NANIMOUT IN TUOMINEN

WATER QUALITY IN THE FRASER RIVER ESTUARY JANUARY, 1993 TO MARCH, 1994

TECHNICAL REPORT SERIES FREMP - WQM 94-01 DOE - FRAP 1994-18

Fraser River Estuary Management Program Suite 501 - 5945 Kathleen Avenue Burnaby, B.C. V5H 4J7

March, 1997

WATER QUALITY IN THE FRASER RIVER ESTUARY JANUARY, 1993 TO MARCH, 1994

TECHNICAL REPORT SERIES FREMP - WQWM 94-01 DOE - FRAP 1994-18

Prepared by

R.W. Drinnan¹ and B. Humphrey²

¹Aquatic Science Consultants Ltd., Victoria, B.C. ²EnviroEd Consultants Ltd., Victoria, B.C.

for

FREMP Water Quality Waste Management Committee

Fraser River Estuary Management Program Suite 501 - 5945 Kathleen Avenue Burnaby, B.C. V5H 4J7

March, 1997

Canadian Cataloguing in Publication Data

Drinnan, R. W. (Robert Warren), 1946-Water quality in the Fraser River Estuary, January 1993 to March 1994

(Technical report series ; WQM 94-01) (Technical report series; DOE FRAP 1994-18)

Co-published by Environment Canada. Includes bibliographical references: p. ISBN 0-7726-2318-X

1. Water quality - British Columbia - Fraser River Estuary. I. Humphrey, B. II. Fraser River Estuary Management Program (Canada). Water Quality Management Committee. III. Canada. Environment Canada. IV. Fraser River Action Plan (Canada) V. Title. VI. Series: Technical report (Fraser River Estuary Management Program (Canada). Water Quality Management Committee) ; WQM 94-01. VII. Series: Technical report (Fraser River Action Plan (Canada)) ; DOE FRAP 1994-18.

TD227.F7D74 1997 363.73'942'0971133 C94-960394-5

EXECUTIVE SUMMARY

Physical, inorganic and organic parameters were measured between January, 1993 and March, 1994 at three stations in the lower Fraser River - in the Main Stem at Mission, in the Main Arm at Tilbury Island and in the North Arm at Oak Street Bridge. Cross-section profiles were conducted on a quarterly basis at the three sites to investigate the suitability of taking a single water sample. In addition, six sloughs within the Main and North Arms of the river were sampled twice during the study.

At the main river sites, physical and inorganic parameters, including metals, were measured approximately every two weeks. Chlorophenolic compounds, nonylphenol and absorbable organic halides (AOX) were measured monthly while resin and fatty acids, pesticides, polychlorinated biphenyls (PCBs) and 2(Thiocyanomethylthio)Benzothiazole (TCMTB) were measured on four occasions.

Sampling in the six sloughs was conducted on two dates during low flow conditions. Parameters included the same physical, inorganic and organic parameters as were measured at the main river sites, plus polycyclic aromatic hydrocarbons (PAHs).

Both the parametric analysis on selected variables and the non-parametric analysis on all variables indicate that while cross-sectional differences were apparent on some sampling dates, this wasn't the case during other periods. Overall, there were no significant differences between the cross-section stations at any of the main river sites. It was concluded that samples collected at the mid-channel station could be considered representative of the river.

Most of the physical and inorganic parameters were not significantly different among the three main river sites or when compared to federal/provincial data collected at Hope. For some parameters, primarily those associated with dissolved ions, values were higher at the Oak Street Bridge and Tilbury Island sites than the upstream sites at Mission and Hope. This was attributed to the effects of marine water intrusion. These differences generally did not exist, or were considerably less, during periods of high river flow. Many of the parameters associated with particulate material (e.g., total nitrogen and phosphorus and several metals) showed seasonal differences attributable to higher levels of particulate material, with an increase in concentration during higher flows.

Many of the metals were below the method detection limit (MDL) with most measurable values within guidelines and criteria set by federal and provincial agencies for the protection of aquatic life. Copper and iron were frequently higher than the guidelines but were within the provincial water quality objectives set for the lower Fraser River. Most measurements which exceeded the guidelines or criteria were generally associated with higher levels of suspended solids.

Fecal coliform levels were within provincial criteria and the Fraser River objectives set for the period between April and September (the objective doesn't apply during the remainder of the year). Lower concentrations during the summer period were associated with the chlorination of sewage discharged to the river, lower rainfall and stormwater discharges, and increased dilution during river freshet. Individual high levels were associated with high rainfall events.

Most of the measurements for chlorophenolic compounds, resin and fatty acids, organochlorine pesticides, PCBs, TCMTB and AOX were below or near the detection limit. A few individual compounds were slightly higher than federal or provincial water quality guidelines/criteria but there was no evidence of differences between the upstream sites at Hope and Mission and those at Tilbury Island and Oak Street Bridge. A decrease during the summer for some groups of organics (AOX, total chlorophenols) is likely a dilution effect from increased river flow.

Total chlorophenol concentrations appeared to have decreased by nearly an order of magnitude based on a comparison of the data collected in this study with a compilation of water quality data collected prior to 1988. The trend reflects the decrease in use by the forest industry of chlorophenates as a anti-sapstain agent.

The water quality in the six sloughs sampled was generally good. Some parameters reflected the presence of marine waters (all samples were collected in February when the salt wedge penetrates the furthest upstream). There were few differences between the sloughs except those furthest upstream, Tree Island Slough and Gundersen Slough, which showed the least effects from seawater intrusions.

Measurements for most metals in the sloughs were similar to those measured at the main river sites and below the maximum concentrations set for the protection of aquatic life. There was also no evidence of consistently higher organic compounds (chlorophenolics, resin and fatty acids and PCBs) in the sloughs when compared to the main river sites. Most measurements were below the detection limit and, except for a few individual compounds, all were within water quality guidelines or criteria.

The concentration of LPAH, HPAH and total PAH compounds was similar in most of the sloughs. There were a few elevated levels of specific PAH compounds which exceeded water quality guidelines but these represented less than 1% of the analyses.

It was concluded that the overall quality of the Fraser River for water-borne contaminants was good. There was no evidence of consistently elevated concentrations of nutrients, metal or organic contaminants that would pose a threat to aquatic life and no evidence of an increase in levels that could be attributable to specific municipal or industrial discharges within the study area. Because there is a strong association of both metal and organic contaminants with particulate material it was recommended that these parameters be monitored in sediments rather than in the water.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
1.0 INTRODUCTION	. 1
2.0 METHODS	. 3
2.1 Field Program Design	. 3
2.1.1 Phase I - Main River Sites	
2.1.2 Federal/Provincial Water Quality Monitoring at Hope	. 6
2.1.3 Phase II - Cross-Sectional Sampling at Main River Sites	
2.1.4 Phase III - Sloughs	
2.2 Laboratory Program Design	. 8
2.2.1 Phase I: Main River Sites	
2.2.2 Phase II - Cross-Sectional Sampling at Main River Sites	16
2.2.3 Phase III - Water Quality in Sloughs	16
2.3 Quality Assurance	
2.3.1 Field Replicates and Inter-laboratory Comparisons	16
2.3.2 Field Blanks	17
2.3.3 Method Blanks	18
2.3.4 Bottle Blanks	18
2.3.5 Spiked Samples	
2.3.6 Standard Reference Materials	
2.3.7 Continuity of Analytical Procedures for Inorganic Variables	
2.3.8 Continuity of Sampling Procedures for Slough Sampling	19
2.3.9 Overall Data Quality	
2.4 Statistical Treatment of the Data	
2.4.1 Phase I - Main River Sites	
2.4.2 Phase II - Cross Sectional Sampling at Main River Sites	21
2.4.3 Phase III - Water Quality in Sloughs	
2.5 Water Quality Guidelines, Criteria and Objectives	22
3.0 RESULTS AND DISCUSSION - MAIN RIVER SITES	25
3.1 Cross-Sectional Profiles	
3.2 Factors Influencing Water Quality	
3.2.1 Flow	
3.2.2 Tides and Seawater Intrusion	
3.2.3 Seasonal Factors	
3.2.4 Tributaries and Runoff	
3.2.5 Municipal and Industrial Discharges	
3.3 Physical Properties	
3.3.1 Water Temperature	
	-

3.3.2 Dissolved Oxygen	35
3.3.3 pH and alkalinity	35
3.4 Non-filterable Residue	39
3.5 Dissolved lons	39
3.6 Nutrients	48
3.6.1 Nitrogen	48
3.6.2 Phosphorus	49
3.7 Metals	55
3.7.1 Silver (Ag)	55
3.7.2 Aluminum (Al)	55
3.7.3 Arsenic (As)	58
3.7.4 Barium (Ba)	58
3.7.5 Cadmium (Cd)	58
3.7.6 Cobalt (Co)	58
3.7.7 Chromium (Cr)	61
3.7.8 Copper (Cu)	61
3.7.9 Iron (Fe)	61
3.7.10 Mercury (Hg)	62
3.7.11 Manganese (Mn)	62
3.7.12 Molybdenum (Mo)	66
3.7.13 Nickel (Ni)	66
3.7.14 Lead (Pb)	66
3.7.15 Selenium (Se)	66
3.7.16 Tin (Sn)	
3.7.17 Zinc (Zn)	
3.8 Total Organic Carbon	
3.9 Fecal Coliforms	
3.10 Organic Compounds	
3.10.1 Adsorbable Organic Halides (AOX)	
3.10.2 Chlorophenolics	
3.10.3 Nonylphenol	
3.10.4 TCMTB	
3.10.5 Resins and Fatty Acids	
3.10.6 Organochlorine Pesticides and Polychlorinated Biphenols (PCBs)	80
4.0 RESULTS AND DISCUSSION - SLOUGHS	81
4.1 Water Temperature and Dissolved Oxygen	81
4.2 pH and Alkalinity	82
4.3 Non-filterable Residue	82
4.4 Dissolved lons	84
4.5 Nutrients	84
4.5.1 Nitrogen	84
4.5.2. Phosphorus	84

4.6 Metals	90
4.7 Fecal Coliform Bacteria	94
4.8 Total Organic Carbon	94
4.9 Adsorbable Organic Halides (AOX)	94
4.10 Chlorophenolics	94
4.11 Nonylphenol	94
4.12 Resin and Fatty Acids	
4.13 TCMTB	96
4.14 Organochlorine Pesticides and PCBs	
4.15 Polycyclic Aromatic Hydrocarbons (PAHs)	97
5.0 CONCLUSIONS	
5.1 Water Quality - Main River Sites	
5.1.1 Cross-sectional Profiles	
5.1.2 Physical Parameters and Inorganic Ions	
5.1.3 Nutrients	
5.1.4 Metals	100
5.1.5 Fecal Coliforms	100
5.1.6 Organic Compounds	101
5.2 Water Quality - Sloughs	101
6.0 RECOMMENDATIONS	103
7.0 REFERENCES	104

LIST OF APPENDICES

APPENDIX I. DETAILED FIELD PROCEDURES AND STATION LOCATIONS APPENDIX II. DETAILED LABORATORY PROCEDURES APPENDIX III. QUALITY ASSURANCE PROGRAM APPENDIX IV. ANALYTICAL RESULTS FOR QC REPLICATE DATA APPENDIX V. RIVER CROSS SECTION DATA APPENDIX VI. WATER QUALITY DATA FOR FEDERAL/PROVINCIAL SITE AT HOPE APPENDIX VII. WATER QUALITY DATA FOR MISSION SITE APPENDIX VIII. WATER QUALITY DATA FOR TILBURY ISLAND SITE APPENDIX IX. WATER QUALITY DATA FOR OAK STREET BRIDGE SITE APPENDIX X. WATER QUALITY DATA FOR MAIN ARM AND NORTH ARM SLOUGHS APPENDIX XI. FIELD PROFILE DATA FOR MAIN ARM AND NORTH ARM SLOUGHS

LIST OF FIGURES

Figure 1.	General Location of FREMP Water Quality Monitoring Sites,	
0	Lower Fraser River	4
Figure 2.	Comparison of Cross-Sectional Data for Specific Conductivity	28
-	Comparison of Cross-Sectional Data for Calcium	
	Comparison of Cross-Sectional Data for Nitrite/Nitrate	
-	Comparison of Cross-Sectional Data for Iron	
Figure 6.	Fraser River Flow at Hope	31
Figure 7.	Comparison of Fraser River Flow at Hope, Mission and Port Mann	31
Figure 8.	Ratio of Fraser River Flows: Mission/Hope; Port Mann Hope;	
	Port Mann/Mission.	
Figure 9.	Daily Precipitation, Vancouver Airport	33
Figure 10	. Summary of Water Temperature Data, Main River Sites	36
Figure 11	. Seasonal Changes in Water Temperature, Main River Sites	36
	. Summary of Dissolved Oxygen Data, Main River Sites	
	. Seasonal Changes in Dissolved Oxygen, Main River Sites	
0	. Summary of pH Data, Main River Sites	
0	. Summary of Alkalinity Data, Main River Sites	
	. Summary of Non-filterable Residue Data, Main River Sites	
-	. Seasonal Changes in Non-Filterable Residue, Main River Sites	
•	. Summary of Specific Conductivity Data, Main River Sites	
-	. Seasonal Changes in Specific Conductivity, Main River Sites	
•	. Summary of Hardness Data, Main River Sites	
-	. Summary of Filterable Residue Data, Main River Sites	
	. Summary of Sodium Data, Main River Sites	
	. Summary of Potassium Data, Main River Sites	
	. Summary of Total Magnesium Data, Main River Sites	
-	. Summary of Chloride Data, Main River Sites	
-	. Summary of Sulphate Data, Main River Sites	
	. Summary of Fluoride Data, Main River Sites	
	. Summary of Calcium Data, Main River Sites	
-	. Summary of Total Ammonia Data, Main River Sites	
	. Summary of Nitrite/Nitrate Data, Main River Sites	
	. Summary of Total Nitrogen Data, Main River Sites	
	. Seasonal Changes in Total Ammonia, Main River Sites	
	. Seasonal Changes in Nitrite/Nitrate, Main River Sites	
-	. Seasonal Changes in Total Nitrogen, Main River Sites	
-	. Summary of Dissolved Phosphorus Data, Main River Sites	
	. Summary of Total Phosphorus Data, Main River Sites	
	. Seasonal Changes in Total Phosphorus, Main River Sites	
	. Summary of Total Silver Data, Main River Sites	
Figure 39	. Summary of Total Aluminum Data, Main River Sites	57

Figure 40.	Summary of Total Arsenic Data, Main River Sites	59
Figure 41.	Summary of Barium Data, Main River Sites	59
Figure 42.	Summary of Total Cadmium Data, Main River Sites	60
Figure 43.	Summary of Total Cobalt Data, Main River Sites	60
Figure 44.	Summary of Total Chromium Data, Main River Sites	63
Figure 45.	Summary of Total Copper Data, Main River Sites	63
Figure 46.	Seasonal Changes in Total Copper, Main River Sites	64
Figure 47.	Summary of Total Iron Data, Main River Sites	64
•	Seasonal Changes in Total Iron, Main River Sites	
Figure 49.	Summary of Total Manganese Data, Main River Sites	65
Figure 50.	Summary of Total Molybdenum Data, Main River Sites	67
0	Summary of Total Nickel Data, Main River Sites	
	Summary of Total Lead Data, Main River Sites	
	Summary of Total Zinc Data, Main River Sites	
Figure 54.	Summary of Total Organic Carbon Data, Main River Sites	71
•	Summary of Fecal Coliform Data, Main River Sites	
0	Seasonal Changes in Fecal Coliforms, Main River Sites	
	Summary of Absorbable Organic Halide (AOX) Data, Main River Sites	
0	Summary of Total Chlorophenolic Data (Calculated), Main River Sites	
•	Seasonal Changes in Total Chlorophenolics, Main River Sites	
0	Summary of Individual Chlorophenolic Compounds, Mission	
•	Summary of Individual Chlorophenolic Compounds, Tilbury Island	
•	Summary of Individual Chlorophenolic Compounds, Oak Street Bridge	79
Figure 63.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates)	
	a) Water Temperature; b) Dissolved Oxygen; c) pH; d) Total Alkalinity	83
Figure 64.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
	a) Non Filterable Residue; b) Conductivity; c) Filterable Residue; d) Hardness	
Figure 65.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
	a) Calcium; b) Magnesium; c) Potassium; d) Sodium	
Figure 66.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
- :	a) Chloride; b) Fluoride; c) Sulphate	
	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
	a) Ammonia; b) Nitrite/Nitrate; c) Total Nitrogen	
Figure 68.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
F '	a) Total Phosphorus; b) Dissolved Phosphorus	
Figure 69.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
E '	a) Total Aluminum; b) Total Arsenic; c) Barium; d) Total Copper	
Figure 70.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
Figure 74	a) Total Iron; b) Total Manganese; c) Total Molybdenum; d) Total Nickel	
rigure /1.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
Eigure 70		93
rigure /2.	Mean and Range of All Data for Sloughs (Surface and Bottom on Two	

	Dates): a) Fecal Coliforms; b) Total Organic Carbon; c) AOX; d) Total	
	Chlorophenolics	5
Figure 73	Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates):	
	a) Total Resin Acids; b) LPAH; c) HPAH; d) Total PAH 9	8

LIST OF TABLES

Sampling Schedule for the 1993-1994 FREMP Water Quality	
Monitoring Program.	5
Phase I Part 1 Physical and Inorganic Variables	10
Organic Compounds Sampled on a Monthly Basis, Main River Sites	11
Resin and Fatty Acid Compounds Sampled on an Event Basis	13
Organochlorine Pesticides and Total PCBs Sampled on an Event Basis	14
Polycyclic Aromatic Hydrocarbons Analysed in Slough Samples	15
	17
For the Protection of Aquatic Life, Applicable to the Fraser River	23
Summary Data for FREMP Main River Monitoring Sites and Federal-Provincial	
Site at Hope	26
· · · · · · · · · · · · · · · · · · ·	
	80
. Number of Measurable Resin and Fatty Acid Compounds in	
	96
. PAH Values in Fraser River Sloughs Exceeding Water Quality Criteria	97
	Monitoring Program. Phase I Part 1 Physical and Inorganic Variables

ACKNOWLEDGEMENTS

This project was commissioned by the Fraser River Estuary Management Program (FREMP). Funding for this study was provided by Environment Canada, under the Fraser River Action Plan. Sharon Peters, Water Quality Coordinator at FREMP and Taina Tuominen, Environment Canada, acted as Scientific Authorities and provided valuable advice throughout this project. Anne Wilson, FREMP, coordinated the final review and edit of the report.

Field sampling was carried out by Beak Consultants (now IRC Inc) who also prepared field reports. Analytical services were provided by Zenon Environmental Laboratories and ASL Analytical Services Laboratories. Bacteriological analysis for fecal coliform bacteria was performed at the Greater Vancouver Regional District laboratory. A preliminary report of the data was prepared by Don Morse of FREMP, who also supervised and reviewed the quality assurance components of the project.

The authors also wish to thank D. Hull, Aquatic Science Consultants Ltd., for her considerable assistance in the final preparation of this report.

1.0 INTRODUCTION

In 1991, the Fraser River Estuary Management Program (FREMP) Standing Committee on the Fraser River Estuary Water Quality Plan, including representatives from Environment Canada, Fisheries and Oceans Canada, B.C. Ministry of Environment (now Environment, Lands and Parks) and the Greater Vancouver Regional District (GVRD), published a Water Quality Plan for the estuary, (FREMP, 1991). The purpose of the Water Quality Plan was to establish agreed upon Water Quality Objectives and a coordinated environmental monitoring program.

The results of the coordinated monitoring program are being used to assess the health of the estuary and determine the adequacy of water quality objectives and current waste treatment and disposal practices for protecting aquatic resources. These activities advance the overall goal of the Fraser River Estuary Management Program which is to maintain and, where possible, improve the water quality of the estuary.

The water quality monitoring project described in this report is one component of the coordinated environmental monitoring program. The coordinated program calls for monitoring of physical, chemical and bacteriological variables within the water column and sediments and biota. This first of a three year cycle of studies took take place from 1992 to 1994. An overall assessment of water quality in the Fraser River estuary is documented in FREMP, 1996.

In support of the Water Quality Plan, a number of studies have been completed and published in a FREMP Technical Report Series from 1992 to 1994. Related studies of sediment quality, effluent characteristics and contaminant levels in resident biota were carried out before this period by Swain and Walton (1990, 1991, 1993) through a partnership between the BC Ministry of Environment, Lands and Parks and the Fraser River Harbour Commission. Examination of contaminant concentrations in tissues and health characteristics of resident fish within various reaches of the Fraser River Estuary, carried out in 1994, is the final study of the three year monitoring cycle.

The goals of the FREMP coordinated environmental monitoring program are presented in detail in the "Water Quality Plan - Monitoring and Objectives" (FREMP, 1991). Briefly, these are:

- to determine the current water quality status of the Fraser River Estuary;
- to assess trends in water quality;
- to investigate the water quality in sloughs where environmental extremes may be expected to occur, and;
- to compare the results obtained with Provisional Water Quality Objectives established for the lower Fraser River by B.C. Ministry of Environment (Swain and Holms, 1985) and provide information for the revision of objectives.

In order to achieve these goals as they relate to the water column, a three phase monitoring program was carried out. Under Phase I, three sites within the estuary were monitored for physical, chemical and bacteriological variables every two weeks for 15 months from January, 1993 to March, 1994.

Phase II of the study investigated the spatial variability of measurements at each of three sites through cross-section profiles of water quality in order to assess how well a single mid-stream sample represented conditions in the river.

Under Phase III, water quality conditions were investigated at six Main and North Arm sloughs to determine the water quality in areas where extremes may occur. Sloughs were targeted because, as areas of low flow velocity, contaminants may concentrate there.

This report presents the data collected within the estuary during the fifteen month monitoring program. The estuary data are evaluated relative to data collected upstream at a water quality monitoring site operated jointly by the federal and provincial governments at the head of the Fraser Valley at Hope, as well as to established objectives, guidelines and criteria developed by federal and provincial agencies. Results of the first three months of monitoring were previously published as a joint FREMP and Fraser River Action Plan (FRAP) document (Morse, 1994). The entire data set for this study is available in electronic spreadsheet format from the FREMP office at the address given on the title page of this report.

2.0 METHODS

2.1 Field Program Design

The field program was organized in three distinct phases. Each phase was designed to characterize specific aspects of water quality in the Fraser River estuary. Detailed field procedures are described in Appendix 1. The field activities were conducted by IRC Integrated Resource Consultants Inc. (formerly Beak Consultants Ltd.). The general location of sampling sites is shown in Figure 1. Detailed locations are presented in the tables and figures of Appendix 1.

2.1.1 Phase I - Main River Sites

Water samples from three stations located at Mission, Tilbury Island and Oak Street Bridge, were sampled approximately every two weeks over a 15-month interval, between January, 1993 and March, 1994 (Figure 1). At each site, samples were collected at mid-stream from one metre below the surface. Samples from the Tilbury Island and Oak Street Bridge sites were collected during low slack tide conditions which necessitated sampling the three sites over two consecutive days. Samples were collected on a biweekly basis on the dates listed in Table 1. Table 1 also lists the groups of variables sampled on each date. Single samples were collected for each variable or group of variables. A total of 30 samples were collected from each site during the monitoring period.

Samples for inorganic and physical parameters were collected using a multiple sampler, provided by Environment Canada. The sampler, of stainless steel, acrylic and PVC construction, was specifically designed to hold a series of sample containers required for the analysis of the specific inorganic variables measured during this program. The sampler was suspended from the vessel by a rope and immersed into the water to rinse it prior to sample collection. After rinsing, the appropriate bottles were inserted into the sampler and the caps removed before lowering the sampler to a depth of one metre below the water surface. The sampler was retrieved after all bubbling had ceased. The individual sample bottles were then capped and removed from the device.

Samples for organic analyses were collected in four-litre glass Winchester type bottles. The bottles were secured in a second stainless steel sampling device attached to a stainless steel pole that was held one metre below the surface during filling. Samples for AOX analysis were collected in one litre amber glass bottles that were placed in a separate multiple sampler and lowered to a depth of one metre using the procedure described above for sampling inorganic parameters.

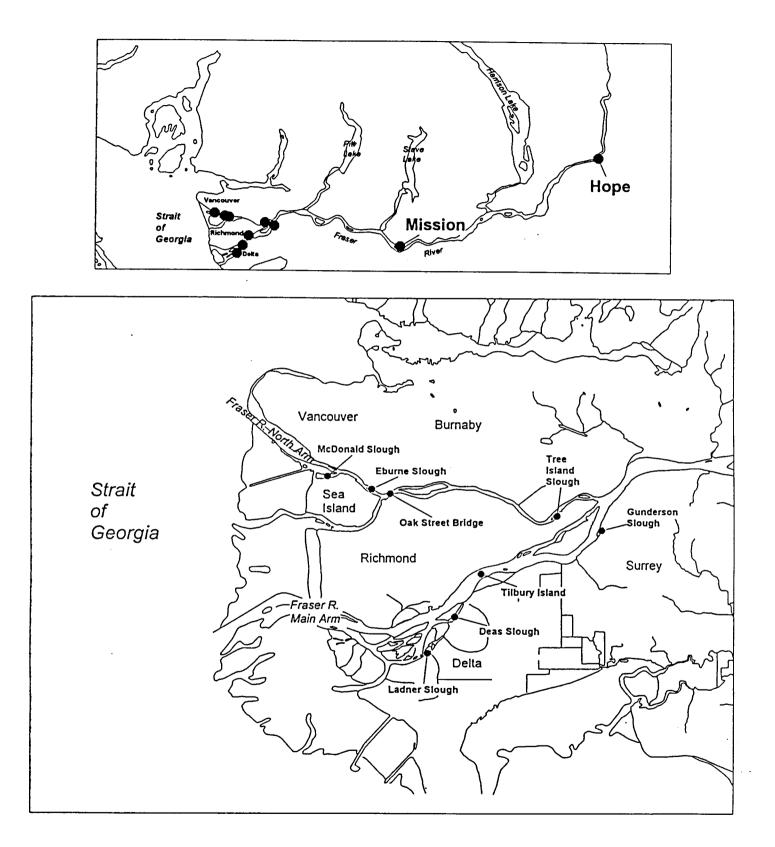


Figure 1. General Location of FREMP Water Quality Monitoring Sites, Lower Fraser River. Upper Figure: Upstream Sites at Mission and Hope.

Sampling Dates	Phase I, Part 1 Inorganics	Phase I, Part 2 Chlorophenolics, Nonylphenol, AOX	Phase I, Part 3 Resin/Fatty Acids Pesticides/PCBs, TCMTB	Phase II Cross- Sections	Phase III Sloughs
Jan. 25-26, 1993	✓	\checkmark			
Feb. 8-11, 1993	✓				~
Feb. 22-23, 1993	✓	✓	✓		
Mar. 8-9, 1993	✓			✓	
Mar. 22-23, 1993	✓	~			
Missed Sampling					
April 19-20, 1993	✓	~			
May 3-4, 1993	✓				
May 17-18, 1993	✓	~	✓		
May 31-Jun.1, 1993	✓			✓	
Jun. 14-15, 1993	✓	~			
Jun. 28-29, 1993	✓				
Jul. 12-13, 1993	✓	~			
Jul. 26-27, 1993	\checkmark				
Aug. 9-10, 1993	\checkmark	~			
Aug. 23-24, 1993	\checkmark				
Sep. 6-7, 1993	✓	~			
Sep. 20-21, 1993	✓				
Oct. 4-5, 1993	✓	~		✓	
Oct. 18-19, 1993	✓	~	✓		
Nov. 1-2, 1993	✓	~			
Nov. 15-16, 1993	✓				
Nov. 29-30, 1993	✓	✓			
Dec. 13-14, 1993	✓				
Dec. 27-28, 1993	✓	~			
Jan. 10-11, 1994	✓				
Jan. 24-25, 1994	✓	✓			
Feb. 7-8, 1994	✓			✓	
Feb. 20-22, 1994	✓	~	✓		~
Mar. 7-8, 1994	✓				
Mar. 21-22, 1994	✓	✓			

Table 1. Sampling Schedule for the 1993-1994 FREMPWater Quality Monitoring Program.

