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PREFACE 

Effective and transparent communication of risk, and the uncertainty associated with it, 

is an essential part of the risk assessment process. When performing qualitative risk 

analysis, statistically relevant data may be limited or absent. Well defined 

methodologies for the assessment of uncertainty in qualitative risk assessment, and for 

the incorporation of uncertainty into the decision making process are needed to inform 

qualitative risk assessments that are carried out by the Department of Fisheries and 

Oceans (DFO). 

Recent experience with the qualitative risk assessment of a transgenic salmon identified 

a need for greater expertise in the analysis of uncertainty. This prompted the 

Biotechnology Program to look outside of DFO for experts in the fields of uncertainty 

analysis and aquatic environmental risk assessment, who could conduct a broad search 

of the scientific literature to collect and summarize the current state of knowledge. 

Experts at Intrinsik Environmental Sciences Inc. were petitioned to gather 

comprehensive information regarding the analysis of uncertainty in the qualitative 

environmental risk assessment of aquatic organisms, summarize the current state of 

knowledge, and provide advice on how the various methodologies and tools for dealing 

with uncertainty might be applied to risk assessments conducted by DFO.  

The completed review document, presented here as a Technical Report, is intended to 

inform future environmental risk assessments at DFO, and encourage the use of tools 

for the effective analysis, treatment and communication of uncertainty. 
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ABSTRACT 

To develop a better understanding and appreciation for the tools that are available to 

risk assessors for handling the analysis and communication of uncertainty in qualitative 

risk analysis, the DFO Biotechnology and Genomics Program commissioned experts 

from Intrinsik Environmental Sciences Inc. to review these issues with a focus on 

aquatic ecosystems and qualitative data.  

Part 1 of this report reviews a selection of guidance documents from various 

jurisdictions. Though far from comprehensive, the examples of assessment frameworks 

are useful in describing the variation in how uncertainty is treated across the 

environmental sector. Here, effort has been made to select those risk assessment 

frameworks that have been, or could easily be, applied to aquatic organisms; with 

scenarios such as the risk assessment of aquatic invasive species, introduced species 

or strains, and genetically modified aquatic organisms (GMOs).     

Part 2 reviews the various qualitative methods for the analysis and communication of 

uncertainty in environmental risk assessment. Here, we continue to focus on 

environmental risk assessment and uncertainty in aquatic ecosystems by providing 

relevant examples taken from completed risk assessments. Part 2 concludes with a 

brief overview of quantitative methodologies, as an introduction for those who may want 

to explore this line of analysis further.  

The report concludes with recommendations on approaches and tools for risk assessors 

dealing with potential biological stressors in the aquatic environment, and when dealing 

with data and information that is largely, or entirely qualitative.  
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RÉSUMÉ 

Afin de mieux connaître et apprécier les outils dont disposent les évaluateurs des 

risques pour analyser et communiquer l'incertitude dans les analyses qualitatives des 

risques, le Programme de biotechnologie et de génomique du MPO a chargé des 

experts de la société Intrinsik Environmental Sciences Inc. d'étudier ces enjeux du point 

de vue des écosystèmes aquatiques et des données qualitatives.  

La première partie de ce rapport est consacrée à l'examen des documents d'orientation 

fournis par plusieurs administrations. Même s'ils sont loin d'être inclusifs, ces exemples 

de cadres d'évaluation sont utiles car ils montrent les variations dans le traitement de 

l'incertitude dans l'ensemble du secteur environnemental. Les auteurs se sont attachés 

ici à retenir les cadres d'évaluation des risques qui ont été appliqués aux organismes 

aquatiques ou qui pourraient facilement l'être, avec des scénarios comme l'évaluation 

des risques liés aux espèces aquatiques envahissantes, aux espèces ou souches 

introduites ainsi qu'aux organismes aquatiques génétiquement modifiés (OGM).     

La deuxième partie examine les diverses méthodes qualitatives d'analyse et de 

communication de l'incertitude dans les évaluations du risque environnemental. Elle 

porte sur l'évaluation du risque environnemental et l'incertitude dans les écosystèmes 

aquatiques et donne des exemples pertinents tirés d'évaluations des risques déjà 

réalisées. Cette partie se termine par un bref aperçu des méthodologies quantitatives 

en guise d'introduction pour les personnes qui pourraient vouloir étudier davantage ce 

type d'analyse.  

La conclusion du rapport est consacrée à des recommandations sur les approches et 

les outils utiles aux évaluateurs des risques qui doivent tenir compte d'éventuels agents 

de stress biologiques dans le milieu aquatique et travailler avec des données et des 

renseignements de nature essentiellement, voire uniquement qualitative.  
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1.0. INTRODUCTION 

Risk assessments are performed and used as a decision aid to help protect human 

health and the environment. The purpose of a risk assessment is to estimate the 

likelihood, magnitude and potential consequences of effects that stressors may induce. 

This can be a challenge when assessing the environmental risk of aquatic organisms, 

given the complexity of the aquatic ecosystems, and the difficulties of collecting data in 

the aquatic environment. However, even when there is limited empirical data, which is 

often the case for aquatic species, accurate and scientifically defendable environmental 

risk assessment can still be performed and used as a useful tool to assist decision 

making.  

Quantitative risk assessments are typically performed when there is sufficient system 

understanding to permit model development and input variables can be parameterized 

with available empirical data. In these situations, uncertainty may be quantified with a 

variety of statistical techniques (Hayes et al., 2007; Warren-Hicks and Hart, 2010). In 

other situations, risk assessment and uncertainty analysis may only be conducted 

qualitatively because system understanding and available empirical data are limited. 

Qualitative assessments rely on expert judgements and opinions and often use nominal 

or ordinal scales to categorize and order stressors in terms of relative risk. Unlike 

quantitative analyses, qualitative analyses do not provide an indication of the true 

differences that may exist between ranked stressors and, as a result, do not provide as 

clear of an understanding of risk (Hayes, 2011). Qualitative risk assessments have an 

inherently high degree of uncertainty. Failure to properly incorporate uncertainty into the 

risk analysis can result in incorrect decisions that lead to mitigating a system that is not 

truly at risk (a Type I error) or failing to mitigate risk that leads to degradation of the 

system (a Type II error) (Warren-Hicks and Moore, 1998).  

Uncertainty can arise from a wide range of sources that include four broad categories: 

epistemic uncertainty, linguistic uncertainty, variability and decision uncertainty (Regan 

et al., 2002, 2003; Hayes, 2011). Epistemic uncertainty, or incertitude, is typically 

defined as the uncertainty associated with overall knowledge of a given topic. 

Incertitude arises because of limitations of scientific knowledge and may be reduced 

with additional empirical effort (EFSA GMO Panel, 2013). Linguistic uncertainty is 

associated with differences in the understanding and interpretations of the language 

used in the development and implementation of a risk assessment. Variability arises 

from natural stochastic events and cannot be reduced by further empirical effort (Hayes, 

2011). Finally, decision uncertainty typically arises following the initial estimation of risk 

and is related to the measures used to describe and summarize risk (Finkel, 1990).  
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Governments must make decisions on how to deal with biological stressors including, 

for example, introduced and invasive species, or genetically-modified organisms. To 

guide those decisions, qualitative risk assessments are performed to determine if the 

biological stressors of concern pose a risk to the environment and, where possible, the 

relative risks of those stressors. The assessments are necessarily qualitative because 

of limitations in system understanding (e.g., how would invasive species interact with 

similar native species) and available empirical data (e.g., lack of data on competitive 

outcomes between invasive and native species).  

To develop a better understanding and appreciation for the tools that are available to 

risk assessors for handling the analysis and communication of uncertainty in qualitative 

risk analysis, the DFO Biotechnology and Genomics Program commissioned experts 

from Intrinsik Environmental Sciences Inc., to review these issues with a focus on 

aquatic ecosystems and qualitative data.  

2.0. TREATMENT OF UNCERTAINTY IN QUALITATIVE RISK ASSESSMENT OF 

AQUATIC SPECIES 

There are a variety of risk assessment methodologies that have been suggested for use 

or have been used by the Department of Fisheries and Oceans (DFO) Canada, 

depending on the nature of risk assessment being conducted. Several methodologies 

developed both inside and outside of Canada’s jurisdiction are summarized below. 

2.1. TRINATIONAL RISK ASSESSMENT GUIDELINES  

The Trinational Risk Assessment Guidelines for aquatic alien invasive species was 

developed by the United States, Canada and Mexico (Orr and Fisher, 2009). The 

guidelines are an update of the review process developed by the Aquatic Nuisance 

Species Task Force (ANSTF) in the United States (ANSTF, 1996). The Trinational Risk 

Assessment guidelines provide a standardized procedure to evaluate the risk to 

biodiversity following the introduction of non-indigenous organisms into a local 

environment (Orr and Fisher, 2009).  

To determine if a selected non-indigenous species may be of concern, organism 

characteristics are evaluated using a screening tool. If the species is of potential 

concern, the next phase is to conduct an Organism Risk Assessment to determine the 

probability of establishment and the consequence of establishment. There are seven 

elements considered in each assessment. As shown in Figure 1, the outcome of the 

model covers ecological, economic, social and cultural impacts. 
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Figure 1: The seven components of an organism risk assessment (Orr and Fisher, 
2009).  

The estimates for the seven risk element are each rated as low (acceptable risk; no 

concern), medium (unacceptable risk; moderate concern) or high (unacceptable risk; 

major concern). To establish the organism risk potential, the Probability of 

Establishment and the Consequences of Establishment are first determined. For the 

Probability of Establishment, the lowest risk rating value is used. The three elements 

assessed in the Consequences of Establishment are not treated equally with the 

highest rating between the Economic and the Environmental element used. The Social 

and Cultural Impact element only provides input when both Economic and 

Environmental ratings are low.  The organism risk potential is the highest rating 

assigned to either the Probability of Establishment or the Consequence of 

Establishment. When multiple organisms are being assessed, a final pathway risk 

potential is determined by taking the highest ranking organism risk potential.   

