z. A table of exponential functions will give the annual rate of survival, from
the equation S = e~ Since we will almost always want to know Z as well as S, one

1 The straightness of Edser’s and Baranov’s 1906 catch curve for North Sea plaice, plotted with
length on the abscissa, was evidently a temporary phenomenon resulting from a recent increase in
fishing effort. Plotted with age on the abscissa it would become the concave curve characteristic of
such a situation (cf. Section 2.6), since rate of increase in length drops off sharply among the older
fish.
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method of computation is as convenient as the other. The annual mortality rate, A, is
equal to 1-S. If survival rate during instead of between successive years is desired,
it can be obtained by taking tangents on the curve at each age.

The ascending left limb and the dome of a catch curve represent age-classes
which are incompletely captured by the gear used to take the sample: that is, they
are taken less frequently, in relation to their abundance, than are older fish. This
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F1G. 2.1. (A) Logarithms of numbers of bluegills of successive
ages, in a sample from Muskellunge Lake, Ind., 1942;
(B) Logarithms of the percentage representation of succes-
sive age-classes of pilchards in the catch from California
waters, season 1941-42. (Redrawn from Silliman 1943.)

may come about either because younger fish are more thickly distributed in another
part of the body of water than that principally fished, or because they are less ready
to take the baits or enter the nets. Other things being equal, total mortality rate
will be increasing during this period of recruitment. However, it is impossible to
find out anything definite about the actual mortality rate during the years covered by
the left limb and dome of the curve, simply because sampling of the population is
not random?.

2 It is being assumed, of course, that the sample is taken from the commercial catch. If better
means of sampling are available, they will push the representative part of the sample back to earlier
years, and in this way it may be possible to detect and measure otherwise-inaccessible changes in total
mortality and in natural mortality. Jensen (1939) interprets some experimental trawl catches in this
manner.
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We turn then to a more promising part of the curve, the descending right limb.
Straightness of this right limb, or any part of it, is usually interpreted in the manner
described by Baranov, which involves the following conditions:

1. The survival rate is uniform with age, over the range of age-groups in question.

2. Since survival rate is the complement of mortality rate, and the latter is com-
pounded of fishing and natural mortality, this will usually mean that each of these,
individually, is uniform.

3. There has been no change in mortality rate with time.

4. The sample is taken randomly from the age-groups involved. (If the sample
is representative of the commercial catch, this condition is implied in 2 above.)

5. The age-groups in question were equal in numbers at the time each was being
recruited to the fishery.

If these conditions are satisfied, the right limb is, in actuarial language, a curve of
survivorship which is both age-specific and time-specific.

Deviations from the above conditions often result in nonlinear right limbs of
the catch curve. Such nonlinear curves are quite common, and in the Sections to
follow we attempt to set up standards for the interpretation of some of the more
likely types. Equally important is the allied question: under what conditions can a
linear or nearly linear catch curve result from postulates other than the above?

ExampLE 2.2. TWO STRAIGHT CATCH CURVES: FOR BLUEGILLS AND CALIFORNIA
SARDINES.

Catch curves having a straight right limb have already been treated adequately
by Baranov and others, and need little comment. An interesting selection is presented
by Jensen (1939). The bluegill example of Fig. 2.1A was selected for its close ad-
herence to theoretical requirements; much more often fluctuating recruitment makes
it necessary to use averages over a period of years to obtain a reasonably representative
survival rate. Silliman (1943, p. 4) has an example of a straight catch curve, repro-
duced here in Fig. 2.1B. It pertains to the season 1941-42 of the fishery for California
sardines (Sardina caerulea), and gives an estimated survival rate of about 0.20.

While straight catch curves will probably usually be interpretable in the manner
proposed by Baranov and outlined in Section 2.2, two principal possible exceptions
should always be kept in mind; (1) a decrease in vulnerability to fishing with age,
and the consequent tendency toward increase in survival rate, will not be reflected
in the catch ratio, or will be very imperfectly reflected; and (2) long-term trends in
recruitment deflect the slope of a catch curve without introducing much or any
curvature. Obviously, information on these topics is not to be looked for in the
catch curve, and must be obtained from other sources. To illustrate, Silliman (1943)
tentatively concluded that an increase in recruitment of about 130¢} occurred be-
tween 1925-33 and 1937-42 in the pilchard stock. If any of this increase carried
over into the years when the fish of Fig. 2.1B were being recruited, the straight curve
computed for those years would be too steep, i.e. would suggest a survival rate
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less than the true one. Some idea of the possible magnitude of this effect can be had
from Silliman’s data, assuming recruitment increased at a constant exponential
rate for ten years. If k represents this rate, we have el% = 2.3, k = 0.083, and the
annual increase is 0.087. Thus the survival rate computed from the catch curve would
be less than the true rate by only about 99 of the former, even assuming the in-
crease in recruitment to have persisted through the entire formative period of Fig.
2.1B.

Another danger in interpreting a straight catch curve lies in the possibility
of a fortuitous balancing of opposed tendencies. For example, a straight curve like
Fig. 2.1A could conceivably result from the combination of a normally convex curve
(natural mortality rate increasing with age) with the effect of a recent increase in
rate of fishing. In view of the general increase in rate of fishing in the North Sea
and North Atlantic during the period 1920-35, one wonders whether the approx-
imate linearity of some of Jensen’s (1939) curves for cod, haddock, and plaice in
those waters has not been achieved in this manner. Such possibilities emphasize the
desirability of continuous sampling of a stock, and also the value of having informa-
tion on the level of fishing effort, etc., in successive years.

2.3. NON-UNIFORM RECRUITMENT. USE OF CATCH PER UNIT EFFORT FOR ESTIMATING
SURVIVAL

2.3.1. RANDOM VARIATION IN RECRUITMENT. Moderate fluctuations in recruit-
ment from year-class to year-class, which are of an irregular character, make a catch
curve bumpy, but do not destroy its general form, and thus do not greatly affect
its value. Such irregularities are like those which result from random errors of sam-
pling, but with this difference: they do not tend to disappear as sample size is in-
creased. As a matter of fact, recruitment sufficiently uniform to make a really smooth
catch curve appears to be rather rare. A good way to reduce irregularities from
unstable recruitment is to combine samples of successive years. If fishing has been
fairly steady, and the population consequently is présumed to be in a state of equi-
librium except for the variations in recruitment, then quite a number of years can
be combined in this way. Even when secular changes in mortality rate have occurred
it may still be useful to combine samples of two successive years, as in this way a
considerable increase in the regularity of the curve may often be obtained without
too much sacrifice of information concerning the past history of the stock in question.

2.3.2. SUSTAINED CHANGE IN LEVEL OF RECRUITMENT. If recruitment changes
suddenly from one steady level to a new one, and remains stabilized there, the effect
on the catch curve can easily be distinguished and interpreted. As Baranov has
shown, such a change shifts the position of a part of the right limb without changing
its slope.

2.3.3. EXTREME VARIATION IN RECRUITMENT. Sometimes recruitment is exceed-
ingly variable, adjacent year-classes differing by a factor of 5, 10, 25 or more; as
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shown, for example, by Hjort (1914) for cod and herring and by Merriman (1941)
for striped bass. This makes it practically impossible to use the usual type of catch
curve for estimating survival rate: comparisons must be made within individual
year-classes, if at all.

2.3.4. TRENDS IN RECRUITMENT. More insidious than the above is the situation
where recruitment has a distinct trend over a period of years. In actuaiial language,
the survivorship curve obtained by sampling in a single season will then be time-
specific, and will not indicate actual mortality rates over the period concerned. Such
trends in recruitment are likely to be reflected in trends in catch, after a suitable
interval, but not all trends in catch result from variation in recruitment. The only
direct way to check on the possibility of trends in recruitment is to continue sampling
over a considerable period of years, the assumption being that a trend cannot con-
tinue indefinitely in one direction. However, it will be useful to examine the exact
nature of the shift in the catch curve which is produced by changing recruitment.

Examples of catch curves affected by a progressive change in recruitment are
shown in Fig. 2.2, Curves B and C. For comparison, Curve A is a curve of the Baranov
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FiG. 2.2. Effect of variation in recruitment on a catch curve
when there is a constant survival rate of 0.67 from age 7
onward. (A) Steady recuitment; (B) Curve based on the
same data as A, but recruitment has decreased with time by
5% per year over the period of years shown; (C) Similar
to B, but recruitment has increased by 5%, per year; (D) Re-
cruitment has decreased at an accelerating rate; (E) Recruit-
ment has increased at a rate which initially was accelerating,
but later flattened off. Abscissa — age; ordinate — loga-
rithmic units.
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type, based on uniform recruitment; its straight right limb has a slope correspond-
ing to a survival rate of 0.670. Curve B is based on the same data, except that recruit-
ment decreased by 5%, per year over the period of years shown, i.e. it was 1.00,
0.95, 0.902, 0.857, etc., of its original value, in successive years. (The earlier years
are to the right on the graph.) The right limb of Curve B is still straight, but it has
a slope which corresponds to a catch ratio (apparent survival rate) of 0.705, which
differs from 0.670 by 59, of the former. Similarly, when recruitment increases by
5% per year, as shown by Curve C, the line is straight with a slope corresponding
to a catch ratio of 0.638, which differs from 0.670 by 59, (of 0.638). These and other
examples show that deviation of the true survival rate from the apparent survival rate,
when expressed as a percentage of the latter, is numerically equal to the annual
percentage change in recruitment, but of opposite sign; i.e. when recruitment in-
creases, apparent survival rate decreases.

From the above it follows that to obtain a curved right limb of the catch curve
by varying recruitment, the rate of change in recruitment must vary from year to
year. Two examples are shown in Fig. 2.2. Curve D shows the result of increasing
the absolute decrease in the rate of recruitment by 0.05 each year; i.e. recruitment
is 1.00, 0.95, 0.85, 0.70, etc., in successive years. A curved line is produced, but after
only 6 years it terminates, because recruitment has been reduced past zero! Curve
E shows the result of increasing recruitment in the same way. Here the annual rate
of increase in recruitment (ratio of each year’s increase to the preceding year’s level)
increases at first, and produces a short curved section, but soon the increase in the
actual level of recruitment catches up to the increase in rate of increase, and the
nearly straight section between age 7 and age 13 results. During the tenth year shown
(i.e. at age 7), recruitment is 3.2 times its original level; however, to produce a line
which would have the original curvature throughout its entire length for that period,
recruitment at age 7 would have become many times greater.

Such computations as these illustrate the fact that in order to obtain recognizably
curved right limbs by varying recruitment, the changes in recruitment would soon
become so great as to produce acute symptoms in other statistics of the fishery,
e.g. in total catch, average size of fish caught, relative abundance of young fish
in successive years, etc. Hence we can confidently expect that the effect of any reason-
able trend in recruitment will be to change the slope of the catch curve, without
appreciably changing its linearity. If any significant curvature does occur, its explana-
tion should be sought elsewhere.

In interpreting a catch curve, it would be useful to have some independent
estimate of recruitment from year to year, as it might then be possible to introduce
a correction for any trend which has occurred. Such information may be available
from other catch statistics, particularly the catch of the youngest age-groups, per
unit fishing effort. Information on the number of spawners (potential egg deposition)
in successive years might also seem to offer possibilities, but actually the relation
between eggs deposited and the resulting recruitment will usually be unknown,
even apart from fortuitous variations; it is about as likely to be inverse as direct
(Chapter 11).
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2.3.5. COMPARISON OF ABUNDANCE OF INDIVIDUAL YEAR-CLASSES AT SUCCESSIVE
AGES. To reduce the error caused by variable recruitment, it is natural to try to follow
separate year-classes throughout their life, comparing the number present at age ¢
with the number at age 7 - 1, and so on. However, if this is attempted with ordinary
age composition data, trial computations will readily show that the presence of
an exceptionally numerous year-class depresses the estimated survival rates ar all
ages in the year of its first appearance; afterward it makes them all too great for
as many more years as it remains in the fishery. The geometric mean of survival rates
estimated over a period of years tend toward the true value for each age (assuming
the latter does not vary with time), but in practice there is usually little if any gain
in accuracy over what would be provided by taking the mean of the slopes of the
appropriate segments of the corresponding series of catch curves.

2.3.6. COMPARISON OF INDIVIDUAL YEAR-CLASSES ON THE BASIS OF CATCH PER
UNIT OF EFFORT. A means of avoiding some of the difficulties caused by variable
recruitment, of whatever type, is to compare carch per unit effort of individual year-
classes, in successive years of their existence. The principal reason this method is
not used more often is the frequently great labor necessary to obtain a reasonably
representative measure of fishing effort, particularly when more than one type of
gear harvests a stock, or when the same gear harvests two or more species having
overlapping but not identical distributions, and concentrates its attention now on
one, now on another. Furthermore, the advantages of using catch per unit effort
are to some extent offset by possibilities of systematic bias that are not present in
the ordinary catch curve. For example, there may be distortion resulting from changes
in catchability of the fish from year to year, either from differences in distribution or
behavior of the fish themselves, or from variations in the seasonal deployment of
the fishing apparatus, or from its variable effectiveness because of weather condi-
tions.

One great advantage of survival rates estimated from catch per unit of effort
is the fact that they give information about the current situation: they appiy to the
interval between the middle (approximately) of the two fishing seasons sampled.
Ordinary catch-curve methods, by contrast, give estimates which tend to lag several
years behind the time the data are collected and which represent average conditions
during the years of recruitment (Section 2.6).

The method of comparisons of catch per unit effort has been used principally
with certain trawl fisheries, whose effort is well standardized, and where the species
is available over a wide area (Graham 1938b: Jensen 1939: Gulland 1953a).

ExAMpPLE 2.3, SURVIVAL OF PLAICE OF THE SOUTHERN NORTH StA, ESTIMATED
FROM CATCH PER UNIT OF EFFORT OF INDIVIDUAL YEAR-CLASSES. (From Ricker 1938a,
after Gulland 1955a, p. 43.)

Gulland's data tor catch of plaice (Pleuronectes platessa) per 100 hours of fish-
g by standard trawlers. at successive ages in 3 years, are given in Table 2.2, The
ratio of C/fin successive scasons s an estimate of survival rate for that year for the
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TABLE 2.2. Catch per 100 hours of trawling for plaice in the southern North Sea in three seasons,
and survival rates estimated from this.

clf _ c/f _ c/f
Age 1950-51 S 1951-52 S 1952-53

2 39 91 142

3 929 559 999

4 2320 2576 1424

5 1722 2055 2828
0.570 0.637

6 389 982 1309
0.671 0.529

7 198 261 519
0.768 0.471

8 93 152 123
0.763 0.697

9 95 71 106
0.600 0.859

10 81 57 61
0.741 0.702

11 57 60 40
(0.576) (0.673)

12+ 94 87 99
Geometric mean 0.665 0.642

year-class in question. For example, the year-class of 1945, age 5 during the 1950-51
season, decreased in abundance from 1722 per 100 hours in 1950-51 to 982 in 1951—
52; its estimated survival over that period was therefore S = 982/1722 = 0.570.
For ages above 11, where the data are lumped, an approximate S is obtained from, for
example, 87 /(57 + 94) = 0.576.

Gulland notes that there are no consistent trends in the S-values with age, and
little difference between the 2 years shown: unweighted geometric means are 0.665
and 0.642°.

2.4. RECRUITMENT TO THE FISHERY OVER SEVERAL AGES

2.4.1. GENERAL RELATIONSHIPS. Recruitment is here defined as the process of
becoming vulnerable to the fishing in progress, whether by movement into the region

3 If the logarithms of the three catch samples of Table 2.2 are plotted as ordinary catch curves,
they prove to be of the “concave” type (Section 2.6), each with a break in slope whose timing cor-
responds fairly well with the resumption of large-scale fishing following the Second World War. The
slopes of the steeper left-hand (more recent) portions of the right limbs suggest a survival rate of about
0.41, which applies to the period 1946-50, approximately. Gulland (1968, p. 310) accounts for the
difference between this figure and the 0.64-0.66 of Table 2.2 on the basis that the year-classes 1946-48
were much stronger than those of several previous years. It is also true that the two types of estimate
apply to different series of years, but fishing effort during 1946-50 averaged somewhat /ess than that
during 1950-53 (Gulland 1968, Fig. 2).
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fished or by change in size or behavior. Different types of recruitment are outlined
in Section 11.1, but for the present purpose such distinctions are unnecessary.

At the risk of spending time on what may be an obvious proposition, we can
consider first the effect on a catch curve of having recruitment spread over several ages.
Table 2.3 shows such a population, in which total mortality rate increases from 0.3 to
0.6 during a recruitment period which is completed three years after the fish first enter
the fishery. If the population at the end of 1906 be randomly sampled (the sample
taken by the fishery will not be representative), the ratios of the older age-groups
will represent the definitive survival rate 0.4, and the greater survival rates charac-
teristic of the years of recruitment appear only among the age-groups which are as
yet incompletely recruited.