Bacteriological samples were collected at each sampling location from approximately a 0.3 m depth below the surface. Sterile polyethylene containers were used with the mouth of the bottle facing into the current. The sample containers were drained to provide 1 cm airspace according to the method described in GVRD (1992).

Upon retrieval aboard the vessel, the sample containers were examined to determine that good representative water samples had been obtained and that no leakage of the contents had occurred, according to methods recommended in Tetra Tech Inc. (1986). Specific details regarding the monitoring station designation, date, time, and water depth at each site were recorded in the vessel log.

It should be noted that none of these sampling methods prevent surface waters from entering the sample bottles. The technique relies on lowering the bottle to the desired sampling depth as quickly as possible to ensure that the majority of the sample is collected from the designated depth.

Temperature, conductivity, dissolved oxygen and pH were measured in the field at the time of sample collection. One bottle of sample water from the multiple sampler was used on board the vessel to make the measurements. Dissolved oxygen and temperature were determined with a YSI Model 54 meter. Dissolved oxygen values were adjusted for salinity where appropriate. Conductivity was determined with a YSI Model 33 meter. A Canlab Model 607 pH meter was used to determine pH. All field equipment was pre-calibrated and adjusted in IRC's laboratory prior to each sampling date. The bottles used for field testing were returned to the IRC laboratory for verification of conductivity and salinity values. The field measurements were reported to FREMP and Environment Canada in regular progress reports.

2.1.2 Federal/Provincial Water Quality Monitoring at Hope

Water samples were collected at Hope (approximately 50 kilometers upstream of the Mission site) at two week intervals during the January, 1993 to March, 1994 monitoring period, similar to the present study, although samples were not collected on the same dates. This site (Fraser River at Hope, Environment Canada Water Quality Site BC08MF0001; BC Ministry of Environment, Lands and Parks Site E206581) is part of a joint federal and provincial program to monitor long term trends in water quality at various locations within British Columbia.

Most of the inorganic water quality parameters examined in this study were common to both programs. To facilitate the interpretation of the data collected from the main river sites, data from the Hope site were obtained from the Environment Canada database, ENVIRODAT. (The data from the Hope site are tabulated in Appendix VI for comparison with FREMP water quality data collected at Mission). AOX results at the Hope site were obtained directly from BC Ministry of Environment, Lands and Parks (Pommen, 1994).

2.1.3 Phase II - Cross-Sectional Sampling at Main River Sites

On March 8 and 9, 1993, cross-sectional profiles were collected at the Oak Street Bridge and Tilbury Island sites. The Mission site was also sampled during the remaining three cross-section profile series, which occurred on May 31/June 1, 1993, October 5/6, 1993 and February 7/8, 1994.

At each site, samples were collected from a depth of one metre at five stations across the river, as shown in the figures in Appendix I. The Phase I samples were collected from the same location as the mid channel samples, designated as location 3 on each profile. The first station of each cross-section was resampled at the end of the traverse as a check on temporal variability during sample collection.

2.1.4 Phase III - Sloughs

Water samples were collected from two depths (one metre below the water surface and one metre above the bottom) in six sloughs - Ladner, Deas and Gundersen Sloughs in the Main Arm; and, McDonald, Eburne and Tree Island Sloughs in the North Arm, as shown in the figures in Appendix I. Slough samples were collected during the February 8-11, 1993 and February 21-23, 1994 sampling periods (Table 1).

Unlike the main river sites, water samples in the sloughs were collected at high slack tide. Physical parameters (temperature, conductivity, salinity, dissolved oxygen and pH) were measured immediately from a two litre sample collected at each one metre interval through the water column. Additional water samples were collected one metre below the surface and approximately one metre from the bottom of the slough for inorganic and organic chemical analyses.

The first samples were collected between February 9 and 11, 1993 by lowering sample bottles to the desired depth in a weighted multiple sampler. This procedure was satisfactory for the near surface sample but not for the sample from one metre above the bottom, primarily because the bottles were not sealed on descent. In addition, it was difficult to locate and hold the required depth over the short duration that the bottle was filling.

A different approach was taken for the second series of slough samples which were collected between February 20 and 22, 1994. These samples were collected using a submersible pump (March, Model 5C-MD) attached to a Teflon coated woven stainless steel hose. The hose and pump filter-head were pre-rinsed with de-ionised water then rinsed with acetone and hexane. High temperature, oven-heated aluminium foil was used to cover hose ends and pump head to prevent contamination during transport.

The sample depth was determined using a weighted measuring rope and a depth sounder. A 2.5 kg weight was placed on the end of the nylon rope marked at 0.5 metre intervals. The vessel was anchored in position and the rope was lowered over the bow to determine the length of line required to reach the bottom. The reading given by the ship's depth sounder was compared to the depth indicated by the rope to ensure currents were not preventing the sampling apparatus from descending on a straight course perpendicular to the bottom. The measuring rope was fastened to the pump which was then lowered to each sampling depth. Water was pumped through the hose for two minutes to rinse the hose before sampling at each depth. Individuals handling the sample bottles and lids wore polyethylene gloves during water sample collection.

As with the main river sites, temperature, conductivity, dissolved oxygen and pH were measured in the field at the time of collection. In addition, salinity was measured with a YSI Model 33 SCT meter. Dissolved oxygen values were adjusted for salinity where appropriate.

2.2 Laboratory Program Design

Between January and March of 1993, Zenon Environmental Laboratories analysed the samples for all physical and chemical variables. After March 1993, Zenon conducted the analyses for organic contaminants and ASL (Analytical Services Laboratories) provided analytical services for the physical and inorganic variables. Bacteriological analysis for fecal coliform bacteria was performed at the GVRD laboratory.

The following sections summarize the variables analysed in Phases I, II, and III of the water quality monitoring program. Detailed analytical procedures are presented in Appendix II. The method detection limit (MDL) for each parameter is presented in Tables 2-6.

2.2.1 Phase I: Main River Sites

Inorganic parameters and metals were analyzed from samples collected during each sampling event at the three main river sites. A suite of organic compounds, including chlorinated phenolics, nonylphenol and adsorbable organic halides (AOX) were analyzed in water samples collected during every second sampling event. On four occasions during the 15-month sampling program a broader suite of organic compounds were analyzed which included resin and fatty acids, organochlorine pesticides and total polychlorinated biphenyls (PCBs) (refer to Table 1 for the sampling schedule).

Inorganics and Metals

Biweekly samples collected from the three main river sites (Mission, Tilbury Island and Oak Street Bridge) were analyzed for those variables listed in Table 2.

In addition to the metals listed in Table 2, a number of other metals were supplied by the analytical laboratory at no additional charge to the contract as a result of the multi-element nature of the analytical methodology. These metals were:

aluminum	barium	calcium
cobalt	iron	magnesium
manganese	molybdenum	potassium
selenium	silver	sodium
tin		

The method detection limits for these additional metals are found on page 1 of Appendix V, and the method detection limits for the metals analyzed at the Environment Canada lab (i.e. replicate samples) are found on page 1 of Appendix IV.

Organic Compounds

During every second sampling event, samples collected from the main river sites were also analyzed for the suite of variables listed in Table 3 (chlorinated phenolics, nonylphenol and AOX). Chlorinated phenolics and AOX are classes of chemicals known to be associated with effluent from wood preservation plants, pulp mills using the chlorine bleaching process, and other sources where chlorine disinfection may be used. Nonylphenols are chemicals used in surfactants and possible sources include sewage treatment plants and pulp mills.

On four occasions, water samples collected at the three main river sites at Mission, Tilbury Island and Oak Street Bridge were also analyzed for the following organic constituents: resin and fatty acids; organochlorine pesticides; total polychlorinated biphenyls (PCBs); and, TCMTB (2 [thiocyanomethylthio)benzothiazole]) (Tables 4 and 5). These compounds are associated with forest industry processing and agricultural runoff. Sample dates were chosen to represent different hydrological events: February 22-23, 1993 (low flow conditions), May 17-18, 1993 (freshet), October 18-19, 1993 (first flush after a rainstorm) and February 21-23, 1994 (low flow).

Field Analyses	Laboratory Analyses			
	Conventional/Inorganics	Metals		
Water Temperature	рН	Total Arsenic (0.001 mg/L; 0.0001 mg/L)		
рН	Conductivity (1 µS/cm)	Total Cadmium (0.0001 mg/L; 0.0002 mg/L)		
Conductivity (1 µS/cm; 0.2 µS/cm)	Residue, Filterable (4 mg/L; 1 mg/L)	Total Chromium (0.005 mg/L; 0.001 mg/L)		
Dissolved Oxygen	Residue, Non-filterable (4 mg/L; 1 mg/L)	Total Copper (0.001 mg/L)		
Salinity	Hardness (Calculated)	Total Lead (0.003 mg/L; 0.001 mg/L)		
		Total Mercury (0.00005 mg/L)		
	Major Anions	Total Nickel (0.005 mg/L; 0.001 mg/L)		
	Alkalinity (0.5 mg/L)	Total Zinc (0.01 mg/L; 0.001 mg/L)		
	Sulphate (1.0 mg/L; 0.5 mg/L)			
	Chloride (0.5 mg/L; 0.2 mg/L)	Bacteriological		
	Fluoride (0.1 mg/L; 0.02 mg/L)	Fecal Coliforms (<2 MPN/100 mL)		
	Nutrients			
	Total Kjeldahl Nitrogen (0.04 mg/L; 0.05 mg/L)	Organic Parameters		
	Nitrite/Nitrate Nitrogen (0.02 mg/L; 0.005 mg/L)	Total Organic Carbon (3 mg/L; 0.5 mg/L)		
	Ammonia Nitrogen (0.005 mg/L)			
	Total Phosphorus (0.003 mg/L; 0.001 mg/L)			
	Total Dissolved Phosphorus (0.003 mg/L; 0.001 mg/L)			

Table 2. Physical and Inorganic Variables¹

¹Numbers in parenthesis represent the Method Detection Limit (MDL); the two values, if present, represent the two analytical labs used during the period 01/93-03/93 and 04/93-03/94, respectively.

Chlorinated Phenolics, Adsorbable Organic Halides (AOX), Nonylphenol					
Parameter	MDL (mg/L)	Parameter	MDL (mg/L)		
4-chlorophenol [4CP]	0.000001	5-chloroguaiacol [5CG]	0.000002		
2,6-dichlorophenol [26DCP]	0.000001	6-chloroguaiacol [6CG]	0.000002		
2,4 and 2,5-dichlorophenol [24DCP] and [25DCP]	0.000001	4-chloroguaiacol [4CG]	0.000002		
3,4-dichlorophenol [34DCP]	0.000001	4,6-dichloroguaiacol [46CG]	0.000002		
2,3-dichlorophenol [23DCP]	0.000001	4,5-dichloroguaiacol [45CG]	0.000002		
3,5-dichlorophenol [35DCP]	0.000001	3,4,5-trichloroguaiacol [345TCG]	0.000002		
2,3,4-trichlorophenol [234TCP]	0.000001	3,4,6-trichloroguaiacol [346TCG]	0.000002		
2,3,5-trichlorophenol [235TCP]	0.000001	4,5,6-trichloroguaiacol [456TCG]	0.000002		
2,3,6-trichlorophenol [236TCP]	0.000001	3,4,5,6-tetrachloroguaiacol [TETCG]	0.000002		
2,4,5-trichlorophenol [245TCP]	0.000001	3-chlorocatechol [3CC]	0.000002		
2,4,6-trichlorophenol [246TCP]	0.000001	4-chlorocatechol [4CC]	0.000002		
3,4,5-trichlorophenol [345TCP]	0.000001	3,4-dichlorocatechol [34DCC]	0.000002		
2,3,4,5-tetrachlorophenol [2345TCP]	0.000001	3,5-dichlorocatechol [35DCC]	0.000002		
2,3,4,6-tetrachlorophenol [2346TCP]	0.000001	4,5-dichlorocatechol [45DCC]	0.000002		
2,3,5,6-tetrachlorophenol [2356TCP]	0.000001	3,4,5-trichlorocatechol [345TCC]	0.000002		
pentachlorophenol [PCP]	0.000001	3,4,5,6-tetrachlorocatechol [TETCC]	0.000002		
3,4,5-trichlorosyringol [345TCS]	0.000002	4,5-Dichloroveratrole [45DCV]	0.000002		
6-chlorovanillin [6CVAN]	0.000002	3,4,5-Trichloroveratrole [345TCV]	0.000002		

Table 3.	Organic	Compounds	Sampled on	a Monthly Basis	Main River Sites. ¹
14510 01	e game	oompoanao	oumpiou on		

Table 3 continued.

Chlorinated Phenolics, Adsorbable Organic Halides (AOX), Nonylphenol			
Parameter	MDL (mg/L)	Parameter	MDL (mg/L)
5,6-dichlorovanillin [56CVAN]	0.000002	Tetrachloroveratrole [TETCV]	0.000001
Adsorbable Organic Halides [AOX]	0.01	2-Chlorosyringaldehyde [2CSA]	0.000002
		2,6-Dichlorosyringaldehyde [26DCSA]	0.000002
Nonylphenol [NONPHE]	0.000005		

¹ The codes in parentheses refer to the abbreviations used in Figures 60-62 and the database.

Resin Acids	MDL (mg/L)	Fatty Acids	MDL (mg/L)
Pimaric [PIM]	0.0005	Myristic [MYRIST]	0.0005
Sandaracopimaric [SANDPIM]	0.0005	Palmitic PALM]	0.0005
Isopimaric IPIM]	0.0005	Linolenic [LINOLENIC]	0.0005
Dehydroabietic [DHABIE]	0.0005	Linoleic [LINOLEIC]	0.0005
Abietic [ABIE]	0.0005	Stearic [STEARIC]	0.0005
Neoaabietic [NABIE]	0.0005	Oleic [OLEIC]	0.0005
12/14-Monochlorodehydroabietic [CDHABID]	0.0005	Arachidic [ARAACA]	0.0005
12/14-Dichlorodehydroabietic [DCHABIE]	0.0005	Behenic [BEHE]	0.0005
Palustric [PAUL]	0.0005	Lignoceric [LIGNO]	0.0005
Lauric [LAUR]	0.0005		

Table 4. Resin and Fatty Acid Compounds Sampled on an Event Basis.¹

¹ The codes in parentheses refer to the abbreviations used in the database.

COMPOUND	MDL (mg/L)	COMPOUND	MDL (mg/L)	
Aldrin [ALDRIN]	0.000001	Endosulfan sulphate [ENDOSSULF]	0.000001	
BHC alpha- [BHCa]	0.000001	Endrin [ENDRIN]	0.000005	
BHC beta- [BHCb]	0.000001	Hexachlorobenzene [HCB]	0.0000005	
BHC delta- [BHCd]	0.000001	Heptachlor [HCHLOR]	0.000001	
Chlordane alpha- [CHLORDa]	0.000005	Heptachlor epoxide [HCHLOREPOX]	0.000002	
Chlordane gamma- [CHLORDg]	0.000005	Lindane BHC gamma- [LINDBHCg]	0.000001	
DDE pp [DDEpp]	0.000005	Methoxychlor [METHOXYCHLOR]	0.000001	
DDD pp ['] [DDDpp]	0.000005	Mirex [MIREX]	0.000001	
DDT pp ['] [DDTpp]	0.000005	Nonachlor trans- [NONACHLOR]	0.000005	
DDT op [DDTop]	0.000005	Oxychlordane [OXYCHLORDANE]	0.000005	
Dieldrin [DIELD]	0.000005	Toxaphene [TOXAPHENE]	0.000005	
Endosulfan I [ENDOS1]	0.000005			
Endosulfan II [ENDOS2]	0.000005	Total Polychlorinated Biphenyls [TOTPCB]	0.00002	
2(Thiocyanomethylthio)Benzothiazole [TCMTB]: 0.005 mg/L				

Table 5. Organochlorine Pesticides and Total PCBs Sampled on an Event Basis¹

¹ The codes in parentheses refer to the abbreviations used in the database.

PAH Compound	MDL (mg/L)	PAH Compound	MDL (mg/L)
Naphthalene [NAPHTH]	0.00001	Benzo(b+k)fluoranthene [BbkFLUOR]	0.00001
Acenaphthylene [ACENAPHTYLENE]	0.00001	Benzo(j)fluoranthene [BjFLUOR]	0.00001
Acenaphthene [ACENAPTHENE]	0.00001	7,12-dimethylbenz (a)anthracene [DMaANTH]	0.00005
Fluorene [FLUOR]	0.00001	Benzo(a)pyrene [BaP]	0.00001
Phenanthrene [PHEN]	0.00001	3-methylcholanthrene [MCHOLANTH]	0.00002
Anthracene [ANTH]	0.00001	Indeno(1,2,3-c,d)pyrene [INDPYR]	0.00001
Total Low Molecular Weight PAHs [LPAH]	0.00001	Dibenz(a,h)anthracene [DBENZANTH]	0.00001
		Benzo(g,h,i)perylene [BghiPERY]	0.00002
Fluoranthene [FLUORANTH]	0.00001	Dibenzo(a,l)pyrene [DBalP]	0.00005
Pyrene [PYR]	0.00001	Dibenzo(a,i)pyrene [DBaiP]	0.00005
Benzo(c)phenanthrene [BcPHEN]	0.00001	Dibenzo(a,h)pyrene [DBahP]	0.00005
Benz(a)anthracene [BaANTH]	0.00001	Total High Molecular Weight PAHs [HPAH]	0.00005
Chrysene [CHRY]	0.00001	Total PAH [TPAH]	0.00005

Table 6. Polycyclic Aromatic Hydrocarbons Analysed in Slough Samples¹

¹ The codes in parentheses refer to the abbreviations used in the database.

2.2.2 Phase II - Cross-Sectional Sampling at Main River Sites

Water samples collected at five cross-sectional stations at Oak Street Bridge in the North Arm, Tilbury Island in the Main Arm and Mission were analyzed for the same inorganic and metal parameters as those analysed during the Phase I program listed in Table 2.

2.2.3 Phase III - Water Quality in Sloughs

Slough samples collected during pre-freshet (low flow) were analyzed for physical and inorganic variables, including metals (Table 2), chlorophenolics, nonylphenol and AOX (Table 3) and resin and fatty acids, organochlorines, PCBs, and TCMTB (Tables 4 and 5).

In addition, samples were analyzed for individual polycyclic aromatic hydrocarbons compounds (PAHs), as listed in Table 6.

2.3 Quality Assurance

The quality assurance (QA) component of the monitoring program consisted of the following:

- collection of field replicates;
- preparation and analysis of method, bottle and field blanks;
- analysis of matrix spikes and standard reference materials; and,
- inter-laboratory analysis of field replicates.

The results of the replicate samples (inorganic and organic parameters) collected as part of the QA component are presented in Appendix IV. The complete database of all of the QA results are in a separate computer file, in spreadsheet format (Excel), at the FREMP office.

2.3.1 Field Replicates and Inter-laboratory Comparisons

Five field replicate samples for inorganic and metal parameters were collected from Oak Steet Bridge on January 25, 1993. On February 2, 1993 ten replicate samples were collected from Tilbury Island. Five of these samples were analyzed at the Environment Canada laboratories (North Vancouver, B.C. and Burlington, Ontario) for Inter-laboratory comparisons. In August 1993, six replicate samples were collected from all three river sites.

A limited number of field duplicate samples were also measured for selected organic parameters, as shown below in Table 7.

Date Sampled	Sample ID	Location	Parameters
January 25, 1993	FR0012	Mission	AOX
February 22, 1993	FR0045	Tilbury Island	Chlorinated phenolics
February 22, 1993	FR0050	Oak Street	Resin & Fatty Acids, Pesticides, PCBs
April 4, 1993	FR0072	Mission	AOX
May 17, 1993	FR0086	Oak Street	AOX, Resin & Fatty Acids, Pesticides, PCBs
October 19, 1993	FR0179	Oak Street	Chlorinated Phenolics

Table 7. Summary of Replicate Analyses for Organic Parameters

All replicates were submitted as blind samples (without identifying them as replicates) to the analytical laboratories. The field replicate inter-laboratory comparison data are presented in Appendix IV.

In general, there was good agreement between the replicate results for both the inorganic and organic variables (values of replicates were within the acceptable precision limits - 75%-125% at concentrations at or above 10 times the detection limit).

Overall agreement between laboratories was also acceptable, within 20% of the mean value. The inter-laboratory comparison did point out the need for lower detection limits for some metals. As a result, lower detection limits for arsenic, nickel, zinc and chromium were required for the remaining sampling periods (April, 1993 - March, 1994).

2.3.2 Field Blanks

Field blanks were incorporated into each sampling period. Sample bottles were filled with laboratory reagent water in the field, under conditions as close as possible to the real sampling conditions. The blanks were submitted as "blind" samples to the analytical laboratory.

No significant contamination problems were found through the field blank data. Some isolated instances of positive values for field blank variables were noted but these were close to the method detection limit.

2.3.3 Method Blanks

At least one method blank was analyzed with each batch of samples processed during the 15 month sampling period. A method or procedural blank is a control sample, in this case reagent water, that is carried through all procedural steps required for a specific analysis within the laboratory. The main value of a method blank is to identify the presence of contamination within the laboratory that may be introduced into the sample through contact with glassware, reagents or instrumentation.

In most cases, method blanks were below detection for inorganics and organics; exceptions were at or near the detection limit (MDL).

2.3.4 Bottle Blanks

Regular sample bottles destined for field use were selected at random and filled with reagent water in the laboratory. These bottle blanks were then set aside until the remainder of the batch of sample bottles returned from the field sampling program. The bottle blanks were then included in the analytical batch as routine samples. Bottle blanks were included periodically throughout the study for all bottle types, to verify the integrity of the sample containers.

The results for bottle blanks for this study were below the detection limit except for a few that were at or near the detection limit.

2.3.5 Spiked Samples

Samples were spiked for all variables of interest as part of the laboratory quality assurance program. Recoveries were determined as the known concentration of the spike minus the concentration found in the sample.

For most samples and compounds the recoveries were good, mainly between 80% and 120% for inorganics and between 60% and 140% for organics.

2.3.6 Standard Reference Materials

Standard Reference Materials (SRM) were provided by the U.S. National Institute of Standards and Technology (NIST) for metals (#1643c); by the Canada Centre for Inland Waters (CCIW) for major ions (CM ION 91); and by CCIW for trace metals (TM-21). The SRMs were analyzed three times during the monitoring program, and were included with

samples collected on January 29, 1993; August 10, 1993; and March 22, 1994. The August, 1993 and March, 1994 samples were submitted blind as samples FR0130 and FR0271 as part of the regular field samples. The sample analyzed in January, 1993 was part of the regular laboratory quality control program.

Results for the standard reference materials (SRMs) are presented in Table III-1 of Appendix III, along with the range of acceptable values at the 95% confidence level. The reporting laboratory provided results that, with few exceptions, were within the tolerances of the SRM. The analytical results for some parameters were slightly (<10%) outside the SRM. These included dissolved fluoride and chloride, arsenic, barium, chromium, iron, lead, magnesium, molybdenum and zinc.

2.3.7 Continuity of Analytical Procedures for Inorganic Variables

Beginning with the April 19, 1993 sampling period, inorganic parameters, including metals, were analyzed at Analytical Services Laboratory (ASL) rather than at Zenon Environmental Laboratories (Zenon). Care was taken to ensure that differences in analytical methodologies were minimal. Both laboratories maintain an extensive quality control program and participate in external quality assurance testing round-robins.

The data for inorganic variables collected before and after April, 1993 appeared to be consistent. Replicate samples (Appendix IV) and Standard Reference Materials (Table III-1, Appendix III) were analysed by both laboratories with similar results.

2.3.8 Continuity of Sampling Procedures for Slough Sampling

The procedure for collecting slough samples at depth was changed between the February, 1993 and the February, 1994 collection periods. In February, 1993, samples were collected by lowering sample bottles to within one metre of the bottom of the slough as quickly as possible while in February, 1994 samples were collected by lowering a submersible pump to a depth of one metre above slough bottom, pumping for several minutes to flush the lines and then filling sample bottles as required. Thus, the slough samples collected from one metre from the bottom in 1994 should be considered as representative of slough bottom conditions and those from the 1993 sampling period should be evaluated as composites over the entire water column.

2.3.9 Overall Data Quality

The quality of the data set is considered to be good. Method, bottle and field blanks were either below detection or at trace levels and no corrections were required. Results from the analyses of replicate data, spiked samples and standard reference materials were within acceptable values.

In some cases relatively high detection limits for some metals (a result of less than optimum analytical conditions) restricts the utility of the results since most of the values are below the MDL. For example, the detection limits for sodium and potassium (2 mg/L), cobalt (0.015 mg/L), and tin (0.3 mg/L) were not low enough, in many cases, to provide quantitative values of the variables for the entire study period.

2.4 Statistical Treatment of the Data

The data were incorporated into a single spreadsheet (Quattro Pro) by station and by date. Replicates sampled for quality assurance were not included in this analysis. Many of the parameters measured were below the method detection limit (MDL). In order to evaluate the data, in most cases the MDL was converted to an actual number; for example an MDL of <0.03 mg/L was incorporated into the database as a real value of 0.03 mg/L. The calculation of total PAHs in sloughs marked the exception whereby a non detected compound was given a value of zero. In the case of contaminants (which constituted most of the MDLs) this assumes a "worst case" scenario. As many parameters were not detected, the varying detection limits for inorganic parameters complicated the interpretation of results. The MDLs changed with the switch in analytical laboratories from Zenon to ASL after three months of data collection for the main channel and slough sites. The Hope data have different MDLs relative to the estuary sites, as do the replicate data analyzed at the Environment Canada laboratory in Burlington.

2.4.1 Phase I - Main River Sites

Differences Between Sites

To facilitate easy visual comparison of data among sites for this large dataset, an exploratory statistics approach was selected. The 95% confidence limit of the mean (C.L.) and the range (minimum and maximum value) are displayed graphically for each parameter and station. Sub-sets of the data (summer values only; see next page) were also treated in this manner.

This statistical presentation is similar to stem-leaf diagrams. The software calculates the 95% confidence interval (CI) of the mean which is plotted as a box, along with the range. The plot is similar to a t-test comparison of means. The t-test comparison of means uses a pooled standard deviation to determine the confidence intervals; the graphical method uses the

standard deviation for each set of data. In interpreting the graphs, the mean for each set of data is considered to be within the box and, if the boxes overlap, then the means can be considered not statistically different (at p < 0.05). If the two boxes do not overlap, the two means may be statistically different, and a multiple comparisons test would have to be employed to confirm the difference. Multiple comparisons were not employed in this analysis.

