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ABSTRACT 
 
 
Tang, C.L., T. Yao, W. Perrie. B.M. Detracey, B. Toulany, E. Dunlap, Y. Wu, 2008.  BIO Ice-
Ocean and Wave Forecasting Models and System for Eastern Canadian Waters. Can. Tech. Rep. 
Hydrogr. Ocean Sci. No. 261: iv + 61 pp. 
 
 The ice-ocean and wave models used in the Bedford Institute Ocean Forecasting System 
(BIOFS) are described. The coupled ice-ocean model, Canadian East Coast Ocean Model 
(CECOM), is a based on the Princeton Ocean Model and a multicategory ice model.  The wave 
model is WaveWatch III (WW3) developed by the U.S. Navy.  The governing equations, model 
domains, numerical grids, coordinate system, finite difference scheme, forcing data, boundary 
conditions for each of the models are explained.  The models are implemented in BIOFS and run 
in real-time to provide 48-hour forecasts of ocean and wave conditions for eastern Canadian 
waters.  BIOFS includes a procedure to assimilate sea ice and sea surface temperature data into 
CECOM.  The structure and operations of BIOFS, and the methods of data assimilation are 
described.   
 
 
 
 

 
RÉSUMÉ 

 
 

 Nous décrivons les modèles glace-océan et les modèles de vagues utilisés dans le système 
de prévision océanique de l’Institut océanographique de Bedford (Bedford Institute Ocean 
Forecasting System, BIOFS). Le modèle CECOM (Canadian East Coast Ocean Model) est le 
modèle couplé glace-océan de la côte Est du Canada, basé sur le modèle océanique de Princeton 
et sur un modèle multicatégorie des glaces. Le modèle WaveWatch III (WW3) est le modèle des 
vagues mis au point par les Forces navales des États-Unis. Nous expliquons les équations 
principales, les domaines des modèles, les grilles numériques, le système de coordonnées, le 
schéma de différences finies, les données de forçage, ainsi que les conditions limites. Les 
modèles sont appliqués au BIOFS et sont utilisés en temps réel pour fournir des prévisions sur 
48 heures des conditions océaniques et de l’état des vagues dans les eaux de l’Est du Canada. Le 
BIOFS comprend une procédure permettant d’assimiler dans le CECOM des données sur les 
glaces de mer et sur la température à la surface de la mer. Nous décrivons en outre la structure et 
les opérations du BIOFS, de même que les méthodes d’assimilation des données. 
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1.  Introduction 
 
 Ocean forecast research at BIO (Bedford Institute of Oceanography) started in the early 
1990s when ice and wave models were developed under a series of PERD (Program for Energy 
Research and Development) projects.  In the mid-1990, a coupled ice-ocean model (Tang et al., 
1996a,b) and a second generation wave model (Perrie et al., 1989) were implemented in a real-
time forecasting system at BIO to provide daily forecasts of ice and waves for eastern Canadian 
waters.  The ocean component of the coupled ice-model is a linear diagnostic ocean model and 
the ice component is the Hibler (1979) two-category ice model.  In 1998, the coupled ice-ocean 
model was replaced by a coupled multi-category sea ice model and the Princeton Ocean Model 
(CIOM, Coupled Ice-Ocean Model) (Yao et al., 2000; Yao and Tang, 2003; Tang et al., 2004; 
Dunlap et al., 2007).  This model was also used by Canadian Ice Service for operational ice 
forecasting.  
 
 A new effort was initiated in the mid-2000 to improve the forecast models.  The model 
domain of CIOM, which covers the Labrador Sea and the Grand Banks, was extended north to 
include Baffin Bay and south to include the Scotian Shelf and the Gulf of St. Lawrence.  The 
latest POM codes were adopted to improve the model physics and computational efficiency.  The 
generalized sigma coordinate and the rotated spherical coordinate systems were employed to 
improve the vertical and horizontal resolution.  The modified model, Canadian East Coast Ocean 
Model (CECOM), was implemented in a new forecasting system in September 2008. The 
associated wave forecasts were also upgraded and are now produced by an advanced third 
generation wave model, WaveWatch 3 (WW3). The wave forecasts are produced for WW3 
implemented on a system of nested grids consisting of coarse resolution (1.0o ) for the entire 
Atlantic, intermediate resolution (0.5o ) for the Northwest Atlantic and fine resolution (10') for 
Atlantic Canada waters including the Grand Banks and Scotian Shelf.  
 
 The purpose of this report is to document the progress made in the ocean forecasting 
models.  Upgrading, calibration and validation of the models are carried out on an ongoing basis 
as improved parameterization of ocean processes, numerics and algorithm, and new data become 
available. The report provides a general description of CECOM, WW3 and the forecasting 
systems that integrate the operations of data input/output, model execution and display of 
forecast results.  The systems are run unattended and produce ocean, ice and wave forecasts for 
eastern Canadian waters twice a day.  Selected forecasts including surface trajectories, ice 
concentration, wave height and direction, and sea surface elevation are displayed in graphic 
forms at the following BIO website: 
 
http://www.mar.dfo-mpo.gc.ca/science/ocean/icemodel/ice_ocean_forecast.html   
 
 
 
2. Governing Equations of Ocean and Ice Models 
 

The ocean component of the coupled ice-ocean model used in the ocean forecasting 
system is the Princeton Ocean Model (Blumberg and Mellor, 1987).   A user’s guide can be 
obtained from the POM website, http://www.aos.princeton.edu/wwwpublic/htdocs.pom/.  The 

http://www.mar.dfo-mpo.gc.ca/science/ocean/icemodel/ice_ocean_forecast.html�
http://www.aos.princeton.edu/wwwpublic/htdocs.pom/�
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ice component is a multi-category ice model based on the formulation of Thorndike et al (1975), 
Hibler (1980) and Flato (1994).   In the following sections, we outline the governing equations, 
the finite difference scheme and the implementation for eastern Canadian waters.  

 
 
2.1  Princeton Ocean Model (POM) 
 
 The Princeton Ocean Model is a widely used model for modeling of coastal and open 
oceans.  It is a free surface, primitive equation, terrain-following model with an imbedded 
turbulence closure model.  It was developed by Blumberg and Mellor (1987) in the late 1970s 
with subsequent contributions by others.     
 
Dynamic and Thermodynamic Equations 
 

Consider a Cartesian (x, y, z) coordinate system with velocity components (u, v, w), the 
ocean bottom at z = −H and a free surface at z = η.  Τhe continuity equation is 
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where f is the Coriolis parameter, g is the acceleration of gravity, KM is a vertical eddy diffusivity, 
and Mx, My are horizontal mixing terms.  The hydrostatic and Boussinesq approximations are 
made.   ρο is a reference density and ρ is the in situ density.  Pressure p at depth z from (2.4) is  
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where patm is the atmospheric pressure. 
 

The conservation of heat and salt for potential temperature T and salinity S are 
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where KH  and AH are the vertical and horizontal diffusivities respectively for heat and salt.  A is 
ice concentration.  I is the shortwave radiation (Paulson and Simpson, 1977): 
 

[ ])/exp()1()/exp()1( 21 ξξα zRzRQI w −+−−=       (2.7) 
 
where Q is the shortwave radiation reaching the sea surface, αw is the albedo for water, ξ1  and 
 ξ2  are the attenuation depths of the red and blue-green spectral components of the shortwave 
radiation.  Jerlov’s (1968) values for water type IA, ξ1  = 0.6 m,  ξ2  = 20 m, R = 0.62, are used 
here.  Upward fluxes are defined positive.   I is thus always negative.  The last term of (2.5) 
states that no shortwave radiation can reach the ocean surface in fully ice covered waters.   
 

The horizontal mixing terms in (2.2) and (2.3) are  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
x
v

y
uA

yx
uA

x
M MMx 2          

            (2.8) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
x
v

y
uA

xy
vA

y
M MMy 2        

 
AM and AH  in (2.5), (2.6)and (2.8) are represented as Smagorinsky diffusivities 
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where Δx and Δy are the grid intervals and C is a constant. 
 

The vertical mixing coefficients KM and KH  in (2.2) to (2.6) are computed from a second 
order turbulence closure (Appendix 1). 
 
 
Surface and Bottom Boundary Conditions 
 

The boundary conditions at the surface are 
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where ( )yx 00 ,ττ  is the surface wind stress, FT   is the heat flux, cp is the specific heat of seawater 
and FS  is the salt flux.   The bulk formulas to calculate the fluxes are given in Section 2.4. 
 

The drag coefficient involved in the surface wind stress is based on the wind speed and 
stability (i.e. the difference between surface temperature and air temperature) tables (Smith, 
1988).  The surface fluxes of momentum, heat and salt in the presence of ice are described in 
Section 2.2 (Ice dynamics) and Section 2.4 (Ice thermodynamics). 
 

The boundary conditions at the ocean bottom are 
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where ( )bybx ττ ,  is the bottom stress 
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The drag coefficient CD is 
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where zb is the z coordinate of the lowest grid point, at which (u,v) in (2.13) is evaluated, and z0 is 
a roughness length.  The maximum value is to account for cases when the bottom boundary layer 
is not resolved. 
 
