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lillSTRACT

Ramsden,
tions of
Hydrogr.

D., D. Whitfield, and G. Holloway. 1985. Spectral TransformSimula
turbulent flows, with Geophysical Applications. Can. Technical Rep.
and Ocean Sci. 57:54p.

Numerical solutions of barotropic and baroclinic vorticity equations by
the method of spectral transforms are presented. Descriptions of the computet
simulations, along with criteria for parameterisation of oceanographic and
meteorological conditions are given. An analysis of the computational
methodology, including aliasing problems and conservation properties ·is
discussed.

Examples are shown for some of the usages of the methods including plume
dispersion, plankton patchiness, tracer transport phenomena, predictability
or degradation of forecasting., internal wave breaking in a vertical plane,
baroclinic instability, eddy/topography interaction and the statistical
behaviour of drifter (single point) trajectories.

key words: vorticity, spectral" simulation, plume, plankton, predictability,
tracer, dispersion, drifter trajectories.

Ramsden, D., D. Whitfield, and G. Holloway. 1985. Spectral Transform Simula
tions of turbulent flows, with Geophysical Applications. Can. Technical Rep.
Hydrogr. and Ocean Sci. 57:54p.

Des solutions numeriques des equations des tourbillons baro-tropes et
baroclines par la methode des transformees spectrales sont presentees. Des
descriptions des simulations sur ordinateur et des criteres de parametris
ation des conditions oceanographiques et meteorologiques sont donnees. La
methode de calcul, des problemes d'aliasing et les· proprietes de conser.vation
sont analyses.

On presente des exemples d'application de lamethode a la dispersion des
panaches, au caractere epars de plancton, aux phenomenes de transport des
marqueurs, a la qualite des previsions, au deferlement interne des vagues dans
un plan vertical, a l'instahi:lite barocline, a l'interaction entre les tour
billons et Le relief et au comportement statistique des. trajectoires de d.gr:j,y./;l
d'objets ponctuels.

Mots cles: tourbillon, spectral, simulation, panache, plane ton , prevision,
marqueur, dispersion, trajectoires de derive.
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1. INTRODUCTION

This report i~ a detailed analysis of the development of a set of mathe
matical techniques and computer programs for the solution of the equations of
motion in two dimensions.

In three dimensions, the Navier Stokes equations with the Boussinesq
approximations are

~ ii + 2n x ii + ii.Vii =- --L Vp + .Be.. + uV2ii
dt Po PO

V·ii = 0

(1. 1)

(1. 2)

'""

"

where ii is the velocity field, P the density field, Po the mean density, g the
gravity, u the coefficient of viscosity and ii·ViJ. is the dyadic advector operator

dU'
(ii·Vii). = I: u. -d. Equation (1.2) is the statement of incompressibility of

1 J J dXj

the fluid under examination.

If we consider oceanic motion on time scales rather longer than a day,
then the strongcbnstraint due to the earth's rotation permits·a further 
simplification. We may omit dependence upon the local vertical coordinate,
thus resolving only the two horizontal coordinates. This approximation will
tend to be valid if we consider only horizontal length scales larger than the
first internal Rossby radius of deformation or, typically, twenty times the
depth of the water column at mid-latitude. At higher latitudes, given weak
stratification and strong rotation, smaller horizontal scales of motion down
to just a few times the depth of water may be considered as two~dimen$ional.

11 can then be approximated by uH,in which w, the vertical velocity, is zero.
It is now possible to rewrite equation (1.1) in terms of a stream functionw
with u being defined by

Let
k x Vw (1. 3a)

(1. 3b)

When these equations (1. 3a) and (1. 3b) are introduced ip.to equation 0.1) ,we
get the equations of barotropic vorticity conservation.

ddt S + J(W,s) = v2s

with J(A B) '= dA l! ,_ dA l!
. , dX dy dy dX

(1. 4)

(1.5)

This equation of two dimensional geostrophic turbulence is compLf.cared somewhat
when we add such things as planetary vorticity and topographic interaction due
to vortex stretching and mean flow. 1 This will be discussed in detail in
Section 4.

-._------,-----
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Equation (1.4) will be modified for forcing and a gravity potential energy
term. When multiple' layers are considered, there will be coupling terms amongst
the layers.

The solution of (1. 4) and its derivative equations give us 'a rich set of
problems to address. The expression in the spectral domain allows flexibility
in choosing initial conditions and forcing conditions. There is also the
flexibility to deal with physical effects in either the real or spectral
domain. Spectra of kinetic energy (= k21~12) can be prescrib~d (k a wave
number), real topographic ridges, isolated pieces of topography, and/or a
spectrum of topography can be specified. Floats can be dropped into regions
of interest and the response of passive tracers to the flow field can be
measured. The model can be turned on end using an x-z plane to model internal
waves in 2 dimensions. Runs can be duplicated to test the effects of various
parameters such as ~, or different types of diffusion. Mean flow shear, or a
series of shears, can be prescribed and systematic responses can be examined.
The model can be reached into at any point, and a wealth of statistical
quantities to accurately test theoretical results can be developed.

The major limitation of the method is that, because we deal with the
equations in the Fourier domain, the boundary conditions must be periodic.
This presents difficulties in modelling basins, for example.

2. SPECTRAL TRANSFORM METHOD

2.0 Overview

The purpose of this section is to describe a numerical method, due to
Orszag (1971), which may be used to solve equations for the advection and
diffusion of vorticity, heat or dissolved substances in fluids subject to
periodic boundary conditions.

Orszag's method starts by Fourier transforming the partiaJ.. differential
equations ocr: motion to a finite grid in spectral space, where they become
coupled first-order ordinary differential equations. The non-linear advection
terms which require a prohibitive amount of computation in spectral space are
evaluated by transforming the necessary fields to 'physical space, taking local
products and transforming the results to spectral space. Special procedures '
are used to eliminate aliasing. When fast Fourier transforms (FFT's) are
employed for this process, the Orszag spectral method becomes computationally
competitive with finite difference methods and may provide for high resolution
in two, and, especially, three dimensions.