Summer Comparisons

There were significant differences for a number of variables between Mission and the downstream sites at Oak Street Bridge and Tilbury Island. This was believed to be largely attributable to the influence of seawater during low flows. While the sampling strategy was specifically designed to minimize this effect (by collecting samples only at the end of the larger of the two ebb tides on the sampling day), the influence of marine waters was still apparent.

To avoid the influence of seawater in testing for differences between the three sites, only those samples in which the specific conductivity was less than or equal to 200 μ S/cm were compared. This value was chosen since virtually all conductivity data from Hope fell between 100 μ S/cm and 200 μ S/cm. The 200 μ S/cm cutoff corresponded to the sampling dates April 4 and September 21, 1993 and the results are referred to as "summer" values. This period also corresponds to higher river flows.

2.4.2 Phase II - Cross-Sectional Sampling at Main River Sites

As only one sample was collected at each station in the cross channel transect, an assessment of cross channel variability was made by examining the data for all sample dates (three days for Mission and four for Oak Street and Tilbury Island) together. Two methods of analysis were used: a parametric analysis for specific conductivity, calcium, nitrate/nitrite, and total iron; and, a non-parametric method for all parameters.

For the parametric analysis, data for each site (Mission, Oak Street, Tilbury Island) and date combination were normalized by determining the relative deviations from the mean value for the site on that day, in order to avoid the large differences in daily values due to the greater or lesser influence of sea water intrusion during different river flows. In this way, the mean concentration of each parameter at a site was set to 1, and the relative concentrations at each station were then determined. For each site/station combination, the 95% confidence interval of the mean was calculated and plotted. Overlap of the 95% confidence intervals implies no difference in mean values.

A non-parametric Kruskal-Wallis one way Analysis of Variance (ANOVA) was conducted for all parameters, by site. This analysis ranks the actual value of each parameter by station, then compares the rank sums at each site. The null hypothesis for this analysis is that there are no differences between stations in the cross-section.

2.4.3 Phase III - Water Quality in Sloughs

The low number of values (two from each depth), plus the different collection method for the bottom samples between the two dates (see Section 2.3.8), makes comparisons between surface and bottom waters, or between sloughs, difficult. Thus, the results from the four samples are plotted as the mean and range for each parameter, by slough, and then compared to water quality criteria and guidelines.

2.5 Water Quality Guidelines, Criteria and Objectives

Water quality guidelines and criteria for fresh and marine waters have been recommended by federal agencies (CCREM, 1987) and the provincial Ministry of Environment, Lands and Parks (BCMOELP, 1994), respectively, for the protection of aquatic biota. Generally, the two jurisdictions are in close agreement with each other, and with criteria from other countries (e.g., U.S. EPA, 1986a). In addition, the BC Ministry of Environment, Lands and Parks has set specific provisional objectives for the lower Fraser River (below Kanaka Creek) for a number of selected parameters (Swain and Holms, 1985). These latter objectives are currently under review by provincial and federal agencies (Swain, *et al.*, 1995). Table 8 summarizes the guidelines, criteria and objectives from these three sources for the parameters measured in this study.

Table 8. Summary of Water Quality Guidelines, Criteria and ObjectivesFor the Protection of Aquatic Life, Applicable to the Fraser River

PARAMETER	BCMOELP CRITERIA	CCREM GUIDELINES	FRASER R. OBJECTIVES
Dissolved Oxygen	6.5-9.0 mg/L	6.5-9.5 mg/L	7.75 mg/L (min)
рН	6.5-9.0	6.5 - 9.0	6.5 - 8.5
Temperature	1 °C change from natural levels 22-24 °C max for salmonids	maximum weekly average temperature cannot be exceeded (page 3-40)	na
Suspended Solids (Non-filterable Residue, NFR)	na	increase of 10.0 mg/L or 10% above background (sus. solids >100.0 mg/L)	10 mg/L or 10% (max. increase)
Hardness (mg/L as Alkalinity)	na	na	na
Ammonia-Nitrogen (NH₄-N) (pH and temperature dependent)	1.13 mg/L (ave) 5.86 mg/L (max) pH=8.0, T=10°C (page 22-23)	1.37 mg/L (pH 8.0, temp. 10 °C)	0.03 mg/L (max) 0.007 mg/L (ave) (unionized)
Total Phosphorus (TotP)	5 -15 μg/L (lakes only)	na	na
Aluminum (Al)	0.1 mg/L (max) 0.05 mg/L (30 d ave) Dissolved; at pH ≥ 6.5	0.005-0.1 mg/L (Total)	na
Arsenic (As)	50 μg/L	50 μg/L	na
Barium (Ba)	1 mg/L (30 day ave) 5 mg/L (max)	na	na
Cadmium (Cd) (Total)	0.2 μg/L (hardness <60 mg/L) 0.8 μg/L (hardness >60 mg/L)	0.2 μg/L (hardness <60 mg/L) 0.8 μg/L (hardness >60 mg/L)	na
Chromium (Cr) (Total)	20 μg/L (max for fish)	2 - 20 μg/L (for fish)	na
Cobalt (Co) (Total)	50 μg/L	na	na
Copper (Cu) (Total)	≤ 2 µg/L (30 d ave) hardness is ≤ 50 mg/L CaCO ₃ [0.094(hardness)+2] (max) (Hardness as mg/L CaCO ₃)	2 μg/L (hardness 0-120)	<4 μg/L (ave) 6 μg/L (max)
Fluoride	0.2 mg/L (max) (hardness <50 mg/L) 0.3 mg/L (max) (hardness >50 mg/L)	na	na
Iron (Fe) (Total)	0.3 mg/L (max)	0.3 mg/L	na
Lead (Pb) (Total)	5 μg/L (30 d ave) 34 μg/L (max) (Hardness <50 mg/L CaCO₃)	1 µg/L	<3 μg/L (ave) 10 μg/L (max)
Manganese (Mn) (Total)	100-1000 μg/L	na	na

Table 8 continued.

PARAMETER	BCMOELP CRITERIA	CCREM GUIDELINES	FRASER R. OBJECTIVES
Mercury (Hg) (Total)	0.02 μg/L (30 d ave) 0.1 μg/L (max)	0.1 µg/L	na
Molybdenum (Mo) (Total)	<u><</u> 1 mg/L (30 d ave) 2 mg/L (max)	na	na
Nickel (Ni) (Total)	25 μ g/L (max) (hardness 0-60 mg/L CaCO ₃	25 μg/L	na
Selenium (Se) (Total)	1 µg/L (max)	1 µg/L	na
Silver (Ag) (Total)	0.1 μg/L (max)	0.1 μg/L	na
Sulphate	100 mg/L	na	na
Tin (Sn)	na	na	na
Zinc (Zn) (Total)	30 µg/L (max)	30 µg/L	<50 μg/L (ave) 100 μg/L (max)
Fecal Coliforms	na	na	<1000 FC/100 mL (geo. mean) 4000 FC/100 mL (max)
Total Organic Carbon (TOC)	na	na	na
Total Residual Chlorine	2 µg/L (ave) 100 µg/L (max)	2.0 μg/L	2.0 μg/L (max)
Chlorophenols	mono: 0.5-0.9 μg/L di: 0.12-0.9 μg/L tri: 0.06 - 0.32 μg/L tetra: 0.02 - 0.30 μg/L penta: 0.10 - 0.30 μg/L	mono - 7 μg/L di - 0.2 μg/L tri - 18 μg/L tetra - 1 μg/L penta - 0.5 μg/L	0.2 μg/L (max) (sum of tri, tetra and penta)
Resin and Fatty Acids	52 μg/L (max) (pH 8.0) (total resin acids)	na	na
Polycyclic Aromatic Hydrocarbons (PAH)	naphthalene 1 µg/L (marine) acenaphthene 6 µg/L (marine) fluorene 12 µg/L (marine) chrysene 0.1 µg/L (marine) benzo(a)pyrene 0.01 µg/L (marine) pyrene 0.02 µg/L (freshwater) phenanthrene 0.3 µg/L(freshwater)	na	na (being proposed)
Total Polychlorinated Biphenyls (PCBs)	0.00001 mg/L (marine) 0.000001 mg/L (freshwater)	1 ng/L	na
Organochlorine Pesticides	na	hexachlorobenzene 0.0065 µg/L	na
Adsorbable Organic Halides (AOX)	na	na	na

3.0 RESULTS AND DISCUSSION - MAIN RIVER SITES

Analytical results for the three main river sites over the fifteen month sampling period are presented in chronological order, by site, in Appendix VII (Mission), VIII (Tilbury Island) and IX (Oak Street Bridge). Table 9 summarizes all of the data for the three study sites as well as the data from the federal/provincial water quality monitoring program site at Hope. On four occasions when samples were collected across a cross-section only the one measurement from mid-channel at each site was used to determine these statistics. The 10th, 50th and 90th percentile and the range (minimum and maximum values) are presented.

3.1 Cross-Sectional Profiles

The data for the cross-sectional profiles are tabulated in Appendix V.

For the parametric analysis (i.e. for specific conductivity, calcium, nitrate/nitrite, and total iron) the 95% confidence interval of the mean for each site/station combination was calculated and plotted in Figures 2 to 5. This analysis shows that for the four parameters selected, there was no consistent statistical difference between stations across the river at any of the three main sites.

The non-parametric Kruskal-Wallis one way ANOVA indicated that for all parameters and sites, there was no significant difference among stations in the cross section. The results of this analysis are shown at the end of Appendix V. The probability that stations in a cross-section are the same at one site generally ranged from 80 to 100%; the lowest probability was 31% at Tilbury, for zinc.

Both the parametric analysis on selected parameters and the non-parametric analysis on all parameters indicate that there were no significant differences between stations at any site for the three or four times the profiles were sampled. One conclusion that may be made is that samples collected at the mid-channel station can be considered representative of the river.

These results are largely due to the fact that the variation in station differences across the river can be large and may result in apparent cross-channel differences at any particular time. The data from this project indicate that apparent cross-channel differences should be treated with caution, and should be supported with replication of samples at all stations. In the present data set, for some parameters, there was an appearance of higher (or lower) concentrations near the shores on some sampling dates; these apparent differences were not present on other dates.

					Hope					Mission		
Parameter	Code	Units	Minimum	10th %ile	50th %ile	90th %ile	Maximum	Minimum	10th %ile	Soth %ile	90th %ile	Maximum
Dissolved oxygen	8	mg/L						8.8	20	11.0		11.9
PH	ΡΗ							7.2	7.4	7.6		10
Water temperature	WT	degrees C						1.0	2.4	2.0		
Filterable residue	FR	mg/L						45	24	71		10.7
Non-filterable residue	NFR	mg/L								<u></u> 14		
Specific conductivity	sc	uS/cm	100	601	136	164	172	. 6	102	1001		110
Alkalinity	ALK	mg CaCO3/L	41	4	S	65	99	38	42	48		0+1
Hardness	HARD	mg CaCO3/L	46	51	62	5	4	40	48	2 95	5	
Calcium	CA	mg/L	14	16	18	22	22	12	1	16	19	7
Potassium	К	mg/L	0.60	0.69	0.80	0.93	1.03	0.75	0.98	21 00	¢	
Magnesium	MG	mg/L	2.6	3.0	4.2	5.2	5.3		0.0	3.8		A.1.
Sodium	NA	mg/L	1.6	2.0	3.2	5.0	5.7		22	33	4.1	1.1
Chloride, dissolved	DCL	mg/L	0.6	0.7	1.4	2.2	2.4	0.7	1.0	1.7	23	2.6
Fluoride, dissolved	ЪГ	mg/L 4	0.03	0.04	0.05	0.06	0.07	0.03	0.04	0.04	V	
Sulphate	S04	mg/L	5.8	6.8	9.1	12.9	15.0	5.8	7.0	9.9	12.7	144
Ammonia, dissolved	DNH4	mg N/L						<0.005	<0.005	0.018	0	0.043
Nitrate/nitrite, dissolved	DN03N02	mg N/L	0.01	0.03	0.10	0.15	0.18	0.02	0.03	0.13		0.32
Nitrogen, total	VITOT	mg N/L	0.06	0.10	0.18	0.28	7.73	<0.04	0.12	0.18	0.27	0.75
Phosphorous, dissolved	DP	mg P/L						0.002	0.004	0100	0.029	0.066
Phosphorous, total	Ê.	mg P/L	0.01	0.02	0.03	0.18	0.30	0.01	0.02	0.03	0.11	0.48
Silver .	DY	шg/L						<0.0001	<0.001	<0.0001	<0.03	<0.0>
Aluminum	٩٢	mg/L	0.05	0.2	0.4	3.3	5.8	1.0	<0.2	0.3	0.8	5.6
Arsenic	AS AS	mg/L	0.0002	0.0004	0.0005	0.0015	0.0026	0.0003	0.0003	0.0005	<0.001	0.0017
Banum	BA	mg/L	0.015	910.0	0.019	0.048	0.083	0.013	0.015	0.018	0.026	0.085
Cadmium	9	mg/L	<0.0001	<0.0001	0.0002	0.0007	0.0012	<0.0001	<0.0001	<0.0002	<0.0002	0.0011
Cobalt	8	mg/L	0.0001	0.0001	0.0004	0.003	0.005	<0.004	<0.004	<0.015	<0.015	<0.015
Chromium	ğ	mg/L	0.0003	0.0005	0.001	0.005	0.012	<0.001	<0.001	<0.001	<0.05	0.011
Copper	S	mg/L	0.0004	100.0	0.002	0.006	0.011	<0.001	<0.001	0.001	0.008	0.012
lron	巴	mg/L	0.08	0.21	0.58	4.96	9.53	0.05	0.14	05.0	0.94	9.22
Mercury	HG	mg/L	<0.000005	<0.000005	<0.000005	7.E-06	1.E-05	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Manganese	NN	mg/L	0.008	10.0	0.02	0.11	0.21	10.0	0.01	0.02	0.05	0.29
Molybdenum	NO	mg/L	0.0004	0.0004	0.0006	0.0008	0.0009	<0.001	<0.001	<0.001	<.004	<.004
Nickel	IN	mg/L	0.0004	0.0007	0.0014	0.0076	0.0151	<0.001	<0.001	<0.001	<0.005	0.015
Lead	PB	mg/L	<0.0002	<0.0002	0.0011	0.0028	0.0050	<0.001	<0.001	<0.001	<0.003	0.003
Selenium	SE	mg/L	<0.0001	<0.001	0.0001	0.0002	0.0012	<0.0005	<0.0005	<0.0005	<0.03	<0.03
Tin	SN	mg/L						<0.02	<0.02	<0.3	<0.3	<0.5 10.5
Zinc	ZN	mg/L.	0.0009	0.002	0.003	0.013	0.024	<0.001	<0.001	0.005	0.011	0.070
Absorbable organic halides	AOX	mg/L	0.01	0.01	0.03	0.05	0.07	<0.01	<0.01	0.02	0.0355	0.04
Fecal coliform	FC	MPN/100 mL						<2	11	50	340	800
Total organic carbon	TOC	mg C/L						1.0	2.0	2.5	3.5	5.1

Table 9. Summary Data for FREMP Main River Monitoring Sitesand Federal-Provincial Site at Hope

. .

					Oak Street					Tilhurv		ſ
Parameter	Code	Units	Minimum	10th %ile	1	90th %ile	Maximum	Minimum	10th %ile	2	90th %ile	Maximum
Dissolved oxygen	DO	mg/L	8.4	9.1	10.8	12.1	12.4	8.8	9.1	10.8	12.3	12.8
Hd	Hd		6.9	7.1	7.4	7.6	7.7	7.0	7.3	7.5	7.8	7.9
Water temperature	WT	degrees C	2.2	4.2	9.3	18.2	19.0	2.0	3.0	8.1	6.71	19.0
Filterable residue	FR	mg/L	43	50	85	2598	3830	44	54	66	1818	2400
Non-filterable residue	NFR	mg/L	9	10	28	63	224	9	6	35	83	685
Specific conductivity	sc	uS/cm	71	98	155	4679	6360	89	104	150	2954	4090
Alkalinity	ALK	mg CaCO3/L	33	. 35	43	50	59	37	38	45	50	56
Hardn e ss	HARD	mg CaCO3/L	40	44	55	510	634	44	48	59	304	394
Calcium	CA	mg/L	11	12	15	44	54	12	13	16	28	39
Potassium	×	mg/L	2.00	<2.00	<2.00	27.26	33.00	1.10	2.00	2 .00	16.65	21.40
Magnesium	MG	mg/L	2.4	2.7	4.3	96.7	121.0	. 2.8	3.0	4.5	57.2	75.3
Sodium	NA	mg/L	2.1	2.5	12.1	734.5	906.0	2 .0	2.5	7.7	141.0	577.0
Chloride, dissolved	DCL	mg/L 1	1.1	1.5	16.5	1380.0	1920.0	0.6	1.3	9.3	846.0	1170.0
Fluoride, dissolved	DF	mg/L	0.03	0.03	0.04	0.12	0.16	0.03	0.03	0.04	0.10	0.21
Sulphate	SQ4	mg/L .	5.8	6.8	10.8	195.3	315.0	5.7	6.7	11.2	120.3	166.0
Ammonia, dissolved	DNH4	mg N/L	<0.005	<0.005	0.036	0.059	0.089	<0.005	0.007	0.029	0.069	0.096
Nitrate/nitrite, dissolved	DN03N02	mg N/L	0.03	0.04	0.13	0.24	0.36	0.03	0.03	0.16	0.26	0.34
Nitrogen, total	TOTN	mg N/L	0.10	0.15	0.21	0.40	0.40	<0.05	0.15	0.23	0.42	0.73
Phosphorous, dissolved	DP	mg P/L	0.001	0.007	0.017	0.033	0.040	0.002	0.007	0.016	0.028	0.122
Phosphorous, total	d,	mg P/L	0.02	0.03	0.05	0.12	0.23	0.02	0.03	0.05	0.10	0.77
Silver	AG	mg/L	<0.0001	1000.0>	<0.0001	<0.03	<0.03	<0.0001	<0.0001	<0.0001	<0.03	<0.03
Aluminum	AL	mg/L	0.1	<0.2	0.3	0.6	3.4	· <0.2	<0.2	0.4	1.0	8.4
Arsenic	AS	mg/L	0.003	0.0004	0.0005	0100.0	0.0013	0.0003	0.0003	0.0005	0100.0	0.0035
Barium	BA	mg/L	0.013	0.014	0.017	0.022	0.051	0.011	0.013	0.018	0.028	0.200
Cadmium	cD	mg/L	<0.0001	<0.0001	<0.0002	<0.0002	<0.0002	<0.0001	<0.001	<0.0002	<0.0002	0.0002
Cobalt	co	mg/L	<0.004	<0.004	<0.015	<0.015	<0.015	<0.004	<0.004	<0.015	<0.015	<0.015
Chromium	сĸ	mg/L	<0.001	<0.001	<0.001	<0.005	0.007	<0.001	100.0 ⊳	<0.001	0.002	0.018
Copper	cu	mg/L	<0.001	<0.001	0.002	0.004	0.008	<0.001	100.0>	0.002	0.005	0.016
Iron	FE	mg/L	0.14	0.18	. 0.47	0.86	5.48	0.11	0.18	0.51	1.42	13.70
Mercury	HG	mg/L	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Manganese	MN	mg/L	0.02	0.02	0.03	0.05	0.17	0.01	10.0	0.03	0.05	0.12
Molybdenum	МО	mg/L	100.0⊳	<0.001	100.0>	<0.004	<0.004	<0.001	<0.001	<0.001	<0.004	0.005
Nickel	IN	mg/L	100.0⊳	100.0>	100.0	0.005	0.017	<0.001	100.0>	0.002	<0.005	0.023
Lead	PB	mg/L	100.0⊳	100.0>	100.0>	<0.003	<0.003	<0.001	<0.001	<0.001	<0.003	<0.005
Selenium	SE	mg/L	<0.0005	<0.0005	<0.0005	€0.03	<0.03	<0.0005	<0.0005	<0.0005	<0.03	<0.03
Tin	SN	mg/L	<0.02	<0.02	<0.3	<0.3	<0.3	<0.02	<0.02	<0.3	€.0>	€.0>
Zinc	Z	mg/L	<0.001	<0.001	0.005	0.014	060.0	<0.001	<0.001	0.005	0.021	0.070
Absorbable organic halides	AOX	mg/L	<0.01	10.0	0.02	0.03	0.04	<0.01	<0.0>	0.02	0.03	0.04
	FC	MPN/100 mL	14	30	800	8000	17000	4	29	500	8300	11000
Total organic carbon	Toc	Img C/L	1.01	16.1	2.4	3.51	4.91	1.01	1.8	2.5	3.91	5.0
-												

.

Table 9 continued.

Water Quality in the Fraser River Estuary

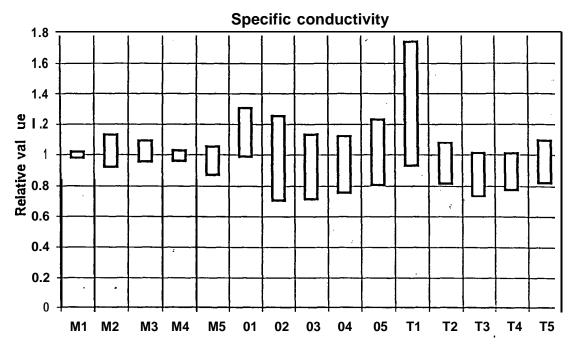
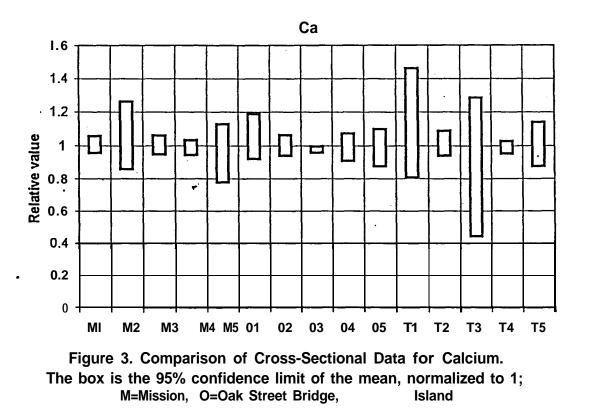
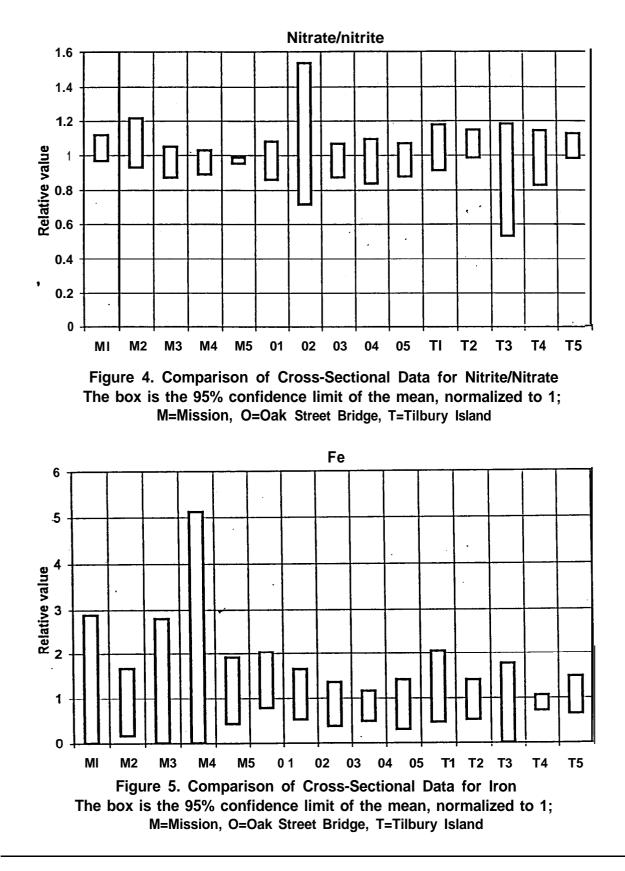




Figure 2. Comparison of Cross-Sectional Data for Specific Conductivity. The box is the 95% confidence limit of the mean, normalized to 1; M=Mission, O=Oak Street Bridge, T=Tilbury Island

. . . .

. . .

3.2 Factors Influencing Water Quality

3.2.1 Flow

The flow (discharge) of the Fraser River varies significantly throughout the year. It begins to increase in April and peaks generally in May to June as the snow pack in the watershed melts. The flow then gradually decreases to winter minimum rates between December and March.

Figure 6 shows the historical mean flow of the Fraser River, as well as the measured flow on the study sampling dates, as measured at Hope. A comparison of the historical flow data at Mission with flows at Hope showed that the former is much greater, particularly during low flow periods, because of the contribution from tributaries entering the Fraser River below Hope (Environment Canada, 1991a). For example, during low flow (January to March) the discharge at Mission is 1.5 to 1.7 times the discharge at Hope; during high flow (May and June) the discharge at Mission is only 1.1 times the discharge at Hope (Figures 7 and 8).

The increase in flow during spring peak periods tends to dilute dissolved constituents in the river because the snow melt is typically much lower in dissolved ions than water from groundwater sources. The increase in flow also coincides with an increase in particulate material as the river bottom and banks are eroded. Constituents associated with particulates, such as total iron or total phosphorus, tend to increase with increasing flow.

3.2.2 Tides and Seawater Intrusion

During the rising (flood) tide, seawater from the Strait of Georgia moves up the river channels. Since seawater is significantly denser than freshwater, it forms a wedge along the bottom as it moves up the channels. This wedge is flushed out during the falling (ebb) tide, the degree of which depends on both flow and tidal conditions. At low flow and high tide, saline water may penetrate the Main Arm of the river as far as New Westminster. During freshet, however, the salt wedge does not move much further upstream than Steveston. The much shallower depths in the North Arm prevents the salt wedge from moving as far upstream as it does in the Main Arm. Marine waters do not reach as far upstream as Mission although during low flow periods the tides can affect both the water level and river velocity.

The mixing of marine and river water in the estuarine environment causes unique conditions that are reflected in water quality monitoring results, especially in the dissolved ion concentration. This effect is most pronounced during low flow periods.

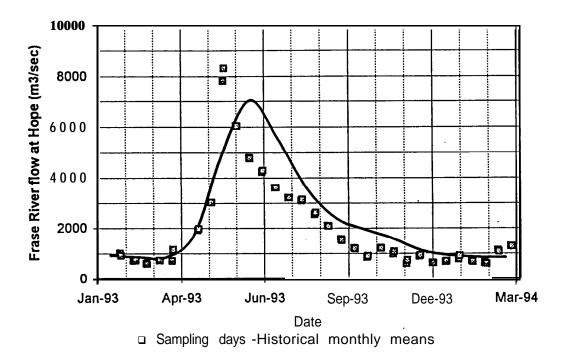


Figure 6. Fraser River Flow at Hope

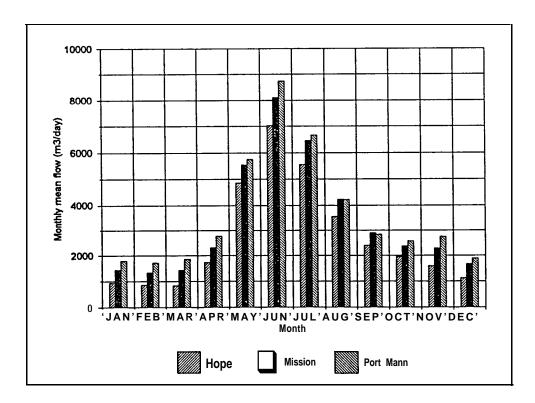


Figure 7. Comparison of Fraser River Flow at Hope, Mission and Port Mann

3.2.3 Seasonal Factors

While the most significant influence on water quality in the Fraser River estuary appears to be the interaction between river flow and seawater intrusion, the time of year can also affect some parameters. For example, as water temperature increases during the summer the dissolved oxygen concentration decreases; the proportion of unionized ammonia also increases with higher temperatures. The uptake by plants of nutrients such as nitrogen and phosphorus is also greater during the summer period.

