Before estimates of cost could bo preparod, it was nocessary for the Comission to decide on the standard of road it would recommend for the Alaska Highway.

Estimatos of the 1931 International Fact Finding Conmittoe werc based on a road width of from fourteon to sixteon feet, and which conformed to tho typo of rood then existing in intorion and northom British Columbia, Since that time roads have been greatly improved in the Frovince, and are vell adapted to the type and volune of traffic vhich they bear.

It was the opinion of the Comission, however, that a considemaly highor standard of road should be adopted for the Alaska Highway. Not only would it be an Intemational route of great importance, but its southern extromity would conneci with modern roads in the United States of very high standard. It would consequently not be advisable to construct a highray that would, when opened to traffic, suffer in comparison with conocting roads as rogards width, alignment, and other enginoerjng foaturess

As a rosult estimates aro based on a roadway twentyFour fect wide with necessary ditching and with gravel surfacing bwentr pect wido. Tho trenty-four foot grade will permit the laying of paving later on to a width of twenty feet. No cost Eigures have becn ancluded for the eventual paving of the hichway, as these dis not socm necessary at the presont time.

Wife the cost estimates which wore prepared by reconnafssance onginoers and which are included in tho appendix, Eorm tho basis of tho final estimato figures, it was necessary Eor the Comission to cerofully reviow these and modify them Where nocessary so thet thoy would bo "on all pours" in regard to location and constmetion standards and also fairly refloct The characton of tho country travorsed.

In tho cabe of larger bridgos, cost figuros covon structuros of a pormanont or somi-pormanont type. Simple brjdges and culverts will also bo of similas type, oxcopt in casos woro local conditions micht rondor it advisablo to install tomporary stmoturos utilizing locol nativo timbor, whone availoble.

Tho Commission calls attention to tho fact that the estimatos of cost are basod on wagos for various classos of work anc oosts of matorial and construction machinery that provailod in april, 1940. Sinco that timo thoro have boon moderate increases in production costis of matorials and machinory and whoh at the prosent time (May, 1941) aro approximetely, as follows:

Construction Wohinory... increaso from 8% to 10% in production costs. Stool..... jncreaso from 2% to 5% in eabrication costs. Immocr..... incroaso of about $\$ 1.00$ por M. in production costs.

If matonials ond mochinery to be ueod in tho conm struction of tho highwny wore subjoct to war taxation costs, coment, steel, and lumber would be subject to an 8% sales tax in the prosent yoar (1941) anc road machinery would bo subjoct to salos tax of from 8% to 10% doponding on tho typo.

As it would bo impossiblo for tho Comission to Include taxntion figures and keep their estimates up to date, Q11 construction ostimates given are exclusive of sales tax or othor war taxation that may be imposed in future.

MIIEAGE ADTANTAGES:

1. Prince George to Alaska boundary

Hazelton Route "A"	1,442 miles
Sumnit Lake - Finlay, Route	
"B"	
	$1,223 "$ " Seves
209 miles	

2. Vancouver to Alaska

"A"	1,968 miles
"B"	1,759 "
	"B" saves
	209 miles

Manson Creek Road Via Finlay, as
Alternative to Summit Iake

```
Prince George to Alaska boundary
Summit Lako
Summit "B" saves
\[
\begin{aligned}
& 1,361 \text { miles } \\
& 1,233 " \\
& 128 \text { miles }
\end{aligned}
\]
```

```
New Construction Required in British Columbia
    "A" 6l0 miles, via Hazelton
"B" 552 miles from Summit Lake - Prince George
    48 miles less new construction
```

ZIETATION ADVAMIAGGS OF
BUMTT ROUTE ${ }^{\text {Bit }}$

```
Pass Elevations:
```

Hazelton "A"	
4,230	feet
5,176	
5,405	
5,000	to
5,000	f'eet

"B" Summit-Finlay	
Summit Iake	2,500 feet
Sifton	$3,000 "$
Liard	$1,550 "$
Arctic-	
Bering	3,150

Manson

Mianson $4,900 \mathrm{ft}$ Gafifney 3,500 "
$\begin{array}{lll}\text { Summary - Highest - } & \text { Mazelton, } & 5,000 \text { to } 6,000 \text { feet } \\ & \text { Manson } & 4,900 \\ & \text { Gaffney } & 3,500 \text { (this is cut off from Manson) }\end{array}$ Jowest - Summit Lake 3,150 feet
6. Lower Costs

Siorter mileages - Lower passes ensure lower cost of construction and maintenance
7. More Resources

Minerals - coal, chiefly at Hazelton; precious metals on "B" route (which is in Pre-Cambrian range)
More agricultural lands
More timber
8. Alberta Connection

Another connection to Alberta is afforded at Finlay Forks, Route " $\mathrm{B}^{\prime \prime}$ 。
9. Better Air Route

Thereby affording more business along Highway "B".

Fine.lly:

1. We submit that there are only two routes that can fill the purposes of an Alaska highway, if we exciude defence as a reason for the highway in so far as we are arguing.
2. That as between the Fazelton route "A" and the Prince George Sumit Lake - Finlay route "B", we submit the latter has the following distinct advantages:

First: A shorter mileage, 209 miles, appealing therefore to tourist traffic to Alaska.

Secona: Lower elevetions - less snowfall it is said.
Third: Lower costs per mile in construction and in total mileage. Lower maintenance costs.

Fourth: Greater resources available in precious minerals, agricultural iands and timber.

Fifth: An extra route is afforded, Alberta to Alaska, at Finlay.
Sixth: It is the Air Lane route, permitting more business to be done this way.

VIITAGES:

Prince George to Sinclair Mills	62 miles
Prince George to Longworth	74
Prince George to Penny	83
Prince George to MicBride	160
McBrude ti Tête Jaune	43
Tête Jaune to Alberta boundary (through Park)	51
Mceride to Valemount	60
Valenount to Albreda (or British Columbia boundary)	18
Albreda to Blue River (approximately)	40.8
Prince George to Alberta boundary	254 Miles

DESCRIPTION OF ROUTE THROUG BRITIGA CULUMBIA TO ALASKA

VIA Hazeiton and aitnama
By P.M.Monckton
Gubnitted by R.J.Kemey, M.L.A. on bewaif of Hacelton District Chamber of Comerce

We have to-day a highway running moxti as far as rezelton and Kitwang, both on the banks of the breena river. For the most part this road is in very good condition, and its ultimate objective will be drince Kupert.

Mr Monckton has covered all of the intervening space between Ritwanga and Hazelton to mitehorse on the vukon River, following the valley imnediately to the east of the coast range, and states that "the most logical place for the junction for the Alasha road would be at Kitwanga about twenty-five miles west of llazelton.

Leaving the Sheena at Kitwanga, the rosd would ascend the valley of the Kitwancool as far as the village of Kitwancool and a short distance further on skirt the shores of Kitwencool lake; just beyond the lake an imperceptible divide is crossed and we are in the headvaters of the Cranberry river. Here we pass through ecsy burnt-off country, and directly ahead while the mountains look rorbicding, across the Nass river a foirly easy pass will allow a branch roau to connect up with Alice Am.

At 51 INile Post fron Kitwenga, another branch road south for about twenty miles would comect with Aiyansin, the centre of the fertile Nass valley.

Leaving the Oranberry at the 51 hile post and bearing north westerly through a region of level gravelly benches lightly timbered with jeck pine and birch, Follow the Mas river for fifty miles, crossing where it is constricted in a anyon with an island in the centre, and necessitating the use of two short briage Epans both under 100 feet iong.

After crossing the Nass, a chanse in the charactor of the country is noted; ne find heevior timber, mostly balsam and considerable growth of underbrush. fhis Senotes greater procipitetion and deay suow, wick continues as far north as Fout Cabin. Gowever, the construction is essy and seven miles beyond the Nass

Grossing, brings the route to the \because ans. River. Just across the Henna river is The foot of an outlying spur of the coast rang. At this point another branch road could turn immediately west und after passing Meziadin lake cross the coast range Through the Bear Pass, and give access to Stewnt forty-five miles froin Hanna Eiver; Bear Pass is the most remarkable pass to bo found on the coast range, the Wehest elevation at this particular section being not over 2000 feet above sea Level. Stewart is about 150 miles from Kitwanga, and two miles beyond Stewart -me intemetional boundary would be crossed and Alaska entered ct Hyder. Fifteen Eies beyond Hyder is the Premier Mine.

Continuing north with the main highway from the point of diversion to enter sowart, the road would follow the slow-flowing Hanna river to the sumit at an Levation of about 1750 feet, and cross Surveyors Creek and continuing on for a tea miles would cross Bowser river, a wide sluggish river with its outlet in Bowser 4av. Leaving Bowser lake and travelling along about twenty miles of undulating whtry to the crossing of a large stream known as Treaty creek. Treaty Creek can s erossed by a twenty-foot span at a narrow canyon and one mile further on brings The road across a timbered flat to the bank of the Bell Irving on the west fork He the Hass.

The next ten miles will probably be the most expensive of the whole route as
country is somewhat mountainous; fron this point the route would come to the 40-flowing Teigen creek and passing through about two iniles of beaver meadows, E wold contact the rukon Telegraph Line, where it crosses Snowbank Creek, task would be followed to its sumit.

At the contact with the Ielegraph Line, the distance would be about 160 Whe from Kitwanga, and at no time wolld there be an elevation to cross over 1900 tytt. above sea level, whereas the Telegraph Line has come 248 miles from Hazelton, +4tsed several summits, some of wich are 5000 feet elevation.

From this point the route would follow the Yukon Telegraph Line through a War level pass of about ten miles and an elevation of about 2050 feet. Grossing the divide and leaving the watershed of the Nass, we enter the shed Stikine, parallelling the Ningunsaw and down a gentle grade to the flat
sountry where it joins the Iskut river. The pass just trevelled is an easy one with very little rock work but somewhat swampy.