No tools are provided to assess uncertainty in the model, however the use of 

geographical information systems, climate and ecological models, decision-making 

software and graphical displays of uncertainty were suggested as a way of increasing 

the model’s precision.  
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Reference codes for uncertainty are based, to the extent possible, on peer-reviewed 

science and range from Very Uncertain (“An educated guess”) to Very Certain (“As 

certain as I am going to get”), as shown in Table 1.  

Table 1: Trinational risk assessment of invasive species uncertainty codes (Orr and 
Fisher, 2009). 

Uncertainty Code Symbol List Category 

Very certain VC As certain as I am going to get 

Reasonably certain RC Reasonably certain 

Moderately certain MC More certain than not 

Reasonably uncertain RU Reasonably uncertain 

Very uncertain VU An educated guess 

 

2.2. NATIONAL RISK ASSESSMENT GUIDELINES FOR ASSESSING THE RISK OF 

AQUATIC INVASIVE SPECIES IN CANADA 

The national detailed-level risk assessment guidelines were developed to provide 

standards, and guidance on scientifically defensible assessments, by educating 

practitioners and prioritizing needs (Mandrak et al., 2011). Guidance on handling 

qualitative, semi-quantitative or quantitative data is provided throughout. 

A detailed assessment of the likelihood of invasion and establishment as well as 

potential biological consequences of the invasion can be produced using the national 

detailed-level risk assessment guidelines. Methods detailing how to best handle 

uncertainty are provided, highlighting the more common sources of uncertainty and that 

uncertainty needed to be considered for each component of the risk assessment.  

The methods described are clear and have been refined through peer review 

workshops (DFO, 2009). Following problem formulation, information describing the 

hazard, including a biological synopsis of the invasive species and vector and pathway 

details are provided. The biological risk assessment determines the likelihood of 

introduction by ranking four elements: arrival, survival, establishment and spread. The 

results are then multiplied by the magnitude of biological consequences of the species 

introduction.  
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A ranking of uncertainty is provided (Table 2) along with rankings for the likelihood of 

exposure (Table 3), biological consequences (Table 4), and risk (Table 5). Here, 

numerical values are encouraged to decrease confusion from the use of an ambiguous 

narrative, and to provide a common scale. 

A well-defined matrix is used to summarize and effectively communicate the overall 

results of the risk assessment by combining the likelihood of introduction with the 

magnitude of consequences. The matrix is comprised of three risk levels: low, medium 

and high. Overall uncertainty is determined by the highest uncertainty level described in 

the likelihood of introduction and magnitude of consequences sections. However, the 

criteria used to determine the level of uncertainty associated with the probability of an 

introduction are ambiguous, and rely heavily on expert interpretation. The guidelines 

suggest the use of quantitative methods whenever possible to determine the overall 

distribution and spread of risk estimates. 

Table 2: Relative uncertainty categories in the national detailed-level risk assessment 
guidelines (Mandrak et al., 2011). 

Uncertainty Level Category 

± 90% Very low uncertainty (e.g., extensive, peer-reviewed information) 

± 70% Low uncertainty (e.g., primarily peer-reviewed information) 

± 50% Moderate uncertainty (e.g., information and expert opinion) 

± 30% High uncertainty (e.g., little information, largely expert opinion) 

± 10% Very high uncertainty (e.g., no information, expert opinion) 

 

Table 3: Likelihood values and interpretation in national detailed-level risk assessment 
guidelines (Mandrak et al., 2011). 

Likelihood Values 1-Likelihood 

Negligible 0-0.001 Almost certain 

Very unlikely 0.001-0.05 Very likely 

Low 0.05-0.4 High 

Moderate 0.4-0.6 Moderate 

High 0.6-0.95 Low 

Very likely 0.95-0.999 Very unlikely 

Almost certain 0.999-1.0 Negligible 
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Table 4: Ratings for biological consequences and associated descriptions in the 
national detailed-level risk assessment guidelines (Mandrak et al., 2011). 

Impact 

Rating Description 

1. Negligible 
Undetectable change in the structure or function of the ecosystem. No 

management action required. 

2. Low 

Minimally detectable change in the structure of the ecosystem, but small 

enough that it would not change the functional relationships or survival 

of species. Unlikely to affect management of the ecosystem. 

3. Moderate 
Detectable change in the structure or function of the ecosystem that 

would require consideration in the management of the ecosystem. 

4. High 

Significant changes to the structure or function of the ecosystem leading 

to changes in the abundance of native species and a need for 

management to adapt to the new food web. May have implications 

beyond the extraction or use of ecosystem resources. 

5. Extreme 

Impacts that restructure the ecosystem resulting in, for example, the 

extirpation or extinction of at least one species and the need for 

significant modification of the management of the ecosystem. Will 

probably have implications beyond the extraction or use of ecosystem 

resources. 

 
 

Table 5: Overall ranking of likelihood of introduction in the national detailed-level risk 
assessment guidelines (Mandrak et al., 2011). 

Element Likelihood Uncertainty 

Arrival Almost certain Low 

Survival Moderate Moderate 

Establishment High High 

Spread Very likely Moderate 

Overall Moderate High 
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2.3. NATIONAL CODE ON INTRODUCTIONS AND TRANSFERS OF AQUATIC 

ORGANISMS  

The Code was developed to provide a consistent and objective decision-making 

framework for the risk assessment of intentional introductions and transfers of aquatic 

organisms either between or within Canadian provinces or territories (Price et al., 2003). 

It provides guidelines on how to conduct a risk assessment to determine if the proposed 

introduction or transfer of aquatic species presents a low, medium or high risk for the 

receiving environment (Price et al., 2003), and was adapted from the review process 

developed by the Aquatic Nuisance Species Task Force (ANSTF) in the United States 

(ANSTF, 1996).  

The risk assessment is comprised of two major sections where the ecological and 

genetic risks are first assessed, and subsequently, pathogen, parasite or fellow traveler 

risks are assessed. In each of the components, a multi-step process is outlined where 

the probability of establishment, consequences of establishment and estimation of the 

organism risk potential are determined. Low, medium and high ratings are used to 

describe risks throughout.  

The level of certainty is ranked on scientific knowledge, experience, or whether it was a 

best guess scenario. Uncertainty is ranked as, very certain, reasonably certain, 

reasonably uncertain and very uncertain, however there is no explanation of how each 

ranking is determined. This would be provided and would have to be defined in the 

problem formulation. Consequently, a high level of verbal uncertainty is found in the 

element ratings definitions for high, medium and low as well as in the levels of 

uncertainty.  

The final rating and level of certainty for the probability of establishment and the 

consequences of establishment are then used to determine the final risk estimate. As 

shown in Table 6, a precautionary approach is taken such that the final risk estimate 

takes the value of the higher of the two probabilities, unless there is a probability 

increment between the two estimates. A high risk estimate indicates that the organism 

is of major concern and requires major mitigation. A low risk estimate indicates little 

concern and no mitigation is required. As with the guidelines for invasive species, the 

overall level of uncertainty that is assigned to the final estimate of risk is taken from the 

element (likelihood or consequences) with the lowest certainty level. 

In the second section of the Code, the pathogen, parasite or fellow traveler risk is 

assessed using similar methodologies, i.e., the probability and consequences of 

establishment are determined using the low to high ranking for each hazard identified. 
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Uncertainty is evaluated using the same ranking system identified in the first section of 

the risk assessment. 

Table 6: Determination of final risk estimate (Price et al., 2003). 

Probability of 

Establishment 

Consequences of 

Establishment Final Risk Estimate 

High High High 

High Medium High 

High Low Medium 

Medium High High 

Medium Medium Medium 

Medium Low Medium 

Low High Medium 

Low Medium Medium 

Low Low Low 

The National Code guidelines are straightforward and easy to follow. They are, 

however, limited as they only apply to intentional introductions and transfers and do not 

assess unintentionally introduced invasive species with the potential to spread to other 

areas of Canada or are not yet present in Canada (Mandrak et al., 2011). In addition, a 

high level of verbal uncertainty is found in the element rating definitions for high, 

medium and low as well as in the levels of uncertainty.  

2.4. EUROPEAN UNION ENVIRONMENTAL IMPACTS OF ALIEN SPECIES IN 

AQUACULTURE 

As part of the European Non-native Species in Aquaculture Risk Assessment Scheme 

(ENSARS), the Risk Assessment Protocols and Decision Making Tools for Use of Alien 

Species in Aquaculture and Stock Enhancement was published (Copp et al., 2008). 

ENSARS was adapted from the pest risk analysis support scheme of the European and 

Mediterranean Plant Protection Organisation (EPPO). The EPPO scheme was 

developed using the guidelines of the International Plant Protection Convention (IPPC) 

International Standards for Phytosanitary Measures on pest risk analysis, recognized by 

the Sanitary and Phytosanitary Agreement of the World Trade Organization (WTO, 

1995).  

ENSARS was designed to provide a framework to evaluate the risk of escape, 

introduction to and establishment in open waters, of any non-native aquatic organism 

being used in aquaculture. It was divided into seven modules. The first six modules 
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evaluate entry, invasiveness, organism, facility, pathway and socio-economic impact. In 

the invasiveness module, subsets of modules assess the potential invasiveness of 

Amphibia and of freshwater and marine fish through generic and taxon-specific 

analyses. 

Questions and response options are provided to help the assessor in each module. The 

responses include justifications and cite bibliographic or expert opinion as appropriate. 

Levels of confidence and certainty for each response are also provided using a ranking 

system similar to that recommended by the International Programme on Climate 

Change (IPCC, 2005). Confidence level rankings are assigned a numerical value 

ranging from 0 to 3. The degree of confidence is used to characterize uncertainty 

regarding the correctness of a statement or analysis (IPCC, 2005). Ranks for 

confidence are: 

 0 = Low confidence (2 out of 10 chance), 

 1 = Medium confidence (5 out of 10 chance), 

 2 = High confidence (8 out of 10 chance), and 

 3 = Very high confidence (9 out of 10 chance). 

Several attributes, such as likelihood, number, extent and frequency are then assessed 

in response to questions on a five point scale (Table 7). 

Table 7: ENSARS attributes in the risk assessment modules (Copp et al. 2008). 