3.2.4 Tributaries and Runoff

Tributaries and storm water runoff can add significant amounts of contaminants to the Fraser River. Some of the storm water outlets are combined storm water/sewage overflows, which discharge a mixture of sewage and runoff water during extreme rainfall events. Receiving water data on tributaries have been summarized by Swain *et al.* (1995). Potential contaminants from storm water runoff were also discussed in this report.

Daily rainfall data from Vancouver International Airport for the period January, 1993 to March, 1994 are presented in Figure 9. There is no strong seasonal pattern to the data; high rainfall events (>10 mm/day) occurred at least once for most months of the study period. It is known that there are considerable differences in precipitation within the study area and total runoff volume to the Fraser River will vary accordingly.

Swain *et al.*, (1995) estimated potential increases in the main river of 13.5 mg/L suspended solids, 1300 fecal coliforms/100 mL, 4 μ g/L copper, 16 μ g/L lead and 16 μ g/L zinc from stormwater runoff, a calculation based on typical concentrations in storm water, mean monthly runoff discharges to the river (3 x 10⁸ m³) and low river flows (1200 m³/s).

3.2.5 Municipal and Industrial Discharges

There are a number of discharges to the Fraser River authorized under the Waste Management Act. A summary of effluent and adjacent receiving water data is presented in Moore (1993) and in Swain *et al.* (1995). A detailed effluent characterization study of eleven Lower Fraser River industrial discharges was conducted by McDevitt *et al.*, (1994).

Generally, the effluents are within compliance with their permitted discharge limits. Outside the initial dilution zone, the concentration of most parameters was comparable to "control" station levels or background concentrations. Higher values for some parameters, most often fecal coliforms and suspended solids, were reported downstream from wastewater treatment plants (WWTPs).

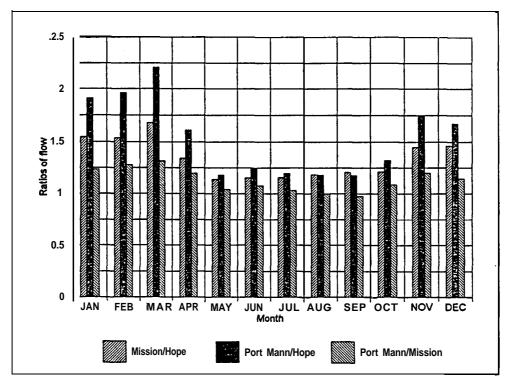


Figure 8. Ratio of Fraser River Flows: Mission/Hope; Port Mann Hope; Port Mann/Mission.

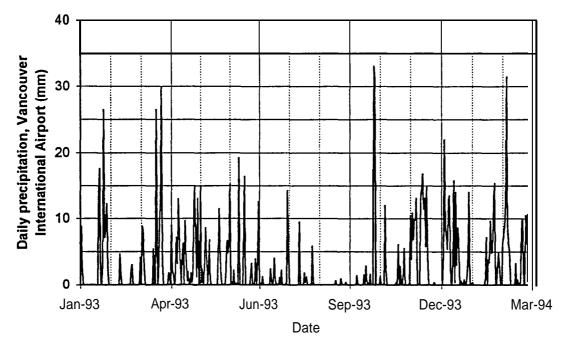


Figure 9. Daily Precipitation, Vancouver Airport

Wastewater treatment plants discharge to the Fraser River approximately 91% (990,000 m³/day) of the total effluent that is discharged under a BCMOELP permit; the remainder is from industrial discharges. In the Main Stem of the Fraser River there are WWTPs located at Mission (45,000 m³/d), Langley near Abbotsford (7,500 m³/d) and Langley near Barnston Island (4,215 m³/d). The Annacis Island WWTP and Lulu Island WWTP discharge 370,000 m³/d and 52,000 m³/d respectively, to the Main Arm of the river. Flow rates from all WWTPs have increased about 20% between 1985 and 1992 (Moore, 1993).

Industrial discharges were estimated to be about 9% of the total effluent (94,000 m³/d) and loadings for most chemical contaminants were less than is contributed by WWTPs. Loadings from some parameters (suspended solids, volatile suspended solids, dissolved manganese, BOD and oil & grease) were higher in industrial effluents compared to individual WWTPs such as Lulu Island. Overall, the total volume of industrial discharges has decreased by about 36% between 1997 and 1992 and the total loading of many of the individual parameters has also decreased (Moore, 1993). However, oil & grease, BOD, suspended solids, phenols, aluminium, chromium and vanadium loadings have increased during this period.

In a survey of eleven industrial effluents (McDevitt, *et al.*, 1994) PAHs, dioxins, furans, resin and fatty acids and chlorinated phenolics were at very low or undetectable concentrations. Some metals, particularly copper, iron, lead and zinc were found in effluent samples at concentrations that might have an adverse effect on bioassay organisms. A concurrent study (Norecol, Dames & Moore, Inc., 1994) looked at the impact within the initial dilution zone of ten of these industries. The study reported elevated levels of pentachlorophenol in the sediments downstream of three wood-processing industries although the concentrations were lower than those measured at many other sites in the estuary over the past decade. Some PAH compounds were present in the sediments downstream of three discharges but the levels were similar to other sites in the estuary. Except for acenaphthene in a single sample, PAH levels were below MOELP sediment objectives set for Burrard Inlet (although these objectives are not officially applicable to the Fraser River estuary).

3.3 Physical Properties

3.3.1 Water Temperature

There were no significant differences in water temperature between the three main sites at Mission (Main Stem), Tilbury Island (Main Arm) or Oak Street Bridge (North Arm) when all of the data, or the "summer only" data, were compared (Figure 10). Water temperature showed the expected seasonal changes with maxima (18-19 $^{\circ}$ C) during July-August and minima (0.9-2.2 $^{\circ}$ C) in January-February (Figure 11).

3.3.2 Dissolved Oxygen

There was also no significant difference in dissolved oxygen levels between the three sites (Figure 12), either for the entire database or for the "summer only" values. All measurements were above the minimum criterion of 6.5 mg/L.

The seasonal pattern for dissolved oxygen was the "mirror-image" to that of water temperature reflecting the fact that the solubility of oxygen in water decreases with increasing temperature (Figure 13). However, the percent saturation for dissolved oxygen was greater than 90% for all samples indicating that there are few oxygen-reducing substances present.

Drinnan and Clark (1980) reported lower overall oxygen values for the North Arm compared to the Main Arm of the Fraser River and both areas in turn were lower when compared to upstream measurements, although all measurements were still well above minimum objectives (median concentration >9.5 mg/L). Similar results were reported in a review of ambient receiving water data for the Fraser River between Hope and the estuary (Swain *et al.*, 1995).

3.3.3 pH and alkalinity

The pH at the Oak Street Bridge site was significantly lower than the other two sites, for all data, but not with the "summer only" data (Figure 14). A lower pH reflects an increase in average hydrogen ion concentration possibly due to more acidic discharges from industry or storm drains in the North Arm. However, all measurements were within the objective of 6.5-8.5 pH units (Fraser River objective, Swain and Holms, 1985) or the water quality guidelines of 6.5-9.0 pH units (CCREM,1987; BC MOELP,1994). A median pH of 7.0 to 8.0 was reported for the period 1970-1978 (Drinnan and Clark, 1980) and similar results were reported in Swain *et al.*, (1995).

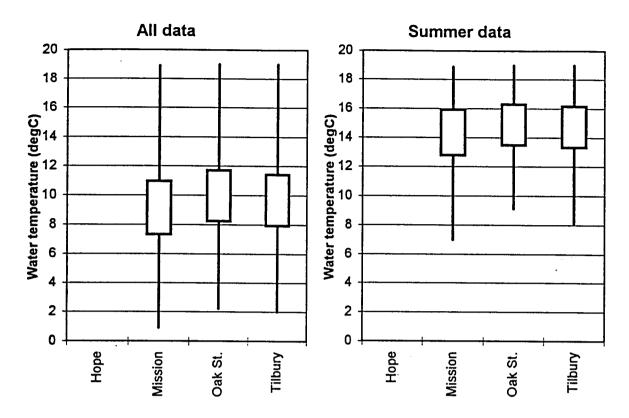


Figure 10. Summary of Water Temperature Data, Main River Sites

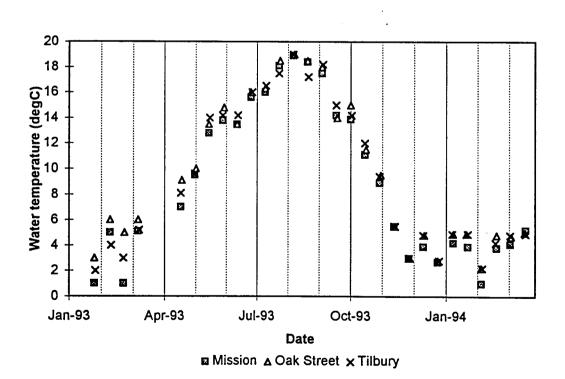


Figure 11. Seasonal Changes in Water Temperature, Main River Sites

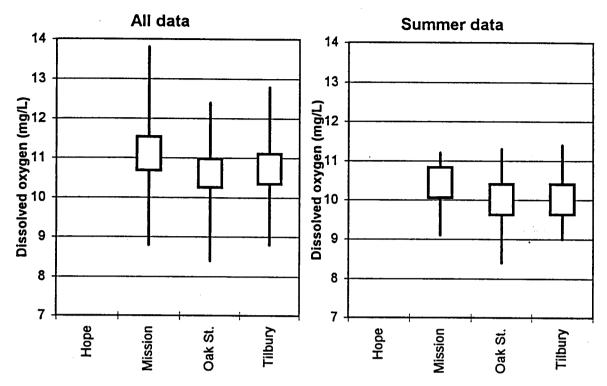


Figure 12. Summary of Dissolved Oxygen Data, Main River Sites

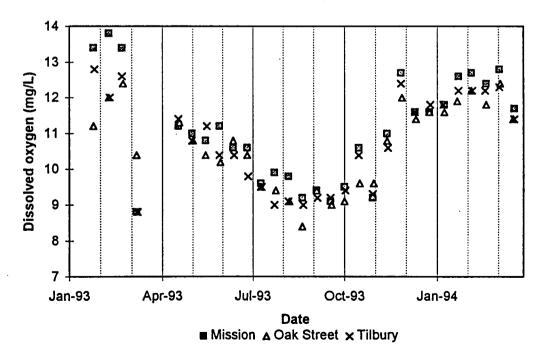
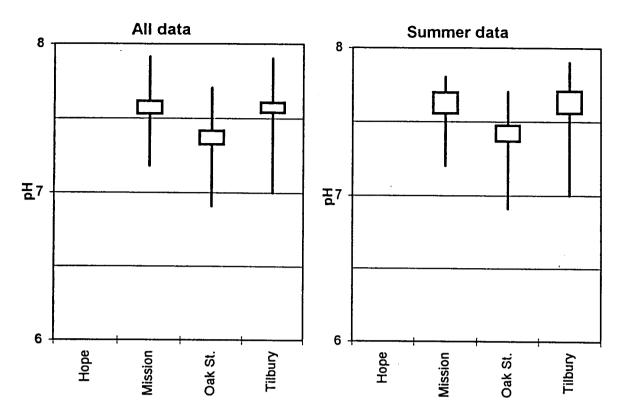
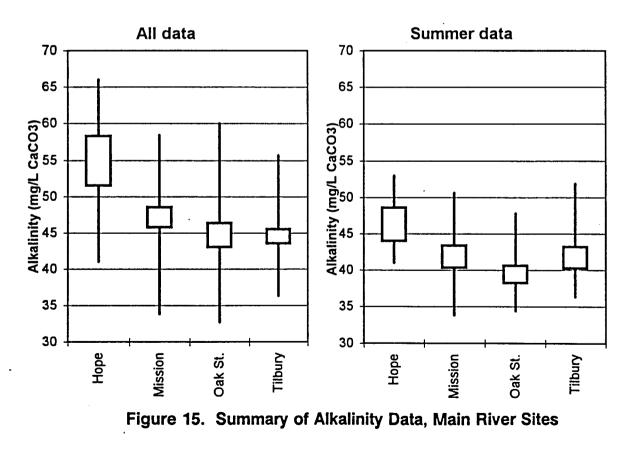




Figure 13. Seasonal Changes in Dissolved Oxygen, Main River Sites

There was a significant difference in alkalinity measurements between Mission and the two downstream sites with the entire data set but not when the summer only data were compared (Figure 15). Data collected at Hope were significantly higher compared to downstream sites, with the differences less when the summer only data are compared. The higher values at Hope and Mission may reflect the influence of downstream tributaries particularly during the winter period when their contributions to the total flow are greater (see Section 3.1.1).

3.4 Non-filterable Residue

Non-filterable residue (NFR=suspended solids) was similar at all three sites both for the entire data set and for the "summer only" values (Figure 16). NFR closely parallels Fraser River flow, with much higher concentrations (60 to 200-700 mg/L) during high flow compared to low flow times. However, even during low flow, elevated concentrations of NFR were frequently measured at Oak Street Bridge and Tilbury Island but less so at Mission (Figure 17). Possible explanations include stormwater discharges, seawater intrusions (some of the high winter NFR data corresponded with higher specific conductance) and municipal discharges. Non-filterable residue concentrations measured during this study are comparable with those for the time period 1970-1978: 50-150 mg/L during freshet and 10-30 mg/L during low flow (Drinnan and Clark, 1980).

3.5 Dissolved lons

A comparison of field and laboratory specific conductance measurements showed the field values to be generally lower, particularly in more estuarine water, as well as more variable. This may be due to the use of a less precise instrument in the field compared to the lab. As a result only laboratory data were used for interpretative purposes.

Specific conductivity was much higher at Oak Street Bridge and Tilbury Island compared with the upstream sites at Mission and Hope, when all data were considered but there were no differences for the "summer only" data (Figure 18). The pattern illustrates the influence of marine water intrusions into the river during periods of lower river flow even though considerable care was taken to sample at the end of the outgoing tide. A seasonal pattern (all sites combined) is not readily apparent although much higher values are encountered during the "winter months" (Figure 19).

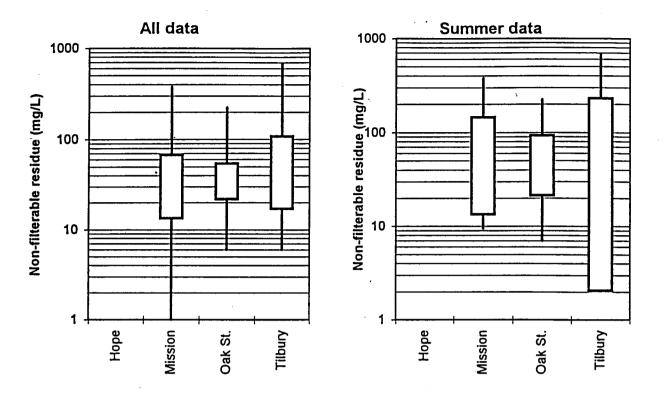


Figure 16. Summary of Non-filterable Residue Data, Main River Sites

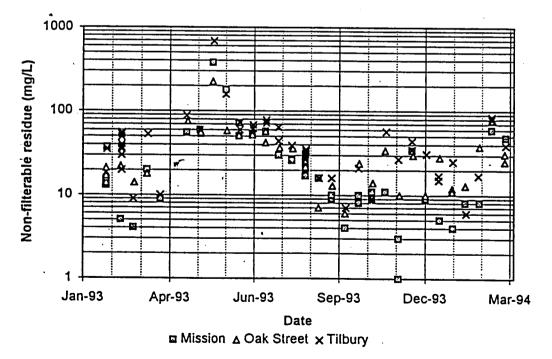
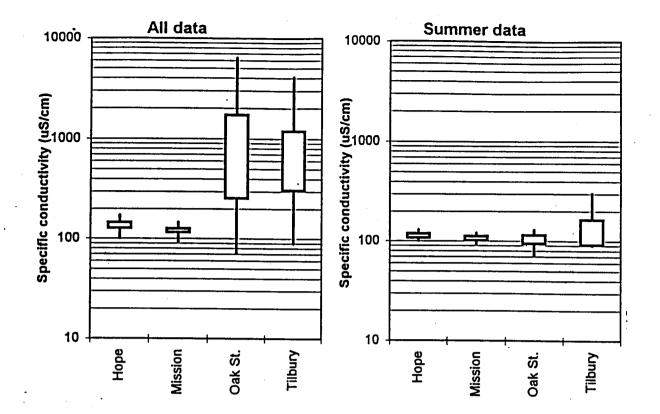
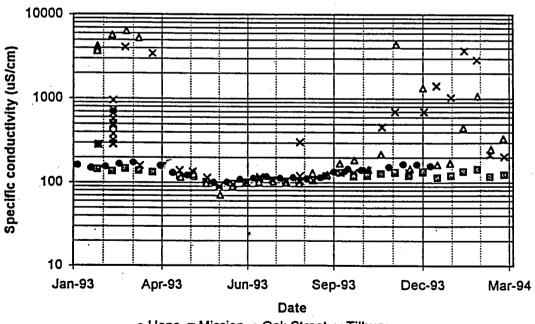
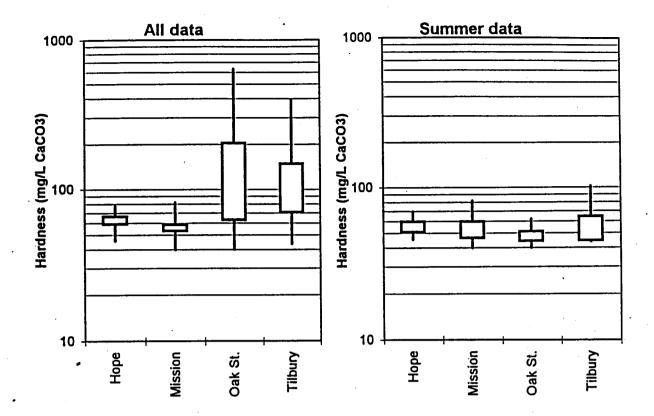




Figure 17. Seasonal Changes in Non-Filterable Residue, Main River Sites


Hardness, filterable residue and the dissolved ions sodium, potassium, magnesium, chloride and sulphate, all showed a similar pattern to specific conductivity (Figures 20-26). Higher concentrations were measured at Oak Street Bridge and Tilbury Island compared to Mission and Hope, when the entire data set is included, but there were no significant differences when "summer only" data are considered. The data illustrate the effects of seawater intrusions during low flow periods.

Comparisons among sites showed the upstream site at Mission to be significantly lower for these parameters than either of the Tilbury Island or Oak Street Bridge sites but there was no significant difference between the latter two sites. Where there were data for comparison (specific conductivity, sodium, magnesium, chloride and sulphate), there were no significant differences between Hope and Mission.

Fluoride concentrations were not significantly different among all four sites when all data were considered. Concentrations at Mission, Oak Street and Tilbury were lower than Hope for the summer only data. Mission had lower calcium concentrations than Hope when all data were considered, but Oak Street had lower concentrations than Hope when summer only data were considered. In both cases, the differences are small.

A summary of all water quality data collected up to 1978 (Drinnan and Clark, 1980) showed a similar range in values for most parameters measured in this study.

A maximum concentration for dissolved fluoride of 0.2 mg/L (hardness <50 mg/L) or 0.3 mg/L (hardness >50 mg/L) is recommended for the protection of aquatic life. None of the measurements exceeded these guidelines (Table 8).

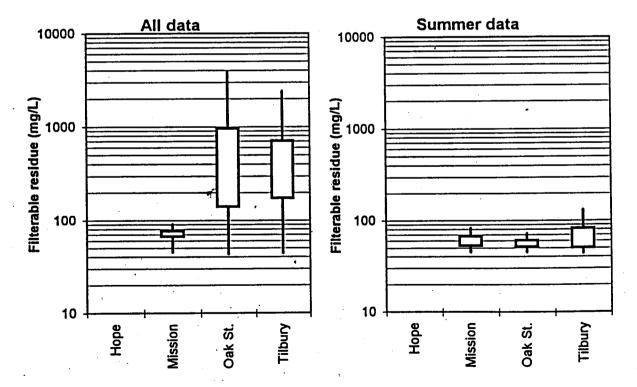


Figure 21. Summary of Filterable Residue Data, Main River Sites

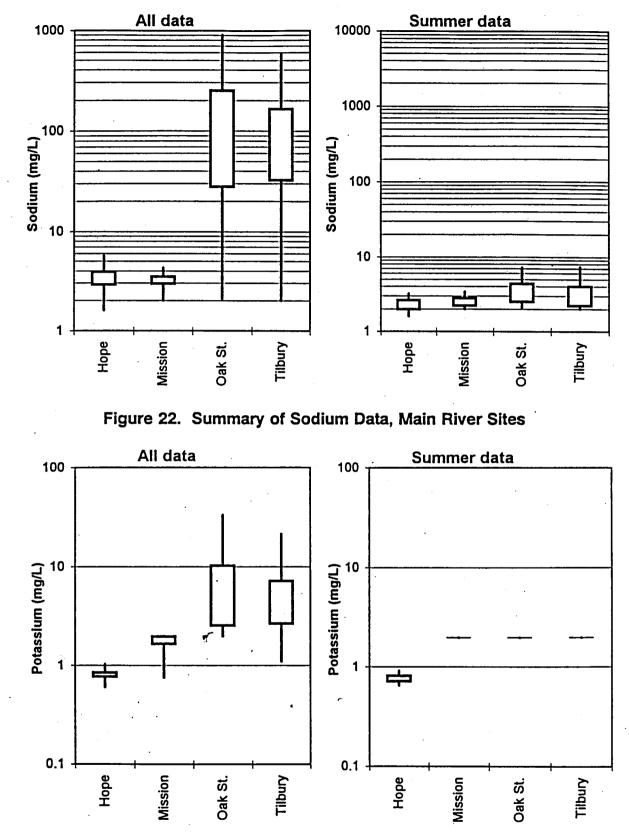
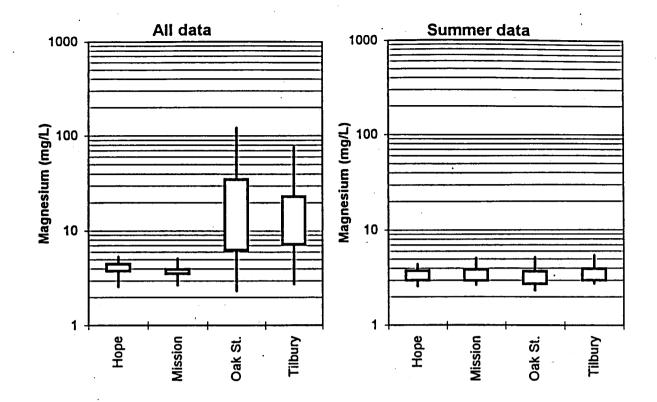



Figure 23. Summary of Potassium Data, Main River Sites

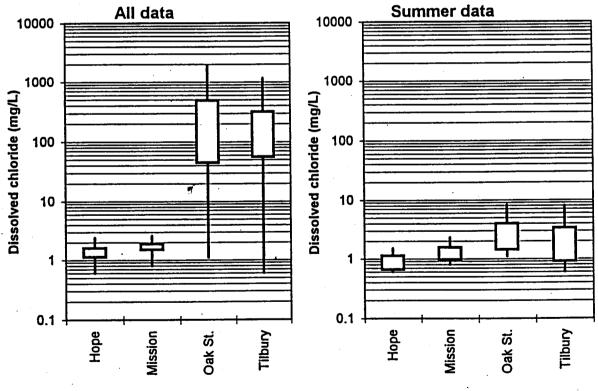
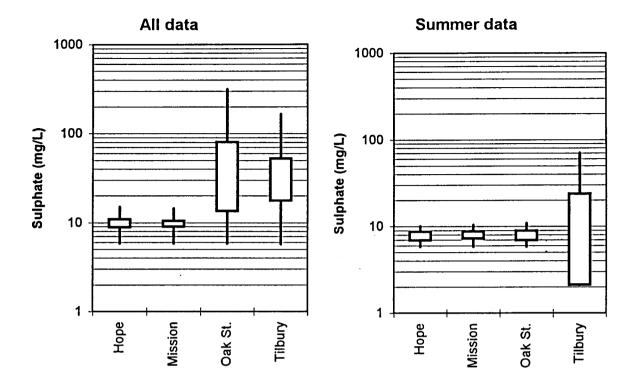



Figure 25. Summary of Chloride Data, Main River Sites

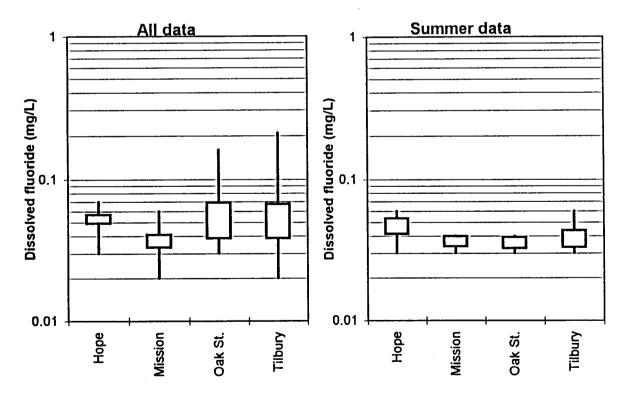
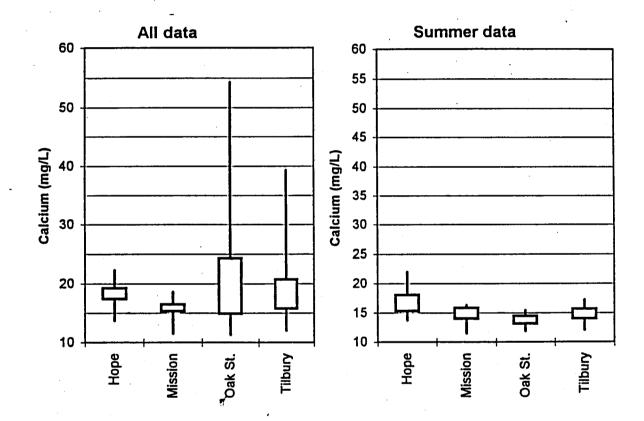



Figure 27. Summary of Fluoride Data, Main River Sites

Figure 28. Summary of Calcium Data, Main River Sites

3.6 Nutrients

3.6.1 Nitrogen

Ammonia concentrations were lower at Mission when compared to Oak Street and Tilbury when all data were considered, but there were no differences between stations in the summer. Seasonal changes are most clearly shown by the nitrite/nitrate data (Figure 33). The lowest concentrations were measured between July and September (0.03 mg/L-N) while maxima occur during February/March (*ca.* 0.15 mg/L-N). These values are similar to levels measured between 1970 and 1978 (0.05 mg/L-N minima; 0.15-0.20 mg/L-N maxima) reported by Drinnan and Clark (1980).