There are advantages of this method beyond computational efficiency:
i) for a given number of grid points, accuracy is likely to be gr~atly

improved, as derivatives are represented effectively to infinite order. A
corollary of this is that phase relationships are preserved. Computational
wave phase speeds are equal to theoretical speeds. No d:Lstortion of group
velocity occurs and hence energy and momenta transfers aca treated co.rrect.Ly.

ii) Energy, enstrophy, variance of tracer field and various correlations
are semi-conserved (i.e. conserved aside from time-differencing errors and
viscous or diffusive dissipation).
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2.1 Transformation to spectral space

As a particular example, easily generalized, we treat the viscid vorticity
equation in two dimensions

(2.1.1)

~ being a stream function representing the velocity field, v viscosity, and the
Jacobian determinant is

The periodic boundary condition is

(2.1.2)

~(X+X,y+Y,t)

Define spatial grid by

1jJ(x,y,t) (2.1.3)

x = a.X
a. Nx

SY
YS = Ny

a. O,1,2, ••••Nx-l

S = 0, 1, .•••••Ny-l
(2.1.4)

then 1jJ is approximated by a Fourier series

Nx_ 1 ~-1
2 2

1jJ(xa.'YS,t) ~ ~a.S(t) L: L: 1jJmn(t)

m= _Nx n=-~
2 2

where the wavenumbers take the values

exp{i(k x +Q, Ya)}(2.l.5)rna. rr rs

therefore,

k
m

211m
= --

X (2.1.6)

Nxm= ~-.. -
2

the inverse 6f this transform is

~-1
2

L: 1jJ(t).
mn

n= _BY. .
2

. . rna. nf
exp{ i211 (Nx + NY)} (2.L7)

1 Nx-1 Ny-l

~mn =-- L: L:NxNy
a.=0 S=O

,I, exp{ -i211 (rna. + nS)}
'¥a.S Nx Ny
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Because * (x, y, t.) is real, * is conj ugat;e symmetricmn

*ron = **-m -n,
where the superscript asterisk denotes complex conjugation.

The spatial derivative terms in (2.1.1) take a very simple form;

(2.1.9)

2
~ ~ +(k 2+t 2).* (t).exp{i(k X +t Ya ) }

m n 'ron man I-'

mn

(2.1.10)

(2.1. 11)

Defining J by
ron

~ J exp{i (k x +Q, YaH
ron ma nl-'

m n

substitution into (2.1.1) yields

(2.1.12)

(2.1.13)

The original partial differential equation has been replaced by a set of
coupled first order ordinary DE's, the numerical solution of which is straight
forward (Section 2.3), provided that a suitable procedure is available for
evaluating the Jron's. Explanation of such a procedure constitutes much of the
remaining theoretlcal part of this report.

2.2 Evaluation of the advective term

The material of this section is very technical, and a first-time reader
may find it useful to skip to Section 2.3 and return to this section with a
better overview of the whole spectral transform method.

Correct ca~culation of the J mn' s defined by (2.1. 9), is a complex process,
and it is only the availability of FFT algorithms which makes Orszag's spectral
wethod computationally advantageous.

For the remainder of this section we will follow Davey (1980) fairly
closely.

2.2.1 Der:ivation of fo.rmulae

The derivation is simplified if the Jacobian is first expressed in a
particular form. Fluid velocity components are derived from the stream func
tion, *:



Let

Then

.5

u =-~ u=~
x ay'· y ax

x = v2 1JJ

J (1JJ, V21JJ ) = .!-!.·Vx

= V· (.!DC)

a a
= ax(u~) + ay(uyx)

(2.2.1)

(2.2.2)

(2.2.3)

Now (2.1.4), with a change of subscript symbols, and the corresponding Fourier
series expansion of X are

"'P (x?y,t)=1~ 1JJri ei(KpXo.+1- <t i p)

x (x,y, +)=2:2:: X rs ' ei (KrX a351(1)
" r s

Then the. first term on the RHS of (2.2.3) is

(2.2.4)

(2.2.5)

Let

'then

u = - i£ 1JJpq q 0 pq

and, with the definition

"Vp~ =: j p1PF9-

" d(a1\''\1) '"' ~ \' "\' .( 0 ) V 'V ej (K +K)X I? i (1 f 1 ) Y
~Yo d)(' Iv ::''-'0" Ld..J!..J

o

I J.+1. . 0 o' I'v pro. C. 'los 0
" 0 "0" or .~o Or 5 <t E; 0p'\. 0 rs 0"



(2.2.7)
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Thus,

J (1ji,V2 ljJ ) = n:L:l:i (kp+kr)up q+(.Q'q+Q,s )vpq 'Xr s exp{{(kp+kr)x exp{i(£q+Q,s)y) (2.2.6)
pprs

Comparing (2.2.6) and (2.1.9), we see that their equivalence r:equires

Jmn~f{.>;:~ [i(Kp' k') Up '1-' !(1{1,)Vp",JX rs ~(p+hn)M'j.+s - n)

=iKmI,rEr [Upc/X- rs ' £(p+r-m).~(Cj.+s -n)]
pGj.rs I r .

•,+jlnLLEr [Vpa"Xrs'£(f+f~m)~(~ts-nH
. F~r5 r " , '

_ . " If th:i,s was the final formula for J mn the spectral method could be very
inefficient, as &(tJ){ Ny] arithmetic operations are required for its evaluation.
Orszag's contribution was to find a procedure to greatly reduce the computa
tional load.

Let

Transform u to a physical space grid.
rJr' ~ ,

U~, '" \' (; U tJ i21'r(.E t 9-P')
ct. ,,6 L.- OQ L- N>< 1'\ y

,(5 p"'-I\I>< 9-,,-N'i I r
r r

:(2.2.8)

(2.2.9)

1"\

and similarly for X ct)~
;0. ....

Then f·orm the local product, Ud~~f:A.~ , at each grid point in physical space and
transform it to spectral space.

N -1M,,y-]
" I"

Wmr"l='N,.-iJ'f E L
a.=o {!=o

We invoke the appropriate orthogonality theorem:

N-I
~ t' j~tr (P + r-rn}a-
et- '" 0

= N,:p +r - tn = 0, ±N-,±2N ..••

= 0 otherwise
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therefore

(2.2.10)

with j, Q,

occur.
0, ±1. Because wavenumbers are l)'ound' by ±K, larger j, Q, will not

We separate and give symbols to the terms of (2.2.10):

(2.2.11)

(2.2.12)

ld

The first term is that which we seek; the remaining three are the contributions
of aliasing, which is the artificial introduction of high wave number components
inherent in finite Fourier transforms. Following Orszag, we perform a new set
of transforms on a spatial grid which is shifted w.r.t. the previous One by
one-half grid interval in both directions: '

"'u ""~ \' U C0, ~-rr [e (a. + Y2. )+ 9:(,s+ 'l',d ]
a,~ ~~ P9- sr; N'{

=\:"\' U p il'lt(~+Cj.,8)·e i1f(-~ +t-)t ~ F9- L N)l JJ:i 'f, '/

and similarly for ?C~~ Then proceeding as above,

wmn:~II Oa,~ x~pe-iZ1Tc~x(et+i)t~'1(PT~:)J
t:l.fJ

.e ;11'(2:. +' 5).. /}-i2:rr(mCl+~)· e-i1T'~ '/-..!2-.)ltl
l..- IN)( ~. l,. N')( N't ~ N'/ 'JJ

(2.2.13)

(1.,2..14)
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Thus

(2.2.15)

which contains only one unwanted term. This term may be eliminated by setting
all spectral components to zero outside of a suitable domain. For the case of
Nx = Ny =' N, this domain may be circular (Patterson and Orszag, 1971)

(2.2.16)

or octagonal (Orszag, 1971)

when Nx = Ny, (2.2.16) is easily generalized to an elliptical domain

(2.2.17)

2 2 2 2
(~) + (~)
Nx Ny

8
< 9 , (~:) 2 + (~;)2 < ~' (2~2.18)

The octagonal domain contains more modes than the circular, but introduces an
anisotrophy which may be undesirable. Proofs of these results are available in
the original papers. Further, Patterson and Orszag (1971) show that (2.2.16)
represents the worst case limitation for circular domains and give formulae
for larger domain radii as functions of N .

