## Meteorological Data

The official data, hereunder, on precipitation and temperatures for various points on possible routes of the British Columbia Ukon - Alaska Highway have been supplied the Commission by the Iffice of the Dominion Meteorological Service at Toronto. The latter Service, at the request of the Comission, further supplied special information reggading dates of first snowfalls in any one year and yaxlmum depth of snow on the ground at any one time.

The metoonological information included in this report has oonsiderable value in the consideration of acivantages or disadvantages of different routes.

## Table No. 2



JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. YEAR


1934
35
36
37
38
35
36
37
38

38
Apptemper dore $1 / 10$ Such ned prowfale november $q^{x}$
ofeptember $22^{\text {na }}$ —

Table No. 2



Table No. 2


Table No. 2
Doweon City yuken


Table No. 2
Figures from Eocoqual duwer


Table No. 2


JAN.
FEE. MAR. APRIL MAY JUNE JULY AUG

```
NOV. DEC.
```

```
YEAR
```

1934
32
36
37
38
3934
35
36
39
38
max
max


Table No. 2
JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT, NOV. DEC. YEAR

-

Table No. 2


Table No. 2
Lawev fort (BC) and Watien Sake (Huten) (hombured)



JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. YEAR
-
cosine Prev

mean maximum
Temperature


Seq Antumupx Temperature



Table No. 2

JAN. FEE. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. YEAR


Table No. 2






Table No. 2


Table No. 2
Whule Thoree 4uker fast veendo available,


## Table No. 2

Page 2


TERRACE, B. C.

JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. YEAR

## RAIN (inches)

1934

$35 \quad 3.4 \quad 5.80 \quad 2.06 \quad 1.58 \quad .79 \quad 2.40 \quad 0.87 \quad 14433811.64264799$

37 $0.28 \quad 0.002 .68 \quad 2.561722 .871 .394401 .015 .94 \quad 242$ H 5

38 $3.60 \quad 0.872652 .16 \quad 0.80 .92 \quad 55 \cdots 40 \quad 4.544 .4633$

SNOW
(inches)

| 1934 | 1.0 | 8.0 | 5.0 |
| :--- | :--- | :--- | :--- |
| 35 | 15.0 | 1.0 | 2.0 |
| 36 | 14.0 | 19.0 | 40 |
| 37 | 18.0 | 53.0 | 0.0 |
| 38 | 27.0 | 4.0 | T |


| $\tau$ | 2.0 | Finct mourfall <br> in dee 3lat rime |
| :---: | :---: | :---: |
| 12.0 | 50 | Y or 10-tx |
| 0.0 | 28.0 | Lee let |
| 37 | 36.0 | now at |
| 20 | 50 | mow 9 2x |

TOTAL PRECIPITATION (inches)
$1354 \quad 0.36 \quad 3.23102 .10 \quad 104,73 \quad 2.001254 .618 .51519 \quad 309$
$35 \quad 534 \quad 5.802 .26 \quad 58 \quad 79$ ふ., 0.87 .44 $3.38 \quad 1643848.49$
$36 \quad 3.762 .45 \quad 521337 \quad 2.422 .93 \quad 2.20150458 \quad 5.168 .77$ 力 744
$372085302682561722.871 .39448,01594279 \quad 45$
38
$630 \quad 27265216980 \quad 921.551 .144404545163 .85$

MAXINUM DEPTH OF SNOW ON TH: GROUND AT ANY ONE TIME (inches)

| 1 | 8 | 4 | 7 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| 5 | firfte | 2 | 12 | 5 |
| 11 | 19 | 2 | 0 | 21 |
| 14 | 50 | 0 | 2 | 26 |
| 25 | 4 | 7 | 1 | 2 |

ATYANSH, B. C.

JAN. FEB. MAR. APRIL MAY. JUNE JULY AUG. SEPT. OCT. NOV. DEC. YEAR

Rain (inches)

1934

## Snow (inches)

```
111.0}90.4 19.
34.5 4.1 17.8
25757.8 7.5
    317 510 5
    343 10.0 05
\(\begin{array}{lll}111.0 & 9.4 & 19.3\end{array}\)
34.54 .17 .8
\(257578 \quad 75\)
\(317 \quad 510 \quad 5\)
34310.005
```

Rust Lnoufel 4.839 .0 hoo 23 at $95 \quad 9.6175$ Lect 25 th 40735 now. Tex 2.0476 how 2 nd 57376 7ror.7 ct.

Total Irecipitation (inches)

1934 $410140143^{\prime 2}+4+24 \times 74246,63=61257=01274$

1934
35
36
37
$3 \mathrm{~B}_{3} \quad 21 \quad 91 / 27$

## JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. YEAR

## RAIN (INCHES)

1934 35 36 37 38

$$
\begin{aligned}
& 5412.815 .164 .242 .272 .73 \quad .323 .044 .65907588363 \\
& 308 \quad 3.36168 \times 522222041573602.64509716-73 \\
& 0.410 .00 \quad 5215.07316 \quad 212.98 \quad 25970311.45 \times 481.95 \\
& 0.84010297256255383+13644+5811.65242343 \\
& 233 \quad 2.93229468322259267127 .417 .055474 .13
\end{aligned}
$$

## SNOW (INCH:S)

```
86.5 33.0/6.0 30
410 4025:20
26.0 580%60 00 3.0
330 670/3.5
1010135 50 40
```

TOTAL FRECIFITATION (INGHSS)
$17.06 \quad 6.116 .765 .542 .272731323044 .659 .076 .13 \quad 1.93$ $718376+20722322041573602648099161143$ $.6 .015 .80 \quad 6.815073 .46121298259703114520 .08751$ 414 $670432256255383+1364445811653.721133$ 12434282795.08322259267 12174170581710.63

NAXIMUN DE: TH OF SNOW ON THE GROUND AT ANY ONE TINE (INCHES).

```
53 25%
25 4 3
12
H3 56340ld (3
23 65 9
60 131/2 
```

REPORT TO THE PUBLIC WORKS DEPARTMENT OF BRITISH COLUMBIA ON RECONNAISSAITCE SURVEY OF WORTHERN PART OF' ROUTT "B" BRITISTI COLUMBIA - YUKON - ALASKA BIGHWAY BETVEEN LIARD RIVER AID SIFTON PASS.

By E. Lamarque

## General Statement

This report contains an account of a recomaissance carried out during summer of 1939 in the region lying between the British Columbia - Vukon sdary, where the Liard river crosses it a few miles above the confiuence the Dease, and Sifton Pass, somewhat less than two hundred miles to the Uth-east. The expedition was undertaken to determine the suitability otherwise of tiis little known region as a route for a motor highway. In order to carry out this work, I left Vancouver on the evening of the EZA of June with three assistants, W. Cushing, K.Ford and C.King. Traveling - the Canadian Pacific Railway Compang's steamship Princess Louise, we reached mangell, Alaska, at 2 am . on the 6th, and left there on the aftermoon of the zame day by the motor vessel Hezel B of the Barrington Transport Company yon Telegraph Creek, 140 miles up the Stikine river. Ne reached Telegraph Treak on the eveniug of the 8th and, after outfitting there, left on the lith sth two Indian packers, Loudecker and Harry Karlick, and 14 horses, for Gease Lake where we arrived on the 15th. On the l7th after obtaining infomation about various routes, E.Cushing and K.Ford with two packers and 14 horses -Sol pack and four saddle - left for the Lower Post, half a mile above the confluence of the Dease river with the Liard, via the upper Turnagain river, Qosquitoe and Sand creeks, with instructions to form a cache of supplies at The confluence of the Turnagain with the Kachika are proceeding, as lightly Loaded as possible, to their destination.

