eering and ruction Service.

Banff, Alberta,
February 25 th, 1941.

REPORT ON THE ALASKA-YUKON HIGHWAY RECONNAISSANCE
ALASKA BOUNDARY TO DATISON \& CARMACKS, Y.T.
On receipt of instructions sent on behalf of the
Commission dated July 30th, 1940, with regard to reconnaissance work to be carried out in the Yukon and British Columbia in connection with the proposed Alaska-Yukon-British Columbia Highway, arrangements were made to leave Jasper, Alberta, on August the loth, as this was the most suitable time for me to make connections with the river boats leaving Whitehorse for Dawson, Y. T.

On leaving Prince Rupert, British Columbia, on August 12th by the Canadian Pacific boat "Princess Alice" a very interest. Ing trip was made via the inland passage and channel of the Alaska Coast to Skagway, which point was reached on the l4th; thence by train over the White Pass and Yukon route to Whitehorse where I was able to secure transportation on a river boat proceeding down the Yukon River that evening, and after some delay due to weather conditions and an accident to the freight scow, I reached Dawson City on August 17 th .

From Dawson as a base, reconnaissance was made of various proposed routes approaching Dawson from the south and extend.Ing to the north and west to the Alaska Boundary where connection was to be made with proposed routes previously reconnoitered in 1931 by Mr. D. McDonald, Locating Engineer for the American-Alaska Road Commission. In making these reconnaissances in the vicinity of Dawson, Mr. G.A. Jeckell, Controller for the Yukon Territories, and Mr. McNeil, Road Superintendent for the Territory, gave me considerm able information and assistance.

For convenience in following this report, I have prem pared a large scale sketch map of the northwest section of the Yukor Territory which extends from the International Boundary of Alaska and the Yukon - latitude 650, longitude 1410 to the Carmacks section, latitude 620, Iongitude 1360. Superimposed on the sketch I have
chown in colours, and logendary marking, tho various routes
recomoitered between Dawson and the Alaska Boundary and also between Dawson and Camacks, Y.T. General information of the rerious rivers shown ard contour features have been taken from aectional geographical and topographical sheets issued by tho Topographical Surveys Division, Washingtong U.S.A. and Ottawa and where sections of the country traversed were missing or not available, these sections were comoiled by enlargement from the Ghon Territory sheet and approximate contours and other features silled in.

Proposed Route "A" is shown in a dash-Iine coloured nod and extends westerly from the City of Davson which is situated an the right bank of the Yukon River below the junction of the Wondike. A crossing of the Yukon River is presentiy made by Perry at Dawson City, the distance between river banks of the Gkon at this point being approximately 1,000 feet wide, with a asing steep rock sidehill from the waters edge on the west limit and a flat gravel bench 2,000 feet wide on which Dawson City is stuated. About 700 feet below the ferry crossing on the west Gide, the steep sidehill flattens off somewhat , Possible developwent of a bridge site and high level crossing of the Yukon could be made at this point by the placement of a suspension type of bridge and steel decked truss approach over the townite. The estimated cost of this bridge would be in the neighbourhood of ${ }^{4} 800,000.00$. Ine shore abutment on the west bank would be placed on solid rocke The east abutment and piers would probably be seated on gravel which ${ }^{-}$s generally found to be frozen in this section of the Yukon. Photom Graphic prints Nos. 1 to 5 , show the physical features of the sround in the vicinity of Dawson and the terrain along the west Gank of the Yukon River at the ferry and the ground immediately west of the river.

After crossing the Yukon River, lower grades would Gave to bo developed than those presently obtained on the Boundary road. This could be done by extending the alignment downstream
and switching back to pass over the high rock bluff opposite the mouth of the Klondike River and about 800 feet upstream from the west ferry terminal, approximately four miles on the traversed Iine. From Mile 4 to Mile 10 above the mouth of swede Crook, Route "A" would follow approximately along the old winter trail, wich, with the exception of about one mile, traverses flat sloping benches above the Yukon River flats and farms seen in Prints 6,7 and 8

From information gathered from various sources I
was informed that it would be advisable to cross Swede Creek and traverse the south side of the valley and follow the benches above the winter trail to a branch of Swede Creek which is named the Kdde Fork, Mile 25, as the physical feature of the right limits of Swede Creek valley is less precipitous and the country less cut up by small creeks, and deep ravines. These favourable features would lessen the cost of construction and probably eliminate con. siderable curvature. Print No. 9, taken from a point on the Soundary Road shows the terrain across Swedo Creek valley for about Eive miles above this stream confluence with the Yukon River.

