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Abstract 

This paper considers the problem of estimating a linear model between two heavy-tailed 
variables if the explanatory variable has an extremely low (or high) value. We propose an 
estimator for the model coefficient by exploiting the tail dependence between the two 
variables and prove its asymptotic properties. Simulations show that our estimation 
method yields a lower mean squared error than regressions conditional on tail 
observations. In an empirical application we illustrate the better performance of our 
approach relative to the conditional regression approach in projecting the losses of 
industry-specific stock portfolios in the event of a market crash. 

JEL classification: C14, G01 
Bank classification: Econometric and statistical methods; Financial markets 

Résumé 

Dans cet article, nous examinons l’estimation d’un modèle de régression linéaire entre 
deux variables qui suivent des lois de probabilité à queue épaisse lorsque la variable 
explicative a des valeurs extrêmement faibles (ou élevées). En exploitant la relation de 
dépendance entre les extrema des deux variables, nous proposons un estimateur du 
coefficient de régression. Nous établissons les propriétés asymptotiques de cet estimateur. 
Les simulations montrent que notre méthode d’estimation génère une plus faible erreur 
quadratique moyenne que l’outil de référence, c’est-à-dire l’estimateur des moindres 
carrés ordinaires obtenu à partir des observations extrêmes. Nous illustrons également la 
supériorité de notre approche par rapport à l’outil de référence dans la prévision des 
pertes qu’enregistreraient des portefeuilles d’actions propres à un secteur particulier en 
cas de crash boursier. 

Classification JEL : C14, G01 
Classification de la Banque : Méthodes économétriques et statistiques; Marchés 
financiers  

 

 
 



NON-TECHNICAL SUMMARY

For many decision makers, it is important to analyze scenarios considering extremely

adverse market conditions. For example, investors are concerned with the performance of

stock portfolios in a market crash, while policy-makers are concerned with the performance

of financial institutions in systemic events. In this paper, we develop a new method for

evaluating the consequences of such extreme events.

A difficulty with assessing potential outcomes in market crashes is that interrelationships

in financial markets tend to change in extremely adverse market conditions. For example,

correlations in financial markets tend to be stronger in a market crash than in market booms.

Moreover, stock market returns are governed by heavy tails and exhibit tail dependence.

Neglecting such issues may result in serious flaws in projections for such stress scenarios.

Therefore, it is important to apply a method that takes these aspects into account.

The method developed in this paper estimates the sensitivity of firms’ stock returns to

extremely adverse shocks in the market. The estimation method relies on Extreme Value

Theory and assesses the co-movement based on large shocks in the past. Because observations

with large shocks are sparse in the data, an efficient use of those observations is of utmost

importance. We show via simulations that the developed method performs relatively well if

the estimation is based on relatively few so-called “tail events.” Moreover, in an empirical

application, we assess its historical performance in projecting the losses of industry-specific

stock portfolios in major market crashes over the past 80 years.
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1 INTRODUCTION

In financial management, the risk of stock portfolios is often assessed by estimating their

return sensitivity to key risk factors. The coefficient in a single-factor model, the “market

beta” is commonly given a prominent position in such an assessment. Nevertheless, there

is wide consensus that the relationship between asset returns and market risk depends on

market conditions. For example, equity returns exhibit stronger correlation during volatile

periods, especially in the case of extreme market downturns; see, e.g., King and Wadhwani

(1990), Longin and Solnik (1995, 2001) and Ang and Chen (2002). Thus, risk managers

who are concerned about possible extreme losses in distress events may need to analyze

systematic risk only under extremely adverse market conditions. In this paper, we develop

a new method for evaluating the consequences of such extreme events.

The goal of this paper is to estimate a linear model between two heavy-tailed variables

conditional on the explanatory variable having an extremely low (or high) value. Consider

the following model on the relation between two random variables (rvs) X and Y , conditional

upon an extremely low value of X

Y = βTX + ε, for X < Qx(p̄), (1.1)

where p̄ denotes a very small probability, ε is the error term that is assumed to be independent

of rv X under the condition X < Qx(p̄), and where Qx(p̄) denotes the quantile of rv X at

the probability level p̄. We intend to estimate coefficient βT using observations on (X, Y ).

With Y and X as the returns of, respectively, a stock portfolio and the market portfolio, the

coefficient βT is regarded as a measure of systematic risk under extremely adverse market

conditions. Estimating βT can be useful to assess the extreme loss on the stock portfolio in

the event of a market crash.

The coefficient βT in the linear tail model in Eq. (1.1) can be regarded as a regression

coefficient. Consequently, a direct approach to estimating βT is to apply a “conditional
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regression,” i.e., to estimate a least squares regression coefficient based on observations

corresponding to extremely low values ofX only. This method has been used by, for example,

Mitchell and Pulvino (2001) to evaluate the βT of a trading strategy based on “merger

arbitrage” and by Post and Versijp (2007) to estimate the βT s of low beta stocks.

Two potential drawbacks of this conditional regression approach apply. First, because

the conditional regression is based on a small number of observations, the approach may

potentially produce a relatively large variance of the estimator. Second, when applied to

financial market data, the heavy-tailedness of financial returns may further increase the

estimation error.

We propose an alternative estimator for βT by exploiting the tail dependence imposed by

the heavy-tailedness of X and Y . Under mild conditions, we show that the proposed estima-

tor possesses consistency and asymptotic normality. Simulations show that our estimation

method yields a lower mean squared error than estimating conditional regressions on tail ob-

servations. In an empirical application, we illustrate the better performance of our approach

relative to the conditional regression approach in projecting the losses of industry-specific

portfolios in major stock market crashes over the past 80 years.

Theoretically, our estimator has a structure similar to a regression coefficient. The esti-

mator in a standard univariate regression analysis consists of a dependence measure given

by the correlation, and the marginal risk measures given by the standard deviations. In the

estimator of βT , the dependence measure is replaced by a tail dependence measure and the

marginal risk measures are replaced by quantiles obtained from tail observations.

Our study builds on the literature on multivariate Extreme Value Theory (EVT) that

provides measures to evaluate the dependence among extreme observations; see, e.g., Em-

brechts et al. (2000) and De Haan and Ferreira (2006, Chapters 6 and 7). Poon et al. (2004)

and Hartmann et al. (2004) have applied such tail dependence measures to analyze linkages

between asset returns during crises. Bollerslev et al. (2013) analyze the tail dependence

between jumps in stock returns using high-frequency data. Malevergne and Sornette (2004)
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derive the level of tail dependence, assuming an unconditional linear relation with a single

risk factor. Others study tail dependence assuming global linear relations with multiple risk

factors; see, e.g., De Vries (2005) and Hartmann et al. (2010). In contrast, our approach

focuses on estimating βT by exploiting the tail dependence structure while assuming the

linear model only in the tail.

Our study should be distinguished from the literature on estimating unconditional regres-

sion models in the presence of heavy tails. Mikosch and De Vries (2013) show that the finite

sample distribution of a regression coefficient is heavy-tailed if the error term follows a heavy-

tailed distribution. This may be improved by applying least (tail-)trimmed squares, which

ensures asymptotic normality even if the error terms have infinite variance; see Rousseeuw

(1985) and Hill (2013). Our study differs from this existing literature in the sense that our

purpose is to estimate the linear relation only for extremely low X , rather than estimating

an unconditional linear relation. Similarly, our study is distinct from quantile regressions;

see, e.g., Koenker and Bassett (1978). Quantile regression analysis focuses on predicting

the quantile of Y using an unconditional relation to X for all potential values of X . We

focus on predicting the expectation of Y using a linear relation with X conditional on an

extreme value ofX . Finally, our study should also be differentiated from models in which the

dependent variable reacts differently to diffusive and jump components in the independent

variable; see Todorov and Bollerslev (2010). The linear coefficient on the jump component

is different from βT . Given an extremely low realization of the independent variable, this

realization could potentially be attributed mainly to the jump component but, nevertheless,

also involves a diffusive component. Therefore, βT is a combination of the two linear coeffi-

cients on the diffusive and jump components, albeit mainly loaded on the latter. Different

from Todorov and Bollerslev (2010), the linear tail model in (1.1) does not require a sym-

metric relation to extremely low or high values of the independent variable: By applying our

methodology to −Y and −X , one obtains an estimate of the (potentially different) relation

when X has an extremely high value.
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The remainder of the paper is organized as follows. Section 2 describes our estimation

method and reports several simulation results. Section 3 provides an empirical application

of our approach in which we estimate the losses on industry-specific stock portfolios during

market crashes. Section 4 concludes.