Generalised Sigma Coordinates 
 

The more common applications of POM use sigma coordinates in the vertical 
 

η
ησ
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σ  ranges from −1 at the bottom to 0 at the surface and varies linearly with z.  Limitations to 
sigma coordinates appear in certain circumstances.  For example, if high vertical resolution is 
desired in the near surface, sigma coordinates lead to a loss of resolution over the shelf break and 
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deep ocean.  Generalised sigma coordinates, described by Mellor et al. (2002), remove the 
constraint of a linear variation of vertical coordinate with depth and include, as special cases, z-
level as well as sigma coordinates.  The momentum, temperature and salinity equations in 
generalised sigma coordinates are given in Appendix 2. 
 
 
2.2 Ice Dynamics 
 

The momentum balance governing ice velocity uice = (uice , vice) is 
 

( ) Fττuk
u

+−+∇−=×+ waice
ice Amgfm

dt
d

m η       (2.16) 

 
where m is the mass per unit area, k is a unit vector in the upward direction, g is the acceleration 
of gravity, A is the ice concentration, τa and τw are the air and ocean stress and F is the force 
arising from gradients in internal ice stress.  The present model neglects the inertial terms duice/dt. 
 

The air and ocean stresses are parameterised as 
 
τa aaaaC uuρ=           

τw ( )uuuu −−= iceicewoCρ          (2.17) 
 
where ρa  and ρo  are air and water densities,  Ca  and Cw  are drag coefficients and ua  and u are 
surface winds and currents.  Values for the constants and parameters are given in Table 2.1. 
  
 The stress of ice on the ocean (2.17) involves the ocean surface velocity.  When solving 
for the ocean velocity we have found it is necessary to include the dependence of stress on ocean 
surface velocity (an implicit solution) rather than apply stress with the ocean velocity from the 
previous time step (an explicit solution).   
 

Hibler (1979) models ice interaction as a viscous compressible fluid.  The two-
dimensional ice stress tensor σij (i and j representing x and y in a Cartesian coordinate system) is 
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where ijε&  is the rate of strain, ijδ  is the Kronecker delta, ς  and η~  (functions of ijε&  and P) are 
bulk and shear viscosities and P is an ice pressure. 
 

The ice force components in (2.16) are related to stress as 
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giving 
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Hibler (1979) selects the stress to lie on an ellipse in a principal axis system.  The 
viscosities are 
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where e is the ratio of ellipse axes. 
 

The dependence of stress magnitude ( ) 2/12
22

2
11 σσ +  on ijε&  in a principal axis system is 

drawn in Figure 2.1.  For isotropic divergence, 2211 εε && = , 02211 >+ εε && , the stress is zero.  For 
isotropic convergence 2211 εε && = , 02211 >+ εε && , stress is a maximum.  Stress is rate independent 
consistent with a plastic rheology. 
 

The pressure P in (2.18) and (2.21) is related to mean ice thickness h  and concentration 
A as 
 

( )[ ]AChPP −−= ∗ 1exp          (2.22) 
      
where ∗P  and C are parameters.  An alternative parameterization of P derived from work done 
in ridging is given by Hibler (1980). 
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Figure 2.1.  Dependence of stress magnitude on ijε&  in a principal axis system from (2.18) and 
(2.21). 

 
 
 
2.3  Multiple Ice Categories 
 
Thickness Distribution Function 
 

The present work closely follows Hibler (1980).  A thickness distribution function g(h) is 
defined where g(h)dh describes the fraction of area covered by ice of thickness between h and h 
+ dh.  Integrating g(h) over all thickness results in 
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In terms of g(h), ice concentration is 
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where the integration is over non-zero h.  Thickness h = 0 corresponds to open water.  The 
presence of open water causes g(h) to have a delta function behaviour at h = 0.  The total ice 
volume per unit area or mean ice thickness, h , is 
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The change in ice thickness is described by 
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The second term in (2.25) represents the change in g from advection.  The third term represents 
the change in g from ice growth or melt.  f(h) is the rate of change of ice thickness.  The function 
Ψ  represents mechanical redistribution of ice. 
 
 
Mechanical Redistribution of Ice 
 

The redistribution function Ψ  satisfies two constraints.  The first is obtained by 
integrating (2.25) over h, 
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(2.26) expresses a balance of ice area.  During divergence of ice, the net flux of ice out of a 
region must be balanced by formation of open water.  During convergence, ice must be 
redistributed from thinner to thicker ice categories to accommodate the influx.  The second 
constraint is 
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which states that the redistribution process conserves ice volume. 
 

Hibler (1980) proposes the redistribution function 
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where Wr(h,g) represents the ridging process.  For Hibler’s (1979) plastic rheology (2.21) we can 
write (2.28) as 
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To help visualise the behaviour of Ψ  we have plotted the factors multiplying )(hδ  and 

( )ghWr ,  in Figure 2.2.  The factor ( )iiε&+Δ
2
1  determines the rate of open water formation.  It is 

maximum for pure divergence and zero for convergence.  The factor ( )iiε&−Δ
2
1  determines the 

rate of ridging.  It is maximum for pure convergence and zero for divergence. 
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Figure 2.2.  The factors )(
2
1

iiε&+Δ  and )(
2
1

iiε&−Δ  in the open water formation and ridging terms 

respectively of the ice redistribution function in a principal axis system. 
 



 10

Ice Ridging 
 

The function Wr representing ridging in (2.28) is written in terms of thickness distribution 
functions a(h) and n(h) as 
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The denominator in (2.30) ensures that the first constraint (2.26) is satisfied.  a(h) is the 
distribution of ice which undergoes ridging (the source).  n(h) is the distribution of the newly 
ridged ice (the destination).  Thorndike et al. (1975) suggest a(h) of the form 
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where b(h) selectively weights thin ice for participation in the ridging.  Thorndike et al. (1975) 
suggest b(h) of the form 
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where G(h) is the cumulative distribution function  
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and ∗G  is a cutoff value.  Ice from the thickness distribution above the cutoff does not contribute 
to the ridging. 
 

The destination distribution n(h) has the form of a convolution integral 
 

( )∫ ′′= dhhahhhn ),()( γ           (2.34) 
 
where ),( hh′γ  represents the ice ridged from thickness h′  to thickness h.  In order that the 
second constraint (2.27) is satisfied we require 
 

∫ ′=′ hdhhhh ),(γ .          (2.35) 
 
 

We follow Thorndike et al. (1975) and take ),( hh′γ  as 
 

( ) ( )hkh
k

hh ′−=′ δγ 1,           (2.36) 
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which states that ice ridges to a multiple k of the original thickness.  Note that (2.36) satisfies the 
constraint (2.35).  An alternative form for ),( hh′γ  is suggested by Hibler (1980). 
 
 
Table 2.1.  Parameters related to ice dynamics and redistribution 
 
symbol parameter value 
ρi reference ice density (2.16) 910 kg m-3 

ρa reference air density (2.17) 1.3 kg m-3 

ρo reference water density (2.17) 1035 kg m-3 

Ca air-ice drag coefficient (2.17) 3 ×  10-3 

Cw ice-water drag coefficient (2.17) 1.8 ×10-2 

e ratio of ellipse axes (2.21) 2 
P* ice strength parameter (2.22) 2.5 ×  104 Pa 
C parameter in ice pressure (2.22) 20 
G* cutoff for cumulative distribution function in ridging (2.32) 0.15 
k ratio of thickness in ridging (2.36) 15 
 
 
 
2.4  Ice Thermodynamics 
 

The coupled model is forced at the surface by atmospheric variables wind, air 
temperature, dew point temperature, cloudiness and precipitation.  We first describe the 
parameterisations for heat fluxes.  We then describe the surface heat balance and the 
thermodynamic coupling between ice and ocean. 
 
 
Surface Heat Fluxes 
 
Sensible Heat  The upward flux of sensible heat HS  is given as  
 

( )asaHpaas TTuccH −= ρ          (2.37) 
 
where ρa  is the density of air, 
 cpa is the specific heat of air, 
 cH   is the transfer coefficient, 
 ua  is the wind speed,  
 Ts is the surface temperature (ice or ocean) and 
 Ta  is the air temperature at the standard level. 
 
Over water, values of cH  as functions of wind speed and atmospheric stability are taken from 
Smith (1988).  Over ice, cH  is constant (Table 2.2). 
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Latent Heat   Upward latent heat flux HL  is given as 
 

( )saaEaL qquLcH −−= ρ          (2.38) 
 
where L is the latent heat of vaporization or sublimation, 
 cE  is the transfer coefficient, 
 qa is the specific humidity at the standard level and 
 qs  is the specific humidity at the surface. 
 
Over ocean, cE  is taken as 1.5 cH where cH  is from Smith (1988).  Over ice, cE  is taken as a 
constant.  The rate of evaporation is determined from (2.38) as HL/L. 
 

Specific humidity is related to vapour pressure e by 
 

( )ep
eq

atm ε
ε

−−
=

1
          (2.39) 

 
where ε = 0.622 is the ratio of molecular weight of water vapour to dry air and patm is the 
atmospheric pressure.  The specific humidity at the surface is assumed saturated.  Saturation 
vapour pressure over water ew  (in mbar where 1 mbar = 102 Pa) at temperature T (oC) from the 
Smithsonian Meteorological Tables (cited in Gill, 1982) is 
 
log10 ew (T) = (0.7859 + 0.03477 T)/(1 + 0.00412 T).      
 