In the meantine, C. King and myself, after an unavoidable delay of some days at Dease lake, left by one of Hope and Marion's scows for the Lower Post
the morning of the 2mid, vie Dease lake and river. we stopped for the - at MoDames and reached the Lower Host the next evening, where we were in the general looality till the 7 th of July, when E. Cushing and K. Ford -a the packers and horses arrived from the south-cast. On the 9th, after - Lenishing our suphlies for the remainder of the season, we commenced our -acmaissance towerds Sifton Pass which we reached on the 5 til of september, ats the Finlay river at fort ware on the $8 t h$. On the $9 t h, \mathrm{~K}$. Ford and C. King \&ut for Prince George by boat via the Finlay and Persnip rivers. They sea their dostinetion on the 16 th and Vencouver on the 2oth. On the lotil . Cushing, the two Indian packers snd fourtoen horses left W. Zelogropi Croek vie Two Brothoms Lake and Hylands Post. Delayed by stormy, majenent weather, and having to ebandon one horse en route, they reached wegraph creek on the $2 n d$ of october, where the Indians were paid off and outfit, other then that brought out by Mr Cushing or Mr Ford, stored with G Goverment gent there. Delayed by lack of transportation on the stikine, - Jushing did not Leave Tulograph Creek till the Gth. He arrived at wroouver on the 14th.

On the loth of Goptember, I left Fort ware by mail plane for frince George, amiving thore in two and a half hours flying time. Leaving there on the lath, - mached Tencouver, via 2uesnel and Squamish, on the 13 th . The plane * many iron Font tare enabled me to appreciate twe valuo of low flying for zuomaissance purposes to an observer cccustomed to making repid notes.

## Acknowledgnonts

The successfui completion of this reconneissance is principnly due to the wnty cooper tion of all the mombers of tho party and especially to the
 ssistance, aso, from offieers of the Fudson's Bny Gompany and residents of -u district at Donse Lake, McDames and the Lower Post, and are particularly Adebted to D.B. Darter of the Forestry Branch and the British Columbia Police, no not only took on radio messases but transmittea them to their aestiration.

## 211.

## Methods of Survey

A rapid chain-compass traverse was made of our route from the confluence of the Dease river with the Liard to thet of the Gataga with the Kachika, about 130 miles, where we tied into signals established by fi.Pattinson of the Department of Lands who was triangulating north of Sifton Pass. From the Staga to Sifton Pass, our distances were estimated on a time basis and controlled by Mr Pattinson's survey. At the Lower Post, we tied on to the bese line established by Mowicton prior to the commencenent of his triangulation southward; our distances from the Post northward to the provincial toundary being estimated by time.

Excursions on either side of our route were made where necessary and several hills and mountain slopes ascended for the purpose of general reconnaissance. Observations for latitude were taken at several points between the Dease and Gataga rivers and, in order to determine the magnetic variation, oseasionally for azimuth. On the chained traverse blazed trees mark the miles.

The party was well equipped in every way, and the radio, which weighed with Sotteries complete, in a strong case suitable for a side-pack on a horse, only seventy pounds, was of great value. A recent model, built for the Forestry Tepartment of the Province, it proved remarkably efficient, and from the midale ol July we were in frequent communication with Colonel Rolston's party on the southorly end of route "E", initially contacting them when quite three cundred air miles distant and, latterly, the Forestry Station at Prince George gen over four hundred air miles therefrom.

Except on the Liard and Dease rivers in the vicinity of the Lower Post, the party dopended on pack animals for transport within the area of soconnaissance. These were available in the numbers and with the required ouipment either at Telegraph Creek or points so far to the south that their afe return there in the fell would have been problenatical. They were hired, herefore, as already roted, at Telegraph Oreek.

## 212.

## Fistory

The country was first explored by the fur--traders of the Hudson's Bay Jompany who ontexed it from the north-east by way of the Liard. Ar J.McLeod ascended the Liard and the Dease rivers in 1834 and hobert Campbell wintered st Dease inke in 1638-39, and in the forties the Liard was used by the Company to suply their posts on Frances Lake, on the Polly, and at the confluence of the Pelly with the iewes. In 1849 fort Pelly Banks at the northerly and of the portage from Finlayson lake, was burned and abondoned; in 1851 Fort Frances was also abandored, and in l852, F'ort Selkirk at the mouth of the Felly, was raded by coast Indians, and trough Robert Campbell made every effort to have the post reestablished, it too was abendoned. After this, the upper Liard wa prob:oly entirely deserted by white men till, in 1872, two prospectors, Fenry Thibert, : French-Canodian, and MeCullock, a Scotchman, found their Laborious way to Dense lake from the Red river (Manitoba), via the Athabasce, Wackenzie nd iisd rivers. Iith no John Company to bock them, the courage and harainood of these two aciventurers can only be contemplated with admiration. Their persevering efforts were rightly crowned with success for the next year, in 973 , they discovered gold on Thibert creak, a stream that enters Dease lake Irom the west near its lower end, and thus mining in this part of the Cessiar was started and crrried on, more or less successfully, to the present. In 174 the placers of MoDemes creek were found and it is said the a million dollars Was taken from the disirict that year, and that the total value recovered উo 1887 was about five millions.

## Population

The populstion of the district, even to-day, is very limited. The Indians living within or in the country contiglous to our line of reconnaissance would hardly exceed twenty-five families, possibly a hundred all told. They belong to the Athapascan linguistic group and are of the Tahltan, Sickanni or Beaver tribes. They usuelly trode at the Lower Post, incDanes or at Fort Ware, occasionaly going as ine as Port Nelson, on the Fort Nelson river to the east,

## 213.

and south to Dease lake and even to Telegraph oreek. In 1935 the Iudson's 3ey Compeny reestabished o post at Frences lake, abandoned for eighty-four Joars, bringing in their supplies from whitehorse by air, but it is doubtful if any Indians from siritish colunbia trade there.

Besides tho natives, there ere a fow white troppers. Weardy a dozen of these make their headquarters during the summer at the Lower post and most of them trap in Sukon Territory. Two, Messrs Fosberg and Ludwig Smeaslet, Iy to their headquarters cabin on Rabbit lake, a lake expansion of Rabbit niver, some miles to the east of the Kachika. The white trappers who make fort. are their neadquarters during the summer, trap to the west and south of That post, and, with one or two exceptions, do not enter the area under Aiscussion. Except for surveyors of the Department of Iands working to the north of Sifton Pass, and for two Indians who caught up to us with mail when we were south of the Turnagain, we did not see a soul between the Lower Post and the Pass, or exceptiug old cemping sites of the natives, any sign of human rabitation between the Dease and the Turnagein. At the confluence of the Iatter stream, however, with the Kachika, there are about half a dozen old sabins, relics of the days when R.Sylvestew had a trading post there, established bbout sixty years ago and afterwards taken over by the rudson's Bay Company. This post was supplied by pack-trail from MoDames, a trail that is reported to be well located and eesy to follow. It is, in fact, part 2t the main trail fron Fort Helson and is used by hunting parties and others Who may enter this northern widemess from the east. Colonel Moodie, in 2harge of a detechment of the North west Mounted Police, came north through Sifton Pass in 1898 dow the valley oi the Kachika, and, entering this trail at the westerly limit of the valley about five miles from Chee House, as this old-time estabishment of Sylvester's is called, followed it to MicDames. The Colonel Wrote a renarkably good report of his northland journey and his notes and plan of this area proved valuable to us. South of the Turnagain there are help a dozen or more cabins in the valley, the majority within a few miles of the Pass. They were all unoccupied when we passed by.