2 METHODOLOGY

2.1 Theory

We start by assuming heavy-tailedness of X and Y . The definition of heavy-tailedness is as

follows. The tail distributions of X and Y are heavy-tailed if they can be expressed as

Pr(X < −u) ∼ u−αxlx(u) and Pr(Y < −u) ∼ u−αy ly(u), as u→ ∞, (2.1)

where lx and ly are slowly varying functions as u→ ∞. That is,

lim
u→∞

lx(tu)

lx(u)
= lim

u→∞

ly(tu)

ly(u)
= 1,

for any t > 0. Parameters αx and αy are called the tail indices.

The idea behind our approach to estimating βT is as follows. The relation in Eq. (1.1)

is specified only for the region X < Qx(p̄), while the model specifies no assumptions on

the relation for the region X ≥ Qx(p̄). The relation brings about a dependence structure

between X and Y in the case of extremely low values of X , i.e., if X < Qx(p̄). This

structure determines the dependence between the left tails of the distributions of X and Y .

Our approach relies on analyzing this tail dependence structure to infer the level of βT .

We consider the following tail dependence measure from multivariate EVT,

τ := lim
p→0

τ(p) := lim
p→0

1

p
Pr(Y < Qy(p), X < Qx(p)), (2.2)

6



where Qx(p) and Qy(p) are the quantiles of X and Y at probability level p.1 The tail

dependence measure can be rewritten as τ = limp→0Pr(Y < Qy(p)|X < Qx(p)), which is

the probability of observing an extremely low value of Y conditional on an extremely low

value of X . Since it is the limit of a conditional probability, the τ -measure is bounded by

0 ≤ τ ≤ 1. The case τ = 0 is regarded as tail independence, while the case τ = 1 corresponds

to complete tail dependence. Also, the tail dependence measure is invariant to positive linear

transformations on X and Y . These features of the τ -measure indicate that its role in our

approach will resemble that of a correlation coefficient, except that the τ -measure focuses

on dependence in the tails only.

The following theorem shows how the τ -measure relates to the coefficient βT in the linear

tail model in Eq. (1.1).

Theorem 1 Under the linear tail model in Eq. (1.1) and the heavy-tail set-up of the down-

side distributions in (2.1), with αy >
1
2
αx and βT ≥ 0, we have that

lim
p→0

(τ(p))1/αx
Qy(p)

Qx(p)
= βT . (2.3)

Proof. See the Appendix.

Theorem 1 does not depend on assuming the heavy-tailedness of the unobservable error

term ε. The theorem holds even if ε exhibits a thin-tailed distribution, such as the normal

distribution. The condition αy >
1
2
αx basically requires Y not to be “too heavy-tailed” in

comparison with X . The intuition is that, otherwise, the error terms ε would have a much

heavier tail than X . The impact of extreme realizations of ε on extreme realizations of Y

would overshadow the impact of the relation between X and Y . As a consequence, it is

not possible to infer the level of βT . Nevertheless, this condition is not very restrictive in

the context of stock market returns. For example, if X represents the returns on a general

market index with an αx of 4 (see, e.g., Jansen and De Vries (1991)), the condition is satisfied
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if the firm’s stock returns Y have finite variance. Moreover, conditional upon a sufficiently

low αx, Theorem 1 also holds if Y has infinite variance or mean.

The relation in Theorem 1 provides the basis for the estimation of coefficient βT . Con-

sider independent and identically distributed (i.i.d.) observations (X1, Y1), · · · , (Xn, Yn) with

the i.i.d. unobserved error terms ε1, · · · , εn. Later we will also consider the presence of tem-

poral dependence. To estimate βT , we estimate each component in Eq. (2.3). As in usual

extreme value analysis, we mimic the limit procedure p→ 0 by considering only the lowest k

observations in the tail region, such that k := k(n) → ∞ and k/n→ 0 as n → ∞. In other

words, for statistical estimation, the probability p is set at some low level p = k/n. Hence,

we obtain the estimator of βT as

β̂T := τ̂(k/n)1/α̂x
Q̂y(k/n)

Q̂x(k/n)
. (2.4)

We remark that the estimator β̂T in Eq. (2.4) shows similarities with a standard regres-

sion analysis. Considering a standard linear regression between random variables U and V ,

the estimator of the slope coefficient is ρ̂σ̂u/σ̂v, where ρ̂ is the correlation coefficient between

U and V , and where σ̂u and σ̂v are the standard deviations of U and V , respectively. Simi-

larly, the estimator β̂T consists of the tail dependence measure τ̂ , and two tail risk measures,

i.e., the tail quantiles of X and Y . In addition, it combines these components in a similar

way as in a standard regression analysis.

2.2 Estimation

For our procedure, we rely on relatively simple and widely used estimators to obtain estimates

of each of the components in Eq. (2.4). These estimators rely exclusively on observations

far in the tail of the distributions of X and Y . Nevertheless, the development of better

estimators for the building blocks in Eq. (2.4) has been the subject of an extant literature.

Hence, our procedure to estimate βT via Eq. (2.4) may well stand to be further improved
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by choosing other estimators for the components. Throughout this paper, we will refer to

our estimation of βT with the estimators of the components below as the EVT approach.

The estimate of the tail index αx is obtained from the k1 lowest observations of X with

the estimator proposed in Hill (1975). Here, k1 is another intermediate sequence such that

k1 := k1(n) → ∞ and k1/n → 0 as n → ∞. Suppose the observations of (X, Y ) are

(X1, Y1), · · · , (Xn, Yn). By ranking the observations of Xt as Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n, the

Hill estimator is defined as

1

α̂x
:=

1

k1

k1
∑

i=1

log

(

Xn,i

Xn,k1+1

)

. (2.5)

For the τ -measure, multivariate EVT provides a nonparametric estimate; see Embrechts

et al. (2000). The estimator is given as

τ̂(k/n) :=
1

k

n
∑

t=1

1{Yt<Yn,k+1,Xt<Xn,k+1}, (2.6)

where Yn,k+1 is the (k+1)-th lowest order statistic of Yt. Finally, the quantiles of X and Y at

the probability level k/n, the Q̂x(k/n) and Q̂y(k/n), are estimated by their (k+1)-th lowest

order statistics, i.e., Xn,k+1 and Yn,k+1. Notice that, in Eq. (2.3), the same tail probability

p appears in the term τ(p) and the two quantiles Qy(p) and Qx(p). Correspondingly for the

estimators of the τ -measure and the quantiles of X and Y , the same intermediate sequence

k is used. Differently, there is no theoretical restriction such that k = k1, though this will

be the most complicated case when dealing with the asymptotic normality below.

In general, the estimator of βT via Eq. (2.4) inherits its consistency and asymptotic

normality from the consistency and asymptotic normality of the estimators of its subcom-

ponents. In addition, the estimator of βT is even consistent if limp→0 τ(p) = 0, even though

the statistical properties of the estimator of the τ -measure are less known in this case. To

prove the consistency of β̂T also for the case limp→0 τ(p) = 0, we require some additional

conditions to ensure the asymptotic normality of the Hill estimator. These conditions are as
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follows. First, the tail distribution of X follows the usual second order condition (see, e.g,

De Haan and Stadtmüller (1996)) as

lim
u→∞

Pr(X<−ux)
Pr(X<−u)

− x−αx

η(u)
= x−αx

x−γ − 1

−γ , (2.7)

with an eventually positive or negative function η(t) and γ ≥ 0. Second, we require a

condition on k1 ensuring that k1 is not too high:

lim
n→∞

√

k1η

(

−Qx

(

k1
n

))

= λ finite. (2.8)

These two conditions are usually assumed to obtain the asymptotic normality of the Hill

estimator; see, e.g., De Haan and Ferreira (2006), conditions (3.2.5) and (3.2.6).

Finally, an additional restriction ensures that k1 is not too low. As n→ ∞,

√
k1

logn
→ +∞. (2.9)

The following theorem states the consistency of β̂T .