Saturation vapour pressure over ice ei  (mbar) at temperature T (oC) is 
 
log10 ei (T) = log10 ew (T)  + 0.00422 T.       
 
 
Solar Radiation    An empirical formulation for incoming short-wave radiation by Shine (1984) 
is used.  The Shine formula for Qo the short-wave radiation (W m−2) under cloudless skies is 
 

( ) 0455.0cos2.1101cos
cos
5

2

++×+
= − ZeZ

ZSQo        (2.40)  

 
 
where S is the solar constant (taken as 1353 W m-2), Z the solar zenith angle and e is the vapour 
pressure in Pa.  The cosine of the zenith angle is  
 
cos Z = sinφ sinδ + cosφ cosδ cos HA 
 
where φ, δ and HA are latitude, declination and hour angle respectively.  The declination and 
hour angle are determined by  
 
δ = (23.44 π / 180) cos[(172 − day of year) π /180)] 
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ΗΑ = [12 − solar time (h)] π/12. 
 
The total incoming short-wave radiation is found by modifying Qo  for cloudiness 
 
Q = Qo (1 – 0.6 C3)          (2.41) 
 
where C is the cloud fraction. 
 
 
Long-wave Radiation   Smith and Dobson (1984) give the net long-wave radiation QL  
following Budyko (1974) as 
 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+−⎟

⎠
⎞

⎜
⎝
⎛ −= asaaL TTCceTTQ 41

22.132
0066.0254.0 1

3σε      (2.42) 

 
where ε is the emissivity of the surface relative to a black body, 
 σ is the Stefan Boltzmann constant, 
 e is the vapour pressure (Pa), 
 c1 is a latitude-dependent cloudiness factor, 
 Ta is the air temperature (K) and 
 Ts  is the surface temperature (K). 
 
 
Surface Heat Balance 
 

Over open water the net heat flux H(0) is 
 

LLS QHHH ++=)0( .         (2.43) 
 

The heat flux H(h) conducted through ice of thickness h is 
 
H(h) = ki (T0 – Ts)/h          (2.44) 
 
where ki  is the conductivity of ice, T0  is the temperature at the bottom of ice (assumed the 
freezing point) and Ts  is the surface temperature.  The flux (2.44) represents the zero-layer 
model of Semtner (1976).  The heat conducted through the ice balances the net surface flux 
 
Hs + HL – (1 – 0.4 Io) (1 − αi) Q – QL = H(h)       (2.45) 
 
where αi is the albedo.  A fraction of solar radiation Io  penetrates the ice surface creating brine 
pockets.  In (2.45) we follow Parkinson and Washington (1979) by neglecting 40% of the 
penetrating radiation and allowing the remaining 60% to heat the surface.  Io is taken as 0.17 
(Parkinson and Washington, 1979).    
 



 14

The temperature at the surface of the ice Ts  adjusts so that the balance (2.45) is 
maintained.  (2.45) is solved iteratively.  If Ts is determined to be above the melting point, then Ts 
is set to the melting point, the fluxes are recomputed, and the net heat flux melts ice at the upper 
surface. 
 

Snow has a major effect on albedo, but snow thickness is not modelled in CECOM.  αi in 
(2.45) is set according to surface temperature following Hibler (1980).   The albedo is 0.75 when 
the surface temperature is below freezing and 0.616 when the surface temperature equals the 
melting point temperature (Dunlap et al., 2007).  The open water albedo is set to 0.1. 
 
 
Ice, Ocean Fluxes 
 

The heat flux at the ice-ocean interface, FT, is given by Mellor and Kantha (1989) as 
 

( )TTCcF
zTpoT −−= 0ρ          (2.46) 

 
where cp is the specific heat of seawater and T is the temperature at the uppermost model grid 
point.  The transfer coefficient, 

zTC , is defined by  
 

( ) Tr
T BzzP

uC
t

z +−
= −

∗

0
1 lnκ

         (2.47) 

 
3/2

2/1
0

rT PuzbB ⎟
⎠
⎞

⎜
⎝
⎛= ∗

ν  
 
where ∗u  = (τ/ρo)1/2 is the surface friction velocity, 
 tr

P = 0.85 is the turbulent Prandtl number, 
 κ = 0.4 is the von Karman constant, 
 z is the vertical coordinate corresponding to T, 
 z0  is a roughness parameter (see below), 
 ν is the molecular viscosity and 
 Pr = 12.9 is the molecular Prandtl number. 
 
The factor BT  parameterises a molecular sublayer.  The empirical factor b is taken as 3 (see 
Mellor and Kantha, 1989). 
 

The roughness length z0  is a weighted sum of under ice and open ocean roughness 
lengths 
 
ln z0 = A ln z0i + (1 – A) ln z0o         (2.48) 
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again following Mellor and Kantha (1989).  The underice roughness length z0i is chosen as 0.05 
m for ice thickness 3 m, decreasing linearly to zero as ice thickness goes to zero.  The open 
ocean roughness length z0o is Charnock’s wave relation (Charnock, 1955) 
 

g
u

z
a

o
o ρ

ρ 2

0 015.0 ∗= .          (2.49) 

 
The salt flux at the ice, ocean surface is given by Mellor and Kantha (1989) analogously 

to (2.46) as 
 

( )SSCF
zSS −−= 0           (2.50) 

 
where S0  is the salinity at the ice, ocean interface, S is the salinity at the uppermost grid point 
and 
 

( ) Sr
S BzzP

uC
t

z +−
= −

∗

0
1 lnκ

         (2.51) 

3/2
2/1

c
o

S S
uz

bB ⎟
⎠
⎞

⎜
⎝
⎛= ∗

ν
 

 
with Sc = ν/αs = 2432 the Schmidt number for salt diffusion (αs is the salt diffusivity). 
 
 
Ice Growth Rate 
 

The heat balance across an infinitesimal control volume about the ice-ocean interface and 
atmosphere-ocean interface is 
 

oT LWHAhAHF ρ00)0()1()( −−+=         (2.52) 
 
where W0  is the mass rate of ice growth and L0 is the latent heat of fusion. (2.52) expresses the 
balance that the weighted heat flux just above the interface less the heat flux just below the 
interface gives the latent heat of ice growth.  We assume that heat flux below the interface FT  is 
uniform in a grid cell. 
 

Ice growth or melt results in a surface salt flux, FS, of 
 

)()1())(( 0 PESASSAWWF IAIS −−+−−=       (2.53) 
 
where SI  is the salinity of ice, and E and P are the evaporation and precipitation rates, 
respectively.  The term WAI  is the ice melt at the upper ice surface which is assumed to run off 
immediately.  The ice melt at the upper surface is discussed following (2.45). 
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There is one further constraint, that is, the temperature at the ice-ocean interface is at the 
freezing point as a function of salinity 
 
T0 = Tf (S0).           (2.54) 
 
The freezing point relationship used here is that given in Gill (1982). 
 

The set of equations (2.46), (2.50), (2.52), (2.53) and (2.54) is solved simultaneously for 
FT, FS, T0, S0 and W0 thereby determining the ice growth rate.   
 
 
Frazil Ice 
 

The formation of frazil ice in the model follows Mellor and Kantha (1989).  A constraint 
on the ocean temperature is that it must remain greater than or equal to the freezing point.  
Suppose that after solving the ocean heat and salt balances the temperature and salinity are T1 
and S1.  If T1 is below the freezing temperature Tf(S1) then temperature and salinity are changed 
to a new state T2 and S2  with the formation of frazil ice.  If the mass fraction of frazil ice is γ , 
heat and salt balances give  
 
T2 = T1 + γ L0/cp          (2.55) 
 
S2 = S1 + γ (S1 – SI). 
 

The solution of (2.55) is  
 

( )
( ) ( )[ ]Iffp

fp

STSTcL
TSTc

−−

−
=

10

11γ          (2.56) 

 
if the dependence of the freezing point on salinity Tf(S) is linear.  The frazil ice is assumed for 
simplicity to consolidate immediately on the underside of ice.  Note that the amount of frazil ice 
formed is sensitive to the parameterisation of surface heat flux FT in (2.46).  If the 
parameterisation of FT is an overestimate, then the under-ice growth will be too small but the 
frazil ice growth will be too large.  Alternatively, if the parameterisation of FT is an 
underestimate, then the under-ice growth will be too large but the frazil ice will be too small.  
The total ice growth is not overly sensitive to the parameterisation (2.46) but depends on 
atmospheric cooling and heat fluxes within the ocean. 
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Table 2.2  Constants and parameters for thermodynamics 
 
Symbol Parameter Value 
cpa specific heat of air (2.37) 1005 J kg-1 K−1 

cH sensible heat transfer coefficient over ice (2.37) 1.75 ×  10-3 

L latent heat of vaporisation (2.38) 2.5 ×  106 J kg-1 

L latent heat of sublimation (2.38) 2.8 ×  106 J kg-1 

cE latent heat transfer coefficient over ice (2.38) 2.1 ×  10-3 

ε emissivity (2.42) 0.95 
σ Stefan Boltzmann constant (2.42) 5.67 ×  10-8 W m-2  K-4 

αw albedo, water (2.7) 0.1 
ki ice conductivity (2.44) 2.04 W m-1 deg C-1 

αi albedo, ice (2.45) 0.616 
αι albedo, snow (2.45) 0.75 
cp specific heat of seawater (2.46) 3.99 ×  103 J kg-1 deg C-1 

ν seawater kinematic viscosity (2.47) 1.8 ×  10-6 m2 s-1 

SI salinity of ice (2.53) 5 
L0 latent heat of fusion (2.53) 3.32 ×  105 J kg-1 

 
 
 
3  Finite Difference Implementation 
 
3.1  POM 
 

The equations governing the ocean dynamics support the propagation of fast moving 
external gravity waves and slow moving internal waves.  A mode splitting technique is used to 
separate the vertically-averaged velocity (external mode) from the vertically-varying velocity 
(internal mode).  For the external mode, the depth-integrated continuity equation (A2.2) and 
depth-integrated momentum equations (A2.3) and (A2.4) use a short time step with terms 
involving depth-varying velocity fixed.  The external model provides sea level elevation η and 
depth-averaged velocity kus , kvs  so that internal mode equations can be integrated with a much 
longer time step. 