Leaving the Ningunsaw and turning due north to ascend the valley of the Isicut, the main valley of this river between its mountain walls is ten miles de. A branch down the Iskut for thirty-five miles would reach the head of nevigation and a ferry connection to the town of Wrengell, Alaska, be made. The route now (main route) enters a country of different character as it tends slightly to the castward further up the Iskut. Fore we are leaving the Coast nange and coming into a drier climate and lighter snowfall. The valleys open at and there is choice of several routes for a highway. Ari easy pass through the next range of mountains follows the Little Iskut, while another route anewhat longer but more beautiful, follows the forty mile chain of Lakes, Enaskan, Tetogen, Eddontonajon and Kluachon. These two routes meet on the Lestline or the second fork of the Stikine.

A decision will now have to be made as to whether to follow open bunchgrass suntry up the Morchua creek and cross the Stikine above the great canyon, or to Elow down the valley of the Klastline end cross the plateau at Buckley lake, and aiter a sharp descent of 2000 feet cross the Stikine the town of Telegraph taeek.

North of the Stikine the country is of a much easier nature, and the choice ta several routes is availoble; either the ' 1 or the Tuya may be asconded There a summit of about 3000 feet would be crossed in either route. Once over His divide the route would be on the waters of the Toku and another branch road wald give access to Juneau, Alaska's capital, by using twonty-five miles of a Terry from the head of Taku Inlet.

Approximately 180 miles from Telegraph Creek, an existing road would be taned, and koepine near the eastern shore of Atlin Lake, the largest lake in Entish Columbia, the town of atlin will be reached. A branch road fron across xtin lake, along the old Fantail Trail, could be built to the coast at skagway.

Leaving Atlin and travelling along the margin of the lake another thirty Lies would bring the route to the $60 t h$ parcllel of latitude, which is the
northern boundary of British Colunbia and the southern boundary of the rukon Territory. Sixty miles of very easy construction past Little Atlin lake and Marsh lake, and the zoad would be at Miles Canyon where the Yukon is compressed into a nanrow rocky cleft, which makes bridging very easy. Two miles further on the town of Witehorse lies at the head of navigation for the steamers piying the river Yukon to Dawsor. The proposed road would then head westwand for Kluane lane and Aleska.

The cost of construction woula vary over the portion above outlined from Fazalton-Kitwanga to whitehorse from "Booo per mile in the easiar parts to $\mathfrak{p} 20,00$ per mile for a few miles along the Bell Irving river; it might average 5000 per mile from Kitwnga to whitehoree, or an approximate cost of 300,000 ; to this must be edded the cost of bridges which woula approximate *i,500,000, cr a total of ${ }^{4}, 000,000$ eralusive of the branch roads mentioned. From Kitwarga to Infut the road passes a somewhat wet and snowy alrate, while north of Iskut the climate is exceedingly ary and geme is very abundant. Such a road would also give access to a great and almost unknow mineral belt lying along the eastern conbact of the coest batholith which is so expensive to ponetrate that it is impossible for the average prospector. The wealth of one new mine along the proposed rcute, such as the Premier, would repay more thar the cost of construction of the whole road. This can best be vorified by the fact that the Premier Mine, which is in the same formation, has paid the estimatod cost of such a road several times over. The gas tax from the tourist maffic alone should take care of maintenance and up-keep of such a highway.

A prime difficulty in drafting an advocative brief such as this lies in the choice between length with great detail and brevity with a risk of omissions. However, it is felt that an accurate and explanatory map used in conjunction with information already available and reference to certain records, such as the Report of the Cormission to Study the prooosed Hishway to Alaske (.1933), allows us to be brief with a minimum loss of deteil.

Therefore we trust that generous use will be made of such maps and records which will disprove adverse statements recently made through the press: (e.g. see Vancouver Daily Bun, issue Friday, June 23rd,1939, page 5, colum 4, in part "On the Comission's maps the Hazelton proposal is markea the "A" route, and the Finlay Forks the "B" route. Which route - it vill be the Comission's nost delica. task to recommend as between the two routes. The "A" route through Hazelton is nearer the coast but muns up through some river-cut country and over a 6000 feet high leveli.) Te have gone into this matter in considerable detail and believe the Vancouver Daily Sun or its informants are grossly mistaken, as we have no knowledge of eny 5000 feet level to be crossed on our proposed route.

Quoting Col.J.M.EOLston, page 53, Appendix B. Extract fron his Report to tho Commission to study proposed Lighway to Alaska (1933) - Mhat portion of the Telegraph Trail Iron Kispiox to Cabin No. 9 , I could find no maps covering, and it was therefore necessary to go over this portion and get data for grades, cost, etc."

Six yeare later the same condition exists, for no topographical survey has ever befn made of the section Col. Rolston mentions. Nevertheless from reliable sourees of information we have been able to locate on the available
maps of northern British Columbia, a route for such a highway which is entireiy feasible physically, as proveo by pack-train traverse, and of greatest desirability economically.

On page 57 of the 1933 Report, Col.Rolston further states:
"Skeena River - From the junction of the Kilankis and Skeena Rivers any route to Hazelton would of necessity be forced to follow down the Skeena River through a deep narrow valjey for approximately 50 miles. The Skeena valley will be expensive construction, as the river is in canyons a great deal of the time, and a route would have grades up the side hills over these canyons."

This we know to be an unintentional mis-statement of fact as apparently Col.Rolston was never apprisel of the fact that a very good route over a low divide is available by following the Kispiox river thence to the East fork of the Nass river, the existence of which route the attacheả map will show. As this route practically parallels the Bkeena route, it naturally can be used to reach Fazelton. This critioism, therefore, does no. appiy to the route hersin outlined,

Our map will show the most favourable route lies up the valley of the Kispiox river to the low-lying table-lend on which streans flowing in opposite directicns have their souice in a group of small lakes. North from this point no survev, or othe: published reports being available, we reforred for our inrometion to gane guides, native trappers, etc., named in the appendiz hereto, and are informed of two alternative routes. One of these continues north over the table-land, crossing the Nass river at or near the jurction of Vile Greek, thence north crossing the west Fork of the Nass at a point about eight miles below (south) No 7 Cabin on the oid rukon Telegraph trail. The other route follows the Nass river from Tile Geek to Sixth Cabin, thence north along the Telegraph trail to the point eight miles below No 7 Cabin where it meets the first desoribed route.

Leaving the Telegraph Trail at this point the route follows the Nass river .. Anthony Creek valley througn a low pass to Beimes creek which it

159.

crosses and proceeds to the upper Skeena valley at a point near the junction of Caribou Creek.

At this point we are again able to refer to Col. Col ston on page 58 (1933 Report), where he states that further consideration should be given to a route which coincides with the route herein recommended from this point. We quote,
"Route No.3. following the main Skeena river past Courier Creek and Beirnes creek to the summit between \dagger h三 Skeena and the Spatsizi, thence north to either the Klappan Valley, via the Little Klappan, or more northeasterly via the Spatsizi river to Cold Fish Lake and into the Klappan over a low civide." Referring to this route on page 58, and of route 2, Col.Rolston states, "I consider that the following route should be given further consideration and be thoroughly explored before any definite route is accepted." Again on page 59, Col.Rolston states in part, "the upper Skeena appears to be more or less open bench country with jack pine and open meadows.*

Leaving the Spatsizi River valley about halfway between Buckinghorse creek and Mink creek, the route turns westward via an unnamed valley to the Eaglenest Creek valley which it follows to the Klappan river, and dow tine Klappan valley to a point in line with Zalue lake, thence westward again into the Klastline valley. This watercourse is then taken to its junction with the Stj.kine which is followed and crossed at a point just above the confluence of the Tahltan river and joins here the present road between Telegraph Creek and Dease lake.

Alternatively from Ealue lake lower altitudes may be found on a route paralleling the west shore of this lake and the east shore of Eddontenajon lake, rejoining the first outlined route at Kluachon lake.

A further alteration in the route as outlined might prove advantageous in many ways, which only a reconnaissance survey will show. In any case, its length can be reduced some twenty-five miles by leaving the Spatsizi at Indian creek, which is followed across a low divide to the Little Klappan river, which valley is taken to the confluence of Eaglenest creek on the

140.

first described route. This cut-ofi has the whole-hearted endorsement of our previously mentioned guides and trappers, and of it, Col. Rolston (page 56,1933 Report) says:
"I found this valley a first-class route. The cost of construction would be comparatively light, as the valley consists of jack-pine benches or many open meadows, very similar in character to the Chilcotin country. It is interesting to note that all horses used by the big pack-trains pulling out of Telegraph Creek are wintered in the Spatsizi river, as the Spatsizi and Klappan areas produce bunch grass which the horses winter on very well.... The general elevation of the Klappan Valley runs from 2,600 feet at its junction with the Stikine to 4500 feet at the sumnit, a rise of about 2000 feet in some 80 miles. In fact the river is navigable for canoes for about 40 miles above the crossing." And refer again to his statement on page 58, already quoted herein.

Also, on page 59, Col. Kolston states: "Big game parties, leaving Hazelton and proceeding by pack-trail, invariably go into the area which would be touchsd by this route, i.e., the head of the Skeena and Groundhog Mountains. This is a marvellous big game-hunter's paradise."

On page 61, Col. Roiston again stites: "The Klappan Velley, however, is ebout one mile wide and consists of gravel benches and rocky side-hill slopes. It is much drier than the Nass valley and of a much more open nature. Jack-pine replaces the spruce of the upper Nass valley and the side hills are in many cases open ground covered with bunch grass."

Also, on page 6l, quote, "From mile 248 to the end of the section, mile 283, the rouse follows jackpine ridges, affording very cheap construction. This last section represents the cheapest portion of the route to construct, as the Klappan velley widens to about two miles and falls gradually to the Stikine river at elevation of 2600 feet."

The above quotetions refer to thet portion of the entire route we have outlined, extending Pron Beirnes Creek to Eddontenajon lake, from which point our route roltos some difficulties which col. Rolston mentions in connection with the $\mathrm{S}^{\text {tikine }}$ river canyon, by avoiding same until it is crossed near the

Tahlan confluence at 800 feet.
The physical advantages of this route are many. Among them are features which make for economical construction and maintenance; the route lies along valleys which afford low altitudes and easy gracies, providing at the same time an abundance of materials for construction, such as timber and gravel. Climatically, the route lies sufficientiy far east to be in a rezion of lignt precipitation and yet by virtue of its westerly location introduces many advantages of an economic nature.