Dissolved nitrate/nitrite and total nitrogen concentrations were not different between stations for all data and for summer only data. The trend towards higher concentration of nitrite/nitrate at Tilbury Island and Oak Street Bridge during low flow (0.24 mg/L-N and 0.25 mg/L-N, respectively) may be evidence of some mixing with marine waters, which are typically higher in winter (*ca.* 0.35 mg/L for Georgia Strait surface waters; Harrison *et al.*, 1994), from the discharge from sewage treatment plants (STPs), or a combination of the two. However, since there was no significant differences between the Oak Street Bridge in the North Arm and Tilbury Island in the Main Arm (where most of the sewage, apart from combined sewage/stormwater overflows, is discharged), the contribution from the STPs may be masked by marine water intrusion.

Harrison *et al.* (1994) compared anthropogenic contributions of nitrogen from tributary sources, sewage treatment plants and atmospheric deposition and found that the entrained nitrate (which constitutes about 90% of the total nitrogen present) from nitrate-rich marine waters in the salt wedge was generally 2 to 12 times the river-borne nitrate. Even during the summer period of July and August, when nitrogen in marine surface waters can periodically decrease to less than 0.03 mg/L, the contributions from the Fraser River would have only a minor effect on primary production.

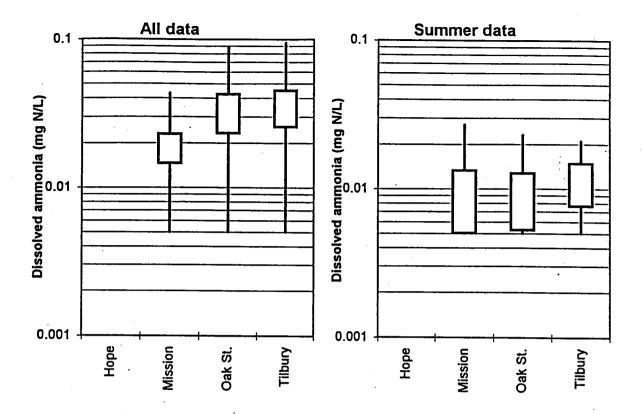
The seasonal pattern more closely reflects that of water temperature than Fraser River discharge (Figures 11 and 6, respectively) suggesting that processes other than dilution during freshet, such as biological uptake, are responsible for the lower summer concentrations. However, because of the generally high turbidity in the Fraser River at this time, the biological uptake of nitrogen may occur more in the tributaries to the Fraser.

The measurement of ammonia includes both the undissociated (NH_3) and dissociated (NH_4^+) forms. Undissociated ammonia can be toxic to aquatic organisms and the concentration increases with increasing water temperature and pH. Table 10 compares the maximum total ammonia with the maximum temperature and pH at each site. The results show that total ammonia were well below the guidelines set by CCREM (1987) and BC MOELP (1994)

criteria (Table 8). A review of all receiving water data from the Fraser River (Swain *et al.*, 1995) also found that ammonia never exceeded established criteria.

Site	Maximum pH	Maximum T (°C)	Total Ammonia Guidelines (mg/L) ¹	Maximum Concentration in River (mg/L)
Mission	7.9	18.9	0.93/0.97	0.043
Tilbury Island	7.9	19.0	0.93/0.97	0.096
Oak Street Bridge	7.7	19.0	1.50/1.34	0.089

 Table 10. Comparison of Ammonia with Water Quality Guidelines and Criteria for the


 Protection of Aquatic Life

¹The first number represents the CCREM (1987) water quality guideline; the second values is the BCMOELP (1995) criterion for protection of aquatic life.

3.6.2 Phosphorus

There were no significant differences between the main river stations (including Hope) for total or dissolved phosphorus, either for the total database or for the "summer only" values (Figures 35-36).

The seasonal pattern for total phosphorus (Figure 37) was similar to that of non-filterable residue, which in turn was similar to the river flow pattern (compare with Figures 16 and 6, respectively). Total phosphorus was highly correlated to non-filterable residue ($r^2 = 0.92$). Total phosphorus ranged between minimum values of about 0.015-0.02 mg/L and maximum concentrations of 0.2 to 0.7 mg/L. These values are similar to those reported for the Fraser River for the period 1970-1978 (Drinnan and Clark, 1980).

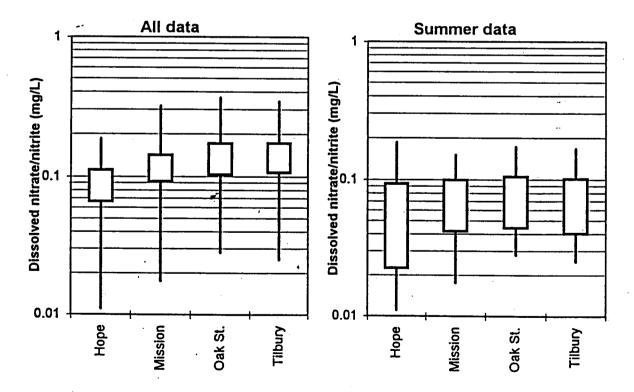


Figure 30. Summary of Nitrite/Nitrate Data, Main River Sites

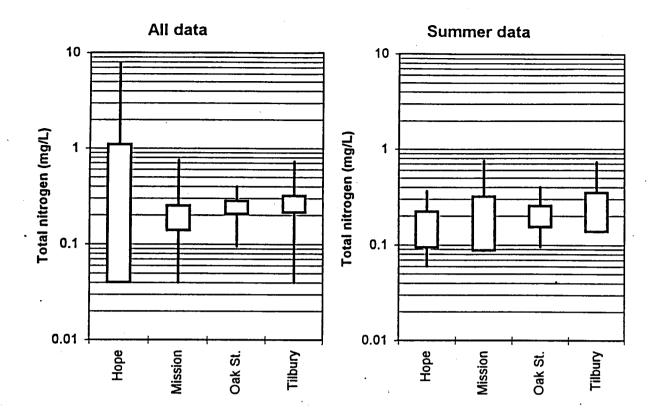


Figure 31. Summary of Total Nitrogen Data, Main River Sites

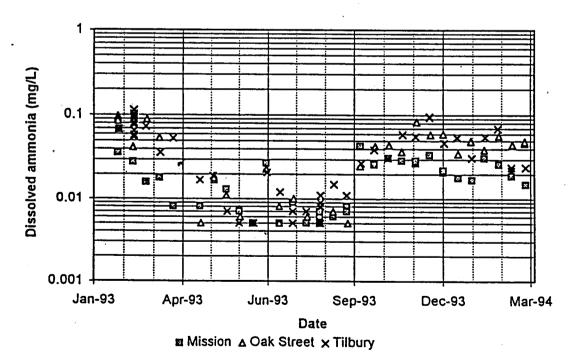


Figure 32. Seasonal Changes in Total Ammonia, Main River Sites

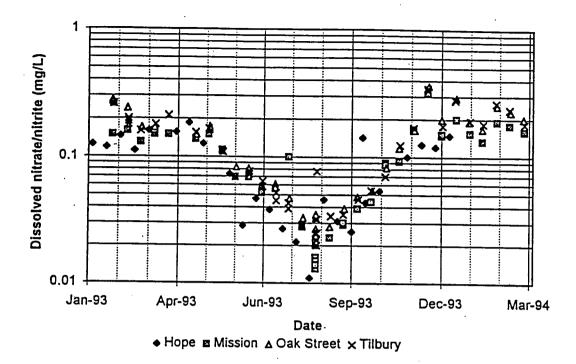
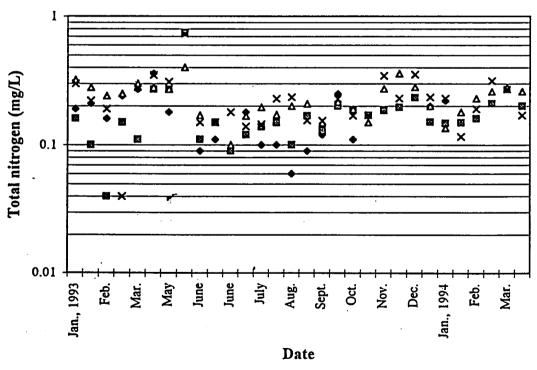
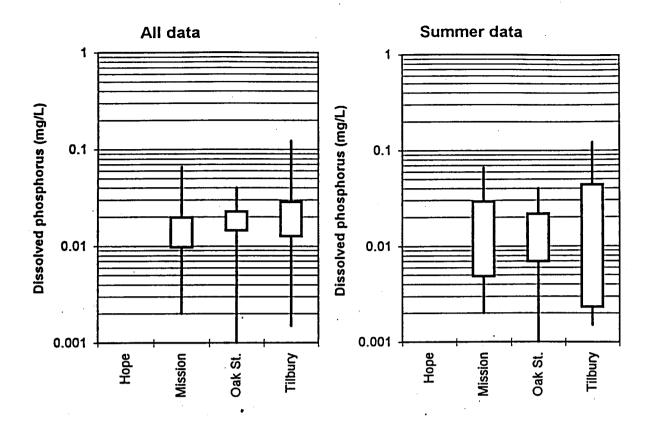




Figure 33. Seasonal Changes in Nitrite/Nitrate, Main River Sites

◆ Hope ■ Mission △ Oak × Tilbury

Figure 34. Seasonal Changes in Total Nitrogen, Main River Sites

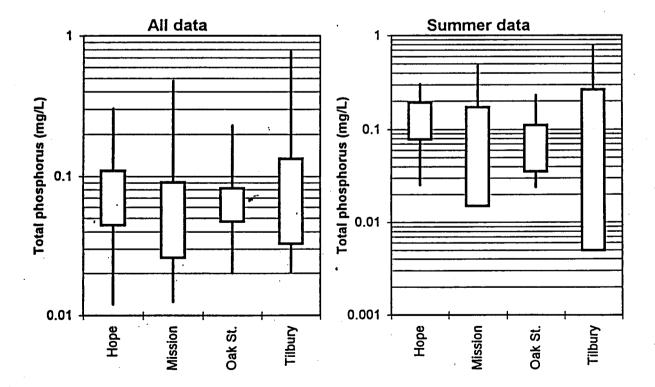


Figure 36. Summary of Total Phosphorus Data, Main River Sites

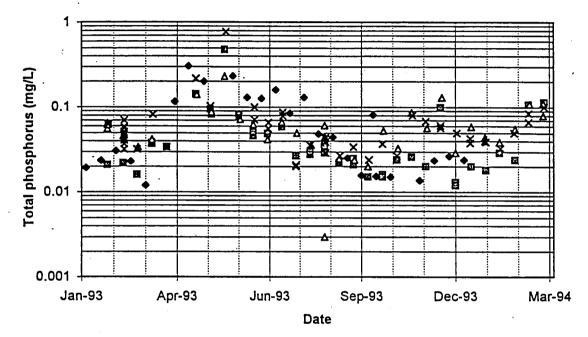


Figure 37. Seasonal Changes in Total Phosphorus, Main River Sites

Page 54

3.7 Metals

For many of the metals, the majority of the measurements were below the method detection limit (MDL) of the analytical procedure. Table 11 shows the distribution of data for each metal analyzed. A total of 90 samples were analyzed from the three sites. Metal data reported in Drinnan and Clark (1980) are not used for comparison with this study because of problems associated with varying detection limits and overall quality assurance associated with the earlier data set.

3.7.1 Silver (Ag)

Most measurements were below the MDL of 0.0001 mg/L, with only 4 samples measured above the MDL. The maximum concentration measured was 0.0003 mg/L (Figure 38). The first five samples (January to March, 1993) were analysed at a higher MDL of 0.03 mg/L; all samples were below this detection limit. The most sensitive criterion for silver is 0.0001 mg/L (Table 11).

3.7.2 Aluminum (AI)

There were no significant differences between the aluminum values measured at Mission, Tilbury Island or Oak Street Bridge sites for total aluminum (Figure 39). Data collected at Hope appeared to be higher than the downstream sites but the difference was not significant. A similar pattern is apparent when "summer only" values are compared (Figure 39).

When the data are compared to water quality criteria for the protection of aquatic life most of the aluminum values exceeded the federal guideline and provincial criterion of a maximum of 0.1 mg/L (Tables 8 and 11). Aluminum is a common element in terrestrial material and it is likely that the high values measured in the Fraser River reflect natural material that has been eroded from upstream.

The maximum concentration for aluminum at Mission, Tilbury Island and Oak Street Bridge occurred on the same day (May 17, 1993). These same samples were also very high in suspended solids (maximum value for the data set) while arsenic, chromium, copper, iron, nickel and zinc were nearly an order of magnitude higher than at most of the other sampling times. These results illustrate the association of these elements with the particulate material in the river.

Metal	Total No. Measurements	No. of Measurements < MDL ¹	90th Percentile (mg/L)	Maximum Value (mg/L)	Water Quality Guidelines (mg/L) ²
Ag	90	86	<0.03	0.0003; <0.03	0.0001
AI	90	28	0.99	8.4	0.1
As	90	7	0.001	0.0035	0.05
Ba	90	0	0.026	0.2	-
Cd	90	87	<0.0002	0.0011	0.0002
Со	90	90	<0.015	<0.015	-
Cr	90	61	0.005	0.018	0.002 (plankton) 0.02 (fish)
Cu	90	17	0.005	0.016	0.002/0.004
Fe	90	0	1.24	13.7	0.3
Hg	90	90	<0.00005	<0.00005	0.0001
Мо	90	81	<0.004	0.004	2
Ni	90	43	<0.0005	0.023	0.025
Pb	90	71	<0.003	0.003	0.001/0.003
Se	90	90	<0.0005	<0.0005	0.001
Sn	90	86	<0.03	<0.03	-
Zn	90	29	0.022	0.09	0.03/0.05

Table 11. Comparison of Metal Data with Water Quality Objectives and Guidelines for the Protection of Aquatic Life

^{1} MDL = method detection limit.

² The most sensitive of the criteria, guideline or objective from Table 8 is reported in this table. The second number for Cu, Pb and Zn refers to the specific Fraser River objective.

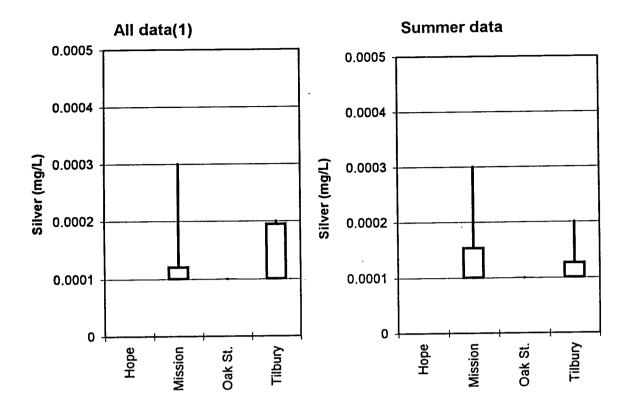
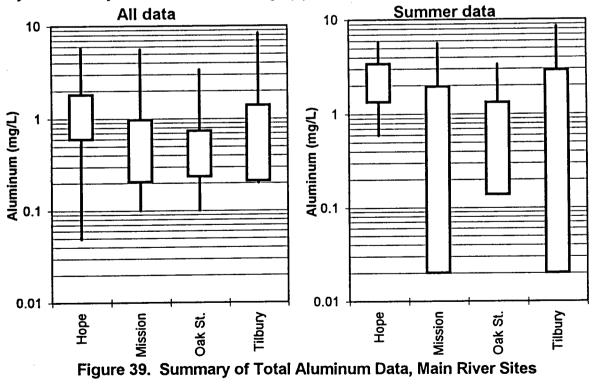



Figure 38. Summary of Total Silver Data, Main River Sites 1. Only data from analysis with an MDL of 0.0001 mg/L (April 1993 to March 1994) are presented in the figure

3.7.3 Arsenic (As)

All but seven measurements for total arsenic were above the detection limits (0.0001 to 0.001 mg/L; Table 11). There were no significant differences between any of the sites, including Hope, either for all the data or for the "summer only" values (Figure 40). The median concentrations for Hope, Mission, Tilbury Island and Oak Street Bridge were all 0.0005 mg/L. The results are similar to those summarized by Swain *et al.*, 1995.

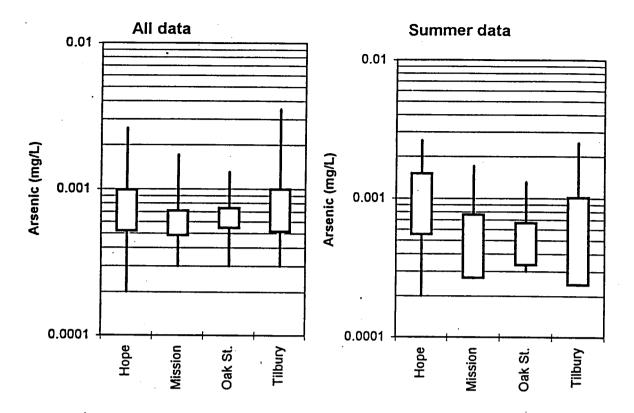
All measurements were well below the water quality guideline of 0.05 mg/L for the protection of freshwater aquatic life.

3.7.4 Barium (Ba)

There were no significant differences in barium concentrations between any sites for all data or when summer data were compared (Figure 41).

There are no water quality criteria for barium.

3.7.5 Cadmium (Cd)


Eighty-seven of 90 measurements for total cadmium were below the detection limits of 0.0001 mg/L or 0.0002 mg/L. Of the three remaining measurements, two were at the MDL; while the maximum concentration, observed at the Mission site, was 0.0011 mg/L (Figure 42).

Only one value exceeded the water quality objective of 0.0002 mg/L.

3.7.6 Cobalt (Co)

All measurements of total cobalt were below the MDLs of 0.004 mg/L and 0.015 mg/L (Table 11). The data from the Hope site had a lower MDL and averaged about 0.0008 mg/L (Figure 43).

There are no water quality criteria for cobalt.

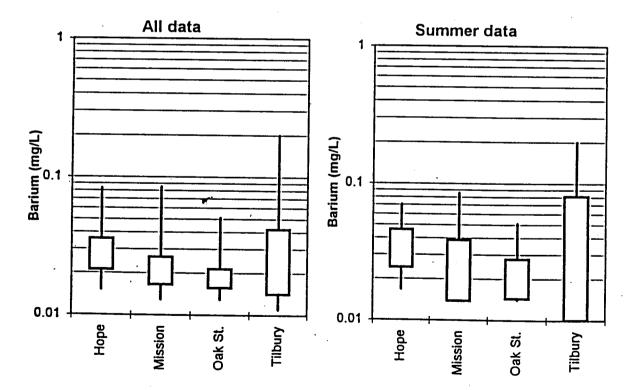
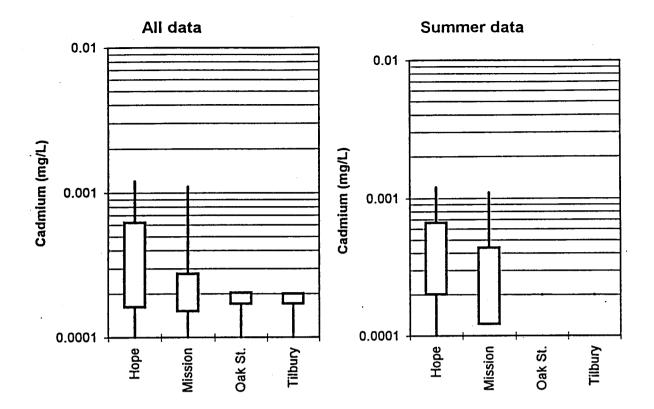
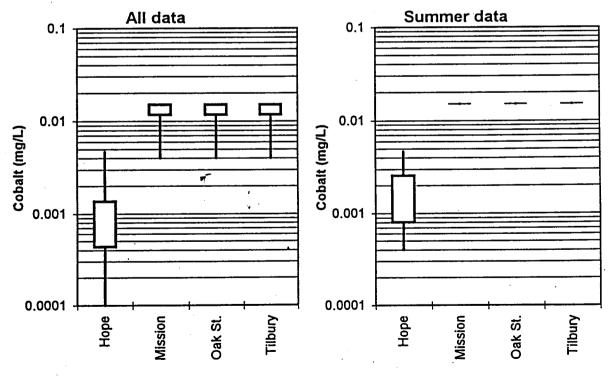




Figure 41. Summary of Barium Data, Main River Sites

•••

3.7.7 Chromium (Cr)

Sixty-one of 90 measurements for total chromium were below the detection limits (0.001-0.005 mg/L; Table 11). The medians for all four sites were 0.001 mg/L. There was no significant difference between the different sites, including Hope (Figure 44).

All measurements were below the BC MOELP criterion and CCREM water quality guideline of 0.02 mg/L for the protection of aquatic life but a few measurements (seven, maximum 0.018 mg/L) exceeded the BCMOELP criterion of 0.002 mg/L for phytoplankton and zooplankton. The highest chromium values corresponded with high suspended material in the river.

3.7.8 Copper (Cu)

Seventeen of the 90 measurements were below the detection limit (0.001 mg/L). There were no significant differences in total copper concentration between any of the sites, including Hope (Figure 45). The median concentrations were 0.001 mg/L at Mission and 0.002 mg/L for Hope, Tilbury Island and Oak Street Bridge. Many of the measurements exceeded the provincial criterion and federal guideline of 0.002 mg/L (based on a hardness of <60 mg/L) for the protection of freshwater aquatic life; however, all but six measurements were below the Fraser River objective of a maximum of 0.006 mg/L. (Three of the six were measured on the same date at all three sites when suspended solids were also high. Hardness ranged between 44-102 mg/L.) The 90th percentile was 0.005 mg/L at Mission and Tilbury Island and 0.004 mg/L at Oak Street Bridge.

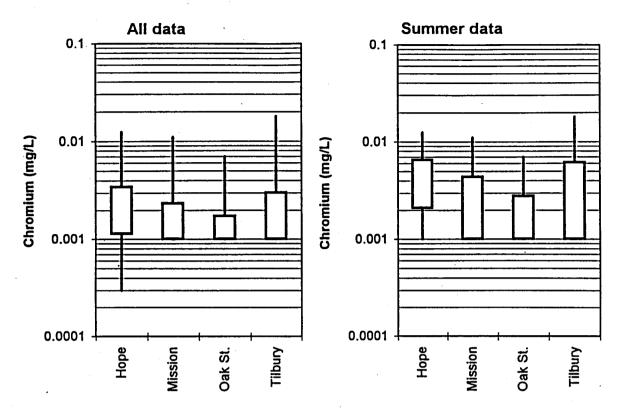
The seasonal pattern for copper is scattered but there are generally higher values during the high flow periods (Figure 46). The highest copper concentrations corresponded to very high suspended sediment values as well as high levels of several other metals. A comparison of copper concentration and non-filterable residue was found to be significant (r^2 =0.52). Swain *et al.* (1995) report mean concentrations for total copper between 0.002 mg/L and 0.004 mg/L. The occasional high value in the North Arm, reported by Swain *et al.* (1995) was believed to be associated with storm water discharges which were estimated to increase the concentration of copper by 0.001 mg/L during low river flow.

3.7.9 Iron (Fe)

There were no significant differences in the concentration of total iron in samples collected at Mission, Tilbury Island or Oak Street Bridge stations; the concentration of iron at Hope was generally higher compared to the downstream sites (Figure 47). The median concentration for total iron was 0.58 mg/L at Hope, 0.30 mg/L at Mission, 0.51 mg/L at Tilbury Island and 0.47 mg/L at Oak Street Bridge. Similar values were also reported in Drinnan and Clark (1980) and for other water quality sites in the river (Swain, *et al.*, 1995).

The seasonal pattern for total iron parallels river flow, with higher concentrations during the period May to June (>1.0 mg/L) and lowest values in November to February (<1.0 mg/L) (Figure 48). A regression analysis showed iron to be strongly correlated with non-filterable residue ($r^2 = 0.89$). Examination of the data from specific dates (Appendices VII, VIII & IX) showed that the highest concentration of iron corresponded with very high suspended solids and with several other metals, including arsenic, chromium, copper, iron, nickel and zinc.

The water quality guideline/criteria for the protection of aquatic life recommended by both federal (CCREM, 1987) and provincial (BC MOELP, 1994) agencies is 0.3 mg/L. This value was exceeded on many occasions, however, the strong association of iron with the particulate matter in the river likely means that much of the iron is derived from upstream erosion and may not be available to biota.

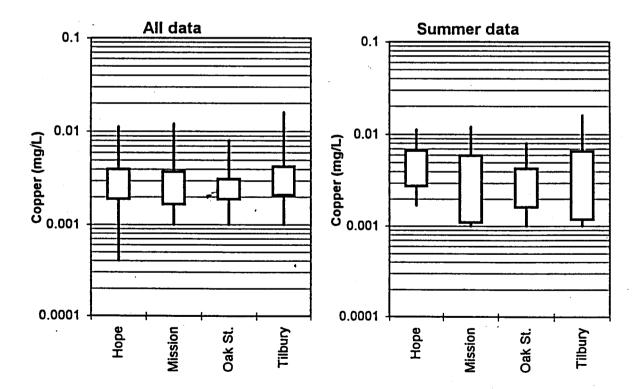
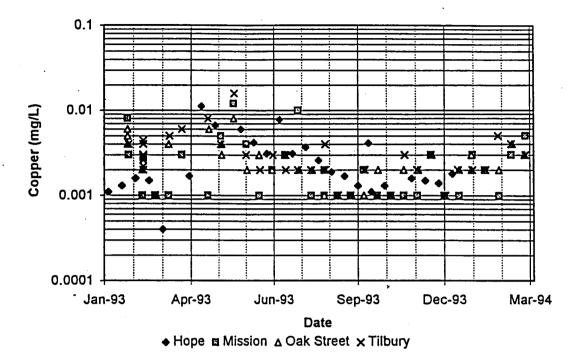
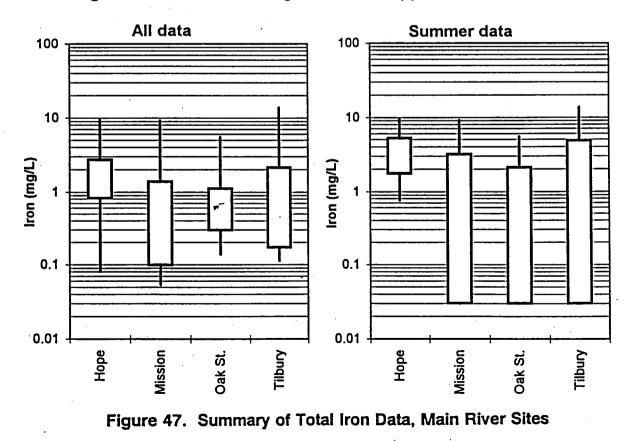
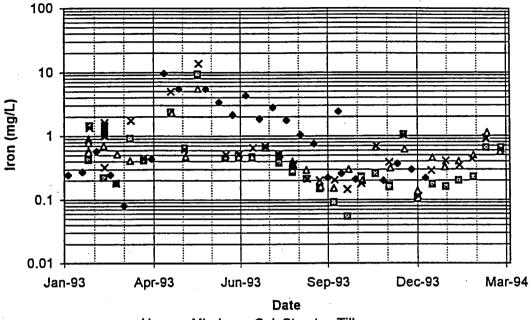

3.7.10 Mercury (Hg)

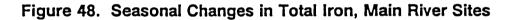
All measurements for total mercury were below the MDL of 0.00005 mg/L (Table 11). The most sensitive criterion is 0.00001 mg/L.

