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Abstract 

Effective flood plain management requires estimation of the costs 

and benefits of all contemplated projects. In this study the focus is on 

estimating the benefits of such schemes. 

Starting from the similarity between flood flow and flood damage 

time series, the authors take a probabilistic approach to flood damage 

estirnati on. They first develop a hydroeconomi c model to assess fl cod­

related damages and then derive a damage distribution function by applying 

the theory of extreme values and the sum of the random number of random 

variables to the estimated damage series. It is assumed that the values of 

extreme damages are independent and identically distributed over the time 

interval (O,t] of one year and one season simultaneously. The distribution 

function can then be used to estimate the benefits of flood plain management 

projects. 

The Richel ieu River basin has been used for a numerical appl ica­

tion because of its combined rural and urban characteristics and the fairly 

large amount of information acquired in previous studies. 
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Resume 

L'amenagement des plaines inondables necessite une estimation des 

couts et des benefices relies aux diverses interventions dont on envisage 

1' implantation. Dans cette etude, on s' interesse plus particul ierement a 
l'estimation des benefices. 

Cette etude partant de 1 a similitude exi stant entre 1 a serie 

temporelle des debits de crues et la serie temporelle des dommages d'inonda­

tion, a pour but d'appliquer l'approche probabiliste aux dommages d'inonda­

tion. A cette fin, on developpera, dans un premier temps, un modele hydro­

economi que permettant d' estimer 1 es dommages d' i nondati on associ es a une 

crue. Ensuite, on derivera une fonction de repartition des dommages en 

appl i quant 1 a theori e des val eurs extremes et 1 a somme du nombre al eatoi re 

de variables aleatoires a la serie de dommages d'inondation precedemment 

estimee. On considerera les valeurs des dommages maximaux independantes et 

identiquement distribuees dans l'intervalle de temps (O,t] d'un an et d'une 

saison simul tanement. De cette fonction, on peut extraire une estimation 
des benefices des projets. 

Pour l'application numerique, on a retenu le bassin versant de la 

riviere Richel ieu etant donne ses caracteristiques urbaines et rurales, et 

pour le grand nombre d'informations disponibles. 
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CHAPTER 1 

Introduction 

As there is a simi 1 ari ty between flood flow and flood damage time 

series, in this study probability theory is applied to the estimation of 

flood damage. The methodology used is based on stochastic processes which 

permit the analysis of independent random variables that are identically 

distributed over a given time interval. 

Application of this methodology requires a long-range flood damage 

series, which can be derived in several different ways, i.e., by post-flood 

survey, correlation or simulation. Although this study is primarily 

intended to apply the extreme value theory to flood damage, it also presents 

a procedure for estimating flood damages from hydrologic and economic 

variables (Chapter 3). The appeal of this approach stems from the total 

absence or else the inadequacy of damage series permitting the use of the 

extreme value theory. 

The occupation of flood plains entails serious risks of fiooding. 

It is argued, however, that the advantages--both tangible and intangible--of 

1 iving near water outweigh the potential risks. Throughout history mankind 

has developed brilliant civilizations near the water. Historically, the 

proximity of water was a major benefit. Rivers and streams were the most 

efficient means of long-distance transportation; their proximity guaranteed 

a more reliable supply of food and drinking water ., and flooding, its adverse 

effects notwithstanding, was often the means of fertilizing the soil. We 

need only think of the Nile and its natural activity, so crucial to the 

well-being and indeed the survival of Egypt. However, as society evolved, 

some of these benefits lost much of their significance or became negligible. 

For example, the development of road and rail networks has brought opportu­

nities that water transport cannot always rival. Nor is the food supply 

function of water the vital factor it once was. Very few people now catch 

their own fish, as the development of commercial fishing and food 

distribution networks has made buying fish a more attractive option. As for 
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fertilization, the silt washed up by flood waters has been replaced by 

commercial products, which, given the random occurrence of flooding, are a 

more reliable source of supply. 

Given that the beneficial aspects of living near water have lost 

some or much of their impact (although waste disposal and a number of other 

activities remain important advantages) and flooding remains a problem, we 

would logically expect a gradual move away from flood plains and consequent 

eradication of the flood problem. In fact, this is not at all the case. On 

the contrary, we are seeing an increase in flood-caused damage, as demons­

trated in the study by Perrier (1978) on the chronological evolution of 

annual flood damage in Quebec. Ironically, the present situation can be 

explained in that the advantages of living in a riverside community still 

outweigh the disadvantages stemming from floods. Note, however, that such 

advantages are no longer attributable solely to the proximity of water but 

are increasingly linked to urban settlement. 