2

At this point, we have a completely de~aliased algorithm for the computa
tion of J mn . Before proceeding to show how standard FFT routines may be
utilized, a summary may be clarifying;

-;''';;: ,: '.~

:·t· ".
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-Similarly for Vmn. Finally

J mn=j Km Wmn;-j 1. Yl \!rnn
'"

A total of ten transforms is required (~~~

2.2.2 Using standard FFT routines

are saved and used twice).

Most standard, packaged, FFT routines perform the transform pair

IV-I

-f I;:~L:
WI

1'''0
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o <p< N

HmN do we use these to achieve the transforms we require?

Consider the forward transform first. We want =1 <. yYJ <: i torLJQ.(~.

Since

then the correspondence between m' and m is as follows:

m'

m

O I 2 N-l f'I N+!
, , •••• ~l. ',",2. ,

N _rJ- N
0" I , z.. . ,~- I , ~ , 7: + J., •

•• ? N- I

• ? - 1

Therefore, the package routine does what we want, but leaves the spectral
cClefficients in this special order. If the package inverse ~ransform is now
applied to afield of spectral coefficients which are stored in this order:

This is what is wanted.

To make use of these results in simulation, the two (or three) dimensional
spectral field iss:tbred in an order derived from that given above. The wave
Rumber array, km and Jl,n, is stored ,in the same order. In Table 1 this order is
illustrated: for the case of the Fl.oa'ting Pc Lrrt Systems two-dimensional real-to
complex transforms.

Once the correct values and order of storage fbr km, Jl,m and combinations
0·£ themar-e determined" any desired derivative is performed in spectral space
by an ,a't'tcf'Ymul:tiptLication (and subsequent real or imaginary $waps and negations
to represent multiplication by 1=1, if required).



Table 1.

11

The FPS 190L K space map for a 2d FFT.

K space N x N array m = N/2
(Ky, Kx) representation

I 1 2 3 4 5 n-l n
J

1 r(O,O) r (0, m) r (0,1) i(O,I) r(0,2) r(O,m-l) i (0 ,m-1)
2 r(m,O) r(m,m) r(1,1) i(1,I) r (1,2) r(1,m-l) i(1,m-l)
3 r(l,O) r(l,m) r(2,1) i (2, 1) I "
4 i(l,O) i(l,m) r (3,1) " "
5 r(2,0) r(2,m) r (4,1) " "

" " " " "
" " " " 11

" " " " "
n/2 i(m/2,0) i(m/2,m) r (m, 1) i (m, 1) r(m,2) r(m,m-l) i(m,m-l)
n/2+1 r (m/2+1, 0) r(m/2+1,0) r(m+l,l) i(m+l, 1) r(m+l, r(-m+l, i (-m+l,

2) m-l) m-1)
" 11 " "
" " " 11

" " " "
n-l r(m-l,O) r(m~l,m) r(-2,1) i(-2,1) r(-2,2)
n i(m-l,O) i(m-l, m) r(-I,I) i(-I,I) r(-I,I) r (-I,m-I) i(-I,m-l)

Note: r(m+l,l) - r(~(m-l), 1)
n - N

2.3 Time Stepping

As demonstrated above, the use of Fourier transforms converts the original
partial differential equation on an Nx ~" Ny grid to a coupled set of NxNy/2
partial differential equations in the complex spectral amplitudes (2.1.12).
This section describes a suitable time stepping scheme for this solution.

, .

Orszag (1971) warns that explicit foreward time
term will be unstable.· On the other hand, stability
contribution requires an implicit solution. A mixe.d
satisfies these requirements:

stepping of the Jacobian
of the diffusion term
leapfrog-implicit scheme

--------------------
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1/J t+fl.t - 1/J t-Lh

2fl.t
(2.3.1)

which, rearranged, becomes

(2.3.2)

To start from t = 0, first a prediction of 1/Jfl.
t / 2 is made, and then this is used

to step to fl.t:

(2.3.3)

(2.3.4)

I1t

1/J2=------------~

This scheme is accurate to order fl.t2,

to separation of even and odd time levels.
averaged after some number of time steps.
which the following has been selected.

but may lead to an instability due
To counteract this, time levels are

Several schemes are available from

1/Jt+.6.t (2.3.5)

(2.3.6)

(2.3. n

+ fl.t
t -

( 2 2)l1t) t A J 2(l-v ~m +2n :f 1/J + utk 2+~ 2
m n

(2.3.8)
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2.4 Energy and Enstrophy

In the absence of. dissipation, energy and entrophy are conserved except
for errors ihtrdduc~d by finite time differencing. As a check for correct
execution of the Orszag algorithm, and to determine that the time stepping
interval is sufficiently small, we evaluate (with k2 = m2 + n 2 )

Energy ~ l: k2 1J;1J;'~ (2.4.1)tot
k

and
EnstrophYtot l: k41J;1J;'~ (2.4.2)

k

Energy and enstrophy may be transferred among modes, and this is monitored
by the

and
Energy transfer (k)

Enstrophy transfer (k)

Re (J*1J;)

2 Re(kLJ*1J;)

(2.4.3)

2.5 Spectral and pseudo-spectral calculations

The algorithm developed in Section 2.2 is fully spectral in the sense that
all contributions from aliasing are eliminated. One might want to solve some
problems for which this approach is not possible. Orszag (1971) gives the
example of a cloud dynamics model in which the conditions that precipitation
occur is naturally handled in physical space while advection and dissipation
are effeciently treated in spectral space. For such situations, one may trans
form the needed quantities back and forth between physical and spectraL space,
and either accept the resulting aliasing errors or adopt a scheme such as is
described by Orszag (1971) to partially reduce them.

Even in cases where full de-aliasing is possible, one might perform pseudo
spectral calculations in order to reduce the number of FFT's per time step in
half. For some problems aliasing errors may be negligibly small (Orszag, 1972,
Fox and Orszag, 1973).

3. IMPLEMENTATION AT THE INSTITUTE OF OCEAN SCIENCES

3.1 Hardware environment

A realization of the theory of Section 2 is done on a Floating Point
Systems 190L array processor (AP) attached to a Univac 11/60 host computer.
The array processor has 128k bit words of main memory, 4 k words of table
memory and some read only memory containing constants.

The UNIVAC acts as' a scheduler, initiatizing the AP, controlling the time
stepping, swapping results between host and AP memory, and offloading diagnos
tics for future reference. These diagnost1.cs 'are output to 'a plotting program,
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using the NCAR graphics package, including spectra, stream function and
vorticity contours and time plots of relevant quantities.