Type 
Scale Point 

0 1 2 3 4 

Likelihood 
Very 

unlikely 
Unlikely 

Moderately 

likely 
Likely Very likely 

Number Very few Few 
Moderate 

number 
Many Very many 

Extent Very rare Rare Occasional Frequent Widespread 

Frequency Very rarely Rarely Occasionally Often Very often 

Speed Very slow Slow Intermediately Rapid Very rapid 

Controllability Very easily Easily 
Some 

difficulty 
Difficult Very difficult 

Importance Minimal Minor Moderate Major Massive 

Effect Minimal Minor Moderate Major Massive 
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2.5. GUIDELINES FOR ENVIRONMENTAL IMPACT ASSESSMENT AND LIST 

CLASSIFICATION OF NON-NATIVE ORGANISMS IN BELGIUM  

A non-native terrestrial, freshwater and marine species information system known as 

Harmonia was developed to help standardize information on exotic species believed to 

be detrimental to native biodiversity in Belgium (Branquart et al., 2009). This list 

category system only includes organisms already established in Belgium or in 

neighbouring areas with similar ecological systems and climates. Harmonia was based 

on a simplified version of the Invasive Species Environmental Impact Assessment 

(ISEIA).  

The ISEIA relies on documented invasion histories in previously invaded areas of 

Western Europe (Branquart et al., 2009). Non-native species are assigned to different 

hazard categories, to identify those of greatest concern while minimizing the use of 

subjective opinions (Branquart et al., 2009).  

Explicit details on how to incorporate uncertainty or minimize uncertainty are not 

provided. Instead, uncertainty is incorporated into the ranking of risk, by placing 

limitations on the number of risk categories that can be reported. When background 

information about the species has been documented in the scientific literature or 

reports, a three point scale is used as the basis of the scoring system.  

L = low, score = 1 

M = medium, score = 2 

H = high, score = 3 

If there is little documentation or scientific background available, and the assessment 

weighting is based more on expert judgment and the scoring system is adapted to 

reflect increased uncertainty.  

Unlikely, score = 1 

Likely, score = 2 

Finally, when little scientific literature or no reliable background information is available 

about the species in question, no score is assigned due to deficient data (score = 0).  

The environmental hazard assessment component is divided into four sections: 

 dispersion potential or invasiveness 
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 colonization of high conservation value habitats 

 adverse impacts on native species 

 alteration of ecosystem processes 

The global environmental risk is assessed with equal weightings assigned to each of the 

four sections. The global ISEIA score is determined by calculating the sum of the risk 

ratings scores and is subsequently used to allocate the non-native organism to a risk 

category (Table 8). 

Table 8: Classification of non-native species in Belgium (Branquart et al., 2009). 

ISEA Score List Category 

11-12 A (black list) 

9-10 B (watch list) 

4-8 C 

As mentioned above, the Belgian guidelines rely on historical data of previous invasions 

in Western Europe. Consequently, when there is no previously documented invasion, 

the guidelines become difficult to apply.  

2.6. THE UK RISK ASSESSMENT SCHEME FOR NON-NATIVE SPECIES  

The risk assessment protocol for non-native species in the UK is based on international 

risk standards provided by the European and Mediterranean Plant Protection 

Organisation (EPPO) pest risk assessment scheme (EPPO, 2006). These techniques 

were adapted and developed to provide a generic scheme that could be applied to all 

non-native taxa (Baker et al., 2008). The risk assessment component of the scheme is 

divided into two sections: a preliminary assessment and a detailed risk assessment. 

The preliminary assessment consists of 14 yes or no questions to determine if further 

risk analysis is required. The detailed risk assessment scheme contains 51 questions 

designed to assess the potential for entry and establishment, the capacity for spread, 

and the economic, environmental or social impacts.  

Specialized modules have been developed to assist in determining the relative 

weighting of invasive attributes, entry pathways, vulnerability of receptors, and the 

consequences of implemented policies (Figure 2). Within each module, guidance is 

provided on how to determine the level of uncertainty. For example, in the economic 

loss module, an adapted table from Standards Australia and Standards New Zealand 

(2004) is used to assign a score of 1-5 on the likelihood of impacts occurring within a 

given frequency ranging from 1 in 10,000 years to once a year (very unlikely to very 

likely, respectively). The likelihood rating is combined with an impact level (minimal, 
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minor, moderate, major and massive) to derive the final risk conclusion (Table 9). A 

likelihood rating (likely, possible, unlikely, and very unlikely) is combined with an impact 

level (minimal, minor, moderate, major and massive) to derive the final risk conclusion. 

One of five levels of response (from very low to very high risk) and one of three levels of 

uncertainty (low to high) are assigned in each assessment, and each ranking is justified 

with a written and referenced comment. In the final module, scores are summarized 

using a five point ordinal scale ranging from very low (0) to very high (4) under each 

major heading (entry, establishment, spread, impact) to determine the aggregated 

measures of risk.  

 

Figure 2: UK risk assessment scheme (Baker et al., 2008). 

Table 9: UK risk assessment scheme uncertainty table (Baker et al., 2008). 

Likelihood 
Class 

Uncertainty 

Minimal Minor Moderate Major Massive 

Very unlikely Negligible Negligible 
Justifiable  

(low) 
Justifiable  
(low-med) 

Justifiable  
(med -high) 

Unlikely Negligible 
Justifiable 

(low) 
Justifiable  
(low-med) 

Justifiable 
(med -high) 

Justifiable 
(high) 

Possible 
Justifiable  

(low) 
Justifiable 
(low-med) 

Justifiable  
(med -high) 

Justifiable 
(high) 

Unacceptable 

Likely 
Justifiable  
(low-med) 

Justifiable 
(med -high) 

Justifiable 
(high) 

Unacceptable Unacceptable 

Very likely 
Justifiable  
(med-high) 

Justifiable 
(high) 

Unacceptable Unacceptable Unacceptable 
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Scores are then treated as probabilities to overcome the impact that extreme scores 

have when calculating an average. When uncertainty is high, scores tend to center on 

the mid-point and averaging can have a diluting effect on the extreme responses. Baker 

et al. (2008) argue that by calculating the conditional probability, the levels of 

uncertainty are better accounted for since mid-point scores have no effect on the 

outcome, and progressively higher weight is given to scores as they diverge from the 

mid-point. Using examples, it was shown that when expert judgment is used, the 

probability calculation provided increased discrimination and accuracy of the assessor’s 

judgment of risk, when compared with taking the average score. 

The risk assessment scheme has adapted methods that are well refined and based on 

internationally recognized assessment protocols for the assessment of freshwater fish, 

invertebrates and amphibians. The assessment itself takes into consideration all 

components and potential areas of impact following invasion, however the terms used 

to rank risk and uncertainty are poorly defined, and the automated risk calculation is not 

transparent (Verbrugge et al., 2010).  

2.7. RISK ANALYSIS AND PRIORITIZATION FOR INVASIVE AND NON-NATIVE 

SPECIES IN IRELAND AND NORTHERN IRELAND  

Protocols for conducting risk analysis of non-native species in Ireland and Northern 

Ireland are divided into two primary components (Kelly et al., 2013): prioritization risk 

assessment to develop the understanding and relative risk associated with an array of 

species, and a detailed assessment of risks and uncertainties associated with each 

species of concern. The prioritization assessment is typically used to provide 

information to governmental agencies to assist in decisions and actions to be 

undertaken. The more detailed risk assessment is designed to support trade restrictions 

and legislative developments through understanding overall risks and possible 

mitigation options (Kelly et al., 2013).  

The prioritization risk assessment consists of ten questions designed to determine 

relative risk by accounting for establishment success, spread potential, suitability of 

habitats, propagule pressure, invasion history, vectors and pathways. A risk rating score 

of low, medium or high is assigned with reference to published evidence. Separate 

assessments have been conducted based on whether the species has already been 

detected in Ireland or if it is a potential invasive species. In the latter case, the likelihood 

of arrival, ability to survive, spread and impact the conservation goals and economy of 

an area are assessed, scores are added, and the species is assigned to a low, medium 

or high risk category.  
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Sources of uncertainty are identified in individual assessments by including the source 

of uncertainty as a distinct component of the questionnaire. Overall data availability is 

also used to judge the level of confidence in the assessment conclusion using the 

following uncertainty rankings (Kelly et al., 2013): 

 Documented: Reliable documented evidence to support the assessment is 

available. Relevant references are added to the reference database. 

 Expert Opinion: The assessor’s knowledge of a species, or that of an identified 

expert, provides sufficient information to support an assessment.  

 Probable: The evidence consulted or the species characteristics indicate that the 

described impact could reasonably occur in Ireland or Northern Ireland.  

 Uncertain: There was insufficient evidence to confidently assess the species. 

Unfortunately, the development of the scoring system and weighting of factors in the 

prioritization risk assessment are not clearly explained, and the boundaries of the low, 

medium and high risk rating scores appear to be arbitrary. Explicit details on how to 

incorporate uncertainty or minimize uncertainty is not provided.   

2.8. GERMAN-AUSTRIAN BLACK LIST INFORMATION SYSTEM  

The German-Austrian Black List Information System (GABLIS) was developed by Essl 

et al. (2011) and is designed to assess the risk that invasive aquatic species pose to 

native biodiversity. In the GABLIS, invasive species are assigned to one of three main 

categories, White, Grey or Black lists, based on potential risk (Figure 3). The Black and 

Grey lists are divided into sub-lists according to the distribution and eradication 

measures available and certainty of the assessment, respectively. 

The threat to native biodiversity provides the basis of assignments to a category. The 

threat is assessed using five main criteria that provide confirmation of negative impacts 

by ‘yes’ or ‘no’ responses if there are sufficient scientific data to substantiate the 

responses. If there are not enough data or if contradictory data exist, but it remained 

probable that the introduction of the species may have adverse impacts, the conclusion 

‘evidence-based assumption’ is assigned. The conclusion ‘unknown’ is used for cases 

where data are missing or background knowledge of the species is highly incomplete. 

The allocation to a list is based on the precautionary approach, i.e., if there is at least 

one criterion with a positive response, then the species is assigned to the Black List. 
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Figure 3: List of major categories and subdivisions used in GABLIS (Essl et al., 2011). 