## Climate

The climate in the region of our reconnaissance appears to be one of generally low precipitation and varying winds. It is reported that strong winds are frequent along the Kachika in winter and that the depth of snow in the lower valley rarely equals, and seldom exceeds, eighteen inches. Above the Gataga the snowfall is greater and the snow is probably quite four feet deep at Sifton Pass towerd the end of the winter. For many miles north of the Turnagain, as far or slightly to the north of Red river, the snowfall is probably about the same as that along the Kachika below the Gataga. The small sage, Artemisis Frigida, is abundant on many of the open hillsides and signs of wind erosion, usually associated with dry or semi-arid regions, are not lacking. North of the Red river, the precipitation evidently increases, and a depth of about three feet of snow is reported at the Lower Post, and for thirty miles or more to the south-east. The summer of 1939 was, we were informed, wetter than usual. There were thirteen showery days in July when we were between the Lower Post and the Turnagain, and fourteen in August, in the valley between the Turnagain and Sifton Pass. Never during these two months, unless at some time during the night, was the sky completely clear. At midnight, on the l4th of July, at an elevation of about 3,000 feet, the temperature fell to 27 F. , and at dawn on the 18 th of August, at an elevation of about 2,500 feet, the temperature was 24. The highest recorded in July was 82, at noon on the 17th; the highest in August, 85 at noon on the 9 th. Terperatures of between 50 and 60 below zero $F$. have been recorded in the winter time at the Lower Post. Winter prevails from the beginning of November to the end of March. As elsewhere, the seasons vary, but it is probable that there is but little snow left in the lower valleys by the end of April, and that it rerely falls to stay before mid-October. Dease lake is usually free of ice during the last week in May or the first, in June, and the Dease, Liard and Kachika rivers early in May.

Eauna
The principal mammals found in this region are members of the bear and deer families. We saw only two or three black bears during the summer and no
grizzlies. The letter are probably fairly numerous in the mountains where one of their principal foods is the hoary mermot or whistler. Neither moose or deer are plentiful, owing, it is said, to the numerous wolves, which are reported to hunt in packs of a dozen or more individuals during the winter and to $b e$ a nenace to the horses of the natives or others wintering in the region of the Kachika.

A species of woodend caribou has a wide range throughout this part of the Province. These animals are Irequently found in smsil herds on the broader, plateau-like hills between the forested lowlands and the higher mountains. Mountein sheep (Ovis Stonei) and mountain goats are generelly well distributed in the mounteins on either side of the valley of the Kachika, though only a $f$ were seen by the party during the sumer. Most of the comon fur-bocring animals are trapped in the district, but it is doubtful if they are abundant. They include lynx, marten, mink, fisher, foxes, Wolverine, wolves, musquash and beavers. Signs of the last-nemed were quite numerous. Trout are fairly abundant in the streams and lekes.

## Plora

The forest - nowhere of importance for export - consists of spruce, tamareck, pine, poplar. cottonwood, many varieties of willows and some birch. Down in the bottoms, on heavier soils, cottonwood of between thirty and forty inches in diameter are found. Spruce sometimes reach a diameter of two feet; vine rarely more thar a foot or eighteen inches. At higher elevations, balsan firs are ahundant, extendirg to timber-line, here at an altitude of about 5,000 feet. Trmeracks a foot in dismeter are rere; eight to ten inches Is their average size. In the vicinity of the Red river, it appears to take about sixty years for poplars to attain a diameter of six inches; cotton, seven Enches; pine, nine inches; and spruce, eight inches. Their height then would average fifty feet. Prof. Davidson of the University of British Columbia, hes zindly given the names of some of the species of plant life found along our route between the Lower Post and Sifton Pass. The list will be found at the End of this report.

Potatoes and other vegetables of the hardier variety are grown at the Lower Post and at Fort ware, and no doubt could be grown in the valley of the Kachika below the Gataga. The agricultural possibilities, however, are so exceedingly limited as to be practically negligible. Horses can easily winter out on the lower Kachika and to the east of the Dease river, in the valley some distance above the confluence of the Blue, where the snowfall is light.

## Transportation

The upper Liard river in British Columbia is usually reached by way of the Stikint river to Telegraph Creek, the motor road from there to Dease lake and by the Dease river. The Barrington Transport Company operate boats on the Stikine river, usually about three times a month from the middle of May to the middle of October. The motor road between Telegraph Creek and Dease lake, 72 miles long, is, for a frontier region, reasonably good, and the journey, either by truck or car, takes from six to eight hours. The voyage from Dease lake to the Liard, usually takes two days; the return journey, up-stream, three or sour.

Air transportation is now frequently used both for passengers and freight. There is a small air field on the plateau above the Stikine at Telagraph Creek and in the winter time the mail is brought there by air from Atin, two hundred miles to the north. Dease lake affords an excellent landing for planes, and the Dease river at McDames, and the Liard at the Lower Post are frequently used though the main landing for the Liard is at Watson lake, about twenty-five miles to the north-west of the Lower Post. This lake, situated about three miles north of the Liard river and reached by pack-trail from the Lower Post, is used by the Yukon-Southern Company's planes on their passenger and mail route between Edmonton and Whitehorse. They have a radio station there. Between the Lower Post and Sifton Pass planes can land at Fishing Lake, fifty miles from the Post; at Birch Lake, ten miles further to the south-east, and on a lake about eighty miles from the Post, and a hundred north of Fox lake, a good landing some forty miles from Fort, Ware on the Finlay river, and about ten miles south of Sifton Pass. The Kachika, below the Gataga, might also be used
in case of emergency. The Finlay river at Fort Ware is the regular landing place for the plane carrying the mail twice a month to this place during the summer time, somewhat more than two hours' flight from Prince George on the Canadian National Railway.

Practically all freight and passengers for Fort ware, the most northerly trading post on the Finlay river, are brought in by open boats from Summit lake via the Crooked, Parsnip and Finlay rivers; the only real obstacles to navigation being the shallows on the Crooked river and the rapids of Deserters Cañon on the Finlay about one hundred miles below Fort Ware. At low or medium stage of water, this cañon is easily navigated by the motored boats used on the river to-day. At very high water, however, freight may have to be taken across the half-mile portage, or transport delayed till the water drops. A motor road, thirty miles long, connects Prince George with Summit Lake.

The Liard river is used by trappers and prospectors between the Lower Post and the confluence of the Kachika, at medium or low stages of water. Navigation of this river, however, is in this section obstructed by the rapids of the Little Cañon, some thirty-five miies below the Lower Post, by whirlpools some four miles below this cañon, and by the Cranberry rapids where a mile and a half of rough water is reported some distance above the confluence of the Kachika. The Kachila itself is said to be free of rapids from where it enters its main valley, about five miles north of Sifton Pass and the Liard river. Boats have been built hear the pass and the river successfully navigated, at a good stage of water, from there to the Liard. Above the Gataga river, which comes in from the east about sixty miles north of the Pass, it is full of driftwood and is locally called Driftpile river. This drift makes navigation somewhet hazardous, and fallen trees or sweepers, which may extend completely across the stream in its narrower parts, add to the difficulties. The Liard and Kachika rivers, therefore, afford doubtful means of transport to the central and upper part of the area between the Lower Post and Sifton Pass. It, is one, nevertheless, that should be more fully investigated.

Iittle is known about possible navigation on the Iurnagain which enters the Kachika about a hundred miles above the Liard. A tractor road has been

## 218.

built from the southerly end of Dease lake to the headwaters of this stream where there are many lake expansions. Below these expansions, some of them suitable for plane landings, the streams falls about 1,200 feet on its way through the Cassiar range to the Kachike, a distance of about one hundred miles. It is reported to be frequently 0 nyoned, and it may be expacted that navigation would be difficult.