The maximum grid size in the models is 128 x 128; this necessitates keeping
some quantities in UNIVAC main memory and swapping within time steps. FFT
routines require that the data arrays reside in a single page of AP memory (64
k words), and this limits grid size to 256 x 256. This would require the
storage of all quantities in host memory which can be prohibitively expensive
in host time.

3.2 Array processor calls

Most AP calls fall into one of three categories: a) data in or out of AP;
b) the manipulation of vector quantities (addition, subtraction, multiplication
of vectors) or vectors with sealers; c) 2D array operations (FFT's).

Since our problem is 2D, we must treat data as sometimes 1D vector and
sometimes 2D, as required by the various AP calls. This requires special effo~t

to "remember where we are" at all times, but presents no insurmountable problems
and the "bookkeeping" is both efficient and transparent to the user.

3.3 Special considerations for 2D FFT calls

The efficiency of the Orszag method depends upon the existence of the FFT,
as demonstrated in Section 2. The storage order of spectral space values in
relation to real space storage order is characteristic of any given 2D FFT
routine, and knowledge of this order is a prerequisite of the routine's use.
We must not only initialize spectral space values correctly, but also must
generate arrays of p, q and p2 + q2 used in calculating derivatives, and their
storage order must match that used by the routine.

For a complete description of the interpretation of k space and the details
of programming the FPS 190L., the reader is referred to ADVEX, Ramsden (1984),
which also gives a complete detailed set of programs for one simulation, along
with extensive comments on the optimization of vector FORTRAN for this sort of
program.

3.4 Graphics output

3.4.1 Monochrome imaging

We have mated the output from th.e spectral simulation with the National
Center for Atmospheric Research (NCAR) graphics package. This means that all
plots conform to the style of other installations. The NCAR package is a
"smart" set of routines and is flexible in the choice of dd agnos.t.Lcs , Final
results are sent to a CALCOMP plotter or displayed on a Tektroni~ graphics
terminal.
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3.4.2 Colour imaging

Computer routines have been written to send 2D real space fields to a
colour imager operated by the Remote Sensing group at the Institute of Ocean
Sciences. By intercepting the models at every time step, it is possible to
send a time series of 2D fields to the imager. This feature has been used to
make a movie of several cases of the simulations. Slides of individual frames
from a colour monitor have been made. This provides a powerful descriptive
method since stream function fields can be overlayed on passive quantities,
permitting visualization of the physics of various situations.

4.. DEVELOPMENT AT lOS

4.1 Development to the present

In this section, the historical development of the programs and methods by
Interact Computing Services for the Institute of Ocean Sciences under various
contracts is presented. Also included is a general guide to some of the uses
made of these programs.

This is done for two reasons. The first is that readers may see the
logical development of the routines and their options. The second reason is
that potential users may determine the degree of complexity that they desire.
Examples will be given where applicable. We will not delve into the detailed
nature of the programming considerations. For a complete description of these
problems and their solutions, see Ramsden, 1984. . .

The basic programs have undergone extensive development, testing and
refinement in the past two years, a process which continues at present. The
changes have been of two basic types.

Type one represents an increased capability, diagnostic, or enhancement.
Type two represents special cases which have been run as subsets of type one
programs: Table 2, the detailed evolution of these systems, is shown below.

Table 2. Evolution of the Programs

4PHBET'
+

ADVEX
+

FLOATS
+

RECTANG _~_--J[
+

LAYER

Main Path of
Deyelopment

+
PLANKTON

4
CHANNEL

+
PLUME

Subpaths and Special Cases

4
OTHER
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4.2 ALPHBET

The first program developed was ALPHBET, which solved only the equation

with
(4.1)

(4.2)

For the development of this program, and a starting point for future
developments, the work of Davey, 1980, and the computer programs of Haidvogel
and Holloway (unpublished) were closely followed. The resultant process was
one of freely translating Fortran code written for NCAR's CRAY~l computer into
F.P.S. array processor code.

This basic equation (4.1) allowed us to test the nonlinear parts of the
eventual timestep,ping of equation (1.4), and we developed the basic timestepping

method (2.3.1) s ubje.c.t to conservative properties (2.4.3) and (2.4.4), which sum
to zero. This allowed us to layout: k space properly and work through the quirks
of the array processor ca.LLs ,

4.3 ADVEX

The next task was to develop the basic form of the advection diffusion
equations

with

-at) q + J (x, q), t F - Dq (4.3)

(4.4)

and
x 1jJ - UY (4.5)

a
-at Q + J(x,Q) = (4.6)

In these equations, ~ is the gradient of Coriolis parameter~, scaled to
appropriate units (see Section 6), h is the elevation of bottom topographic
features as a fraction of the mean depth and multiplied by the Corio lis para
meter. This set of equations is one layer (barotropic). F is a random phase
forcing cpexancz with an energy distribution corresponding to some geophysically
meaningful wave number spectrum. D is a dissipation operator

(4. 7)

A corresponds to Ekman drag, which operates on all wave numbers. B is regular
ITiscosity er Laplacian diffusion. C is a term sometimesc:&~ledBiharmonic
diffusion.

It is worth noting that in general, D and F will be prescribed for any long
simulations which depend on statistical stationarity of the turbulence field.



17

The nature of 2 dimensional turbulence is for the advection operator to selec
tively move energy to low wave numbers, and enstrophy to high wave numbers
(whilst maintaining the net sum of both). This effect has been likened to the
tendency of rotating objects to tumble into their highest moment of inertia
eigenstate (Thompson, 1983). To counter this, we apply a mixture of Ekman drag
and a Laplacian or biharmonic dissipation, which selectively operates on higher
wave numbers. To maintain energy levels, we apply forcing centered on a median
w~Venumber. By balancing forcing, dissipation and drag, a satisfactory
statistically stationary state can be reached.

It is worth noting that the Laplacian and biharmonic operators can be
thought of as moving energy and enstrophy to finer scales of motion which can
not be resolved by the finite grid size of the model. One of the criteria for
these operators is that they should produce a spectrum of energy which passes
smoothly through the highest wavenumbers out to the unresolved scales.

Continuing with equation (4.3), q is the total potential vorticity in the
fluid column and is equal to the sum of the relative vorticity, the surface
displacement stretching term a2~, the planetary vorticity BY, and h, the
relative topography scaled to units of vorticity. This last term represents
the vorticity gained or lost when a fluid column contracts or expands over a
piece of terrain~

In equation (4.4), a 2 is the square of the inverse Rossby radius of defor
mation.

X is the total stream function and is equal to the local stream function ~

and a mean flow term. It is interesting to note that one of the capabilities
of the model is to start with an initially quiescent stream function ~ and
"blow" mean flow over some topography. An eddy field will develop.

In equation (4.6), Qisany passive scalar; passive in the sense that it
does not interact with the flow field, and is merely swept around by the turbu
lence and mean flow. gx and gy represent the mean gradients of quantity Q in
the x and y directions respectively. Dq is a diffusion operator on Q, equiva
lent in form to D.