Many economic reasons justifying construction of such a highway are to be found in Chapter VI, page 23 of the 1935 Report, and while these cover more specifically advantages to Alaska and the United States, parallels mey be drawn with regard to benufits to Canada. In fact, because nine-tenths of the road lies in Canada, the advantages would be even greater.

Enlarging upon the specific adventages of the western route, considerable Worth lies in the fact that construction could proceed from at least five points at once, by taking advantage of approaches to the route (at water feeight rates) on the southern end (Harelton), 176 miles from tide-water; Telegraph Creek (construction two directions), also lr6 miles from tidewater; and Whitehorse (construction two ways), llo miles from the coast at Skagway. The advantages of such a feature are self-evident, with regard both to construction of the primary road and feeders to the British Columbia coast and Alaskan coast line, of wioh at least five could be built economicaliy to serve the coast comunities. This allows for rapid construction of the main highway by permitting economical importation of materiais and supplies other than those located on the route, while allowing employment of five times as much labour, with a proportionate reduction in the time required for completion as compared to any other route having only one starting point.

In addition to the economies offected by this mode of construction, are tiose menting from the fact that this route requires jess new construction by a motter of 300 miles than any other route.

142.

Briefly some economic advantages to be derived only from the western route include:
(1) Service to that part of British Columbia north of the Canadian Wational Feilway most densely settled, resulting in greater traffic volume and subsequent tourist expenditures.
(2) Jse of the greatest possible amount of already-existing highway, serving a present permanent population through a region of known and developed agricultural value.
3) Provision of transportation facilities for development of a country mown to be rich in mineral and timber values, as well as the famous Groundhog inthracite coal area, to which only this route would allow easy access, and mlimited weter power.
4) A tourist highway unexcelled anywhere for scenic attraction, hunting and fishing, is afforded by this route, and we are again able to quote Col. 201ston's 1935 Report, page 69, in part: The scenery is unsurpassed The open mountains of the Upper Skeena, Klappan, etc. provide a wonderful srea for big game. hoose, caribou, mountain sheep and goat, are very zlentiful in this area and attract a large number of hunters from all over The world. A thirty-day hunting trip costs about $\$ 3,000$, which gives sone idea of the pay-roll provided by the big-gome hunters."

Topography and Geography in General
Because no survey has ever been made in the neighbourhood of this route, Ercluding the alternatives mentioned, no officisl records are available of atitudes, etc. Our authorities, however, among whon we must include Erpilota, are unaimous that at no point must elevations exceeding 4000 seet be soped with, and where such altitudes are met, they are gradually aproached on water courses. This fact combined with the sufficiently essterly location of the entire route, bejond the region of heavy precipitation, mecjudes any pussibility of difficult construction or maintenance due to sad precipitation, regardiess of the season.

By providing such alternative routes over short distances as are shown, we believe that a survey will prove the absolute feasibility of this route insofar as topography and climatic conditions are concerned, which, with such economic and geographic advandages as we can point out, will prove beyond question the superiority of this over any other route which might be proposed. The route is as far west as will allow of minimum precipitation, and as far east as it can possibly he to serve the primary purposes of any highway which might be projected to Alaska; service to British Columbia and Alaskan coast; cievelopment of northem interior of British Columbia; opening of vast mineral, coal areas and pulpwood stands; rapid movement of military function in circumstances requiring coast defence by communication with coast on navigable rivers; and as previously mentioned, connection up of developed comunitios between Fairbanks and Vancouver, or which only a few exist north of 55° east of this route to the Liberta - British Colunbia boundary.

Telegraph Creek - Atlin
Our resum to this point anvers only the iirst 300 miles north of Fazelton, taling us to Telegraph Creek, because we have first-hand knowledge of this section of the route and are positive with regard to its feasibility. Of the section north to atlin and Thitchorse, we have some authentic information, but feel that more specific and valuable data on this section can and will be proschted by the local proponents in that district.

Nevertheless, our presentation cennot be considered complete until Atlin is reached. Therefore we refer here to our availeble sources and believe no reascnable objections can be provea againsí either on a basis provided by a surveg.

Quoting IT George B.Bell of Telegraph Creak:
"Following up the Tahltar river 28 miles to head Jalmon creek, following Sheslay river to Macdonald party, 15 miles bejow Sheslay (Egnell) Station, \#na cast side Heart Mountain to Malin, continuine to atijn, via west side

Spruce Mountain and right limit of Little Nakina river, or to Toslin Lake, via east side of Spruce Mountain. Highest point under 3000 feet, sufficiently light arowfall."

The 1933 Report again sorves to corroborate this route. In J.H.Gray, in Appendix C, Dage 72 , says in part: "Only by a line up the Tahltan and Littie Tahltan rivers from a Stikine river crossing near Tahltan mouth (800 feet above sea level), via Klastline river, or some such route, from Klappan Valley, would consideration be given to a route via this portion of Telegraph Trai工."
:The Little Tahltan river, 10 miles from the flats, turns abrupty northerly into the mountains. The sumit or divide between this stream and Salmon or Hackett river is scarcely noticeable, the maximum height booked beillg 2,240 feet.
"At Camp 3 on Hackett or Salnon river, 15 miles from Tahitan Flats, elevatjon 1,980 feet, the first kodaks were taken. Views I and 2 show, respectively, the stamp and class of country passed through on the flets for 15 miles between Tahltan Flats and trree miles back of iagnell (Shaslay). View 2 slso shows the nature of side hili, from a point at extreme right of view and some throe miles east of egnell, that must be utilized along Fgnell areek (faintly shown on extreme left of viow) in order to reach the plateau level some 2,100 feet above Egnoll.
"Streani crossings and drainage generally would be light over this stretch, in fact inore favourablo condjtions could not be expected. The snowfall is from 2 to $2 \frac{1}{2}$ feet (Indian report).
"At Egnell, 1890 feet above sea level, I took a day for the exemination of Sheslay river and Egnell Creek.
"Sheslay river, 1800 feet at this point and poorly shown in view 3, bearing N. 55° H., could be easily descended for about 15 miles, whence a mountain pass bearing northeasterly could be utilized back to the Telegraph Treek (probably meant 'Trail') country about Dudidontu river, some 22 miles north of Dgnell.

145.

"The examination of Egnell Creek was satisfactory. A 150-foot span in cenyon would cross at an elevation oi 2,900 feet, followed by fair side hill for another three and a half miles to plateau level. The work on this six and a half miles would be heavy, but in my opinion more favourable than on the Sheslay river detour."

From these two reports, there seems to be no doubt as to the feasibility and ease of constraction of the proposed highway to Atlin. Altitudes and precipitation are covered in these quotations, and the scenery which j.s world-renowned, is mentioned by Col. Rolston on page 70 . We quote: Whe northern portion of this area consisting of Teslin, Surprise and Atlin Lakes, offers wonderful scenery. Atlin has taken advantage of this and prorided first-class tourist hotel with every convenience, including guides, motor launches, etc."

To attempt to outline the route beyond Atlin would be to allow our statemonts to degenerate from fact to hearsay, which is of no value, and we are convineed therefore that our presentation should properly be concluded at this point. That this route can be contimed northward with similar econony and advantage, we are sure, and feel that the most suitable location will be thoroughly ontlined by those more favourably situated to do so.

Authorities for this Route

George B.Ball, Telegrayh Creek, B.O.
Cherles Barrett, Barrett Lake, B.C.
George M. Deimes, Fazelton, B.C.
E.N.Dockrill, Telkwa, B.C.

All these men heve been in the country since l898, in the various capacities of prespector, surveyor, game guide, pack-train operator and winter mail carrier, and all have travelled the route herein described at all seasons of the year.

Stan. McMillar, Canadian Airway Limited pilot, stated on more than one occasion that the lowest passes north to Telegraph Creek lie on the route ouilined.

146.

Mileages - Hazelton to Telegraph Creek
Hazelton to First Cabin 40
First Cabin to Vile Creek 66
Vile Creek to Nass Crossing 20
Nass Crossing to Beimes Creek 20
Beimnes Creek to Caribou Creek 9
Caribou Creek to Indian Creek 23
Indian Creek to Faglenest Creek 46
Eaglenest Creek to McEwan Creek 12
MoEwan Creok to Klastline River 24
Klastline River to Stikine 24284

Notes: The map referred to in thie Brief is filed with the reoords of the British Columbia - Yukon - Alaska Highway Commission.

The "I933 Report" referred to above is the Report of the Comission to Study the Proposed Higlnvay to Alaska, The Department of State, Conference Series No 14, U.S. Govemment Frinting office, washington: 1933.

IOTES RE BRITISE COLUMBIA - ALASKA HIGHAX

By Woel Humphrys, Vancouver

There are, in my opinion, whoh opinion is based upon personal knowledge generally of the country through which such a highway would pass, gained during sone thirty years: experience in surveying, exploring, etc. in British Columbia, two reasonoble and feasible routes for the proposed AlsskaBritish Columbia highway. Eoth of these routes would naturally centre on Irince George: fron which point southward to the boundary line a generally good grevelled and partly surfaced highway is already in existence. From Prince George northerly there are two alternative routes generally speaking; each of which have minor elternatives here and there. Both alternatives should in my opinion, as well as leaving Frince George, have for their next comnon objective Dease Lake, for reasons that will be explained later.

The aistance fron Prince George to Dease Lake (which section I am considering first) over either route is much the same, though tho westerly route wich I will call the Hazelton route as marked on the accomparying map of British Columbia in green and numbered (1) is the shortest. The matter of distance, though of importance, is however only one of the things we have to consider, and in the case of aro. highway such as this, as in the matter of a reilvay, there ore a number of other considerations of equel or sreater importance to consider:
(1) Distance fron one given point to the next.
(2) Character of country traversed from the construction viewpoint whetner mountainous or rocky, obstacles such as mountain lakes (the usual type of British Columbia lake), streans and rivers to cross, etc.
(3) The comercial side of the question, resources which the road would tap and open up, the chief of which are doubtless in order of importance in northern Britisi Colmbia, Vukon and Riaska, mining, lode and placer; agriculturel, timber resources, and scenic value in connection with the tourist trade.