Besides waterways and airways, there are various pack trails in the region. These trails are at present onfy suited for pack animals but they are usually well located and might, in some instances, be fairly rapidly and economically transformed into rough roads over which tractors could pass. Of these, the Davey Trail, which extends from the Lower Powt to the Kachika river some five miles below the junction of the Turnagain is, as the plan shows, remarkably straight and a credit to its locator, Davey, who died at Fort :are early in September at the great age of ninety or over. It is said that he was born in the Province of uebec, and that he had lived in this part oi the north for over seventy years. In winter dog teams are usually used for all transport. Very little freighting is done but planes can be and have been used and tractors were used last winter to haul machinery and heavy meterial to the mining camp at Eoulder Creek on the Turnagain over the tractor road from Dease lake noted above.

## General Description of the Country

This part of northern British Columbia is more or less of a mountainous character, the chief ranges being those of the Cassiar and Rocky Mountains where some of the higher peaks may attain an elevation of 9000 feet. The sentral portions of the Cassiar range contain belts of intrusive rocks, but their eastern flanks, probably consist almost entirely of sedimentary Somations of argilites, quartzites, and particuarly limestones, abundant. The Turnagain and many of the small streams south of it coming from this range contain a great deal of line, and small sloughs and ponds often have zeds of caicareous mud two or more feut in depth above limestone boulders and
rubble. It seams probable, also, that similar fomations are mainly present in the Focky Mountains in this region and intrusive rocks almost, in not, entirely, absent.

In the vicinity of the Liard and the lower Dease and Kachika rivers, the higher mountains are distant, and the country has the appearance of an undulating, densely wooded plateau, broken here and there by low, forested ranges or isolated hills. It is essentially a wilderness of which little is known and where people are few.

The drainage is to the western Arctic by way of the Liard and Mackenzie rivers. The Liard is a big river with its headwaters in the mountains in Yukon Territory, It averages seven or eight hundred feet in width from the Yukon boundary to the Dease,almost immediately below which it expands, is often half a mile or more wide, and generally full of islands to where it makes a big bend to the north about twenty miles below the Dease. At this bend it is apparently deflected by a low plateau of massive clay formation which rises precipitously for from two to three hundred feet above the water. The river here turns almost a right angle and a fair-sized stream, known as Twenty Mile croek, enters from the south through a wide gap in this low plateau. Hyland river, a large stream about the same size as the Dease, enters irom the north about seven miles above the bend. At medium stage, the Liard may carry about twenty-five thousand feet a second above the Dease, and its current is about five miles an hour.

The Dease river has a northerly course from Dease Lake and for several miles is quite narrow and very crooked, many of the bends being remarkably sharp. The river, from many small tributaries, soon becomes larger, but the nunerous bars, driftpiles and shoals are troublesome to the navigator. Further down are several rapids, all of which require care in navigating though none are particularly dangerous.

About ten miles below MoDames Post, a trading centre on the left bank of the strean, and fifty or more below the lake, the river, which has so far followed a north-casterly course, turns abruptly to slightly west of north,
a direction it pursues for some thirty miles till, just to the east of the Cassiar range, it resumes its former course to reach the Liard thereby some thirty miles below. The stream, at an average stage of water, may carry from ton to fifteen thousand cubic feet a second.

The Kachika or Big Muddy river heads in the mountains far to the south of its confluence with the Liard. It is a big, dirty river with an average flow of perhaps twenty thousand feet a second. Its main tributaries are the Turnagain and Frog from the west, the Gataga from the east. The Gataga is a big, muddy stream and probably the principal cause of the sediment in the Kachika. The Turnagain heads in a high plateau country about fifty miles east of the southerly end of Dease lake, and flowing for a hundred miles or more north-easterly through the Cassiar range, joins the Kachika about a hundred miles above the Liard.

The Froe is much smaller, and rises in the high mountains of the continental divide far to the south-west of its confluence with the Kachika.

Description of the Route
The country in the general vicinity of the Lower Post is of an undulating, densely forested nature of somewhat low relief, the hills for many miles on eithor side of the Liard, not exceeding a few hundred feet above the river which, at the confluence of the Dease, is about 2000 feet or more above sea level.

From a high ridge to the south of the river, about a mile and a half trom the Post, the Cassiar range is visible far to the south, and lower, isolated peaks and ranges far to the east and north. From anothor and aigher ridge, some eight hundred feet above and just to tho north of the river, very close to the boundary between British Columbia and the Yukon, hign hills and low mountain renges are visible to the west and north-west, Where the country presents a similar, though somewhat rougher appearance, to that to the south-east. It was noticesble, moreover, when descending the Dease river, that the country for many miles above its confluence with
the Liard has, in general, the same characteristics as those already described and that the terrain through which the Blue river, some twenty-five miles above tho Liard finds its way to the Dease from the north-west, eppors to be low and probably favourable for economical highway construction.

Throughout this wooded, undulating country there are many small ponds, lakes, swamps and streams. The swamps on either ide of the Devev Trail which, as already mentioned, pursues a remarkably straight course from the Lower Post to near the confluence of the Turnagain river with the Kachika, are rarely of any great extent and so situated in relation to gravel ridges and benches that they could be either entirely avoided or narrowly crossou by a highway located in the general vicinity of this trail. The swamps through which the trail passes usually have a firm bottom of gravel or small boulders about a foot below the surface and in only one instance did their crossing present any difficulty to our pack animals.

About thirty miles south-east of the Dease river, from a low ridge over which the trail passes, both the Cassiar and Rocky Mountain renges are visible, ranges that become more evidert as the traveller proceeds to the south-east till, near the Turnagain, the intervening valley may be said to form the northerly end of that celebrated physiographical feature, knomi as the Rocky Mountain trench, one that persists from this locality for nearly a thousand miles to the south-east, to within United States territory in Montana.

For many miles south-east of the Lower Post, as far as the Red river: 47 miles aistant, the drainage is to the north-east and throughout this section the general chazater of the terrcin hardy varies. It is more hilly to the west than to the east of the Davey Trail, and it is quite evidont that A highway would be in the general vicinity of this trail which forms, therefore, an adnirable base for a preliminary survey, which our rough traverse thereof shouid considerably facilitate.

About twenty miles from the Lower Post, the trail follows for over two miles whin appears to be an old river chanel which, where observed, has an
average width of about 1000 feet, and a general elevation of some 600 or 700 feet above the Liard river at the Lower Post. This old channel, where the trail follows it, has a direction sonewhat south of east but turns to the north-east where the trail leaves it and it is probable that the small, five foot stream which meanders through it drains into Twenty wile Creek, a stream that enters the Liard where that river turns abruptly to the north some twenty miles below the Lowar Post.

It seoms probable, also, that all the small creeks the trail crosses in this part of the plateau drain to Twenty hile Creek, and as their distance thereto can hardly exceed ten or fifteen miles and they are here several hundred feet above the Liard, their fall, north of the trail, must be quite precipitous, indicating a very broken, gulch-ridden terrain in that direction. Twenty Mile creek itself, about forty feet wide st its mouth, enters the Liard through e deep gulch whose width is out of proportion to the size of the stream and it is just possible that the old channel, to which I have referred, may bear some relation to this condition.

It sems probable, also, that should the Blue river route be adopted, the location thereto would leave the Davey Trail in its vicinity.

If a definite limit can be set for the northerly ond of the Rocky Mountain trench, a point where the vallej ceases to be well defined, it might be placed where the Davey Trail crosses the Red river, about twenty miles north of the Turnagain, where the Red river itself turns somewhat abruptly to the north-east along the northerly limit of a high, wooded ridge which, up to thet point, may be said to form the easterly side of the valley north the Kachika. At or near the Red river, too, the towering bulk of the Cassiar range swings to the west just as, twenty miles south of the Turnagain, the Rocky Mountrins turn eastward.