This is made clearer when we take a broad look at the urbanization 

process. It has been said that people settled near bodies of water, some of 

which were prone to flooding, to reap the advantages offered by the site. 

Thus, to increase the chances of survival, they instituted riverside 

communities which in time matured into towns and villages. This had a major 

impact because the growth of urban populations justified the development of 

services and infrastructures--the most striking examples being roads and 

aqueducts--which had once been economically infeasi b 1 e. Towns thus became 

more attractive, not only because of the proximity of water but also because 

of the availability of services. This led to even greater urban population 

density. At the time of the industrial revolution, industries settled in 

towns as a matter of course to take advantage of established services, tap 

the 1 arge ~rkforce potential and consumer markets and, naturally, exploit 

such water-related services as processing and energy supplies. This was a 

dynamic process, the industrial presence making towns even more attractive 

to outsiders, which in turn further increased urbanization, a decisive 

factor in a town's ability to attract more industry. From that point on, 
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urbanization no longer depended entirely on the proximity of water but 

increasingly on the ability of a town to draw people interested in urban 

services, job opportunities, etc. 

In sum, the fewer advantages of living near water, coupled with 

the continuing flood problem, do not deter people from settling in towns 

situated in flood plains, as the decline in the benefits derived from the 

proximity of water is more than offset by the increased advantages of 

urbanization. 

Foreseeably, then, the flood problem will continue to exist, 

making it both interesting and useful to acquire as much knowledge as 

possible about flood damage. This is the contribution which this study 

intends to make. 
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CHAPTER 2 

Intervention Criterion 

2.1 Cost-Benefit Analysis 

To establish a criterion for flood plain intervention, we assume 

that the government, seeking to maximize the satisfaction of all members of 

society, will call upon its departments and agencies to set up programs 

designed to achieve this goal . This 1 eads us to develop a theoretical 

framework inspired by the work of Eckstein (1958). 

(a) An individual will allocate his income to the acquisition of various 

consumer goods to obtain maximum satisfaction. The utility function 

(U) of an individual (i) can be expressed as 

( 2 .1) 

Function U; (x; 1 •.. xim) is continuous and increasing; it is also 

strictly quasiconcave (Malinvaud, 1977). The level of satisfaction 

achieved will be a function of the quantities of goods (x., j=l. .. m) 
J 

consumed by individual i, who will therefore seek to maximize u., 
1 

subject to the constraint that the sum of his spending must not exceed 

his income (R;). The optimum is determined by the following solution 

of the Lagrangian function (L;): 

(2.2) 

where A;= the Lagrangian multiplier for individual i; 

X •. = 
1J 
pj = 

the good j consumed by individual i, j=1 •.. m; 

the price of good j (it is assumed from here on that 

the price system Pj is the same for all individuals); 

R. =the revenue of individual i; 
1 m 

R.- I P.x .. = 
1 j =1 J 1J 

the budgetary constraint on individual i. 
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Taking the partial derivatives relative to xij (j=1 ... m) and isolating 

A.i, we obtain the following conditions of optimality: 

( 2. 3) 

This gives the usual conditions of optimality, i.e., an individual will 

apportion his revenue among various goods in such a way that the 

marginal utility weighted by the inverse of their price is the same for 

all of the goods. 

(b) By intervening in a given region, the project authorities supply the 

population with goods and/or services (t.xij). This variation in 

consumption wi 11 affect the 1 evel of sa ti sfacti on, which varies as 

follows: 

m oU. 
1 &J. = l: -- t,x .. 1 . 1 ox.. 1J 

J= 1J 

Integrating Equation 2.3 in Equation 2.4 yields 

m 
t.U. = A.. l: P. t,x .. 