TaBLE 2.3. Decrease of different year-classes of a population in successive years of their life, when
the total mortality rate is 0.3 at age 3, 0.4 at age 4, 0.5 at age 5, and 0.6 at all later ages.

Year-class (year in which fry were hatched)

Year 1898 1899 1900 1901 1902 1903 1904
10,000
1901
7,000 10,000
1902
4,200 7,000 10,000
1903
2,100 4,200 7,000 10,000

1904

840 2,100 4,200 7,000 10,000
1905

336 840 2,100 4,200 7,000 10,000
1906

134 336 840 2,100 4,200 7,000 10,000
Ratio 0.4 0.4 0.4 0.5 0.6 0.7

This proposition becomes a little less obvious when the definitive survival rate
itself changes over a period of years, as shown later in Fig. 2.7. In that event the ratio
of two of the older age-groups in a catch may represent a survival rate which they
themselves have never actually experienced, but which is the definitive rate that used
to prevail among mature fish (now long dead) at the time when the given age-groups
were being recruited.

2.4.2. AGE OF EFFECTIVELY COMPLETE RECRUITMENT. Without a little study it
will often be difficult to decide at what age recruitment is effectively complete, parti-
cularly with convex catch curves. It is advisable to try to duplicate any observed
curve using trial values of the instantaneous rates of fishing and natural mortality in
order to get some idea of the actual situation. Since the length distribution of the fish
in any age-group, of most fishes, tends to be fairly close to normal, it can readily

41



be assumed that the curve of recruitment will usually have a fairly symmetrical
shape: for example, the magnitude of F might be 0.01, 0.1, 0.5, 0.9, and 0.99 of its
definitive value, in successive years of recruitment of a given year-class. (Asymmetry
resulting from the median magnitude of F being something more or less than 0.5
will not affect our argument.) Now a facile assumption would be that the number of
years from the first age to the modal age of the catch curve would represent the
ascending limb of a symmetrical curve of recruitment, and that therefore an equal
number of years to the right of the mode would be affected by recruitment and should
be discarded in estimating survival rate.

Such an assumption would be misleading, for two reasons. First, the number
of fish in the first age taken (except sometimes when it is age 0 or age 1) tends to be
quite small, often of the same order of size as the number in the oldest age taken
(cf. Fig. 2.1, 2.6, 2.8, 2.12, 2.13). That is, the identity of the first age to be taken is
partly determined by the size of the whole sample. When the latter is of moderate
size (several hundred fish), the fish from an age-group for which rate of fishing (F)
is of the order of 0.01 of its definitive magnitude will probably be the first to appear;
if the sample is increased eight- or ten-fold, an age-group may be represented for
which F is in the neighborhood of 0.001 of its definitive value. Now at the other
end of the symmetrical curve of recruitment, an age-group that is either 99.99,
vulnerable or merely 997, vulnerable is for practical purposes completely vulnerable
when it comes to estimating survival rate. Even 95%, would be fairly satisfactory in
most cases. Consequently, the distance in years from the first age to the median age
of recruitment is practically always a year or two too great to be used as an estimate
of the distance to which recruitment will have a distorting effect beyond the median.

A second source of error is the fact that the modal age in the catch does not
necessarily coincide with the median age of recruitment. Examples show that it
may be at an age either younger or older than the median, its exact position depend-
ing principally on the magnitude of the total mortality rate. When annual mortality
rate is moderate or small (0.5 or less), at the beginning of recruitment at least, there
are usually two adjacent ages having much the same number of fish, with the mode
falling sometimes in the median age of recruitment, sometimes in the next older
age. In the latter event the distance from the first age present to the modal age would
be more than ever misleading, if it were considered as an estimate of the distance
to which the effects of recruitment extend beyond the mode.

Considering both of the effects just described, it appears that the modal age in
the catch will commonly lie quite close to the first year in which recruitment can be
considered effectively complete. In the examples used here there is at most one un-
usable age-group intervening between the first usable age and the modal age (or the
second of two nearly-equal ages), as shown by Fig. 2.8 and 2.12. When recruitment
is abrupt, the first year beyond the modal age seems usable, as illustrated in Fig. 2.1,
and in Fig. 2.9 the point for age 6 comes close to being usable.

2.4.3. VULNERABILITY VARYING CONTINUOUSLY WITH AGE. The question arises
whether a stable or “definitive” rate of fishing, beyond a certain age, is commonly

42



achieved at all in fish populations. Perhaps F usually continues to increase through-
out life, or it might conceivably rise to a maximum and then decrease if the older
fish become too large to be captured or held by the hooks or nets in use. Obviously
no universal answer is possible to such a question, and to obtain information con-
cerning it usually requires more than a catch curve. The subject is closely related to
that of net selectivity, which is considered in Section 2.11 below.

2.4.4. AGE OR SIZE OF ARRIVAL ON THE FISHING GROUNDS. A distinction can
sometimes be made between the vulnerability of the whole of the stock at a given
size, and the vulnerability of that portion of it which is on the fishing grounds. In
fact, the term recruitment has been used (by Beverton, etc.) in the sense of physical
movement onto the fishing grounds, instead of its more common meaning of overall
increase in vulnerability to capture by the gear in use.

Occasionally it is possible to classify the reduced vulnerability of smaller fish
into a portion that results from their relative scarcity in places where most fishing
is carried on, and a portion due to their “habit” of avoiding capture by nets, hooks,
etc. For example, Rollefsen (1953) compared the sizes of Lofoten cod caught by
longlining and by purse seines (Fig. 2.3). Considering the latter to be representative
of the sizes of cod present (something which probably needs confirmation), it would
appear that vulnerability to hooks actually decreases with increase in length from
the smallest fish up to quite large sizes (60-110 cm or so). At the same time, the
vulnerability of the stock as a whole (as distinct from that part of it which assembles
on the Lofoten spawning grounds) to longline fishing increases at least up to a size
of 90 cm.
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Fi1G. 2.3. Length and age distribution of Lofoten cod taken by three kinds of gear.
(From Rollefsen 1953, fig. 1.)
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Another means of separating movement onto the fishing grounds from increas-
ing vulnerability of fish already there is given in Section 5.8.

2.5. CHANGE IN MORTALITY RATE WITH AGE

In addition to increase in fishing mortality rate by progressive recruitment,
there can be other types of change in mortality. Table 2.4 shows two balanced popula-
tions, constructed on the basis that the survival rate, S, changes by the absolute
figure 0.1 in each year of life of the fish, and that all mortality is the result of fishing.

TaBLE2.4. Effects of a change in survival rate with age on catch and on catch ratio, when all mortality
is the result of fishing.

Survival Catch Survival Catch
Age rate Survivors  Catch ratio rate Survivors  Catch ratio
100,000 100,000

1 0.9 10,000 0.1 90,000
90,000 1.80 10,000 0.09

2 0.8 18,000 0.2 8,000
72,000 1.20 2,000 0.18

3 0.7 21,600 0.3 1,400
50,400 0.93 600 0.26

4 0.6 20,160 0.4 360
30,240 0.75 240 0.30

5 0.5 15,120 0.5 120
15,120 0.60 120 0.40

6 0.4 9,072 0.6 48
6,048 0.47 72 0.45

7 0.3 4,234 0.7 22
1,814 0.36 50 0.47

8 0.2 1,451 0.8 10
363 0.22 40 0.40

9 0.1 327 0.9 4

36 36

The left half of the Table is a recruitment situation. Catch ratios are consistently
higher than true survival rate, the discrepancy being 359, to 509% over most of the
range covered.

In the right half of Table 2.4, where mortality decreases, catch ratio is always
less than the adjacent survival rates. Noteworthy is the fact that over the range of
survival rates from 0.5 to 0.9 there is not much change in catch ratio. If encountered
In practice, such a segment of a catch curve would probably be interpreted as substan-
tially meeting the uniform conditions mentioned earlier, the irregularities being
ascribed to small fluctuations in recruitment.

An example modelled after situations more likely to be encountered in actual
investigations is shown in Fig. 2.4. The population described by these curves has an
instantaneous natural mortality rate of 0.2 during ages 1 through 10. This is combined
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F1G. 2.4. Catch curve for a population which has a constant fishing and
natural mortality rate from age 7 to age 10, followed by a decrease in
rate of fishing (Curve A) or by an increase in natural mortality (Curve
B). Abscissa — age; ordinate — logarithmic units.

with a rate of fishing that increases from 0.1 at age 1 to 0.7 at age 7, then remains
steady for 3 more years. This latter is shown by the straight portion of the catch
curve from age 7 to age 10, and, if continued, would be represented by the dotted
projected line.

Three variations, after age 10, are examined. First, the rate of fishing is made to
decrease by 0.1 unit during each year of age, for 6 years, the result being shown by
Curve A. There are some fluctuations, but the net result differs very little from the
dotted line, and would scarcely be distinguishable in an actual investigation. This
means that this section of the curve gives a fair estimate of survival rate during the
previous state of balance (ages 7 to 10), but does not reflect the actual survival rate,
which is rising. This is illustrated more graphically in Fig. 2.5A, in which the catch
ratio, R, is compared with the actual survival rate, S.

Secondly, the rate of natural mortality is made to increase from 0.2 to 0.9, as
shown by Curve B of Fig. 2.4 and 2.5. The decrease in survival is faithfully reflected
by the catch ratio, the latter being only inappreciably greater (Fig. 2 .5B).

Finally, rate of fishing is made to decrease while natural mortality increases,
so that total mortality remains steady. The catch curve for this situation has not
been drawn in Fig. 2.4, since it almost coincides with Curve B. This means that the
curve obtained does not represent the actual survival rate, which (since survival rate
is constant) is the sloping dotted line of Fig. 2.4. Curve C of Fig. 2.5 shows the dis-
crepancy between catch ratio and survival rate.
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Fic. 2.5. Comparison of survival rates (S) and catch ratios (R) for the populations
of Fig. 2.4. (A) Decrease in rate of fishing; (B) Increase in natural mortality;
(C) Decrease in rate of fishing compensated by an equivalent increase in natural
mortality. Abscissa — age: ordinate — survival rate and catch ratio.

Additional examples of the effects of continuous change in rate of fishing with
age have been computed by Beverton and Holt (1956). Panels (a)~(e) of their Fig.
2 illustrate cases where F decreases, while in panels (f)~(h) it increases. In panel (i),
F increases to a maximum and then decreases; this proves to be a particularly mis-
leading situation, since the right limb of the catch curve is nearly straight, but in-
dicates an apparent survival rate not much more than half the actual.

From the above and similar examples, the following conclusions can be drawn:

1. An increase (or decrease) in natural mortality rate, among the older fish of a
population, is correctly represented by the catch curve, when rate of fishing is the
same for all the ages involved.

2. A decrease in rate of fishing, among the older fish in a population, is not
correctly reflected in the catch curve, and in many situations the resulting curve
approximates closely to the survival rate obtaining at ages prior to the decrease in
rate of fishing.

3. When rate of fishing increases with age throughout life, the catch curve is
useless for estimating survival rate: in effect, the curve consists only of the portions
which we have called the ascending limb and dome, and the catch ratio between
successive years is always greater than the true survival rate, often very much greater.
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4. When natural mortality increases with age, and rate of fishing decreases,.the
catch curve tends to represent the survival rate characterized by the observed natural
mortality plus the original rate of fishing.

5. Hence, altering the wording of 1. a little, an increase in natural mortality rate,
among the older fish of a population, is at least reasonably well represented by the
catch curve, whether rate of fishing is steady or whether it decreases.

In so far as these conclusions involve the rate of fishing, they apply only when
the latter has been stabilized for enough years that all the fish involved have been
subjected to the appropriation rates for each age, throughout their life. If this is not so,
there is no restriction on the type of curve which may be obtained when rate of fishing
varies with age. For example, if a new fishery begins to attack a previously unexploited
population, the number of fish taken at each age will be the product of the abundance
at that age and the rate of fishing at that age. Thus the ratio of the number of fish taken
at age ¢ to the number at age # — 1 will be the product of the natural survival rate times
Fi/Fi, the ratio of the rates of fishing at the two ages.

The considerations above are of particular importance in dealing with catch
curves which have the right limb convex upward. Theoretically, such could result
from a steady increase in rate of fishing with age; but this situation seems likely to
be uncommon, except possibly in sport fisheries where there is great interest in large

‘specimens (Section 2.4). On the basis of what has been found up to this point, a curve
that is convex to the very end will ordinarily indicate an increase in natural mortality
rate with age, among the older ages at least, since a decrease in rate of fishing with
age does not cause much or any deflection of the catch curve in either direction. On
the same basis, a concave curve could only mean that natural mortality in the popu-
lation decreases with age. However, alternative explanations of curvature are available
when there has been a change in mortality rate with time (Section 2.6).

EXAMPLE 2.4. SURVIVAL RATE IN AN UNEXPLOITED HERRING POPULATION: A
Convex CATcH CURVE. (From Ricker 1948.)

Dr A. L. Tester has brought to my attention some convex catch curves of excep-
tional interest. During the fishing season of 1938-39 a population of herring (Clupea
pallasi) on the east coast of the Queen Charlotte Islands, British Columbia, was
exploited commercially for the first time. Five samples totalling 580 fish were taken
and their ages determined. The points of Curve A of Fig. 2.6 are the logarithms of
the percentage representation of each age-group. The unsmoothed curve appears
generally convex, but is quite bumpy, because of the moderate fluctuations in recruit-
ment which are encountered among herring from this general region.

To smooth out the curve and get a representative picture of the age distribution
of natural mortality, there are several possible procedures. A simple freehand curve
fitted to the data for 1938-39 is shown in Fig. 2.6A. As a check on the investigator’s
judgment the curve can be smoothed by a running average of 3, as shown in Fig. 2.6B.
This procedure of course tends to flatten the dome of the curve, so that the modal
point should not be considered at all in drawing a new freehand curve, and even the
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point to either side of it will be a little depressed. Also the curve is extended one year
at either end by the process. The left-hand end does not concern us, but at the right-
hand end it may “improve” the picture because the point for age 12, represented by
no fish in the sample, would be — on Curve 2.6A. Actually, of course, there are very
likely a few fish of this age or even older in the population, so that the delay in the
asymptotic fall of the curve suggested in Fig. 2.6B is according to expectation.

To get a better idea of the primitive distribution of natural mortality it is also
possible to use data for later years, to help smooth out the curve. They have this
disadvantage, that each additional year used brings the influence of the fishery farther
into the catch, and accordingly fewer ages can be considered representative of the
original natural mortality rate. Curve 2.6C shows the combined data for 1938-39
and 1939-40, giving each year equal weight, while Curve 2.6D is based on the com-
bined data for the first 4 years of the fishery.

The percentage annual survival rates found by taking tangents at successive ages,
on the four curves of Fig. 2.6, are shown below for ages whose relative numbers are
not affected by the new fishery (or very little so):

Age 6 7 8 9 10 11 12
Curve
A 72 63 58 52 42 28 -
B 69 66 60 52 47 31 -
C - - 59 43 41 29 21
D - - - 48 43 32 19

The figures for age 6 are slightly less than what was determined from the actual slope,
because of the proximity of age 5, for which recruitment is presumed to be somewhat
incomplete. The determination of the age distribution of mortality in unexploited
populations such as this is of special interest, because often it may be the only clue
to the natural mortality rate under conditions of exploitation.

Under conditions of a developed fishery, the original convexity of the catch curves for British
Columbia herring stocks tends to be diminished, but is still quite recognizable (Tester, 1955). In the
southern part of the North Sea, Jensen (1939) also shows strongly convex curves for herring in two
areas. Jensen suggests increased natural mortality or emigration among older fish, and net selectivity
making younger fish more vulnerable, as possible causes of the convexity of the North Sea curves.
In regard to the last, the analysis of this Section shows that net selectivity of this sort would not in
fact produce any appreciable curvature, so this possibility can be ruled out. The reason is that while
such nets sample the older stock less completely than the younger, they also permit more fish to
survive to the older ages, and the combination of these two opposed tendencies results in a fairly
straight catch curve (cf. Fig. 2.4A).

Catch curves for a number of other species under unexploited conditions have
now been obtained, and all indicate an increase in natural mortality among the older
fish. From northern lakes there is information for sauger (Stizostedion canadense),
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F1G. 2.6. Catch curves for a population of herring from the
Queen Charlotte Islands, B.C. (A) Age composition during
the first year of exploitation, 1938-39;(B) Thesame, smoothed
by a running average of 3; (C) The combined samples of
1938-39 and 1939-40; (D) The combined samples for the
first 4 years of exploitation. All curves are in terms of the
logarithms of the percentage frequency at each age, set one
log-unit apart on the figure, with the ordinate scale applying
to Curve D. (From unpublished data of A. L. Tester.)

rock bass (Ambloplites rupestris), whitefish and lake trout (Ricker 1949a, Kennedy
(1953, 1954b). A similar increase in natural mortality was observed in fished lakes
among perch (Perca flavescens), black crappies (Pomoxis sparoides), yellow bullheads
(Ameiurus natalis), and several other species in Indiana (Ricker 1945a); the survival
rates in these instances being estimated from recoveries of marks. Although the more
heavily fished bluegills in the same waters had a nearly straight catch curve (Fig. 2.1A)
it is probable that originally they survived less well at the older ages then present: we
must assume that no individual of any species is capable of living forever. Also, a
sample of older plaice than those available to Gulland (Example 2.3) would probably
behave similarly.