148.

(4) And of very great importance from the maintenance standpoint possibility of continuous year round use, clinatic conditions, particulerly with regard to snow in winter as well as rainfall in summer months.

I will now refer again to what I consider are the only two (from all standpoints) feasible and reasonable routes:

The westerly or Hazelton route (with variations) number (1) on map, coloured green, with variations marked (1A) and green (IB) and the Telegraph Creek route marked dark purple, and (IC) marked blue, a variation on route (1B). The other alternative I term the Fort St James Omineca route and this is marked (2) and coloured red with variations brow and marled ($2 A$).

I append herewith an approximate table of distances of existing road and road to be built, together with totals, osoyoos on the United Btates boundary to Dease Lake being the first section considered here:
(1B) Prince George - Hazelton - Dease Lake, Via Telegraph Creek:

(10) Prince Goorge - Hazelton - Dease Lake via Kinaskan Lake (avoiding Prince George - MazeJton, existing road 302.0 miles Hazelton - Dease Lake via Linaskan Lake, to buila $4.00 .0 \quad 1$ Bxiating hirhway, Prince George - Osoyoos 553.0"

Total to Dease Lake
1,255 miles

(1) Prince George - Hazolton - Dease Lake via Klappan River

This route recomnended

```
Prince Gecrge - Hazelton, existing road
    302.0 miles
Hazelton - Dease Lake via Klappan river
Prince George - Osoyoos, existing highway
    310.0 "
    553.0 "
(the shortest route) and 1,165.0 miles
(IA) a diversion of above for possible lower grade and lower
maximum elevation via Skeona River would be about 40 milos longer
or a total of 1,205 miles.
```

(2) Tha Fort St James - Omineca Route
This route would be over existing highway from Prince George to Fort
St James ot easterly end of Stuart Lake, approximate distance 115 miles
Fort St James - Manson Creek, partly built, approximately 120 "
To Dease Lake via Omineca river, approximately 390 "
Total, Prince George - Dease Lake 625 miles
Prince George - Osoyoos, existing highway 553 "
Total - United States bounary - Dease Lake 1, 178 miles
(2A) $\frac{\text { Fort St Janes - Omineca - Findlay River - Fort Graham - MoComell }}{\frac{\text { Croek - Stikine River - Dease Lake }}{\text { (marked light brown on map }}}$
Prince George to Fort St James
115 miles
Fort 3 to Janes to Wanson Creek
120 "
Manson Creek - Omineca River - Findiay River - Fort
Grakam, NicConnell Creek - Dease Lake, apuroximately
480 "
Total this route, frince George - Dease Lake
715 miles
Plua United zates boundary to Prince George
553 miles
I, 268 miles.

There have been some suggestions that the highwey in question should go via Finley river to its headwaters at Sifton Pass, thence down the Kechike river on the Liard wetershed and presumably to the junction of the Kechika With the Tumagein river, and then westerly via Deadwood Lake ond WoDame Creek, Hudson's Pay post on the Dease rirer, and so up the Deese to the north
ond of Doase lake. This route is in my opinion not to be recomended. It is a good degl longer, it is too far east and being along the Finlay to Sifton Pass in the "Rocky Mountein Trough" will encounter deep winter snow, extreme cold and later spring, as well as high olevations, and will have no advantages in the way of tapping rosources over the other routes, and is in fact I think rot so useful in this regard.

I consider that in connection with the nocessary preliminary investigation to be followed by reconnaissance surveys it is not necessary nor desirable to pay any attention to any other than the two routes with their variations as outlined above. From the standpoint of resources, both have much to recomend then.

Following is a summary of conditions as applied to each route above, being the points referred to in the first part of this statenent and numbered (1) $\ddagger 0(4)$.

Climatic Conditions

Before citing that which I think it advisable to consider generally, the well known fact that, regarding climatic and meteorological conditions the Coastal trough, that is the depression immediately behind the Coastal mountains and which may be said to extend parallel to the racific Coast line more or less continuously fron the Mexican border to the Alaskan, is the dryest and most arid area of the Pacific.

The reason for this is well known to meteorologists, that is, that the moisture-laden movements which originate enerally in the north Pacific and oring practically all our precipitation here, meet the Coastal mountains and precipitate most of their moisture, then pass easterly high up over the Coastal trough, causing the dry balt of British Columbia. Compare the annual precipitetion in the Okanagan Valley at Kamloops, Ashcroft, Lillooet and so on witi the precipitation at similar latitudes in the Cascade and Rocky Mountain trough, for instance, the latter of which is the wettest and has by far the heaviest snowfall. I give the following exemples:

Dry Belt (Coastal trough). Ashcroft, average anmual precipitation about 7 inches, Vernon, 15.24, Kelowne, 12.74, Penticton, 10.64; Oliver, 7.94, and with practically, as far as highways ore concerned, no snowfell; and further north Lillooet, 13 inches with average of only 19.5 inches snow, Quesnel, 18 inches, of which 44.3 inches is snow; Prince George, 19.23 with snow, 61.5; Hazelton, 18.49, and smow, 42.1. (Please observe greater proportion of snow the further easterly you go); Atlin, 11.16 with 54,7 inches of snow; Mayo, 10.98 with 43 inches snow; and Dawson, Yukon Territory, 12.60 with 51.7 of it in snow.

Midde Belt, (being Selkirk or Rocky Mountain trough) Revelstoke, 43 inches with 141.4 show; Nelson, 45 and snow, 80; Blue River (North Thompson), 36.54 with snow, 159 inches; Parkerville, east of quesnel, 46 inches with snow, 184; McBride, 23 with 76 inches snow, etc.

Above being so it appears obvious if other conditions on asterly route are similar, that the Coastal trough is the right one to follow.

I will now consiaer the routes as outlined above separately, in View of tine conditions (1) to (4) set out in the first part of this statement.

Route 1 Prince George, Dease Lake via Hazelton and Klappan river. This route (I) is the shortest and a fair highway already exists from the boundary line to Hazelton and up the Kispiox valley 25 or so miles. (2) It is an adnitted fact that road construction along the dry belt is not only easier and chesper by rature of the large gravelly and sendy plateaus and open valleys found there, but maintenance cost to keep roads open the year around by reason of lower precipitation, is less. Also I think ariyone who knows the country will admit that the winters are neither so severe or so long in the Coastal trough as farther east. (3) Fesources. The proposed route (1) follows roughly from Hazelton northwesterly the eastern contact of the Goast Bathoijth which is known to be one of the most fertile if not the most fertile area from a mining stendpoint, Such a road will pass close to the fairly well-known anthracite
cosl Rield of Groundhog mountain area, end will traverse a country which is inowr to ve rich in placer possibilities. This route also treverses a generally fertile country from the agricultural viewooint, and will follow many beautiful valleys with good soil and good grazing areas, such as for instance the Kispiox valley to mention but, one.

From the standoint of timber, there are my large areas of quite well timbered country clong this route. It js a veritable paradise for the funter and fishermen, which condition applies egualiy to either of the two routes or thoir atornatives.

There are no high sumits to cross on thie routo and remarkably little rock mork. No great aifficulties cegarding rivex cassings (Stikine river excepted) which any route must cross, and no rock and mountain surrounaed lakes to encounter.

Rovite 1 B A variotion of the Hazelton route going to Telegraph Greok and using the existing road, Tolograph Crook to Dease Lake. This route is longer than (I) and I do not recomend following the present highuy along the northerly side of Stikine fron Relegraph Creek to Dease Lake, as it is steep and olimbs high above the Stikine Canyon.

Alsc following, as it mone or less would, the route of the old Yukon Telegraph trail, it orosses minor sumnita which aro avoided on route (1). It would cross Ruspoerry Pass, elevation 4,800 foet, whereas there appears no resson why route (1) should rise much highen thon 3,000 feet with easy grades throughout.

From the rescurces viempoint, IB is equally good with (I). Conditions, therefore, to compare are;

No. .. Listance. Route $2 B$ is some 110 miles longer.
Nos. Ekacacter of Country. IB will cross higher sumitis and will I think encountex probably more rook work though this is not excessive. No 3. Esscurces. Mining. Both routes will traverse a country with great potential lodo no placer mining possibilities, both tep a country with good aress in placee, of agricultural and grazine lands and they are about
equal $2 s$ far as timber resources are concerned, as also from a scenic and tourist and sportsman's viewpoint.

Route IA is a minor variation from Route 1 , designed to follow the Skeena valley in order to avoia elevation, and is equally good as 1 but some 40 miles longer.

Route 10 is a variation of $1 B$ to avoid Telegraph Creek and higher elevation along Telegraph Trail, and designed to go via Kinaskan Lake. It is longer than Route l but should be investigeted. Comparing with (1):

1. Distarce. About 40 miles longer. (2) Character of Country Compares favourably with (l) and on survey may prove the better, but there are no undue obstacles, heavy rock tork, bad sumaits, etc. to encounter, and climatically compares very favourably with route 1. (3) Resources. Route IC will tap a country equally rich in mining and agricultural wealth in my opinion, and one which compares favourably and equally with others from the sportsman's or tourist's angle.