1 1 j=1 J 1J 

(2.4) 

(2.5) 

(c) With respect to the population affected by a given project, the 

variation in satisfaction t.W will be defined as 

n 
tM = l: &J. (there are n individuals involved) 

i =1 1 
( 2.6) 

n m 
= l: l: A.. p . M . . 

i =1 j=1 1 1 1J 
( 2. 7) 
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In a first approximation, we assumed that the A.i 1 S are constant and the 

same for all individuals. Equation 2. 7 becomes 

n m 
f'-l.l = A. E E 

i =1 j =1 
p. 6X •• 
J lJ (2.8) 

Owing to its properties of growth and quasi concavity, the consumer 

satisfaction function is unique to within a monotonic transformation 
(Mal invaud, 1977). We can therefore write 

n 
f'-l.J = E 

i =1 

m 
= E 

j=1 

Supposing t-,xj 

m 
E p. t:,x •• 

j=1 J lJ 

n 
p. E t:,x .• 

J i =1 lJ 

n 
= I t-,xij, one obtains 

i =1 

m 
E P. t:,x. 

j=1 J J 

(2.9) 

(2.10) 

(2.11) 

The variation in satisfaction of the population thus equals the sum of 
variations in real income. 

(d) Let us now consider one possible application of this model to flood 

plain management. The project authorities will seek to maximize t.W by 

converting production factors (x 2 ••• xm) into consumer goods x
1

• The 
production function will be represented by 

(2.12) 

where x1 is the aggregate of goods produced and 'f'(x 2 ••• xm) is the 
production function. 
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The project authorities, while considering the production function, 

must also adhere to their budgetary constraint (D) and thus make 

certain that the costs (C) of their activities do not exceed D. The 

Lagrangian equation (L 2 ) is solved as follows: 

m 
L2 = P1 6>< 1 - l: Pt Mt- !l(x 1 - ':¥(x 2 ••• xm})- e(C-D) 

t=2 

(2.13) 

(2.14) 

Since t0< 1 represents the variation in consumer goods, P1t0< 1 is equal to 

the real benefit (B) of the project. Since Mtrepresents the 
m 

production factors used, I Ptt0<t represents the real costs (C) of the 
t=2 

project. Equation 2.14 becomes 

(2.15) 

At optimum, we have 

oB 
j.l = 0 -ox 1 

( 2 .16) 

oC (1+e) - o':¥ = 0 
oxt ll ox 

t 
for any t (2.17) 

Isolating ll from (2.16) and (2.17) gives 

( l+e) oC oB o':¥ 0 (2.18) ----
oxt ox 1 oxt 

oB o':¥ --
ox 1 oxt 

= ( 1+ e) for any t (2.19) oC 
oxt 
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In a simplified form, 

oB/ oxt 
= 1 + e for any t oC/ oxt 

(2.20) 

Equation 2. 20 forms the intervention criterion for flood plain 

management authorities. The term (oB/oxt) represents the variation in 

consumer benefits (and satisfaction) generated by a project yielding x1 

produced by means of xt. In our case, x1 may represent an increase in flood 

protection; (oC/oxt) is the marginal cost of the project; e is a factor that 

takes into account the scarcity of funds available to project authorities. 

Where only one project is contemplated, the criterion determines the optimum 

scope of the intervention, i.e., the marginal benefit should exceed the 

marginal cost by a factor (l+e). When a number of independent projects are 

being considered, the individual marginal projects should be selected such 

that the benefits of the project exceed the cost of the project by a factor 

(l+e). If the projects are incompatible or the benefits and costs of one 

project are affected by the implementation of another project, some other 

criterion will have to be used, in which case authorities will opt for a 

combination of compatible projects that maximizes the economic impact while 

adhering to the government• s budgetary constraint. Further information on 

the evaluation of public projects can be found in the \\()rk of Levy-Lambert 

and Dupuis (1973). 

2.2 Remarks on the Intervention Criterion 

We have just established a flood plain intervention criterion 

based on a relatively elementary theoretical framework. This criterion is 

dependent upon (a) the budgetary constraint, which determines the parameter 

e, (b) the project production function, which determines costs, and (c) the 

function for the satisfaction of the individuals affected by the project, 

which determines benefits. Note that although this criterion is concep­

tually clear, its use poses a number of problems, particularly with respect 

to flood plain management projects. While budgetary constraint is fairly 

easy to obtain and the costs of the different interventions such as dikes 
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and reservoirs can be calculated with satisfactory accuracy, we must contend 

with an extreme lack of accuracy when it comes to the evaluation of project 

benefits. Indeed, project evaluation is complicated by a lack of informa­

tion on quantification of the benefits of flood plain intervention. 