3.7.11 Manganese (Mn)

There were no significant differences in the concentration of total manganese between the sample sites, including Hope (Figure 49).

The BCMOELP criterion for the protection of freshwater aquatic life is 0.1 mg/L. This was exceeded only on two occasions (Mission and Oak Street Bridge), both on the same date. The concentration of suspended solids was also elevated in these samples.


Figure 45. Summary of Total Copper Data, Main River Sites

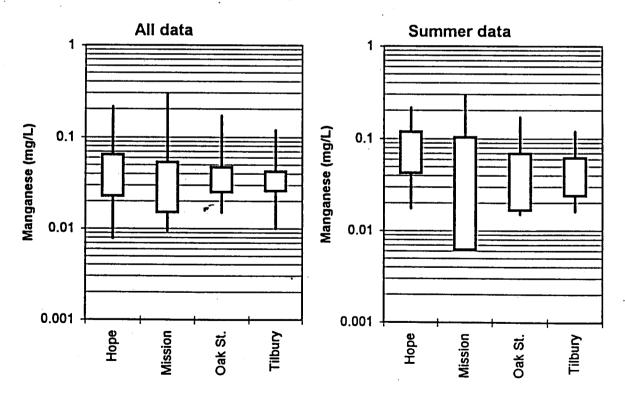


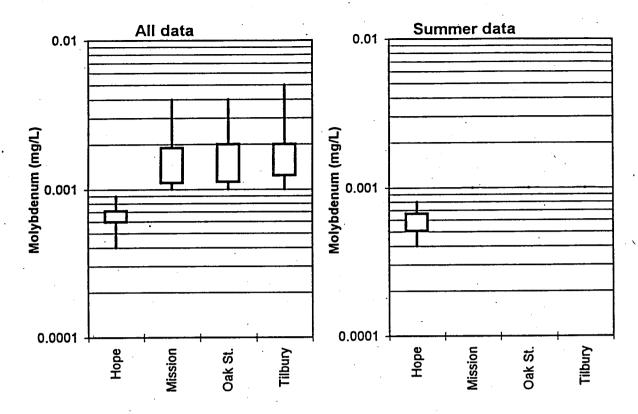
Figure 49. Summary of Total Manganese Data, Main River Sites

3.7.12 Molybdenum (Mo)

Eighty-one of 90 measurements were below the MDLs of 0.001, 0.004 and 0.005 mg/L. Due to a lower MDL (0.0004 mg/L) the concentration at Hope appeared to be lower (Figure 50). All measurements were below the most sensitive criterion for aquatic life of 2.0 mg/L.

3.7.13 Nickel (Ni)

Approximately half of the samples had measurable levels of total nickel (47 of 90 measurements; Table 11). There were no significant differences in the concentration of nickel between the study sites, including Hope, when either all the data were examined or when "summer only" data were used (Figure 51).


Higher concentrations of nickel were generally associated with higher suspended solids. All measurements were below the provincial criterion and federal guideline of 0.025 mg/L for the protection of freshwater aquatic life.

3.7.14 Lead (Pb)

There were no significant differences in total lead between the sample sites, including Hope (Figure 52), but most of the lead measurements (71 of 90) were below the detection limits of 0.001 and 0.003 mg/L (Table 11). The CCREM guideline for the protection of freshwater aquatic life is 0.001 mg/L; therefore, all measurable values (19 samples) exceeded this guideline. However, the maximum concentration at all three sites was 0.003 mg/L which is below both the BCMOELP criterion and the Fraser River objective (Table 11). Lead measurements in the North Arm reported by Swain *et al.*, (1995) appear to be slightly higher (0.003 mg/L - 0.004 mg/L) than those measured in this study, but this may be a consequence of many of the measurements being close to, or below the MDL of 0.001 mg/L. A suggested increase from the 1979-1980 compared to 1985-1993 may also be a sampling artifact if proportionately more samples are collected during a period with higher suspended solids.

3.7.15 Selenium (Se)

All 90 of the measurements for total selenium were below the minimum detection limits of 0.0005 and 0.03 mg/L.

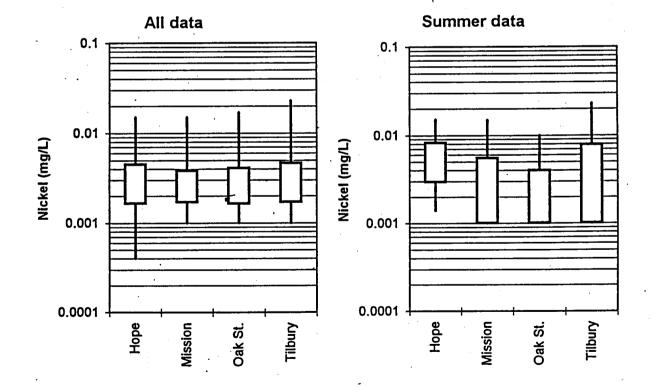
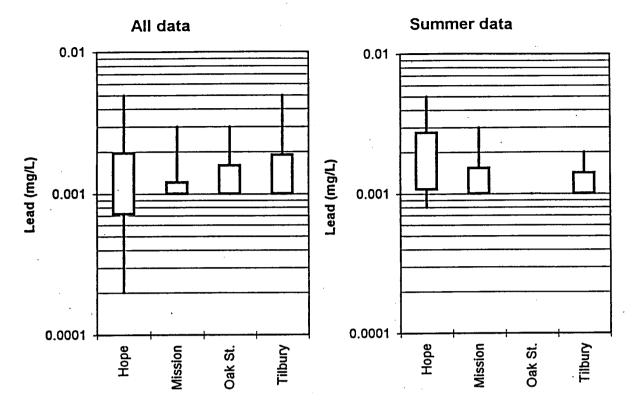



Figure 51. Summary of Total Nickel Data, Main River Sites

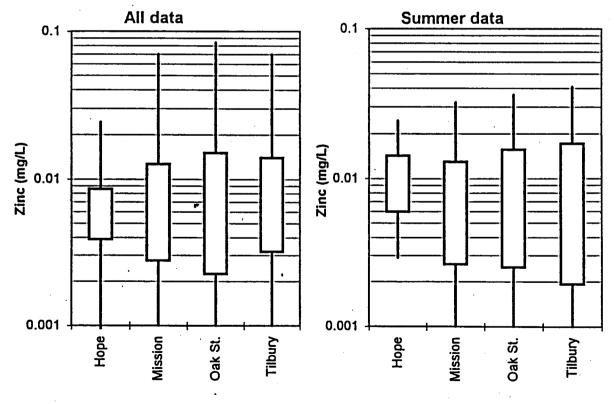


Figure 53. Summary of Total Zinc Data, Main River Sites

3.7.16 Tin (Sn)

The initial detection limit for total tin was 0.02 mg/L (January - March, 1993) and four of the 15 measurements exceeded the MDL (range was 0.03-0.05 mg/L). For the remainder of the program, the detection limit was 0.3 mg/L and all of the 75 samples were less than the MDL.

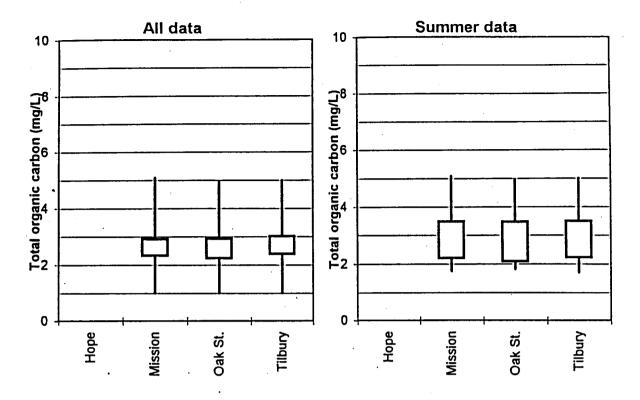
3.7.17 Zinc (Zn)

Zinc was detected in 61 of 90 samples (with detection limits from 0.01 to 0.001 mg/L; Table 11). There were no significant differences in total zinc between any of the study sites or with data collected at Hope (Figure 53). Inspection of the data indicated that higher concentrations of total zinc were associated with higher suspended solid levels which in turn were associated with higher Fraser River flows. The median concentration was 0.003 mg/L at Hope and 0.005 mg/L at the Mission, Tilbury Island and Oak Street Bridge sites. Similar ranges in concentration were reported for the 1985-1993 period (Swain *et al.*, 1995).

Six measurements (maximum concentration was 0.09 mg/L) exceeded the criterion of 0.03 mg/L set by BC MOELP and CCREM for the protection of freshwater aquatic life (Table 11) . The Fraser River objective of 0.05 mg/L was exceeded three times, once each at Tilbury Island, Oak Street Bridge and Mission, during the same sampling period. Three of the six samples were associated with high suspended solids.

3.8 Total Organic Carbon

There were no significant differences among the Mission, Tilbury Island or Oak Street Bridge sites for total organic carbon (TOC) either for all the data or the "summer only" values (Figure 54).


3.9 Fecal Coliforms

Fecal coliform levels at Mission were significantly lower compared to the Tilbury Island and Oak Street Bridge sites when all data were included in the analysis but there were no differences when the "summer only" data (April to September, inclusive) were compared (Figure 55). The "summer only" data at Tilbury Island and Oak Street Bridge were also close to an order of magnitude lower compared to the entire data set. The decrease in fecal coliform levels during the summer is likely a combined consequence of dilution from higher river flow, disinfection of the effluent at the Annacis Island STP, and lower storm water and combined sewer overflow discharge contributions (higher fecal coliforms in the receiving environment are generally associated with higher rainfall events; Drinnan *et. al*, 1995; Miller *et. al*, 1994).

The seasonal pattern in fecal coliform levels is shown in Figure 56, and the lower concentrations during the period April to September are apparent. The objective for the Fraser River is a geometric mean of <1000 fecal coliforms (FC)/100 mL (based on five or more samples collected within a 30-day period) and a maximum of 4000 FC/100 mL for any individual sample (Swain and Holms, 1985), but this is applicable only for the period between April and October. This objective was met at all three sites. The objective for primary recreation activities is a geometric mean of 200 FC/100 mL (based on five or more samples) which was also met during the months of June to September (the time period when local health authorities monitor public beaches) but not during the "winter" period.

High values at some sites, particularly Oak Street Bridge, are likely the result of stormwater discharges during and after large rainfall events. High levels of fecal coliforms (>4,000 FC/100 mL) on March 22, 1993, November 29, 1993, February 22, 1994 and March 7, 1994 all corresponded to high rainfall prior to, or during, sampling. Rainfall is considered an important factor governing fecal coliform levels in the river since high fecal coliform loadings are generally associated with rainfall events as stormwater runoff and combined stormwater/sewage overflows (CSO) discharges increase.

An intensive study of fecal coliform levels in the lower Fraser (Rocchini, *et al.*, 1981) showed that while there was considerable variability in the data, there were significant differences between sampling day, distance from shore and time of day (tide). The most significant effect was time of day (likely a consequence of changes in the tide), followed by distance from shore and day of the week. The higher concentrations measured near the shore were likely due to shoreline discharges.

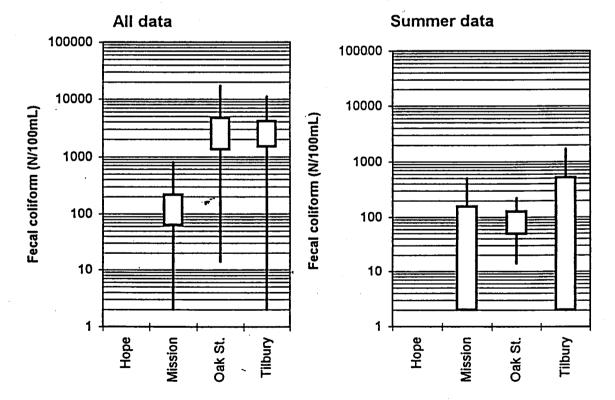
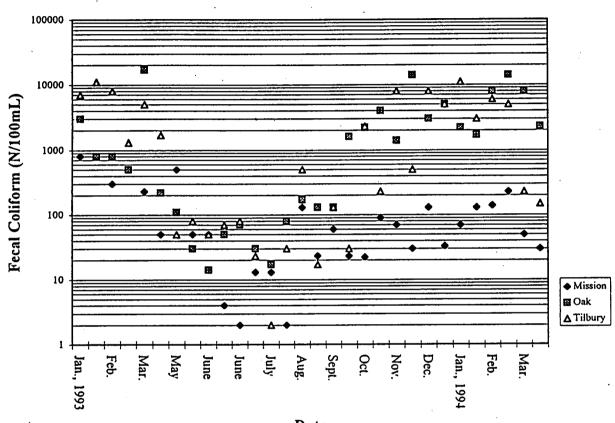



Figure 55. Summary of Fecal Coliform Data, Main River Sites

Date

Figure 56. Seasonal Changes in Fecal Coliforms, Main River Sites

3.10 Organic Compounds

Samples were collected at approximately one month intervals throughout the study period (17 sampling dates) and analyzed for adsorbable organic halides (AOX), chlorinated phenolics and nonylphenol. Resin and fatty acids, organochlorine pesticides, TCMTB and PCBs were analyzed four times on an event basis: February 22-23, 1993 (low flow conditions; May 17-18, 1993 (freshet); October 18-19, 1993 (first flush); and February 21-23, 1994 (low flow). Tables 3, 4 and 5 (Section 2) list the individual compounds. Most measurements were below the method detection limit (MDL) or, if present, close to the MDL.

Because of the infrequent measurable values, figures for the individual resin acids, fatty acids, organo-chlorine pesticides, TCMTB and PCBs are not presented.

3.10.1 Adsorbable Organic Halides (AOX)

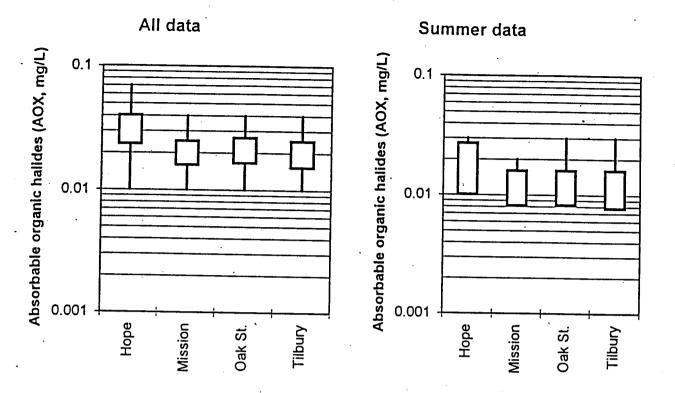
There was no significant difference in the concentration of AOX among any of the three sites from this study or with data from Hope. When all of the data are compared, the concentration at Hope appears slightly higher but this is not apparent when only the "summer" sub-set are compared (Figure 57). The median AOX concentration was 0.02 mg/L at the three study sites compared to 0.03 mg/L at Hope. The detection limit was 0.01 mg/L.

AOX is a measure of the total amount of halogenated organic compounds present and the source is primarily from the use of chlorine in the bleaching process at pulp mills. Pulp mills are located upstream in the Fraser River, at Prince George and Quesnel, and on the Thompson River at Kamloops. Measurements of AOX upstream of Prince George were generally below 0.005 mg/L; levels downstream of Quesnel were about 0.150 mg/L (Hatfield Consultants, 1994). Dilution, adsorption to particles and chemical degradation are likely reasons for the decrease in concentration below Hope.

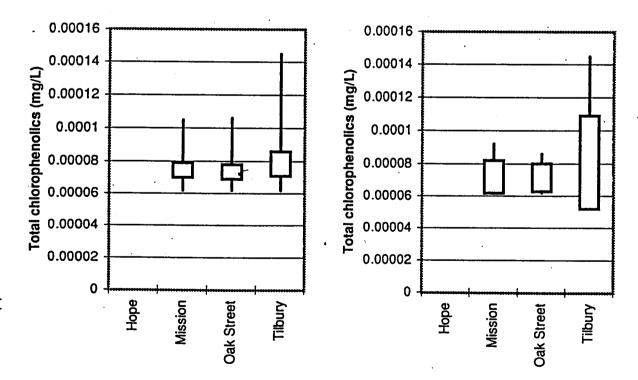
3.10.2 Chlorophenolics

Samples were analyzed for 39 individual chlorophenolic compounds. Most measurements were below the detection limit; measurable concentrations were generally near the MDL (see Figures 58-62). None of the individual compounds exceeded their respective water quality guideline or criterion, where they exist (many of the congeners do not have established water quality criteria)(CCREM, 1987; BC MOELP, 1994). The Fraser River Objective of 0.0002 mg/L for total chlorophenol (calculated by summing the values of all congeners) was also never exceeded.

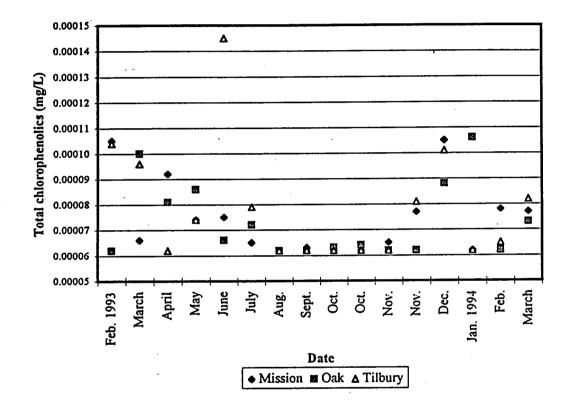
There were no significant differences between the sites at Mission, Oak Street Bridge and Tilbury Island (Figure 58). Because of the number of "less than" measurements for chlorophenolic compounds, seasonal patterns were not apparent, although there was a trend towards higher numbers of detectable measurements during lower river flows. There was no apparent seasonal pattern for total chlorophenol (Figure 59).


Drinnan *et al.* (1988) compiled all chlorophenol data collected up to 1987, downstream from Kanaka Creek, in a single database. Eighty-six percent of the 206 water samples had detectable levels of one or more chlorophenolic compounds. The median and 90th percentile of the calculated total chlorophenol for these data were 0.00015 mg/L and 0.0021 mg/L respectively. Highest concentrations of total CP were generally adjacent to known sources (primarily wood-treatment facilities using CPs as anti-sapstain agents). The nearly one order of magnitude decrease in total chlorophenol concentration in the water between the pre-1987 data and the present 1993/1994 data set likely reflects regulatory and operational changes by the forest industry which has resulted in a decrease in the number of mills using chlorophenates from 73 in 1988 to 0 in 1990 (Environment Canada, 1991b).

3.10.3 Nonylphenol


Nonylphenol was not detected in any samples (MDL = 0.000005 mg/L).

3.10.4 TCMTB


TCMTB (2-[thiocyanomethyl] thiobenzothiazole) is an anti-sapstain compound used by the forest industry. It was not detected in any of the samples analyzed; however, the detection limit was high (MDL = 0.005 mg/L).

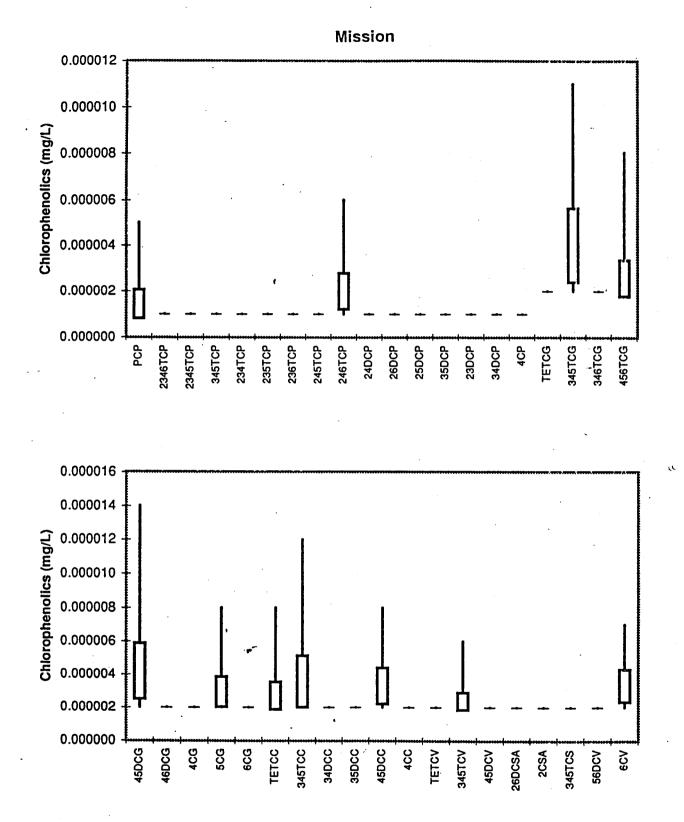


Figure 60. Summary of Individual Chlorophenolic Compounds, Mission. (See Table 3 for the Key to the Chemical Compound Codes) Tilbury

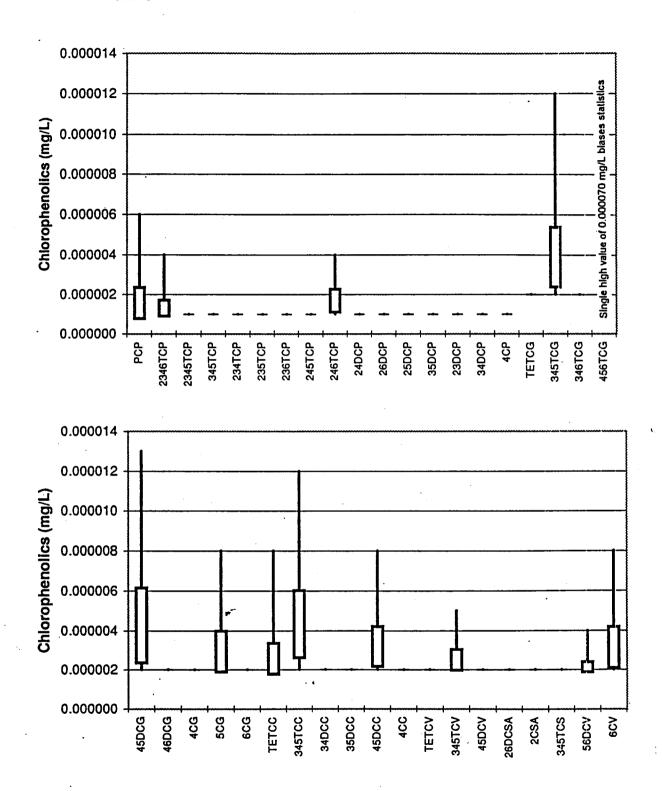


Figure 61. Summary of Individual Chlorophenolic Compounds, Tilbury Island. (See Table 3 for the Key to the Chemical Compound Codes)

Page 78

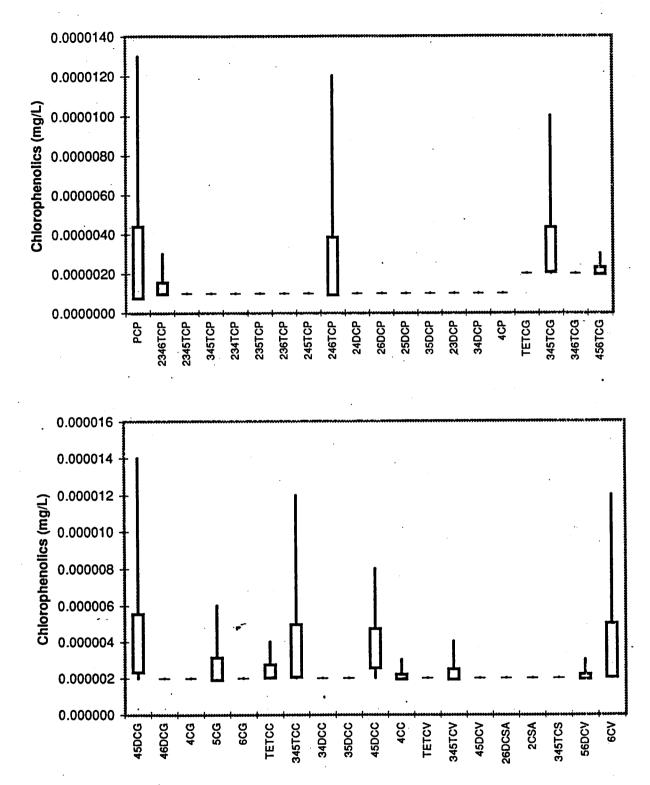


Figure 62. Summary of Individual Chlorophenolic Compounds, Oak Street Bridge. (See Table 3 for the Key to the Chemical Compound Codes)

Water Quality in the Fraser River Estuary

3.10.5 Resins and Fatty Acids

Samples were analyzed for 20 individual resin and fatty acid compounds on four occasions. Only 14 of 240 measurements exceeded their respective detection limit, and all of these compounds were fatty acids. The measurable values are presented in Table 12. All 14 values were sampled on two dates (October/93 and February/94), both during low flow. Palmitic acid was above the MDL in four samples; stearic and linoleic acids in three samples; and myristic and oleic acids in one sample. There are no water quality guidelines for these compounds.

The infrequent occurrence and low concentrations of these compounds suggest that water quality concerns are likely to be low.

Compound	MDL (mg/L)	Sample Value (mg/L)	Site	Date
Palmitic Acid	0.0005	0.0007 0.001 0.0033 0.0024	Mission Tilbury Island Tilbury Island Oak Street Bridge	Oct/93 Oct/93 Feb/94 Feb/94
Stearic Acid	II	0.0005 0.0034 0.0025	Tilbury Island Tilbury Island Oak Street Bridge	Oct/93 Feb/94 Feb/94
Myristic Acid	11	0.0005 0.0007	Mission Oak Street Bridge	Oct/93 Feb/94
Oleic Acid	11	0.0018 0.0008	Tilbury Island Oak Street Bridge	Feb/94 Feb/94
Linoleic Acid	11	0.0009 0.0005 0.001	Tilbury Island Tilbury Island Oak Street Bridge	Oct/93 Feb/94 Oct/93

Table 12. Summary of Measurable Fatty Acid Compounds

3.10.6 Organochlorine Pesticides and Polychlorinated Biphenols (PCBs)

Samples were analyzed for 24 individual organochlorine pesticide compounds (see Table 5). There were only two (of 96 total) detectable measurements - one each for DDD pp' (0.000011 mg/L) and hexachlorobenzene (0.000001 mg/L), both of which occurred in February 1993 at Oak Street Bridge. The low concentrations and infrequent occurrence of measurable values suggest that there are no water quality concerns.

PCBs were analyzed in the same 17 samples. All measurements were below the detection limit of 0.00002 mg/L.

4.0 RESULTS AND DISCUSSION - SLOUGHS

The complete slough data set is presented in Appendix X. An inspection of the data, particularly specific conductivity data (Appendix X and XI), revealed that the sloughs were often affected by the intrusion of marine water, particularly in the bottom samples.