All of the above, however, before any decision as to route is made, should be covered at least by a reconnaissance survey.
goute 2. Fort st Jomes - Omineca. Hollowing existing highway westerly to Venderhoof thence northerly via present highway to Fort st Jemes at end of Stuart lake, thence northerly to Manson Creek along the present partly built roadway. As far as this or at least as Stuart Lake, this route has much to recommend it. It traverses a good country, the precipitation is light (average 15.50 inches with average snowfall 53 inches at port St Jemes). Prom thence northwesterly I think anyone who is acquainted with the Liard river area will agree that this is to be avoided, and that the route via fort St Tames and Omineca should also, as the others, head more or less for the Dease Lake country. Our highway then, via Mans: Uneek and Germansen should follow up the onineca nore or less to ita headwaters, along part of the Sustut river to Dease lake. This route would traverse country comparatively
easy from a constrnction standpoint, though, I submit the precipitation and snowfall will be found heavier than farther west. It will tap a country known to be rich in placer fields and with good possibilities for mining generally. From the scenic, tourist and sportsman's viewpoint its resources are doubtless unsurpassed. So, to compare as before from our four viewoints:
(1) Distance. This is one of the shortest routes. Approximately 1108 miles from United States boundary to Dease Lake, practically the same as route (1).
(2) Oharacter of country from construction angle. The country is generally gravelly bench and plateau or open valley. But littie rock work should, or need, be encountered and there should be no expensive or difficult bridging problems.
(3) Commercial and Resources. From the mining viewpoint, this route traverses probably one of the most important potential gold placer areas in British Columbia. From the lode mining angie, I do not think this route will be as useful as the westerly route vie Hazelton. It is farther away from the Rastern Contact of the Coast Batholith.

Agriculturally, there are many areas of good agricultural lands, but I think it will be found that along this route the seasons are shorter, the country more subject to sumer frosts, and thereiore not so suitable for orops, though there are many good areas of grazing lands where stock will thrive. There will be found a good many areas of quite good timber, though I do not think as good as the westerly route, wiile from the scenic and sporting viewnoint it is, I an sure, unexcelled. (4) Maintenamee. Climate. As already stated it will, I think, be found that the average elevation of this route is higher than the more westerly ones, the precipitation will average more, and snowfall considerably so, while the winters are longer farther east and spring breakup later. Compare, for instance, further south, Barkerville with quesnel.

Rute 2A. Altemative via Fort St James - Manson Creek. As has been frequently suggestod, to go dow, not up, the Omineca to the Einlay River
valley, leaving the Finlay valley at the Ingenica, up the Ingenica to McConnell oreek to headwaters Stikine river and across to joint route 1 south of Stikine and thence along Route I to Dease lake. To compare: (I) Distance. This route is approximately 100 miles longer than either route 1 or 2.
 ravourably with the others. No heavy rock work or grades appear necessary, nor bridging problems.
(3) Commercial. This route also will traverse a country rich in placer mining possiuilities. dill tap a well-known interesting lode mining area along the Ingenica and farther, Provides also access to some excellent agricultural lands on the Finiay, Ingenica, while from the tourist and sportsman's angle it also is oubtiess unexcelled. There is a cerbain anount of good timber also, although the good stand of timber along the Findlay has been badly injured and much destroyed by fre.
(4) Climatic Conditions. This route will encounter much hearier averege precipitation than the westerly route with in many places, very heavy winter snows. It has also a shorter sumer and longer winter season also.

The other route so much spoken of via Sifton Pass (headwaters of Pinlay rifer) is not in my opinion to be even considered. It foliows the Rocky Mountain trough with its very heavy snow. Has high olevations. Trends too far easteriy and leads to the Liard river via its branch, the Kechila river. The whole route will be too far east. Whe country in the vicinity of Liard more rocicy and mountainous, making for very expensive construction, while the negvy snowfall and long winters will make maintenance for any length of time almost proniuitive.

I do believe, however, thet before any final decision is made, or any actuai ground surveys commenced, that an aerial and photographic survey of all possible routes with grouna control parties for each aerial should be nade. With partioularly attention to obtain ell possible detail on routes (1) and (2) and theil variations. This wow whether finally along the route
adopted for the highway or not is well worth while, since the information obtained will be of great value both fron a mining and general resource survey standpoint. This work could, at comperatively snall cost, be readily completed this year with proper organization, giving opportunity during the winter to make a detailed study and general decision as to the best route; which would facilitate an actual start of detailed location and construction early in 1940.

In closing this memorandum I think I should call attention to one quite important consideration in connection with the construction and maintenance of the proposed highway, that is, convenience at the present time to transportation for supplies, machinery, etc. required. The Hazelton or Westerly route undoubtedly is superior here: Access at its (unconstructed) southerly end by both rail and highay et Hazelton. Again in summer months by boat by way of Stikine River to Telegraph Creek - Dease Lake, and again farther north via White Pass and Yukon Railway to the Yukon at Lake Bennet and the Atlin Lake country. J.t must be adinitted that these three points of attack will prove a real factor in cutting construction cost; also, after construction, access to the northesterly-southeaisteriy Mexico to Alaska trunk road (of which the Alaska highway is an important link) from coastal cities, ports and points is much to be desired.

The easterly route is too far away for this, at least for many years. The last point is of the very greatest importence from the comercial viewpoint as anyone must readily see and admit, and should therefore be given carerul oonsideration before deciding on the adoption of any routs farther easterly than necessary.

I therefore maintain that the westerly or Hazelton route ivo (I) is:
(1) The only one practical to serve coastal connection either in British Columbia, Yulron or Alaska.
(2) It will traverse a country which is the best settled and needs such a road most urgently and with best reason.
(3) It provides all-Cenadian comunication just behind the Coast range and

157.

and would avoid the necessity of crossing the Alaskan Panhande.
4) Access to coast readily provided, in addition to existing access at Frince Bupert, at Stewart, B.C., and Iyder,Alaska, at Wrangell, Juneau and Ekagway.
5) Follows more existing highway which only requires improving.
j) Obvicus advantages of ready coast communications in wartime, having the Lual adventage of protection from the coast by the Coast range and at the same Ene, ready communication to coastal points.
-) Call on account of more favourable climate, be kept open in spring. E) For visitors and tourists, as well as business men who want access to ne northern interior or to interior Yukon or fiaska, access at different sostal points would avoid the long drive to Prince George or Fiazelton.

This nemorardum is respectfully suomitted with the wish, in which I am wre most people who know the country concur, that unless some very much more ogent reason than heretofore set out is given for adopting the easterly route on routes, that the proposed highway will follow the westerly route, which has =1 the advantages of the easterly and mone of its disadvantages, and will Whout doubt be the cheapest and quickest to construct, as well as providing $+2 \geq$ lowest maintenance cost.

Respectiully submitted

(Signed) NOEL HOMPITRY

Thoouver, British Columbia,
May Brā, 1933.

[^0]
Wukon Section of Highway

In the first part of my memorandum re the proposed British Columbia - Alaska Ksinay, I have confined my remarks to the section from the international gondary to Dease Lake, British Columbia. There is not, I think, much angment now controversy as to the balance of the route to connect with existing Wited States road system in Alaska interior.

There is no difficulty from Dease Lake on to Atlin Lake, the country eneraliy being foiriy open with rolling hills and quite wide valleys, with god terrain for road construction and no obstacles which cannot be readily zucided. This section of the highway as is quite well known will traverse a sountry rich in gold placer potentialities as well as lode mining. It gears evident that probably the shortest and most useful route will be from Ease Lake to Teslin Lake and thence westerly to Atlin Lake, with a considereble Deal choice of good routes. From the Atlin Lake district the road would Fontinue on northerly to Carcross, to Thitehorse and to Dawson and from there monhesterly to join the Fairbanks road south Irom Fairbanks. The distance mom Dease Lake $উ 0$ Fairbanks will be upwaras of 1000 miles. It would be Gorter not to cross westerly Pron Teslin to Atlin. Lake, but follow up the Wotalinqua (Tesiin) riter. The other route via Atlin, however, would maverse the Witehorse-Dawson road and some construction cost would be saved yaro.

In ary event the Fukon section of the highway presents no difficulties as will, generally speaking, be cheaper construction than will the British * Zumbia section though maintenance costs will be just as great or greater on beount of course of the longer winters in the north.

I think that it would be advisable to follow the Teslin Lake and Teslin HVEr route to damacks as this will serve a more useful purpose, and the Atlin Lhte route is already senved to sone extent by the existing road, to which the ther would be connected in any event.

Total Length of Highway, International Boundary to

 Fairbanks, Alaska, via Hâzelton, Dease Lake, TeslinLake and River, etc.
(Approximate distances)

Section	Existing Road	To Build	Total
United States boundary to Dease Leke, British Columbia	855	310	1,165
Dease Lake to Frairbanks, ria Teslin Lake and River	150 (approximate)	870	1,020
Totals	1,005	$-1,180$	2,155 miles

Bearing in mind of course that a very great part of the existing nighway requires regrading and surfacing, in many places complete revision zight be advisable.

Respectfully submitted.

(Signea) NOEL HUNPFRYS

Vancouver, British Columbia
May $16 \mathrm{th}, 1939$.

MENORANDUM ON ROUTE "B"

By F.C.Gree:-Surveyor-General of British Columbia

The following notes are offered as a contribution toward future discussions of this project, and they deal only with suggested foute "B" - . the Rooky Mountain tronch route.

The distance following river valleys from Finlay Forks to Pelly Crossing is about 827 miles, and is about equally divided betwoen British Columbia and Yukon.

We have contour maps from Sumit Lake to Finlay Forks, secured during the Pacific Great Eastern Railway Resources survey of 1929, and from these maps and from other infometion, it can be said with certainty thot the route via Crooked, Pack and Parsnip rivers to Finlay Forks is feasible and of light construction, and has a maximum altitude of 2,500 feet at Summit Lake.

On the suggested route to Finlay Forks, via Fort St James, Gaffney Creek and Wanson Creek, information is less complete, but it is no doubt feasible, and has a maximum elevation of about 3, 800 feet at the head of Gafinoy Creek.

From Finlay Forks mortherly along Finley river velley, the Surveys Branch (Eritish Columbia) has a triangulation net to a point north of the nouth of the Ingenica river, but has only sketch topography, while from Ingenica northward through Sifton Pass, down the Kechika river, up the Liard mver end its tributaries and dow the Pelly river, no surveys have been mede and we are dependent for information on sketch meps by Swannell to Whitowaber, Inspector Woodie (waggon road to Klondike, 1898), Hart and Dr Dewson, these toguthar covaring the entire route but only in a very general manner.