Continuing the traverse of Route "A" up the Midde Fork from Mile 25 it will be found that the V shaped valleys confine Iocation to what benches and talus slopes may be found above the Fater course on developing a higher line along the edge of the Zreak in ground slope about 500 feet above the stream bed. This sould very easily be developed by commencing a rising grade about Mile 20 and following the benches above Swede Creek and the Middle Tork along the 2,500 foot contour to tho forks of a branch entering Ge Middle Fork about Mile 28. Here the stream can be crossed by a snall bridge and the left benk of Middle Fork followed to the divide on the watershed of Fish and California Creeks, Mile 30. Prints Hos. 10 and 11 show the valley of the Midale Fork of Swede Creek from this stream'sconfluence with the main water of Swede Creek to the divide on the watershed. Prints Nos. 15 to 20 show sections of The winter trail and the confined nature of the ground along the

Gatercourse of the Middle Fork. Prints 12 to 14 show views of the second main branch of Swede Creek which had been used some years ago as a winter trail between the Boundary road and 60-Mile River. The information gathered here with respect to a favourable route between Dawson and the Sixty Mile River did not appear favourabie and no reconnaissance was made beyond the points seen in the photographs.

After crossing the divide Mile 30 on the watershed of the Middle Fork and Fish Creek very good country would be traversed across the divide and low-lying ridge between Fish Creek and a branch of California Creek, from which point an easy descending grade can be obtained by following the main water course of California Creek to near its confluence with Sixty Mile River, Mile 42. From this point Route "A" would follow a westerly course along the benches and lower slopes of the left bank of Sixty Wile River to the International Boundary between Alaska and the Yukon at Mile 66. Prints 21 and 22 show a panorama view of the aivide between Fish Creek and the east branch of California Creek. Prints 23 to 25 show the physical features of the terrain that Fould be traversed along the benches and slopes of the flat U-shaped valley of Sixty Mile River, from Mile 42 to Mile 66 at the International Boundary which is approximately eight (8) miles west of Photographic Station.

At Mile 10 on Route "A" above the mouth of Swede Creek I have suggested a possible alternative route "A-I", which nould be a diversion of Route "A" eliminating the necessity of following Swede Creek, the Middle Fork and California Creek to the Sixty-Mile River. I am not aware if this suggestion of a possible route via the headquarters of Bell or Garner Creeks to the Sixtymile valley has been given any consideration in the projection of a line between Dawson and the International Boundary.

It is unfortunate that at the time of my visit to
Dawson no topographical maps of the country between Swede Creek and the Sixty Mile Valley were at my disposal, had they been, it Is probable that an extensive ground reconnaissance would have
been made over this country to confirm subsequent conclusions I have maci by an extensive study of such topographical maps Wich I have been able to procure since my return.

From a study of the sketch map it might be seen that at the head of Bell Creek the contours indicate a low Aivide on the watershed between the Yukon and Sixtymile River. If this exists it would appear to me that a more feasible and less costly route could be obtained by following the altemative Zoute "A-I". The distance scaled would be approximately the same as Route "A", to the mouth of Califomia Creek for at Least six miles; more favourable ground would be traversed along the wider valley of the Sixtymile River. A study of Print No. 9 mich was taken from a point on the Boundary Road, shows the physical features of the terrain across the hogsback between the Lower section of Swode Creek and the valley of Bell Creek. Further investigation of this diversion of the "A" route should be given consideration before final decision of a feasible route between Dawson and the Alaska Boundary is accepted,

Reconnaissance of an alternative route "A-2" followIng the general alignment of the present high line of the Boundary Road was investigated and is given here as a supplementary to proposed routes "A" and "A-1". This route would follow the general elevated ground along the watershed between the Yukon and Swede Creek, also the watershed of the Sixty-Mile and Fortym Kile Rivers. Diversions from the present route of the Boundary Road would have to be made to cut out the abrupt grades which are evident along many sections of the Boundary Road. Also, it would be necessamy to revise many sections to eliminate and avoid heavy snow drifting conditions that prevail during the winter, which wouid shut off traffic in November and December and require qeavy maintenance cost to keep open during winter months.

Projection of Route "A-2" from the Ferry Crossing Would require the devolopment of an easier grade than the presently used section of the Boundary Road for about five miles, until an elevation 0 2, 700 peet is attained, from which point the present
road may be used for about two miles along the hogsback to Wile 7 at an elevation of about 3,000 feet. Here I would suggest traversing the southern slope overlooking the Swede Sreek Valley, and an elevation of not more than 3,600 feet be maintained to mile 44 - the divide on the watershed of swede Creek and California Creek on the southern slope of Swede Dome Fountain. Along this section between Mile 7 and Mile 45 there are very few sections, if any, of the present road that could be used. Barometer readings taken at various points indicate that the present aligment follows the rim of the watershed at an elevation of 3,500 to 3,900 feet. Prints one to three show the terrain west of Dawson that would be traversed the first three miles after crossing the Yukon River. Prints 26, 27, 28 and 29 show the south slope of Svede Creek, the divide on the watershed and the terrain west of Swede Dome Mountain.