Theorem 2 Suppose that k → ∞, k1 → ∞, k
n
→ 0, k1

n
→ 0, as n→ ∞. In addition, only if

limp→0 τ(p) = 0, do we further assume conditions (2.7)–(2.9). Then we have that as n→ ∞,

β̂T P→ βT .

Next, we deal with asymptotic normality. For that purpose, we assume the second order

condition for the distribution of Y and the joint distribution (X, Y ). This is in line with

usual asymptotic normality result in multivariate extreme value statistics; see, e.g., Einmahl

et al. (2006). First, assume that

lim
u→∞

Pr(Y <−ux)
Pr(Y <−u)

− x−αy

η′(u)
= x−αy

x−γ
′ − 1

−γ′ , (2.10)
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with an eventually positive or negative function η′(t) and γ′ ≥ 0.

Second, with denoting the distribution function of X and Y as Fx and Fy, we assume

that as u→ 0

1

u
Pr (Fx(X) < ux, Fy(Y ) < uy)− R(x, y) = O

(

tθ
)

, (2.11)

for some θ > 0, and (x, y) ∈ [0, 1]2/ {(0, 0)}.

The following theorem states the asymptotic normality of β̂T .

Theorem 3 Assume that limp→0 τ(p) = τ > 0 and Pr(Y > u) = O(Pr(Y < −u)) as u →

∞. Further assume that the second order conditions (2.7),(2.10) and (2.11) hold. Suppose

k1 = k = O(nζ), where ζ < min (2θ/(1 + 2θ), 2γ/(2γ + αx), 2γ
′/(2γ′ + αy), 3/(αy + 2)). We

then have that, as n→ ∞,

√
k
(

β̂T − βT
)

d→ N

(

0,

(

βT
)2

α2
x

(

1

τ
− 1− (log τ)2

)

)

.

In this theorem we choose k = k1 because this is what we use in the simulation and appli-

cation. We note, however, that this choice is not necessarily the only one. One may also

choose k and k1 such that, as n → ∞, k/k1 converges to zero, a finite positive number or

infinity. If k/k1 → 0 as n → ∞, the asymptotic limit of α̂x will play a dominant role in

that of β̂T . Conversely, if k/k1 → ∞ as n → ∞, the asymptotic limit of τ̂(k/n) and the

two quantiles will play a dominant role in that of β̂T . Therefore, the asymptotic normality

result turns out to be simpler in these two cases. If k/k1 converges to a finite value other

than 1, the asymptotic normality of β̂T can be derived in a similar way, with a slightly more

complicated structure for the asymptotic variance.

The consistency and asymptotic normality results are obtained when {(Xt, Yt)} forms

an i.i.d. sample. In the context of stock returns, it is likely that {(Xt, Yt)} is a time series

with temporal dependence. In general, under weak conditions, EVT analysis can be applied

without modification to temporally dependent data; see Drees (2008) for a general discussion.

More specifically, if {(Xt, Yt)} exhibits weak temporal dependence such as autocorrelation

11



or GARCH-type volatility clustering, then the consistency will not be affected. This follows

from the consistency results for each component in β̂T . For the Hill estimator, see, e.g., Hsing

(1991); for the quantiles and the tail dependence measure, see, e.g., Hill (2009). It is notable

that temporal dependence does affect the asymptotic normality result in the sense that it

may lead to a different structure of the asymptotic variance of the estimates. Therefore,

in financial applications, it may be better to rely on a block bootstrap procedure to obtain

adjusted standard errors.

2.3 Simulations

We run simulations to compare the performance of the proposed procedure to estimate βT

and the performance of a regression conditional on tail observations.2 The set-up of the

simulations is as follows. In each sample, we generate 1,250 random observations for X ,

which corresponds approximately to the length of our estimation window in the empirical

exercise. The observations for Y are constructed by aggregating the simulated X and ε

according to different linear models. First, we consider three “global” linear models in

which the relation is unaffected by the observation of X , i.e., β = βT = 0.5, 1, 1.5. Second,

we consider two segmented linear models. If the observation of X is larger than the 3rd

percentile of X , then the observation of Y is generated from a linear model with β = 1.3

Otherwise, it is generated from a linear model with βT = 0.5 and βT = 1.5, respectively.

Several data-generating processes are considered for X and ε. The Student-t distribution

is known to be heavy-tailed with the tail index equal to the degrees of freedom. We perform

simulations of X and ε based on random draws from a Student-t distribution with 3, 4

and 5 degrees of freedom, which implies X and ε are heavy-tailed with tail indices of 3,

4, and 5, respectively. The choice of the parameter α is similar to the estimates in the

empirical analysis. Moreover, we perform simulations where X and ε exhibit temporal

dependence and are each generated from a GARCH(1,1) process, i.e., Zt = σZ,tζt, where

σ2
Z,t = ψ0 + ψ1Z

2
t−1 + ψ2σ

2
Z,t−1, for Z = X, ε. The parameter choices for the simulation
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with normally distributed innovations ζt are (ψ0, ψ1, ψ2) = (0.5, 0.11, 0.88), which implies

X and ε are heavy-tailed with a tail index of 3.68; see Sun and Zhou (2014, Table 3).

The parameter choices in another simulation based on innovations ζt from a standardized

Student-t distribution with 8 degrees of freedom are (ψ0, ψ1, ψ2) = (0.5, 0.08, 0.91), which

implies X and ε are heavy-tailed with a tail index of 3.82.

For each of the five models and data-generating processes, we generate 10,000 samples

and estimate βT in each sample, using both the conditional regression approach and the

EVT approach. Then, by comparing the estimates with the real βT value, we calculate

the mean squared error (MSE), the estimation bias and the estimation variance for the two

approaches. For brevity, we report the simulations based on the Student-t distribution with

4 degrees of freedom, because the pattern across the simulations is very similar.

The first column of Figures 1 and 2 compares the MSE between the EVT approach and

the conditional regression. Under the heavy-tailed set-up, we observe a better performance

with the EVT approach relative to the conditional regression, if βT is estimated based on

a few observations in the tail, i.e., for low levels of k. However, the conditional regression

may perform better if more observations from the moderate level are included, i.e., for high

levels of k. Nevertheless, the MSE of the EVT approach is not very sensitive to including

more observations from the moderate level. The second and third columns of Figures 1 and

2 show the decomposition of the MSE into squared bias and variance. We observe that the

estimates from the conditional regression bear a larger variance, while the estimation error

from the EVT approach is mainly due to positive bias.4

3 APPLICATION

We compare the performance of the EVT approach and the conditional regression approach

in an empirical application. We employ data on value-weighted returns of 48 industry-specific

stock portfolios and a general market index in the US. The return series run from 1931 until
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2010.5 We divide the data into 16 five-year subperiods. We assess the performance of both

approaches in projecting the losses of industry portfolios on the day of the largest market

loss within each subperiod.

Within each five-year period, we estimate the coefficient βT
j in the linear tail model with

the returns on industry portfolio j as the dependent variable and the excess market returns

as the right-hand-side variable. In the estimation procedure, we exclude the day on which

the market portfolio suffered its largest loss in order to obtain an “out of sample” estimate

for the subsequent comparison. The coefficients are estimated with both the conditional

regression approach and the EVT approach. The number of observations in each subperiod

is on average 1,315 and we estimate the coefficient βT
j with k = 25, or, k/n ≈ 2%. We denote

these estimates as β̂T
OLS,j and β̂

T
EV T,j, respectively.

In line with the condition αy >
1
2
αx in Theorem 1, we exclude portfolios with α̂j ≤ 1

2
α̂m

in each subperiod.6 In most subperiods, no portfolios are excluded. We denote the number

of portfolios excluded for this reason by S. In most subperiods, S = 0. Table 1 reports the

average β̂T
EV T,j of the remaining portfolios for each subperiod (denoted as N). Table 1 also

reports the minimum and maximum β̂T
EV T,j and the corresponding industry name to give an

indication of the range of the β̂T
EV T,js. For each subperiod, the average estimate from the

EVT approach is slightly above 1. Most β̂T
EV T,js fall in the range between 0.5 and 2.0. These

estimates imply that most portfolios are expected to lose between half and twice as much as

the market portfolio in a market crash.