4.1 Water Temperature and Dissolved Oxygen

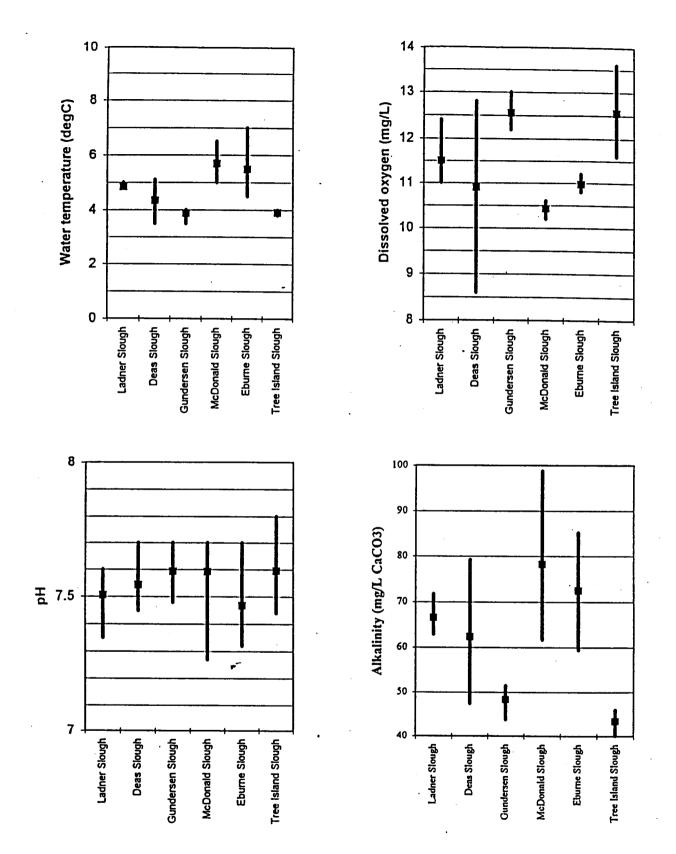
Water temperatures ranged between 3.5°C and 7°C with McDonald and Eburne Sloughs showing slightly higher average values (Figure 63a).

All dissolved oxygen values were greater than the minimum value of 6.5 mg/L set by federal and provincial guidelines and criteria (Table 11); the overall minimum concentration was 8.6 mg/L, recorded at Deas Slough. Percent saturation in the sloughs tended to be lower than at the main river sites but still exceeded 80% for all samples. Only Deas Slough showed a consistent difference in percent saturation between the surface and bottom waters (95% at the surface versus 81% near the bottom). McDonald Slough and Eburne Slough showed the lowest average dissolved oxygen concentration (Figure 63b). Field profile data for dissolved oxygen show a consistent decrease with depth in all six sloughs, corresponding with an increase in specific conductivity (Appendix XI).

Beak (1991, 1993, cited in Swain *et al.*, 1995) measured dissolved oxygen profiles on two occasions each in 1991 and 1992 at the same six sloughs that were sampled in this present study. They reported a consistent decrease in dissolved oxygen levels with depth and a more rapid decrease within one metre of the bottom, likely as a result of microbial decomposition. Lowest values were associated with higher conductivity; the more dense saline water is less likely to be flushed from the bottom of the slough. The lowest value was 2.0 mg/L near the bottom of Eburne Slough.

Measurements of dissolved oxygen were taken in a number of sloughs and side channels in April, August and October, 1978 (Bergerud and Alexander, 1981). The mean concentration for dissolved oxygen in several North Arm and Main Arm sloughs ranged from 12.2 mg/L in April to 9.1 mg/L in August. The oxygen concentration generally decreased with depth and at some sites the concentration was as low as 1.5 mg/L near the bottom.

The decrease in oxygen with depth in sloughs is not unexpected. There is less flushing and mixing of the water, especially during low flow periods, resulting in less atmospheric exchange of oxygen in the more dense bottom water. The accumulation of organic material on the bottom increases the oxygen demand relative to surface waters.


4.2 pH and Alkalinity

There was very little variability in pH and no apparent differences among the sloughs (Figure 63c). All measurements were between pH 6.0 and 7.0 and within water quality guidelines and criteria (Table 11).

Alkalinity also didn't vary much with depth. Gundersen and Eburne Sloughs had the lowest alkalinity measures (Figure 63d).

4.3 Non-filterable Residue

In general, the non-filterable residue concentration in most of the sloughs was similar to that in the main reaches of the Fraser River for the same period, ranging between 6 mg/L and 15 mg/L (Figure 64a). There was one very high value in Eburne Slough (252 mg/L) but other parameters normally associated with high suspended material (e.g., aluminum and iron) were not higher when compared to other slough samples.

4.4 Dissolved lons

Specific conductivity, filterable residue, hardness and the dissolved ions calcium, magnesium, potassium, sodium, chloride, fluoride and sulphate (Figures 64-66) were all lower in Gundersen and Tree Island sloughs compared to the other four sloughs. Gundersen and Tree Island sloughs are the furthest upstream of those sampled and therefore less likely to be influenced by the intruding salt wedge. Deas, Eburne, Ladner and McDonald sloughs had similar ranges; most of the "dissolved ion" concentrations at these downstream sloughs were about an order of magnitude greater than at Gundersen or Tree Island. Field profile data showed a consistent increase in specific conductivity with depth (Appendix XI).

4.5 Nutrients

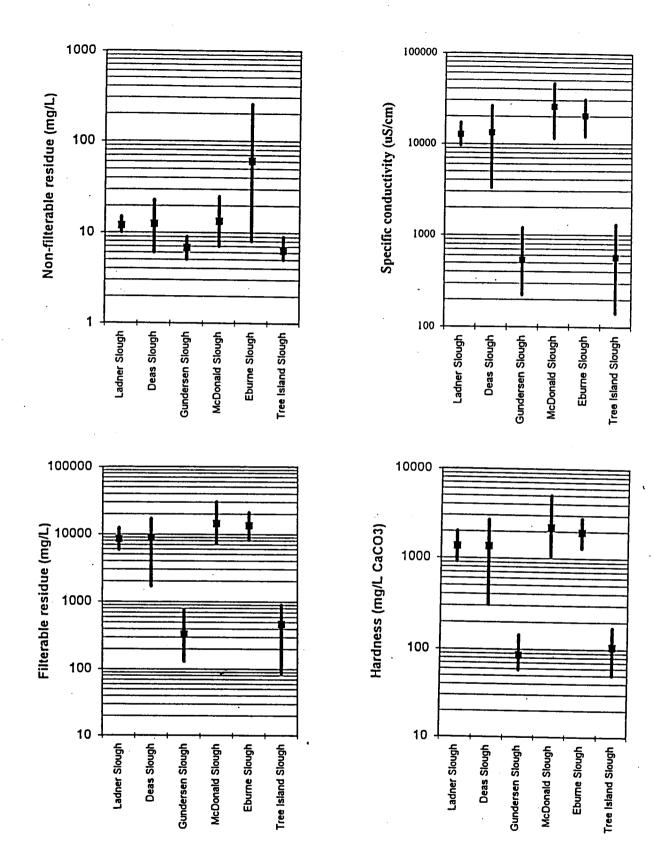
4.5.1 Nitrogen

There were no large differences between the six sloughs for ammonia although Ladner Slough and Deas Slough were slightly higher compared to the other sloughs (Figure 67a). Concentrations ranged between a low of 0.01 mg/L and a maximum of 0.18 mg/L for all the sloughs and similar to values measured at the main river site during the same period (compare with Figure 29); the maximum concentration was measured in the bottom waters of Deas Slough. All ammonia values were well below water quality criteria (BC MOELP, 1994).

There was also no apparent difference between the six sloughs for dissolved nitrite/nitrate and total nitrogen (Figures 67b,c).

4.5.2. Phosphorus

Dissolved phosphorus and total phosphorus also were similar at the six sloughs, although the range in values for both parameters were slightly lower in Gundersen and Tree Island sloughs (Figures 68a,b). Overall, dissolved and total phosphorus ranged between about 0.01 and 0.07 mg/L-P and were similar to the main river sites (compare to Figures 35, 36).



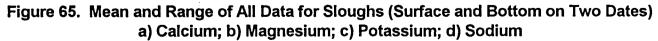


Figure 64. Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates) a) Non-Filterable Residue; b) Conductivity; c) Filterable Residue; d) Hardness

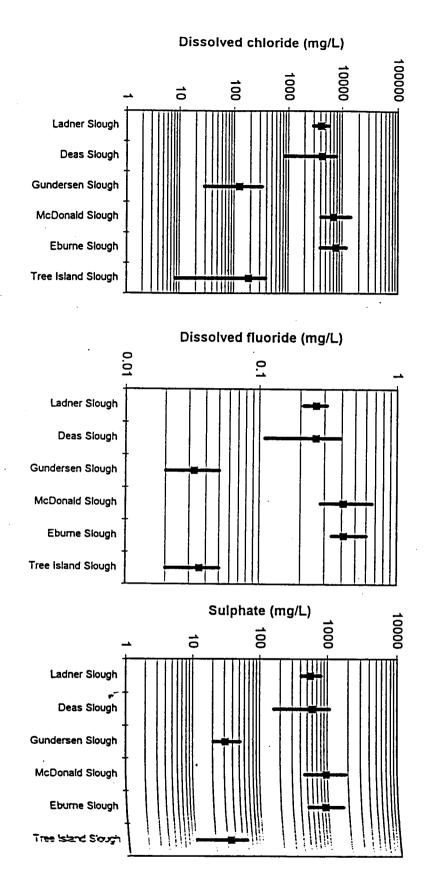
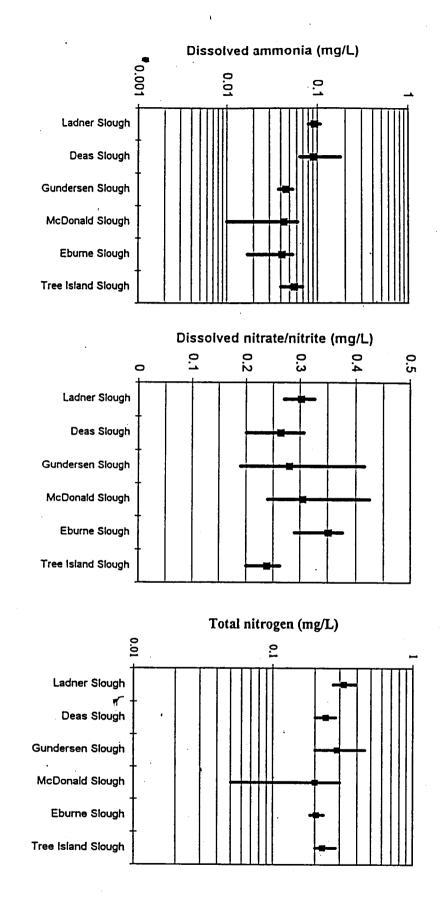
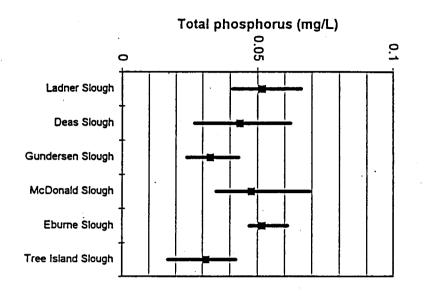




Figure 66. Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates) a) Chloride; b) Fluoride; c) Sulphate

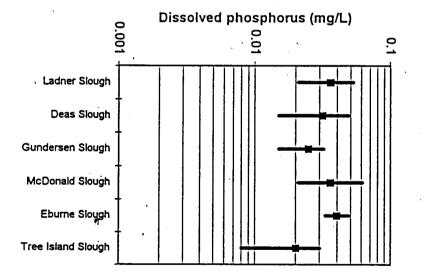
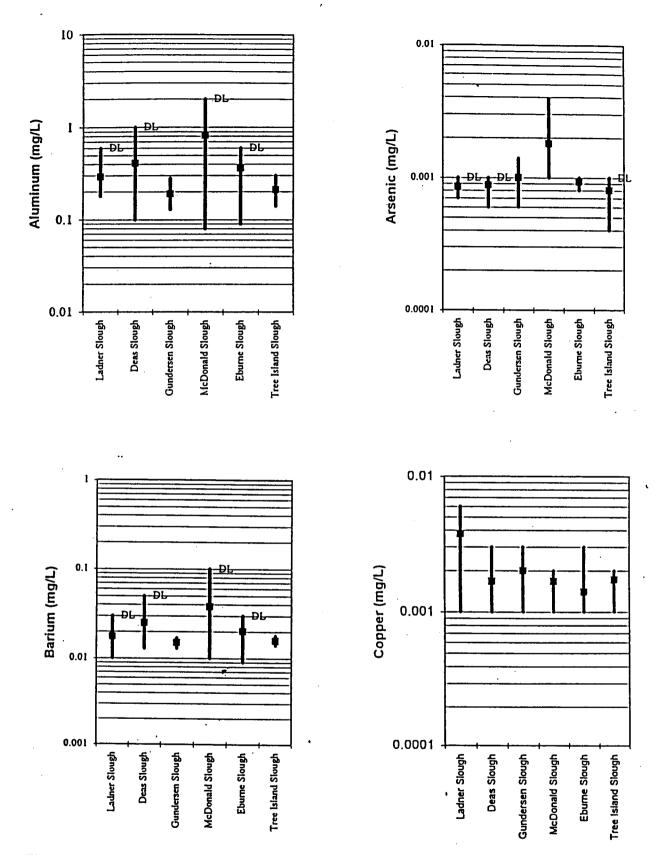


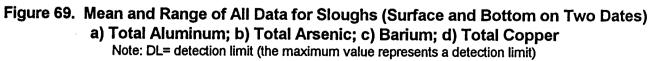
Figure 68. Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates) a) Total Phosphorus; b) Dissolved Phosphorus

Water Quality In the Fraser River Estuary

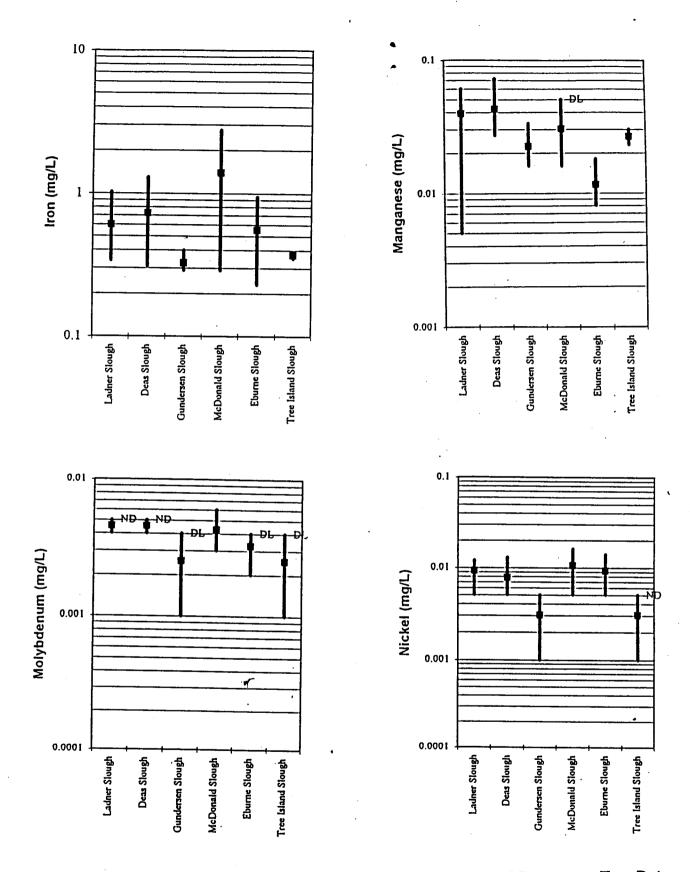
Page 89

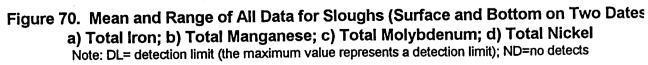
4.6 Metals

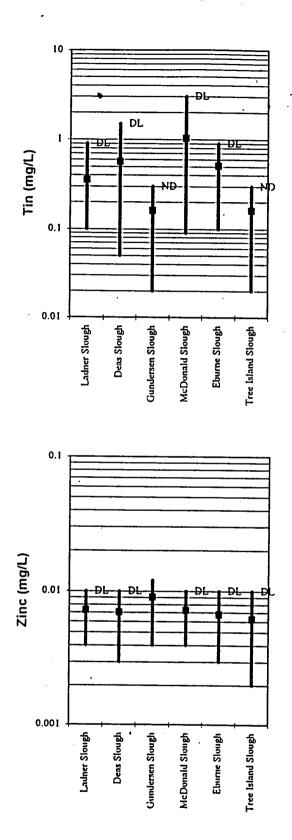

Data are presented in Figures 69-71 and in the Tables of Appendix X. The figures represent the mean and range for the four measurements (two depths x two dates) taken at each slough. In order to calculate the mean, "less than" values were entered as the detection limit. However, the detection limit for many of the metals changed part way through the study due to a change in analytical laboratories. The result is that for certain metals (e.g., AI, As, Ba, Mo, Sn, Zn) some maximums of the range shown in the figures represent the higher detection limit. The detection limit for each parameter is included in the tables of Appendix X.


Measurements for total cobalt, lead, mercury, selenium, and silver were all below the MDL. All cadmium values were below the MDL except for one measurement at the detection limit of 0.0001 mg/L. Most chromium values were below the MDL except for three measurements at the detection limit of 0.001 mg/L. Some of the MDLs for cadmium, chromium, cobalt and lead were higher than stated guidelines.

Half or more of the measurements for arsenic, barium, manganese, molybdenum, nickel, tin and zinc were greater than the MDL but none of the samples exceeded established water quality criteria or guidelines for the protection of freshwater aquatic life (Table 11).


Aluminum (Figure 69a) and iron (Figure 70a) generally exceeded water quality criteria or guidelines (Table 11) but these metals are frequently associated with particulate material from natural sources and may not be readily availability to aquatic biota. Copper (Figure 70c) also exceeded federal water quality guidelines (CCREM, 1987) or provincial criteria (BC MOELP, 1995) but did not exceed the provincial objective for the Fraser River (Swain *et al.*, 1995).


There were no large differences in the concentration of most metals between the six sloughs sampled although Gundersen Slough and Tree Island Slough appeared to have lower values. This is largely a reflection of lower detection limits for samples from these two sloughs. Higher and more variable detection limits were measured in downstream sloughs that experienced more saline conditions.



Page 91

Figure 71. Mean and Range of All Data for Sloughs (Surface and Bottom on Two Dates) a) Total Tin; b) Total Zinc

Note: DL= detection limit (the maximum value represents a detection limit); ND=no detects

Water Quality in the Fraser River Estuary

Page 93

4.7 Fecal Coliform Bacteria

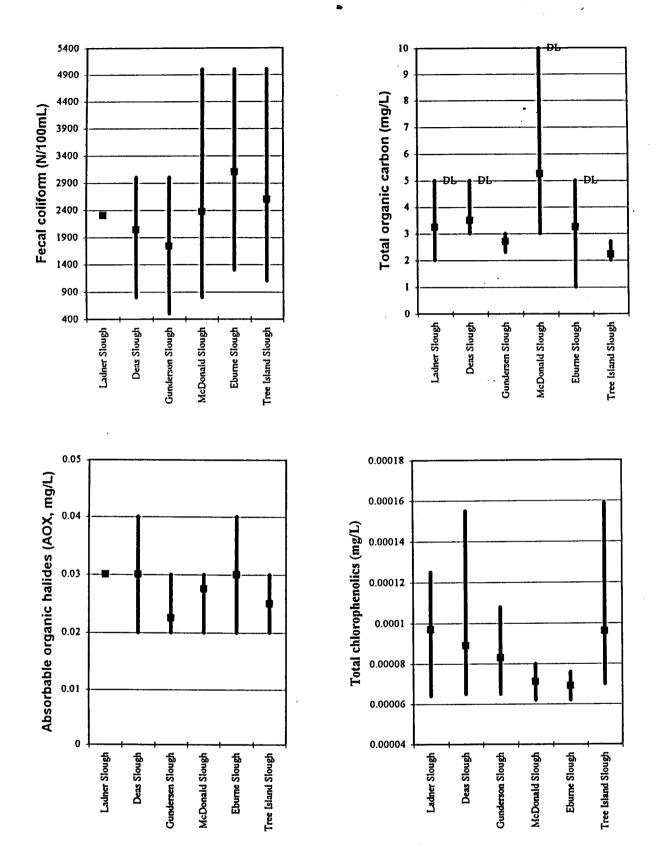
All six sloughs had high fecal coliform levels, with somewhat higher levels in the North Arm sloughs (McDonald, Eburne, and Tree Island). The maxima ranged between 2300 FC/100 mL and 5000 FC/100 mL (Figure 72a). The high levels likely reflect the effects of high rainfall and stormwater runoff. The Fraser River Objective of a maximum of 4000 FC/100 mL is applicable only between April and September.

4.8 Total Organic Carbon

Total organic carbon levels were similar to levels measured at the main river sites with an overall range between <2 mg/L and <10 mg/L (detection limit). The maximum detected value was 3 mg/L. There were no apparent differences among sloughs (Figure 72b).

4.9 Adsorbable Organic Halides (AOX)

The range in AOX was 0.02 mg/L to 0.04 mg/L over all sloughs (Figure 72c). The concentration in the sloughs are similar to those from the main river sites (see Figure 57).


4.10 Chlorophenolics

Most measurements for the individual chlorophenolic compounds were below the detection limit (837 of a total of 936 parameter/site/time/depth measurements), or when detectable, values were close to the MDL. Data for the individual compounds are presented in Appendix X. None of the individual compounds or groups of compounds, exceeded their respective water quality guideline, when available. (Most compounds do not have established guidelines; Table 11 presents those for tri-, tetra- and pentachlorophenol.)

The concentration of total chlorophenolics (sum of all compounds, with the MDL used in cases where the value was reported as below detection) was similar to those measured in the main river sites (Figure 72d and Figure 58, respectively). Total chlorophenols were below the provincial water quality objective for the Fraser River (BCMOELP, 1994).

4.11 Nonylphenol

All measurements of nonylphenol were below the detection limit of 0.000005 mg/L.

4.12 Resin and Fatty Acids

All resin acids and most fatty acid levels were below the MDL (434 of 480 measurements; Figure 73a). The 46 measurable values were distributed among the six sloughs as shown in Table 13. Only fatty acids were detected in the samples. There were no apparent differences between sloughs for total resin and fatty acids although Deas and Ladner Sloughs had one sample (Feb./93-surface) with elevated levels of the fatty acids: stearic, palmitic, and oleic acids. There are insufficient data to determine the significance of the apparent higher levels in Ladner Slough. None of the individual compounds exceeded water quality guidelines or criteria, where available (CCREM, 1987; BC MOELP, 1994).

Slough	No. Measurements >MDL	
Deas	8	
Eburne	9	
Gundersen	5	
Ladner	12	
McDonald	4	
Tree Island	8	

Table 13. Number of Measurable Fatty Acid Compounds in Fraser River Sloughs

4.13 TCMTB

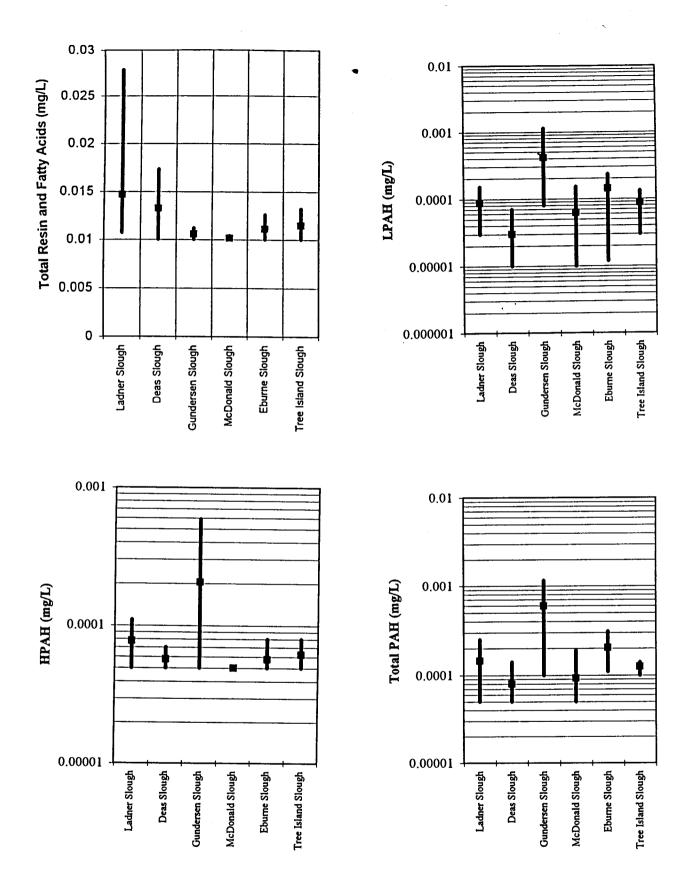
TCMTB (2-[thiocyanomethyl] thiobenzothiazole) was not detected in any of the samples analyzed (MDL = 0.005 mg/L).

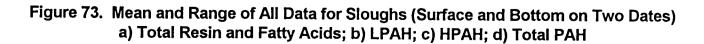
4.14 Organochlorine Pesticides and PCBs

Only one compound, hexachlorobenzene, was greater than the detection limit. A concentration of 0.00001 mg/L, measured in McDonald Slough, is less than the objective of 0.000065 mg/L (CCREM, 1987).

All measurements of PCBs were below the detection limit of 0.00002 mg/L.

4.15 Polycyclic Aromatic Hydrocarbons (PAHs)


Low molecular weight PAH (LPAH), high molecular weight PAH (HPAH) and total PAH were calculated by summing the concentration of the individual compounds. For these calculations, PAH levels found to be below the detection limit were set at zero. The results are shown in Figures 73b,c,d. Five of the six sloughs - Ladner, Deas, McDonald, Eburne and Tree Island - had similar concentrations of LPAH, HPAH and total PAH, with total PAH ranging between 0.00005 mg/L and 0.0003 mg/L. Gundersen Slough appeared higher, particularly because of the Feb., 1993 surface sample which had a total PAH concentration of 0.0012 mg/L, primarily due to higher levels of naphthalene and phenanthrene.


Several individual PAH compounds exceeded BCMOELP water quality criteria (Table 14) but both the measured values and the criteria are at, or close to, the MDL. The elevated values, particularly at Gundersen Slough which has a commercial wharf facility, likely reflect contamination from creosote pilings and hydrocarbon combustion.

Slough	WQ Criterion (mg/L)	Tree I.	Ladner	Ladner	Gundersen	Gundersen	Gundersen
Depth		1.0	1.0	5.0	1.0	1.0	4.0
Date		94-02	94-02	94-02	93-02	94-02	94-02
Compound (MDL)							
Pyrene (0.00001 mg/L)	0.00002	0.00003	0.00003	0.00003		0.00003	0.00014
Benzo(a)pyrene (0.00001 mg/L)	0.00001						0.00002
Phenanthrene (0.00001 mg/L)	0.0003				0.00037		

 Table 14. PAH Values in Fraser River Sloughs Exceeding Water Quality Criteria for the

 Protection of Freshwater Aquatic Life

5.0 CONCLUSIONS

5.1 Water Quality - Main River Sites

5.1.1 Cross-sectional Profiles

Cross-sectional profile data were collected at the three main river sites on three (Mission) or four (Oak Street Bridge and Tilbury Island) dates. Both the parametric analysis on selected parameters and the non-parametric analysis on all parameters indicate that there were no consistent nor significant differences between stations at any site. The data indicate large cross-sectional differences on some sampling dates but not during other periods. Overall, the mid-channel station used for most of the sampling program can be considered representative of the river.