With ADVEX, standard output was developed and diagnostics which may be
printed and/or plotted at any timestep or times~ep interval. In addition,
time series of relevant diagnostics can again be printed or plotted. There are
several restart options whereby the end states of one or more simulations can
be used as beginning states of new simulations. One may choose to duplicate
runs exactly or to randomize selected parts.

From the basic advection/diffusion equations we have generated several
specialized subsets of programs. .

4.3.1 Stirring of a passive tracer

Research has been done ,in which a,passive trace~ field, Q(x,y,t) is advected
by the flow given by ~ as given by equation (4.6).

-----_.__._--.-------
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Here Q is perturbation concentration of, say, a" dissolved chemical substance,
(gx,gy) is any large scale mean gradient of concentration and Dq is some operator,
to be specified, which acts to dissipate small scale fluctuations in Q. Such a
model might then show how oceanic tracers are stirred along isopycnal surfaces
by mesoscale eddies or large amplitude Rossby waves. One of the first goals is
to see how homogeneous quasigeostrophic turbulence may be characterized by an
"eddy dLf fus f.vLty" acting on the tracer field. Figures la to l d show some
results from this study and are described in the figure captions.

4.3.2 Advection of a Plume

As another enhancement of ADVEX, consider a case where a turbulent field is
moving past a fixed site from which a tracer leaks at a constant rate. Such an
example might describe contaminant escaping from a seafloor radioactive waste dump
site or the horizontal evolution of a hydr9thermal vent plume. In the plume
source field is a Gaussian spot, and we bring on a mean flow from the east over
a topography. The topography consists of a random terrain plus a north/south
ridge with the plume site on the crest of the ridge. This example clearly illus
trates the breaking off of tongues of injected material, and the role of eddies
in transporting material. See Fi~ures 2a to 2k.

4.3.3 Evolution of error maps; predictability of quasigeostrophic turbulence

Weather forecasting and, increasingly, efforts at upper ocean forecasting
are limited by a) inadequate theoretical and numerical dynamics, and b) lack of
complete and accurate initial data and of accurate subsequent boundary conditions.
Predictability studies attempt to assess the relative strengths of these limita
tions. Most predictability research has focused on propagation and amplification
of forecast error in the wavenumber domain. We have begun a few studies concer
ning the physical configurations of error fields with respect to evolving flow
structures. To do this, let us suppose that the dynamics embodied in equation
(4.3) are "true". Then we ask how uncertainty in initial observations affects
long term forecast accuracy. We may solve (4.3) twice, each flow evolving from
initial conditions which differ in the smaller "unobservable" scales of motion.
Taking the difference or "error" between two solutions, we seek to characterize
error evolution in terms of the mean of two solutions. See Figs. 3a to 3d.

4.3.4 Topographic Interaction

This example elaborates the dynamics of the role of underlying topography
in eqn , (4.3). Combining (4.3), (4.4) and (4.5) yields

F + D (4.8)
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0, equation (4.8) reduces to

(4.9)

In this way, the topographic field h, in the presence of a steady zonal flow
U, will generate eddy vorticity. (V2 - a 2 ) lji . As the flow evolves, correlations
between meridjonal eddy flows band h generate a "topographic form drag"
which may resist or even accelefate u.

As a note, the nature of h is such that the water column depth H can be
given by

H = HO (l-h(x))

where h is nondimensionalized by the mean depth.
vorticity by shrinkage or expansion of the water
graphy is then

a~ _ f aH U
at = ax

Then (4.11) into (4.10) gives

U.1.-hax
where h = fh

(4.10) .

The fractional change of
column by going over the topo-

(4.11)'

(4.12)

and h is now scaled to units of vorticity. Under investigation are the relations
between U, the statistics of h and the resulting eddy field. Figures 4a to 4e
show the results of one such simulation along with some useful diagnostics of
the flow interaction.

4.3.5 Plankton pat~hiness

This is really only an extension of the stirring of a passive tracer
described by eqn. (4.6). Consider the vertically integrated biomass of primary
producers in the euphotic zone. Let C be the logarithm of area density of the
integrated bibmass. 'We wonder what controls the horizbntal patchiness of C.
A conjecture is that patchiness is largely a result of horizontal stirring. As
a simple model ,for dynamical evolution of a horizontal transport streamfunction,
conside~ (4.3). Suppose that C i~advected as a passive but, nonconservative
tracer. The simplest biological dynamics that we can assume are exponential
growth and decay. Since C is already a log transform of biomass, the equation
of motion is

ac;- + J (lji , c) = r + D
~t c (4. 13)

where r is a growth decay rate coefficient and D is an operator which results
in dissipation of C fluctuations at small scales; Note a point of ambiguity:
should an "eddy diffusivity" act directly on the biomass concentration or on C?
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For convenience we assume the latter.

The immediate goal of this re~earch is to discover how the statistical
distribution of r, together with statistics of ~, determines the statistical
distribution of C. In some cases we have let r(~) be a steady field of prescribed
wavenumber spectrum. This is seen in Figs. Sa to Se.

In this example the growth term r is shown in Fig. Sb. The r field is only
defined for wave numbers 2 < K < 4 with a random phase for each r(k). Each time
step, another unit of log plankton is added according to r. The result is the
"streakiness" exhibited by Figures Sc and Sd.

We also include Fig. Se, a useful diagnostic of the field, the scalar
variance transfer, which is defined as

T(¢) = Real ¢.J*(~,¢) (4. 14)

The transfer T(¢) is integrated over Ik) and Figure is the result. This figure
shows that material is removed from wave numbers 2<K<4 (the wave numbers we are
injecting at), and distributed to higher wave numbers. By examining sequences
of diagnostics such as these, things such as statistical stationarity can be
determined.

4.3.6 Stirring by an isolated eddy

In Figures 6a to 6d we show the time evolution of a Gaussian spot of tur
bulence generation perturbation scalar from a mean gradient of scalar in the Y
direction. As the flow evolves, the spot "wraps up" the perturbation scalar.

4.3.7 Diffusion effects

There is some disagreement among oceanographers as to the correct form of
the dissipation operator to apply in equations (4.3) and (4.6).

A study has been undertaken in which the direct effects of BV 2 i;; and CV6s
are compared. A Gaussian spot of dye is released on top of a Gaussian spot of
turbulence on a 13 plane. Figures7a and 7b show the time evolvement of two cases.
Fig. 7a utilizes Laplacian or harmonic dissipation and Fig. 7b utilizes biharmonic
dissipation. To produce comparable results, Band C are chosen to have equal
Batchelor wavenumbers KS'

Clearly shown are the differences V2 dissipation makes from V4 dissipation.

Also note the negative contours in the last of 7b. One of the limitations
of the spectral method is that negative quantities can be generated near steep
gradients of that quantity, and the requirement of positive definite quantity
can be Violated.