Based on the βT
j estimates, we make a projection of the losses on each portfolio j on the

day that the market suffered its largest loss. For each subperiod, we report the largest loss on

the market portfolio, defined as Lm = −min{Re
m,1, . . . , R

e
m,t}, and the corresponding date in

Table 2. We denote the actual loss on a specific industry portfolio on that day as Lj = −Re
j,t̄,

where t̄ refers to the day of the largest loss on the market portfolio. Following the linear

tail model, the expected loss is the product of the estimated coefficients and the loss on

the market portfolio for that day. The projections under the two approaches are L̂EV T,j =
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Lmβ̂
T
EV T,j and L̂OLS,j = Lmβ̂

T
OLS,j, respectively.

7 We compare the performance of the two

approaches by their root mean squared error (RMSE) calculated as
√

1
N

∑

j(Lj − L̂EV T,j)2

and
√

1
N

∑

j(Lj − L̂OLS,j)2. The best-performing method should report a lower RMSE.

Table 2 reports the RMSE of the projected portfolio losses for both approaches in each

subperiod. In all subperiods, the EVT approach reports a lower RMSE than the conditional

regression approach.8 The average reduction in the RMSE is approximately 40%. We report

t-statistics and p-values in the last two columns to test against the null hypothesis of a larger

RMSE from the EVT approach. In 11 out of 16 subperiods, the null is rejected at the 5%

significance level.9 We zoom in on two subperiods with relatively big and relatively small

reductions in the RMSE.

A substantial improvement in the projections in terms of RMSE is during the stock

market plunge of 8.1% on 18 October 1937. This stock market crash occurred during a

period of high uncertainty about the US economy: During the nine-month economic decline

from September 1937 to June 1938, national income fell by 12% and firm profits fell by

78%; see e.g., Roose (1948). The errors in the projected losses with the EVT approach are

significantly smaller at the 1% significance level.

The improvement in the projections is limited for the stock market plunge of 5.0% on 17

September 2001. This was the day that the NYSE resumed trading after the terrorist attacks

six days earlier. For this stock market crash, the RMSE of the regression approach is 5.76,

while the RMSE for the EVT approach is 5.18 (no significant difference). A relatively high

proportion of the forecasting errors on this day are due to the reaction of a few industries

because of the nature of this particular event. The industry portfolios “Defense” and “Ship-

building” would usually move in the same direction as the stock market index. However,

during this crash, they reported a gain of 15% and 7%, respectively. In contrast, because of

the nature of the terrorist attacks, the industry portfolios “Aircraft” and “Transportation”

(which includes “Air transportation”) reacted much more strongly. These portfolios lost

18% and 14%, respectively. The linear tail model does not anticipate the profits and losses

15



for these four portfolios in this case. If the projection errors for these four portfolios are

excluded, the RMSE of the EVT approach and conditional approach decline substantially

to a level of 4.40 and 3.48, respectively. Moreover, the difference between the MSE of the

EVT approach and that of the conditional regression approach in this subperiod becomes

(weakly) significant at the 10% level if these four portfolios are excluded.

To summarize, the EVT approach shows a better overall performance than the conditional

regression approach in projecting portfolio losses on the worst market day. We interpret this

better performance as resulting from improved accuracy in estimating βT based on a small

number of extreme observations.

4 CONCLUDING REMARKS

In this paper, we propose an EVT approach for estimating βT in the linear tail model based

on only a small number of extreme observations. Simulations show that our EVT approach

yields a lower mean squared error than conditional regressions on tail observations. We

demonstrate one application of the EVT approach: projecting large losses on stock port-

folios during extremely adverse market conditions. Beyond the scope of the current paper,

systematic risk under extremely adverse market conditions may have asset pricing implica-

tions. An application in that direction can be found in Van Oordt and Zhou (forthcoming).

The method can be applied to other variables known to be heavy-tailed, such as trading

volume, insurance claims and the severity of natural disasters.

The estimator of βT might be further improved by considering more sophisticated EVT

techniques. For instance, the estimator on the tail index, α̂x, suffers from an asymptotic

bias issue. Many studies propose different bias corrected estimators; see, e.g., Peng (1998),

Feuerverger and Hall (1999) and Gomes et al. (2008). In addition, Fougères et al. (2015)

propose a bias corrected estimator for the τ -measure. Whether the use of such sophisticated
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techniques will improve the current simple estimation procedure for βT offers an interesting

perspective for future research.

Notes

1The τ -measure in Eq. (2.2) is closely related to the measure E(κ|κ ≥ 1) introduced by Huang (1992)

and applied by Hartmann et al. (2004). There, κ is the number of events occurring with probability p and

E(κ|κ ≥ 1) is the expected number of tail events given that there is at least one. In the bivariate case, the

two measures are connected by E(κ|κ ≥ 1) = 2

2−τ
.

2Formally, the estimator in the conditional regression approach is

β̂T
OLS =

∑

{t:Xt<Xn,k+1}

(

Yt − Ȳ T
) (

Xt − X̄T
)

∑

{t:Xt<Xn,k+1}

(

Xt − X̄T
)2

,

where X̄T = (1/k)
∑

{t:Xt<Xn,k+1}
(Xt) and Ȳ T = (1/k)

∑

{t:Xt<Xn,k+1}
(Yt). The estimator in the con-

ditional regression approach is theoretically unbiased. A direct theoretical comparison of the asymptotic

variances of the EVT approach and the conditional regression approach is difficult because their levels de-

pend on different statistical parameters. For example, the asymptotic variance of β̂T
OLS depends on the

variance of ε, while the EVT approach does not assume finite variances.

3In a sample of 1,250 observations, about 1, 250× 3.0% = 37.5 observations are expected to be generated

from the linear tail model.

4To illustrate the decomposition of the MSE, we report the squared bias in the figures, which do not show

the sign of the bias. Numerical results show that the bias of the EVT approach is consistently positive for

all simulated models.

5Data and documentation are available from the personal website of Kenneth French:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. Our results are based

on data accessed on 8 January 2014. The secondary data are based on the returns of stocks listed on

NYSE, AMEX and NASDAQ in the CRSP database. The definition of the industry portfolios is based on

SIC-codes. Industry portfolios with missing returns in a subperiod are excluded from the analysis for that

specific subperiod. Five industry portfolios report missing returns in the start of the sample. From July

1963 onwards, one industry portfolio remains unavailable (“Healthcare,” SIC-codes 8000-8099). After July

1969, all 48 portfolios are available.

6Our results remain qualitatively unchanged when these portfolios are included in the analysis.
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7Our conclusions remain the same if the projected losses under the conditional regression approach are

calculated as L̂OLS,j = CT
OLS,j+Lmβ̂T

OLS,j, where C
T
OLS,j = Ȳ T −β̂OLS,jX̄

T . In this case, the EVT approach

provides a significantly lower RMSE at the 5% significance level in 6 out of 16 cases (8 out of 16 cases at

the 10% significance level).

8In all subperiods, the mean absolute error from the EVT approach is also below that of the conditional

regression approach.

9The better performance of the EVT approach remains for various levels of k. More specifically, with k

fixed at 20, 30, 35, 40, 45 and 50, the null is rejected at the 5% significance level for 11, 11, 9, 8, 5 and 5

subperiods, respectively. In line with our simulation results in Subsection 2.3, the better performance of the

EVT approach relative to the conditional regression approach becomes weaker for higher levels of k.
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APPENDIX: PROOFS

We start with proving the following lemma, which helps to handle the probability of joint

extreme events.

Lemma 1 Suppose βT > 0 and αy >
1
2
αx. Under the linear tail model in Eq. (1.1) and the

heavy-tailedness of the downside distributions in (2.1), we have that

lim
p→0

Pr (Y < Qy(py), X < Qx(px))

Pr
(

X < min
(

Qy(py)
βT , Qx(px)

)) = 1, (A.1)

uniformly for (x, y) ∈ (0, 3/2]2.