Research efforts should therefore focus on maximizing information about 

these benefits. We attempt here to provide some initial solutions in this 

regard. 
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CHAPTER 3 

Theoretical Considerations 

The purpose of this Chapter is to present the theory of extreme 

values which we will use to analyse the flood damage series. In view of the 

virtual nonexistence of flood damage series, we will also present a metho­

dology for estimating flood-related damages by means of hydrologic and 
economic parameters. 

3.1 Hydroeconomic Model 

The damages associated with any given flood comprise two types of 

variables: natural random variables {flood flow, depth of submersion, etc.) 

and nonnatural determinist or random variables {economic development of the 

study area). The damage function can generally be written as follows 
{ El-Jabi ~ .!!._., 1982b): 

where d = 

K = 

d=f{K,Y) { 3.1 ) 

a variable describing various possi b 1 e types of physical and 
nonphysical damage; 

a variable describing all of the physical capital such as 
residences, commercial and industrial buildings, and stocks, 

and associated activities such as production flow and domestic 
services; 

Y =a vector of the elements that describe the flood 

characteristics such as water depth and velocity and duration 

of submersion. 

Given the characteristics of flood damages, the damage function is 

a monotonic, continuous, non-decreasing function that takes the shape of an 

S-curve { Dantzi g, 1956) {Fig. 3 .1) . The Gompertz curve reflects these 

characteristics and was thus the one used. If, in addition, we take only 

the depth of submersion as the hydrologic variable of damage, the damage 
function is expressed as 

10 



d ( 3. 2) 

K 

where z = the depth of submersion; 
a and y = the parameters to be estimated. 

In Equation 3.2, the units of the damage variable are regarded as 
unitary for the various economic sectors ($/unit). Simply knowing the depth 
of submersion of any given economic unit is therefore sufficient to 
calculate the damage that it incurs. 

a: 
w 
1-­
w 
:::!i 
<( 

a: 
<( 

a. 

u 

::! 
0 
z 
0 
u 
w 

LIMIT OF MAXIMUM DAMAGE ---------------------

HYDROLOGIC PARAMETER (SUBMERSION DEPTH) 

Figure 3.1. Damage function. 
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Note that Equation 3.2 considers a constant depth of submersion 

for the entire stock of physical capital. It is highly unlikely, however, 

that all of the economic units are situated on the same 1 evel and thereby 

subjected to the same submersion depth. The enormous task of calculating 

the depth of submersion for each individual unit is alleviated by 

determining the mean unit damage corresponding to a particular depth. This 

mean unit damage corresponds to the damage that would occur if the economic 

units were uniformly distributed within a sector lying between the base 

level (z = 0) and the elevation considered (z = z1 ). This hypothesis is 

valid for certain economic units (residences) but does not apply in every 

case. Industrial sectors, for instance, must be dealt with on a per unit 

basis. The mean unit damage becomes 

(3.3) 

where F(z) =the unit damage function (Equation 3.2). 

3.2 Model of Extreme Values 

The model of extreme values has been extensively applied to the 

floo-d phenomenon (El-Jabi et ~., 1982a). The methodology described in the 

preceding chapter associates with each flood an estimate of the mean unit 

damage caused by that flood. A certain similarity can therefore be expected 

between the flood phenomenon and the resulting damages. 

The similarity is obvious if we consider the following process: 

• For a given river, we take a hydrograph representing the instanta­

neous flows for a time interval (O,t] (Fig. 3.2). 

• Given the time di sconti nui ty of the flood phenomenon, the hydro­

graph can be derived by applying the model below (Fig. 3.3). 
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== 0 
...I 
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co 
0 
z 
4( 
:::t: .... 
a: 
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4( 
w 
a: 
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== 0 
...I 
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0 

0 

BASE FLOW 

QB 

TIME 

Figure 3.2. Hydrograph of instantaneous river flow at a given station. 

T( I} 
TIME 

Figure 3.3. Flood flow hydrograph. 
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l;t = ( 3. 4) 

Qv > QB 

where Q8 = the base flow; 

Q =the flood flow at time ~(v); 
v 
~=the exceedance at time ~( v). 

• In considering only the maximum exceedance of the intermittent 

series to preserve the condition of independence between the exceedances 

that we use to derive the model of extreme values, we obtain a discrete, 

non-negative stochastic process for the exceedances in interval (O,t]. The 

1; series is the one often analysed by the extreme value theory (Fig. 3.4). 
v 

I; • 
v 

• A depth of submersion z can be associated with each exceedance 
v 

• Knowing the submersion depth z , we can use our methodology to 
v 

determine the mean unit damage associated with each flood MUD (Fig. 3.5). 
v 

The similarity between the exceedance series and the mean unit 

damage series can be observed by comparing Figures 3.4 and 3.5. 