 
POM employs a C grid in the horizontal.  It is implemented on an orthogonal curvilinear 

coordinate system which includes Cartesian coordinates and spherical coordinates as special 
cases.  Generalised sigma coordinates are used in the vertical. 

 
For open ocean boundary conditions we use the flow relaxation scheme (FRS) of 

Martinsen and Engedahl (1987) which has been applied by Slordal et al. (1994).  The FRS 
boundary conditions require a relaxation zone along each open boundary.  At the exterior of the 
FRS zone we specify a solution φext.  For each time step we calculate a solution φint  in the 
interior from the model equations.  We then obtain the solution φ in the FRS zone by relaxation 
 
φ = αφext + (1 − α)φint.          (3.1) 
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The relaxation parameter α is 1 at the exterior of the FRS zone and varies smoothly towards 0 at 
the interior boundary of the zone.  Here we choose α as 
 
α = 1 – tanh(2xE /LE)          (3.2) 
 
where LE  is the width of the FRS zone, xE = 0 at the exterior boundary and xE  = LE at the interior 
boundary.  We choose LE  as five grid intervals.   
 

We apply the FRS boundary conditions to sea level elevation, the horizontal components 
of velocity, temperature and salinity.  We specify values of vertical velocity and turbulence 
quantities at FRS exterior boundaries but do not relax these quantities. 
 
 
3.2  Ice Dynamics 
 
 The spatial finite difference grid for the ice model defines ice velocity at grid cell vertices 
and ice concentration at the grid cell centers.  The finite difference procedures for solving the 
momentum balance, the ice stress terms, and the ice advection equation (including the diffusion 
terms) are described by Hibler (1979).  The point relaxation solution for the internal ice stress of 
Hibler has been replaced by a more efficient line relaxation scheme devised by Zhang and Hibler 
(1997).  A spherical coordinate system is used; the governing equations are given in Zhang and 
Hibler (1997). 
 
 
3.3  Mechanical Redistribution of Ice 
 
Thickness Distribution Function 
 

The finite difference thickness distribution discussed in this section and the discrete 
redistribution function and ridging function discussed in subsequent sections follow Flato (1994). 
In finite difference form we define M discrete ice categories.  In Figure 3.1 we show the 
thickness categories and the other discrete variables.  The thickness boundaries are h0, h1, …,hM . 
In general, the thickness intervals are unequal. The centers of the thickness intervals are given by 

c
M

cc hhh ,,, 21 K .  ch1  is defined as 0 and the first thickness category represents open water.  The 
discrete thickness distribution is defined 
 

∫
−

= i

i

h

hi dhhgg
1

)(   i = 1…M.       (3.3) 

 
gi  is the fraction of area occupied by the ith thickness category.  The cumulative thickness 
distribution is  
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⎧

=
=

= ∑ =
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         (3.4) 
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(The subscript notation here differs from Flato, 1994).  The ice volume per unit area (mean ice 
thickness) corresponding to (2.24) is 
 

i

M

i

c
i ghh ∑

=

=
1

 .           (3.5) 

 
The change in the discrete thickness distribution (corresponding to (2.25)) is 

 

diffusionFFg
t

g
iiiiice

i +Ψ+−=⋅∇+
∂

∂
−1)(u

.      (3.6) 
 

iΨ  is the discrete mechanical redistribution function (discussed next).  Fi is a flux of ice from 
one category to the next from growth or melt (discussed in Section 3.4). 
 

 
 
Figure 3.1.  Schematic diagram showing the thickness boundaries and locations at which the 
discrete variables are defined.  
 
 
Redistribution Function 
 

The discrete redistribution function iΨ  for Hibler’s (1979) plastic rheology is defined 
from (2.29) as 
 

( ) ( )
( )⎪

⎩

⎪
⎨

⎧
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2
1

ε

εε
       (3.7)  

    
where Wri is the discrete ridging function. 
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Ridging Function 
 

The discrete participation function bi  (corresponding to (2.32)) is defined at thickness 
boundaries 
 

∗−=
G
G

b i
i 1   i = 0…M.        (3.8) 

 
The discrete distribution function ai  governing the ice which contributes to ridging 
(corresponding to (2.31)) is 
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where h* is interpolated as 
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hh .         (3.10) 

 
ai is defined for i = 1 … M. 

 
The discrete distribution function ni  governing the thickness into which the ridging 

occurs [corresponding to (2.34)] is 
 

∑
=

=
M

j
jjii an

1
γ   i = 1…M.        (3.11) 

 
The function γji  transfers ice from the jth category to the ith category.  Before normalisation it 
can be written  

 

⎩
⎨
⎧ <≤

= −

otherwise0
1/ ˆ 1 i

c
ji

ji
hkhhk

γ   j =1…M,   i = 1…M − 1. 

 
When i = M the criterion for  jiγ̂  to be nonzero is modified to c

jM khh ≤−1  i.e. ice which would 
otherwise ridge into a thickness greater than the upper limit is placed into the maximum ice 
thickness category.  The transfer function is normalised to satisfy (2.36) 
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The discrete ridging function (corresponding to (2.30)) may now be written 
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          (3.14) 

 
and substituted into the redistribution function  (3.7). 

 
 
3.4  Thermodynamic Redistribution of Ice 

 
The implementation of the discrete thermodynamic redistribution described in this 

section follows Hibler (1980).  Heat budgets (2.43) to (2.45) are solved at the water surface and 
the surface of ice for each ice category and determine the heat flux through ice.  The ice growth 
rates fi at c

ih  in the ice distribution equation (2.25) are determined from the heat fluxes and the 
ocean heat balance according to (2.52). 

 
The flux of ice between categories, Fi , in (3.6) is defined from the ice growth rates by an 

upstream difference 
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1
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++        (3.15) 

 
The fluxes must satisfy two constraints.  The first is that the flux of ice between 

categories does not change the total area of ice.  The second is that the change in ice volume 
must equal the ice grown or melted.  With M ice categories the rate of change in ice area per unit 
area expressed in terms of fluxes is  

 

( )∑
=

− −
M

i
ii FF
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1 .          (3.16) 

 
The change is zero provided that F0 = FM = 0.  Considering the second constraint, the rate of 
change of volume of ice grown or melted per unit area is 
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Expressed in terms of the fluxes, the rate of change in ice volume is 
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(3.17) and (3.18) are equal except in the case of f1 negative (open water is absorbing heat) and 
the case of fM  positive (ice from the thickest category is growing).  The fluxes Fi in (3.15) must 
then be modified to account for these two cases in addition to the requirements following (3.16). 

 
 

Open Water Absorbing Heat   
 

In the case of open water absorbing heat we specify that the heat is mixed under the ice 
and contributes to melt at the bottom surface of the ice.  We modify the rates of change of ice 
thickness to if ′  
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where A is the total ice concentration.  Note that (3.19) preserves the net rate of ice growth 
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Growth of Thickest Ice Category    
 

The second case in which flux of the form (3.15) does not balance the change in ice 
volume is when the thickest ice is growing.  In this case we add thick ice growth proportionally 
to all ice categories.  Let  

 

h
gfC MM=1 .          (3.21) 

 
Then define the flux 
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The flux (3.22) has the property that the increase of ice area is balanced by a decrease in 

open water area.  Note also that the total rate of increase in ice volume from Fthick,i  balances the 
rate of increase of volume from growth of the thickest ice category, i.e. 
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Maximum Rate of Decay    
 

Hibler (1980) suggests applying a maximum rate of ice decay (minimum growth rate) fmin  
taken here as −0.15 m day-1 .  We modify the ice growth rates 

 
( ) iimini gfff ′=′′ ,max .          (3.24) 

 
The difference between ii ff ′′′and  represents excess heat which melts ice laterally.  The excess 
rate of decay is  
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Similarly to the thick ice growth we allocate this decay proportionately to all ice categories.  
Define  

 

h
ExcessC =2            (3.26) 

 
then the lateral melt in terms of a flux is  
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The redistribution of ice from growth or melt can be finally written as 
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4.  Canadian East Coast Ocean Model (CECOM) 
 

The region of interest for the model extends from the Gulf of Maine in the south to Baffin 
Bay in the north.  The model is implemented on a spherical coordinate system.  To reduce the 
impact of converging meridians, we select a spherical coordinate system that is rotated relative to 
the earth’s longitude and latitude so that the equator of the rotated system bisects the domain.  In 
the following sub-sections, the coordinate transformation and model domain are described. 