Proof of Lemma 1. Denote the following sets

C := {Y < Qy(py), X < Qx(px)} =
{

βTX + ε < Qy(py), X < Qx(px)
}

,

C0 :=

{

X < min

(

Qy(py)

βT
, Qx(px)

)}

,

C1 :=
{

βTX < Qy(py)(1 + δ), X < Qx(px), ε < −δQy(py)
}

,

C21 :=
{

βTX < Qy(py)(1− δ), X < Qx(px)
}

,

C22 := {ε < δQy(py), X < Qx(px)} ,

where δ := δ(p) = pc, with 0 < c < min
(

1
αy
, 1
αy

(

2− αx

αy

))

. Here we use the assumption

that αy >
1
2
αx. Since the distribution function of Y follows (2.1), we get that Qy(p) is a

regularly varying function with index −1/αy as p → 0, which leads to the regular variation

of δ(p)Qy(p) with index c − 1/αy < 0. Consequently, δ(p) → 0 and δ(p)Qy(p) → −∞ as

p→ 0. This further implies that δ(p)Qy(py) → −∞ uniformly for 0 < y ≤ 3/2 as p→ ∞.

It is obvious that C1 ⊂ C ⊂ C21

⋃

C22. Therefore, as p → 0, to prove that Pr(C)
Pr(C0)

→ 1,

we show that

Pr(C1)

Pr(C0)
→ 1,

Pr(C21)

Pr(C0)
→ 1 and

Pr(C22)

Pr(C0)
→ 0.

19



We first deal with C1. Since X and ε are independent, we get that

Pr(C1) = Pr

(

X < min

(

Qy(py)

βT
(1 + δ(p)), Qx(px)

))

Pr (ε < −δ(p)Qy(py)) .

Since −δ(p)Qy(py) → +∞ as p → 0, the second term Pr (ε < −δ(p)Qy(py)) tends to 1 as

p→ 0. Therefore, we need to show that

lim
p→0

Pr
(

X < min
(

Qy(py)

βT (1 + δ(p)), Qx(px)
))

Pr
(

X < min
(

Qy(py)
βT , Qx(px)

)) = 1. (A.2)

This relation follows directly from the combination of the following three facts: first, we have

inequalities

(1+δ(p))min

(

Qy(py)

βT
, Qx(px)

)

≤ min

(

Qy(py)

βT
(1 + δ(p)), Qx(px)

)

≤ min

(

Qy(py)

βT
, Qx(px)

)

;

second, the distribution function of X is regularly varying at −∞; third, δ(p) → 0 as p→ 0.

It is obvious that the convergence in (A.2) holds uniformly for all (x, y) ∈ (0, 3/2]2. In a

similar way, one can show that Pr(C21)
Pr(C0)

→ 1 uniformly for all (x, y) ∈ (0, 3/2]2, as p→ 0.

Last, we deal with C22. With set manipulation and the independence between X and ε,

we get that

Pr(ε < δ(p)Qy(py)) Pr

(

X < −δ(p)
2
Qy(py)

)

=Pr

(

ε < δ(p)Qy(py), X < −δ(p)
2
Qy(py)

)

≤Pr(Y <
δ(p)

2
Qy(py)).

Using the properties of regularly varying functions, we derive that Pr(Y < δ(p)
2
Qy(py)) is a

regularly varying function as p → 0 with index (c − 1/αy)(−αy) = 1 − cαy > 0. Thus, for

any given η > 0, with sufficiently small p, we get that Pr(Y < δ(p)
2
Qy(py)) ≤ p1−cαy−η. It
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implies that

lim sup
p→∞

Pr(C22)

p2−cαy−η
= lim sup

p→∞

Pr(ε < δ(p)Qy(py))

p1−cαy−η
x ≤ 2 lim sup

p→∞

Pr(Y < δ(p)
2
Qy(py))

p1−cαy−η
≤ 2

holds uniformly for all (x, y) ∈ (0, 3/2]2.

On the other hand,

Pr(C0) = min

(

Pr

(

X < min

(

Qy(py)

βT

))

, px

)

.

Again, by using the properties of regularly varying functions, we derive that

Pr
(

X < min
(

Qy(py)
βT

))

is a regularly varying function as p → 0 with index αx/αy. No-

tice that c satisfies the inequality c < min
(

1
αy
, 1
αy

(

2− αx

αy

))

, i.e., 2 − cαy > max
(

αx

αy
, 1
)

.

Thus, we can choose η such that 2− cαy −η > max
(

αx

αy
, 1
)

. With such a choice, we get that

lim
p→∞

Pr(C0)

p2−cαy−η
= +∞.

Therefore, we can compare Pr(C22) and Pr(C0) to get that

lim
p→0

Pr(C22)

Pr(C0)
= 0,

which completes the proof of the lemma.

Proof of Theorem 1. If βT = 0, then τ(p) = p. Since the distribution function of X

and Y are regularly varying, we get that Qx(p) and Qy(p) are regularly varying as p → 0,

with indices −1/αx and −1/αy respectively. Consequently, (τ(p))1/αx Qy(p)
Qx(p)

is a regularly

varying function with index 2/αx − 1/αy as p → 0. The condition αy > αx/2 implies that

2αx − 1/αy > 0, which leads to

lim
p→0

(τ(p))1/αx
Qy(p)

Qx(p)
= 0 = βT .
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If βT > 0, we first show that

Qy(p) ≤ βTQx(p) (A.3)

for sufficiently small p.

Due to the heavy-tailedness, we have that Qx(p) converges to minus infinity as p → 0.

Thus, when the tail probability p is sufficiently low, such that Qx(p) is smaller than the

threshold in the linear tail model, the linear relation in Eq. (1.1) is valid for X < Qx(p).

Hence we have that for any δ > 0,

Pr(Y < βTQx(p)) ≥ Pr(βTX < βTQx(p)(1 + δ), ε < −δβTQx(p))

= Pr(X < Qx(p)(1 + δ)) Pr(ε < −δβTQx(p)). (A.4)

The last step is due to the independence between X and ε. Since the distribution function

of X is regularly varying at −∞ with index −αx, we get that

lim
p→0

Pr(X < Qx(p)(1 + δ))

Pr(X < Qx(p))
= (1 + δ)−αx .

Moreover, limp→0Pr(ε < −δβTQx(p)) = 1. Thus, from (A.4), we obtain

lim inf
p→0

Pr(Y < βTQx(p))

p
≥ (1 + δ)−αx .

Notice that the above inequality holds for any δ > 0. By taking δ → 0, we obtain that

lim inf
p→0

Pr(Y < βTQx(p))

p
≥ 1.

Since the quantile Qy(p) is defined as Pr(Y < Qy(p)) = p, we obtain that the inequality in

(A.3) holds for sufficiently low probability p.
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Next, we apply Lemma 1 with x = y = 1 and the fact that min
(

Qy(p)
βT , Qx(p)

)

= Qy(p)
βT .

We get

lim
p→0

pτ(p)

Pr
(

X < Qy(p)
βT

) = 1.

Following the regularly varying tail of X , we get that

lim
p→0

Pr
(

X < Qy(p)

βT

)

Pr(X < Qx(p))
·
(

Qy(p)

βTQx(p)

)αx

= 1.

By combining the two limit relations above, we get that

lim
p→0

τ(p) ·
(

Qy(p)

βTQx(p)

)αx

= 1,

which completes the proof of the theorem.

Proof of Theorem 2. Write

β̂T =

(

τ̂ (k/n)

τ(k/n)

)1/α̂x

· (τ(k/n))1/α̂x−1/αx · Q̂y(k/n)

Qy(k/n)
· Qx(k/n)

Q̂x(k/n)
·
(

(τ(k/n))1/αx
Qy(k/n)

Qx(k/n)

)

=: I1 · I2 · I3 · I4 · I5.

The classic consistency results in extreme value statistics ensures that α̂x
P→ αx,

Q̂x(k/n)
Qx(k/n)

P→ 1

and Q̂y(k/n)
Qy(k/n)

P→ 1 as n→ ∞; see Theorem 3.2.2 and Corollary 4.3.9 in De Haan and Ferreira

(2006). Hence I3, I4
P→ 1 as n→ ∞. Theorem 1 ensures that I5 → βT as n→ ∞. Therefore,

the only issues that are left to prove are I1, I2
P→ 1 as n→ ∞.

We first deal with I1, which is equivalent to prove the consistency of τ̂(k/n). Denote

τ̃(x, y) =
1

k

n
∑

t=1

1{Xt<Qx( k
n
x) and Yt<Qy( k

n
y)}, (A.5)
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for (x, y) in the neighborhood of (1, 1). Then τ̂ (k/n) can be written as

τ̂(k/n) = τ̃
(n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1)

)

.

Here
(

n
k
Q←x (Xn,k+1) ,

n
k
Q←y (Yn,k+1)

)

is in the neighborhood of (1, 1) in the following sense.