The discrete stochastic process formed by the series of mean unit 

flood damages, MUD , represents the base series which will be analysed by 
v 

means of the extreme value theory. Given the nature of flood damages, the 

number of mean unit damages MUD E (O, t] and the time of occurrence of those 
v 

damages {~(v), v = 0,1,2 •.. } can be regarded as random variables. In this 

study, their values are also regarded as random. 

It has been demonstrated (Todorovic, 1970) that the maximum 

exceedances follow a stochastic process wherein the number and values of the 

exceedances are combined in a model in which they are independent and 

identically distributed over a time interval (Tk_1,\), giving the distribu­

tion function of the maximum exceedance x(t): 

14 



UJ 
(.) 
z 
< 
0 
UJ 
UJ 
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>< 
UJ 
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z 
~ 

z 
<X 

0 

A J --v 
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TIME 

Figure 3.4. Representation of the stochastic process of exceedances in time interval (O,t]. 

MUDv 

~ ~----------L-----------------------~A~------------~-------------------L-------1~~ v 
0 T{ I ) T {V-I) T { V ) t 

TIME 

Figure 3.5 . Representation of the stochastic process of mean unit damage in time interval (O,t]. 
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with 
x( t) = Sup MUD 

·d v) ' t v 

Rousselle (1972) expresses this function as 

(3.5) 

(3.6) 

for every k = 1,2 ... and tE(Tk-1'\) where A(t) is the average number of 
exceedances ~ E(O,t] and H(x) is the distribution function of the value of 
the exceedances such that 

H(x) = P(~ ~ x) ( 3. 7) 

The function H(x) can be represented by a statistical law, e.g., lognormal 
or gamma, depending on the hydrometeorological nature of the river or region 
in question. Rousselle (1972) has demonstrated that an exponential 
distribution function can apply satisfactorily for describing the flow 
exceedances in most cases of flooding: 

-1 
where ~ = {E ( ~) } 

~ > 0 

Therefore two cases are to be considered. 

(3. 8) 

(1) The exceedances ~ are Independent and Identically Distributed over a 
v 

one-Year interval (IIDY) (Zelenhasic, 1970): 

(3.9) 
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where A( t) is the average number of exceedances per year and ~ is the 

parameter of the exponential function. 

(2) The exceedances ~ are Independent and Identically Distributed over a 
v 

one-Season interval (liDS) (Rousselle, 1972): 

(3.10) 

where A(T 1 ), [A(T 2 )- A(T 1 )] ••• represent the average number of 

exceedances per season and ~ 1 • ~ 2 ••• are the parameters of the exponential 

function. 

Lastly, the mean unit damage/probability relation is given by 

(3.11) 

where p(x) = the mean unit damage/probability relation; 

Ft(x) = the distribution function of the maximum exceedance. 

The mean unit damage/probability relation is significant, being, 

as it were, the final outcome of the extreme value theory. Assuming the 

independence of the number and value of mean unit flood damages, this model 

permits us to relate this variable to its probability of occurrence. This 
is particularly important because this relation can be used to derive the 

mean annual unit damage, a key variable in the profitability analysis of 

flood plain management projects. The mean annual unit damage (MAUD) is 

calculated by the following formula: 

MAUD = f~ p(x) dx (3.12) 

17 



CHAPTER 4 

Numerical Application 

This Chapter presents a numerical illustration, beginning with the 
development of an intermittent series of mean unit flood damages in the 
Quebec town of Saint-Jean on the Richelieu River. Secondly, this series 
wi 11 be analysed by means of the extreme value theory. Lastly, we will 
comment on the utility of this approach. The application will be confined 
to the residential sector. Note, however, that a few slight modifications 
will render this methodology applicable for any other economic sector as 
well . 

4.1 Estimation of the Mean Unit Flood Damage Series 

Estimation of the mean unit flood damage series requires evalua­
tion of parameters a and y of Equation 3.2. These parameters are constant 
for all floods and are determined by the economic characteristics of the 
study area. 