The Red river itself is the only stream between the Dease and the Turnagain thet could be called a river. It rises far to the west, in the ranges not far from the Dease river and pursues a very sinuous course in a wide valley, is swift and has above the trail an average width of about 100
feet. Near the trail it spreads out through many channsls in a flood plain and it is reported to enter the Kachika about twenty-five miles below the Turnagain.

South of the Red river, the trail follows the easterly side of the valley, that is here about five miles wide, and the character of the terrain all the way to the Turnagain is very similer to that north of the river. In this section the valley contains two, low, woodod centrel ridges. The more northerly commences at the Red and parallels the valley for five on six miles, Fishing lake lying between it and the easterly side. This lake, over three miles long, helf a mile wide and containing many small islands near its southerly end, appears to duin to the Red river, from which it is about three miles distant, by a small winding strean that peahaps reachos the river subterrancously for the confouense was not seen.

The trail hugs the easterly side of this lake for about two miles to follow across undulating side hills on this side of the valley and reach the Kachika, sixty-six miles fron the lower Fost, with Davey creek which flows to the river through a narrow, peecipitous defile at the northeasterly tomination of the southerly of the two ridges notad above. This ridge is in the form of an olljpse with tis long azis a diagonal to the valley; its southerly slopes fall to the Tarnagain, its eastealy to the Kachika. Its max:mum elevation above the velley is about 100 feet, ant on its westerly side; between it and the Cassiar range, is a string of lakes, the largest and nost northerly of which we have gelled Birch lake. The lakes, which are rem rkable for their rainbow colouring and beautiful situation, evidently drain into a tributary of Davey Creek.

Fron the Red river to the Kachika, the location of the highway would, in all probability, be very close to the pack-trail, swinging easily down on light gredes round the north-easterly side of the southerly ridge to the low jackpine benches along the Kachike, which it would follow to the Tumagain.

The Turnagain, which is a large stroam of the same order as the Dease, can be conveniently and economically crossed about two hmored yards above

## 224.

its confluence with the Kachika. It is there about 250 feet wide. The Tachika is a much larger strean and between the Turnagain and the Davey Trail, five miles below, it is from 500 to 700 feet. in width.

The Davey Trail ends at the Rachika, and the natives cross the river there to the wall-usod trail on its easterly side which extends to Sifton Pass and tie Finlay river at Fort Ware, the trails on the westerly side of the river being but little used and more or less obliterated by windfalis and forest debris.

On account of the formidable crossing of the Kachika, however, we examined the westerly side of the valley to above the confluence of the frog mith the Kachika, for about six milos from the Tumagain and found the terrain on the whole nore favourable than thet to the north, and, in general, very similar.

About twenty miles south of the Turnagain, the Rocky Mountains sweep Westward to within throemiles of the Cassiar range, which is the general midth of the intorvening valley to above the Frog where it becomes much narrower, averaging hardly more than half a mile in width and sometimes not much nore than a quarter its approximate size at Sifton Pass.

The scencry along this section of the routo is bold and beautiful and should be a groat source of attraction to motorists. Moreover the topography of the valley is such as to allow long tangents, easy grades and sasy curves, conditions unusual when travelling througin mountains end the more, therefore, enjoyable.

The route we blazed through this section of the valley is never far from the probable location of a highway ard usucily in its approximate position. on the whole the country is more open than that to the north and the cloaring mould bo lighter.

Only two Iarge atrons enter the Kachika from the west between the Turnagein and the Frog. Tho first, which we celled Moody Creek, is about twenty miles south of the Iurnagain. It would be crossed just above where it commences to spread out in the lower part of the valiey.

The second stream enters the valley about twelve miles below the Erog and its crossing is a more difficult matter than the first. After passing through the range, it is deflected sharply to the north by a rocky ridge parallel to the valley from which it frees itself by another sharp turn to the east to run, in seasons of flood, riotously across the valley to the Tachika. Ihe estimated cost of this crossing is $25,000.00$, and by careful iocation it should be sufficient.

It seems probable that it will be more economical to cross the Frog and Zachika rivers soparately than the combined stream below the former, as the Tachika is there broken into many channels and no suitable bridge site was observed. Before this is decided,however, a careful survey will have to be wade of this area and, if not sumtable, it is probable that the Kachikn here called the Driftpile) can be economically bridged at a low rock canyon about threa miles above the Frog. The location of this crossing, also, will depend on a further examination of both sides of the Kachika to a point Qbout fifteen miles above the Frog, above which point the easterly side of the river is undoubtedly the better for on the west the country is often rocky and the topography considerably rougher.

The westerly side was examined for about twenty-ifve miles and a reasonably good location could be obtained ron about fifteen, though a wide and rather deep ravine showing evidence of ice pressure in winter - a succession of frozen overplows from its creek - might be expensire to nogotiate. Apart from this and one big creek crossing, the torrain is generally favourabla.

The distence between the Gataga and Frog, where they enter the Kachika, is about four miles, and the valley of the Cataga - diagonally across i.t where it joine the Trench - is fully seven. The Gataga itself hugs the northerly side of its valley, and the Kachika, here of a very winding character, is derlected to the west about three miles above the Frog, near the upper limit of the Gataga valley. The temratu on the easterly side of the Kachika, within the valley of the Gataga, consists of a series of gravel benches which

## 226.

present little difficulty to highway construction.
Imedictely above this valley on this, the east side of the river, the Trench marrows end the ground becomes broken and comparatively difficult, with many low ridges bstween which the drainage is frequently poor and there is some swamp and occasionally ponds or smell lakes. The pack troil is here throe or four hundred peot above the river, to which the ground falls in a serius of benchos.

Above, where the location will dofinitely be on this side of the river, the terrain is generally quite good. Three Ierge creeks enter the valley on this side. They will have to be crossed where they leave the hillsides to debouch across the valley floor in wide, shellow, grevel-strewn beds.

The Rocika will be crossed again where it enters the Trench from the Focky Mountains. From this orossing to and buyond sifton Pass, five miles distant, the location will be about in the centre of the valley where, with the exception of balf a mile or so of hevy sidehill work, sonstruction should not be exponsive.

As this report is accompenied by statements reluting to bridges, eulverts and probeblo quantitios for approximetely every mile from the Dease river to the enss, it is not here necessary to discuse these details. It may bu adad, howevor, thet gravel appers to be abundant along the entire route from the both parallol to Sifton Pass, and that the haul of this geterial for surinaing purposos will probably novor excoed half a mile. fravelly soils, indeod, predominste; the heavior olay soils, except in the lower areas, along oreeks or river bottoms, re less in evidence. Barely a mundred stations of rockork may be expected.

## Summery and Conciusion

The reconaissance shows that a good, generally economical route for a notor highvay exists from the crossing of the Liard river at the lower coñon on the northery boundary of Britisn Columbia to Bifton Pass along, or very close to our line of traverse, a distance of very approximetely 180 milos .

Two possible bridge sites were measured on the Licrd, and two on the Dease. It is evidently more economical to cross the Dease and the Liard than to cross the Liard below the Dease where the length of span raquired would considerably exceed the combined crossings.

In order to void croasing the Kachike river below the Turnagein a major crossing of about 600 feet - the location should hold to the west of the stream, anyway to above the confluence of the Getaga. The country on the easterly side of the Kachike is probably as ravourable, or even more so, thon on the west, but it would herdly make up for the extra cost necessitated by bridging it below the Turnagain, and the crossing of the Gatage - st least 275 feet - would about balance the crossing of the Frog and the Kachila bove it.

It is more sunny on the easterly side of the valley, but as the locetion on the west side of the river will be more in mid-valley than close to the slopes of the Cessiar range, the difference in this respect should not be groat. In any case, this section will get more sunshine and less snow than thet above, towards Sifton Pass, where the $v$ lley is narrower and the snowfall greater.