According to Corollary 2.2.2 in De Haan and Ferreira (2006), as n→ ∞,

√
k
(n

k
Q←x (Xn,k+1)− 1

)

d→ N(0, 1).

Hence for any δ > 0, as n→ ∞,

Pr
(∣

∣

∣

n

k
Q←x (Xn,k+1)− 1

∣

∣

∣
> k−1/2+δ

)

→ 0.

A similar relation for Yn,k+1 holds. Therefore, it suffices to consider τ̃(x, y) for (x, y) ∈

[1− k−1/2+δ, 1 + k−1/2+δ]2 for some 0 < δ < 1/2.

By applying the law of large number, we get that as n→ ∞,

τ̃(x, y)

R(x, y, k/n)
P→ 1, (A.6)

where R(x, y, k/n) := n
k
Pr
(

X < Qx

(

k
n
x
)

, Y < Qy

(

k
n
y
))

. Notice that τ(k/n) =

R(1, 1, k/n).

In order to replace the denominator in (A.6) by τ(k/n), we need to prove that

lim
n→∞

R(x, y, k/n)

τ(k/n)
= 1 (A.7)

holds uniformly for all (x, y) ∈ [1− k−1/2+δ, 1 + k−1/2+δ]2.

If βT = 0, as n→ ∞, for all (x, y) ∈ [1− k−1/2+δ, 1 + k−1/2+δ]2, we have uniformly

lim
n→∞

R(x, y, k/n)

τ(k/n)
= lim

n→∞

n
k
k
n
x k
n
y

(

k
n

)2 = lim
n→∞

xy = 1.
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If βT > 0, we apply Lemma 1 with p = k/n and get that the relation

lim
n→∞

R(x, y, k/n)

n
k
Pr

(

X < min

(

Qy( k
n
y)

βT , Qx

(

k
n
x
)

)) = 1

holds uniformly for (x, y) ∈ [1− k−1/2+δ, 1 + k−1/2+δ]2 ⊂ (0, 3/2]2.

We apply the regularly varying properties of the distribution and quantile function of X

and Y to further simplify the denominator. We get that, as n→ ∞,

n

k
Pr

(

X < min

(

Qy

(

k
n
y
)

βT
, Qx

(

k

n
x

)

))

=

Pr

(

X < min

(

Qy( k
n
y)

βT , Qx

(

k
n
x
)

))

Pr
(

X < Qx

(

n
k

))

∼









min

(

Qy( k
n
y)

βT , Qx

(

k
n
x
)

)

Qx

(

n
k

)









−αx

= min

((

βTQx

(

n
k

)

Qy

(

k
n
y
)

)αx

,

(

Qx

(

n
k

)

Qx

(

k
n
x
)

)αx
)

.

From Theorem 1, we get that

(

βTQx(n
k )

Qy( k
n
y)

)αx

∼ τ(k/n) as n→ ∞ holds uniformly for |y − 1| ≤

k−1/2+δ. In addition,

(

Qx(n
k )

Qx( k
n
x)

)αx

→ 1 as n → ∞ holds uniformly for |x− 1| ≤ k−1/2+δ.

Together with τ(k/n) ≤ 1, we get that

n

k
Pr

(

X < min

(

Qy

(

k
n
y
)

βT
, Qx

(

k

n
x

)

))

∼ τ(k/n)

holds uniformly for (x, y) ∈ [1 − k−1/2+δ, 1 + k−1/2+δ]2, as n → ∞. Hence, we proved the

equation (A.7).

By combining (A.6) and (A.7), we get that for all (x, y) ∈ [1 − k−1/2+δ, 1 + k−1/2+δ]2,

we can replace the denominator in (A.6) by τ(k/n). After that, we can apply it to the

random location
(

n
k
Q←x (Xn,k+1) ,

n
k
Q←y (Yn,k+1)

)

∈ [1− k−1/2+δ, 1 + k−1/2+δ]2 and obtain the
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consistency for the τ̂ (k/n) estimator: as n→ ∞,

τ̂ (k/n)

τ(k/n)

P→ 1,

which guarantees that I1
P→ 1. We remark that our proof allows for limp→0 τ(p) = 0, which

goes beyond the typical consistency results in bivariate extreme value statistics.

Finally, we deal with I2. If lim supp→0 τ(p) > 0, then the consistency of α̂x leads to

I2
P→ 1, as n→ ∞. In this case, the theorem is proved without using conditions (2.7)–(2.9).

If limp→0 τ(p) = 0, to prove I2
P→ 1, we need to prove that as n→ ∞,

log τ(k/n)

(

1

α̂x
− 1

αx

)

P→ 0. (A.8)

The conditions (2.7) and (2.8) imply the asymptotic normality for α̂x: as n → ∞,
√
k1

(

1
α̂x

− 1
αx

)

= Op(1); see, e.g., Theorem 3.2.5 in De Haan and Ferreira (2006). Therefore,

it only remains to prove that log τ(k/n) = o(
√
k1) as n→ ∞.

If βT = 0, then τ(k/n) = k/n > 1/n. Hence, as n → ∞, log τ(k/n) = O(logn). If

βT > 0, following Theorem 1, we get that for sufficiently large n,

τ(k/n) ∼
(

βT Qx

(

k
n

)

Qy

(

k
n

)

)αx

> D

(

k

n

)αx/αy−1+δ

,

for some D > 0 and δ > 0. Here, the last step comes from the Potter inequality for regularly

varying function; see, e.g., inequality (B.1.19) in De Haan and Ferreira (2006). Again, we

get that log τ(k/n) = O(logn) as n→ ∞.

Combining log τ(k/n) = O(logn) as n → ∞ with the condition (2.9), we have that

log τ(k/n) = o(
√
k1) as n → ∞, which implies that I2

P→ 1 holds also for the case

limp→0 τ(p) = 0.

Proof of Theorem 3. We start by deriving the explicit form for R(x, y) and its partial

derivatives at (1, 1) because these quantities play an important role in the calculation of the
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asymptotic variance. Notice that R is a homogeneous function with degree 1. Thus, it is

only necessary to derive R(x, 1) for x > 0. This is given in the following lemma.

Lemma 2 Under the conditions in Theorem 3, we have R(x, 1) = min(x, τ) for x > 0.

Proof. If τ = 1, we get that X and Y are completely tail dependent. Consequently,

R(x, 1) = min(x, 1). The lemma is proved for this case.

Next, we handle the case τ < 1. Theorem 1 implies that

lim
p→0

Qy(p)

Qx(τp)
= lim

p→0
τ 1/α

Qy(p)

Qx(p)
= βT .

Hence, for any τ < x < 1, we have that for sufficiently small p, Qy(p) < βTQx(xp). On the

other hand, for any 0 < x < τ , for sufficiently small p, Qy(p) > βTQx(xp).

By applying Lemma 1 with y = 1, we get that

lim
p→0

R(x, 1)

1
p
Pr
(

X < min
(

Qy(p)
βT , Qx(px)

)) = 1.

In particular, for τ < x < 1, since Qy(p) < βTQx(xp),

R(x, 1) = lim
p→0

Pr(βTX < Qy(p))

Pr(X < Qx(p))
= lim

p→0

(

Qy(p)

βTQx(p)

)−αx

= τ.

On the other hand, for 0 < x < τ ,

R(x, 1) = lim
p→0

Pr(X < Qx(xp)

p
= x.

Finally, for the point x = τ , we use continuity of the R(x, 1) function to get that R(τ, 1) =

τ . The lemma is thus proved.

As a direct consequence of Lemma 2, we get that for x
y
> τ

R(x, y) = yR(
x

y
, 1) = τy.
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Hence R1(1, 1) = 0 and R2(1, 1) = τ , where R1, R2 denotes the partial derivatives of R with

respect to x and y respectively.

By interchanging partial derivatives with taking the limit, we get that, as n→ ∞,

∂

∂x
R(x, y, k/n)|{(1,1)} → R1(1, 1) = 0 and

∂

∂y
R(x, y, k/n)|{(1,1)} → R2(1, 1) = τ.

Now we can deal with the asymptotic normality of the estimator β̂T by employing the

asymptotic normality results for the four elements in the literature. In particular, we target

to get the covariance matrix of their asymptotic limit. This is achieved by studying the

asymptotic behavior of the process τ̃ (x, y) defined in (A.5).