Continuine the traverse of the high line Route "A-2" after crossing the divide below Swede Dome Mountain the traverse would pick up with that part of the abandoned section of the Boundary Road and follow more or less the present alignment at an elevation of approximately 3,300 feet to Mile 54 and the junction of the trail going to the boundary and Walkers Fork Creek. Here the alignment would take a south-westerly direction and follow the valley of Little Gold and Glacier Creeks to the Sixtymile River valley, Mile 61, and connect with proposed. Route "A" at Mile 55. Photograph No. 30 shows a revised section of the Boundary Road down Bruin Creek, which was constructed a few years ago to avoid sections of heavy snow-drifting conditions in the vicinity of the northwest slopes of Swede Dome Mountain.

From information gathered from various sources, and from a study of the terrain traversed by the existing road, the worst snow-drifting sections are between Mile 20 and Mile 40. The wind is generally from the southeast and as the watershed lies mostly above timberline, no windbreak of timber prevents the snow in the winter months from drifting and accumulating into great
drifts along the northwest slopes. It is practically impossible to eliminate this condition, but by following an aligmment with a southern slope the condition would be reduced considerably. Photographs 30 to 35 show the physical features of the terrain traversed along the present existing road between Milo 40 and Wile 54. Prints 36 to 39 show general ground features on the trail to the International Boundary and Walkers Fork.

Investigation of Dr. Bostock's proposed route between Dowson and Forty-Mile River by following the right limits of the Zukon River to the International Boundary did not appear to be favourable or have any advantages over the "A" and "A-2" routes necomoitered. No extensive reconnaissance was made. Photographs 40 to 44 give a panoramic view of the terrain along the east slope of the Yukon River between Dawson and Fifteen-Mile River. Photom Eraphs 45 to 47 show both slopes of the Yukon valley and watercourse between Dawson and the mouth of the Chandindu River.

Reconnaissance of various routes approaching the
OIty or Dawson from the south and east was made by traversing such known sections which were most favourable and direct to make connection between Carmacks, situated on the Lewes River, latitude 320 and longitude 1360. The limited time at my disposal preventod me from covering the whole of this section on foot or saddle. Eowever, sufficient infomation was collected to indicate that a feasible route could be developed between these two points. To illustrate the general projections of the various sections of the country reconnoitered I have indicated on the sketch map the proposed route " B " by a dash line coloured blue and any alternatives or diversions as "B-1", "B-2" and "B-3", with distinguishing markings coloured blue.

Proposed Route "B", after leaving Dawson would
traverse the valley of the Klondike River easterly and would follow the existing mine road for about twenty-seven miles. Considerable regrading and revision of the alignment would be necessary to bring the present trail to the standard required. Genenally the
the surface material is black soil underlain with frozen gravel, but this condition is gradually improving due to scarcity of the standing timber growth which during the last fifty yoars has been used extensively for building and domestic purposes. Solid rock Will be met with in the widening of three or four rock bluffs which confines the trail between the base of these and the River for short distances between Mile 15 and Mile 25.

From Mile 27 a fairly good trail crosses the Klondike River here by a private ferry to the Yukon Consolidatod Mine Company's power houso and intakc works, on the north fork of the Klondike River. Projection of the winter overhead trail to Carmacks and hitehorse continues from Mile 27 along the south limit of tho main branch of the Klondike River to Flat Creok crossing Allgold and Flat Crecks about Mile 30, and then follows some low-lying marshy flats beforo climbing to a wide flat plateau which practically oxtends right through to Slough Creek and the Stewart Rivor. I have shown the contour olevation of this plateau at 2,500 feet but it may be lower. Barometer reading taken on high points on that section of the trail traversed did not exceed 2,400 feet. Photographs 56 and 57 show the physical features of the Klondike River valley looking towards the valley of Flat Creek, taken from a point above the intake of the Yukon Consolidated Mining Company's pover plant. Photographs 58, 59 and 60 show the country traversed by the trail between Mile 50 and 60. At Mile 48 and 58 I havo indicated possible diversion that might lossen the distence or give better alignment botwoen the Klondike and Stowart Rivers.