2.6. CHANGE IN MORTALITY RATE WITH TIME

All of the conclusions obtained in the last Section presuppose that, however
they may vary with age, the rate of fishing and rate of natural mortality for any
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given age are constant from year to year. But the effort used in a fishery can vary
from year to year for a variety of reasons. Some fisheries are of 1ecent origin, and the
gear in use has been expanded since their beginning. Others have passed through a
profitable phase, and now their decreased return per unit effort tends to drive off
boats which formerly fished them. Economic conditions play a large part in deter-
mining what constitutes profitability and thus affect total fishing effort. Hence a
consideration of secular change in rate of fishing cannot be avoided. Similar changes
in natural mortality rate may possibly occur at times; their effects can readily be
examined, but they are not considered here.

2.6.1. INSTANTANEOUS RECRUITMENT. Table 2.5 shows a population in which the
survival rate for fish of all catchable ages is 0.7, 0.6, and 0.5 in 3 successive calendar
years, then remains steady at 0.4 for 4 years. In this situation (unlike Table 2.3) the
commercial catch will sample the population representatively, since recruitment
to the fishery occurs abruptly. Such a random sample of the population, taken at
the start of any given year, would have successive age-groups represented in propor-
tion to the figures in the horizontal rows of the table, beginning with the youngest
at the right. Each of the catch ratios shown in the last row represents the ratio of
all of the pairs of figures in the two adjacent columns above it. Obviously then, no
matter at what time year-classes # and 7 - 1 are sampled, the ratio of their abundance
is a measure of the survival rate which existed during the first year that year-class
t - 1 became vulnerable to fishing. Thus the survival rates which we estimate from age-
frequencies in a catch are ancient history. They pertain to past years, to the time

TaBLE 2.5. Decrease of successive year-classes in a population acted on by a survival rate which
decreases for 3 years and then remains steady, but is always the same for fish of all recruited ages
during any given year.

Year-class
Year S 1898 1899 1900 1901 1902 1903 1904 1905
10,000
1901 0.7
7,000 10,000
1902 0.6
4,200 6,000 10,000
1903 0.5
2,100 3,000 5,000 10,000
1904 0.4
840 1,200 2,000 4,000 10,000
1905 0.4
336 480 800 1,600 4,000 10,000
1906 0.4
134 192 320 640 1,600 4,000 10,000
1907 0.4
54 77 128 256 640 1,600 4,000 10,000
Catch ratio 0.7 0.6 0.5 0.4 0.4 0.4 0.4
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when the year-classes involved were being recruited to the catchable size range,
and are independent of what survival rates have prevailed since that time. In terms
of the catch curve, this means that the slope of any given part of the curve will repre-
sent the survival rate which prevailed at the time the fish in question were being
recruited to the fishery.

2.6.2. GRADUAL RECRUITMENT. In the example just given recruitment takes
place suddenly, one age being completely vulnerable, the next younger one com-
pletely invulnerable. In practice, recruitment usually takes place less abruptly, and
is often gradual. A model of that sort has been constructed in the following manner:
a stock of fish which gains a uniform number of recruits each year is considered to
have an unchanging instantaneous natural mortality rate of 0.2. To this is added a
rate of fishing which increases for the first 6 years after the fish enter the fishery,
as follows:

Year of life (starting with the first vulnerable age).................. 1 2 3 4 5 6 7+
.05 5 20 45 70 90 100

Percentage of the definitive rate of fishing

These values are approximately those estimated from an actual fishery.

The definitive rate of fishing varies in successive calendar years as shown in
Table 2.6. Adding 0.2 to the rate of fishing gives the definitive instantaneous mortality
rate for each year, and from Appendix I the annual mortality rate and survival rate
were found in the usual manner. The same statistics were estimated for each year of
recruitment, at each level of (definitive) total mortality. Armed with these survival
rates, a comprehensive table was prepared, analogous to Table 2.5, showing the num-
ber of surviving fish in each successive brood for a series of years sufficient to give the
complete history of the period of change. Annual deaths in each age category were
found by subtraction for 4 different years — the 1st, 7th, 12th and 24th — and by divid-
ing these between fishing and natural mortality in the ratio of F to M, the number of

TaBLE 2.6. Rates of fishing in successive calendar years for the model populations of Section 2.6.2.

Instantaneous mortality rates Actual

mortality Survival

Year Fishing® Natural Total rate rate

F M V4 A S
Uptol 0.2 0.2 0.4 0.330 0.670
2 0.3 0.2 0.5 0.394 0.606
3 0.4 0.2 0.6 0.451 0.549
4 0.5 0.2 0.7 0.503 0.497
5 0.6 0.2 0.8 0.551 0.449
6 0.7 0.2 0.9 0.593 0.407
7 and later 0.8 0.2 1.0 0.632 0.368

aFor fully-recruited age-groups.
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each age-class in the catch was computed. The logarithms of these values are shown
in Fig. 2.7, curves A to D.

~ Curve A, showing the catch after an indefinite number of years of steady survival
rate 0.670, is a simple catch curve with 6 years involved in the left limb and dome
(corresponding to the 6 years of recruitment) and a long straight right limb.

Curve B, based on the catch in year 7, when the survival rate of 36.89 was
first achieved, shows by its partially concave right limb that survival rate has been
decreasing. However, the curve is not representative anywhere of the current survival
rate. Its steepest part, between age 7 and age 8, corresponds to a survival rate of
51%: that is, approximately the survival rate of 3 years previously (year 4 in the
schedule above). For a series of years near its outer end the curve is still straight,
and here represents the original survival rate of 0.67.

Curve C is based on the catch in year 12, after the 36.89, survival rate has been
stabilized for 6 years. Here, for the first time, there appears a portion of the curve
(age 7 to age 8) which is steep enough to represent the current rate of survival. The
slope of the curve at older ages gradually decreases, and between ages 17 and 18
it still has the original slope. Between ages 7 and 11, and also 15 to 18, there is not
much change in slope; consequently, even if there were considerable fluctuation in
recruitment, a fairly good estimate of both the old and the new survival rate could
be made from a curve such as this, simply by measuring its greatest and its least
slope, on the right limb. The region between ages 11 and 15 shows the maximum
curvature. (A catch curve which would have no such variation in rate of change in
curvature would result if mortality rate were to change gradually over the whole
series of years involved.)

Curve D is the new balanced population, which only appears after 18 years of
the new mortality rate of 0.632. It is similar to A, but of course has a much steeper
slope of the right limb.

The types of curve obtained during a period of transition from a larger to a
smaller rate of fishing, and hence of total mortality, are shown by Curves E and F
of Fig. 2.7. The change is quantitatively the same as shown by B and C, but in reverse.
Starting from the balanced situation of Curve D, after 6 years’ progressive decrease
in mortality rate Curve E is obtained. Such a curve, if found in an actual investigation,
would scarcely be interpreted as indicating a recent decrease in mortality, since the
whole region up to age 11 could well be in the range of recruitment. Hence the survival
rate estimated would be that indicated by the straight outer limb, and would of
course be wide of the current value, but representative of the former value.

Curve F, representing conditions 11 years after the mortality rate began to
decrease, and 5 years after it was stabilized at 0.670, is a convex curve entirely ana-
logous to concave Curve C. There is the same region of maximum curvature between
ages 11 and 15, with rather flat portions to either side of it. In practice, the outer
end of such a curve might be interpreted as representing a state of near balance, but
the region from age 7 to age 11 would again present difficulty, because of the
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FiG. 2.7. Catch curves illustrating changes in rate of fishing with time. In
every instance recruitment is complete following the first 6 ages shown,
and the instantaneous rate of natural mortality is the same, 0.2, for all
ages and years. (A) Constant rate of fishing of 0.2; (B) Rate of fishing has
increased from 0.2 to 0.8 during the preceding 6 years; (C) Five years
after B, with rate of fishing stabilized at 0.8; (D) Balanced curve for rate of
fishing 0.8; (E) Rate of fishing has decreased from 0.8 to 0.2 during the
preceding 6 years; (F) Five years after E, with rate of fishing stabilized
at 0.2. Abscissa — age; ordinate — logarithmic units.

possibility of incomplete recruitment. Even if this were ruled out, it would be harder
to estimate current survival rate here than on the same part of Curve C, because
there is no point of inflection.
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In general then, secular changes in rate of fishing result in curved right limbs of
the catch curve, these being concave if fishing has increased, and convex if fishing has
decreased. The latter type will usually be much harder to interpret in terms of the
survival rate in past years, for two principal reasons: (1) there is danger of confusion
with the type of convex curve which results from a natural mortality rate which
increases with age, and (2) it is difficult or impossible to delimit the part of the curve
affected by incomplete recruitment. The concave type of curve, on the other hand,
is not likely to occur except as a result of increased fishing, and the point of maximum
slope on the right limb will always give the most recent available estimate of survival
rate.

It is difficult to express the relationships of this section in quantitative terms,
but for the examples worked out to date the following statements seem to be true:

L. If the peak of recruitment is at age m, the survival rate estimated at age n on
the catch curve pertains to a period approximately n —m years prior to the date the
sample was taken, except as noted below.

2. When the bulk of recruitment occupies a period of say 2x years (x years from
the first important age to the modal age in the catch), the most recent representative
survival rate observable on the catch curve will pertain to a period x years prior to
the date the sample was taken.

3. If mortality becomes stabilized following a period of change it will, strictly
speaking, require 2x years for the new stable survival rate to begin to appear in the
catch curve, though for practical purposes a somewhat shorter period will usually
suffice.

Obviously it will be desirable to have as much information as possible about
fishing effort in past years when interpreting a catch curve. The simple fact that effort
has decreased, or increased, or remained fairly steady will be of considerable value.
If good quantitative estimates of effort are available, then it may be possible to
interpret different segments of the curve in relation to fluctuations in the rate of fishing,
or perhaps even to compute the actual rate of fishing and of natural mortality by
Silliman’s method (Section 7.3).

2.6.3. ILLUSTRATION. An example of the effect of an increase in rate of fishing is
seen in Fig. 2.6D. Although this curve represents the average age distribution for the
first 4 years of this herring fishery, there is a distinct concave section immediately to
the right of the dome which reflects the much greater mortality rate that prevailed
after the fishery began. (In a curve for year 4 by itself this concavity would be con-
siderably accentuated.) By contrast, the curves for the unfished stock (Fig. 2.6A and
B) were smoothly convex.

EXAMPLE 2.5. SURVIVAL OF THE LOFOTEN CoD STOCK: CONCAVE CATCH CURVES.
(From Ricker 1958a.)

Rollefsen (1953) presented length frequencies of cod (Gadus morhua) caught by
three kinds of gear in the 1952 Lofoten fishery: purse seines, longlines, and gillnets.
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He also tabulated the distribution of ages in the three kinds of samples (Fig. 2.3). The
three gears differ considerably in the range of sizes they select, and the stock itself is a
selection of the mature fish from the great shoals which roam the Barents Sea. Con-
sequently the chances of obtaining a representative survival rate from these data
might appear particularly unfavorable.

Logarithmic plots of the three age distributions are shown in Fig. 2.8. There is
moderate, but not excessive, variation in recruitment from year to year; the year-
class of 1937, age 15 in 1952, was a particularly good one. The right limbs of the three
distributions are all markedly concave upward. From the analysis of Sections 2.5
and 2.6, this could either be a result of a decrease in rate of natural mortality (not
fishing mortality) with age, or a result of a recent increase in rate of exploitation of
the stock as a whole. The second alternative is much more likely.
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Fi1G. 2.8. Catch curves for Lofoten cod taken by three kinds of gear. The ordinate
divisions are 1 log unit. (Data from Rollefsen 1953.)

Examples of annual survival rates computed from the slopes of the freehand
lines are as follows:

Age interval Purse seines Longlines Gillnets

11-12 S = 0.33 S =0.29 S =0.30
12-13 S = 0.5 S =0.40 S = 0.37
13-14 S = 0.63 S = 0.56 S = 0.60
14-16 (avg.) S =0.75 S = 0.76 S =0.75
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The seines suggest a somewhat greater survival rate than the other gears, up to age
14, but the other curves would be useful to a first approximation. From age 14 onward
there is little difference between the three, though of course the seine curve should be
more reliable because it is based on a larger sample of the old fish. We may conclude
that even knowledge of the existence of considerable net selectivity should not dis-
courage attempts to obtain some kind of information about survival rate from age
distribution.

Rollefsen points out that purse seining has been only recently introduced at
Lofoten, and that it takes larger fish than the two historic methods. Insofar as the
purse seine has increased the overall rate of fishing it would contribute to a (temporary)
concavity of the catch curves; however the greater vulnerability of large fish to the
seines would tend to have the opposite effect.

EXAMPLE 2.6. SURVIVAL OF LAKE WINNIPEGOSIS WHITEFISH: A Smuous CATcH
CURVE. (From Ricker 1948.)

An interesting curve, for the whitefish (Coregonus clupeaformis) of Lake Winni-
pegosis, is shown in Fig. 2.9. The data are taken from Bajkov (1933, p. 311), who used
them to compute the whitefish population of the lake by Derzhavin’s method (Section
8.1); hence he presumably considered them representative. The right limb has two
steep portions, separated by a period of 4 years in which it is considerably flatter.
More than one kind of irregularity might produce such a curve. In terms of possible
variations in fishing, the concave part of the curve would suggest an increase, and the
convex part a decrease, in fishing effort over the corresponding times in past years. A
second possibility is that there may have been a pronounced cyclical trend in recruit-
ment: an increase for several years, followed by 4 years of decrease, then 2 or more
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F1G. 2.9. Catch curve for the whitefish of Lake Winnipegosis, 1928. Abscissa —
age; ordinate — logarithm of the percentage of the catch which occurs at each
age. (From data of Bajkov 1933.)
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years of increase. Finally, the two steeper parts of the curve might indicate a younger
and an older range in which natural mortality is relatively heavy, separated by a period
of less severe natural mortality from age 8 to age 12.

TaBLE 2.7. Number of gillnets licensed on Lake Winnipegosis, Manitoba, compared with rate of
survival and instantaneous rate of mortality of whitefish, as deduced from the catch curve.

Year Nets S VA Year Nets S z
1915 No data 0.55 0.60 1921 3304 0.84 0.18
1916 2745 0.63 0.46 1922 4112 0.87 0.14
1917 9535 0.68 0.39 1923 5560 0.87 0.14
1918 8580 0.72 0.33 1924 5765 0.76 0.27
1919 No data 0.75 0.29 1925 6722 0.66 0.42
1920 7730 0.80 0.22 1926 7422 0.63- 0.45+

Dr K. H. Doan courteously compiled data (shown in Table 2.7) on the number
of gillnets used on Lake Winnipegosis and also found out that Dr Bajkov’s samples
were taken during the winter fishing season early in 1928. From the catch curve it ap-
pears that recruitment is spread over ages 3 through 5, or perhaps even 6; age 4 will be
taken as the mode. Hence the slope at age ¢ on the curve reflects the survival rate
t—4 years previous to 1928. Taking tangents on the curve at successive ages gives
the series of survival rates (S) shown in Table 2.7, and after 1916 a suggestive inverse
relationship between them and the gear used is evident. The direct relation between
number of nets and instantaneous rate of total mortality (Z) is about as good; theo-
retically it should be somewhat better. The relationship could be “improved” by
drawing the catch curve in the light of the net data; as actually drawn, sudden changes
are obscured by rounding of the curve. On any system, the points for ages 16 and
17 (1915 and 1916) are wide of the expected value, which suggests a sharp increase in
natural mortality rate among the oldest fish, such as is found among whitefish else-
where. Aside from the last-mentioned effect, it would seem that fluctuations in fishing
effort alone may be sufficient to account for the sinuous shape of this catch curve.

It would be pressing the data too far to attempt any more exact analysis. Number of nets licensed
has obvious limitations as a measure of fishing effort. We should, for example, expect them to be
more efficiently utilized as time goes on, since motors were introduced among the fishing fleet during
the period shown, and doubtless other improvements in efficiency of utilization occurred. We should
also expect more intensive utilization of nets when prices were good (1917-20, 1925-29) than when
markets were slack. Some such considerations are necessary to explain why the instantaneous rate
of mortality more than doubled between 1921-23 and 1925-26, whereas the number of nets was
scarcely doubled. Considering that there is some natural mortality, an increase in fishing effort should
be followed by a somewhat /ess than proportional increase in instantaneous mortality rate. Another
factor which should be considered is the possibility of a decrease in recruitment, since in the later
history of this lake the whitefish disappeared as a commercial fish.