 
4.1  Rotated Spherical Coordinates 
 

The relation between Cartesian coordinates (x, y, z) and longitude and colatitude 
(φ, θ) (refer to Figure 4.1) is 
 
x = sinθ cosφ 
y = sinθ sinφ           (4.1) 
z = cosθ  
 
where we take the radius of the sphere as unity. Consider the transformation from original 
coordinates r to coordinates in a rotated system r′  
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A rotated system can be defined by the successive application of three rotations (Figure 4.2): 
 
1. angle ξ about the z axis,  
2. angle η about the new y axis and 
3. angle ζ about the new z axis. 
 
The angle of rotation is in the clockwise direction looking in the direction of the axis.  The 
transformations from r to r′  and components of vectors are given in Appendix 2. 
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Figure 4.1  Spherical coordinate system with longitude φ and co-latitude θ.  
 

 
 
 
 
 
Figure 4.2.  The decomposition of a coordinate system rotation into three successive rotations of 
ξ, η and ζ .  The red line is the y axis after one rotation. 
 
 
4.2  The CECOM Domain 
 

The CECOM model grid has a resolution of 0.1° ×  0.1°.  As noted, it is defined on a 
rotated, spherical coordinate system (Figure 4.3).  The model domain in the geography 
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coordinates, and the inner and outer boundaries are shown in Figure 4.4.  The bathymetry of the 
domain is drawn in Figure 4.5.  Specifics of the domain are given in Table 4.1.   

 
Generalised sigma coordinates are used to retain near-surface resolution even as bottom 

depth increases.  The procedure we use to select the vertical levels is somewhat arbitrary.  For 
sufficiently deep water (bottom depth greater than or equal to H1) we specify that a fixed upper 
layer and the underlying ocean each have a given number of levels.  The levels are scaled 
according to the fixed upper or varying lower layer thickness.  For shallow water (bottom depth 
less than or equal to H0) all levels are distributed uniformly.  Between H0 and H1 the levels are 
linearly interpolated between the levels for H0 and H1. 

 
H0  = 10 m, H1 = 64 m and an upper layer thickness of 64 m are selected.  There are a 

total of 21 levels, with 8 levels in the upper layer and 13 levels in the underlying ocean (at depths 
greater than H1).  These generalised coordinates are shown for a section across the Labrador 
shelf (27° longitude in rotated coordinates) in Figure 4.6. 

 
 

 
 
Figure 4.3.  CECOM grid defined by a rotated spherical coordinate system.  Lines of longitude 
and latitude in the rotated system are drawn in red. 
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Figure 4.4.  CECOM domain (green) in the geographic coordinates.  The double red lines are the 
inner and outer boundaries of the model.  The blue box is the boundary in the rotated system of 
Fig. 4.3. 
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Table 4.1  Specifications of the CECOM domain 
________________________________________________________________________ 
Coordinate rotation  ( ) )171,82,41(,, °−°°=ςηξ  
Extent (rotated coordinates) 0 to 40° longitude, −11 to 10.3° latitude 
Horizontal resolution   0.1° ×  0.1° 

Dimension   400 ×  213 ×  21 (east ×  north ×  vertical) 
    410 ×  223 ×  21 including boundary relaxation zones 
time step   450 s (internal) 
    15 s (external) 
________________________________________________________________________ 
 
 

 
 
Figure 4.5.  The bathymetry of the CECOM domain.  Depth contours of 200, 1000, 2000, … m 
are drawn.  Specified transports (Sv) at open ocean boundary are indicated. 
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Figure 4.6.  A cross-section of the generalized coordinates across the Labrador Shelf.  The upper 
panel shows the coordinates over the upper 200 m. 
 
 
4.3  Ocean Initial State, Boundary Conditions and Model Spin-up 
 

Monthly, climatological ocean temperature and salinity are used as an initial state and as 
open ocean boundary conditions.  The monthly climatologies were obtained from an objective 
analysis of historical data archived at Bedford Institute of Oceanography (Tang, 2007).  The 
database covers an area from northern Baffin Bay to  Cape Hatteras and from the coast to 42° W.  
It is derived from a variety of sources dating back to 1910.  The objective analysis employed an 
iterative difference correction procedure with topography-dependent radii of influence.  The grid 
resolution is 1/6° × 1/6°.  Figure 4.7 is a sample plot from the data set showing surface 
temperature and salinity for September. 
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Figure 4.7.  Surface temperature and salinity for September from objective analysis.  The red 
dots are the locations of the raw data. 
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Transports based on large-scale models and observations are specified at the open 
boundaries of the model (Clarke,1983; Ezer and Mellor, 1994). In the present implementation, 
the transports as shown in Figure 4.5 are used.  Different specifications are being tested to obtain 
best results.  The vertical profile of normal velocity is determined by the density through the 
geostrophic relation.  The sea level elevation at the open boundaries is determined by geostrophy 
to within a constant.   
 

The model open ocean boundary (double red lines in Fig. 4.4) is interrupted by land 
masses.  The procedure to determine sea level in the ocean straits (Nares Strait, Lancaster Sound, 
Jones Sound, Hudson Strait and St. Lawrence Estuary) is as follows.  We spin up the model with 
three diagnostic runs of 10 days duration, each with zero wind stress.  The sea level at open 
boundaries of straits is set to the adjacent interior value from the end of the previous run.  The 
spin-up concludes with a 10-day prognostic run. 

 
The initial state consists of September temperature and salinity and zero ice.  We create 

12 open ocean boundary conditions corresponding to the monthly temperature and salinity fields.  
As noted previously, the geostrophic relation determines sea level elevation only to within a 
constant.  The constants, i.e. the sea level average across open boundaries in straits, are 
determined from the spin-up.  The monthly boundary conditions are linearly interpolated to daily 
values.  The sea level elevation and transport stream function after the spin-up process are drawn 
in Figure 4.8. 

 
 

 
 
 

Figure 4.8.  The sea level elevation (left) and transport stream function (right) following the spin-
up process. 
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4.4  Ice categories 
 

The ice model is implemented with 10 ice thickness categories with boundaries at 0.05,  
0.18, 0.38, 0.66, 1.06, 1.58, 2.24, 3.04, 3.98 and 5.04 m.  The corresponding central 
thicknesses, c

ih , are 0, 0.12, 0.28, 0.52, 0.86, 1.32, 1.91, 2.54, 3.51 and 4.51 m.   
 
 
 
5. Model Physics of WaveWatch III (WW3) 

The WAVEWATCH III (hereafter WW3) wave model (version 2.22) is used in the BIO 
forecasting system to forecast wave height and direction. This is a WAM-type ocean surface 
wave model developed at NOAA/NCEP (Tolman and Chalikov,1996; Tolman, 2002). It has 
been successfully applied in global and regional scale studies in many areas including the North 
Atlantic, and has proven to be an effective tool to study wave spectral evaluation, air-sea 
interactions and nonlinear wave-wave interactions. WW3 is a discrete spectra and phase-
averaged model (Battjes 1994).  
 

For regional and global applications, the directional wave spectrum is resolved at each 
model grid point in terms of wavenumber-direction bands and the evolution of the wave field is 
found by numerically solving the spectral wave action balance equation, which is usually written 
as  
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where λ is longitude, φ  is latitude, θ  is wave propagation direction, k is wave number, t  is time, 
σ  is the intrinsic angular frequency.   WW3 evaluates the balance equation for the wave action 
spectrum ),,,( txkN θ  which is usually expressed in spherical coordinates (Komen et al., 1994). 
 

The derivatives in (5-1) are the propagation velocities in physical and spectral domains 
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φU  and λU are current components in φ  and λ  directions. The left side of equation (1) 
represents the local rate of change of wave action density, propagation in physical space, action 
density shifting in frequency and direction due to the spatial and temporal variation in depth and 
current. The net source term S  consists of wind input( inS ),white-capping dissipation( dsS ), 
nonlinear wave-wave interactions( nlS ), and bottom friction( botS ). WW3 uses an explicit scheme 
to solve the action balance equation (1) for N .  
 

Two combinations of the source terms inS  and dsS  are available in WW3. The default set 
up of WW3 corresponds to the wave-boundary layer formulation for inS  and dsS , due to Tolman 
and Chalikov (1996). Tolman (2002) notes that application of this formulation has entailed a 
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correction in fetch-limited wave heights that results from atmospheric stratification, which 
necessitates a re-tuning of the model by defining an ‘effective’ wind, as well as an additional 
correction for the impact of stability on wave growth. An alternate combination corresponds to 
WAM cycle 3 physics (hereafter denoted WAMC3 physics), in which inS  and dsS  are based on 
WAMDI (1988), Snyder et al. (1981) and Komen et al. (1994). Quadruplet nonlinear 
interactions nlS  are simulated by DIA, and bottom dissipation bfS , by the JONSWAP 
parameterization of Hasselmann et al. (1973).  Padilla-Hernãndez et al. [2007] compared the 
WW3 model against WAM and SWAN models for two North Atlantic storms and found that 
WW3 provided the high quality statistical comparisons to deep water observations.  
 