At File 65 Route " B " would leave the valley of Slough Croek and treverse the benchos and lower slopes of tho right limit of the Stevart River to a bridge site at Icebox Rapids eight miles * Low the mouth of slough Creek, Mile 75. At this point below the waids is a much better site than that suggested by Dr_{t}. Bostock Sterling Bond, 25 miles upstroam, the distance from shore to Wrope being about equal at both sites and is approwimately 400
fect. The Icebox site has a $60-70$ foot rock bonch on the left bank and a high gravel fict on the right which is not subject to overflow to any appreciable cxtont during highwater. As the strean is confined to one channel a suitable ferry crossing could bo made immediately below the site pending bridge construction. Crossing of the Stewart River at this point will eliminate an oxponsive structuro across tho McQuesten River. The Stewart Rivor is navigablo botwoen its confluonce with the Yukon River and Mayo. Any bridging of this watercourso betwoen these points will have to provide for river stomer passage-vay either by placing the structures with sufficiont clearance above high water mark or providing a lift or swing structure. Photograph 61 shows the physical feature of the bridge site at Icebox Rapids looking upstream from a point inmediately below the site.

Two altemative routes namely "B-2" and "B-3" which leave route "B" at Mile 2 and 9 respectively, following the present existing mino roads by tho Bonanza and Hunker Creeks would intorcept the "B" route at Milo 75. The only advantage that would bo obtained in following either of these alternatives would be the anount of improved construction compared to the unimproved section of Route "B" between Mile 9 and Mile 27 and the difference in cost of new grading. The alternative would, if favoured; provide better transportation facilities for the mining district of Quartz Creek and Granville.

The disadvantage would be the introduction of considerably more dirvature on account of the narrow confined nature of the Bonanza and Calder Creeks and the Hunker and Dominion Creek valleys. Two summits would be crossed at an elevation ranging between 2,600 and 3,200 feet and both routos would be longer by cight and fourteen miles respectively. Photographs 48 to 50 show the confined physical features of the Bonanza and Bldorado Croeks - Photographs 51 to 54 show tho valleys of the Hunkor and Dominion Creoks traversed by Route "B-3". Photograph 55 shows the mine road and Sulphur

316.

Creek valley which could be developed into an alternative to that section of Route "B-3" which traverses Dominion Creek and would probably bo two to three miles shorter than that route, but would still have the same disadvantages.

Continuing the traverse of Route "B" from the Icebox Rapids at Mile 75 the line could either follow up the Stewart Rivor along the benches of the left limit to noar Crooked Creek; preferably I would suggest that the line follow down the Stewart River for three miles end then traverse the wide valley of Lake Creek via Reic Lakes to about Mile 95. Here a choice of two routes could be taken, namely: Route "B" or Route "B-1" as indicated. The former would traverse the valley of Lake Creek to Grayling Lakes on the watershed of the Stewart and the Pelly Rivers. The alternative Route "B-I" would traverse a low divide between the headwaters of Uppor Refd Lake and the valley of the Stewart River and thence following the bonches above the Stewart River to near Crooked Oreek and thence by this watercourse to the divide at the headwaters of Willow $C r e e k$ and a junction with proposed Route "B" at Mile 146. The distance traversed by this alternative would be approximately seven miles longer but would have its advantages in traversing a wider valley and with an improved road projected northeasterly from about Mile 120 a branch road to Mayo Mining district would be accessible. Photographs 65 to 67 show a penoramic view of the terrain lying between the mouth of Lake Creek and the basin in which the Reid. Lakes are situated. Photographs 68 to 71 show the many unfavourable features of Sterling Bend proposed bridge site, and Fhotom graphs 72 to 75 show the physical features of the stewart valley between the Sterling Bend and the valley of Crooked Creek. Reconnaissance work on the Pelly River consisted mainly of reconnoitering the various proposed bridge sites available between this stream's confluence with the Yukon River and Granite Canyon. The shore to shore width at the Granite Canyon brioge site is approximately 340 feet and has greater possibilitios then any considered, as may bo seen from Photographs 86 to

91, and would, to my minc, bo the most logical bridgo sito for the proposed eastorly route, via. Francis Lake and the upper reaches of the Polly River. Howover, due to the Canyon's location it would be on an indirect route in the projection of a line between the Stowart River and the crossing of the Lewes River at Rive Fingers Rapids. Tho suggestion of the probable terrain this route would traverse is indicated on tho sketch map by a long dash dot line, from the divido at the headwatcrs of Willow Creek to Granite Canyon and thence along the lower slopes and bonches of Ptamigen Mountain to Mica Creek, thence following this watercourse to I'atlimein Lake and the divide on the watershed of Tatimain Creek and Tatchun Creek, following down this gtream to a junction with the proposed route "B" at Mile 204. Grading costs show that this alternative would be higher due to greater mileage, the distance being twonty-two (22) miles longer in the projection of Route "B-I" from the divide on Hillow Creek at Míle 145. Approximately seven miles of this additional mileage is attributed to that part of Route "B-I" between Reid Lakes and Mile 145. A suitable tomporary ferry crossing cen be obtained immediately below bridge site, pending construction of briage.