Uncertainty plays a role in the assignment of species. For example, when there are no 

‘yes’ responses and at least one ‘evidence-based assumption’ response, the species is 

assigned to the Grey List. Further, even if there is only one ‘unknown’ response and the 

rest are “no”, the species is assigned to the Grey List Watch List or the White List. If all 

criteria are assessed with ‘no’, the alien species is assigned to the White List.  

The GABLIS protocol recognized that data used for the assessment may have 

originated from a range of sources. These sources have varying degrees of reliability, 

including scientific reports and peer-reviewed publications, but also expert judgment 

and referrals to ecologically similar areas or surrogate species. The transfer of 

experience gained from invasion in climatically and ecologically similar areas provides 

an opportunity to determine risk for alien species not yet present, or that are just 

beginning to spread. The increased uncertainty associated with these scenarios was 

accounted for by placing alien species for which negative impacts on biodiversity are 

insufficiently known on the Grey List. 
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The manner in which the GABLIS guideline is structured with ‘yes’ or ‘no’ answers 

makes it easy to follow and understand. The assignment of species to different lists 

provides a clear indication of management options and helps ensure that a 

precautionary approach is followed. The GABLIS does not, however, incorporate 

economic or health impacts. In addition, some of the criteria used are not specific and 

may require detailed data or high levels of expertise to effectively carry out the 

assessment (Verbrugge et al., 2010). 

2.9. EUROPEAN UNION GUIDANCE DOCUMENT ON THE ECOLOGICAL RISK 

ASSESSMENT OF GENETICALLY MODIFIED ANIMALS 

In 2013, the European Union (EU) published the Guidance Document on the 

Environmental Risk Assessment of Genetically-Modified Animals, with a focus on living 

GM animals to be placed on the EU market according to Regulation (EC) No. 

1829/2003 or Directive 2001/18/EC. These guidelines provide the rationales for data 

requirements for a comprehensive Environmental Risk Assessment (ERA) assessing 

the potential adverse effects that GM animals may have on the environment and human 

and animal health (EFSA GMO Panel, 2013). 

A number of areas of risk are considered for GM fish, insects, mammals and birds, 

including:  

 Persistence and invasiveness of the Genetically Modified (GM) animal, including 

vertical gene transfer (VGT);  

 Horizontal gene transfer;  

 Interactions of the GM animal with target organisms;  

 Interactions of the GM animal with non-target organisms (NTOs); 

 Environmental impacts of the specific techniques used for the management of 

the GM animal; 

 Impacts of the GM animal on biogeochemical processes; and 

 Impacts of the GM animal on human and animal health. 

The risk assessment process includes problem formulation, hazard, exposure and risk 

characterization, management and overall risk evaluation (Figure 4). 

The magnitude of hazard is defined as the qualitative and/or quantitative evaluation of 

environmental harm. It may be expressed in a quantitative rather than qualitative 

manner and ordered using categorical descriptors from negligible, low, moderate and 

high. In cases where it is not possible to show an adverse effect in a particular 

environment, the risk is considered negligible or insignificant.  
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Exposure characterization is used to estimate the likelihood of adverse effects following 

the identification of direct and indirect routes of exposure. Here, the assessment is to be 

related to the intended use of the GM animal and its level of release.  

If possible, the likelihood could be characterized in a quantitative manner providing a 

relative measure of probability from 0 to 1, where 1 is a high level of certainty. As there 

are often limited data available to accurately estimate the likelihood of occurrence, 

potential exposure can be qualitatively expressed using ordered categorical descriptions 

similar to those used in the hazard characterization, ranging from negligible to high.  

 

Figure 4: Stages of the EFSA environmental risk assessment (EFSA GMO Panel, 
2013). 
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When using qualitative terms, a link between likelihood and probability of occurrence 

has been provided based on a numeric scale of 0 to 1 indicating the range for the term 

chosen. The hazard and exposure estimates are then combined to characterize risk. 

Risk may be described as a quantitative or semi-quantitative estimate of the probability 

of occurrence and magnitude of harmful effects.  

Throughout the risk assessment, sources and types of uncertainty are identified for 

each scientific output in addition to descriptions of their relative importance and 

influence on the outcome. For each identified risk, an overall assessment and analysis 

of uncertainty is conducted and properly communicated. The formal analysis addresses 

the main sources of uncertainty, including linguistic, variability and incertitude. The 

guidelines reference Burgman (2005), Kapuscinski et al. (2007) and Hayes (2011) as 

guides for suitable approaches to assess uncertainty, but with no clear indication of 

which methods or techniques would be best to follow. 

The EFSA guidelines and supporting Directive 2001/18/EC document provide clear 

suggestions on the use of comparators and non-GM surrogates that are not found in 

other guidelines. In addition, in-depth descriptions on cross-cutting considerations are 

provided, including how to assess experimental design in GMO experiments, statistical 

analyses, long-term effects and uncertainty analyses. A wide range of areas are 

considered in the assessment, however, the socio-economic impact of GMOs is not 

incorporated. Endpoint definitions used in the assessment, including reproductive, 

developmental, and phenotypic effects, are ambiguous and open to interpretation. 

2.10. AUSTRALIAN RISK ANALYSIS FRAMEWORK FOR GENETICALLY MODIFIED 

ORGANISMS 

The Risk Analysis Framework was published in November 2013 by the Department of 

Health and Ageing, Office of the Gene Technology Regulator (OGTR, 2013). The 

guidelines provided by this document fall under the Gene Technology Act 2000 and the 

Gene Technology Regulations 2000 and were based on the Australian and New 

Zealand Standard 4360:2004 on Risk Management.  

Risk assessments in the area of genetically-modified organisms may be based on both 

qualitative and quantitative data. The risk assessment has three steps including hazard 

identification, consideration of the likelihood and severity of an adverse outcome 

(consequences), and risk estimation to determine the probability that potential harm 

would be realized. The risk estimate is a combination of the likelihood and 

consequences of an adverse outcome but also incorporate consideration of uncertainty. 

In cases where qualitative assessments are conducted, precautions to avoid specific 
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weaknesses typically associated with these types of assessments are suggested. 

Specifically, the precautions aim to reduce ambiguity through the use of defined 

terminology, variation between assessors through quality control measures such as 

internal and external reviews, and biases through the use of clear descriptions of what 

is being protected by the Act.  

Risk is estimated by combining the likelihood that a hazard will occur and the 

seriousness of the adverse outcomes (Table 10). Each are rated using prescribed 

terminology to reduce ambiguity. The likelihood assessment is rated in one of five 

categories, from highly unlikely to highly likely. The consequence assessment is rated in 

one of four categories, from marginal to major in terms of the negative impact on 

individuals or biological and physical disruption of ecosystems, communities or species. 

Table 10: Australian risk matrix to determine level of risk (OGTR, 2013). 

Likelihood 

Assessment 
Level of Risk 

Highly likely Low Moderate High High 

Likely Low Low Moderate High 

Unlikely Negligible Low Moderate Moderate 

Highly unlikely Negligible Negligible Low Moderate 

 Marginal Minor Intermediate Major 

Consequence Assessment 

The guidelines suggest that the risk assessment process identify sources of uncertainty 

encountered in determining the likelihood and consequences of risk. A list of 

uncertainties often encountered in conducting risk analysis of GMOs that should be 

considered, including epistemic, descriptive, cognitive, complexity and intrinsic 

uncertainties, are provided. However, the guidelines do not provide clear methods for 

dealing with uncertainty in the risk assessment. Though the risk framework provides 

clear definitions of potential levels of harm to health and the environment, linguistic 

uncertainty is present in the definitions of the likelihood assessment scale and may be 

subjective.  
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3.0. REVIEW OF METHODS FOR THE ANALYSIS OF UNCERTAINTY 

Decisions on complex environmental issues are made through an evaluation and 

analysis of the potential magnitude and consequences a stressor may induce. Such 

decisions are often made with limited empirical data and system understanding thereby 

creating a considerable amount of uncertainty. In risk analyses involving invasive 

species or genetically-modified organisms, it may be difficult to estimate uncertainty 

using strictly quantitative methods. However, a range of qualitative tools and techniques 

are available and may be used to understand the relative level of uncertainty regarding 

estimates of risk.  

One major issue with qualitative risk analyses is that they have a high level of linguistic 

uncertainty and do not address uncertainty arising from incertitude and variability 

(Hayes, 2007). Quantitative risk assessment can also suffer from linguistic uncertainty, 

but explicitly incorporates variability and incertitude (Hayes, 2007). Regardless of the 

method selected to determine uncertainty, there are criteria that should be met to 

ensure that the analysis is effective. The method should be clear, reproducible, 

presented in a manner which decision-makers can easily understand and highlight 

uncertainties that may impact the decision making process.  

Though there is a large amount of literature on quantitative uncertainty analysis 

methods, only in the past decade has there been increased focus on subjective or 

preference-driven risk analysis methods (Sikder et al., 2006; Knol et al., 2010). In this 

chapter, we review methods that may be used in a qualitative or semi-quantitative 

uncertainty analysis for invasive species and genetically-modified organisms.  

3.1. UNCERTAINTY MATRIX 

An uncertainty matrix is a tool that can be used to identify and prioritise important 

sources of uncertainty in an assessment (Refsgaard et al., 2007). One of the 

advantages of an uncertainty matrix is that it provides a graphical overview of the 

sources of uncertainty that may impact the decision-making process (Walker et al., 

2003). In addition, an uncertainty matrix captures both quantitative and qualitative 

aspects and provides an analysis of complex environmental policy issues (van der Sluijs 

et al., 2005). As a result, various forms of uncertainty matrices are often suggested for 

use by regulatory agencies in qualitative or semi-quantitative risk assessments. 

In an uncertainty matrix, the sources of uncertainty are listed as well as the level and 

type (e.g., variability or incertitude) of the uncertainty. A template of an uncertainty 

matrix is provided in Table 11. As highlighted by Walker et al. (2003), the level of 
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uncertainty can be viewed as a “continuum of uncertainty” ranging from total ignorance 

to full knowledge or determinism of the given phenomenon.  

Table 11: Uncertainty matrix (Walker et al., 2003; Refsgaard et al., 2007). 