Notice that the curve of Fig. 2.9 is one of the type which does not show the current
(1928) survival rate, since fishing effort was increasing right up to the time the sample
was taken. The steepest slope of the curve, corresponding to S = 0.63, represents the
survival rate about 2 years earlier.
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ExampLE 2.7. A SERIES OF CATCH CURVES FOR LAKE OPEONGO LAKE TROUT.
(From Ricker 1958a.) s

Fry (1949) tabulated the catch of lake trout (Salvelinus namaycush) in Lake
Opeongo by ages, based on a nearly-complete creel census and a scale sample usually
of about a third of the catch (Table 2.8). Three considerations make interpretations
of these catch curves difficult: (1) the lake became accessible to motorists first in
1935, so that in that year fishing effort increased sharply from a previous lower level;
(2) the catch is taken almost wholly by trolling, with which kind of fishing there may
be not only the slow recruitment to maximum vulnerability indicated by the table, but
afterward a gradual decrease in vulnerability — perhaps because larger fish are harder
to handle and not easily boated by unskillful fishermen (but see Example 8.2); and
(3) Fry (p. 31) notes that the scale census was partly voluntary and therefore not
completely random because of a tendency for possessors of big fish to bring their
catch in for appraisal and approval.

Point 2 above would tend to make estimates of mortality rate too great among
older fish, whereas point 3 would make them too small. As far as the latter is concerned,
fish smaller than 4 kg would scarcely be exhibition pieces in a lake where those over
5 kg were fairly common, and fish of age 11 or less rarely exceeded 4 kg, so there
need be little uneasiness about selective sampling of ages through 11.

Several catch curves from Table 2.8 are plotted in Fig. 2.10. All are concave,
decreasing in slope at about age 12; this decrease is probably mainly the result of
selection of large fish in scale sampling, but it is more pronounced during or just
after periods of increasing fishing effort, as would be expected. The most useful
slopes of these graphs are for ages 9-11, as indicated below:

Rate of Instantaneous
Avg effort survival mortality rate
Period hours S Z
1936 2030 0.50 0.70
'1937-39 1780 0.30 1.21
1940-42 960 0.35 1.06
1943-45 1010 0.43 0.85
1946-47 1480 0.42 0.87

The 1936 estimated mortality rate of 0.70 reflected, in part, the pre-1935 period of
lighter fishing. The increase to 1.21 in 1937-39 is presumably the result of the in-
creased exploitation, but the full effect of 2000 hours per year does not have a chance
to be manifested. A residual effect of the 1936-39 years of heavy fishing remains in
the samples of 1940-42, shown by the moderately large Z = 1.06, though actual
fishing was least in the latter period. Considering that important recruitment extends
over about 5 years, the only period where age 9-11 survival rate is approximately in
balance with the observed fishing effort is 1943-45. The value Z = 0.85, or 43¢,
survival per year, must te appropriate to a mean fishing effort of about 980 hours per
year (mean of 960 and 1010). The 2 later years of greater effort, 1946-47, were sufficient
to raise this only slightly.
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FiG. 2.10. Catch curves for Opeongo trout. Abscissa — age; ordinate —

log frequency. (Data from Fry 1949.)

2.7. CatcH CURVES BASED ON LENGTH FREQUENCIES

It was mentioned earlier that in Heincke’s and Baranov’s original catch curves
the logarithm of frequency per unit length interval was plotted against length, and
that the relation of length to age was estimated separately. There are situations in
which this method appears very attractive. For example, when assembling a repre-
sentative sample of the catch from a widely scattered fishery, it may be necessary to
sample so many fish that determination of the age of all of them becomes very tedi-
ous, or the scales needed for age determination may not always be forthcoming. In
such a situation there would be two curves available: (A) a curve of mean length
against age, based on a relatively limited body of data, and (B) a representative curve

60




of the logarithm of frequency (log N) against length, based on all the samples avail-
able, suitably weighted. The two curves can be combined by taking the slope on each
at corresponding points, i.e. at a given age on Curve A, and at that age’s correspond-
ing mean length on Curve B. The former would be represented by d//d¢ = k say,
and the latter by d(log N)/d/ = -Z’, where [ represents length in centimeters and
t is age. Hence d(log N)/dt = -Z'k, and Z = 2.30Z’k, according to Baranov’s
method of estimation described in Section 2.2.

Unfortunately, this method of computation suffers from a serious limitation:
it is useful only on curves, or parts of them, where the increase in length of the fish is a
constant number of centimeters per year. For this information we are again indebted
to Baranov (1918), who in his fig. 12, reproduced here as Fig. 2.11, shows an artificial
catch curve (A;B;) based on length, which was formed by adding up the contributions,
to each length-interval, of a succession of overlapping age-classes which decrease in
numbers by 509, per vear (Z = 0.69). Up to age 7, the mean length of the fish is
made to increase twice as fast as from age 7 onward. The result is that while the first
slope of the catch curve (Z;) obtained from ages through mean age 6, multiplied by the
first rate of growth (k;), will yield the true instantaneous mortality rate 0.69; and the
increased slope (Z;) from age 9 onward, multiplied by the slower rate of growth
(k) for older fish, also gives the value 0.69; yet there is an interval from mean age
63 to mean age 8%, approximately, in which the slope of the catch curve bears no
simple relation to the survival rate.

I have constructed a similar population model in which rate of growth decreased
continuously instead of changing suddenly. Without presenting the details, the annual
mortality rate put into the model was A = 0.4, while the rates “recovered” from it at
different ages by the method of the last paragraph were 0.20-0.22. As a matter of
fact, when mortality rate is small and fairly steady, and rate of increase in length is
decreasing at a moderate rate, the number of fish at certain intermediate sizes exceeds
the number at smaller sizes nearby, as is shown by Curve CD of Fig. 2.11, and has
been demonstrated for an actual fish population by Hart (1932, fig. 4). In that event
d(log N) /d/ becomes a positive coefficient in places, and could not possibly be used to
estimate mortality rate in the manner described above.

Mortality rates estimated as above from rate of growth and length frequencies
always tend to be too small, if absolute rate of increase in length is decreasing with
age. Elster (1944, p. 294), for example, used a combination of length frequency dis-
tribution and rate of growth to compute a total mortality rate of 889, per year for
Blaufelchen (Coregonus wartmanni) of commercial size in the Bodensee. Although
this is a rather high rate, the method of estimation tends to make it somewhat too
small, rather than too large.

At present, then, catch curves based on length frequencies are much less useful
than those based on age, even when the successive ages overlap thoroughly and make
a smooth curve. Their slope can be used for an unbiased estimate of survival rate only
if the absolute increase in mean length of the fish between successive ages is uniform
over a range of ages which, in terms of corresponding mean lengths, is somewhat
greater than the range of lengths over which the slope of the graph is to be measured.
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F1G. 2.11. Synthetic population curves made by summing the contributions, to
successive length-classes, of several overlapping age-groups, each normally
distributed as to length. The dotted bell-shaped curves are the length distri-
butions of successive age-groups, each half as numerous as the preceding; the
rate of increase in length decreases between ages 7 and 8 to half of its previous
magnitude. Curve AB is the sum of the dotted curves, and shows the length
frequencies of the total population. Curve A;B, shows the logarithms of length
frequencies of the populations, and is equivalent to a catch curve. Curve CD is
a synthetic curve similar to AB, based on fish which have the same rate of growth
but which decrease in numbers by only 209 per year. Abscissa — length;
ordinate — frequency (log frequency for A;B,). (Redrawn from Baranov 1918,
by S. D. Gerking.)

ExaMPLE 2.8. SURVIVAL OF PAciFIic HALIBUT: A CoNCAVE CATCH CURVE BASED
ON LENGTH FREQUENCY DISTRIBUTION. (From Ricker 1948, slightly modified.)

Catches of Pacific halibut (Hippoglossus hippoglossus) taken for tagging by
Thompson and Herrington (1930), south of Cape Spencer, have been used to con-
struct a catch curve based on length frequencies. The catches of 1925 and 1926 are
combined to smooth out some of the irregularities in recruitment*. The catch curve
(Fig. 2.12) is plotted in terms of frequency per 5-cm length interval (near the end the
average for a 10-cm range has been used). Dunlop has shown that the mean length
of commercially caught Goose Island halibut tended to increase by a little less than
5 cm for each year’s increase in age, from age 4 to age 14; between age 9 and age 14
it is exactly 5 cm per year (Thompson and Bell 1934, p. 25). This is indicated on Fig.

4 The 2 years also differ in that there are relatively more small fish in 1926 and more large ones in
1925. However, between ages 9 and 13 their curves have much the same slope. Since censiderably
more fish were handled in 1926, it would be somewhat better to give each year equal weight, but this
has not been done here.
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FiG. 2.12. Catch curve for the Pacific halibut population (southern grounds),
from samples taken for tagging in 1925 and 1926. Abscissa — mean length (mm)
of successive 5-centimeter length groups. (Ages indicated are only approximate,
and at ages below 1X are typical of the sample only, not of the population.)
Ordinate — logarithm of the number of fish taken at each length interval. (From
data of Thompson and Herrington 1930.)

2.12 by roman numerals above the approximate mean length of each age-group.
Beyond age 14 there is little direct information on rate of growth; from the situation
in other fishes, a decrease in rate of increase in length might be anticipated among old
individuals. For estimating survival rate, the curve of Fig. 2.12 will be useful only
from age 9, which is probably the first fully recruited age, to age 14, where linearity
of growth may cease. Within these limits, the curve is noticeably concave, and this
suggests a recent decrease in survival rate. Accordingly, the slope of the steepest part
of the curve, between ages 9 and 10, will come closest to being an estimate of its
current magnitude.

The revised estimates (Anon. 1962, table 7) of the halibut fishing effort in south-
ern waters (Area 2) are shown below in terms of thousands of “skates™ of gear set:

Year Effort Year Effort Year Effort
1911 237 1917 379 1923 494
1912 340 1918 302 1924 473
1913 432 1919 325 1925 441
1914 360 1920 387 1926 478
1915 375 1921 488 1927 469
1916 265 1922 488 1928 537

If there had been a continuous increase in fishing effort and thus in total mortality
rate right up to 1925-26, the curve of Fig. 2.12 would not be steep enough anywhere
to represent the current rate of survival. However, there were two periods of more or
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less stable fishing effort, of which the more recent is 1921-27, when effort averaged
476,000 skates. This period lasted 7 years, or a year or two longer than it takes halibut
to become completely vulnerable to fishing. Consequently by analogy with Curve C of
Fig. 2.7 we can expect that the steepest part of the catch curve will in fact represent
the survival rate which actually prevailed when the samples were taken. This steepest
slope occurs between ages 9 and 10, and is —0.066 log units per centimeter, which
corresponds to —0.33 log units per year. Hence Z = 2.303 X 0.33 = 0.76, A = 0.53,
and S = 0475.

We can also make an estimate of the survival rate which obtained among fully
vulnerable fish in 1916-20, when fishing effort averaged 332,000 skates per year.
This will be given by the slope of the line from ages 10 to 14 inclusive, and corresponds
to S = 0.61 and Z = 0.49. Obviously there is an inconsistency here. The Z values
of 0.76 and 0.49, less natural mortality, should be proportional to fishing effort,
whereas in fact the fishing efforts of 1921-27 and 1916-20 do not differ nearly enough
for this. There are two possible explanations: the estimate of Z for 1916-20 may
be in error, because it is getting into the region where the catch curves for the separate
years do not agree too well; alternatively, or in addition, the efficiency of a skate
of gear may have improved with time, as fishermen became better acquainted with
the grounds.

2.8. CatcH CURVES FOR ANADROMOUS FISHES

Anadromous fishes may conveniently be divided into three categories: (1) those
which reproduce only once and then die; (2) those which may reproduce in each of
2 or more successive years; (3) those which may reproduce more than once, but at
intervals longer than 1 year. All three types usually have one feature in common,
that fishing tends to be concentrated on the migrating fish which are about to mature
and reproduce.

The best-known examples of the first type above are found among Pacific salmons
(Oncorhynchus spp.). A catch curve from a sample of the migrating run of such fish
is obviously of no value for estimating mortality rate, though the information may
occasionally be used to estimate survival rate in another manner (Section 8.9).

Anadromous fishes of group 2, of which the Atlantic salmon (Salmo salar) and
shad (Alosa sapidissima) may be taken as examples, present a somewhat different
picture. Here catches taken from the spawning run can be made to give information
about mortality rate, provided the maiden fish can be distinguished from those which

5 There is fairly good agreement between this figure and the survival rate of 0.416 estimated by
Thompson and Herrington (1930, p. 70) from recaptures during 4 years of halibut tagged in 1925.
The agreement, however, is partly accidental, since halibut of all sizes tagged were used in their
estimate, and those which, for at least a year after marking, were in the incompletely-vulnerable size
range, were retaken relatively less frequently in the year after tagging than in later years. Since the
majority of fish used were of this sort, this effect is quite important, and makes their estimate of
apparent survival rate too high. Using completely vulnerable fish only, the tagging data yield an ap-
parent survival rate of 0.33. Possible explanations of the discrepancy between this figure and the 0.47
obtained here are given in Example 4.4, below.
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have already spawned at least once. Beginning with the first¢ age-group in which
practically no maiden fish occur, the abundance of successive ages from there on
will reflect the population survival rate between them, subject to the usual provisos
regarding random sampling, uniformity of recruitment, and so on. However, it may
be found, and this is usual among salmon, that recidivists are so rare as to constitute
only a minor part of the total catch, apparently because of a heavy post-spawning or
ocean mortality which is not the result of fishing. Shad, on the other hand, seem to
survive in larger numbers and to greater ages (Fredin 1948).

Finally, the very interesting situation in which more than 1 year elapses between
spawnings has most of the characteristics of the one just discussed. If fish are caught
only in the spawning migration, the survival rate obtained from the catch curve is the
(geometric) mean annual rate for all the years between one spawning migration and
the next (not the overall survival for the total time elapsed between one migration
and the next.) Among anadromous fishes, this behavior is best known among stur-
geons (Acipenser); non-anadromous salmonoid fishes in some northern lakes appear to
spawn only in alternate years.

ExaMpLE 2.9. CaTcH CURVE FOR KURA RIVER STELLATE STURGEON. (From
Ricker 1948.)

Derzhavin's (1922) comprehensive study of the sevriuga or stellate sturgeon
(Acipenser stellatus) of the Kura River contains information on a wide variety of
topics. From his table (p. 67) of the age and sex composition of this sturgeon caught

6 If both the age and the number of spawnings of each fish can be determined, such comparisons
can be made for all age-groups.

o
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Fi1G. 2.13. Catch curves for the stellate sturgeon of the Kura River. (A) males;
(B) females; (C) sexes combined. Abscissa — age; ordinate — logarithm of the
number of fish occurring at each age, per thousand of the total sample, for
curves A and B; curve C is drawn two units higher. (From data of Derzhavin
1922)
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in the Caspian Sea near the mouth of the river, the catch curves of Fig. 2.13 are
plotted. When the sexes are segregated, the males are seen to occur at a much younger
average age than the females. Since the fish are taken on their spawning run, this
indicates that the males mature earlier, on the average. Derzhavin gives 12-15 years
for males and 14-18 years for females as the principal range of ages at first maturity,
though some of either sex were taken as early as 8 years. Sevriuga of both sexes spawn
“at intervals of several years, possibly five,” but it is not known whether the two sexes
have the same average interval between spawnings. If the elapsed time were longer for
the younger females, as is suggested by Roussow’s (1957) work with Acipenser fulves-
cens, it would explain the longer ascending limb of their catch curve.

A point of general interest is that when vulnerability of fishing depends on
maturity, differences in age at maturity of the two sexes tend to broaden the left limb
and flatten the dome of the catch curve, when the sexes are not separated. In ordinary
fisheries, a difference in rate of growth of the sexes will have a similar effect. However,
it will probably rarely happen that the dome will actuaily have a dent in it, as was
found for the Kura sevriuga.

2.9. STRATIFIED SAMPLING FOR AGE COMPOSITION

When an overall random sample is used to plot the catch curve and estimate
survival rate in a stock, there is commonly a series of older ages which are represented
by only a few individuals if the sample is of any ordinary size — say 100 to 1000 fish.
The same is usually true of one or a few of the youngest ages, which ages may be of
interest in examining net selectivity, etc. If good information concerning these terminal
ages is desired, special effort must be expended on them.

1. A very simple plan is to take a special sample of the catch for fish above
a certain size. For example, 1/1000 of the catch might be used for the general sample,
and 1/100 of the large fish for the special one. Growth or survival rates computed
from the special sample are used for the older ages (Ricker 19552). However, this
procedure is not particularly efficient, since some of the fish whose scales or otoliths
are read in the special sample must be discarded because they belong to ages incom-
pletely represented in the size range -of that sample. Also, this consideration makes it
rather unlikely that it would be profitable to use more than two different sampling
fractions.