Regarding the Liard river, it must be pointed out that it may not be advisable to cross this at the Lower Cañon at the 60th parallel; it may prove aconomical to keep on the southerly side of the stream far into rukon Territory, but as the southerly boundary of that Territory was the northerly limit of our reconnaissance, we have no observed data on this question.

There is the question also of the Blue river route, which, as already noted, could conveniently leave the line of our traverse about twenty miles south of the Dease river and - assuming favourable terrain - reach the valley of the Iisrd about twenty-five miles above the Frances, to follow northerly along its valley and those of North river and Big Campbell creek to the confluence of the latter with the Pelly. Such a route might seve twenty miles in distence over any other to this point, and perhaps bridging costs would be Iess.
228.

In conclusion, then, there is little ambiguity regarding the location of a highway from Sifton Fass to a point some twenty miles fron the Dease river, but from there north the location depends on the Blue river terrain within the Province of British Columbia and on that adjacent to it and the Liard in Xukon Territory.

## ALABKA HIGHNAY

Liard River (Yukon Boundary) to Sifton Pass
(1) Liard River $250^{\circ}$ steel deck span -
concrete abutments on
solid rock -
Span $\quad 97,000.00$
Abutments
12,000.00
$\$ 109,000.00$
(2) Dease River 3, $110^{\prime}$ H.T. spens on pile
piers and 6 spans of trestle
approaches -
27,000.00
102: trestles at $430.00 \quad 4,400.00$
2 pile piers at 42,200.00 4,400.00
2" " " $1,400.00 \frac{2,800.00}{38,500.00} \quad 38,600.00$
(3) Red River

I, 110' E.T.spen at ${ }^{\prime} 9,000.00$ 0,000.00
38' trestle at 330.00 1,140.00
1 concrete abutment 3,000.00
1 pile pier
$\frac{1,200.00}{14,340.00}$
$14,400.00$
(4) Davey Oreek 1, 50 King span
, ,200.00
Se' treatles at $\$ 30.00$
2 pile piers at 800.00
1,140.00
$\frac{1,600.00}{4,940.00} \quad 5,000.00$
(5) Turnagain

2, 120' H.T.spans at \$11,000.00
6l' trestle at $\quad 30.00$
22,000.00
1,550.00
4,000,00
1,800.00
1 concrete
I pile pier
$\frac{1,600.00}{30,930.00}$
$31,000.00$
(6) Moody Creek

$$
\begin{aligned}
& \text { I, } 110 \text { W.T.span } \\
& 170 \text { tresties at } \$ 0.00 \\
& \text { apile viers at w, } 200.00
\end{aligned}
$$

9,000.00
5,100.00
2,400.00

## 229.



ALASKA - BRTTISER COLUNBIA HIGHFAY RECONNAISSANCT,1939

Memorandum on Secondary Structures and Culverts

| $\frac{\text { Miles }}{\text { No }}$ | $\frac{\text { Bridges }}{\text { Comnon }}$ |  |  | Corrugated Iron Pipe |  |  |  |  | Hooden Box Culverts |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $20^{\circ}$ | $5^{\circ}$ | $0^{1}$ | 12 | $18^{\text {ip }}$ | $24^{\text {² }}$ | $30^{\prime \prime}$ | $36^{\prime \prime}$ |  |  |  |  |
| 1-5 |  |  |  | 5 | 5 | 1 |  |  | 1 |  |  |  |
| 5-10 | 1 |  |  | 14 | 10 |  | 1 | 1 |  |  | 1 |  |
| 10-15 | 1 |  |  | 7 | 4 |  |  |  |  |  |  |  |
| 15-20 | 1 |  |  | 11 | 6 | 1 |  |  | 1 |  |  |  |
| 20-25 |  |  |  | 9 | 5 |  | 2 |  |  | 2 |  |  |
| 25-30 |  |  |  | 6 | 3 |  |  |  |  |  |  |  |
| 30-35 |  |  |  | 12 | 5 |  |  |  |  | 2 |  |  |
| 35-40 | 1 |  |  | - | 1 |  |  |  |  |  |  | 1 |
| 40-45 |  |  |  | 8 | 2 |  |  |  |  |  |  |  |
| 45-5c |  |  |  | 6 | 4 |  | 3 |  |  |  |  |  |
| 50-55 |  |  |  | 9 | 5 | 1 |  |  |  | 1 |  |  |
| 55-60 |  |  |  | 8 | 1 |  |  |  | 1 |  |  |  |
| 60-65 |  |  |  | 10 | 2 |  |  |  |  |  |  |  |
| 65-70 |  |  |  | 10 |  |  |  |  |  |  |  |  |
| 70-75 |  |  |  | 10 | 1 |  |  |  |  |  |  |  |
| 75-80 |  |  |  | 15 | 2 | 2 |  |  |  |  |  |  |
| 80-85 | 1 |  |  | 6 | 4 | 1 |  |  | 1 |  |  |  |
| 85-90 |  |  |  | 10 | 1 | 2 |  |  | 1 | 1 |  |  |
| 90-95 |  |  |  | 4 | 4 | 1 |  |  |  |  |  |  |
| 95-190 | 1. |  |  | 6 | 2 |  |  |  | 1 |  |  |  |
| 100-105 |  |  |  | 10 | 1 | 3 |  |  | I |  |  |  |
| 105-110 |  |  | 2 | 8 | 3 | 2 |  |  |  | 1 |  |  |
| 110-115 |  |  | 1 | 6 |  | 4 |  |  |  | 1 |  |  |
| 115-120 | 1 | 1 |  | 4 | 1 | 4 |  | 1 |  |  |  |  |
| 120-125 |  |  |  | 8 | 1 |  |  |  |  |  |  |  |
| 125-130 |  |  |  | 10 | 1 | 3 |  |  |  |  |  |  |
| 130-135 |  |  |  | 13 | 3 | 1 |  |  |  | 1 |  |  |
| 135-140 |  |  |  | 13 | 3 | 1 |  |  |  |  |  |  |
| 140-145 |  |  |  | 13 | 3 | 1 |  |  |  |  |  |  |
| 145-15* |  |  |  | 10 | 3 | 1 | 1 |  | 1 |  |  |  |
| 150-155 |  |  |  | 12 | - | 1 | 1 |  |  | 1 |  |  |
| 155-160 |  |  |  | 13 | 2 | 1 | 2 |  |  | 1 |  |  |
| 160-165 |  |  |  | 12 | 4 | 2 | 2 |  |  |  |  |  |
| 165-170 |  |  |  | 11. | 2 | 2 |  | . 1 |  | 1 |  |  |
| 170-175 |  |  |  | 10 | 2 |  |  |  |  |  |  |  |
| 1.75 - |  |  |  | 10 | 3 | 4 | 3 |  |  | 2 |  |  |


|  | 325 | 102 | 39 | 15 | 3 | 16 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total Lineal foet culverts required

| Carrugated | Iron Pipe |  |
| ---: | ---: | ---: |
| $72^{\prime \prime}$ | $"$ | 71,750 |
| $18^{\prime \prime}$ | $"$ | 4,030 |
| $2 A^{\prime \prime}$ | $"$ | 1,640 |
| $30^{\prime \prime}$ | $"$ | 750 |
| $36^{\prime \prime}$ | $"$ | 150 |

Wooden Box Culverts
Total lineal feet $200,800,50$ and 50 Estimated cost of same $\$ 1000$ and $\$ 5000$

| $13^{\prime \prime}$ | \$60 | $12 \%$ | 24,000.00 |
| :---: | :---: | :---: | :---: |
| $18^{\prime \prime}$ | 90 | 18' | 13,000.00 |
| 24. | 120 | 24" | 7,000.00 |
| $30^{19}$ | 140 | $30^{\prime \prime}$ | 4,000.00 |
| $36^{\prime \prime}$ | 170 | $36^{\prime \prime}$ | 1,000.00 |