The data needed for this estimation were taken from the post-flood 
inquiry done in 1976 by the Centre de recherche en amenagement regional 
(CRAR, 1977) within the Richelieu River region. This inquiry permitted the 
estimation of the ratio d/K by giving the flood damage (d) relative to the 
flood of 1976 and to a hypothetical equivalent flood plus 0.305 m (1ft) of 
additional submersion. Also, the K values for each damage unit could be 
estimated. Thus, the variables K, Y ( = z, the submersion height in this 
case) and d are known. The estimation of the parameters a and y from the 
Equation 3.2 is done by considering d/K as a dependent variable and z as an 
independent variable which corresponds to the least-squares method for 
nonlinear functions (Draper and Snith, 1966). Knowing these parameters (a= 

0.953 and y = 0.108), it is easy to find d/K for a certain submersion 
height. 

The depth of submersion in the study area is then evaluated from 
the daily flow rates of the target river, supplied by Environment Canada 
(Table 4.1). The backwater curves are calculated by the HEC-2 program 
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Tab 1 e 4 o1 Peak Flows and Corresponding Exceedances of the Richelieu River: 

Hydrometric Gauging Station 020J007 at Fryers Rapids, Flow= 

25 000 cfs 

Flow Exceedance Flow Exceedance 
Yearoday* ( cfs) ( cfs) Yearoday* ( c fs) ( cfs) 

1938o182 25 800 800 1955o199 40 700 15 700 
1938o186 25 500 500 1956o224 32 500 7 500 
1938o192 25 300 300 1958o211 39 400 14 400 
1938o200 29 200 4 200 1959o21l 34 200 9 200 
1938o202 26 300 1 300 1960o213 36 800 11 800 
1939o212 42 600 17 600 1961.216 25 900 900 
1940o219 37 100 12 100 1961.218 25 400 400 
1940o268 25 500 500 1961.228 26 800 1 800 
1942o210 32 500 7 500 1962o214 30 100 5 100 
1943o183 25 300 300 1963o212 37 600 12 600 
1943o229 38 100 13 100 1968o186 29 900 4 900 
1944o 203 25 600 600 1969o192 25 700 700 
1944o215 34 300 9 300 1969 0 212 39 200 14 200 
1944o233 26 400 1 400 1970o213 39 100 14 100 
1945o187 35 100 10 100 1971.224 40 300 15 300 
1945o207 25 200 200 1972 0 223 42 300 17 300 
1945o235 34 700 9 700 1972o255 26 100 1 100 
1946 o173 26 300 1 300 1972o258 25 600 600 
1946o175 25 800 800 1973o188 36 600 11 600 
1947 0 249 43 700 18 700 1973o240 30 100 5 100 
1948o187 29 500 4 500 1973o276 25 800 800 
1948o198 26 800 1 800 1974o081 26 900 1 900 
1948o201 25 800 800 1974o105 25 500 500 
1950o194 26 500 1 500 1974o189 26 900 1 900 
1950o199 26 000 1 000 1974o227 35 600 10 600 
1950o208 28 800 3 800 1975o215 27 000 2 000 
1950o222 30 100 5 100 1976o188 41 900 16 900 
1951.201 38 700 13 700 1977 o185 35 600 10 600 
1952o204 33 600 8 600 1977o223 25 800 800 
1952o225 26 300 1 300 1978o213 37 400 12 400 
1953 o193 29 600 4 600 1979o188 35 000 10 000 
1953 0 217 32 500 7 500 1981o151 27 900 2 900 
1954o212 36 800 11 800 1981.196 26 900 1 900 

* The days are based on the hydrologic year: October 1=1, September 30 
= 365o 
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developed at the 1-jydrol ogic Engineering Center by the U.S. Army Corps of 

Engineers (1969). The depth of submersion for a given municipality is 

calculated by taking the average of the downstream and upstream levels for a 

particular flood and subtracting the average of the downstream and upstream 

levels for the base flow. 

Knowing the submersion depth of a given flood enables the estima­

tion of the associated unit damage. To take into account the dispersed 

1 ayout of residences within the study area, however, the mean unit damage 

(MUD) must be determined. This analysis assumes that the units are uni­

formly spread over the flood area. Knowing parameters a and y and the 

submersion depth for the floods having occurred during the period 1938-1981 

makes it possible to generate the mean unit damage series. The integral of 

Equation 3.3 was calculated using the Continuous System Modelling Program 
( CSMP). 