Source of Uncertainty 
Level of Uncertainty Type 

Statistical Scenario Qualitative Ignorance Epistemic Stochastic 

Context 

Natural, 
technological, 
economic, 
social, political 

      

Model 

Model structure       
Technical model       
Parameters       

Inputs 
Driving forces       
System data       

Outcome       

The matrix represents a complete inventory of sources of uncertainty, their level and 

type, and can be used to determine which sources are priorities for further data 

collection. The importance of each source of uncertainty on the overall assessment can 

be assigned a weighting. When the uncertainty matrix is first developed, not all sources 

of uncertainty or their weightings may be evident. As a result, the matrix will likely need 

updating as data collection, information gathering and the risk assessment progress 

(Refsgaard et al., 2007; Walker et al., 2003).  

The development and interpretation of the uncertainty matrix is relatively 

straightforward. One of the drawbacks of using an uncertainty matrix, however, is the 

reliance on expert judgement. Expert judgment can be biased, unreliable, or value 

laden. The matrix can be used in conjunction with other uncertainty assessments to 

minimize the impact of these subjective components (Carey et al., 2005). Typically, the 

results in the matrix are expressed linguistically to provide meaningful details of the 

location of uncertainty and, depending on the structure of the matrix, management 

options. Coding can also be used to easily identify relevance or location of uncertainty 

sources (e.g., A = critical, B = important, C = negligible). Additional tables can be used 

to provide further explanation of the terms used in the matrix and may include 

references to the literature. 

3.2. EXPERT ELICITATION  

When there is a paucity of data to conduct quantitative assessments, one may consult 

with experts to inform decisions (Sikder et al., 2006; Hetes et al., 2011). Expert 
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elicitation methods have been used in the development of risk models for invasive 

species (Maguire, 2004; Sikder et al., 2006).  

Expert opinion can be used throughout the risk assessment process to pass judgments 

on qualitative rating categories (Maguire, 2004). Such judgments are typically 

associated with a large amount of uncertainty, primarily due to language-based 

uncertainties. Maguire (2004) provides an example of where differences in values and 

interpretation of language could lead to significant changes in responses from experts. 

For instance, consider the question of whether an invasive pest is “expected to cause 

significant direct environmental effects such as extensive ecological disruption or large-

scale reduction in biological diversity”. Although the question appears straightforward, 

what can be considered to be “significant”, “extensive” or “large-scale” varies between 

individuals based on personal definitions, experience and knowledge of the topic 

(Maguire, 2004).  

Systematic protocols have been developed to improve the quality, reproducibility and 

transparency of the use of expert judgments and opinions (Morgan and Henrion, 1990; 

Refsgaard et al., 2007; Knol et al., 2010; Hetes et al., 2011). Expert elicitation 

represents a formal systematic process that enables the probabilistic quantification of 

expert judgments about uncertain quantities (Hetes et al., 2011). The methodologies 

used in the application of expert elicitation are flexible and, as a result, the design for 

each expert elicitation requires professional judgment. The US EPA (Hetes et al., 2011) 

has provided a number of elements of good practice including: 

 Clear problem definition; 

 Appropriate structuring of the problem; 

 Appropriate selection of experts to conduct the elicitation;  

 Protocol development and training, including considering group processes and 

methods to combine judgments when appropriate; 

 Procedures to check expert judgments for internal consistency; 

 Clear and transparent documentation; and 

 Adequate peer review. 

Suggested steps to perform a formalized expert elicitation were prepared by Knol et al. 

(2010) for integrated environmental health impact assessments (Figure 4). These steps 

can be generalized and others have suggested similar methods (Refsgaard et al., 

2007).  
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Figure 5: Seven step procedure for formal expert elicitation (Knol et al., 2010). 

The number of experts required in a reliable expert elicitation depends on the 

complexity of the problem, financial constraints, availability of experts and desired range 

of perspectives (Hetes et al., 2011). Theoretical models suggest that the ideal number 

of experts is between six and 20, with more experts required when substantial 

differences in opinion develop (Hogarth, 1978; Cooke and Probst, 2006). Using a 

greater number of experts may provide marginal returns (Clemen and Winkler, 1985). 

An informal review of expert elicitation investigations showed that the majority used 11 

experts or less (Walker, 2004). Information from experts can be elicited via interview or 

by survey (Knol et al., 2010). A critical step of the procedure is designing the elicitation 

protocol. The protocol contains the questions and determines the desired format (i.e., 

quantitative or qualitative estimates) for the answers. 

The degree of belief an expert has in their response can be represented as a subjective 

probability density function. Though responses from individual experts will vary due to 

differences in background information, interpretation of the linguistic description and 

fundamental disagreements, the consistency of the experts can be examined. One 

method to measure consistency is to include seed variables in the questions asked. The 

performance on these specific questions can then be used to assess the overall 

performance on the variables of interest. Internal consistency can be measured by 

having experts comment on one outcome in two or more different ways (Tversky and 
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Kahneman, 1981). For more detailed descriptions of recommended protocols for expert 

elicitation, please refer to Knol et al. (2010), Hetes et al. (2011) and Wittmann et al. 

(2014). 

Expert elicitation provides a formalized method for gathering information and knowledge 

that would otherwise not be available. However, there are shortcomings associated with 

this method. Common shortcomings include low reliability of opinions, uncertainty due 

to different interpretations of the language used in both the questions and responses, 

and the possibility of a general lack of knowledge of specific topics among experts (Knol 

et al., 2010). Overall, this method provides a means to identify areas of uncertainty and, 

in some cases, appropriate management strategies that otherwise may not be 

incorporated into the assessment. 

Case Study: Using Structured Expert Judgment to Assess Invasive Species Prevention 

In this case study, Wittmann et al. (2014) used expert elicitation to quantify the 

uncertainty of the effectiveness of various strategies aimed at preventing the invasion of 

Asian carp into the Great Lakes.  

A structured, performance-based method to elicit and aggregate expert judgments was 

used based on procedures developed by Cooke (1991). Eleven experts were selected 

based on their expertise in fisheries biology and specific experience in the Great Lakes 

or Asian Carp species, or both. Following the selection process, prospective experts 

received an elicitation questionnaire, background information about the methods 

involved in expert elicitation, the Great Lakes and carp.  

In-person interviews were conducted where experts were asked to quantify their 

response as the 5th, 50th and 95th percentiles of their subjective probability distribution. 

Of the 84 questions asked, 20 were calibration questions (i.e., seed variables) that 

originated from the experts’ field. The calibration questions were included to provide a 

basis for a performance score. Information scores were determined by the width of the 

confidence band of a given expert and showed the degree to which experts’ 

distributions were concentrated relative to background measures. The authors 

subsequently calculated the product of the calibration and information scores to provide 

a weighting that was assigned to each expert (see Wittmann et al., 2014 for further 

details).  

The results of the investigation showed that hydrologic separation of the Mississippi 

River and the Great Lakes basin was considered the most effective prevention strategy. 

In addition, the uncertainty ranges for hydrologic separation approach were smaller 
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when compared to any other prevention strategy, which indicated a high level of 

certainty among the experts. Electric barrier and the acoustic-bubble-strobe 

combination of deterrent technologies were rated to be similar in effectiveness, though 

the latter had a wider uncertainty range. Through the use of expert elicitation, the 

authors were able to provide additional information to increase the effectiveness of 

future risk assessments and aid in the decision making.  

3.3. FAULT TREE ANALYSIS 

Fault tree analysis is a graphical hazard and risk assessment tool that can be used to 

identify a pathway of events that lead to the occurrence of a hazard (Hayes, 2002; Dana 

et al., 2013). This technique allows for the formalization of conceptual models by 

identifying the occurrence (or non-occurrence) of other events (Bedford and Cooke, 

2001; Acosta and Forrest, 2009). Two logical functions are used, an “AND” gate and an 

“OR” gate (Hayes, 2002). The “AND” gate provides the intersection of events attached 

to the gate and can have a number of inputs associated with it. However, all preceding 

conditions must be met for the event above the gate to be realised (Hayes, 2002; Hayes 

et al., 2013). The “OR” gate represents the union of events and can have a number of 

branches running into it. Only one preceding condition needs to be met for the gate to 

be realized (Hayes, 2002; Hayes et al., 2013). An example of a fault tree analysis is 

presented in Figure 5, with an explanation of the symbols in Figure 6 (Hayes, 2002). 

The tree structure used for the analysis is often constructed with the top event 

representing the risk assessment endpoint (Hayes and Hewitt, 1998). A number of 

symbols are used to construct a fault tree analysis. In the example provided in Figure 6, 

the risk assessment endpoint would be the successful infection of the port that receives 

the ballast water from a vessel (i.e., the recipient port). For a successful infection to 

occur, two functions must be met: 

 A viable pest is discharged into the recipient port; AND 

 The pest is able to survive in the recipient port 

Similar assessments are made for each gate. The fault tree analysis helps ensure the 

analyst takes into consideration all possible mechanisms for the assessment endpoint 

to occur in a transparent graphical depiction that is relatively easy to interpret. In 

addition, the construction and analysis of the tree can help identify possible mitigations 

that will minimize risk. An additional advantage of the fault tree method is that, if data 

are available, probabilities of specific steps can be added and used to quantify the 

overall probability of the risk assessment endpoint occurring (Hayes et al., 2013).   



 

 

  

Figure 6: Fault tree analysis used to assess ballast-water introductions of non-indigenous species (Hayes, 2002). 

  



 

 

Fault tree analysis has some drawbacks. For example, the utility of the analysis 

depends on the expertise of assessors. If there is limited knowledge of the system, 

pathways that may lead to the occurrence of the endpoint may be omitted. To address 

this issue, it is possible to use expert elicitation techniques to identify and prioritize 

hazards (Dana et al., 2013). Fault tree analysis represents a snapshot of the system of 

interest. The logical functions (i.e. AND, OR) do not provide an opportunity to fully 

capture the importance of time-dependent variables, which are often pivotal in biological 

systems. As a result, fault tree analysis may be viewed as a heuristic exercise and a 

precursor to a more rigorous risk assessment (Hayes, 2002). 