 
6.  The Bedford Institute Ocean Forecasting System (BIOFS) 
 
 BIOFS is a real-time short-term (2-day) forecasting system for eastern Canadian waters.  
The forecast period is constrained by input data from Environment Canada.  If meteorological 
data from long range weather forecasts are available, the ocean forecasts can be extended to a 
longer period.  It consists of two sub-systems: one for CECOM (Section 6.3) and one for WW3 
(Section 6.4).  Graphic display of the forecasts can be viewed at the following public website 
maintained by DFO: 
 
http://www.mar.dfo-mpo.gc.ca/science/ocean/icemodel/ice_ocean_forecast.html 
 
  The parameters displayed on the website are surface trajectories, water level time series 
at selected locations, ice concentration and thickness, wave height and direction (Northwest 
Atlantic and Atlantic Maritimes), sea surface elevation (non-tidal) maps, temperature at surface 
and 50 m.  They are given at hourly (water level time series), 6-hourly (wave) or 12-hourly (all 
others) intervals. 
 
 
 
6.1 Input Data  
 
Meteorological Data  
 
 Meteorological forcing is taken from the Canadian Meteorological Centre (CMC) Global 
Environmental Multiscale (GEM) model (Mailhot et al., 2006), which provides 48 hour forecasts 
twice daily at 0000 and 1200 UTC, with fields output at 3 hour intervals. The GEM model is an 
operational atmospheric model that is part of the Canadian Regional Forecast System (RFS) 
developed by Environment Canada. The model uses a variable resolution grid over the entire 
globe, with a mesoscale 15 km horizontal resolution window over Northern America. Fields used 
in the forecasting system are 10m winds, 2m air and dew point temperatures, total cloud 
coverage, and total accumulated precipitation.  All meteorological parameters are linearly 
interpolated to the ocean and wave model grids.  Except for the10 m winds, the parameter values 
change every 3 hours.  For CECOM, the 10m wind field is interpolated in time to the model time 
step of 7.5 minutes to avoid temporal discontinuities in the dynamical forcing. Total accumulated 

http://www.mar.dfo-mpo.gc.ca/science/ocean/icemodel/ice_ocean_forecast.html�
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precipitation is converted to a precipitation rate.  For WW3, the wind fields are interpolated to 
the propagation time step of the respective wave model (see Section 6.4 for details). 
 
Sea-Ice Data 
 
 Ice concentration data are used for data assimilation (Section 6.2) in the ice model and to 
define the wave domain in WW3.  In WW3, a grid point is considered open ocean if the ice 
concentration is equal or less than 0.5.  Otherwise, it is considered land.  Digital sea ice charts 
which include ice concentration data are provided by Canadian Ice Services(CIS).  Canadian 
waters are covered by five digital ice charts (Figure 6.1).  Data from Eastern Arctic, Hudson Bay 
and East Coast are used in the forecasting system.  CIS produces daily charts for the Gulf of 
St.Lawrence and the Labrador and Newfoundland coasts south of 58N.  Regional charts for 
Hudson Bay, Baffin Bay and the Labrador coast north of 58N are produced fortnightly.   
Typically the regional charts are released several days after the date for which they are valid.  
Since these charts represent more of a two week average condition than an instantaneous one, 
BIOFS uses a regional chart's release date as its valid date.    
 

 
 
 
Figure 6.1.  Coverage of CIS’s digital ice charts (courtesy of CIS). 
 
 
 The digital charts use the “egg code” (Environment Canada, 2005) to indicate the sea ice 
partial concentration for each stage of development, on a regularly spaced grid.  Each “egg” 
indicates up to three different ice types (ignoring trace amounts), each of which is assigned a 
stage and concentration. The stage of development may be interpreted as an approximate 
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measure of the ice thickness.  The conversion of stage to ice model thickness category is 
illustrated in Table 6.1.  There are also four special cases listed in Table 6.2. 
 
 
 
Table 6.1 Conversion from ice stage to ice model category 

 

Ice stage of 
development Description 

Ice 
model 

category
Ice thickness 

boundaries (m)

OW, BW, IF Open Water, bergy water, ice-free 1 -0.05 < h ≤  0.05 

1 New 2  0.05 < h ≤  0.18 

2 Nilas 2 0.05 < h ≤  0.18 

3 Young, Unknown 3 0.18 < h ≤  0.38 

4 Young, Grey 2 0.05 < h ≤  0.18 

5 Young, Grey-White 3 0.18 < h ≤  0.38 

6 First Year, Unknown 4 0.38 < h ≤  0.66 

7 First Year, Thin 5 0.66 < h ≤  1.06 

8 First Year, Thin First Stage 5 0.66 < h ≤  1.06 

9 First Year, Thin Second Stage 5 0.66 < h ≤  1.06 

1. First Year, Medium 6 1.06 < h ≤  1.58 

4. First Year, Thick 7 1.58 < h ≤  2.24 

7. Old 8 2.24 < h ≤  3.04 

8. Old, Second Year 9 3.04 < h ≤  3.98 

9. Old, Multi-Year 9 3.04 < h ≤  3.98 

L Ice of Land Origin 9 3.04 < h ≤  3.98 

B Brash 3 0.18 < h ≤  0.38 
 

 
Each stage of development is first converted to a category.  The partial concentrations 

and categories, including flags (Table 6.2), are then nearest-neighbour interpolated to the model 
grid.  Grid points with land fast ice will be filled with neighbouring concentrations and 
categories.  Including flags in the interpolation preserves grid points which should not be filled 
by interpolation.  All the charts available for a forecast date are then combined. Where charts 
overlap the concentrations of each category are averaged.  Flagged points are ignored in the 
averaging. 
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Table 6.2  Interpolation of ice data 

 
Ice stage of 

development Description Action 

POINT NOT 
COVERED BY 

POLYGON 
Point is outside CIS analysis area Flag 

LAND Land point  Flag 

ICEGLACE 
Useless CIS category indicating ice 
presence but not providing 
concentration or stage 

Flag 

FASTICE Land fast ice Nearest 
Neighbour

  
  
 
 
Tides 
 
 Tidal constituents of elevation and velocity come from two sources.  Paturi et al (2008) 
provides eight constituents (M2, S2, N2, K2, K1, O1, P1, Q1) and covers most of the model 
domain up to Davis Strait.  Dunphy et al (2005) provides five tidal constituents (M2, S2, N2, K1, 
O1) for Baffin Bay.  Constituents are linearly interpolated to the model grid.  Where the two 
sources slightly overlap at Davis Strait, matching constituents are averaged. 
 
 
6.2  Data assimilation in CECOM 
 

Many assimilation schemes have been developed for oceanographic and meteorological 
applications in the past 20 years.  Advanced schemes such as 3-d and 4-d variational method and 
Karmen filter require massive resources and abundant data to yield optimum results.  In this 
section, we describe three methods to assimilate the annual cycle of the temperature and salinity 
fields, sea surface temperature and ice concentration data into the ocean forecast model.   
 
Assimilation of the Annual Cycle of the Temperature and Salinity Fields 
 
 Monthly temperature and salinity climatologies are prescribed at the open boundaries of 
CECOM.  Such constraints are not strong enough to prevent the temperature and salinity fields 
from drifting in multi-year integration.  To ensure the annual cycles are preserved, a nudging 
term with a constant relaxation time scale, tR, of 45 days are added to the temperature and 
salinity equation: 
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where TCLIM  and SCLIM are monthly temperature and salinity climatologies linearly interpolated 
to daily intervals. 
 
 
Assimilation of Sea Surface Temperature Data 
 
 Daily near real-time sea surface temperature (SST) derived mainly from satellite 
observations are provided by CMC.  The data are assimilated into the ocean forecast model using 
a flux correction method.  The method is based on the theory of optimal interpolation.  A 
correction term proportional to the differences between the modeled and observed SST is added 
to the heat flux equation.   
 

We first consider the equation for SST assimilation (see Appendix 4): 
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where the superscripts and subscripts “a”, “m” and “o” in (6.1) denote “assimilation”, “model” 
and “observation”, respectively.  to  is the time of the most recent observation and t is the model 
time.  2

mε and 2
oε are the model and data errors, respectively.  τ  is the correlation time scale of 

SST.  Since change in SST, ΔT, is related to change in heat flux, ΔQ, by  
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where h is the mixed layer depth and td  is the time interval of SST data, the first terms on each 
side of (6.1) can be replaced by the corresponding heat fluxes.  The equation for SST data 
assimilation is: 
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where F = 1/ [1+ (εο /εm)2] .  F ranges from 0 to 1.  Not all parameters in (6.2) are well known. 
To implement (6.2) in the forecast model, the parameters are adjusted to yield optimal results.   
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Figures 6.2 and 6.3 show the impact of data assimilation on model SST from a test run.  
In this run, F = 1, td = 1 day, τ  = 1 day were used and h = 20 m.  To reduce model noise in the 
run, )( o

m tT  in (6.2) was replaced by the model SST averaged over the previous day (from t0 - 1 
day to t0).  Significant improvements in the model SST can be achieved by using this 
assimilation scheme.  Without data assimilation, the difference between the model and data at the 
Scotian Shelf is of the order of  ~ 2o C.  The difference is reduced to a fraction of a degree with 
data assimilation.   Over the model domain, the model without data assimilation over predicts 
SST in the northern Labrador Sea and under predicts SST in the coastal and the North Atlantic 
Current regions (Figs. 6.3).  Data assimilation is able to reduce the errors to less than 1o C. 