4.2 Application of Extreme Value Theory to the Mean Unit Flood 

Dam age Series 

The series of mean unit flood damages sustained by the town of 

Saint-Jean comprises 66 events (or damage incidents) over a 44-year period, 

an average of 1.5 events per year. The seasonal distribution of damages for 

the recording period is given in Table 4.2. As is shown, most of the damage 

occurred in the spring as a result of flooding brought on by snowmelt. 

(a) Distribution Function of Mean Unit Damage Value 

The distribution function of the mean unit damage value, H(x), 

given by Equation 3.8, is required to derive the damage distribution 

function. In the case of annual damage distribution, assuming an exponen­

tial distribution of the mean unit damage (MUD) value gives 

H ( X ) = 1 - eX p ( - 21. 6 71 X ] ( 4.1) 
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Table 4.2. Seasonal and Annual Variations of A( t) 

Season Period Interval A( t) 

Autumn Sept. 21 - Dec. 20 (0, T 1 J A(T 1) = 0.023 

Winter Dec. 21 - March 20 (T1,T2] A(T 2) - A(T 1) = 0.045 

Spring March 21 - June 20 (T2,T3] A(T 3) A(T 2) = 1.386 

Summer June 21 Sept. 20 (T3,T4] A(T 4) - A(T 3) = 0.045 

Year Sept. 21 - Sept. 20 (O,T 4] A( t) = 1.500 

Table 4.3 Seasonal and Annual Variations of ~ 

Season Average of MUD ~ = {E[MUD] r 1 

Autumn 0.0225 44.444 

Winter 0.0150 66.667 

Spring 0.0488 20.487 

Summer 0.0075 133.333 

Year 0.0461 21.671 
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The parameters of the exponential function for seasonal distribution of the 

mean unit damage are given in Table 4.3. Using the Kolmogorov-Smirnov test, 

adjustment of the observed values to the exponential function was accepted 

at a confidence level of 5%. 

(b) Damage Distribution Function 

Given the values of the parameters A(t) (Table 4.2) and ~ (Table 

4.3), the damage distribution function can be determined. For the town of 

Saint-Jean, an annual distribution of the mean unit damage (IIDY) gives 

Ft(x) = exp{-1.5 exp[-21.671 x]} (4.2) 

This function can be derived for different time periods by replacing A(t) 

and ~ of the period considered in Equation 3.10. Adjustment of the MUD 

distribution to a double exponential function was verified at a confidence 

level of 1% using the Kolmogorov-Smirnov test. 

(c) Mean Unit Damage/Probability Relation 

1-Ft(x). 

mean unit 

The damage/probability relation is given by the equation p(x) = 
In the case of Saint-Jean, an annual distribution (IIDY) of the 

damage yields 

p(x) = 1 - exp{-1.5 exp[-21.671 x]} (4.3) 

and a seasonal distribution (liDS) yields 

p(x) = 1 - exp{-0.023 exp[-44.444 x] 

-0.045 exp[-66.667 x] 

-1.386 exp[-20.487 x] 

-0.045 exp[-133.33 x]} (4.4) 
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The results of Equations 4.3 and 4.4 are presented in Figure 4.1. 

The mean unit damage/probability analysis is the final step in the success­

ful application of extreme value theory to Saint-Jean. This relation can be 

put to an important use, namely the estimation of the mean annual unit 
dam age (MAUD) . 
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Figure 4.1. Mean unit damage/probability relation. 

This particular estimate is made by calculating the area under the 

probability curve represented by Equation 3.11. For Saint-Jean, this gives 

the values below: 
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• A mean annua 1 unit damage of .116 87 on the assumption that the 
floods are independent and identically distributed over a one-year 
period (IIDY); 

• A mean annual unit damage of .115 43 on the assumption that the 
floods are independent and identically distributed over a one­
season period (liDS). 

Knowing the mean annual unit damage, we can estimate the mean 
annual damage by the following relation: 

n MAD 
E = 

i=1 (l+r) i 

n 
E 

i=1 
( MAUD • K . ) ( 1 + r ) - i 

1 
(4.5) 

The variable K. represents the value of the residences affected by 
1 

the flood in year i. As this variable is unknown, we estimated it as 
follows: 

K. = KT. • f(x.) 
1 1 1 

( 4.6) 

with 

X. = Q. - QB 
1 1 

where KTi = the total value of the residences in the municipality 
at time i ; 

f(x) = the function giving the percentage of residences affected by 

an exceedance x; 

Q. 
1 

=the exceedance flow at time i; 

QB = the base flow in the area. 