The results of the fault tree analysis depend on the amount of data available to 

incorporate into the model. If sufficient data are available, the output can represent an 

overall probability that the top event will occur. If fewer data are available, the analysis 

can identify potential locations of uncertainty that need to be accounted for in the risk 

assessment.  

Case Study: The Spread of Marine Non-indigenous Species via Recreational Boating 

The purpose of this investigation was to develop a conceptual model that would 

examine the consecutive steps required for non-indigenous species to be introduced in 

marine environments via recreational vessel movements (Acosta and Forrest, 2009). 

The authors used a fault tree analysis in conjunction with expert elicitation to 

characterize potential invasion pathways. A panel of experts was used to ensure the 

model was comprehensive and did not omit potential hazards.  

A series of fault trees was first developed that showed the events preceding the release 

of a non-invasive species from an infected vessel into a new area. The trees were then 

integrated into an initial conceptual model. Personal observations, interviews and 

surveys of recreational boat owners were used to determine which events would be 

incorporated into the model. Expert elicitation was then used to refine the model. An 

initial introductory exercise was provided to the panel of ten experts. This exercise 

provided an explanation of fault tree analysis techniques as well as background 

information regarding the issues of non-indigenous species invasions. Experts were 

then asked to analyze the model and incorporate any changes considered necessary to 

ensure that the framework was comprehensive and accurate. Following this revision, 

suggestions and comments from an additional six marine scientists and five recreational 

vessel owners were incorporated into the model. Efforts were made throughout the 

process to reduce linguistic uncertainty generated by ambiguity, under specificity and 

context dependence.  
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A section of the final model is shown in Figure 7, and represents the introduction of a 

non-indigenous species (“S”) present in area “Y” and could potentially be introduced to 

area “Z”. The authors point out that though the model includes the arrival and survival of 

the species in area “Z”, the primary focus of the model was on the release process. For 

area “Z” to become infected with species “S”, the following three events must occur: 

 Species S arrives in Area Z; AND 

 Species S is released into Area Z; AND 

 Species S survives in Area Z 

Additional fault trees are provided that depict the release of species “S” in area “Z” from 

a number of different origins, including the hull, deck, internal spaces, anchor and 

fishing gear (for detailed accounts of these analyses, see Acosta and Forest, 2009). 

The investigation then provides specific invasion scenarios to demonstrate the 

applicability of the model by using the realized or potential release and establishment of 

non-indigenous organisms in the region. 

 

Figure 7: Example of fault tree analysis used to assess the spread of marine non-
indigenous species via recreational boating (Acosta and Forrest, 2009). 
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Through the use of fault tree analyses, the authors were able to develop a conceptual 

model that provided a framework for assessing ecological risks and mechanisms that 

could contribute to the invasion of non-indigenous species. The complexity of the issue 

was made evident through the use of the fault tree analysis. This complexity would need 

to be taken into account for future management programs to be successful.  

3.4. NUSAP METHOD 

The NUSAP method has been used as a systematic qualitative approach to assess 

uncertainty in environmental risk assessments (van der Sluijs et al., 2005). The method 

provides an assessment of both quantitative and qualitative dimensions of uncertainty 

using the various aspects of the NUSAP acronym as defined by van der Sluijs et al. 

(2005): 

 Numeral: typically a number but can also represent a general quantity (i.e., “a 

million is not the same as the number lying between 999,999 and 1,000,001”) 

 Unit: the conventional unit, but could also provide additional information 

 Spread: similar to statistical variance in the statistical sense and can be 

conveyed as ±, %, or factors. Methods to address spread can be statistical data 

analysis, sensitivity analysis, or Monte Carlo analysis, possibly in combination 

with expert elicitation 

 Assessment: qualitative judgments about the information and can range from a 

numerical value to qualifiers of the numerical estimates such as “optimistic” or 

“pessimistic” 

 Pedigree: uses qualitative expert judgment to assess the process and different 

phases in which information was obtained and knowledge developed.  

Uncertainty related to numerical values is addressed by providing insight into the spread 

(i.e., inexactness) and strength (i.e., methodological and epistemological limitations of 

the underlying knowledge base) (van der Sluijs et al., 2005; Refsgaard et al., 2007). The 

assessment of pedigree can also integrate societal dimensions of uncertainty 

(Refsgaard et al., 2007). To effectively code qualitative expert assessments, a pedigree 

matrix can be used for varying criteria. This matrix contains criteria to represent the 

critical components used in the knowledge base development. To help minimize 

arbitrariness and subjectivity in measuring strength, expert assessment for each 

criterion will be entered on a scale from zero to four (weak to strong). Linguistic 

descriptions of each level are provided as guidance on the scale. An example of a 

pedigree matrix that was developed to address assumption in model-based 

environmental assessments is provided in Table 12 (Kloprogge et al., 2011).  
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Table 12: Example of a pedigree matrix used in the assessment of a value-laden assumption (Kloprogge et al., 2011). 

Value type Practical General epistemic 
Disciplinary-

bound epistemic 
Socio-political 

Influence on 
results 

Criterion 
Influence of 
situational 
limitations 

(Im)plausibility Choice space 
(Dis)agreement 
among peers 

(Dis)agreement 
among 

stakeholders 

Sensitivity to 
view and 

interests of the 
analyst 

Score 

2 

Choice 
assumption 
hardly 
influenced 

The assumption 
is plausible 

Hardly any 
alternative 
assumptions 
available 

Many would have 
made the same 
assumption 

Many would have 
made the same 
assumption 

Choice 
assumption 
hardly sensitive 

The assumption 
has only local 
influence 

1 

Choice 
assumption 
moderately 
influenced 

The assumption 
is acceptable 

Limited choice 
from alternative 
assumptions 

Several would 
have made the 
same assumption 

Several would 
have made the 
same assumption 

Choice 
assumption 
moderately 
sensitive 

The assumption 
greatly determined 
the results of the 
step 

0 

Totally 
different 
assumption 
had there not 
been 
limitations 

The 
assumptions are 
fictive or 
speculative 

Ample choice 
from alternative 
assumptions 

Few would have 
made the same 
assumption 

Few would have 
made the same 
assumption 

Choice 
assumption 
sensitive 

The assumption 
greatly determined 
the results of the 
indicator 
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Another example where a pedigree matrix was used can be found in the Guidelines for 

Environmental Risk Assessment and Management (Green Leaves III) by the UK 

Department for Environment, Food and Rural Affairs (Gormley et al., 2011).  

Using the example of the pedigree matrix produced by Kloprogge et al. (2011), 

assumptions that would lead to a low score have increased potential to be value-laden. 

Low scoring assumptions have an increased influence on the results of the assessment 

and therefore could be viewed as problematic and potential “weak links” (Kloprogge et 

al., 2011). Average pedigree scores can be calculated for assumptions over the number 

of pedigree criteria. A diagnostic diagram could then be used to visualize the 

assumptions based on the estimated influence of the assumption on the assessment 

results and the average pedigree scores. One suggested format of this diagram is 

shown in Figure 9, where those in the “danger zone” represent assumptions that have a 

high potential for being value-laden and have a significant influence on the assessment 

(Kloprogge et al., 2011). 

 

 

Figure 8: Diagnostic diagram used to assess potential value-laden assumptions 
(Kloprogge et al., 2011). 

A NUSAP analysis can integrate both quantitative and qualitative uncertainty at varying 

levels of comprehensiveness (Refsgaard et al., 2007). However, as the pedigree 

scoring relies heavily on subjective judgments, the outcomes may be sensitive to the 

selection of experts. Using some of the methodologies outlined in expert elicitation 
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could enhance this process as the outcome of the model could be influenced by the 

selection of experts (Refsgaard et al., 2007). 

The results from the expert elicitation can be quantified through the use of probability 

density functions (see section 3.2) and scoring the results of the pedigree matrix. Monte 

Carlo analysis or sensitivity analysis can be used to determine overall contribution to the 

level of uncertainty for each variable. The outcome displayed in the diagnostic diagram 

is easily interpreted and quickly highlights attributes of key parameters and their overall 

influence on the quality of the result.  

3.5. LOOP ANALYSIS  

Loop analysis is also referred to as qualitative modelling and has been recommended 

for ecological assessments of potential hazards. The method emphasizes how the 

structure of a system can influence the way in which other variables respond to a 

perturbation through structural feedback, rather than precise species interactions 

(Marzloff et al. 2011; Hayes et al. 2013). Loop analysis represents an intermediate step 

between completely qualitative and fully quantitative models that can be used to explore 

the effects of stress on a given system (Orme-Zavaleta and Munns 2008). Loop 

analyses are most effective in the early stages of the risk analysis to help minimize the 

effects of linguistic uncertainty (Hayes, 2011). In addition, structural uncertainty can be 

propagated through the assessment (Hayes et al., 2013).  

Loop analysis uses signs to designate interactions between variables that are 

graphically depicted as nodes. The relationship between variables is shown by sign-

directed graphs. For example, a link between variables that shows an arrow (→) 

designates a positive interaction (e.g., births produced by consumption of prey); a line 

with a filled circle (―●) represents a negative effect (e.g., death from predation); and 

self-effects are shown as lines that originate and terminate at the same node (Marzloff 

et al., 2011; Hayes et al., 2013). Loop analysis considers pairwise relationships by 

assigning unit signs, -1, 0 or +1, to each interaction. By only using signs to describe the 

interactions between variables, those that are poorly quantified within a given system 

can also be incorporated (Orme-Zavaleta and Munns, 2008).  

A perturbation on the system that results in a change to the rate of birth, death or 

migration of a species is defined as a press perturbation (Dambacher et al., 2002). In a 

fairly simple system, the impact of a press perturbation can be assessed by calculating 

the product of the sign of the direct effects from the impacted node to all other nodes. 

The influences of variables not within the direct path of the perturbation are also 

considered. With increased complexity in the system, such straight multiplication is not 
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feasible. In these cases, equivalent algebraic analysis is conducted using the system’s 

community matrix. 

 An example of three qualitative models and the associated community matrices are 

provided in Figure 9 (Hayes, 2011). Here, possible interactions between an invasive 

shrimp species and four components of the invaded ecosystem are assessed.  