With the second order condition (2.11) and the fact that k = o(n2θ/(1+2θ)), we can apply

Proposition 3.1 in Einmahl et al. (2006) and obtain that

sup
(x,y)∈[0,T ]2/{(0,0)}

1

(max(x, y))λ

∣

∣

∣

√
k (τ̃ (x, y)−R(x, y, k/n))−W (x, y)

∣

∣

∣

P→ 0, (A.9)

for given T > 0 and 0 ≤ λ < 1/2, where W (x, y) is a continuous mean zero Gaussian process

with the following covariance structure:

EW (x1, y1)W (x2, y2) = R(min(x1, x2),min(y1, y2)).

In addition, for marginals, we have that

sup
0<x≤T

1

xλ

∣

∣

∣

∣

∣

√
k

(

1

k

n
∑

t=1

1{Xt<Qx( k
n
x)} − x

)

−W (x,+∞)

∣

∣

∣

∣

∣

P→ 0, (A.10)

and

sup
0<y≤T

1

yλ

∣

∣

∣

∣

∣

√
k

(

1

k

n
∑

t=1

1{Yt<Qy( k
n
y)} − y

)

−W (+∞, y)

∣

∣

∣

∣

∣

P→ 0. (A.11)
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By taking (x, y) =
(

n
k
Q←x (Xn,k+1) ,

n
k
Q←y (Yn,k+1)

)

in (A.9), we get that, as n→ ∞,

√
k

(

τ̂ (k/n)−R

(

n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1) ,

k

n

))

−W
(n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1)

)

P→ 0.

Following the continuity of the sample path for the W process, we get that, as n→ ∞,

W
(n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1)

)

P→W (1, 1).

Hence, we get that

√
k

(

τ̂ (k/n)− R

(

n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1) ,

k

n

))

P→W (1, 1). (A.12)

By writing

R

(

n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1) ,

k

n

)

=R(1, 1, k/n)

+
∂

∂x
R(x, y, k/n)|{(1,1)}

(n

k
Q←x (Xn,k+1)− 1

)

+
∂

∂y
R(x, y, k/n)|{(1,1)}

(n

k
Q←y (Yn,k+1)− 1

)

+ o
(∣

∣

∣

n

k
Q←x (Xn,k+1)− 1

∣

∣

∣
+
∣

∣

∣

n

k
Q←y (Yn,k+1)− 1

∣

∣

∣

)

,

we get that as, n→ ∞,

√
k

(

R

(

n

k
Q←x (Xn,k+1) ,

n

k
Q←y (Yn,k+1) ,

k

n

)

− R(1, 1, k/n)

)

=
∂

∂x
R(x, y, k/n)|{(1,1)}

√
k
(n

k
Q←x (Xn,k+1)− 1

)

+
∂

∂y
R(x, y, k/n)|{(1,1)}

√
k
(n

k
Q←y (Yn,k+1)− 1

)

+ o
(√

k
∣

∣

∣

n

k
Q←x (Xn,k+1)− 1

∣

∣

∣
+
√
k
∣

∣

∣

n

k
Q←y (Yn,k+1)− 1

∣

∣

∣

)

P→− τW (+∞, 1). (A.13)
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Here in the last step, we used the limits of the two partial derivatives as well as the facts

that

√
k
(n

k
Q←x (Xn,k+1)− 1

)

P→ −W (1,+∞) and
√
k
(n

k
Q←y (Yn,k+1)− 1

)

P→ −W (∞,+1),

as n → ∞. The latter two asymptotic relations can be derived from inverting the marginal

asymptotic properties in (A.10) and (A.11) using the Vervaat lemma; see Vervaat (1972).

By combining (A.12) and (A.13), we get that, as n→ ∞,

√
k

(

τ̂(k/n)

τ(k/n)
− 1

)

P→ 1

τ
W (1, 1)−W (+∞, 1). (A.14)

Next, by applying the asymptotic properties for marginals in (A.10) and (A.11), we get

that, as n→ ∞,

√
k

(

1

α̂x
− 1

αx

)

P→ 1

αx

(
∫ 1

0

W (s,+∞)
ds

s
−W (1,+∞)

)

, (A.15)

√
k

(

Q̂x(k/n)

Qx(k/n)
− 1

)

P→ 1

αx

W (1,+∞), (A.16)

√
k

(

Q̂y(k/n)

Qy(k/n)
− 1

)

P→ 1

αy

W (+∞, 1). (A.17)

Here we use the conditions k = o(nζ) with ζ < min
(

2γ
αx+2γ

, 2γ′

αy+2γ′

)

. For the derivation of the

three relations, see Example 5.1.5, and equation (5.1.19) in De Haan and Ferreira (2006).

Using Cramér’s delta method, we can assemble the asymptotic relation in (A.14)–(A.17)

to obtain that
√
k

(

β̂T

(τ(k/n))1/αx Qy(k/n)

Qx(k/n)

− 1

)

P→ Γ
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where

Γ =
1

αx

(

1

τ
W (1, 1)−W (+∞, 1)

)

+ (log τ)
1

αx

(
∫ 1

0

W (s,+∞)
ds

s
−W (1,+∞)

)

+
1

αy
W (+∞, 1)− 1

αx
W (1,+∞)

=
1

αx

(

1

τ
W (1, 1) + (log τ)

∫ 1

0

W (s,+∞)
ds

s
− (1 + log τ)W (1,+∞)

)

.

Using the expression of R(x, 1) in Lemma 2, one can calculate that

Var(Γ) =
1

α2
x

(

1

τ
− 1− (log τ)2

)

.

Therefore, what remains to be proved is the following deterministic relation

lim
n→∞

√
k

(

(τ(k/n))1/αx Qy(k/n)

Qx(k/n)

βT
− 1

)

= 0.

Knowing that limn→∞
Qy(k/n)
Qx(k/n)

= βT τ−1/αx > 0, the above relation is equivalent to

lim
n→∞

√
k

(

τ(k/n)−
(

βTQx(k/n)

Qy(k/n)

)αx
)

= 0. (A.18)

To prove (A.18), we revisit the proof of Lemma 1 with considering p = k/n, x = y = 1.

In this case, the denominator is simplified to Pr(X < Qy(k/n)/β
T ). Instead of the δ(p)

considered in the proof, we redefine the δ-term as δn = k−1/2−δ with δ > 0 such that

(1/2 + δ)αy + 3/2 < 1/ζ . Notice that, since ζ < 2
αy+3

, the choice of δ is feasible.

With such a choice, we have that limn→∞

√
kδn = 0 and limn→∞

√
kδ
−αy
n

k
n
= 0. These

two relations will be used in the proof of the following limit relations: as n→ ∞,

√
kPr(ε < δnQy(k/n)) → 0 and

√
k Pr(ε ≥ −δnQy(k/n)) → 0, (A.19)

√
k

(

n

k
Pr
(

βTX < Qy(k/n)(1± δn)
)

−
(

βTQx(k/n)

Qy(k/n)

)αx
)

= 0. (A.20)
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Proof of (A.19). We start with the first half. Notice that

Pr(ε < δnQy(k/n)) =
Pr(ε < δnQy(k/n), X < Qx(p̄))

Pr(X < Qx(p̄))

≤ Pr(Y < δnQy(k/n) + βTQx(p̄))

p̄

∼ δ−αy

n

k/n

p̄
.

In the last step, we use the regularly varying tail of Y . Since
√
kδ
−αy
n

k
n
→ 0 as n → ∞, the

first half of (A.19) is proved.

For the second half, we write

Pr(ε ≥ −δnQy(k/n)) =
Pr
(

ε ≥ −δnQy(k/n),
1

βT+1
δnQy(k/n) ≤ X < Qx(p̄)

)

Pr
(

1
βT+1

δnQy(k/n) ≤ X < Qx(p̄)
)

≤
Pr
(

Y ≥ − 1
βT+1

δnQy(k/n)
)

p̄− Pr
(

X < 1
βT+1

δnQy(k/n)
)

≤ D
Pr
(

Y < 1
βT+1

δnQy(k/n)
)

p̄− Pr
(

X < 1
βT+1

δnQy(k/n)
) ,

for some constant D > 0. Here, the last step uses the condition that Pr(Y > u) = O(Pr(Y <

−u)). Notice that the denominator converges to p̄, which is positive and finite. The second

half of (A.19) is thus proved similar to the proof for the first half.