Note that f(xi) is clearly a monotonic, non-decreasing function 
taking nonnegative values and tending asymptotically to the unit. Lacking 

any other preliminary information on the form of this relation, the form 

selected was 
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X; 
f(X;) = X .+b (4. 7) 

1 

The CRAR survey ( 1977) was used to estimate this equation. For 

Saint-Jean ~ found b = 656 400. Equation 4.5 becomes 

n 
E MAD (1+r)-i = 

i=1 

n 
MAUD E KT. • f( x.) ( 1 +r)- i 

; =1 1 1 
(4.8) 

As f(x;) was unknown, we used f(x;) instead. In the present case, 

f(x;) = 0.009 370 8 and KTi represents the total value of the residences at 

time i, which is also unknown. In supposing that the residential stock 

increases at a constant rate, 6, KT; can be replaced by KT0(1-6)i, which 

gives 

n n i 
E MAD(l+r)-i =MAUD • KT

0 
• f(x.) • E (1+6) 

i=1 1 i=1 l+r 
(4.9) 

In 1981, the town of Saint-Jean comprised 12 680 residences with 

an average value of $29 327. Using this information, together with the MAUD 

and f( X;) values given above, and adequately determining 6, r and n, we can 

derive an estimation of the actualized mean annual damage. For instance, if 

6 = 0.03, r = 0.10 and n = 30, we obtain 

n 
E MAD (1 + r) - i 

i=1 

= { $5.21 mill ion (IIDY) 

$5.15 million (liDS) 

25 I ~ S.T.l. 

03 330l-/ 

(4.10) 



CHAPTER 5 

Conclusions 

5.1 Methodo 1 ogy 

This research effort purported to apply the theory of extreme 

values to mean unit flood damages to obtain an estimate of the mean annual 

damage, a key variable in the cost-benefit analysis of flood plain manage­

ment projects. This theory should be applied to samples comprising numerous 

events. Since there exist virtually no such flood damage series, we resor­

ted to a simulation method whereby an estimate of mean unit flood damage is 

associated with each flood. This approach has the advantage of taking into 

account the hydrologic characteristics of the floods and of the economic 

development of the study area. 

Once the mean unit flood damage series has been calculated, we can 

apply the theory of extreme values, which exploits the characteristics of 

the flood damage phenomenon (random variables continued in time). Given 

these characteristics, stochastic processes are very useful and indeed 

necessary tools for the study of the phenomenon. The stochastic approach to 

estimating flood damage features a number of advantages: 

( i) The possibility of choosing various distribution functions for the 

mean unit damage values; 

(ii) The capacity to consider all damages having occurred in time interval 

(O,t], not just one single damage, as with other probabilistic 

methods; this advantage broadens our information base; 

(iii) The flexibility in the choice of time interval (O,t], which may range 

from one day to one year; in this study we worked with an interval of 

one year and one season; 
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(iv) The capacity to combine the value and number of occurrences of flood 

damages for a representation of the maximum damage distribution. 

5.2 Numerical Application 

The conclusions derived from our numerical application pertain to 

two different areas: the method of estimating the damages associated with a 

given flood and application of the extreme value theory. 

(i) Flood Damage Estimation Methodology 

We have been successful in estimating flood damages by means of a 

relatively simple methodology that uses readily obtai nab 1 e hydrologic and 

economic series as input variables. This approach, however, has one weak­

ness; it does not take into account the time required to recapitalize an 

area that has been flooded. As a result, when the area suffers a second 

flood several days after the first, it is assumed that the local capital 

stock is the same for the second occurrence, and no consideration is given 

to post-flood capital depreciation or to the time required for capital 

revaluation. This oversight theoretically entails overassessment of the 

damages from the second flood. In the case of the Ri chel i eu, however, this 

bias has only relative significance owing to the local flood profile (infre­

quent occurrence and broad hydrographs). Nevertheless, recapitalization 

time waul d be an important factor for areas subject to frequent major 

flooding. 

(ii) Application of the Extreme Value Theory 

In 1 ight of the objective of our research effort, which was to 

apply the theory of extreme values to the estimation of mean unit flood 

damages, our main conclusion is that the application was a definite success. 
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