 

Figure 9: Three models of loop analysis and equivalent community matrix (Hayes, 
2011). 
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The three models were used to examine different hypothesis: 1) shrimp only feed on 

detritus, 2) shrimp feed on detritus and competitively interfere with zooplankton, and 3) 

shrimp feed on detritus, benthic invertebrates and competitively interfere with 

zooplankton (see Hayes, 2011 for further details). The positive or negative signs in the 

community matrix on the right hand side of Figure 9 describe the interaction between 

species and their physical resource. By identifying the sources of structural uncertainty 

in the community matrix, it is possible to explore the directional change of any 

component of a community structure (Hayes et al., 2007). 

In their case study, Hayes et al. (2013) discuss how loop analysis could be applied to 

genetic control techniques for the Common Carp in Australia. The benefits of using loop 

analysis with a limited understanding of a complex and variable ecosystem are 

discussed (Hayes et al., 2013). The signed directed graphs depicting an ecosystem 

model of an Australian billabong with stocking and genetic-control of non-native carp 

under drought conditions is shown in Figure 10. These models were developed from 

trophic interactions and were being used, along with fault tree analysis and Bayesian 

network analysis, to illustrate a risk assessment framework for genetic bio-control 

technologies (Hayes et al., 2013). 

Case Study: Exploring Ecological Shifts Using Qualitative Modelling 

In an investigation by Marzloff et al. (2009), loop analysis was used to help elucidate the 

dynamics of Tasmanian rocky-reef communities and assess the impact of fishing on 

these communities. The authors aimed to develop an understanding of phase shifts 

between stable states on the rocky reefs and how such shifts affect other species. In 

addition, the study aimed to identify the mechanisms that led to these phase shifts and 

whether the use of qualitative modeling would be appropriate to investigate the ability of 

natural systems to produce alternative stable states and predict their effects.  

Loop analysis was used to provide a framework to examine the effects of sustained 

press perturbations on the dynamics of the communities of interest and make qualitative 

predictions of potential outcomes. Available empirical data describing different 

components of the ecosystem were pooled. The summary of interactions investigated is 

provided in Table13, including links between the seaweed beds (SW), long-spined sea 

urchin (CR), southern rock lobster (RL), black lip abalone (AB), ‘brown’ epilithic 

understory of sessile invertebrates and a matrix of filamentous algae and sediments 

(BU), ‘pink’ epilithic understory of non-calcareous encrusting algae and non-geniculate 

coralline algae (PU) and drift algae (DA). As the focus of the investigation was on the 

dynamics of two main alternative states of the reefs and the impact of commercial 

fisheries, two subsystems were outlined (Figure 11).
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Figure 10: Loop analysis graphs based on an ecosystem of an Australian billabong. A) Stocking of carp under drought 
conditions. B) Genetic control of carp under drought conditions. Variables include: Carp; Small Native Fish (SNatFi); 
Benthic Invertebrates (BenInv); Large Native Fish (LNatFi); Large Zooplankton (LZooPl); Small Zooplankton (SZooPl); 
Phytoplankton (Phytop); Macrophytes (Macrop); Benthic Algae (BenAlg); Suspended Sediment (SusSed); Drought 
(Drough) and Flood; Stocking (Stock) and Genetic Control (GenCon) (Hayes et al., 2013). 
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Figure 11: Loop analysis models portraying the dynamics on Tasmanian rocky reefs. Alternative states of the basal level 
of the benthos are defined as pink and brown epilithic understory. Red interactions are defined as weak or uncertain 
(Marzloff et al., 2009). 
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Table 13: Summary of interactions in Tasmanian rocky reefs used to identify links in the 
loop analysis (Marzloff et al., 2009). 

Model 
interaction 

Description Strength 

SW → RL Provision of habitat and food Strong 

SW → AB Provision of habitat and food (drift materials) Strong 

SW → CR Source of food Strong 

SW ―● PU Provision of optimal light conditions through shading Strong 

SW ―● BU Sweeping of young plant recruits Variable (shallow) 

RL ―● CR Predation Strong 

RL ―● AB Predation; reduced growth Weak (uncertain) 

CR ―● SW Grazing Strong 

CR ―● AB Competition for space and resource Weak 

CR ―● BU Grazing Strong 

AB ―● BU Grazing and trampling (bulldozing) Variable 

PU → AB Provision of habitat for adult and juvenile stages Strong 

PU ―● BU Anti-fouling by sloughing of epithelial cells, allelochemicals Weak 

BU ―● PU Competition. Overgrowing of the pink algae Strong 

BU → CR Source of food Strong 

BU ―● SW Sediment accumulation can block algae recruitment Variable (weak) 

BU ―● AB Once established, hostile habitat for adult and recruits Variable 

The authors concluded that the use of qualitative models provided an effective way of 

assessing the impact of fishing lobster and abalone on the overall functioning of rocky-

reef communities. In addition, analysis of alternative model structures provided the 

opportunity to test the effects of uncertainty within the model and the basis to develop a 

fully quantitative model of reef communities.  

3.6. FUZZY COGNITIVE MODELS 

Fuzzy cognitive maps (FCM) are viewed as an intermediate between fully qualitative 

analysis of system feedback structure and the fully quantitative models (Kosko, 1986; 

Ramsey and Veltman, 2005; Hayes et al., 2011). The term FCM refers to a causal map 

of variables considered important to a problem. The maps used in FCM are the same 

Sign Directed Graphs used in loop analysis and highlight positive and negative causal 

effects between variables (Hayes et al., 2011). Linking the variables are direct effects, 

also referred to as arcs, edges or interactions, with associated “fuzzy” degrees of 

causality (Ramsey and Veltman, 2005). 

Generally, the strength of the causal weights can vary from -1 to 1. In some instances, 

precise numbers are used whereas in others they are fuzzy sets that may be more 
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qualitative, using linguistic measures of relative abundance for instance (Ramsey and 

Norbury, 2009; Hayes, 2011). When a connection exists between two variables, the 

value is coded in a matrix (i.e., between -1 and 1). The value of each node or variable 

within the map is defined as Si ϵ [0,1] and represents either partial membership or 

partial “activation” (Figure 12). However, the overall interpretation of the node value can 

vary depending on the analysis approach. In some instances, it may be a fuzzy set 

membership number that portrays whether the variable meets a logical proposition, a 

normalized value, or the probability of an event occurring (Hayes, 2011).  

 

Figure 12: Fuzzy Cognitive map depicting variables assessed in Uluabat Lake, Turkey 
(Özesmi and Özesmi, 2004). 

Within the FCM, variables are typically divided into those that are calculated by solving 

the FCM and those that are fixed by the user and typically represent press 

perturbations. Once the cognitive map has been developed and the matrix coded, the 

model can be run to determine how the system will react if the variables were to remain 

the same (Özesmi and Özesmi, 2004). This will determine the system’s steady state. 

The auto-associative neural network method, which focuses on inferences rather than 
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the structure of the map, is used to do these calculations (Kosko, 1987; Özesmi and 

Özesmi, 2004). The steady state calculation provides an indication of the variable 

ranking in relationship to each other according to how the system is perceived in the 

FCM (Özesmi and Özesmi, 2004). The steady-state solution associated with the FCM 

show in Figure 12, can be seen in Table 14. In this particular model, the pollution units 

are lower than the fish population or livelihood, suggesting that pollution does not have 

significant adverse effects on fish populations or livelihoods (Özesmi and Özesmi, 

2004). 

Table 14: Calculation of steady-state for the FCM shown in Figure 11 (Özesmi and 
Özesmi, 2004). 

 
Amount of 
Wetland 

Fish 
population 

Pollution Livelihood 
Enforcement 

of laws 

Amount of 
wetland 

0 1 -0.1 0.8 0 

Fish 
population 

0 0 0 1 0 

Pollution -0.2 -1 0 -0.2 0 

Livelihood 0 0 0 0 0 

Enforcement 
of laws 

0.2 0.5 0.5. -0.2 0 

FMC 
simulation 

     

Initial state 
vector 

1 1 1 1 1 

Steady state 

0.5 0.525 0.470 0.570 0.5 

0.5 0.514 0.485 0.536 0.5 

0.5 0.513 0.485 0.536 0.5 

0.5 0.513 0.485 0.536 0.5 

0.5 0.513 0.485 0.536 0.5 

0.5 0.513 0.485 0.536 0.5 

0.5 0.513 0.485 0.536 0.5 

0.5 0.513 0.485 0.536 0.5 

FCMs share many of the same characteristics and advantages as loop analysis. 

Namely, FCM analyses are relatively quick to conduct, transparent, easily interpreted, 

and can assess how diverse opinions may affect the model structure (Hayes, 2011). 

The model can be constructed with minimal knowledge or imprecise data. In addition, 

linguistic uncertainties can be incorporated into the model. FCM also suffers from some 

disadvantages. For example, the units of causality can be vague and therefore are not 

always easily interpreted. There are also concerns regarding the lack of stability 
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analysis (Hayes, 2011). In addition, the parameter estimates may be imprecise or the 

relationship between variables unknown. Fuzzy cognitive maps represent a transparent 

method of incorporating this imprecision in the analysis (Ramsey and Veltman, 2005). 

3.7. BAYES NETWORK ANALYSIS OF MODEL STRUCTURE 

A Bayesian network is a graphical model, also referred to as a Directed Acyclic Graph 

(DAG) that can be used to represent complex systems. Bayesian networks are 

advantageous for assessing environmental systems as they are can integrate complex 

factors through the use of probabilities of states at any given time. Interactions and 

consequences within the system are used to represent both quantitative and qualitative 

information (Kipkemboi et al., 2007). Bayesian network analysis is particularly useful in 

assisting decision making when there is incomplete information (Orme-Zavaleta and 

Munns, 2008) or high levels of uncertainty (Hayes, 2011). 

The Bayesian network consists of nodes and arcs, where the nodes represent variables 

and the arcs represent conditional dependencies between the nodes (Orme-Zavaleta 

and Munns, 2008). The nodes, or variables, in the system are linked and probabilities 

are expressed for each link (Jensen, 1996). If there is a large amount of uncertainty at 

the time of the model development, additional information can be integrated as it 

becomes available. The conditional probabilities that are provided for each variable can 

be determined using different methodologies, including statistical regression models or 

decision trees (Hayes, 2011). The general structure of a Bayesian network model that 

was developed for evaluating population viability outcomes can be seen in Figure 13.  