Continuing the traverse of proposed Route " B "
from hile 146, the projection would be continued down the valley of Grayling Creck to a crossing of the Pelly River at Gull Rocks, Mile 153. This bridge site was chosen in preference to a crossing of Braden's Canyon at Moosehide Rock, notwithstanding that the width of the Pelly River at the latter bridge site is approximately 450 feet wide, whereas at Gull Rocks the shore to shore Width is approximatoly 860 feet. Homover, it is considered that less development on the approaches of the latter would be required. and as about ten miles of extra greding mould bo eliminated, general construction costs at the Gull Rock site would be generally lower. Photographs 76 to 78 show the bridge site crossing at Gull Rocks. Prints 79 to 82 show various views of Moosehide Rock, Braden's Canyon bridge site. Photographs 83 to

85 show the physical features of the terrain along the valley of the Pelly River between Braden's Canyon and the Granite Canyon. A suitable temporary ferry crossing can be obtained immediately above the bridge site, pending construction of briage.

Projection of the proposed route "B" after crossing the Pelly River at Gull Rocks would travel easterly along the bonches of the Pelly for a few miles and thence south across the flat watershed to Minto and the valley of the Lewes River, following more or less along the general route taken by the DawsonWhitehorse winter trail to a crossing of the Lewes River at Five Fingers Rapids at Mile 206. From the crossing of the Lewes River - the traverse would follow the left limit of the Lowes River to Carmacks at Mile 222. The section between the Pelly River and Carmacks is generally considered to be the most open and dry section that would be met with along the whole route. Photographs 92 to 94 show the possibilities of developing the Five fingers as a bridge site.

From various sources I vas informed that the average winter snowfall along the sections traversed by both the proposed "A" and "B" lines and the adjacent districts thereto is from three (3) to five (5) feet. Evidences of heavy ice flows and possibly jams are seen along the banks of most of the large rivers, and careful consideration will have to be given to clearance on ell bridge structures placed. Small settlements or mining operations are scattered along the whole route fron the Alaska boundary to Carmacks, the greatest congestion of these being in the vicinity of Davison.

Most of the elevations shown on the sketch map Were taken from geologic and topographic survey maps and were established from precise levels made by Douglas H. Nelles, D.L.S., during the year 1908-10 and were published by the Dominion Observatory, Ottama, Vol. INo. 2 of Precise Levels from White Pass, B.C., to the l41st Meridian.

The following summary of costs of construction aro
based on a 20 foot gravelled surface and a standard 24 foot road section, $2 \frac{1}{2}$ feet at loast above ground surface in level country. a cleared 68 foot right-of-way stumped and brushed; sufficient native timber is available for culverts, cribs, and small bridges. All other structures would be importede

ESTIMATED COST
PROFOSED ROUTE $"_{A} \|$
DIHSON CITY TO ALASKLN BOUNDLRY ESTIMATED DISTANCE - 66 MILES

Mile to	Míle	Distance	Cost per Mile	Bridges	Estimated Cost	rotal Estimated Cost
1				Bridge ic Approaches 2000 ft .	\$ 800,000	\$ 800,000
1	4	4	W14,000			56,000
4	5	1	16,000			.16,000
5	10	5	12,500			62,500
10				50' Truss	5,000	5,000
10	25	15	14,000			210,000
25	30	5	16,000			80,000
30	42	12	14,000			168,000
62	55	13	12,500			162,500
55				401 Truss	4,000	4,000
55	66	11	12,500			1317.500
			Total Estimated Cost			,701, 500

Averege cost per mile, not including

ESTIMTRD COST
AITERNETIVE FOUTE $\|_{1} \ldots$ I $^{\prime \prime}$
DATSON CITY TO hILSKA BOUNDARY
RSTIMTED DISTANCE - 68 MTLES

Mile to Mile Distance Mile Mer Bridges | Costimated Cost |
| :---: |

Cost

I			Bridge \& hpproachos 2000 feet	\$800,000	\%800,900
1	10	10	Sme as Rovte "i"		. 239,500
10	20	10	\$15,000		150,000
20	35	15	13,500		202.500
35	$4 \leq-42$	9	12,500		112:500
$54-2$	66	24	Sarie as Route "is ${ }^{\text {a }}$		304,000
			Total Estimated Cost		.708,500

\therefore verace cort per mile, not incluaing
targe bridges - $13,360.30$.