Total estinated cost :
\$55,000.00

Note: Figures compled by $\overline{\text { Ford based on data collected by him recently }}$ on Columbia River Big Bend Kíghway construction.

| Kile | Distance | Quantities | $\frac{\text { Clearing }}{\text { Grubbing }}$ | \& Surfacing | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 63 | 63 | 655,000, at 62 | 1,500.00 | 2,000.00 | 629,875.00 |
| 4 | 1 | 15,000 at ${ }^{\text {W }} 1.25$ | " | " | 22,250.00 |
| $5-145$ | 81 | 868,000 at 62t | " | * | 826,000.00 |
| 205-147 | E | 30,000 at \$1.25 | " | " | 44,500.00 |
| 4.48-15] | 4 | 40,000 at 62.2 | " | is | 39,000.00 |
| 4 $=0$ | 1 | 15,000 at \% 1.25 | $\because$ | 19 | 22,250.00 |
| 283-179 | 27 | 325,000 at 62k | " | i8 | $\frac{297,625.00}{381,500.00}$ |

Less 7 miles 70,000 at $62 \frac{1}{2}$ plus dlearing, grubbing and surfacing
$\frac{68,250.00}{1,815,250.00}$
\$1,813,250
tius for Dease River to Lower Ganyon on Liard, tatal 8 miles:

te: 62E cents a yard is estimated for ordinary excavation;
2.25 a yard were 40 per cent is rock. (The rock appears to

- generally of a schistose nature, comparatively easy to : $=a k$ )
zaring is estimated for a 66 foot right-of-way; grubbing, feet.

Doavation, clecring, Grubbing and surfacing
smiges from previous pege (as amended by A.I.
arruthens)
Weidges and culverts,Iiard and Dease Rivers
mervers
Tis for 180 miles - $15,056.00$

埗1,810.000.00
382,000.00
3,000.00
55,000.00

Note: The earthwork is besed on a Bo-foot, ovorali, roadway and a -ximum grade of 6 per cent, estimated from two or nore typical tections (half a mile in longt上) en route. It is considored that the above is a fair estimete of probable costs. some spruce in isolated petches is available and would be satisfactory Or local lunosr - emp purpos os, mall structural tinbers and piline. seh timber is found near mile 42 , near the conthence of the Facribe and urnagain rivers, in the vicinity of penatian Creek and jrog liver and thor localitios in the Trench. No amount for engineering servicee is ncluded in the doove figures. 100,000 for such dervices would bring tae above total to say $\qquad$

## Memorendum of Freight Fates

| Telegraph Creek to Dease Lake (road) | 3ह cents per pound |  |
| :--- | :--- | :--- |
| Dease Lake to Lower Post | 6 | $"$ |
| Prince Georse to Fort Ware | 7 | $" 17$ |

## Passengers

Wrangell to Telegraph Creek - 330 up stream; $\quad 15$ down strean Telegreph Creek to Dease Lake 5

Dease Lake to Lower Post (up or down strean) 420
Pack and sedale horses at Telegraph Creek, il. 25 per day, fully equipped, usually with apparajos for pack animals.

Pack and sadde horses at fudson Flope, Peace River or Stuart Lake, 75 cents to 0.00 per ay; ubually with pack saddles for pack animals.

## Comparison of Frices et Telegraph Creek, Lower Post and Fort Jare

| Cormodity | Telegraph Creek | Lower Post | Fort Ware |
| :---: | :---: | :---: | :---: |
| Bacon per pound | . 50 | . 80 | . 65 |
| Boans " | . 13 | . 23 | . 20 |
| Butter " | . 55 | . 65 | . 60 |
| Coffee ir | . 55 | . 70 |  |
| Dried Fruit " | .30 | . 40 | . 35 |
| Plour " | . 07 | . 16 |  |
| Rice " | . 10 | . 20 | . 17 |
| Salt it | . 08 | . 20 | . $18 \frac{1}{2}$ |
| Sugar | . 11 | . 20 |  |
| Tres it | .70 | . 90 |  |
| Gasoline, per g | $110 n$ | 1.50 |  |


| Dete |  | Location | GenersI Conditions | Wind | Temporature |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June | 15 | Dease Lake | Fine, frost at night | 3.1 | 30 at 6 a.m. |
| " | 16 | " | Fine, warm |  | 25 at 4 a.m. |
| I | 17 | ' | Rain in $\mathrm{p} . \mathrm{m}$. |  | 60 at $8 \mathrm{a} . \mathrm{m}$. |
| " | 18 | 17 | Cloudy, showery, cool |  | 54 at 7 a.m. |
| " | 19 | " | Olearing | North | 55 at noon |
| " | 20 | " | cloudy, cool. |  | 50 at noon |
| " | 21 | " | Rain | S. 7. | 60 at noon |
| $"$ | 22 | Dease River | Fine, partly oloudy, cool |  | 52 at noon |
| " | 23 | " | Rain. Cloudy to fine |  | 60 at noon |
| " | 24 | Lower Post | Fine |  | 45 at 7 a.m. |
| 4 | 25 | " | Showery |  | 52 in a.m. and pm, |
| " | 26 | " | Fine, warm, showery |  | 52 in " |
| 18 | 27 | " | Showery |  | 60 at noon |
| " | 28 | " | Fine. High wind | E. | 65 at noon |
| " | 29 | " | Fine. Eigh wind | E. | 72 at noon |
| " | 30 | " | Rain |  | 52 at 8 a.m. |
| July | $I$ | Lower Post | High wind. Rain | W. | 40 at $8 \mathrm{a} . \mathrm{m}$. |
| " | 2 | " | Fine. Figh wind | V. | 50 " |
| " | 3 | i | Rain |  | 50 " |
| " | 4 | " | Fine |  | 52 " |
| " | 5 | " | Pine |  | 52 " |
| " | 6 | ir | Showery |  | 52 " |
| " | 7 | " | Fine to rain |  | 50 " |
| " | 8 | " | Fog. Heavy dew |  | 45 " |
| " | 9 | " | Fine |  | 55 " |
| " | 10 | 12 Miles S.E. | Fine. cloudy |  | 56 |
| " | 11 | " | Showery |  | 58 at noon |
| $"$ | 12 | " | Showery, windy | S.E. | 58 at noon |