2. Ketchen (1950) suggested a different plan, which works well when a really large
representative Jength sample can be obtained for the whole catch. Dividing the catches
into length groups one centimeter broad, otoliths are collected for age determination
from fish in the large sample, up to some fixed number in each length group or (in
the terminal groups) to such smaller numbers as are available. From the percentage
representation of each age in its otolith sample, an age composition for each length
group of the representative length sample was determined, and the whole added by
ages to build up an estimate of the age composition of that sample, thus of the catch?.

7 From a large length sample of cod, Fridriksson (1934) took a subsample for age determination
and applied this computational procedure, thus decreasing the influence of sampling error and of any
possible systematic bias in the subsample. However the advantage gained in this way is ordinarily
small compared to what is afforded by Ketchen’s procedure.
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Obviously methods 1 and 2 above might advantageously be combined, when
time or facilities for taking a large length sample are not available. In fact, by grafting
Ketchen’s procedure onto it, the method of using different sampling ratios is consi-
derably improved: no age-determined fish need be discarded, a complete (computed)
catch curve is obtained, and more than two different sampling fractions might some-
times be employed to advantage.

Both of the methods above imply that it is desirable to have more accurate
information on the sparsely represented ages than what a moderate-sized single
sample will supply — which is not necessarily true for all purposes, although generally
$0.

3. When catches from a stock are landed by many boats, at many ports, and
over a considerable period of time, the assembling of a single representative length
or age distribution becomes very complex — involving numerous individual samples
which are eventually combined into one representative picture using a series of
weighting factors. Details for particular situations have been published, but no
general description would be profitable. Subsampling by length for the age determina-
tions may be of great assistance, but sometimes age at a given length will differ signi-
ficantly between different catches. Several papers describing problems and methods
in use are included in Volume 140, Part I, of the Rapports et Procés-Verbaux of the
International Council for the Exploration of the Sea; see especially Pope (1956) for
a discussion of stratified sampling.

ExaMPpLE 2.10. AGE COMPOSITION OF A LEMON SOLE CATCH OBTAINED BY KETCHEN’S
STRATIFIED SUBSAMPLING METHOD. (From Ricker 1958a.)

Table 2.9, provided by Dr K. S. Ketchen, is a computation of age composition
of a random catch sample (Y) using a subsample (X) stratified by length, for lemon
sole (Parophrys vetulus). Up to 10 otoliths were read in each subsample, the age
frequencies being in the left half of the Table. These are applied pro rata to the actual
numbers in the Y-sample, in the right-hand side of the Table. Totals of these columns
represent the estimate of age composition of the catch. This would be used to estimate
survival rate, recruitment, etc., subject to the various considerations outlined earlier
in this Chapter.

Selection of the best maximum number of fish to be included in each length-
class is a matter of some importance (cf. Gulland 1955a). It depends on the breadth
of the length-classes used and hence the total size of the sample to be “aged”, on the
number of samples actually or potentially available to represent the fishery under
consideration, on the degree of difference between intrasample and intersample
variability, and on the labor involved in taking additional samples.

2.10. EFFECTS OF INACCURATE AGE DETERMINATIONS ON ESTIMATES OF SURVIVAL RATE

The methods and some of the problems of age determination are discussed
briefly in Chapter 9. The most accurate method may differ for different species and
stocks, but all methods are subject to error of greater or less magnitude. When com-
parisons are made, it is commonly found that different individuals will reach different
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conclusions from certain scales, otoliths, etc. Usually 80-909, agreement between
two individuals is considered good, and for older ages of long-lived fish it can decrease
to 509, or less. How does error of this sort affect estimates of survival? Simple numer-
ical models reveal that when true survival rate is constant between ages there is no
consistent bias in either of the following situations: (1) the percentage of positive
and /or negative error in age reading is the same at all ages; and (2) positive and
negative errors are equal at each age, but may increase or decrease with age.

When negative error exceeds positive, and this difference increases with age,
estimated survival rates will in general tend to differ from the true rates. Table 2.10 and
other models show that the size of the difference can vary from a small overestimate to
a large underestimate, depending on the magnitude of the errors and on the true sur-
vival rate. For Model A the error in estimated survival rate is mostly negative, but it is

TABLE 2.10. Two models of effects of error in scale reading on estimates of survival rate (S), for a
population in which true S= 0.5 at all ages. Column 2 shows the true age structure for both models.
Model A: At all ages 109, of scales are read 1 yr too high; at ages 3 through 6, 109, are read 1 yr
too low; at age 7, 20%; at age 8, 30%; and so on. N’ represents the age readings obtained and S’
is the apparent survival rate computed from them. Mode! B: The numbers of scales shown in column
8 are misread too low, the average number of years too low increasing with age: the contributions
of successively older ages to a given age are shown in columns 9-12. (For example, of the 50 misread
scales of age 11, 5 are taken to be of age 10, 20 of age 9, 15 of age 8, and 10 of age 7). N’ and S’
are as in Model A.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Model A Model B
Age N - + + N’ S’ -+ + 4+ + N’ N
3 12800
4 6400 1280 1280 320 6720 0 0 0 0 0 6400
0.500 0.500
5 3200 640 640 160 3360 0 0 0 0 0 3200
0.521 0.547
6 1600 320 320 160 1760 0 8 40 20 10 1750
0.500 0.497
7 800 240 160 120 880 80 80 40 20 10 870
0.455 0.452
8 400 160 80 80 400 120 60 30 15 8 393
0.475 0.395
9 200 100 40 50 190 120 40 20 10 5 155
0.473 0.142
10 100 60 20 30 90 100 5 8 6 3 22
0.478 0.273
11 50 35 10 18 43 50 0 1 3 2 6
0.465 0.167
12 25 20 5 10 20 25 0 0 1 0 1
0.400 0.000
13 12 11 2 5 8 12 0 0 0 0
0.500
14 6 6 1 3 4 6 0 0 0 0
15 3 3 1 3
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not very large in spite of what would appear to be rather large errors in ageing the fish.
Furthermore, at the younger ages the error is zero or in one case positive, so that a
weighted overall estimate of S would differ little from the true value 0.5. The reason
is that there is at all ages some positive error, as well as negative, and the more abun-
dant fish of the younger age of any adjacent pair add importantly to the apparent
number in the older. In Model B all errors are negative (age read too low) and
the error is serious at older ages. The first affected survival estimate (age 5-6) is too
great, the second is almost ““on,” and older estimates rapidly become much too small.
Again a weighted estimate of S for all ages would not be far off the mark; but if the
bias in ageing were not suspected, the investigator would conclude that mortality
rate increases rapidly with age. ,

The most effective method of checking age determinations, when it is feasible,
is probably to observe the progress of a markedly dominant year-class in scale samples
over a period of years. Another method is to release marked or tagged fish, recapture
them after a year or more, and check their growth against their scale pattern and
against the mean growth rate of the population; however, the process of capturing
and the mark or tag can affect both scale structure and growth rate. In any event
great care should be taken to avoid any large consistent bias in age determination.

EXAMPLE 2.11. EFFECT OF INACCURATE AGE READING ON SURVIVAL ESTIMATES
OF Ciscogs. (From Aass 1972.)

The usual method of determining age of ciscoes (Coregonus albula and allied
species) has been from their scales, usually a fairly reliable method. However Aass
(1972) decided to check cisco ages from Lake Mjésa in Norway by using otoliths,
and obtained a very different picture (Fig. 2.14). Not only was the average age much
greater, but there was a marked 3-year periodicity in the appearance of strong year-
classes. This picture was substantiated by results of tagging, and particularly by the
regular-progression of the dominant generations.

Using mean age frequencies obtained from the scales, the estimate of survival
rate between ages 4 and 5 is 0.17; the ratio of age 4 to age 3 is less (0.24), but there
is no assurance that age 3 is fully recruited. The otolith ages of course produce a much
gentler catch curve: its slope becomes gradually steeper from age 3 to age 12. From a
frechand smoothed curve, estimated survival rate decreases from about 0.69 for age
5-6 to 0.38 for age 9-10. Since samples were taken from seines that retained fish of
sizes down to and including all of age 2, probably ages 5 and older were representa-
tively sampled.

2.11. SELECTIVITY OF FISHING GEAR

Almost all kinds of fishing gear catch fish of some sizes more readily than others,
and the subject has been investigated in some detail for certain gears.

2.11.1. GILLNETS. Both theoretical and observational studies of gillnet selectivity
are fairly numerous. Herring (Clupea harengus) have been a common object of study
in salt water, beginning with Baranov (1914) and including papers by Hodgson (1933),
Olsen (1959). Ishida (1962, 1964), and Holt (1963). In fresh water the lake whitefish
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FiG. 2.14. Age frequency histograms for ciscoes of Lake Mjgpsa as determined
from scales (left) and from otoliths (right). (From Aass 1972, fig. 3.)

(Coregonus clupeaformis) has been a favorite species (McCombie and Fry 1960,
Berst 1961, Cucin and Regier 1966, Regier and Robson 1966, and Hamley 1972).
Other contributions are by Baranov (1948), Andreev (1955), Gulland and Harding
(1961), Hamley and Regier (1973), and Peterson (1954).

Most authors have computed only the relative vulnerability of each size of fish to a
given size of net using a unimodal selection curve either approximately or exactly
normal in shape. If two or more mesh sizes were combined into a common selectivity
curve, it was assumed that all meshes caught the same fraction of the fish present at
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their respective modal lengths of maximum vulnerability. However, experimental gill-
netting over many years has shown that really small meshes catch far fewer fish than
somewhat larger ones, whereas fish of the sizes best caught by small meshes must
generally be more numerous than larger ones. Ricker (1949a) and Hamley (1972)
demonstrated this effect quantitatively for whitefish, using the DeLury method of
estimating catchabilities (Section 6.3).

The best study in this field is by Hamley and Regier (1973), who used recaptures
of marked fish to estimate vulnerability of Dexter Lake walleyes (Stizostedion vitreum)
to gillnets. Percentage recaptures increased with mesh size, and they also increased
with fish size considering the gang of nets as a whole. They also found that the walleye
selection curves for each mesh were bimodal, corresponding to two methods by which
these fish were caught, “wedging” and “tangling.” Similar effects have been observed
for other toothy fishes, particularly trout of several species; for example, Ricker
(1942c) found a trimodal pattern for cutthroat trout (Salmo clarki) and char (Salvelinus
malma) in Cultus Lake.

2.11.2. TRAPNETS. A comprehensive study of selectivity of fairly large trapnets in
three Michigan lakes was made by Latta (1959). Ten species of fish were marked by
removal of a fin, and the percentage recapture of each size-class was computed.
From the data presented graphically, the percentage of recaptures tended to increase
throughout the whole length range for rock bass (dmbloplites rupestris), yellow
bullheads (Ictalurus natalis), white suckers (Catostomus commersoni), and (in two
out of three lakes) for bluegills (Lepomis macrochirus). In a third lake bluegill re-
captures were almost independent of size, and this was true of largemouth bass
(Micropterus salmoides) in one lake (if 2 years’ results are averaged). For largemouth
bass in another lake there was a fairly definite indication of a peak of vulnerability
at an intermediate size, and this was true in a single experiment with brown bullheads
(Ictalurus nebulosus). For all species the average size of recaptures was greater than
that of the fish at tagging, though no growth had occurred meanwhile. Using a similar
procedure, Hamley and Regier (1973, fig. 1) found that vulnerability of walleyes
(Stizostedion vitreum) to trapnets increased steeply throughout their whole size range.

It is surprising that traps should be so selective, and particularly that the vulner-
ability of a species sometimes increases right up to the largest individuals present.
The suggestion has been made that this might reflect greater activity on the part of
larger fish, but the observed behavior of large fish in captivity does not support this.
Possibly they are merely more prone to seek out secluded areas, and the entrance of
a trap would qualify.

2.11.3. TRAWLS AND LINES. A rate of fishing independent of age, above some
minimum, would be rather likely in trawl fisheries, and Hickling (1938) in fact found
that rate of return of tags from North Sea plaice (Pleuronectes platessa) tended to
level off above a tagging length of about 25 cm.

In a line fishery for lingcod (Ophiodon elongatus), which begin to be caught at
about 40 cm, there was no great change in rate of recapture of tagged fish in the prin-
cipal size range, 66-90 cm; but among the few fish taken from that size up to 120 cm
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there was some decrease in rate of return — possibly resulting from an increase in
natural mortality at great ages (Chatwin 1958).

Using the utilized-stock method, Fry (1949) and Fraser (1955) found that vul-
nerability increased in sport fisheries for lake trout (Salvelinus namaycush) and
smallmouth bass (Micropterus dolomieui) over a broad range of ages. For the trout
there was a suggestion of subsequent decline in vulnerability among the oldest fish,
ages 10-13 (cf. Example 8.2).

2.11.4. ESTIMATION OF SURVIVAL RATE. Obviously if larger fish are increasingly
vulnerable to a given gear, older fish will tend to be increasingly overrepresented and
hence any estimate of survival rate from age distribution will tend to be too large.
The amount of error decreases rapidly with age, however, because annual length
increments are small among older fish and there is a broad range of fish sizes at each
age. For example, Ricker (1949a) found that there was no consistent change in rate
of removal of whitefish from a small lake by a gang of gillnets over the range 33-51
cm fork length, which included ages from 11 to 26; hence survival estimates were
considered reliable over this range.

Latta (1959, table 5) shows four examples in which a simple catch curve over-
estimated the survival rate by 28-61¢;. However, in the one case where the details
are given the uncorrected survival rate should have been regarded as useless anyway,
because of differences in year—class strength and (possibly) increase in mortality rate
with age: the ratio of age 6 to age 5 is far less than that of age 5 to age 4, and age 7 is
missing completely, although a fish of age 8 did occur. This is not to discount Latta’s
method of estimating a weighted mean survival rate, which depends on tag recaptures
(Chapter 4). In general, bias in catch—curve survival estimates from size-specific
vulnerability seems unlikely to be large among the older fish in a sample, though this
should not discourage efforts to assess it, or to use other more reliable methods of
estimation when they are available. The general effects of changing vulnerability are
discussed in Section 2.5.

~
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CHAPTER 3. — VITAL STATISTICS FROM MARKING:
SINGLE SEASON EXPERIMENTS

3.1. GENERAL PRINCIPLES OF POPULATION ESTIMATION BY MARKING METHODS

Attaching tags to fish, or marking them by mutilating some part of the body,
was first done to trace their wanderings and migrations. Toward the close of the last
century, C. G. J. Petersen (1896, etc.) began the practice of using marked fish to
compute, first, rate of exploitation, and, secondly, total population, of fish living in
an enclosed body of water. These procedures have been widely adopted. The names
usually applied are “sample censusing,” “estimation by marked members,” the
“mark-and-recapture method,” the ‘“Petersen method,” and the “Lincoln index.”

The principle of this method was discovered by John Graunt and used in his “Observations on
the London Bills of Mortality,” first published in 1662 — a work that marks the starting point of
demographic statistics (E. S. Pearson personal communication). Children born during a year were the
“marked” individuals, and the ratio of births to population was ascertained from a sample. About 10
years after Petersen’s first'work, Knut Dahl employed the same procedure to estimate trout popula-
tions in Norwegian tarns. Applications to ocean fishes started toward the end of the first decade of the
century. Sample censusing of wild birds and mammals began rather belatedly with Lincoln’s (1930)
estimate of abundance of ducks from band returns, while Jackson (1933) introduced the method to
entomology.

The principal kinds of estimates which can be obtained from marking studies
are:

rate of exploitation of the population
size of the population

P

survival rate of the population from one time interval to the next; most
usefully, between times one year apart

4. rate of recruitment to the population

Of course not all mark-and-recapture experiments provide all this information;
often only population size is involved. Since about 1950 there has been much activity
in developing a variety of procedures for marking and recovery and, for any given
procedure, there may be a variety of statistical estimates suited to different conditions.
Some of the more comprehensive papers are by DeLury (1951), Chapman (1952,
1954), and Cormack (1969).

The general types of procedure involved are as follows:

1. Single census (Petersen type). Fish are marked only once; subsequently a
single sample is taken and examined for marked fish. Whereas the marking should
ideally be restricted to a short space of time, the subsequent sample may be taken
over quite a long period.
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2. Multiple census (Schnabel type). Fish are marked and added to the popula-
tion over a considerable period, during which time (or at least during part of it)
samples are taken and examined for recaptures. In this procedure samples should be
replaced: otherwise the population is decreasing and the population estimate cannot
refer to any definite period of time — unless, of course, the samples are a negligibly
small fraction of the total population. There is some computational advantage in
marking all fish taken in the samples, but it is not essential.

3. Repeated censuses. Procedures for estimating survival rate from two successive
Petersen or Schnabel censuses were developed by Ricker (1942b, 1945a, b).

4. “Point™ censuses. Samples for marking and for obtaining recoveries are
made at three or more! periods or “points™ in time, these periods being preferably
short compared with the intervening periods. The first sample is for marking only,
the last for recoveries only, and the intermediate one or ones for marking and recovery.
A different mark is used each time, and subsequent sampling takes cognizance of the
origin of each mark recovered. This type of census is well adapted to estimating
survival rate and recruitment.