Aerial photography and the topographical mapping of a strip would seem to offer the most speedy, certain and cheapest wey to guard against costly
errors in location, and would greatly reduce the cost to the Public works Department of the final location Survey. The Surveys Branch of the Department of Lands is best equipped to carry on triangulation and topographic mapping, and the engineers of the Public lorks Departinent to make the actual location.

Aerial photography without triangulation and topographic control loses most of its value, as in itself it offers no satisfactory way of getting elevations or the true scale of the photographs, and for best results the topographers should have air photos with them. The aerial photography and main triangulation should preferably be carried out one season in advance of topography.

Along the valleys of the Finlay, Fox and Kechika rivers it would be advisable to photograph a strip ten niles wide, takine in five miles on each side of the river channels, and on approaching the main Liard river, a wider area south of the rivar might be necessery. The 412 miles between Finlay Forks and the point where the Ifard crosses the 60th parallel would, accoraing to the above, require about 5,000 square miles of aerial photography. Photography from altitude 15,000 feet with six inch cone Tould, for the averege valley altitude of 2,500 feet, give photographs at The scale $1 / 25,000$, this being about 2,100 feet, or 32 chains to the inch. Photographs would require a sixty per cent overiap fore and aft, and a twenty per cent interal overlap, for use in the sterooscope. Ghotography such as the above, covering 5,000 square miles, could be contracted for at about $\$ 16,000$, whereas by day work it might cost much Less or more, depending on the frequency of perfectiy cloudiess and mokeless deys.

The Surveys Branch (British Columbia) has no appropriation to cover aerjal photography, but if air photogrephs could be secured, two triangulation and six photo-topographical survey parties could, in two seasoni, produce a man on a scale or one-half mile to the inch, showing

162.

one hunared foot contouns, and covering a ten mile strip following the rivers from Finlay Forks to the 60th parallel. To accomplish this it would be necessary to add $\$ 20,000$ per annum to the present surveys vote, or a total increase of $\$ 40,000$ for the two years. The resulting topographio map would be of high quality and of permanent value for general purposes.

[^1]MEMORANDM RE FOREST CONDITIONS ON ROUTE OF ALASKA HIGHNAY
By V.ED.D.Ealliday
Dominion Forest Service
Department of Mires and Resources
Ottawa

Abstract

Proposed routes for the British Columbia to Alaska highway pass through portions of three forest regions. The general forest conditions of areas tributary to the two proposed routes are as follows:

goute "A" Hazelton to Dawson City via Kispiox, Skeena and Stikine rivers, Teslin and Atlin lake areas, and Lewes river.

British Columbia

1. Hazelton-Kispiox-Skeena rivers. This division falls within the western portion of the transition section of the Montano forest region. The forests consist mainly of Rngelmann spruce, with intrusion of two coast forest species, westem hemlock and western red cedar. The former species occurs on qpecialized sites, usually about 2000 feet eleration, and the latter on the sper benches of the rivers in small quantities suitable for poles.

Alpine fir increases in abundance towards timber line and black cottonwood is noticeable along the ilood plains of the rivers. As the result of heavy Gris there are some areas of lodgəpole pine, and poplar mixed with spruce; Gni white spruce has been reported from the district.

The Kispiox velley is of ratier an open nature, with large meadow areas, ari is of fair agricultural value.
2. Upper Skeena river The forests of this valley come within the sub-Alpine Erest region. Ergelman spruce and alpine fir are the principel species, with tye fir increasing in abundance at higher elevations. Lodgepole pine follows 7 mm , and there is some black cottonwood along the river banks.

In the northern parts of the valley timber conditions deteriorate and stands tecone patchy. Abont seventy-four per cent of the area is nade up of non-

164.

. productive barrens or alpine scrub.
3. Stikine-Piya rivers North of the divide the Stikine plateau section of the Boreal forest region is encountered, and which is characterized by a dxy climate.

This plateau is sparsely forested, whit a coror of white spruce, lodge. pole pine, aspon, and white birch. The treas ase often of a stunted nature. In addition, bleck cottonwood is found along the banks of the rivers.

There has been consideraible buming of the forest with a consequent second growth of willow, aspen, iodgepoie pine, and seatterod space. Alpine fir cocur nore especiaily towaris the headwaters of tho rivers, and eround the timber-Iine.

The upper slopes of tine valleys and the plateau in general show grassy alpino conditions, and it is estimated that over 80 per cont of the area is above the line of merchentable timbar.

British Columbia - Yukon Territory
4. Etlin -. Poslin leke areas - Lenoe mivor - Pelly Crossing - Dawson

This portion of the route cones within the Yukon section of the Boreal forest rogion. The climate is dry and cool.

Tho southom parts are rather flat in nature, with a scattered growth of white and bluck anruce, the latoter mostly on grompy ground. The trees aro generally scrubby in sizo but individuels may reach fair proporticns. Patches of iodgepole pinu occur and there is some scrubby black sottonwood along the rivers.

The northom parts are more irregulan in nature, but with rauch the seme growth of timber. Grassy areas are cormon for the whole area and are roported to be charactoristic of south and west fading slopes. Worth and east facing slopes, however, are usualiy well timbered. Alpine fir appears to be scarce in or absent fron the country contiguous to the route.

Estimates

Recent estinates for merchantable timber are available only for a small portion of the route. There are none for the Ykon Territory, and those for the Stikine drainage basin include portions of the Coast forest region in the lower reaches of this basin and which could not properly be considered tmibutary to the route. Species found here are western hemlock and Sitka. spruce. It must be clearly understood that estimates given are of a very Eereral neture.

British Columbia

Uppor Skeona and Kispior	474,200	1,630,200	1,145,100	1,566,100	254,300	4,595,700
Stikina- Unuk	707,840	1,189,440	1,058,720	284,640	93,840	2,612,640
AtIin ${ }^{2}$	96,000	-	134,400	19,200	38,400	192,000
	278,040	2,819,640	2,318,220	1,869,940	392,540	7,400,340

Notes: I. The Forest Resources of British Columbia. B.D. Whinolland, 1937.
8. Foresta of Sritish Columbia, f. Homitrord and d.D.Craig. Comiesion of Conservation (ottewa), i91e.

166.

Prince George to Dawson City via Salmon, Parsnip, Finlay, Kachika, Liard, Frances and Pelly rivers

British Columbia

2. Prince George - Salmon river. This country comes witnin the Transition Zection of the Montane forest region.

The principal forest type is a mixture of spruce and alpine fir with, zt Lower elevations, Douglas fir. The latter special appears to have been Fore abundant at one time, and small areas in a nearly pure state may be tound. The spruce has usually been considered to be Ingelmann spruce, but teaent investigation indicates that in the lower altitude forests a large spoportion may be white spruce.

As the result of fire, large areas are occupied by lodgepole pine. On Etches of heavier soil this species is repleced by poplar.

Parsnip river This well-timbered drainage basin is usually considered Ta part of the sub-Alpine forest region, but more detailed information may snow portions to belong more properly to either the Montene transition sestion above, or to the Boreal forest region.

Engelmann spruce and alpine fir form the principal forest type, with the zincreasing in abundance toward timber-line. Fires have replaced considertrie areas of this type by one of lodgepole pine. There is a sinall quantity de Douglas fir on very warm sites, nixed with the spruce, or in small pure ztands. Investigation may also show white spruce to be of some importance tn the river valleys.

Or the total area, thirty-nine per cont is considered to be nonroductive. This iigure covers berrens, scrub, swamp and water.
3. Finlay river. Liks the last unit, this basin has been considered as Athin the sub-Alpine forost region, but recent informetion indicates that at ieast the northern half is properiy within the Boreal forest region.

Over half the erea is classed as above merchantable timber-line, and eighty-four per cent of the total area is considered as unproductive.

167.

Wuch of the forest has been burnt so that lodgepole pine now covers sonsiderable ground. Wrgelmann spruce and alpine fir types are present the ictter species forming the mein sub-Alpine type at higher elevations. crer a great deel of the valley, however, the Boreal white spruce is the saracteristic tree, together with aspen, bolsam poplar and black spruce.
\therefore Kachina - Liararivers This division comes within the Boreal forest proper and constitutes the Upper Liard section.

Iike the preceding unit, over half the area is above merchantable timberline.

The dominant species is white spruce, mixod vith alpine fir more specially as the tree-line is reached. Lodgepole pine follows burning, and wmarack and bleck spmace occur on swamp lands. Aspen, balsem popler, and hite birch, are present, often in some quantity but reported to be of poor quaity, and there is said to be a large amount of "fire made" prairie.

Tokon Torritony

6. Frances river Phis unit also comes within the Upper Liard section of the Boreal forest region. The main valley is reported to be well wooded though much burnt.

White spruce is the characteristic species and reaches diameters of 24 inches. Alnine fir mires with it in places and becomes prominent towards timber-line. White birch and balsam poplar are both present, black spruce and tomarack grow on swampy ground, and lodgepole pine follows burn.
6. Peliy river - Dawson The route now comes within the Yukon action of the Boreal forest region, where climatic conditions are drier than in the previous units. The river valleys are wide and, although forested, there is usually considerable difference in character betweon the south and south-west facing, slopes and those opposite ther. On the former, tree cover is sparse and grassy areas generel; on the latter, forests are reletively well developed. Whito spruce and black sprice are the most abundent trees. The former may reach to 24 inches in. diameter but with reduced height growth. On the

168.

avorage the timber is anall. Aspon, balsam poplar und wite birch mix with the white spruce and form small groves; lodgupole pine occurs on graveliy torraces, and black spruce in swmpy areas. Ramarack has a acstored ropresentetion but is mostly found in the upper Pelly dreinege, while alpine Bir becomes doninunt townds troe-line but does not seen to occur much ferther rest then the junction of the Polly and Mocrillan rivers.

Estinates

Recent merchantable tirbor estimates are available for torritory adjacent to the route in Britiah Columbia. No estimates are obtainable for Tho Yukon Territory. In respect to the Finlay Forks - Huason Hope drainage basin, over half this area can not be considered as tributary to the route.