Proof of (A.20). Recall the second order condition (2.7). The condition that k = O(nζ)

with ζ < 2γ
2γ+αx

implies that
√
kη(Qx(k/n)) → 0. Together with the fact that Qy(k/n)(1±δn)

βTQx(k/n)
→

τ−1/αx , we get that

lim
n→∞

√
k

(

n

k
Pr
(

βTX < Qy(k/n)(1± δn)
)

−
(

Qy(k/n)(1± δn)

βTQx(k/n)

)−αx

)

= 0.

Therefore (A.20) is proved because limn→∞

√
kδn = 0.
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Now we go back to prove (A.18). Recall the sets C,C0, C1, C21 and C22 in the proof of

Lemma 1 with x = y = 1, p = k/n and δ = δn. Since the relation C1 ⊂ C ⊂ C21

⋃

C22

remains valid, we again deal with the three sets that help to bound Pr(C).

First, the limit relation (A.20) implies that

lim
n→∞

√
k

(

n

k
Pr(C21)−

(

βTQx(k/n)

Qy(k/n)

)αx
)

= 0.

The first half of the limit relation (A.19) implies that limn→∞

√
k n
k
Pr(C22) = 0. Combining

these two, we get that

lim
n→∞

√
k

(

n

k
(Pr(C21) + Pr(C22))−

(

βTQx(k/n)

Qy(k/n)

)αx
)

= 0.

Next, for C1, due to independency, we have that

Pr(C1) = Pr
(

βTX < Qy(k/n)(1 + δn)
)

· Pr (ε < −δnQy(k/n)) .

The second half of the limit relation (A.19) implies that

lim
n→∞

√
k (Pr (ε < −δnQy(k/n))− 1) = 0.

Together with (A.20), we get that

lim
n→∞

√
k

(

n

k
Pr(C1)−

(

βTQx(k/n)

Qy(k/n)

)αx
)

= 0.

By combining the lower and upper bounds of Pr(C), we proved (A.18) and thus the theorem.
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Figure 1: Simulations with a global linear model

NOTE: The solid lines report the simulation results for the EVT approach; the dashed lines report those for

the conditional regression approach. The simulations are based on 10,000 samples with 1,250 observations

each. The observations of Y are constructed from the simulated observations of X and ε following different

linear relations. The observations of X and ε are randomly drawn from the Student-t distribution with

4 degrees of freedom. The observations of Y are constructed from a global linear model (βT = β). The

estimates from the simulations, β̂T , are compared with the true value, βT . The mean squared error is

calculated as σ̂2(βT − β̂T
i ), where i refers to the i-th simulated sample. The squared bias is calculated as

(βT − β̄T )2 and the variance is calculated as σ̂2(β̄T − β̂T
i ), where β̄T = µ̂(β̂T

i ).
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Figure 2: Simulations with a segmented linear model

NOTE: The solid lines report the simulation results for the EVT approach; the dashed lines report those for

the conditional regression approach. The simulations are based on 10,000 samples with 1,250 observations

each. The observations of Y are constructed from the simulated observations of X and ε following different

linear relations. The observations of X and ε are randomly drawn from the Student-t distribution with 4

degrees of freedom. The observations of Y are constructed from a segmented linear model, where the slope

equals βT if the value of Xt is below its 3rd percentile (which occurs on expectation for 37.5 observations in

each sample), and to β otherwise. The estimates from the simulations, β̂T , are compared with the true value,

βT . The mean squared error is calculated as σ̂2(βT − β̂T
i ), where i refers to the i-th simulated sample. The

squared bias is calculated as (βT − β̄T )2 and the variance is calculated as σ̂2(β̄T − β̂T
i ), where β̄T = µ̂(β̂T

i ).
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Table 1: Estimates

Period Av. β̂T
EV T,j N S Minimum β̂T

EV T,j Maximum β̂T
EV T,j

1931 - 1935 1.15 39 3 0.61 Tobacco Prdcts 1.79 Recreation
1936 - 1940 1.06 41 1 0.43 Tobacco Prdcts 2.08 Recreation
1941 - 1945 1.16 42 0 0.63 Communication 2.47 Real Estate
1946 - 1950 1.08 43 0 0.37 Communication 1.69 Construction
1951 - 1955 1.00 43 0 0.38 Communication 1.61 Aircraft
1956 - 1960 1.09 43 0 0.53 Food Products 1.71 Electronic Eq.
1961 - 1965 1.15 43 0 0.58 Utilities 1.93 Recreation
1966 - 1970 1.25 47 0 0.55 Utilities 1.90 Recreation
1971 - 1975 1.15 48 0 0.65 Utilities 1.78 Entertainment
1976 - 1980 1.09 45 3 0.61 Utilities 1.62 Healthcare
1981 - 1985 1.11 48 0 0.62 Utilities 2.31 Precious Metals
1986 - 1990 1.00 48 0 0.54 Utilities 1.32 Candy & Soda
1991 - 1995 1.16 48 0 0.64 Utilities 1.86 Shipbldng & Railrd Eq.
1996 - 2000 1.01 48 0 0.44 Utilities 1.86 Coal
2001 - 2005 1.02 48 0 0.56 Real Estate 1.70 Electronic Eq.
2006 - 2010 1.12 48 0 0.56 Beer & Liquor 2.19 Coal

NOTE: Within each period, we estimate coefficient βT in (1.1) for the industry portfolios with non-missing
observations using the EVT approach with k = 25, or, k/n ≈ 2%. For each period, we estimate βT s based
on daily excess returns from that period while excluding the observation on the day the market suffered
its largest loss. The column labeled ‘Av. β̂T

EV T,j ’ reports the average of β̂T
EV T,j of N portfolios. The

column labeled ‘S’ reports the number of (excluded) portfolios with α̂j ≤ 1

2
α̂m. The last columns report the

minimum and maximum β̂T
EV T,j , and the industry name from the data documentation.
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Table 2: Performance evaluation

Period Worst day Market loss RMSE OLS RMSE EVT t-stat p-value
1931 - 1935 21-Jul-1933 9.33 6.69 4.04 2.60 0.007
1936 - 1940 18-Oct-1937 8.10 4.93 2.59 3.18 0.001
1941 - 1945 08-Dec-1941 4.09 2.37 1.95 1.64 0.055
1946 - 1950 03-Sep-1946 6.82 2.39 1.45 1.68 0.050
1951 - 1955 26-Sep-1955 6.49 2.86 1.47 3.53 0.001
1956 - 1960 21-Oct-1957 3.04 1.96 1.20 2.98 0.002
1961 - 1965 28-May-1962 6.99 3.22 2.73 1.35 0.093
1966 - 1970 25-May-1970 3.21 2.23 1.42 2.63 0.006
1971 - 1975 18-Nov-1974 3.57 2.46 1.01 3.16 0.001
1976 - 1980 09-Oct-1979 3.44 2.07 0.85 5.42 0.000
1981 - 1985 25-Oct-1982 3.62 2.33 1.07 3.73 0.000
1986 - 1990 19-Oct-1987 17.44 6.73 3.95 1.34 0.094
1991 - 1995 15-Nov-1991 3.55 2.83 2.01 1.76 0.042
1996 - 2000 14-Apr-2000 6.73 4.35 3.37 1.11 0.136
2001 - 2005 17-Sep-2001 5.03 5.76 5.18 0.99 0.164
2006 - 2010 01-Dec-2008 8.95 3.37 1.40 3.59 0.000

NOTE: Within each period, we estimate the coefficient βT in (1.1) for 48 industry portfolios using the EVT
approach and the conditional regression approach with k = 25, or, k/n ≈ 2%. For each period, we estimate
βT s based on daily excess returns during that period while excluding the observation on the day the market
suffered its largest loss. Within each period, we project the loss on the day of the largest market loss for
each industry portfolio j as the product of βT

j and the actual market loss. From the difference between the
projected losses on the industry portfolios and the actual losses, we calculate the root mean squared error
(RMSE) for each approach. The last columns report the t-statistic and the corresponding probability for
testing against the null hypothesis that the EVT approach produces a higher RMSE than the conditional
regression (OLS) approach.
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