In experiments using tags, individual fish can be identified each time they are recaptured. In some
insect marking experiments an individual has been given an additional mark each time it is recaptured,
which serves to identify its previous recapture history. Methods for estimating population, survival
rate, and recruitment from this information have been devised by Jackson (1936, etc.), Dowdeswell
et al. (1940), Fisher and Ford (1947), Cox (1949), Leslie and Chitty (1951), Bailey (1951), Chapman
(1951, 1952), Leslie (1952), and others. These methods vary with the kind of grouping of recaptures
used, and with the mathematical model employed; they often require complicated tabulations and
solving complex expressions.

With any of the above four methods, there are two or three possible procedures
in taking the second or census sample.

a. Direct census. In direct censusing, the type usually done, the size of the sample
or samples taken is fixed in advance, or is dictated by fishing success, etc.

b. Inverse census. In inverse censusing, the number of recaptures to be obtained
is fixed in advance, and the experiment is stopped as soon as that number is obtained
(Bailey 1951). This procedure leads to somewhat simpler statistical estimates than
direct sampling. A more important consideration, possibly, is that since the size of
the relative sampling error of any estimate depends mainly on the absolute number
of recaptures made, fixing the number of recaptures determines the sampling accuracy
of the result within fairly narrow limits. Inverse censusing is likely to be most useful
with single censuses, but it can also be applied to multiple censusing (Chapman 1952).

In practice, sampling can be and probably usually is somewhat intermediate
between direct and inverse. An experimenter may have time for up to two weeks
of census sampling, for example, but would be glad to stop earlier if a reasonable
number of recaptures has been taken. However, if he decides to finish at the end of a
certain day, rather than at exactly the time the nth recapture is made, the procedure
is most akin to direct sampling.

1If only two points are used, this method is indistinguishable from the Petersen type.
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C. Modified inverse sampling. A procedure described by Chapman (1952) works
toward a predetermined number of unmarked fish in the sample, but here the only
advantage appears to be statistical convenience.

d. Sequential censuses. If the problem is to find whether a population is greater
or less than some fixed number, sampling can be done by stages and terminated
whenever this point is settled, at any desired degree of confidence. Suitable formulae
are given by Chapman (1952).

Only the better-known, easier, or more practical of the above procedures will be
presented here. The simple Petersen situation is described first, followed by a review
of possible systematic errors, then a description of other procedures.

3.2. PETERSEN METHOD (SINGLE CENSUS)

3.2.1. SIMPLE PETERSEN ESTIMATES. A number of tagged or marked fish are
put into a body of water. Record is then kept of the total number of fish caught out
of it during a year or other interval, and of the number of marked ones among them.
We have:

M number of fish marked

C catch or sample taken for census

R number of recaptured marks in the sample

We wish to know:
u rate of exploitation of the population
N size of population at time of marking
An estimate of rate of exploitation of the population is given by:
R

u= M 3.1

Leslie (1952) shows that this is an unbiased maximum likelihood estimate. Assuming
random mixing of marked and unmarked fish, its variance is found from the binomial

distribution to be:
C/ M
MN\" "N

With large numbers of recoveries, R /C can be used as an approximation for the
unknown M /N, giving:
_R(C-R)

V@) = —\Be

3.2

Similarly, an unbiased estimate of the reciprocal of population abundance
is, by direct proportion:

—_—= = (3.3



The large-sample sampling variance of (3.3) is:

R(C-R)
VAN = 5 (3.4)
The reciprocal of (3.3) is a consistent estimate of N; that is,
MC C
N=—=—
R » (3.5)
with a sampling variance of:
M2C(C - R)
V(N) = X (3.6)

This is expression (2.6) of Bailey (1951). However, values of MC /R are not symmet-
rically distributed, whereas those of R /MC are; thus if the normal curve of error
is used to calculate limits of confidence, it is best to calculate them for 1/N using
(3.4), and then invert them to obtain limits for N.

Confidence limits can be obtained more simply, however, by treating R as a
Poisson or binomial variable (whichever is appropriate), obtaining limits for it directly
from a chart or table (Appendix 1), and substituting these in (3.5).

estimate of N, in that it tends to the correct value as sample size is increased, it is
not quite the best estimate?. This is true whether sampling is direct or inverse. Bailey
(1951) and Chapman (1951) have shown that with ordinary “direct” sampling (3.5)
tends to overestimate the true population. They proposed modified formulae which
give an unbiased estimate in most situations. Chapman’s version is as follows (omitting
-1, which is of no practical significance):

_(M+D(C+D)

N*
R +1

(3.7)

It is usually worthwhile to use (3.7) in place of (3.5) in direct sampling, even though
with large values of R there is little difference.

The large-sample sampling variance for N* in (3.7) is given by Chapman as
approximately equal to:
(M +DXC+1)C-R)  NYC-R)
(R + DR +2) (C+ 1R +2)
Again, however, it is better to obtain approximate confidence intervals from charts

or tables appropriate to the binomial or Poisson distributions, using R as the entering
variable (cf. Example 3.1).

V(N*) =

(3.8)

2That a best estimate does not remain a best estimate when inverted is one of the uncomfortable
facts of statistical life. The same is true between a statistic and any function of it, other than a linear
one. For analogous examples see Sections 2.1 and 11.4.2.
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Expressions (3.3)-(3.8) are applicable whether the fish captured are removed
from the population or whether they are returned to it (Chapman 1952, p. 300).

Bailey’s (1951) expression corresponding to (3.7) differs slightly:

_MC+1)

R+ 1 e

and his expression for the variance is similarly adjusted, but practically these are indistinguishable
from Chapman’s formulae.

For “inverse” sampling — which ceases when a predetermined R has been taken — (3.5) is close
to being an unbiased estimate of N. Nevertheless, a modified formula is slightly better (Bailey, p. 298):

_CM+1)
B R

N 1 (3.10)

3.2.3. STATISTICAL BIAS IN PETERSEN ESTIMATES. Expression (3.7) provides an
unbiased estimate of N if (M + C)>N, so that there is no chance that R might be
zero because of sampling variability (Chapman 1951, Robson and Regier 1964).
If this condition is not met the estimate N* has negative bias. Provided N> 100 this
bias is close to:

~Ne-MC/N (3.11)

For MC/N = 3 the exponential in (3.11) is 0.050, and for MC/N = 4 it is 0.018.
Therefore, in practice, a less stringent condition can be used: that MC be greater

than four times the true population N, in which event the probability of bias will be
less than 29, (Robson and Regier 1964).

Since true N is unknown it is more convenient to have a rule based on an observed
statistic, the number of recaptures (R). For the Poisson situation (i.e. when M /N is
small) the lower confidence limits in Appendix II will indicate the probability of
R = 0 for any observed R, and thus whether systematic bias of this type is likely.
For 959, confidence, true R will not be less than 1 if observed R = 3 or more; and
for 999, confidence this is true when observed R = 4 or more. If M /N is not small,
these limits are somewhat more severe than is necessary. Thus the probability of
statistical bias can be ignored if recaptures number 3-4 or more.

Similar statistical bias exists when very small numbers of recaptures are made with
other kinds of estimates of population, survival rate, and rate of exploitation, de-
scribed in the sections and chapters to follow.

3.2.4. SAMPLING ERROR AND SAMPLE SIZE. Sampling errors for Petersen estimates
are most easily obtained from tables or charts of fiducial limits for the binomial,
Poisson, or normal approximations to the hypergeometric distribution. Suitable
charts have been published by Clopper and Pearson (1934), Adams (1951), and
Davis (1964), while Ricker (1937 and Appendix II here) tabulates limits for the
Poisson distribution: the latter can be used as an approximation for the others, since
they will never give too favorable a picture. The observed number of recaptures R
is entered in the x column of Appendix II, and the 959, or 999, confidence limits
read off. The latter are then substituted for R in (3.5) or (3.7), and corresponding
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Fi16. 3.1. Combinations of number of marks (M) and number subsequently examined for marks
(C) for a series of population sizes (N — curved lines), which will provide Petersen estimates of
N that in 95%, of trials will deviate no more than 25% from the true value of N. (From Robson
and Regier 1964, fig. 5.)

limits for N are obtained. Provided R >4, so that the statistical bias of Section 3.2.3
is improbable, these represent the likely limits of error for the population estimate.

Robson and Regier (1964) have combined statistical bias with sampling error
in a series of charts that show the combinations of M and C (fish marked and fish
examined for marks) that will provide estimates with error no greater than 509,
25%, or 109, of the true value 19 times in 20. The most useful of these, that for large
populations and 259, accuracy, is reproduced here as Fig. 3.1. The expected number
of recaptures when obtaining this degree of accuracy, with 959, confidence, varies
from approximately 25 to 75 for populations from 102 to 109.

Robson and Regier (1964) also discuss in detail the optimum allocation of
resources in Petersen experiments to increase accuracy as much as possible.

ExaMPLE 3.1. TROUT IN UPPER RODLI TARN: A SIMPLE PETERSEN EXPERIMENT.
(From Ricker 1948, slightly modified.)

An early application of Petersen’s method was made by Knut Dahl, beginning
in 1912. He wished to estimate the population of brown trout (Salmo trutta) of some
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small Norwegian tarns, as a guide to the amount of fishing they should have. From
100 to 200 trout were caught by seining, marked by removing a fin, and distributed
in systematic fashion around the tarn so that they would quickly become randomly
mixed with the unmarked trout. Shortly afterward, more seining was done, and the
fraction of marked fish in the catch determined. In the account which I have (Dahl
1919, 1943), the actual numbers of fish marked and recaptured are not given, but
from the resulting estimates for the 1912 experiment in Upper R&dli tarn, the follow-
ing table is prepared, in which these figures are of the right general magnitude:

Total number Number of

of trout marked trout Ratio

In the sample—

Actual number 177(C) S7(R) 0.322

Limits of 959, confidence =~ ... 46-71 0.26-0.40
In the tarn—

Actual number 337(N) 109(M)

Limits of 959, confidence 417-272 ...
Ratio of catch to population ... 0.52
Limits of 959, confidence =~ ... 0.42-0.65

The steps in preparing this schedule are as follows: The ratio of marked to
total trout in the sample is first estimated as 57/177 = 0.322, and by reference to
Clopper and Pearson’s (1934) chart the 959, limits of confidence of this ratio are
0.26 — 0.40. Multiplying these by 177, the limits of confidence for the actual number
of recaptures are 46-71. The best estimate of the number of fish in the population
is now calculated from (3.7) as:

M 41)(C+1) 110 X178
R+ 58

%

= 337

By substituting 46 and 71 for R in the above, the confidence limits for N* are 417
and 272.

In this experiment the product MC = 19,300, which is much more than 4 times
any possible population size; thus bias of the type discussed in Section 3.2.3 is com-
pletely negligible.

Finally, rate of exploitation is u = R/M = 57/109 = 0.52; its range for 959,
confidence is 46/109 = 0.42 to 71/109 = 0.65. In Dahl’s experiment the rate of
exploitation played an important part, for he undertook to fish the tarn until about
half of its fish were removed, as estimated from recovery of marked ones.

3.3. EFFECT OF RECRUITMENT

A straightforward application of formulae 3.1-3.10 is justified only if a number
of conditions are met, chief among which are the following:

1. The marked fish suffer the same natural mortality as the unmarked.

2. The marked fish are as vulnerable to the fishing being carried on as are the
unmarked ones.
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3.  The marked fish do not lose their mark.

4. The marked fish become randomly mixed with the unmarked; or the dis-
tribution of fishing effort (in subsequent sampling) is proportional to the number
of fish present in different parts of the body of water.

5. All marks are recognized and reported on recovery.

6. There is only a negligible amount of recruitment to the catchable population
during the time the recoveries are being made. ‘

All of these conditions are of general applicability to experiments of this type,
and are discussed in more detail below. Number 6 is essential to the estimate of
population, but not to estimating rate of exploitation. Notice that natural mortality
will not interfere with the accuracy of the results, as long as it is the same for both
marked and unmarked groups. The population estimate obtained applies to the time
at which the marked fish were released.

Of the requirements above, the condition that recruitment be negligible is one
that often will not be met. Where it is not, the estimate of population is too great.
A correction for this effect can be applied by one of several methods.

1. If the population being estimated is divided into age-groups which overlap
only a little in length, then by choosing the lower limit of size of fish to be marked
at the trough between two age-groups, a boundary can be established whose position
will advance as the season progresses and the fish grow larger. In this way there will
be little or no recruitment into the marked size range, and C and R should remain
in strict proportion throughout the time recoveries are obtained; always provided
that the marked fish grow as much as the unmarked, and that they suffer the same
mortality.

2. If the age-groups in the fishery overlap so thoroughly that no such point of
demarcation can be found, the growth rate of the fish throughout the season can
sometimes still be estimated by scale-reading. Suppose, for example, that we wish an
estimate of the fish 200 mm long or longer as of July Ist. Assume for the moment
that a sufficient number of fish can be marked immediately prior to July 1 to give
adequate recoveries later. Take the scales from a sample of fish caught near July 1
and ascertain the mean growth increment, from the time of the last annulus, of fish
of the two age-classes whose mean length lies nearest to 200 mm. From time to time
throughout the fishing season take additional samples and determine the increment
of these same age-classes. By applying these increments proportionately, the average
seasonal growth of fish which on July 1 were 200 mm long can be determined with
fair accuracy. Now by including only fish greater than this size in the daily catches
(C), the effect of recruitment is avoided, and the population estimate consequently
will be a true one.

3. When information on growth rate is not obtainable in the detail necessary
for the method just outlined, an approximate correction, which is far better than
none at all, can often be made. First calculate the per annum rate of growth of fish
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of the appropriate size, using scales from a single group of fish taken at any time
(though consideration must be given to possible effects of selective sampling, cf.
Section 9.1.3). Then divide by the fraction of the growing season that is concerned,
i.e. from July 1 to the successive days of the fishing season on which fishing is done.
Add these successive values to 200 mm and proceed as above.

The fact that recoveries are being made over a considerable period of time,
rather than on a single day or other short interval, is in itself no obstacle to the accurate
estimation of population, after the effects of recruitment have been excluded.

If it were necessary to mark fish for a considerable period prior to July 1 in
order to get a sufficient number, the same procedure as described above could be
extended backward. That is, fish less than 200 mm could be marked in May and
June, the exact minimum size in successive weeks to be determined by an examination
of rate of growth prior to July 1. It is not essenfial that such smaller fish be used,
provided the total mortality rate remains substantially the same over the length
range in question, but it will provide more fish for marking than would otherwise be
available. In either event there is a disadvantage in extending the marking period
too far backward, for natural mortality will remove some of the marked fish before
July 1 and make subsequent population estimates too great. If necessary, approximate
corrections can be made for this by deducting the estimated mortality for the fraction
of the growing season concerned.

4. A method that does not involve age or growth estimates has been described
by Parker (1955). After a marking, addition of new fish to the catchable population
“dilutes” the marks, and the ratio of recaptures to total sample, R,/C,, tends to fall
off with time, ¢. If this fraction is plotted against time and a line fitted, the intercept
at + = 0 is an estimate of R,/C, at time of marking, which can be divided into the
number marked, M, to get an estimate of initial population. It may be preferable
to use some transformation of R,/C, in the graph: the logarithm may be convenient,
or the arcsin of its square root as used by Parker.

This method is most useful when the experiment extends over a sufficient period
of time for recruitment to be quite pronounced. An estimate of error in the trans-
formed R,/C, can be made by calculating the standard deviation from the regression
line and then the standard error of the intercept at r = 0 (see Snedecor 1946, section
6.9). Transformed back to original units and converted to population by dividing
into M, these limits will generally be wider than those based on Poisson or hyper-
geometric theory. They will also be more realistic, since the variation about the regres-
sion line may be greater than expected because of non-random distribution and
sampling.

ExamMPLE 3.2. BLUEGILLS IN MUSKELLUNGE LAKE: A PETERSEN EXPERIMENT

WITH RECRUITMENT ELIMINATED BY MEANS OF LENGTH ANALYSIS. (From Ricker 1948,
slightly modified.)

Figure 3.2 shows the length distribution of bluegills (Lepomis macrochirus)
handled in a marking experiment on Muskellunge Lake, Indiana (Ricker 1945a).
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F1G. 3.2. Length frequency distribution of bluegills caught
in traps (left) and by fishermen (right) in Muskellunge Lake,
Ind., 1942, by semimonthly periods. Each ordinate division
represents 20 fish. The vertical broken line represents the
minimum size of fish marked, and the minimum size which
could legally be taken by fishermen. Ordinate — frequency;
abscissa — length (cm).