$\frac{\text { Drainage }}{\text { gasin }}$	$\begin{aligned} & \frac{\text { Merchant }}{\text { able }} \\ & \text { acreage } \end{aligned}$	Douglas(Tithousand Bosuce log	$\begin{aligned} & \text { Fir } \\ & \text { feet }-\mathrm{Brj} \\ & \text { scalo } \end{aligned}$	$\frac{\text { Lodepole }}{\frac{\text { Eine }}{\text { Colunbia }}}$	Total
$\begin{aligned} & \text { Salmon } \\ & \text { river } \end{aligned}$	116,600	35,800 396,800	55,400	208,300	696,300
$\begin{aligned} & \text { Parsnip } \\ & \text { niver } \end{aligned}$	587,100	108,200 2,874,000	941,400	399,900	4,323,500
```Zinlay Zorks - Zudson Zope```	321,700	- 1, 713,400	474,900	321,400	2,509,700
$\begin{aligned} & \text { Onenies } \\ & \text { चiver } \end{aligned}$	42,400	95,500	69,600	43,000	218,100
$\begin{aligned} & \text { Einiay } \\ & \text { river } \end{aligned}$	176,500	831,200	191,800	66,200	1,089,200

$$
1,244,300 \quad 144,0005,910,9001,733,100 \quad 1,038,800 \quad 8,826,800
$$

(Signed) W.f.D. Fielliday
november 24th, 1939

[^2]| Area | $\begin{aligned} & \mathrm{T} \overline{\mathrm{~B}} \\ & \text { No. } \end{aligned}$ | Drainage | CapabIe Merchantable | Imature Not Satis- <br>  factorily <br>  Stocked | $\begin{aligned} & \text { Tol Mimber } \\ & \text { ductive } \end{aligned}$ | ```Per Cent of Total Area``` | ```Incapable of Producing Commercial Timber``` | Par Cent of Total Area | Total <br> Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1. | Upper Skeena River | 741 | $103 \quad 310$ | 1,154 | 18 | 5,086 | 82 | 6,240 |
|  | 2. | Upper Stikine River | 239 | 1,557 | 1,796 | 15 | 10,178 | 85 | 11,974 |
|  | 3. | Atlin Region | 150 | 431 | 581 | 6 | 8,752 | 94 | 9,333 |
|  |  | Total | 1,130 | 2,401 | 3,531 | 13 | 24,016 | 87 | 27,547 |

Fstimates for drainage basins 2 and 3 taken from
Commission of Conservation Report - Dated 1917.

Porest Surveys Division. 5/2/38.

FORFST ECONOMICS
DITISTON
"P.S.McK."

## MERCHANTABLE TIMBER (IN THOUSAND BOARD FEET)



```
FOREST IAND CLASSIFICATTON (IN SNUARE MILES)
```



Porest Surveys Division. 5/8/38.
Commission of Conservation Report-dated 1917.

FOREST FCOMOMICS
DIVISION
"P.S.MCK."

Area	$\begin{aligned} & \text { D P } \\ & \text { No. } \end{aligned}$		Drainage	Merchantable Acres	Species				Total
					Fir	Spruce	Balsam	Lodgepole Pine	
B	1.	Parsnip	River	633,000	108,000	3,079,000	990,000	429,000	4,606,000
	2.	Omineca	River	42,000	--	95,000	70,000	43,000	208,000
	3.	Pinlay	River	177,000	--	831,000	192,000	66,000	1,089,000
	4.	Dease,	Kachika River	29,000	--	58,000	15,000	72,000	145,000
			TOTAL	881,000	108,000	4,063,000	1,267,000	610,000	6,048,000

Note: In addition to the above estimates, there is The estimate for this species, which occurs along the main water courses, should be considered Iow.

Estimates for drainage rasin 4 taken from Commission of Conservation Report-dated 1917
"P.S. MCK."

## IIUT OR UUBIICATIONS OP GAOLOGICAL BURVEY

of chada, covertng mTheral rasources in iontrbin
BRTTISI CCLUBBA ABD YURON TERRITORX.

Report on an exploration in the Yukon district, North west Territories, and adjacent northern portion of British Columbia, 1887. By G.v.Dawson. i888.

Sumary Report for 1893; An exploration of the Portland Cana; Observatory Inlet and the Naas River, British Columbia. By J.icDvoy. 1894.

Feport on an exploration in the rukon District, North west Territories and adjacent northern portion of British Columbia, 1887, with extracts relating to the Yucon Listrict fron report upon exploration in the Yukon and Mackenzie basins, 1887-1838, by R.G.McConnell. By G.M.Dawson. 1898.

Sumary Report for 1900; Feport on tests of auriferous black sands from二tin District, British Columbia. By J.B.Porter. 1901.
zeport on the Atlin Kining District, British Columbia. By J.C.Gwillim. 1901.
otes on recent discoveries of coal in British Columbia. By Goiv.Dawson. 1901.

Sumary Report for 1905; The Unuk River Mining Fegion of British Columbia. Ey F.E.right. 1906.

The Telkva Mining District, British Columbia. By f.I.Leach. 1906. Sumary Report for 1907: The Bulkley Valley, British Volumbia. By w.i. Leach. 1908.

Jumary Report for 1908; The Bulkley Valley and vicinity, British Columbja。 $3 y$.T.Leach. 1909.

Ereliminary Menoir on the Lewes and Fordenskiold Siver Goal District, Yukon Ferritory. By D.D.Cairnes. 1910.

We Skeena River District. By I. I.Leach. 1910.
Summary Report for 1910; Portions of Atlin District, British Columbia. By 2.D.Caimes. 1911.

Skeena River iistrict. By I.I.Leach. 1911.
zortlend Canal District. By R.G.heconnell. 1911.
Sumary report for 1911; Observatory Inlet, British Columbia. By R.G. CcComell. 1.12.

Gortland Canal District. By E. . Moconnell. 1912.
Seconnaissances on the Upper Skeona Rivar between lazelton and the Groundhog coal-fielo, Oritigh Combia. By G.b.valloch. 1912.

## 174.

Salmon River District. By R.G.McConnell. 1912.
Wheaton District, Yukon Territory. By D.D.Cairnes. 1912.
Portions of AtJin District, British Columbia. By D.D.Cairnes. 1913.
Portions of Portland Canal and Skeena Mining Divisions, Skeena District, British Columbia. By R.G.McConnall. 1913.

Excursions in Northern British Columbia and Yukon Territory, and along the North Pacific Coast. 1913.

Portions of AtIin District, British Columbia, with special references to lode-mining. By D.D. Cairnes. 1913.

Summary Report for 1912; Geological section along the Grand Trunk Railway from Prince Rupert to Aldernere, British Columbia. By R.G.VcConnell. 1914.

Summary Report for 1913; Recent development at the Fidden Creek Mine, Observatory Inlet, British Columbia. By R.G.incConnell. 1914.

Metalliferous deposits in the vicinity of Hazelton, British Columbia. By. G.S.italloch. 1914.

The Yukon-Alaska Boundary between Forcupine and Yukon River. By D.D.Cairnes. 1914.

The Groundhog coal-field, British Columbia. By G.
Upper White River District, Yukon. By D.D.Cairnes. 1915.
Sumary Report for 1?15: Hydromagnesite Deposits of Atlin, British Columbia. By G.A. Young. 1916.

Telkwa Valley and vicinity, British Columbia. By J.D.McKenzie. 1916.
Scooggie, Berker, Thistle and Kirkman Oreeks, Yukon Territory. By
D.D.Cairnes. 1917.

Lode Mining, Windy Am District. By D.D.Cairnes. 1917.
Sumnary Report for 1917; Economic Geology of the Hazelton Area. By J.J.O'Neili. 1918.

Silver-leac deposits of the Twelvemile Area, Yukon. By W.i.Cockfield. 1919.

Preliminary Report, Fazelton Distrizt. By J.J. $0^{\circ}$ Neill. 1919.
Preliminary Report on the iconomic Geology of the Hszelton District, British Colmoie. By J.J.O'Neill. 1919.

Summary Report for 1919; Balmon River District, Portland Canal Mining Division. By J.J.O'Neill. 1920.

Explorations in the Ogilvie Range, Yukon. By w. . vockfield. 1920.
Oil anc Gas Fossibilities in Northeastern Ewtish Columbia. By J.B.Stewart。 1920.

Mayo Area, Yokon. By M.E.Cockrield. 1920.
Sumary Report for 1220; Salmon River District, British Columbia. By S.T.Sohofield and Ceorge Henson. 1921.

Silver-ucad Teporits of the Keno Fill Area, Mayo, Yukon. By w. ت.Cockfield. 1921.

Siucyrile ard Tabue Revers Area, Yukon. By voricockfield. 1921.
Sumary Repont for 192l; Jpper Uitsault Valley, British Columbia. By George menson. 1922.

Saincn River District. Ey S.J.Schofield and George Hanson, 1922.
Silvor..lead Deposits of Deviason Mountains, Vayo District, Yukon. By W.R. Ooclriold. 1922.

Sunnary Revort for 1922; Recomaissence between Kitsault River and Skeena River. Ey G.Fianson. 1923.

Feace River Canyon Coal Aree, Pritish Columbia. By F.Hodiclearn. 1323.
Sumkry Foport fow 1923; reconnaissance between skeena Ziver and Stewart, British Columbis. By G.Fanson. 1924.

Geology end Ore Devusits of Keno mill, weyo District, Yukon. 3y w. .anckieza. 1924.

Silver-lead Leposits of Beaver River Aroa, Tukon. By hod.Cockfield. 1924.
princ. Rupert to Burns Lake, Exitish Oglumbia. By George Finson. 1925. Upper Peatror Riven Area, Mopo Distriot, Furon. By W.a.Comefiela. 1925.

Sumary Reporj for 2925. Silver-load Deposits in Atlin District.


Deaso Lake Area, Cassicr Mstrict. Ey I'A. Kerr. 1926.
Txplomtione Detween Atin and Telegraph oreek. By w. D.Cockfield. 1925.

Geoiogr and One Doposits of Fudson Bu, Mountain, Coast District. By R.F.B.Jones. igen.

Gola Hecers of Duace The Area. By W.A.Jomstorn. 1926.
The Toca Orys of Ormoda, British Columbia and Yukon. Voi.I. By G.A.Young and h. L. Untom. 1825.

Placer and Tein GoI Dupostos of Bakerville, Geriboo District, Batish Colurbia. By ..f.Wohswon and T.L.Tgiow. 1923.




## 176。

Aishihik Lake District, Yukon. By iv. Cockijeld. 1927.
Dezadoesh Lake Aree, Yukon. By $\quad$. . Cockield. 1928.
Finley River District, British Columbia. By Victor Dolmage. 1928.
Pueblo, Trmerack-darlislo, and war Pagle-Lefoi proverties, whituhorse Copper Belt, Yukon. By $\quad$. D. Cockfield. 1928.

Silver-Lead Duposits of Fifteenmile Creek, Yukon. By w. E.Cockfield. 1928.

Silver-Leed Deposits of Rude Creek, Yukon. By f. H. Cockfield. 1928.
Summary Report for 1928; Second Preliminary Report on Stikine River Aree. By J.A.Kerr. 1929.

Bear River and Stewart may-mreas, Cassiar District, British Columbia. By G.Hanson. 1929.

Deep Borings i.i British Columbia and Yukon. By D.C.Madox. 1929.

Little Selmon Aree, Tukon. By W. Cockfield. 1929.
Minercl Deposits of Alice Am District. By G.Hanson. 1929.
Summary Report for 1929; Teku River District, British Columbia. By T.A.Kerr. 1930.

The Mining Industry of rukon, I929. Ty w. . Cockfield. 1930.
Prelimjnary Ieport on Iskut River Area. By if. Firr. 1930.
Exploiations between Stikine and Taku Fivera, Bijtish Columbia. By F.A.Kerr. 1931.

Some of the Bineral Eroperties of Taku District, British Columbie. By F. Ferr. 193I.

Bowser Fiven Area and Nortin Part of Portland Cenal Area, British Columbia. Jy G. Hanson. 1932.

The Mining Inciustry of Yukon, 1931. By H.S.Eostock. 1932.
Geology and Placer Deposits of Quesnel Forks irea, Cariboo District, Britisk Columbia. By W. B. Cockfield and J. F. Nalker. 1933.

The Mining Industry of Yukon, 1932. By F. S.Bostock. 1933.
Whitoweter Gold Belt, Talru River District, British Columbio. By H. ...Nerr. 1933.

Manson River and Slate Creek Flacer Deposits, Omineca District, British Columbia. By F.t.Keru' 1934.

Minins Industry of Fukon, 1933, and Notes on the Geology of Cammake Map-area. By H. S. Bostock. 1934.

The Tining Inaustry of Yuson, 1934. By E.B.Bostock. 1934.

## 127.