| Dete |  | Location |  | General Conditions | Wind | Temperature |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | 13 | 291 | Miles 3.2 . | Rain to Fine |  |  | at | le p.m. |  |
| " | 14 |  | " | cloudy to fine |  |  | at | midnight |  |
| " | 15 | 37 | if S.E. | Showery |  |  | at | 6 a.m. |  |
| " | 16 | Red | Fiver | Fine. One shower |  |  | at | $6 \mathrm{a} . \mathrm{m}$. |  |
| " | 17 |  | " | Fine |  |  | at | noon |  |
| " | 18 |  | 18 | cloudy to fine |  |  |  |  |  |
|  | 19 | 541 | Miles S.E. | Fine. One shower |  |  | at | 6 a.m. |  |
| " | 20 |  | " | Fine. Cloudy |  |  | at | $2 \mathrm{p} . \mathrm{m}$. |  |
|  | 21 |  | " | Fine | E. |  | at | $7 \mathrm{a} . \mathrm{m}$. |  |
| " | 22 |  | i | Fine. Sultry |  |  | 4 at | 8 p.m. |  |
| \% | 23 |  | " | Cloudy. Tindy. Fine | S.1. |  | at | noon |  |
| " | 24 | Kach | hika River | Cloudy. Showery | 1. |  | at | 8 p.m. |  |
| 17 | 25 | Che | e flouse | Fine |  |  | 4 at | $7 \mathrm{a} . \mathrm{m}$. |  |
|  | 26 |  | " | Fine |  | 44 |  | " |  |
| " | 27 |  | " | Fine |  | 48 |  | 18 |  |
| " | 28 |  | 1 | Fine to cloudy |  | 45 |  | " | 13 |
|  | 29 |  | " | Clouky, one shower |  | 50 | 0 | * | , |
| " | 30 |  | " | Showery |  |  | 0 at | noon |  |
| " | 31 |  | " | Cloudy |  |  | at | 7 a.m. |  |
| Augu | st 1 | Che | ee House | Cloudy. Windy | W. |  | at | 7 a.m. |  |
| " | 2 |  | " | Cloudy, fine |  | 52 |  | " |  |
| " | 3 |  | " | Partly Cloudy |  | 44 |  | " |  |
|  | 4 | 6 | miles south | Pine, windy |  | 38 |  | " |  |
|  | 5 |  | " | Cloudy, one shower |  | 42 |  | " |  |
| " | 5 |  | " | Fine, partly cloudy |  |  | 0 at | noon |  |
| 19 | 7 | 12 | " | Partly clear,fine an |  |  | 8 at | $6 \mathrm{a} . \mathrm{m}$. |  |
| " | 8 | 20 | " | Fine |  |  | 5 at | 6 a.m. |  |
| " | 9 |  | " | Fine, warm |  |  | 5 at | noon |  |
|  | 10 |  | \% | Fine, warm |  |  | 0 at | noon |  |
|  | 11 | 25 | " | Cooler.Thunder.Rain | ight |  | 7 at | 6 a.m. |  |

235. 

| Dete |  | Location | General Conditions | wind | Temperature |
| :---: | :---: | :---: | :---: | :---: | :---: |
| August |  | 25 miles south | Cold. Rain |  | 42 at 6 a.m. |
| : | 13 | * | Rain to clear. Cool |  | 42 at 6 a.m. |
| " | 44 | $35 \%$ | Showery and cool |  | 37 at 6 a.m. |
| 8 | 15 | " | Showery, cool | S.E. | 37 at 6 a.m. |
| " | 16 | 40 " | Showery, windy, cool |  | 42 at 6 a.m. |
| " | 17 | 18 | Showery and cool |  | 60 at noon |
| 19 | 18 | " | Showery to line |  | 24 at $4 \mathrm{a} . \mathrm{m}$. |
| " | 19 | " | Showery, windy |  | 52 at 6 a.m. |
| 7 | 20 | " | Fine; one shower |  |  |
| " | 21 | " | Tine |  | 48 at $6 \mathrm{a} . \mathrm{m}$. |
| " | 22 | 48 " | Fine. Cool |  | 48 |
| " | 23 | 50 " | Fine. Cool |  |  |
| " | 24 | \% | Shovery, cool. |  | 42 at $6 \mathrm{a} . \mathrm{m}$. |
| ${ }^{17}$ | 25 | Frog River | Showery, cold |  | 54 st noon |
| $"$ | 26 | 17 | Fine |  | 34 at $6 \mathrm{a} . \mathrm{m}$. |
| 19 | 27 | 3 | Fine |  | 25 at 6 a.m. |
| " | 28 | " | Fine |  | 32 at 6 arm . |
| " | 29 | 13 miles south | Cloudy, caim |  | 38 at 6 a.m. |
| * | 30 | 26 " | Cloudy, rain at night |  | 42 at 6 a.m. |
| " | 31 | " " | Cloudy, fine |  | 36 at 6 a.m. |
| Sept. | 1 | 36 miles south | Cloudy; rain in $\mathrm{p} . \mathrm{m}$. |  | 30 at 6 a.m. |
| " | 2 | 48 " | Cloudy, showery |  | 45 |
| " | 3 | Sifton Pass | Cloudy, showery | S.E. | 30 |
| " | 4 | " " | Gloudy, showery |  | 34 at $6 \mathrm{a} . \mathrm{m}$. |
| " | 5 | For Lake | Cloudy to fine |  | 28 at 6 a.r. |
| ${ }^{19}$ | 6 | Hox Pass | Showery, cold |  | 25 at $6 \mathrm{a} . \mathrm{m}$. |
| $"$ | 7 | 37 miles south of Gifton pass | Fine, windy | S.W. | 36 at 6 a.in. |
| " | 8 | Fort Nare, Firle: River | Fine, partly cloudy |  | 25 at 6 arm . |

## Notes on Bird Iife

Many varieties of birds were observed during the summer. Of the wild-fowl, loons (the Great Northern Diver), snipe, plover, Canada geese, many kinds of ducks and a few herring gulls and terns were seen. A few geese evidently nest in the region.

Owls do not appear to be plentiful and we seldom heard and rarely saw them, but there are some Golden Ragles, many sparrow hawks, some marsh hawks and a few falcons - probably the peregrine. We saw, I think, one osprey. Anerican crows and ravens are fairly munerous.

Nillow grouse and spruce partridge are common, though not particularly plentiful, and ptarmigan are found on the higher levels.

Of the smaller birds, we saw robins, red-winged blackbirds, cow birds, soodpeckers, flickers, varied and olive-backed thrushes, northern wrens, theos, American water-ouzels, sparrows, western tanagers, yellow warblers, might-hawks and two or more flocks of cedar waxwings, one flock near the Eoner Post early in July. Canada jays (whiskey jacks) of course are zumerous, and so were the bank swallows which were busy nesting under the guves of buildings at McDames and the Lower Fost.

List of Plants from Liard Basin, 58-60 N. Lat; 127-130 w. Iong.
Lower Post - Liard River to Sifton Pass
Pyrole Chlorantha

Aohillea Millefoliun
ALlium Schoenoprasum snomone Multifida squilegia Erevjstyla rmica Sp.? Antomisis Frigida Astragelus Sp.?

Galium Sp., Boreale Gentiana Propinqua Larix Americana. Ledum Groenlandicum Linnaea Borealis Lonicera.? Lapinus Iupinus
Empanula Rotundirolie var. Vertensia Esiphinium Sp.? Enigeron Compositus Zriophorum

Oxytropis Monticola
Polemomium Coeruleum
Potentilla Fruiticosa

Rosa. Sp.?
Rubus Arcticus
Saxifraga Tricuspidata
Serica. Sp.?
Solidago Elongata
Totielaia Intermedia
Vaccinium Oreophyllum
Vaccinium Vitis-idaea?
Viburnum Pauciflorum
Zygadenus Zlegras.
ste: The nemes of the above plants were kindly given by Prof. J.Davidson, Associate Professor of Botany, University of British Columbia.

## Iist of Plans Accompanying Reconnaissance

 Report by E.Lamarque1. Plan - Northerly end of "3" Foute - scale 16 miles to 1 inch
2. Slan of Upper Liard River and adjacent territory scale 16 miles to 1 inch
3. Plan of Lower Post and vicinity - scale 2,000 feet to 1 inch
4. MEp of reconnaissance survey, "B" Koute, Liard river to Bifton Pass - four miles to l inch
5. Plan of Fort Jare to Caribou Fide -- scale 4 miles to 1 inch
6. Sample topography and location near vile 12

6a. Sample cross sections for above
7. Sample topography and location near Sifton Pass

7a. Sample cross sections for above
8. Trail traverse, Lower Post to Sifton Pass - 1,000 feet to 1 inch.

Note. Some fifty plotographs also accompanying the Report are illed with the records of the British Columbia Yukon - Alaska Highway Commission.