ESTIMATED COST
ALTERNATIVE ROUTE "A-2"
DATSON CITY TO ALASKA BOUNDARY
DISTATCE - 72 MILES

Mile to Mile	Distance	$\begin{aligned} & \text { Cost per } \\ & \text { Mile } \end{aligned}$	Bridges Estimated	$\begin{gathered} \text { Total } \\ \text { Estimated } \\ \text { Cost } \\ \hline \end{gathered}$
1			Bridge is \$800,000 Approaches 2000 feet	¢800,000
13	3	\$14,000		42,000
310	7	13,500		94,500
1035	25	12,000		300,000
35 40	5	13,000		65,000
$40 \quad 54$	14	12,000		168,000
54 61-55i	7	14,000		98,000
61-55A 66	11	12,500		137,500
		Total Est	timated Cost	,705,000

HVerage cost per mile, not including Large bridges -

ESTIMATED COST
PROPOSED ROUTE "B"
DATSON CITY TO CARHACKS
ESTIMGTED DISTANCE - 222 MIIES

ESTIMATED COST
ALTERNGTIVE ROUTE VIA "B-I"
Granite Canyon Bridge Site
DATISON CITY TO CARMACKS
DISTANCE - 244 MILES

Average cost per mile, not including
large bridges - $311,862.70$

> ESTIM.TED COST
> hLTERNGTIVE ROUTE "B-I"
> Granite Canyon \& Minto
> DMMON CITY TO CIRMCKS
> DISTiNE - 242 MILES

Mile to Mile	Distance	Cost per Mile	Total Estimated
$1 \quad 173$	173	Same as Routes "B" and "B-I"	㯁, 283,000
173 183-1638	10	\$10,000	100,000
183-163B 222	59	Same as Route "B"	843,000
		Total Estimated Cost	\$3,226,000

Averace cost per mile, not including
large bridges - \$11,677.69

ESTTMATED COST
LITERNATIVE ROUTE "B-I"
Via Gull Rocks Bridge Site
D.HSON CITY TO CHRMLCKS
DISTANCE - 229 MILES

Mile to Mile	Distance	Cost per Mile	Total Estimated. Cost
1145	145	Same as Route "B- and "B-I"	W1,883, 000
$145 \quad 153-146 \mathrm{~B}$	8	解13,000	104,000
$153-146222$	76	Same as Route "B"	1,310,500
		Total Estimated Cost	\$3,297,500

Averase cost per mile, not including
large bridges - \% $12,041.49$.

ESTIMATED COST
ATTERN/IIVE ROUTE "B-2" DAWSON CITY TO CARMACKS

DISTMCE - 230 MILES

Mile to Mile	Distance	$\begin{aligned} & \text { Cost per } \\ & \text { Mile } \end{aligned}$	Bridges	Estimated Cost	Total Estimated Cost
12	2	\$8,000			常 16, 000
$2 \quad 25$	23	10,000			230,000
$25 \quad 27$	2	12,500			25,000
27			60 ft .	\%6,000	6,000
27 -5	18	12,500			225,000
4559	14	14,000			196,000
5970	11	12,500			137,500
70 83-753	13	14,000			182:000
33-75B222	147				2,342,000
		Total	Estimated	Cost	\% 3,359,500

LVErage cost per mile, not including
lerge bridges $-212,258.70$.

Nile to Mile	Distance	$\begin{aligned} & \text { Cost per } \\ & \text { Mine } \end{aligned}$	Bridges	$\begin{aligned} & \text { Estimated } \\ & \text { Cost } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Estinated } \\ \text { Cost } \\ \hline \end{gathered}$
$1 \quad 48$	48	\$8,000			\$384,000
58 51-45B-2	3	12,000			36,000
48			50 ft .	\$5,000	5,000
51-153-2 222	185				2,857,500
		Total Es	imated	st	\$ 3,282,500

```
Average cost per mile, not including
    large bridges - $11,620.76.
```

Summarizing the foregoing information and considering the physical ground features and relative costs between the proposed Routes "A" and alternative "A-1" and " $A-2$, between Dawson City and the Alaska Boundary, I would suggest that possibly a line projected along the Routes "A" and "A-1" would probably give a better alignment, notwithstanding that the estimated cost is W, 000.00 higher than the total estinated cost of proposed Route "s". The estimated distance would probably be two miles longer. The highest point on the divide appears to be well below the 3,000 ft. elevation and should be an advantage.

Sumarizing the information covering the recomaissance of the "B" route between Dawson City and Carmacks I would suggest that a line projected along the Routes "B" and "B-1" via the Granite Canyon, Minto or Tatlimain Lake Routes would give a better alignnent. The bridge site at Granite Canyon is undoubtedly the best inspected on that section of the Pelly River and notwithstanding a longer road mileage the Route "B-I" via Minto indicates the least construction cost, namely $\$ 3,226,000.00$. The section of Route "B-I" which traverses the Crooked Creek would permit of a connecting road to tho Mayo Mining District and should be given consideration in projecting a line between Dawson City and

I am enclosing 106 photographs which were takon during the reconnaissence survey between the Alaska Boundary and Carcross, Y.T. Photographic Stations are indicated on the sketch map which is being forwardod under soparate cover. A study of these photographs is more descriptive of the physical ground featuros than can be described in a roport. I also enclose a photograph of the inland passage between Prince Rupert and Skagway.