The population was sampled with two kinds of traps, which took small fish and larger
fish, respectively; although unfortunately the intermediate length range, 60 to 90 mm,
was poorly sampled. From length frequencies and scale-reading the stock could be
divided into age-groups fairly well, as shown by the arrows in Fig. 3.2. Fish of 123
mm and longer were marked. Recaptures were obtained in traps and from tishermen’s
catches from June 16 to September 7. From the figure, the legal-sized population (125
mm group and up) at the beginning of this period contained a majority of 3-year-old
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and older fish, but by the end of summer the 2-year-old group had almost completely
grown into the fishery, and the older ones contributed only a minor share of the
catch. The point of division moves from between the 135- and 140-mm groups in
May to between the 165- and 170-mm groups in the latter part of August, advancing
5 mm each half-month. The fact that the marked fish grew as rapidly as the unmarked
was shown by the increase in the minimum size of marked fish recaptured of
about 5 mm each half-month following June 15. (In a later experiment different
marks were used for fish greater and less than 142.5 mm in early June, with the same
result.)

The data of the experiment are summarized in Table 3.1. Considering first the
fish of age 3 and older, the ratio of marked to unmarked is about the same in traps and
in fishermen’s catches, so the combined estimate of 28 /727 = 0.0385 gives the mean
fraction of marked ones in the population. The estimated population as of the first
half of June is therefore 140/0.0385 = 3640; or better, from (3.7), N* = 141 X
728 /29 = 3540. Since MC is much greater than 4N, there is no appreciable statistical
bias, though there is a fairly large random sampling error.

The estimate 3540 is doubtless slightly high because no account is taken of natural
mortality during the short period marking was in progress. An approximate
correction for this could be made, but it would be unlikely to exceed about 57,.

Rate of exploitation by fishermen is estimated very simply from Table 3.1 as
u = 23/140 = 169,. The correction just mentioned would slightly increase this esti-
mate, as would an allowance for fish caught by the few boats whose catches were
not checked.

TasLE 3.1. Bluegills marked prior to June 16, 1942, in Muskellunge Lake; number of recaptures;
and the catch from which recaptures were taken.

Half-month period 6-11 7-1 7-11 8-1 8-11 9-1 Total

A. Age 3 and older fish: 140 marked

Traps
Recaptures................... 3 0 1 0 1 ... 5
Totalcatch................... 35 50 21 10 12 . 128
Fishermen
Recaptures. . ................. 3 9 8 2 1 0 23
Totalcatch................... 120 230 165 39 36 9 599

B. Age 2 fish: 90 marked, of legal size in early June

Traps
Recaptures. . ................. 2 0 0 0 0 2
Total catch (legal in early June).. 77 25 10 5 8 e 125
Total catch (whole age-group)... 487 187 80 21 20 cee 795
Fishermen
Recaptures. .................. 1 5 6 1 4 0 17
Total catch (legal in early June).. 44 96 92 44 80 19 375




Turning now to the age 2 fish of Table 3.1, we observe that the ratio of marked
to unmarked “legal” fish is smaller in trap recaptures than in fishermen’s, but not
significantly so. Combining the two, the best estimate of population in early June,
from (3.7), is N*= 91 X 501/20 = 2280. The rate of exploitation by fishermen is
u = 17/90 = 199, not significantly different from that for larger fish.

We can also try to estimate the size of the whole of the age 2 group of fish from
the trap records, by assuming the marked and unmarked portions to be equally
vulnerable to trapping. From the table, the whole age-group should be 795 /125 = 6.36
times as numerous as is the part of it which was of legal size in early June (compare
the relative sizes of the parts of the age-group in June 1-15 on either side of the dotted
line in Fig. 3.2). The whole age 2 brood is therefore estimated as 6.36 X 2280 =
14,500 fish.

3.4. EFFECTS OF MARKING AND TAGGING

3.4.1. DIFFERENTIAL MORTALITY. A frequent effect of marking is extra mortality
among marked fish, either as a direct result of the mark or tag, or indirectly from
the exertion and handling incidental to marking operations. In either event recoveries
will be too few to be representative; thus population estimates made from them will
be too great and rates of exploitation will be too small. For example, Foerster (1936)
found that yearling sockeye salmon (Oncorhynchus nerka) marked by removal of the
ventral fins survived to maturity only about 389, as often as did unmarked ones.
Foerster’s method of estimating and correcting for this error depended on special
circumstances of the migratory behavior of the salmon, so it is usually necessary
to look to other methods. One approach is to compare returns from different kinds
of tags or marks. If one method of marking obviously involves more mutilation of
the fish than another, yet both marks are recaptured with equal frequency, then
‘neither is likely to be producing any significant mortality. The opposite result, how-
ever, while suggesting that mortality is caused by the more severe procedure, would
not necessarily exonerate the milder one. Neither result would shed light on effects
of capture and handling, as distinct from the marking proper. When fish are being
tagged, and are more or less obviously bruised or abraded in the process of capture,
it is possible and useful to keep a record of the degree of injury and apparent vigor
for each fish separately. When recaptures come in, these can be checked against the
record to see if the less vigorous fish are less frequently retaken.

Both of the above checks were made in an experiment on Shoe Lake, Indiana
(Ricker 1942b). Half the bluegill and other sunfishes (Lepomis spp.) were marked
by removing the two pelvic fins; the other half were given a jaw tag in addition to
the mark. It turned out that tagged fish were retaken as frequently as untagged
in traps, but in anglers’ catches they were much less numerous than untagged ones;
this situation lasted through the second summer of the experiment. Among tagged
fish, there was no association between rate of recapture and an estimate of trap
damage based chiefly on the extent to which the tail was split. Because the tag pro-
duced a rather serious and prolonged lesion, while the fin scars and tail membranes
healed quickly, it was concluded that trapping, handling, removing the fins, and even
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the presence of the tag all resulted in very little or no mortality; but that the tag,
presumably by interfering with feeding, vitiated estimates of population made from
recoveries of line-caught fish. On large-mouthed fishes, however, the jaw tag interferes
much less with normal feeding.

Another disadvantage of jaw tags, doubtless related to the above, was that
they reduced the growth rate markedly in all species of fish on which they were used.
This is not too important, perhaps, since the number on the tag makes it possible
to identify the size class to which the fish belonged when tagged. Fortunately, when
medium-sized fish are marked by removing a fin or fins, no such retardation of growth
occurs (Example 3.2; Ricker 1949b).

3.4.2. DIFFERENCES IN VULNERABILITY OF MARKED AND UNMARKED FISH. A more
insidious source of error is a tendency for marked or tagged fish to be either more,
or less, vulnerable to fishing than are native wild fish. This may result from several
causes.

1. If the fish used were not originally part of the population being estimated,
they may obviously behave differently, whether or not they are marked or tagged.
This consideration usually makes hatchery-reared fish, or wild fish from strange
waters, useless for estimating native populations.

2. When tags are used, the tag itself may make a fish more, or less, vulnerable
to fishing. The jaw-tagged bluegills mentioned above are a case in point: the tagged
ones were much less vulnerable to angling. Another example is of salmon tagged
with two disks joined by a wire passing through the body. Though excellent from
several standpoints, these “Petersen disks” made the fish more vulnerable to gillnets
than untagged fish, because the twine caught under the disk.

3. Of more general applicability are differences in behavior as a result of tagging
or marking. Capturing and marking a fish subjects it to physiological stress (Black
1957 and many subsequent authors), and possibly psychological disturbance as well.
Thus it is not surprising to find them behaving differently afterward, for a longer or
shorter period. For example, marked centrarchids, when first released, usually swim
down and burrow into the weeds. The same tendency, if it persists, might make them
more apt to enter a trap funnel than an untouched fish. Any fish, after marking, may
be “off its feed”, and thus less likely to be caught by methods involving baited hooks.
If marking makes a fish less inclined to move about, it will be less apt to be caught
in fixed gear like traps or gillnets, but it may be more likely to be caught in moving
gear like seines or otter trawls. With other fish a tag may be a stimulus resulting in
increased or more erratic movement for some days or weeks. For example, Dannevig
(1953, fig. 3) found that tagged cod were retaken by gillnets with rapidly decreasing
frequency over the first 15-20 days after tagging, but during the same period recaptures
from hook gear remained steady (1948) or actually increased (1949).

Effects of these sorts will generally be hard to detect, and hard to distinguish
from actual mortality due to tagging. Rate of recapture in successive weeks or months
after tagging may provide suggestive information. So may comparisons of recaptures
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by different methods of fishing, for vulnerability to one kind of gear may be affected,
but not to another, as in the case of the jaw-tagged sunfish or the cod mentioned
above. What makes the use of these criteria difficult is that ordinarily recaptures are
none too numerous, and their limits of sampling error may be so wide that significant
systematic errors are hard to demonstrate.

ExampLE 3.3. CORRECTION FOR EFFECTS OF TAGGING ON VULNERABILITY OF
CHUM SALMON IN JOHNSTONE STRAIT, B.C. (From Ricker 1958a, after Chatwin 1953.)

Chum salmon (Oncorhynchus keta) were tagged at two sites along their migration
route from Queen Charlotte Sound through narrow 100-mile-long Johnstone Strait
into the Strait of Georgia (Table 3.2). The fish moved from Area 12 (upper Johnstone
Strait) through Area 13 (lower Johnstone Strait), and were tagged about midway
along each Area.

TABLE 3.2. Chum salmon tagged and recovered in Upper Johnstone Strait and Lower Johnstone
Strait, with estimated percentage returns for fish entering the strait.

Percentage recovery by localities

No.
Tagging locality tagged Area 12 Area 13 Other Unknown  Total
Area 12.................... 1733 15.98 10.09 11.74 1.73 39.54
Area 13.................... 1952 0.15 14.65 14.81 1.33 30.94
Entrance of 12 (computed).. .. cee 13.10 10.44 12.81 1.45 37.80

Recaptures of Area 12 fish were expected to be about twice as great in Area 13
as in 12, since they were exposed to only half of the Area 12 fishery and there was
about the same amount of fishing in each Area. In fact, however, more were caught in
12 than in 13 (15.98% and 10.09%, respectively). This fact, plus a consideration of
times of tag recoveries, indicated that the tag or the tagging procedure delayed
the fish’s movement by a few days. (Similar effects have been observed in river tagging;
see Killick 1955.) :

For estimating rate of exploitation, the data of the chum experiment have two
defects: (1) there is the extra vulnerability due to the tagged salmon’s delay in resuming
migration; and (2) it would be desirable to refer the results to a (hypothetical) tagging
point for fish as they first enter the fishery at the upper end of Area 12. Chatwin made
both these adjustments in a single operation, by assuming that fish tagged in Area 13
were delayed to the same degree as those tagged in Area 12. The rate of recovery of
tagged fish entering Area 13 is, from Table 3.2, 10.09 /(I - 0.1598; = 12.019,; as
compared with 14.659, recovery of those tagged in Area 13. If the same relation
applies in Area 12, where 15.987%, of local tags were retaken, the corrected rate of
exploitation in Area 12, applicable to untagged fish entering the Area, is:

12.01 X 15.98/14.65 = 13.109,
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Of the 86.909, which remain after traversing Area 12, 12.019 are taken in Area 13,
or 10.4497 of the original arrivals to the fishery. In a similar way the recaptures below
Area 13, of fish entering Area 12, were estimated as 12.819,. These three percentages
are then added, and increased by the small percentage of “‘unknown” recaptures,
o obtain a final representative rate of exploitation of 37.89,. However, there were a
few other complications in the situation, one being the possibility of incomplete re-
porting of tags recaptured.

In this experiment only the rate of exploitation could be estimated, and not
the total population, because in the lower Strait of Georgia the Johnstone Strait
chums became mixed with others, and the catch statistics cannot distinguish them by
origin.

3.5. Loss oF MARKS OR TAGS

Another source of error in population estimates concerns the tags or marks
themselves. Tags have been placed, at one time or another, on many different parts
of a fish. The conventional strap tag is usually attached either at the base of the tail
fin, on the gill cover, or around the lower or upper jaw. Tags attached with wires
are usually run through the flesh near or beneath the dorsal fin. Visceral tags are
inserted into the body cavity. Whatever tag or tagging site is used, it is important
that the attachment be reasonably permanent, if results of the experiment are to be
used to estimate population abundance. Evidence of nonpermanent attachment can
sometimes be had by examining a sample of the catch closely, to detect scars left by
shed tags.

When fish are marked, rather than tagged, a similar loss of the mark may occur.
An early method of marking, used by Petersen on plaice, was to punch holes in the
dorsal fin. For more normally-shaped fish the usual method, in fresh water at least,
is to remove one or more fins. Many fishes possess considerable power of regeneration
of fins, especially when they are cut not too close to the base. I have seen regenerated
pectoral fins of large crappies (Pomoxis annularis) which were perfect except for a
certain waviness of the rays; these had been clipped about one-fifth way from the
base a year earlier. Experience in Indiana with post-fingerling largemouth bass
(Micropterus salmoides), black crappies (Pomoxis nigromaculatus), and a variety of
sunfishes (Lepomis), bullheads (Ictalurus), and yellow perch (Perca flavescens) showed
that the pectoral fins did not regenerate at all, and the pelvic fins usually did not,
when cut as closely as possible to the base. At most, the pelvic fins regenerated im-
perfectly, so they could be distinguished by even a quick inspection, and very rarely
did both fins of a pair regenerate significantly.

For really young fish, results have been more variable. Young Indiana bass,
50 to 75 mm long when clipped, exhibited at most a very imperfect regeneration
of pectoral or pelvic fins over a period of two or three months in ponds, or up to
eight months in aquaria (Ricker 1949b). However, Meehan (1940) reported that
young largemouth bass marked in Florida usually regenerated closely-clipped pectoral
and ventral fins perfectly within a few weeks. Possibly this is associated with more
rapid growth in southern waters. The anal and soft dorsal fins of even large
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centrarchids, however, regenerated quickly and often practically perfectly, no matter
how closely cut.

In salmonid fishes regeneration is apparently less easy, and dorsal, anal, and
adipose fins, as well as the paired fins, have all been used with good results. Some
regeneration may occur, particularly of the adipose, but it is practically always
imperfect, unless the cutting is done when the fish are very small. It is comparatively
easy to check on the extent of fin regeneration by keeping a number in captivity, or
by sampling wild marked stock at frequent intervals, or by using two unassociated
fins for the mark.

A source of error similar to regeneration is the natural absence of fins from wild
fish. Among Pacific salmon their frequency evidently varies from stock to stock
and from year to year (Foerster 1935; Davidson 1940; Ricker 1972, p. 54). They can
be numerous enough to complicate interpretation of single-fin experiments when
recoveries are obtained at low incidence over a wide area. Other kinds of fish have
been less studied from this point of view, but I have never seen naturally-missing fins
among spiny-rayed fishes in fresh water.

3.6. NON-RANDOM DISTRIBUTION OF MARKS AND OF FISHING EFFORT

To make a marking experiment representative, either the marked fish, or the
total fishing effort, must be randomly distributed over the population being sampled.
Consider a population consisting of 10,000 fish in each of two halves of a lake, 20,000
in all. Twice as many traps are set in one half as in the other, so that, both for marking
and for recoveries, one end is sampled twice as efficiently as the other. In an experiment
of the Petersen type, 1/5 of the fish at one end are marked, and 1 /10 of those at the
other. Similarly, after mixing of the marked fish into the unmarked, 1 /5 and 1/10,
respectively, are taken and the marked fish among them recorded. Eliminating sam-
pling error, the result is as follows:

First half Second half Total
Actual population (N).. 10,000 10,000 20,000
Number marked (M).... 2,000 1,000 3,000
Sample taken (C).......... 2,000 1,000 3,00C
Recoveries (R).............. 400 100 500

If the data are treated as a whole, the estimated population is 3000 X 3000 /500 =
18,000, which is 109, low. This error can be avoided, however, by considering the
two halves of the lake separately and calculating the population of each. When
there is any reason to suspect unequal fishing effort in two or more parts of a lake,
it will be valuable to divide the experiment into parts in this way, as was done for
example by Lagler and Ricker (1942). This type of error always tends to make the
result of a common calculation less than the sum of the separate calculations.

C. H. N. Jackson seems to have been the first to point out that if either the mark-
ing or the subsequent sampling is done randomly,? the estimate obtained is not biased.

3The randomness is relative to the population structure; it need not necessarily exist in any geo-
graphical sense.
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For example, if after the non-random marking in the illustration above a random
sample were taken, say of one-fourth, the total number of fish in it would be 5000,
and the number of marked fish 750, giving a population estimate of 3000x 5000,/750 =
20,000, the correct figure.