```
Willow Fiver Map-area, Cariboo District, British Columbia. Placer
Deposits. By #.i.Cockfield. 1934.
```

Nillow River Map-area, Cariboo District, British Columbia. General
geology and Lode Deposits. By G.Fanson. 1934.
Barkerville Fold Belt, Cariboo District, British Columbia. By G.IManson.
1935.

Portland Canal Area, British Golumbia. By George Fanson. 1935.
Wagle-McDame Area, Cassiar District, British Columbia. By G.Henson and D.A.McNaushton. 1936.

Geology of Teslin-quiet Lake area, Yukon. By E.J.Lees. 1936.
Mining Industry of Xukon, 1935. By H.s.Boatock. 1936.
Preliminary Report, Mineral Resources along the Canedian IVational Railway, between Prince Eupert and Prince George, British Columbia. By F.f. Terr. 1936.

Preliminary Report, Mineral Resources of Rerrace area, Coast District, British columbia. By Z.D.Kinde. 1936.

Prospecting possibilities of Teslin-quiet Iake - Big Salmon area, Yukon. By J.R.Johnston. 1956.

Geology and Minerel Deposits of Freegold Mountain, Carmacks District, Fuken. By J. F.Johnston. 1937.

Mineral Resources of Torpace Area, Coast District, British Columbia. By T. D. Kinale. 1937.

Mineral Resources, Usk to Deuarvele, Terrace area, Coast District, British Columbin. By 巴.D. Tindle. 1937.

Mining Industry of Tukon, 1936. By H. ©. Bostock. 1937.
Preliminary Report, Yest Falf of the Fort Mraser Map-area, British Columbia. By U. A.Amstrong. 1937.

Laberge Mop-aree, Zukon. By I.B.Bostock and E.J.Lees. 1938.
Mining Industry of Tukon, 1937. By FiB.Bostock. 1938.
Prelininery heport, Zast Falp, Fort Fraser Mop-area, British Columbia. By J.G.Gray. 1938.

Freliminery Report, Morthest Quarter of the Fort Iraser Mip-srea, British Columbia. By J.-...rmstrong. 1933.

178. 10<br>THE UNTTBD STmRS - AikSKA HIGRHAI<br>A Sugeested alternative for the Bection between fazelton and the Yuhon Telegraph Trail<br>By Marius Barbeau.

At the request of the Secretary of the British Columbia - Yukon - Alaska Highway Commission, I have prepared the following statement as to the possibility of building a section of the United States - Alaska highway via Hazelton, or the Skeena river, the Kispiok river, a tributary of the Bkeena, northwards to the upper Nass miver, following the upper Nass river to the Yukon Telegraph Trail, joining it at a point between the Ninth Cabin and Telegraph Creek.

I find in my notes on the Indian hunting grounds of the Nass and Skeena river tribes, that the Kispiox and the adjacent Nass river territories were Ell occup:ed as hunting grounds and tray lines, and that the Indians passed from one river to the other, following a trail.

As the maps for this area are stated by the Indians to be incomplete and Encorrect, they give only an approximate idea of the country. I am not sure Whether the trail passes fron the Kispiox river to the Nass river tributary Nowing down from Brown Bear lake, or whether there is only a trail connecting the Kispiox river with the Cranberry river, an important tributary of the tas. The Kispiox river trail to the Nass, such as it is, was not considered e sifficult one by the Indians, except for a log bridge crossing the headwaters Tf the Kispiox at one point. One of the Indians, whose hunting grounds were 4t the headwaters of the Kispiox, stated that this was a flat country. There s. a waggon road now reaching up, I believe, to the First Cabin.

Ore precise information was obtained from John Brow, an old Kispiox Jitan. Beaver Lake, wich is Harey's hunting ground, has an outlet into the 2.95. It is not comected with the Kispiox river, but the headwaters of the azpiox come close to it. It is all level ground there. Harey's hunting zounds ane sbout fifteen miles square.

Some time late this autumn, I had an opportunity to revisit Hazelton and to have long conversations with Mr F.S.Sargent, the Eazelton merchant, who is an old timer. He came there for the Fudson's Bay Company in 1391 and is a man whose opinions I consider dependable. When I told him that one of the officials investigating the matter last summer was inclined to consider the opinion of Mr Beirnes as too partiel to his own plan, he cane out empatically with his own views, which seem to me to be correct.

The point is that it has been known for many years in the country that the path followed by the Yukon Telegraph trail over to the headwaters of the Skeana had not been wisely selected in the first place, and that there have beon many suggestions since that it should be changed to that of the Kispioz Trail to the Nass. The well-known fault of the Telegraph Trail and Kispiox over Poison Mountain and the skeena is that it goes over mountains 5,000 feet high and through a country where the snow is deep in the winten and the climate very cold.

The advantage of the nass rivor trail is that it keeps to the lower grounds, that there is no more snow there than, say, at Hazelton, that the climate is no more severe, and that it travels into easier country. From my own sources with the Iadians and many accounts and tales of big geme monters and Indions, I am inclined to think that this view should carry weight. Desides, the highwy would go through a territory which might be develoned sfter it was made accessible - the upper Nass, Lake Medziaden, which is now the best sockeye spaming lake in the district.

As I spent the winter of 1321 at Iazelton, I had an opportunity to realize that the climate is much milder than ours here (Ottawa); and at no time was there more than sbout twelve inches of snow. The road from Hazelton to Kispiox was easy to travel, as there were no noticeable snowerirts.

Last sutumn I had an opportunity to travel in a motor car with two frienas from Gezelton to Prince George, dow the Fraser through Ashoroft, down the cenjons of the Thompson and Fraser rivers to Vancouver. I may
my that the road we followed has been improved tremendously since 1926, when Ez was travelled in a motor car by Mr Sargent and some others. Now there ta $\equiv$ very decent highway which we travelled at fifty to sixty miles an hour. 5 y only difficulty was that some sections of it near Burns Lake were of gumbo. trere had been rain and one had to be careful. Below rrince George, and tricularly quesnel, the road is heavily travelied, and many large dray4.gons are often encountered. While the road along the canyons of the thompson Lat the Fraser is spectacular, it is perched so high on the face of the cliffs, tu so long (nearly sixty miles), that it is bound to remain rether difficult ra narrow, and it cannot easily be widened in places. A more important -a would be down from Asheroft, through the Okenagan, to the United States. Then travelling along the Cariboo road I heard irr Laning, a commercial vapeller for $a$ Vancouver biscuit company, say that he is in the habit of Ti Evelling in a motor car in the winter along the Ceriboo road, as many others that there is not much snow there and thet the road is kept open. The wny inconvenience in case of aceident, is that it is cold and one may have to matel on foot a good long way before getting relief.

A mep accompenying dir Burbesu's Wemorandum is filed with the records of the British Columbia - Tukon - Hiska Highway Comission.


[^0]:    Qe: The map referred to in the above memorandum is filed with the ctords of the British Columbia - Yukon - Alabka Lighway Comnission.

[^1]:    Victoria,
    Britisin Columbia, April 26,1939

[^2]:    Tote:
    A map acompaning hr Helliday's Menorandum is filed with the records of the British Columbia -. Fukon - Alaske Highway Comission.