(Sgd) J.H. MitcheII, Senior hssistant Engineer.

gineering and istruction Service

Jasper, Alberta, Hay 20th, 1941.

Re - Alaska-Yukon British Columbia Highway Observations \& approximate cost of section between Atlin, B.C., Whitehorse \& Carmacks, Y. T.

With reference to supplying the Commission with a sumary of my observations and approximate cost of the section of the proposed Alaska-Yukon British Columbia Highway, between Atlin and Carmacks, I beg to submit a sketch map of the country, part of which was traversed by plane during the aerial reconnaism sance made in July, 1939, also aerial trips and ground reconnaissance made in September and October, 1940.

The following observations and comments over the proposed route outlined would of necessity have to be confirmed by a ground reconnaissance. However, sufficient information Was obtained from the aerial trips to indicate that a route is quite feasible between Atlin, mitehorse and Carmacks by either of the suggested routes indicated on the sketch map enclosed. Approximate costs given are such that might generally be met with through the country traversed.

For guiden ce in following this report, I attach hereto a sketoh map showing the northem part of British Columbia in the vicinity of Atlin, and also showing the southern part of the Yukon ternitory, which includes the district between the northem boundary of British Columbia and Camacks, Y.T. Superimposed and indicabed by a dash Iine I have shown the proposed route "A" between Atlin, Thitehorse and Carmacks; also I have indicated by a dash dot line a divension from the proposed route "A" minioh would touch at Garcross enroute to Whitehorse and Cemacks.
of the trail to the 4 th of July Creek mighti bo folkoved or a route approximately along the Telegraph Iere trail might be followed to its junction with the th 0 , Joly Creck trail about seven miles north of the town of Atlin. From this point the route would continue along the benches to Indian Geek, Mile (24). North of this point for about five miles the benchland is cut off and the terrain is considerably rougher with considerable rock exposures where the mountain ranges appear to carry their slopes down to the east shore of Atlin Lake.

North of the boundary, the country opens up somewhat, and considerable benchland timbered with small pine oxtends to the east and north along the east shore of Little Atlin lake. At Mile (60) near the north end of Little Atin Lake: a diversion is show which would traverse westerly to a crossing of six mile River at Tagish, Mile (68) and thence through a low pass via Crag Lake to Carcross, Mile (36). The country tratersed on the aiversion between Mile (60) and mile (86) is generaliy jackpine benches, with sand dunes for about one mile as one approaches the vicinity of Cancross.

Morth of Carcross, the diversion would foIlow generally along the present location of tho Cawcross Wirehorse trail. Difficulty will be met with in avoiding the sand dunes for about three miles north of the Village of Carcross, after which the country generally consists of benchland of poplar and jackpino ridges. Tre only structure of any consequence would be the crossing of six mile River in the vicinity of Tagisho
W. J.H. MoNein in his repont to the Commission to study the proposed Fighway to Alaska, 1933 Appendiz D。 states there is a choice of two bridge sites across six mele River. The lower site where the Felerraph Line crosses, here the stream is about 900 feet wide, with a solid rock island about 300 feet distant from the east bonk, whit ins composed oi a sandy olay gravel to a height of about 20 feet abow: watej level. The Test bank consists of the same gravel material, but is about

30 feet above water level. The other site is situated opposite Tagish Settlement and is about 750 feet wide with 15 feet clay banks on the east side and 10 feet clay sand and gravel banks on the west side.

The river has a depth of 15 to 20 feet in the channel, and a maximum current flow of about three miles per hour. It rarely freezes at this point to permit of safe crossing in the Tinter montis. Piles can be easily driven for bridge foundations. Navigation requirements are nominal and can be confined to a short span draw bridge. Moderate precautions would have to be taken to safeguard the bridge structure from damage from floods or ice jams in the Spring.

Continuing the traverse of proposed route "A" from Vile (60) near the north end of Little Atlin Lake, the route would traverse a low saddle and follow the benchland above the east shore of Marsh Lake, to a crossing of the McCintock River above this strean estuary where it empties into Marsh Lake. The terrain along the cast bank of the Lewes River appeared from the air to be more difficult, as it seemed to be more cut up with numerous smell water courses. However, a ground survey would determine the most suitable country to traverse from the outlet of Mansh Lake to Miles Canyon, Mile (102). The crossing of the Lewes River at this point could be made by a 100 foot truss bridge without ant difficulty, as the Canyon has solid rock walls with flet fackpine benches extending back about 200 feet on the rest side and 400 to 500 feet on the east side.