Bayesian networks have been used to determine how well qualitative models fit with 

observations (Hayes et al., 2013). This method allows for forward uncertainty 

propagation based solely on expert opinion and is able to integrate statistical values 

when data eventually become available. In Hayes et al. (2013), the authors used 

Bayesian network analysis to determine which loop analysis was most consistent with 

observations of community response following the removal of carp from Australian 

billabongs.  

Bayesian belief networks developed using expert opinions have also been used in 

cases where significant gaps in data exist. As discussed in Hosack et al. (2008), this 

approach can be hindered by the requirement to use large conditional probabilities 

tables and accurately assessing complex ecological feedback cycles. The authors 

suggest a novel modeling approach whereby signed directed graphs typically used in 

qualitative modeling (i.e., loop analysis) were merged with Bayesian network analysis 

(Hosack et al., 2008). 
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The outcome of a Bayesian network analysis provides a description of the relationships 

in a complex system. Such analyses have been applied to depict potential outcomes of 

alternative management activities on ecological predictor variables (McCann et al., 

2006) and species-habitat relationships (Marcot et al., 2007). Through the calculation of 

expected values of alternative options shown in the decision nodes and sensitivity 

analysis of the model, Bayesian networks can be used to rank management options 

based on decisions that will most likely lead to the optimal outcome (McCann et al., 

2006). In addition to providing probabilities of alternative model outcomes (i.e., forward 

propagation), Bayesian analysis can provide the most likely set of conditions that will 

derive a given predetermined or desired outcome (i.e., backward propagation) (McCann 

et al., 2006).  

 

Figure 13: General structure of a Bayesian network model developed to evaluate 
population viability outcomes of wildlife species (Marcot et al., 2001). 

3.8. QUANTITATIVE UNCERTAINTY ANALYSIS METHODS 

Some sources of uncertainty are quantifiable, some not. A properly conducted risk 

analysis results in both a quantitative and qualitative set of information from which the 

severity, validity, robustness and usefulness of the risk estimates may be judged (NRC, 

2009). There are many approaches to quantitative uncertainty analysis and they are 

commonly used in chemical risk assessments. However, for some types of risk 

assessment, e.g., those dealing with invasive species or genetically-modified 
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organisms, fully quantitative uncertainty analysis may not be feasible. In the text that 

follows, we briefly describe the more common methods that may be used to conduct a 

quantitative uncertainty analysis; more detailed descriptions can be found in a recently 

published book, Application of Uncertainty Analysis to Ecological Risks of Pesticides 

(Warren-Hicks and Hart, 2010). The choice of which method to use depends on a 

variety of factors including data availability, intended use, and preferences of the 

analyst, risk manager and stakeholders. In data-rich situations, first-order Monte Carlo 

analysis would likely be the method of choice. Where incertitude is prevalent, second-

order methods (e.g., second-order Monte Carlo analysis, probability bounds analysis) 

should be considered to determine the potential influence that the incertitude may have 

on estimated risks. Bayesian methods may be used for a wide variety of data-rich and 

data-poor situations (see Section 3.7). 

First-order Monte Carlo simulation is a widely used approach for quantitative uncertainty 

analysis. The method requires the specification of the statistical distributions of each of 

the input variables and their interdependencies as measured by correlations. Computer 

software packages such as Crystal Ball® or @Risk® are used to “sample” from the 

distributions and compute the risk expression many times so as to build up a histogram 

that serves as the estimate of the full distribution of risks. First-order Monte Carlo 

simulation has been used in numerous ecological exposure and risk assessments 

involving chemicals as stressors (e.g., Wang et al., 2009; Luo et al., 2011; Moore et al., 

2014). 

Second-order Monte Carlo simulation is designed to handle both incertitude and 

variability in a comprehensive manner without confounding the two. It is a Monte Carlo 

simulation nested within a separate Monte Carlo simulation. Even though this approach 

has high computational costs, it can easily be performed on current desktop computers. 

The inner Monte Carlo simulation represents variability while the outer simulation 

represents the analyst’s incertitude about the values of the parameters of the 

distributions that describe variability (Moore et al., 2010). The output from a second-

order Monte Carlo simulation is a large number of distributions. The slopes of those 

distributions represent uncertainty due to variability whereas the spread between the 

distributions represents uncertainty due to incertitude (Moore et al., 2010). If the spread 

of the distributions is too wide to promote effective decision-making, then additional data 

are required. Although not used often in ecological risk assessment, second-order 

Monte Carlo has been used in human health risk assessment (e.g., Franz et al., 2010), 

management of fishery resources (e.g., Wu and Tsang, 2004) and other fields. 
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Probability bounds analysis is an exact numerical approach (not based on simulation) 

that takes as input the same probability distributions used in Monte Carlo simulation, or, 

when they are difficult to specify precisely, uses the outer bounds on these distributions 

and rigorously computes bounds on the output cumulative distribution functions 

(Ferson, 2002). Probability bounds analysis is useful when independence of 

assumptions is untenable (such as between body mass and inhalation rate), or when 

sparse empirical data make it difficult to quantify the correlations among variables 

(Ferson et al., 2004). This approach is closely similar in spirit with so-called robust 

Bayesian methods (Berger, 1985; Ferson et al., 2010). Probability bounds analysis was 

used in a large-scale ecological risk assessment for a PCBs-contaminated site near 

Pittsfield, MA (EPA, 2004) and has been used in an assessment of risk to an 

endangered species, the northern spotted owl (Goldwasser et al., 2000). 

Bayesian methods encompass a wide variety of uncertainty analysis techniques (see 

Berger, 1985 and Warren-Hicks and Hart, 2010). Bayes’ theorem is a mathematical 

procedure for updating a previously known (“prior”) distribution about a random variable 

with a likelihood function arising from new experimental results. The result is a posterior 

distribution for the random variable of interest. Bayesian prior and posterior distributions 

are representations of the degree of belief that an investigator has with regard to a 

random variable. A major advantage of the Bayesian framework is the ability to make 

probability statements across a hierarchy of data levels (e.g., for a species sensitivity 

distribution, uncertainty exists on many levels including between species, between tests 

for particular species, and between individuals within a test). For more on Bayesian 

methods, see Gelman et al. (1998), Congdon (2001) and Evans et al. (2010). 

Summary statistics may be used to characterize uncertainty in data sets where the 

focus is on a single variable (e.g., numbers of an invasive species in different water 

bodies). A variety of summary statistics are available to estimate centrality (e.g., 

median, arithmetic mean, geometric mean, harmonic mean, etc) and spread (e.g., 

standard deviation, absolute deviation, quartiles, range, etc) in a data set (Sokal and 

Rohlf, 1980). Such statistics are relatively straightforward to calculate. 

First-order moment propagation is a distribution-free approach that uses the elementary 

laws of probability to estimate the means and variances of sums, products, differences 

and quotients based on the means and variances of the input variables (Slob, 1994). 

This approach is useful when it is hard to specify the statistical distributions of the input 

variables but their means and variances are known. It is a fairly crude approach, but can 

be useful with simple models (Morgan and Henrion, 1990). 
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Fuzzy arithmetic is the arithmetic used to add, subtract, multiply and divide fuzzy 

numbers. A fuzzy number is a generalization of a regular, real number in the sense that 

it does not refer to one single value but rather to a connected set of possible values with 

a minimum of zero (impossible values) and a maximum value of one (values are entirely 

possible) (Kaufmann and Gupta, 1985; Dubois and Prade, 1988). To our knowledge, 

fuzzy arithmetic has not been used in ecological risk assessment (but see Van der 

Werft and Zimmer, 1998; Darbra et al., 2007) although it is widely used in other fields, 

including human health risk assessment (Duckstein et al., 1990; Bardossy et al., 1991) 

and management of fisheries resources (Ferson, 1993).  

Dempster-Shafer theory combines the Bayesian concept of degree of belief and 

discrete evidence into Bayesian theory and thus can be used to combine multiple lines 

of evidence. It has been used in engineering applications (Sun et al. 2006; Gao et al., 

2011) and other fields but was only recently applied for the first time in an uncertainty 

analysis for a chemical risk assessment (see Park et al., 2013). 

4.0. CONCLUSIONS 

Many jurisdictions worldwide have developed guidelines and protocols for evaluating 

the risks posed by non-native and genetically-modified organisms. In general, the 

approaches rely heavily on expert judgment to derive qualitative exposure, hazard and 

risk metrics. Where data permit, semi-quantitative and quantitative methods may be 

used in some jurisdictions. Our review indicated that all jurisdictions are acutely aware 

that major sources of uncertainty exist in assessments of the risks posed by biological 

stressors. The available guidelines and protocols recommend identifying major sources 

of uncertainty and, to the extent possible, categorizing the importance and potential 

influence of each major source of uncertainty. In some cases, semi-quantitative and 

quantitative approaches to uncertainty analysis are suggested. 

The available scientific literature indicates that formal semi-quantitative methods are 

available for estimating the importance of uncertainty in risk assessments involving 

invasive species, introductions, and genetically-modified organisms. Several of these 

methods including expert elicitation, fault tree analysis and loop analysis have a track 

record of use and could be considered for implementation in DFO programs. Others 

such as fuzzy cognitive models and Bayesian network models require considerable 

expertise and do not have a track record of use in assessments of the risks posed by 

invasive species and genetically-modified organisms. Nevertheless, they could prove 

useful in the future. Fully quantitative methods such as Monte Carlo simulation, 

Bayesian methods and probability bounds analysis are well-known methods with a long 
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history of use. The issue with these methods, however, is that they generally require 

well-formulated models and sufficient empirical data to parameterize input distributions 

(though expert elicitation methods can be helpful with the latter). Such models and 

empirical data are generally not available in aquatic assessments for invasive species 

and genetically-modified organisms. As the field develops, it may be possible to move to 

more quantitative uncertainty analysis methods in the future.  
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