 
The SST assimilation is applied to ice free waters only.  In ice covered areas, the sea 

surface temperature is equal or very close to the freezing temperature.   
 

 
 

 
 
 
Figure 6.2  A comparison of SST in a 1o x 1o area centered at the indicated location with and 
without data assimilation. 
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Figure 6.3  CMC SST (left) and the difference between the model and data with (middle) and 
without (right) data assimilation. 
 
  
 
Assimilation of sea-ice data   
 
 An insertion-nudging method is used for ice data assimilation.  Ice concentration data are 
inserted to the model gradually and the model concentration is restored to the data value with a 
prescribed time constant.   In the equation for the thickness distribution function, a term 
proportional to the difference between the observed and values is introduced: 
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where goi is the ice chart concentrations and gi is the model concentrations for ice of thickness 
category i.  Γ has the following form: 
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where t is the model time, to is the time for which the ice chart is valid.  γm  and γw  are adjustable 
parameters.  The Gaussian function in (6.3) limits nudging to the times around the ice chart time.  
1/γm is the restoring time scale.   In the present implementation, the values of 1/γm   and γw are set 
to 1.6 hours (5760 seconds) and 3 hours (10800 seconds) respectively.  At one hour from the ice 
chart time this scheme gives a concentration change rate of ~0.5 per hour.  At times ± 2γw from 
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the ice chart time the rate is negligible.  Where there is no ice chart data, the nudging is not 
applied. 
 
 Figure 6.4 is a comparison of ice area south of 58o with and without data assimilation for 
January 2008.  Figure 6.5 shows the ice concentration from CIS’s East Coast ice chart, and the 
model results with and without data assimilation.  The data assimilation significantly reduces the 
model error.  In particular, ice cover in the Gulf of St. Lawrence and the location of the eastern 
ice edge can be simulated more realistically with data assimilation.   
 

 
 
Figure 6.4  A comparison of the model ice area south of 58o N with (blue) and without (black) 
data assimilation.  The unit is percentage of the model area south of 58o N. 
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Figure 6.5  Ice concentration for January 28, 2008: data (left), model results without (middle) 
and with (right) data assimilation. 
 
 
 
6.3 Operational Implementation of CECOM 
 
 The ice-ocean component of BIOFS is mostly comprised of MATLAB scripts that handle 
the pre-processing of model input fields, the execution of the CECOM FORTRAN executable, 
the post-processing of model results, and the management of data files.  MATLAB was chosen 
for its platform independence, interpolation and graphics functionalities, and the abundance of 
open source tools such as M_Map (Pawlowicz, 2006), readgrib (Blanton, 2005),  snctools (Evans, 
2007) and  T_Tide (Pawlowicz et al, 2002).  Scheduling and automation is handled by the Linux 
bash shell, but could easily be implemented for other platforms and operating systems. 
 
Delivery of Meteorological  and ice Data  
 

As with any endeavor in real-time forecasting, the primary concern is the timely delivery 
of the data required to force the forecast model.  To address this concern a separate subsystem, 
written in bash shell scripts, automates the retrieval of crucial meteorological forecast data 
transmitted from CMC to BIO server Emerald2 twice a day.  The subsystem polls the site for 
data and performs file checks after retrieval to verify file integrity.  There is usually a 5-6 hour 
delay between the CMC regional forecast and the appearance of the forecast data on their ftp site. 
If the system fails to retrieve the data, it retries for a predefined number of times.   
 
  The digital ice charts, valid for 1800 UTC are delivered daily to an ftp server at BIO, 
Starfish, at ~2200 UTC.  The CIS delivery system itself checks for file integrity after delivery. 
 
 
 

http://www.eos.ubc.ca/people/faculty/pawlowicz/�
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Forecast Schedule 
 
 CECOM is run three times daily within BIOFS, producing 48 hour forecasts for 0000 and 
1200 UTC (Table 6.3, Fig. 6.6).  Due to delays in receiving the meteorological data, the CMC 
1200  UTC data are received at ~1700-1800 UTC and the forecast completes at ~1800-1900 
UTC.  A 1200 UTC data assimilation run using 1800 UTC sea ice concentration data and 1200 
UTC sea surface temperature data (the same SST are received in the CMC 0000 UTC forecast 
data) is made the following morning at ~0300 UTC to assimilate the most recent ice chart and 
sea surface temperature data.  The 0000 UTC forecast is run four hours following the data 
assimilation run at ~0700 UTC.  
 
 
Table 6.3  Ocean forecast schedule. Both the local time “AT” (Atlantic Time) and UTC are 
indicated. 

 

Day 1 Day 2 

1 – 2 pm AT  2 – 3 pm AT 6 pm AT 11 pm AT 1 – 2 am AT 3 am AT 

1700-1800 UTC 1800-1900 UTC 2200 UTC 0300 UTC 0500-0600 
UTC 0700 UTC 

CMC 1200 UTC 
forecast data 

received 

1200 UTC 
48-hour forecast 

CIS charts 
received 

1200 UTC 
48-hour ice 

and SST 
assimilation 

CMC 0000 
UTC forecast 
data received 

0000 UTC 
48-hour 
forecast 
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Figure 6.6  Flow chart of the forecasting operations in a 24-hour period. 
 
 
 
Forecast Methodology 
 
 Each forecast is initialized with the most recent output of a previous forecast. The ocean 
lateral boundary conditions are linearly interpolated to daily values from the monthly means to 
prevent discontinuity.  The boundary conditions also provide a constraint for temperature and 
salinity near the boundaries.  In the interior, nudging and statistical interpolation are used to 
prevent long-term drifts and to assimilate sea surface temperature data into the model (see 
Section 6.2).    
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After the model run, T_Tide (R.Pawlowicz et al, 2002) calculates the tidal current and 

elevation for the forecast period.  The tidal components are then linearly added to the forecast 
components.  For surface currents, wave induced Stokes drifts are added to the model surface 
current to obtain the total surface current (Tang et al., 2007).   The Stokes drift, us, is obtained 
from the 2-dimensional wave spectrum, E (f, θ), of WW3 by integrations over frequency and 
direction: 

 
( )∫∫= θθπ dfdfEef kz

s ,4 2ku        (6.4) 
 

where f is wave frequency, θ  is wave direction, k is wave number and k is the magnitude of k.   
 

There are two options for the Strokes drift in the forecasting system.  us can be computed 
directly from (6.4) at every model grid point.   A simpler method is to parameterize us by surface 
winds : 
 
us = a W + b W2          (6.5) 
 

β  = turning angle (positive for clockwise) relative to wind direction    (6.6) 
 
where us and β are the magnitude and direction of  us , respectively, and W is 10 m wind speed.  
The parameters a, b and β are determined from least-squared fits of the Strokes velocities 
computed from (6.4) for October-December 2007.  In most applications (e.g., surface drifter, 
floating object), vertically averaged surface currents are required.  The Stokes velocities in (6.5) 
and (6.6) are replaced vertically averaged Stokes velocities.  The results of the least-squared fits 
are given in Table 6.4 for different depths of averaging.   
 
 
Table 6.4.  Parameters values of the Stokes drift for different depths of averaging. 
 
Depth (m) 1000*a 1000*b β (deg) 

1 2.525 0.641 3.80 
2 1.656 0.533 4.00 
3 1.176 0.459 4.10 
4 0.889 0.405 4.30 
5 0.699 0.363 4.40 

 
 
 
   Drift tracks are calculated from the total surface current field.  Each track starts at a 
model grid point and is advected by the surface current.  Horizontal linear interpolation is used to 
calculate the surface current field between grid points. Distances are calculated using the plane 
sailing method which ignores the earth's curvature.   
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For ice forecasts, all available 1800 UTC ice charts from the previous day are processed 
and assimilated into the model to correct the model ice field, as described in Section 6.2.   For 
ocean forecasts, 1200 UTC SST data from the previous day are assimilated into the model 
(Figure 6.6). 
 
 
 
6.4  Operational Implementation of WW3 
 

The wave models are implemented on a system of three nested grids (Figures. 6.7, 6.8, 
6.9 and Table 6.5). The spatial resolution increases from 1.0o in the coarse grid to 0.5o in the 
intermediate grid to 0.1667o (10’) in the fine resolution grid. This system of grids ensures that 
energy from distant storms is not lost in simulating storms making landfall in coastal areas of 
North America. The grid dimensions and resolutions are given in Table 6.5. Etopo2 bathymetry 
is used from the United States National Geophysical Data Center, at 2 minutes resolution. WW3 
is used for the coarse, intermediate and fine resolution simulations. Following the Courant-
Friedrichs-Lévy (CFL) stability criterion, the propagation time steps for WW3 are 20 and 10 
minutes for the coarse and intermediate grids, respectively, and 4 minute propagation steps for 
the fine-resolution grid. In Table 6.5, WW3 has 4 time steps:  Δtg is the global time step by 
which the entire wave model solution is propagated forward in time,  Δtρ,1 is the maximum 
spatial (x,y) propagation time step for the lowest frequency, which is required to satisfy the CFL 
criterion, Δtis is the maximum intra-spectral (k, θ) propagation time step, which is also required 
to satisfy the CFL criterion, and Δtst  is the minimum time step for the integration of the source 
terms, which is dynamically adjusted for each grid and for Δtg. 
 