On the rest side an automobile trail connecti with the tom of hitenores, a distance of about five miles. The duersion via Careross woula join the proposed route "A" about mile (103), but would be 22 miles longer to this point. The route traversed aften leaving Miles Canyon would traverse the sidohil of the Ioves Valley for a short distance to rolling bonchland about 300 to 500 feet above the Lewes River. From here the appooch to the tom of Thitehorse might be made by a low
route Via the Whitehorse Rapids, or a high route via the Airport. The latter might be the better approach as the terrain is fairly flat. The lower route is confincd to a steep clay cut bank; the prior location of tho Thite Pass and Yukon Railvay, and the Lewes River which parallels tho railway tracks for about half a mile immediately south of the town of mitchorse.

Between hitehorse and Carmacks there appears to be no other choice than to follow approximately along the routes of the old Overlend Thitehorse to Davson winter trail.

Mr. J. H . McNeil in his report to the Commission to study the proposed highway to Alaske, 1933 Appendix D. describes this section of the route as being quite passable for tractors, trucks and cars for most of the year over a distance of 31 miles out of Whitehorse to KIuene Junction.

From Kluane Junction the route "A" traverses the valley of the Little River, to a pass on the watershed of Klusha Creet, the moin branch of the Nordenskiold River, which flows into the Lewes River in the vicinity of Carmacks. This section of the Ovorland Trail has not been improved to the standard of the section between hitehorse and Kluane Junction, but is passablo for trucks, cars and tractors during most of the year.

The two main streans that will be crossed are the Tatrini River and the Mordenskiold. The former is presently crossco. by ferry and at the crossing has a width of 500 feet, With a depth of 10 to 12 fect during midsummor. The current is very slugeish with mud and small gravel bottom, banks apparontly boing low and probably subject to overflow from jammed. ice during the Spring breakup. It is probable that a more suitable crossing could be got above the junction of Little River. The rorconsifold is presently crossed by three wooden spans having on overall length of 218 feet. A more suitable Iocetion is available a lityle funthor upstream, where a structure of two spans woule auffico.

The terrain that would be traversed is apparently lightly timbered in places, but good timber for small bridges is available along the Nordenskiold River. The ground is fairly good with gumbo in many sections. After crossing the watershed of the Klusha Creek, the country is comparatively flat, onc requires drainage. Generally, the balance of the route which traverses along the hillside slopes of the valley of the Nordenskiold is fairly dry. Good gravel exists along the present trail in many places.

The distances traversed by the proposed route " A^{\prime} " Irom Atlin to Carmacks is probably 241 miles. Whitehorse situated on the banks of the Lewes River at an elevation of 2,080 feet, is nearly midmay between these points, if the diversion via Carcross were followed, and 108 miles north of Atlin via the proposed route "f". Maximum elevation is approximately 2,800 feet above sea-level, which is reached on the watershed between the Little River and the Nordenskiold on the section between Whitehorse and Carmacks.

The following summary of costs of construction are based on e. 20 foot gravelled surface, and a standard 24 foot road section $2 \frac{1}{2}$ feet at least above ground surface in level country. A cleared 66 foot right-of-way stumped and brushed; sufficient native timber is available in many sections for culverts, cribs and small common bridges. All other structures would be imported.

> ESTIMATED COST
> PROPOSED ROUTE "A"

ATIN, B. C. to CirRHACKS, Y.T.
SSTMMGTED DISTACE - 241 MILES

Milo	rife	Distance	Cost per Milo	Bricges Est	$\begin{aligned} & \text { timated } \\ & \text { Cost } \end{aligned}$	Total Estimator Cost
102	103	1	\$14,000			\% 14,000
103	108	5	12,000			60,000
108	158	30	14,000			420,000
138				3-901 Truss	204,000	24:000
138	156	17	12,000			204:000
155	188	33	12,000	I-80' Truss	7.000	7,000
188	288	40	13,000			520,000
250				2-90' Truss	16.000	16,000
228	241	13	12,000			156,000
			Total Estimated Cost			\$2, 223,000

```
Averace cost per mile,including
    bridges - Wll,713.69.
```

ESTIWARD COST
VIA DIVERSION ROUTE
\therefore AIIN, CARCROSS, HETEHORSE TO CGRMLCKS, Y.T. ESTIMTED DISTGNCE - 263 MILES

Sumarizing the foregoing information and giving con.. siceration to the relative costs, etc. between the proposed Route "A", and the diversion route via Carcross, it would appear that Route "A" rould be less costly and more dinect between the toms of Atin, Thitehorse ond Cemecks. Constmetion of the diversion route via Carcrose would place railvay commanication
for ireight, tourist trafilc, etco, about 22 miles nearer to the torn of itiin, which appors to be the only advantage if this route rore taken.
(Sgd) J. F. Mitchell. Senior Assistant Engineer.