To play safe, it is well to try to make both marking and subsequent sampling
random, even though either one singly would suffice. Proceeding in this way, it was
not difficult to obtain a representative picture of the populations of most of the spiny-
rayed fishes of small Indiana lakes (Ricker 1942b, 1945a, 1955a; Gerking 1953a).
Other information concerning the randomness of the procedure can be obtained
by comparing the ratio of marked to unmarked fish caught by different types of gear,
or gear set in different situations, provided the gear does not tend to select marked
from unmarked fish, or vice versa. Schumacher and Eschmeyer (1943) tested the
randomness of distribution of their marked fish in a pond of 28 hectares, by draining
it and recovering a large part of the total fish present. They found the ratio of marked
to unmarked fish, of several species, to be little different from what they had previ-
ously computed from their trap samples, but bullheads (Ictalurus spp.), carp (Cyprinus
carpio) and bigmouth buffalo (Ictiobus cyprinellus) showed significant or near-
significant differences. This they attribute to the fact that a large part of the pond
was too shallow for their nets, the fish in question being presumably insufficiently
active to attain a random distribution during the two weeks of their experiment.
Similarly Lagler and Ricker (1942) found little mixture of the fish populations of
two ends of a long narrow pond, over a two-months’ period. Additional tests have
been reported by Carlander and Lewis (1948), Fredin (1950), and others.

A salutary measure, when it is feasible, is to take the sample in which recaptures
are sought by using an entirely different kind of gear from that used to catch fish for
marking. For example, if fish for marking are taken in traps, and recoveries are
obtained by angling, there is little likelihood of similar bias being present in both
gears.

Large lakes, river systems, and ocean banks present even more difficult problems.
Many ocean fisheries cover so wide an area that representative tagging of the whole
population is impossible, while fishing effort may vary greatly from bank to bank.
This makes it necessary to select smaller units for examination, in which event the
problem of wandering may be troublesome.

River fish also are amenable to enumeration by Petersen’s method, if they are not
of a roving disposition; and as a matter of fact their populations often prove to be
surprisingly stable (Scott 1949; Gerking 1953b). Adjustments for a small amount of
movement were made by these authors, this being determined by sampling at sites
above and below the section under consideration.

The first report of an application of the Petersen method to a migrating fish
was apparently by Pritchard and Neave (1942). Coho salmon (Oncorhynchus kisutch)
were tagged at Skutz Falls on the Cowichan River, British Columbia, and recoveries
were made in tributaries of Cowichan Lake, many miles upstream. Close agreement
of the tagged:untagged ratio in widely-separated tributaries provided evidence that
tagging had been random with respect to the destination of the fish and to their
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expectation of recovery. Howard (1948) described a more extensive study with sockeye
salmon (O. nerka) at Cultus Lake, British Columbia, noting various kinds of hetero-
geneity in the data and the procedure necessary for a reasonably reliable result.

3.7. UNEQUAL VULNERABILITY OF FiSH OF DIFFERENT SIZES

Unequal vulnerability of different sizes of fish to fishing gear is a source of
systematic error in population estimates similar to that just discussed. It can be
illustrated by the same numerical data as used in Section 3.6, putting, in place of the
two halves of the lake, two size groups of fish, one twice as vulnerable to fishing as
the other. Detection of possible unequal vulnerability can be accomplished by com-
paring the rate of recapture of marked fish of different sizes, when enough recaptures
are made to minimize the effects of sampling error. However, differential mortality,
or different behavior of marked fish as compared with unmarked, might give a similar
picture if it affected, for example, small fish more than large ones.

In general, it is likely that variation in vulnerability with size, though a common
enough phenomenon, will not usually be a serious problem. For one thing its effects
can be minimized by excluding from consideration fish near the limits of vulnerability
to any given type of fishing gear, or by using less selective types of gear for experiments
of this sort, or by dividing the fish into two or more size groups. Even in the example
of Section 3.6, which probably represents a rather extreme situation, the
bias in population estimate was only 109,. Cooper and Lagler (1956) found that the
efficiency of an electric shocker varied from about 79 for 3-inch trout up to 409, for
11-inch ones; even so, a Petersen estimate made for the whole population was only
309 low. Similarly, for Seber-Jolly population estimates (Section 5.4), Gilbert (1973,
fig. 3, 4) illustrated the negative bias obtained for a number of mixtures of fish having
different catchabilities.

What should always be avoided is the combining of data concerning two or more
species to make a common estimate. There may sometimes be a temptation to do this,
when data are available for two or more species of similar kind and size, with only a
few recaptures for each; but obviously different species may differ greatly in vulner-
ability over the whole size range of both, and consequently such a combined estimate
can be much too low. Thus in small Indiana lakes the redear sunfish (Lepomis micro-
lophus) is about 10 times as vulnerable to trapping as is the similar bluegill (L. macro-
chirus), while its abundance is usually about a fifth of that of the bluegill (Ricker 1945a,
1955a). In an experiment based wholly on trap data, the number of redears marked
would be twice the number of bluegills, and the number of marked redears recaptured
would be 20 times the number of marked bluegills. A calculation similar to that of
the last section will show that if the two species were to be treated as a unit, the
resulting population estimate would be less than the combined population of the
two species by 64%;.. An example is provided by Krumholz (1944), who found that
the sum of the estimates of the population of bass (Micropterus), bluegills, and
pumpkinseeds (Lepomis gibbosus) in a small lake, when calculated separately, was
19,080, whereas the figure obtained from an estimate made by lumping all species
together was 9700.
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ExaMPLE 3.4. PLAICE PLANTED IN THISTED-BREDNING: A PETERSEN EXPERIMENT
WITH UNEQUAL VULNERABILITY BY SIZE. (From Ricker 1948.)

Petersen (1896, p. 12) marked 10,900 out of 82,580 plaice transported into
Thisted-Bredning, one of the expansions of the Limfjord, by punching a hole in the
dorsal fin. These fish were of almost commercial size and were available to fishermen
the same year. Two samples of plaice from the fishery were examined, 1000 in all,
of which 193 had the mark. Now this is a curious result, for the fraction of marked
fish in the sample (0.193) is greater than in the original number transported (0.132);
whereas, if any native fish at all were present in Thisted-Bredning, we should expect
the fraction of marked ones in the sample to be smaller.

To see if the difference is greater than could be ascribed to sampling error, we
proceed as follows:

Limits
of 959,
Transported In the sample confidence
Total number......................... 82,580 1000
Number of marked ones........ 10,900 193 168-222
Ratio............icooii 0.132 0.193 0.168-0.222

Only once in about 40 times, on the average, would a similar sample have a frac-
tion of marked ones as low as 0.168, whereas the actual fraction put in was 0.132. We
may accordingly conclude, as did Petersen, that the experiment does not wholly
meet the requirements of random sampling. A possible disturbing factor would be,
for example, a tendency for markers to select larger fish for marking, combined with
a tendency for larger fish to be more quickly caught by fishermen than smaller ones.
Though there is thus an element of uncertainty in the actual determination, there is
no reason to question Petersen’s conclusion that the Thisted-Bredning plaice were
almost all of imported origin.

Notice that the rate of commercial exploitation cannot be calculated in this ex-
ample without knowing either the total number of fish, or the total number of marked
fish, which were removed from the broad. Petersen did make estimates of rate of
exploitation, ‘but for this he used tagged fish.

ExaMPLE 3.5. A PETERSEN ESTIMATE OF THE LEMON SOLES OF HECATE STRAIT:
ADJUSTMENTS FOR SIZE DIFFERENCE IN VULNERABILITY, AND FOR MIGRATION. (From
Ricker 1958a, after Ketchen 1953.)

Ketchen (p. 468) tagged and released 3003 English soles (Parophrys vetulus)
into a population being actively fished in Hecate Strait, British Columbia. Recaptures
were made by commercial boats. However, the average length of the commercial
catch was somewhat greater than that of the group tagged. To obtain an estimate
of the stock of commercial sizes, the number of tags released was reduced by an
approximate factor obtained by superimposing the two frequency distributions
(Fig. 3.3). The lined area of the graph includes 23.9 “‘per cent units,” so the number
of tags put out was reduced by this percentage, to 2285. (Of these, 30 had been retaken
before the start of the period shown in Table 3.3.)
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Fic. 3.3. Length frequency distributions of lemon soles taken by the

commercial fishery, and of those tagged and released, as percentage.

The lined region comprises 23.99, of the area of either polygon, and

represents the percentage by which the number of tags must be reduced

to obtain the number “effectively” tagged for this fishery. (From
Ketchen 1953, fig. 3.)

Two factors affected the representativeness of the recoveries. First, the stock
was moving gradually northward, so that new fish were entering the fishing area and
old ones (including tagged ones) were moving out. Secondly, tagging was done from
a single boat and the tagged fish, whether from their position or their behavior, were
temporarily less catchable than the untagged ones. The latter effect was indicated
by disproportionately few recaptures made in the first few days after tagging. Both
effects tend to make for too large an estimate (of the population present at time of
tagging), but the first increases in importance with time, whereas the second decreases.
Consequently, from a computation of population at two-day intervals (Table 3.3),

TABLE 3.3. Petersen estimates of a lemon sole population, from recaptures made at 2-day intervals.

Tags Total “Effective” Population
recap- fish no. of tags estimate

Interval tured caught at large (from expression 3.7)

R C M N

pieces pieces pieces millions

1 19 81,000 2255 9.1

2 19 46,400 2236 5.2

3 27 67,900 2217 5.4

4 41 132,100 2190 6.9

S 74 173,600 2149 5.0

6 45 102,500 2075 4.6

7 50 118,800 2030 4.7

8 60 146,300 1980 4.7

9 47 127,600 1920 5.1

|
|
t
1]
|
|
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it is possible to select the low point as the best available estimate of the stock on
the grounds when tagged. This can be taken as 4.7 million fish of commercial size
(average, 0.9371b), or 4.4 million pounds — an estimate which is still probably
somewhat high. For a different estimate of this population, see Example 6.3.

3.8. INCOMPLETE CHECKING OF MARKS

It need hardly be added that incomplete discovery or return of tags or marks
can lead to serious error. When fish are examined by observers employed especially
for the purpose, or by efficient mechanical devices for detecting metal tags, this
danger is minimized. Often, however, reliance must be placed on commercial or sport
fishermen to turn in records. Experience shows that this is almost certain to give
incomplete returns — varying a great deal, of course, with local interest, publicity
given to the experiment, the amount of handling the fish get, the type of tag or mark
used, and the size of the reward offered if any. Cash rewards are undoubtedly
a great help, but they tend to be expensive and have been utilized chiefly in commercial
fisheries. The same principle has been applied to sport fisheries by using returned
tags as tickets in a sweepstakes, with the prizes donated by local merchants or sports-
men’s organizations. Whatever type of inducement is used to encourage non-profes-
sional reporting, it will always be desirable to have a substantial part of the catch
examined by trained observers, if this is at all possible.

3.9. MuLTIPLE CENSUSES

3.9.1. GENERAL CONSIDERATIONS. During the mid-1930’s David H. Thompson
in lllinois and Chancey Juday in Wisconsin began making population estimates from
experiments in which marking and recapture were done concurrently. Neither pub-
lished his results, but Dr Juday interested Zoe Schnabel (1938) in a study of the theory
of the method.

Strictly speaking, the method requires that population be constant, with no
recruitment and no mortality during the experiment; but it is often useful even if
these conditions are only approximately satisfied. The following information is
available:

M, total marked fish at large at the start of the rth day (or other interval),
i.e. the number previously marked less any accidentally killed at previous
recaptures.

M ZM,, total number marked.

C. total sample taken on day 7.

R, number of recaptures in the sample C,.

R ZR,, total recaptures during the experiment.

The theory of this situation has been discussed by Schumacher and Eschmeyer,
De Lury, Chapman, and others. We wish to estimate N, the population present
throughout the experiment.
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3.9.2. MEAN OF PETERSEN ESTIMATES. The simplest approach is to use the results
for each day (or other short interval) for a Petersen estimate. (The minimum number
of recaptures should preferably be 3 or 4, so as to avoid the statistical bias described
in Section 3.2.3.). The mean of these Petersen estimates is taken as the estimate of N,
and the differences between each day’s estimate and the mean will provide an estimate
of the standard deviation and standard error of the mean. The principal disadvantage
of this procedure is that a series of estimates of generally increasing reliability is
treated as though they were uniformly reliable. The advantage lies partly in the fact
that the method provides an estimate of error based on observed variability (rather
than a theoretical figure based on the assumption of random mixing); Underhill (1940)
used it for this purpose, even though he rightly felt that expression (3.15) below
provided a better estimate of the population. Another possible advantage of this
approach is that the series of estimates can reveal trends that might indicate departure
from the basic postulates above.

3.9.3. SCHUMACHER AND ESCHMEYER’S ESTIMATE. Consider a line fitted to values
of R,/C, plotted against M,, with the restriction that it go through the origin; the
slope of this line is an estimate of 1/N. The best estimate of 1/N is obtained if each
point is weighted as C,, and this leads to the estimate:

1 Z(MR)

N SoaD (3.12)

The reciprocal of (3.12) is an estimate of N. For the variance of (3.12), the basic
datum is the mean of the squares of deviations from the line of R,/C, against M.,
given by Schumacher and Eschmeyer as:
@ = Z(RIC)- BRM)? Z(CMD
m-—1

(3.13)

where m is the number of catches examined. However, instead of computing confidence
limits directly for N, as Schumacher and Eschmeyer do, it is better to compute them
for the more symmetrically distributed 1/N (DeLury 1958). The variance of 1/N,
which is a regression coefficient, is:

52

_— 3.14
SCM? (.14

For computing limits of confidence for 1 /N from (3.14), t-values are used correspond-
ing to m— 1 degrees of freedom. Limits of confidence for N are found by inverting
those obtained for 1 /N.

3.9.4. SCHNABEL’S METHOD. An approximation to the maximum likelihood
estimate of N from multiple censuses is given by Schnabel’s (1938) short formula:
_X(CM,)  XCM)

N IR, R

(3.15)
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This estimate, like (3.5), is asymmetrically distributed. Limits of confidence (based
on the assumption of random mixing) can be computed by treating R as a Poisson
variable and using the table in Appendix 11, particularly when R is small. For medium
to large R, advantage can be taken of the fact that 1 /N is distributed nearly normally
with variance:

R

V(I/N) = ECM)?

(3.16)

From the estimated standard error (the square root of 3.16) limits of confidence can
be calculated for 1/N using t-values for the normal curve. These limits are then
inverted to give a confidence range for N.

Chapman (1952, 1954) points out that inverting an estimate of 1 /N does not
give quite the best estimate of N itself. For (3.15) a simple adjustment is available
that gives a better result:

Z(CM,))
N=—-—+ 3.17
R 41 (3.17)
Approximate limits of confidence for (3.17) can be obtained by considering R as a
Poisson variable (Appendix 1I).
DeLury (1951) described an iterative method of obtaining the true maximum likelihood estimate

of N, but later (1958) he abandoned it in favor of (3.12) above, on the grounds that the iterative pro-
cedure depended too heavily on the postulate of randem mixing.

3.9.5. StATISTICAL BIAS. Like Petersen estimates, estimates from multiple censuses
are subject to negative bias when the combination of number of fish marked and
number examined falls too low. I have not found this discussed specifically but it
seems likely that, as in Section 3.2.3, this bias can be ignored whenever the number
of recaptures is 4 or more.

EXAMPLE 3.6. SCHNABEL AND SCHUMACHER ESTIMATES OF REDEAR SUNEISH
IN GOrDY LAKE, INDIANA. (From Ricker 1958a, after Gerking 1953a.)

Gerking (1953a) compared different estimates of populations of various sun-
fishes in a small lake. Our Table 3.4 reproduces part of his table 3 for part of the
stock of redear sunfish (Lepomis microlophus). As often happens, a few marked fish died
from effects of trapping or from other causes; these are deducted from the number
marked on the day in question, and therefore from the number at large next day
(M)).

Columns 2 and 5 of Table 3.4 provide the Schnabel-type estimates. The short
Schnabel formula (3.15) gives N = 10740/24 = 448; the modified Schnabel 3.17)
is N = 10740/25 = 430.
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TaBLE 3.4. Computations for Schnabel and Schumacher estimates for age 3 redear sunfish in
Gordy Lake, Indiana, from trap recaptures. (Data from Gerking 1953a, table 3, using only the June
2-15 data.)

1 2 3 4 5 6 7 8
Number Marked
Number Recap- marked fish at
caught tures (less large

C, R: removals) M, C.M, MR, C,Mm2 R2C,
10 0 10 0 0 0 0 0
27 0 27 10 270 0 2,700 0
17 0 17 37 629 0 23,273 0
7 0 7 54 378 0 20,412 0
0 1 61 61 0 3,721 0
0 5 62 310 0 19,220 0
2 4 67 402 134 26,934 0.6677
15 1 14 71 1,065 71 75,615 0.0667
9 5 4 85 765 425 65,025 2.7778
18 5 13 . 89 1,602 445 142,578 1.3889
16 4 10 102 1,632 408 166,464 1.0000
2 3 112 560 224 62,720 0.8000
2 4 115 805 230 92,575 0.5714
19 3 119 2,261 357 269,059 0.4737
162 24 119 984 10,740 2,294 970,296 7.7452

Columns 6-8 contain the products needed for the Schumacher estimate and
its standard error. The estimate of 1/N is 2294 /970296 = 0.0023642; hence N = 423.
Variance from the regression line is, from (3.13):
, 17452 - (2294)* /970296
B 14-1

= 0.17851

s = 0.42250
From (3.14):
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