4.4. FLOATS

A further enhancement of ADVEX is the addition of Lagrangian particles,
FLOATS. This entailed finding the values of the stream function, velocity, or
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other quantity atnhngrid points. A thorough investigation and testing of
various methods to do this was conducted. One method is to do a slow Fourier
transform on the requisite fields, but this proved to be too slow. A faster
method was found to consist of a fast Fourier transform followed by a real
space interpolation over some region near the required point, taking advantage
of the periodicity at the edges. This also has the advantage t~at One FFT will
suffice for any number of points desired. The complete analysis of the Float
method will be developed in Section 7.

The interpolation formula is given thusly. If x and yare the desired
points to find a field ~, x,y not a grid point, then

::: Pi K [7T 1t ()( i - )(j )('1K-t ! ~-I
J" I 1::::/
j~; .i"tK

(4.150.)

(4.IS!.)

where Xj and xi, Yk and Yi are grid point values, m is an order of fit, and
~ik is the value of the function at (xi,Yk)'

It was found that m = 4 gives a reasonable fit.

To timestep the floats, a predictor/corrector method was developed. This
development provides a powerful tool which has been used to study different
things such as straining in different flow regimes.

A large suite of float diagnostics has been developed, such as statistics
of float pair separations, and lagged autocorrelation of velocity fields with
estimates etc.

4.4.1 Floats in a turbulent regime

Figures 8a through 8f show the results of two experiments. Floats in
Fig. 8a are released into a turbulent regime without S, 8b are released near
the same spots in the same initial turbulence field, but with S.

Only some of the float pairs (randomly orientated with respect to each
other at t = 0) are plotted in Fig. Ba , Fig. 8b shows clearly the tendency for
floats to travel east/west in the presence of S. Figures 8c to 8d show the
average distance away from the initial drop site for all floats. Periodicity
is removed from these calculations. Figures 8c and 8e show the average X
direction pair separation.

, Figures 8d and 8f show the same statistics for the Y direction. The
presence of S is clearly delineated in quantitative terms.
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4.5 RECTANG

The next enhancement was to go from a square to a rectangular k space
domain and at the same time allow x to range from 0 to R 211 in real space where
R is any number, not necessarily 1. This meant some fundamental alterations
to the dealiasing of the advect operator, going from a circular to an ellip
tical truncation of k space. k space had to be redefined to account for the
factor R. This new progra~ was called RECTANG.

As a special case of RECTANG, CHANNEL was developed in which side walls
are placed at y = 0, 11(R) in a free slip condition. This implies no flow across
the barrier since Uy =*= O. By doing this, one half of our real space is
lost. since 1fJ (y) = - 1fJ (-y) = - 1/J (211-y) . This also implies ~ of k space is lost
and it is fairly easy to show that

e,

(4.16)

This enhancement meant some changes, and the mixing and for.cing must also
maintain the channel condition.

4.6 LAYER

The last development brought on line at present is program LAYER, in which
the method is extended to incorporate baroclinicity. Theone layer system has
been extended to two layers but the capability to easily extend the programs
to three or more layers is available. For any multi-layer systems, the
governing equations are, G.F. Pedlosky, 1979, Pg's. 386 to 393

with

a
- q' + J(X- q-)at l l' l

(4.17)

1/J.,...U. Y
l l

(4.18)

.. (4.19)

These are the eq'!Jations for a multi-layer system. Equation (4.3) has been
mOdifieci .to s,atisfyeach Layer indiv;iduaJ,.ly and has become equation (4.17),
equation (4.4) has been modified for thecouplip.g effect of the layers above
and below the layer i, and becomes equation (4.18). In equation (4.18), t1+~

a,2 t e r m of equation (4.4) is now lI.ij (XrXi)' where lI. i j links the layer i to
the layers above and below it by the effect of surface Dis.placements and
gravity.

= a,2 i j
lI.ij R.

l

(4.2.0)



(4.22)

23

In equation (4.20), Ri is the fraction of the water column in layer i, i.e.
Ri + Rj = 1. a2ij is explicitly given as.

f 2L2
a 2 . . ~~o_~--,--._

1J = gIPrP j I/Po (4 . 21)

where fa is the inertial frequency, L is a length scale of the motion, g is
gravity and /Pi-Pjl/po is the density contrast between layer i and layer j.

Going back to (4.20), hi is the topography associated with layer i,
generally zero except for the bottom layer.

In equation (4.19), we note that each layer can have a different mean flow.
One of the features of baroclinic turbulence is an ability to generate eddies
purely from a difference in the mean flows between layers, provided some initial
perturbation exists.

There are some difficulties associated with going to a multi-layer system,
the chief of which is the increased computer storage needed because the layers
~i are coupled by equations (4.17)-(4.19).

The two layer model has been tested thoroughly for such things as baro
clinic Rossby waves, energy conservation, etc.

In program LAYER, an extra scalar field has been added for each layer, and
the Lagrangian float section has been modified to inciude any number of floats
in each layer.

4.6.1 Flow in a layered environment with sidewalls.

In Figures 9a to 9d a baroclinically unstable case is run in the presence
~f side walls to illustrate various developments.

In this example, 2 random turbulence fields are initialized with the upper
layer being more energetic than the lower. A drag term is imposed on the lower
layer to simulate energy loss by friction at the bottom.

Baroclinic instahility is possible in a two layer system, (see Pedlosky,
1979) when effective Sdefined by

A

S = S - Aij(Ui-Uj )

h~s a different sign in each layer. In this way the system is expected to
behave as a baroclinically unstable system subject to the side wallS constraint.

Shown are two sets of plots. The lower layer stream function and the
difference stream function which acts as a potential energy term for the
eVblving fields.

Although we have no immediate intentions to investigate these baroclini~

flows, a couple of problems might be mentioned. A study of baroclinic flow
above irregular topography could be performed with the goal of clarifying the
role that bottom topography plays in maintaining the mean baroclinicity of
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ocean currents. Perhaps more interesting is the question of horizontal heat
transport in a baroclinic eddy field; a closely related problem is that of
vertical momentum transport in a baroclinic eddy field. Adequate parameter
ization of these effects will be necessary to success of world ocean circu
lation simulations as appropriate to climatic studies.

5. CURRENT DEVELOPMENT

As mentioned previously, the applications described above just happen to
be the first uses we have made. How we wish to emphasize the versatility, as
well as high accuracy and efficiency, of the method.

5.1 Internal wave dynamics

As rather a different problem, we will investigate interactions among large
amplitude internal waves. An idealization, which here is severe, is to restrict
all motion to lie in a vertical plane. Because of the anticipated importance
of interactions among disparate scales, it is necessary to concentrate computer
resolution into a vertical plane. Nonetheless, many of the outstanding and
sharply debated questions of internal wave - wave interaction theory can be
resolved within the vertical plane idealization. The problem can be posed in
terms of a scalar vorticity field and a density field which are cross-coupled
by gravity and the mean density gradient.