WW3 interpolates the wind fields to the propagation time step of the respective wave 
model. For fast moving storms, WW3 has a built-in scheme to reduce the source term integration 
time step when the situation is changing rapidly.  Moreover, in WW3 the source term integration 
time step can be set by the user. Thus, we set the minimum source term time step to 5 minutes in 
the coarse-resolution grid to adequately simulate the storms considered here. For the 
intermediate and fine grids, source term time steps were both set to 2.5 (see Table 6.5).  Details 
regarding the spectral range and resolution of the WW3 model are given in Table 6.6, in terms of 
the lowest and highest frequencies ( lowf  and highf ), number of points ( n ), frequency resolution 
( fΔ ) and angular resolutions ( θΔ ). The 48-hour WW3 wave forecasts run twice daily (0000 
UTC and 1200UTC). 
 
 WW3 simulates waves outside nearshore areas where shallow water wave processes are 
not important. The model includes standard physics for wave propagation, growth by wind, 
nonlinear interactions, dissipation due to whitecapping and dissipation due to bottom friction. In 
coastal, estuary and nearshore areas where water depth is shallow, fine-resolution computational 
domains are sometimes needed for dedicated studies, nested within coarser–resolution basin-
scale domains, in order to resolve complex topography, coastline features, and shallow water 
wave physics. In these special cases, an option is that the shallow water SWAN wave model 
(version 40.31) can be applied for a fourth domain, nested within the third domain (Ris et al., 
1994; Booij et al., 1996; Booij et al., 1999; Holthuijsen et al. 2003; Booij, 2004) in these specific 
areas. The physics of SWAN are different from that of WW3, especially for shallow water waves. 
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SWAN can simulate shoaling, refraction, bottom friction, and depth-induced wave breaking, 
besides the processes for whitecapping, wind input and nonlinear wave-wave interactions that 
are present in WW3. SWAN is formulated in terms of an action balance equation. Xu et al. 
(2007) describe the implementation of WW3 and nested grids for the North Atlantic and SWAN 
for Lunenburg Bay, for studies related to the waves generated by hurricane Juan (September 28-
29, 2003). 
 
 
 

 
 
Figure 6.7  Model domain of WW3 - Atlantic Ocean and sample model output (0600 UTC, 
November 4, 2007).  The colors indicate significant wave height.  The arrows indicate wave 
period and direction. 
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Figure 6.8  Model domain of WW3 – Northwestern North Atlantic Ocean and sample model 
output (0600 UTC, November 4, 2007).  The colors indicate significant wave height.  The arrows 
indicate wave period and direction. 
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Figure 6.9  Model domain of WW3 – Atlantic maritimes and sample model output (0600 UTC, 
November 4, 2007).  The colors indicate significant wave height.  The arrows indicate wave 
period and direction. 
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Table 6.5. Geographical location of the grids used in this study: ,λ θΔ  are the resolutions in 
longitude λ  and latitudeφ ,  and Nλ  and Nφ  are the number of points in λ  and φ . Finally, tΔ  
is the propagation time step and tΔ ST is the required time step for source term integration for the 
three models, as required to satisfy the CFL criterion.  
 
GRIDS                 Longitude      Latitude      ,λ θΔ       Nλ       Nφ            Δtg           tΔ ST 

Coarse               40oE – 82oW  75oS– 77oN       1o         123         153      20 min   5.0 min 

Intermediate     40oW–75oW   20oN-75oN      0.5o           71        111       10 min     2.min 

Fine                    47oW–71oW   42oN-52oN      10’          145          61        5 min      2.5 min 

 
 
 
Table 6.6. Spectral domains for all models.  lowf , highf are the default values. 

Parameters                          Value  

lowf , highf  [s-1]            0.0418, 0.6028    

nf , fΔ                              29, 1.1 f×  

θn  , θΔ                             36, 10o 
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Appendix 1.   Turbulence closure 
 

This appendix outlines the calculations of the vertical mixing coefficients from 
turbulence closure.  Governing equations for turbulence kinetic energy q2/2 and turbulence 
macroscale l are 
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κ is the von Karman constant and B1, E1 and E2 are empirical constants.   
 

The effects of wave breaking are taken into consideration through the surface boundary 
condition for q2.   At the surface, the vertical gradient of q2 is proportional to the cube of the 
water friction velocity (Mellor and Blumberg, 2004).  A consequence of this boundary condition 
is that the eddy viscosity is non-zero at the surface (Tang et al., 2007).  The boundary conditions 
at the surface are 
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where αBC is a prescribed constant and *u  is the friction velocity  
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The boundary conditions at the ocean bottom are 
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where *u  is derived from the bottom stress. 
 

The mixing coefficients KM, KH and Kq can be expressed in terms of stability functions 
SM, SH and Sq 
 

),,(),,( qHMqHM SSSlqKKK = . 
 
The stability functions are derived from the solution of analytic equations (Blumberg and Mellor, 
1987) involving the vertical shear and vertical density gradient.  In the presence of ice, the 
mixing coefficient is the average of the values for open ocean and for ice-covered ocean (no 
wave effects) weighted by ice concentration. 
 
 
Appendix 2.  Generalised sigma coordinates 
 

Generalised sigma coordinates are derived by transforming coordinates (x, y, z, t) to (x*, 
y*, s, t*).  The vertical coordinate s is defined 
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where s is a function of the vertical variable k which ranges from 1 at the surface to kb at the 
ocean bottom.  For the purposes of this discussion k is continuous but it is discrete for the 
computer implementation.  Since 0/ =∂∂ xz  then 
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For a function ),,,( tzyxφ , partial derivatives in the old coordinate system are related to partial 
derivatives in the new coordinate system as 
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We define a new vertical velocity ω as 
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The continuity equation in transformed coordinates (henceforth dropping the asterisks) is 
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The momentum equations in transformed coordinates are  
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The heat and salt equations in transformed coordinates are 

 
( ) ( ) ( ) ( )

T
k

Hkkk M
k
T

s
K

kk
T

y
vTs

x
uTs

t
Ts

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ ω     



 58

( ) ( ) ( ) ( )
S

k

Hkkk M
k
S

s
K

kk
S

y
vSs

x
uSs

t
Ss

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ ω        

 
The horizontal mixing terms become 
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These forms are not simply the transformations of (2.8).  This relates to separating vertical 
mixing from horizontal mixing in a coordinate system in which constant k surfaces are sloping 
(Mellor and Blumberg, 1985 and Mellor et al., 2002). 
 
 
Appendix 3.  Rotated spherical coordinate system 
 

Coordinates r on a unit sphere are transformed to r′ in a rotated system (4.2) with the 
matrix R by 
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where Rξ , Rη , Rζ  are transformation matrices for rotations by the individual angles ξ, η, and ζ 
respectively (Figure 4.2). 
 

The individual rotation matrices are 
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giving the matrix R as 
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As well as transforming coordinates, it is also necessary to transform components of 

vectors tangent to the sphere.  Define α(φ,θ) as the angle between parallels of latitude (Figure 
A3.1).  The angle between a vector and the local parallel in the rotated system is the 
corresponding angle in the original system minus α.  Denoting longitude and co-latitude in the 
rotated coordinate system as ( )θφ ′′, , then 
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From (4.1) (φ, θ) are related to (x, y, z) by 
 
tan φ = y/x 
 
cosθ = z.           (A3.5) 
 

The partial derivatives in (A3.4) may be written as  
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and  
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Eqs. (A3.6) and (A3.7) involve derivatives φ′∂∂r .  From (A3.1) 
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The partial derivatives in (A3.6) and (A3.7) are then 
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We obtain α by substituting (A3.9) into (A3.6) and (A3.7) and then substituting (A3.6) and 
(A3.7) into (A3.4). 
 

 
 
 
Figure A3.1:  The angle α between a parallel of latitude in the rotated coordinate system and a 
parallel of latitude in the original system enables the transformation of components of a vector. 
 
 
 
Appendix 4.  Two-dimensional statistical interpolation 
 
 Consider a variable Ti at a model time and grid point denoted by the subscript i. The 
model value m

iT  is corrected by past or present observations to yield an assimilated value, a
iT , 

according to 
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where oTα  is the observation and mTα is the model value at the time and location of the 
observation denoted by the subscript “α”.   N is the number of observations to be included in the 
assimilation. Piα  are weights obtained by minimizing the difference between the model 
prediction and the observation, which are solutions of the following algebraic equations (Mellor 
and Ezer, 1991): 
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where Mαβ and Dαβ are the error matrices for model and observation, respectively: 
 

oomm TTDTTM βααββααβ Δ⋅Δ=Δ⋅Δ= .      (A4-3) 
 

mTαΔ  and oTαΔ are the model and observation errors, respectively.  The error matrices can be 
parameterized by a Gaussian and a delta function (Mellor and Ezer, 1991; Carton et al., 2000): 
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αβαβ δε 2

oD =            (A4-5) 
 
where Lx, Ly and τ are the correlation scales of the model errors.  If the horizontal correlation 
scale is much larger than the grid spacing of the model, the spatial part of (A4-4) can be 
neglected, and (A4-1) is reduced to:  
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where the subscript “1” denotes the time of the most recent observation ( itt ≤1 ). 
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