Future work will use this method to study breaking internal waves in which
Q, the scalar field, will now be a buoyancy field. This field will interact
with the turbulence field by

g ~; + D~
g is gravity

(5.1.1)

For this sort of model, the model will be turned on end xlz rather than x,y so
there will be no !3 or h terms. The g %~ term in (4.15) comes about because a
gradient of Q in the x direction will result in a source of vorticity when gravity
attempts to move the neighbouring particles to their rest positions. i.e.

dV .L 0 S I:' dU
dX T . ince s = dY

field will evolve under

dV
we see that even an initially quiescent vorticityax'

the interaction with buoyancy.

Figures lOa to lOd show the evolvement of a sport of buoyancy released
into an initially quiescent turbulence field.

5.2 Double diffusive instability

On account of growing interest in, and appreciation o.f the importance of,
double diffusive instability (DDI) , an ini.tiative has been made to begin a
numerical ~nvestigation. The problem, as with internal wave dynamics, will be
posed in vertical plane idealization (to be accompanied by limited 3D simu
lations). Density will be determined linearly by two fields, say heat and

~,
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salt, of markedly different diffusivities. Goals of research will be to
characterize heat and salt fluxes under conditions of fully developed DDI.
We will seek to clarify the morphology of developing DDI, such as detachment
of salt fingers. An area of novel physics to explore will be the role of
internal wave straining in modulating DDI.

5.3 Imposition of irregular boundaries

A clear limitation of spectral simulations is that fluctuating quantities
need to satisfy periodic boundary conditions. More restrictive conditions may
certainly be imposed, such as no flow or free slip on rectangular boundaries
(since this is a subset of the periodicity condition). However, it could be
desired to accomodate conditions imposed along an irregular boundary such as
a coastline. It appears that this can be accomplished by means of a so-called
"capacitance matrix" method. Such a development could be useful for coastal
dynamics studies and also would represent a fundamental contribution to numer
ical fluid dynamics.

5.4 Three Dimensions

We are moving in the direction of the simulation of 3 dimensional flow,
which would involve solving the Navier Stokes equations (1.1) to (1.3) directly.
This will involve a totally new approach in which we will abandon the stream
function and keep a 3 dimensional velocity field instead subject to incompres
sibility. As a start to this capability, we have written and tested an algo
rithm to compute a 3 dimensional fast Fourier transform, both· forward and
reverse.

6. SCALING OF REAL WORLD PARAMETERS

As an insight into the practicalities of the methods, we include here a
section on transforming computer scales to oceanographic or meteorological
scales or vice versa. Our computer grid is of nominal length 2IT = ~c. If we
wish to model a 1000 km x 1000 km grid, = ~O then the length ratio is

L -- Jl,n _- 106m
'U 1 5 x 10 0 " d' . I 1 aR:" 2II 'U. m, ur computer t ame tc 1S amens i.on ess = • •

c
A representative time scale for geostrophic motion in the open ocean is about
a month = 3x 106 sec ;= to time ratio

T -_ ~ 6= 3 x 10 sec
tc

An average velocity for the mid ocean Vo is 7 em/sec. Converting this to
computer units, we get

T 07m 3xl06sec
v c = vo X L = sec Ci 1.5 105m = 1.4

This represents an rms velocity in computer units.
model with an energy = !2Vc2 =~(1.4)2 ~.1.

We would initialize the
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To calculate Bc' ~e would get for a mid-latitude ~O

~ Bo of 2xl0-11 m-I sec-1

B ~ BOLT ~ 2x 10-11 m-1 sec-1 x 1. 5x 105m x 3x 106 sec '" 10c

For a Rossby deformation radius of 50 km ~ ao-1 we would get for a c

a -1 - -1/L - 5.0 10~ ~ 1/3 a 3
c - aO - 1. 5 103 -

With proper care, real world examples are thus seen to be represented by
computer units.

7. QUALITY CONTROL

At every stage of development, a thorough attempt has been made to prove
model results. This section outlines some of. the numerical and analytical
tools that have been used to test the accuracy of the numerical methods.

7.1 Roundoff error

The F.P.S. system uses a 38 bit word of which 24 bits are mantissa. To
test for roundoff error, there were few runs which duplicated simulations with
16 bit mantissas by randomizing the last eight bits. No significant differences
were observed between the runs a£ter a few hundred timesteps.

7.2 The advection operator

Already mentioned is the fact that energy and ens trophy transfers should
sum to zero.

As a corollary of this, in the absence of forcing or dissipation, there
should be no change in the total energy or ens trophy in timestepping the advect
operator on the stream function field.

Scalar variance Q2 in the absence of diffusion sources gx and gy should
also be conserved by advection. These have been tested.

7.3 Wave propagation

By omitting the advection operator, (4.3) reduces to a simple form

here U,h,D,F 0

a
-~) ~at

ikxBt[J
k2 (7.1)



27

a
by running'the model in this way, ~(r) was tested against the analytical
expression ikxS~(k)

--k2

7.4 Floats

Tratkingof Lagrangian particles, whose positions may not coincide with
the regular grid points, poses a difficult problem requiring detailed analysis.

Any method or methods chosen must advance the positions of Lagrangian
particles accurately without sacrificing speed of execution.

Three basic methods were considered.
1) Slow Fourier transform of the requisite fields.
2) Real space interpolation (eqn. (4.7), (4.8)) of the fields.
3) For velocities, use a ~ field and differentiate; eqn. (4.7) with respect

to x and y to set Ux = - dW explicitly, and likewise Uy = dW .
. . ~dX

There are several conservation properties which can be exploited.
1) An evolving stream function field conserves potential vorticity on a moving
particle, in absence of forcing or dissipation.
2) If the stream function does not evolve, floats should trace closed orbits
around constant stream function lines. Property 2 was chosen to rigorously
test the approaches. 50 floats placed at random were advanced using various
irtterpolations and slow Fourier transforms in frozen stream function fields
exhibiting k-1 and k-3 behaviour. Also included was a suite of runs done with
the top half of wave space truncated. Table 3 shows the relative execution
times of the methods, and Table 4 shows the errors of the interpolation methods
relative to the slow Fourier transform method.

Table 3. Methods of Float Positions

Relative Times Method

Slow Fourier Transform
4 Point Interpolation
6 Point Interpolation
8 Point Interpolation

Time (arbitrary)

3.7
.30
.97

2.23

Table 4. Relative Errors of the Interpolation Method

Error k 3 spectrum Error k 1 spectrum
Order of Fit Not Truncated Truncated Not Truncated Truncated

,-
2 .589 E-2 .454 E-2 .273 E ¢ .897 E-l
4 .198 E""""2 .595 E-3· .173 E¢ .187 E-l
6 .138 E-2 .152 E-3 .135 E ¢ .540 E..,.2
8 .111 E-2 .114 E ¢
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Method 3) was found to be twice as slow as method 2) and to give no better
results.

The problem of time stepping was then included. To test the vorticity
conservation, the following scheme was adop t ed ; First

x ' (t+ll t ) = x ( t ) + V(t ) 1l t

was calculated and then calculate V' (t+llt) based on x'(t+~t)
and finally

(7.5)

x(t) + ~{V(t) + V'(t+llt)}llt (7.6)

The advancement of the vorticity, along with its dissipation was followed.
Particles were then tracked and the vorticity and dissipative losses were
recorded at each time step. Summing these dissipative losses and adjusting
the measured vorticity, gave a diagnostic vortex following. Interpolations of
4 and 6 points using methods 2) and 3) were tried, and all methods gave average
errors of 5% after 10 inverse rms vorticity times.

As a final test V'(t+llt) was calculated on the unadvanced stream function,
but this gave no discernible change to the results.

7.5 Baroclinic flow

Two layer baroclinic flow has been implemented explicitly as to top and
.bottom layer. This gives us a suite of conservation properties to test.
a) Barotropic modes Rossby waves propagate as in (7.4). The layer stream
functions are equal.
b) Baroclinic modes propagate at their correct phase speeds (Pedlosky, 1979,
page 395).

= - ~-_....::...._-

where RI is the fraction of water in layer 1
Al is the amplitude of layer 1
Rz and A2 are the same for the layer 2

(7.7)

Aland AZ are determined by eqn. (4.20).

c) Total energydf the system is conserved by advection or wave propagation.
In the absence of forcing or dissipation or H

o a RI Rz ' .c2..
at E T = at TI\7tjJ l IZ + 21\71/1zI2 + 2 (l/Jl-tjJ2)2 0 (7.8)

2 .
; (tjJl-tjJ2)2 is a potential energy term

~2 is defined by equation (4.2).
d) In the absence of forcing or dissipation of H, layer ens trophy is conserved
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Fig. ~. This example shows the generation of an anomaly scalar field by the
interaction of a turbulence field with mean scalar gradients in both the X and
Y directions. This could represent the generation of a plankton nutrient field.
Fig. la shows the time evolution of the net anomaly scalar Q2. After some time,
diffusion will balance generation of; Q and the t.endenoy fb r this to happen and.
generate a stable Q spectrum is shown in Fig. lb. Fig. Ic is a real space
picture of the Q field at t = 22. Fig. Id shows a diagnostic of the turbulence
field, the ens trophy spectra, and the integral of the enstrophy spectra versus
wave number ,
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Fig. 2. In this example, a !Juan de Fuca type! plume site on an oceanic ridge
is simulated. Fig. 2a shows the topography h, used in this example. To an
abyssal plain, random phase features are added and a ridge running in the Y
direction centered at x = 2. The plume site, marked by an ~ is located on the
crest of the ridge at Y = IT. Fig. 2b shows h + SY, the effect of topography
and S on turbulence. Fig. 2c shows the llspotll used to generate scalar quantity.
It is to be thought of as a continuous releaser of some material. Figures 2d
through 2g show the time evolution of total stream function 1J! + SY. l,iater
movement will tend to be along lines of 1J! + SY. Figures 2h through 2k show the
dispersal of ejected material at the same times as 2b through 2g. Note how
material can be broken off or wrapped back. Many simulations such as this can
be used to evaluate the statistics of plume dispersal.
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Fig. 3. This example shows the evolution of error as described in the text.
Fig. 3.a shows how the error has moved down to lower wavenumber at t = 2. At
t = 0, only differences were at k > 25. Figure 3b is a picture of the average
stream function (1)Jl + 1)J2)!2 at t = 2. Figure 3c is a picture Q~ 82 = (1jJ2 
1)Jl)2 af~er t = 2. Note the localization of error near the bottom right of the
picture. Figure 3d is a time series of the difference energy !zR2 (1)J 2 - 1)Jl)2,
summed over all K.
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Fig. 4. In this example, mean flow generates a turbulence field over a
topography. Fig. 4a shows the topography used in this example. The mean
flow is to the east, and after one time unit, the stream function field,
Fig. 4b, has been generated. Fig. 4c shows the growth of total kinetic
energy in the simulation. If dissipation is included, this quantity will
eventually reach statistical stationarity. Fig. 4d shows the ens trophy
transfer at each wave number K at t = .25. This is ~ Real k2(H*'~)_ Fig.4e
shows (V-H), the velocity times topography, another useful diagnostic of the
generated ~ field.
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Fig. 5. This example shows the evolution of the "frozen field" of log plankton
as described in the text. Fig. 5a is a picture of the stream function field at
t = 0, when the 10 g plankton field, Fig. 5b, begins to be inj ected. Figures
5c and 5d show the net plankton field at two later times t = 2, and t = 4. Note
the definite appearance of "patchiness" in the fields. Fig. 5e is a diagnostic
of the plankton field and is Real (J'~Q) which indicates that scalar quantity is
being advected out of wave numbers 2 through 4 (which are the injected wave
numbers), and carried to higher wave numbers. This is intuitively correct.
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Fig. 6. This simple example shows that spectral methods do not distort
physically realizable situations. In this example, a "spot" of turbulence
evolves in figures 6a and 6c. A mean gradient of scalar quantity is added in
the y direction, and figures 6b a.nd 6ci show how the turbulence spot "wraps
up" the gradient quantity.
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Fig. 7. ,This example shows the different effects of two types of the diffusion
operator on an evolving Gaussian spot of scalar quantity. Fig. 7a evolves urtder
the effect of ncjJ = \74ep. Fig. 7b evolves under exactly the same conditions as 7a
except D~ = \72ep. Note the 'ifuzziness" of the \72 operator since it operates On a
wider 'range of wave numbers, whereas \74 diffusion acts most strongly on only the
highest wave numbers.
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Fig. 8. This example shows the Lagrangian particle capabilities of the methQ~S

and the effect of S on the floats. In Fig. 8a, 18 of 182 floats are show.~ .
released into a mature turbulence flow and allowed to evolve. Fig. 8k is exact>
ly the same except for the presence of /3. Note how S tends to stretch the motion
out i~ the zonal direction. Figs. Bc and Sd show the average float pair separa
tions in the x and y directions respectively for the case without 13. Fi~s. Be
and 8f show the same for the case with 13. Careful examination shows ag~in how
13 emphasizes zonal separation, and suppresses meridional separation.
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Fig. 9. This figure illustrates two current capabilities, layer flow
contained between rigid walls in a free slip condition. In this exa~ple,

mean forcing was prescribed. The flow is baro~linically unstable due to
flow betwee~ the two layers. Figs. 9a and 9c show the
function at two times. Figs. 9b and 9d show the difference

stream function at the same times. Noty t~e redundancy in tpe plots. The top
orbottQm half of all plots could have been suppressed.
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F:Lg. 10. Th~s e:xample shows the internal wave capability of the programs.
A"spot" of buoyancy is placed into an initially qJliescent water mass. Figs.
iOa 'and IOc show 'the evolut;i.on of this spot at two latel." times against the

'background stabilizing buoyancy gradient. Figs. lOb and lOd show the resulting
stream function field at' the same times as IDa and Lflc , Eventually, the "spot;"
will pass its equilibrium point and begin to move down again, hence, Lncernal.
waves.
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