5.1.2 Physical Parameters and Inorganic lons

Most parameters were not significantly different among the three regular sites or between these sites and Hope. Differences were found only with those parameters which reflect the amount of dissolved material in the water, due to seawater intrusion at downstream sites. Specific conductance, hardness, filterable residue, and dissolved magnesium, potassium, sodium, chloride and sulphate ions were all significantly lower at Mission and Hope compared to data collected at Tilbury Island and Oak Street Bridge. The latter two sites were not significantly different from each other with respect to these same parameters. The differences between sites was not readily apparent for "summer only" data (April to September); however, the tendency of higher values downstream suggests that even at higher river flows and sampling at the end of the ebb tide, the effects of seawater intrusion are still apparent.

5.1.3 Nutrients

Nitrite/nitrate and total nitrogen were not significantly different between the Hope and Mission sites when compared to Tilbury Island and Oak Street Bridge. Dissolved ammonia was significantly higher at Oak St. and Tilbury sites compared with the Mission site, but the difference was not apparent when "summer only" data were compared. The results suggest that ammonia may be higher towards the mouth of the river, perhaps due to municipal discharges. However, the overall concentrations of ammonia in the river are low and well below water quality guidelines.

There were no differences between the three sites for total phosphorus or dissolved phosphorus and no evidence of an increase due to municipal discharges. Total phosphorus was highly correlated with suspended material.

5.1.4 Metals

The laboratory procedure for metal analysis used during this study was carried out on unfiltered samples and the results are reported as "total metals" which can include not only metals present in dissolved form but also those adsorbed or bound to suspended solids in the water column. For most metals, the majority of measurements were below the detection limit (exceptions included AI, As, Ba, Cu, Fe, Ni, and Zn). A regression analysis comparing copper and iron with non-filterable residue showed a high correlation with iron ($r^2 = 0.89$) and lower, but still significant, correlation with copper ($r^2 = 0.52$).

The data for all metals from the Mission, Tilbury Island and Oak Street Bridge sites, and for some metals from the Hope site, were compared by assigning a value equal to the detection limit for all measurements reported below detection. This represents a "worst case" scenario. There was no evidence of any differences in the concentration of metals between Mission (and Hope) and the downstream sites at Tilbury Island and Oak Street Bridge although the average concentration at Hope for many of the metals, particularly those associated with particulate matter (AI, Fe), was often higher than further downstream.

Most metal values were below the guidelines, criteria, and objectives set by CCREM (1987), BCMOELP (1994), and Swain and Holms (1985) for the protection of freshwater aquatic life. Aluminum, copper, iron, and zinc frequently exceeded the guidelines, criteria or objectives set by the federal and provincial agencies, usually in samples with higher suspended solids. These metals are likely in particles from upstream river erosion, and therefore not biologically available.

The high number of measurements that were below the analytical detection limit complicates the interpretation of the data. However, most of the measurements were below guidelines and criteria established to protect aquatic biota. The high correlation between some metals and particulate material could result in accumulations of these metals in the bottom sediments and may reach concentrations that are known to affect benthic organisms.

5.1.5 Fecal Coliforms

Fecal coliforms were higher at both Tilbury Island in the Main Arm and Oak Street Bridge, in the North Arm, compared to the upstream site at Mission. Fecal coliform levels during the summer period (April to September) were clearly lower than between October and March. The lower concentrations in summer were attributed to chlorination at the Annacis Island STP, increased dilution during freshet and lower precipitation. (Rainfall is considered an important factor governing fecal coliform levels in the river since high fecal coliform loadings are generally associated with rainfall events as stormwater runoff and combined stormwater/sewage overflows (CSO) discharges increase.) Several individual high

measurements of fecal coliforms, especially at the Oak Street Bridge, were observed. These appeared to be associated with rainfall events. A major CSO outlet is just upstream of the Oak Street Bridge site. The data met Fraser River objectives, which are applicable only for the summer period. The objectives would not be met during the winter period.

5.1.6 Organic Compounds

Most of the measurements for chlorophenolic compounds, resin and fatty acids, organochlorine pesticides, PCBs, TCMTB and adsorbable organic halides (AOX) were below or near the detection limit. A few individual compounds were slightly above water quality guidelines/criteria but there was no evidence of differences between the upstream sites at Hope and Mission and those at Tilbury Island and Oak Street Bridge. A decrease during the summer for some groups of organics (AOX, total chlorophenolics) is likely a dilution effect from increased river flow.

Total chlorophenolic concentrations appeared to have decreased by nearly an order of magnitude based on a comparison of the data collected in this study with a compilation of water quality data collected prior to 1988. The trend reflects the decrease in use of chlorophenates as a anti-sapstain agent by the forest industry.

5.2 Water Quality - Sloughs

The water quality in the six sloughs sampled was generally good. Some parameters reflected the presence of marine waters (all samples were collected in February when the salt wedge penetrates the furthest upstream). There were few differences between the sloughs except those furthest upstream, Tree Island Slough and Gundersen Slough, which showed the least effects from seawater intrusions.

Dissolved oxygen was lower in the sloughs compared to the main river sites but all measurements met water quality guidelines. Nitrogen and phosphorus concentrations were similar to those measured at the main river sites for the same time period.

Measurements for most metals in the sloughs were similar to those measured at the main river sites and below the maximum concentrations set for the protection of aquatic life (CCREM, 1987; BC MOELP, 1995). Aluminum, copper and iron concentrations in the sloughs were similar to concentrations at the Mission, Tilbury Island and Oak Street Bridge sites during low flow periods. Many of the measurements for these three metals exceeded water quality guidelines but generally these values were associated with higher suspended solid levels. There was no evidence of consistently elevated concentrations of metals that would pose a threat to aquatic life.

There was also no evidence of consistently higher concentrations of organic compounds (chlorophenolics, resin and fatty acids and PCBs) in the sloughs when compared to the main river sites. Most measurements were below the detection limit and all were within water quality guidelines or criteria.

The concentration of LPAH, HPAH and total PAH compounds was similar between most of the sloughs but Gundersen Slough showed slightly higher levels, mainly due to elevated levels of naphthalene and phenanthrene in one sample. Three individual PAH compounds exceeded, slightly, their respective water quality guideline - pyrene (in five of 24 samples), benzo(a)pyrene (one sample) and phenanthrene (one sample).

6.0 RECOMMENDATIONS

In general, there were few differences in the parameters measured between the study sites at Mission, Tilbury Island and Oak Street Bridge that could not be explained by either seawater intrusion or river flow. Except for fecal coliform bacteria, there was no evidence of an increase in parameters in the lower reaches of the river attributable to municipal or industrial discharges. It was concluded, on the basis of this 15-month water quality survey, that the concentration of nutrients, metals and organic contaminants in the waters of the Fraser River, and the sloughs sampled, were within or near guidelines set for the protection of aquatic life.

Many metals and organic compounds adhere to particles and as a result accumulate in the bottom sediments when the suspended material settles out. There was evidence of this association with particulate material in this present study. Other studies conducted by FREMP have looked at contaminants in sediments and biota. Based on the conclusions of this present study, especially the large number of measurements below the analytical detection limit, it is recommended that future projects focus on sediments and biota. Sediment samples will integrate episodic introductions of contaminants that might be missed when sampling the water. In addition, the effects of river flow and seawater intrusion would be reduced.

Continued sampling for fecal coliforms should be considered in order to monitor the effects of storm water and CSO discharges, particularly if public use during the winter period is significant.

7.0 REFERENCES

Bergerud, W.A. and L.J. Alexander. 1981. Survey of dissolved oxygen in 1978. APD Bulletin 18. Report prepared for the Fraser River Estuary Study, Water Quality Work Group by Assessment and Planning Division, B.C. Ministry of Environment. 107 pp.

BC MOELP, 1994. Water quality criteria. Approved and working criteria for water quality. B.C. Ministry of Environment, Lands and Parks, Victoria, B.C.

CCREM. 1987. Canadian water quality guidelines. Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers. Environment Canada, Ottawa. 218 pp. + appendices.

Drinnan, R.W. and M.J.R. Clark. 1980. Water Chemistry, 1970-1978. Fraser River Estuary Report, Water Quality Work Group. Government of Canada and Province of British Columbia, Victoria, B.C. 160 pp.

Drinnan, R.W., E. White and P. Wainwright. 1988. Distribution of chlorophenol information in the Fraser River estuary. Report prepared by Aquatic Science Consultants Ltd., Nanaimo, B.C. to the Water Quality Branch, Environment Canada, Vancouver, B.C. 61 pp. + 9 tables + 44 figures.

Drinnan, R.W., B. Humphrey, B. Emmett, B. Austin and D. Hull. 1995. Saanich Inlet water use study. Report prepared for the Water Quality Branch, B.C. Ministry of Environment, Lands and Parks, 195 pp.

Environment Canada. 1991a. HYDAT CD-ROM.

Environment Canada. 1991b. The State of Canada's Environment. Environment Canada SOE report, Ottawa.

FREMP. 1991. Water Quality Plan, Monitoring and Objectives. Standing Committee on the Fraser River Estuary Water Quality Plan. Fraser River Estuary Management Program. New Westminster, B.C.

FREMP. 1994. Water Quality Plan: Monitoring Data Report, January to March 1993. Technical Report Series 93-02; DOE-FRAP 1993-31. Fraser River Estuary Management Program. New Westminster, B.C.

FREMP. 1996. Fraser River Estuary Environmental Quality Report. Fraser River Estuary Management Program. Burnaby, B.C.

GVRD. 1992. Samplers manual for bacteriological samples. Report prepared by the Greater Vancouver Regional District, Vancouver, B.C.

Harrison, P.J., D.L. Mackas, B.W. Frost, R.W. Macdonald, E.A. Crecelius. 1994. An Assessment of Nutrients, Plankton and some Pollutants in the Water Column of Juan de Fuca Strait, Strait of Georgia and Puget Sound and their Transboundary Transport. In: Wilson, R.C.H., R.J. Beamish, Fran Aikens, J. Bell (eds.). Review of the marine environment and biota of Strait of Georgia, Puget Sound and Juan de Fuca Strait. Can. Tech. Rep. Fish. Aquat. Sci. 1948.

Hatfield Consultants Ltd. 1994. Upper Fraser River environmental effects monitoring (EEM) pre-design reference document. Prepared for Northwood Pulp and Timber Ltd., Canadian Forest Products Ltd., Quesnel River Pulp Company and Cariboo Pulp & Paper Company. IRC Inc. 1994. Field component, 1993/94 Fraser River Water Quality Program. Final Report.

McDevitt, C.A., D.J. McLeay, and A. Brown. 1994. Effluent characterization study. FREMP Technical Report WQWM 93-13. Prepared for the Fraser River Estuary Management Program by Technology Resource Inc. and McLeay Associates Ltd. 182 pp.

Miller, R.A., R.W. Drinnan and D. Hull. 1994. Stormwater quality survey - 1994. Saanich-Central Saanich border to the View Royal-Colwood Border, including Victoria Harbour, Portage Inlet and Esquimalt Harbour. Report by the Engineering Department, Capital Regional District, Victoria, B.C. 44 pp. + 6 appendices.

Moore, K. 1993. Contaminant loadings to the Fraser River estuary. Technical Report WQWM 93-04, Fraser River Estuary Management Program, New Westminster, B.C. 92 pp.

Morse, D. 1994. Water quality plan, monitoring data report, January to March, 1993. FREMP Tech. Rep. Series FREMP 93-02, DOE FRAP 1993-31. Prepared for the Fraser River Estuary Management Program. 29 pp. + appendices.

Norecol, Dames & Moore, Inc. 1994. An initial dilution zone impact assessment of selected industries in the Fraser River estuary. FREMP Technical Report WQWM 93-06. Prepared for the Fraser River Estuary Management Program, New Westminster, B.C. 46 pp. + appendices.

Pommen, L.W. 1994. AOX Values from the Water Quality Monitoring Site at Hope. BC Environment.

Rocchini, R.J., W.A. Bergerud and R.W. Drinnan. 1981. Survey of fecal coliforms in 1978. APD Bulletin 21. Prepared for the Fraser River Estuary Study, Water Quality Work Group by Assessment and Planning Division, B.C. Ministry of Environment. 20 pp. Swain, L.G and G.B. Holms. 1985. Water quality assessment and objectives. Fraser Delta Area, Fraser River Sub Basin. Kanaka Creek to the mouth. Water Quality Branch, BC Ministry of Environment. 16 pp.

Swain, L.G. and D.G. Walton. 1990. Report on the 1989 Fraser River sediment monitoring program. Water Quality Branch, Ministry of Environment, Lands and Parks, Victoria, B.C.

Swain, L.G. and D.G. Walton. 1991. Report on the 1990 lower Fraser River and Boundary Bay sediment chemistry and toxicity program. Water Quality Branch, Ministry of Environment, Lands and Parks, Victoria, B.C.

Swain, L.G. and D.G. Walton. 1993. Chemistry and toxicity of sediments from sloughs and routine monitoring sites in the Fraser River estuary - 1992. Fraser River Estuary Monitoring Program. Water Quality Branch, Ministry of Environment, Lands and Parks, Victoria, B.C.

Swain, L.G., B. Phippen, H. Lewis, S. Brown, G. Bamford, D. Newsom, I. Lundman and D. Walton. 1995. Water quality assessment and objectives for the Fraser River from Hope to Sturgeon and Roberts Banks. First Update, Technical Appendix. Draft document prepared by the Water Quality Branch, B.C. Ministry of Environment, Lands and Parks, Victoria, B.C. 592 pp.

Tetra Tech Inc. 1986. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound, Seattle, Washington. Final Report TC-3991-04.

US EPA. 1986a. Quality criteria for water. United States Environmental Protection Agency, Office of Water Regulations and Standards. Washington, D.C. 395 pp.

US EPA. 1991. Chlorinated phenolics in wastewater by in-situ acetylation and GC/MS, Method 1653. United States Environmental Protection Agency.

APPENDIX I

DETAILED SAMPLING SITE LOCATIONS

TABLE OF CONTENTS

1.0 DETAILED SAMPLING SITE DESCRIPTIONS	1
1.1 Site and Vessel Positioning	1
1.2 Sample Sites and Station Location	1

TABLES

Table I-1.	Water Sampling Locations for Main River Sites (Phase 1)	2
Table I-2.	Water Sampling Locations for Cross-Sectional Profiles at	
	Main River Sites	3
Table I-3.	Water Sampling Locations for Slough Profiles	4

FIGURES

Figure I-1.	Reference Water Quality Monitoring Site (URS) at Mission	5
Figure I-2.	North Arm Water Quality Monitoring Site at Oak Street Bridge	6
Figure I-3.	Main Arm Water Quality Monitoring Site at Tilbury Island	7
Figure I-4.	Water Quality Monitoring Site at Ladner Slough, Main Arm	8
Figure I-5.	Water Quality Monitoring Site at Deas Slough, Main Arm	9
Figure I-6.	Water Quality Monitoring Site at Gunderson Slough, Main Arm 1	0
Figure I-7.	Water Quality Monitoring Site at Tree Island Slough, North Arm 1	1
Figure I-8.	Water Quality Monitoring Site at Eburne Slough, North Arm 1	2
Figure I-9.	Water Quality Monitoring Site at Mcdonald Slough, North Arm 1	3

1.0 DETAILED SAMPLING SITE DESCRIPTIONS

The following descriptions of each water sampling station were provided by IRC Integrated Resource Consultants Inc. IRC provided all of the field sample collection services for the project.

In addition to the information summarized below, IRC prepared a sampling report (IRC, 1994) containing progress reports for each sampling period, completed chain of custody forms for each sample batch delivered to the laboratories and a copy of the terms of reference for this study.

1.1 Site and Vessel Positioning

Vessel support was used for every sample collection event. All sampling locations and transects were plotted on hydrographic chart 9491 and on topographic map 92G1 prior to the field activities. Latitude and longitude co-ordinates were derived for accurate vessel positioning. In the field, water quality sample locations were determined using a Furuno Model 1250 Global Positioning System with ROM card video display, Furuno 24 mile radar and Furuno colour depth sounder. An on-board log of vessel positions, weather conditions, sea state, time of sample collection and sampling depth was maintained. Field data reported in this appendix were derived from this log.

1.2 Sample Sites and Station Location

Tables I-1 and I-2 describe the mid-channel and cross-section water sampling locations at Mission, Oak Street Bridge and Tilbury Island. Site details are shown in Figures I-1, I-2 and I-3. Table 3 describes the location of the water sampling site for each of the six sloughs. Detailed maps of the sites at Ladner, Deas, Gunderson, Tree Island, Eburne and McDonald Slough are presented in Figures I-4 through I-9.

References

IRC. Integrated Resouce Consultants Inc. 1994. 1993/94 Fraser River Water Quality Monitoring Program. Prepared for the Fraser River Estuary Management Program. New Westminster, B.C.

Sampling Site	Station Number	Site Designation Used in Other Programs ¹	Latitude/ Longitude	Sampling Site Description
Mission (Fig. I-1)	М3	URS	49°8.18 [°] N 122°16.80 [°] W	Midchannel, 1.69 km upstream of the railway bridge in line with the picnic bench in the grove of large trees on the south shore and the food processing plant on the north shore.
Oak Street Bridge (Fig. I-2)	OS3	NA-3	49°12.11′N 123°7.15′W	Midchannel, 370 m upstream of the Oak Street Bridge in line with the upstream sawmill conveyor on the north shore and the middle of the Fraser River Terminal dock on the south shore.
Tilbury Island (Fig. I-3)	T3	MA-3	49°8.86 [°] N 123°1.93 [°] W	Midchannel, between the flashing red buoy at the downstream end of the Tilbury Cement Dock on the south shore and the pilings with the staff gauge 100 m upstream of the flashing green light on the north shore.
NOTES: Sampling occurred every two weeks from April 19/20, 1993 to March 21/22, 1994. Sampling Depths = 1 metre below the surface.				

Table I-1. Water Sampling Locations for Main River Sites (Phase 1)

¹ The Mission site (M3) corresponds to the Upstream Reference Site (URS) referred to in other monitoring programs. The Oak Street Bridge site and Tilbury Island site have similarly been referred to as NA-3 (North Arm) and MA-3 (Main Arm) sites in other programs.

Sampling Site	Station No.	Latitude	Longitude
Mission (Figure I-1)	M1 M2 M3 M4 M5	49 ⁰ 08.11 ['] N 49 ⁰ 08.15 ['] N 49 ⁰ 08.18 ['] N 49 ⁰ 08.21 ['] N 49 ⁰ 08.24 ['] N	122 ⁰ 16.72 [°] W 122 ⁰ 16.75 [°] W 122 ⁰ 16.80 [°] W 122 ⁰ 16.83 [°] W 122 ⁰ 16.86 [°] W
Oak Street Bridge (Figure I-2)	OS1 OS2 OS3 OS4 OS5	49 ⁰ 12.06 [°] N 49 ⁰ 12.08 [°] N 49 ⁰ 12.11 [°] N 49 ⁰ 12.14 [°] N 49 ⁰ 12.17 [°] N	123 ⁰ 07.13 [°] W 123 ⁰ 07.14 [°] W 123 ⁰ 07.15 [°] W 123 ⁰ 07.17 [°] W 123 ⁰ 07.18 [°] W
Tilbury Island (Figure I-3)	T1 T2 T3 T4 T5	49 ⁰ 08.76 N 49 ⁰ 08.81 N 49 ⁰ 08.86 N 49 ⁰ 08.90 N 49 ⁰ 08.94 N	123 ⁰ 01.81 123 ⁰ 01.85 123 ⁰ 01.93 123 ⁰ 01.99 123 ⁰ 02.04

Table I-2. Water Sampling Locations for Cross-Sectional Profiles at Main River Sites

NOTES

1. Cross-sectional sampling dates: May 31/June 1, 1993; October 4/5, 1993; and February 7/8, 1994.

2. Sampling depths = 1 metre below surface.

3. The mid-channel station (designated #3) at each site corresponds to sampling locations used in Phase 1 of this program.

Sampling Site	Station No.	Site Nos. Used in Other Studies	Sampling Depths (metres)	Latitude/ Longitude	Sampling Site Description
Ladner Slough (Fig.I-4)	LS1	S-1	1.0 5.0	49°05.54 [°] N 123°O5.40 [°] W	Midchannel, immediately opposite the red government wharf ramp on the north shore and the marina on the south shore.
Deas Slough (Fig. I-5)	DS1	S-2	1.0 6.5	49°7.04 N 123°3.72 W	Midchannel, upstream of the Deas Overpass, directly opposite the marina in the deepest portion of the slough.
Gunderson Slough (Fig.l-6)	GS1	S-3	1.0 4.0	49°10.39 ['] N 122°55.11 W	Midchannel, opposite the red government wharf, in line with the pipeline crossing markers.
Tree Island Slough (Fig. I-7)	TI1	NA-1	1.0 3.0	49°11.08'N 122°57.7 ['] W	Midchannel, between the two dead trees on the western shore and the three pilings near the high tide mark on the eastern shore.
Eburne Slough (Fig. I-8)	ES1	S-4	1.0 3.5	49°12.16N 123°08.58W	Midchannel, directly opposite the loading dock on the orth shore (east of Borden Chemicals).
McDonald Slough (Fig. I-9)	MS1	MA-2	1.0 5.5	49°12.78 [°] N 123°11.26 [°] W	Midchannel, immediately opposite the first small embayment on Iona Island.

Table I-3. Water Sampling Locations for Slough Profiles

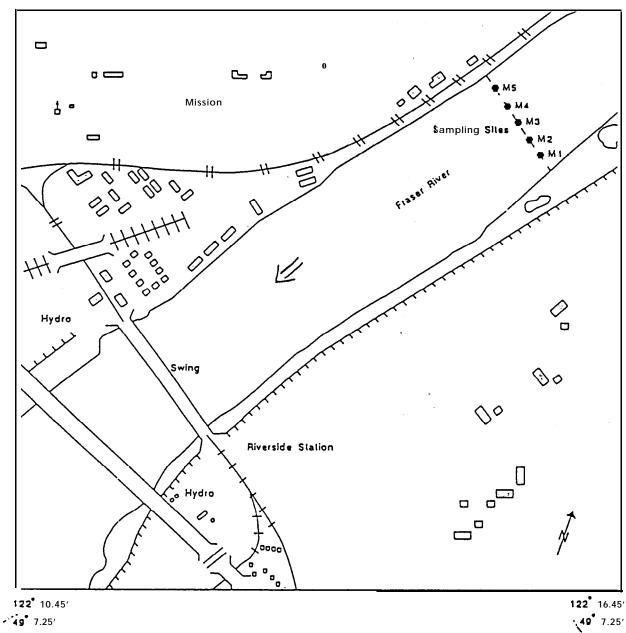


Figure I-1. Reference Water Quality Monitoring Site (URS) at Mission - M3 denotes the regular sample site; MI, M2, M4 and M5 are the additional sample stations for the cross-section profile. (<=Direction of river flow)

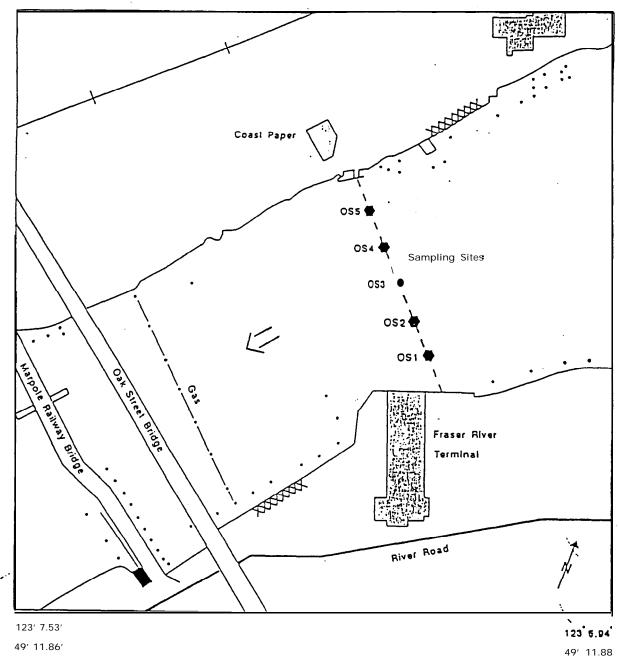


Figure I-2. North Arm Water Quality Monitoring Site at Oak Street Bridge - OS3 denotes the regular sample site; OS1 OS2, OS4 and OS5 are the additional sample stations for the cross-section profile. (<= Direction of river flow)

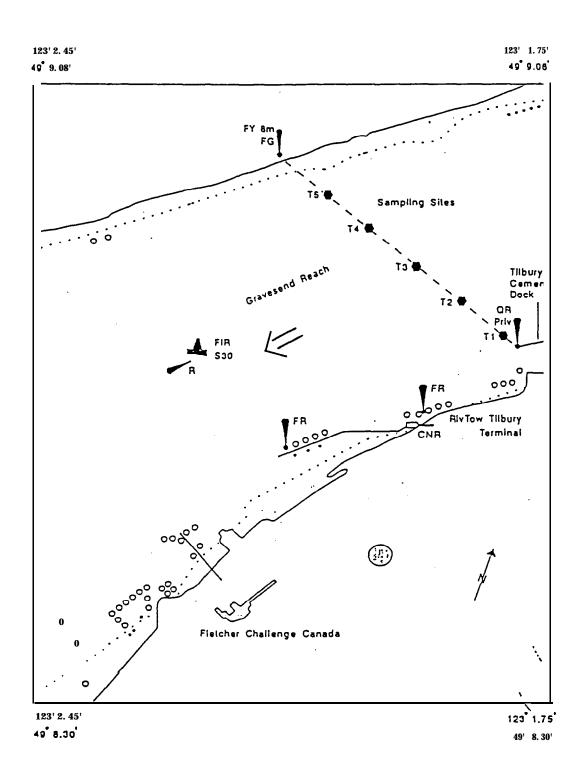
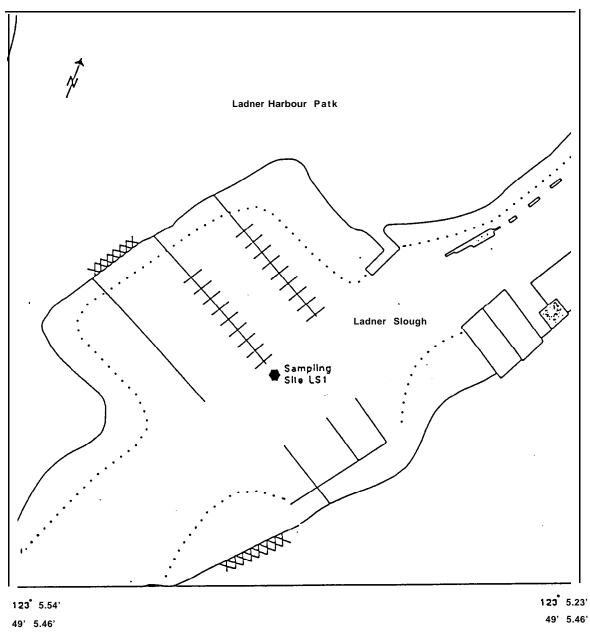



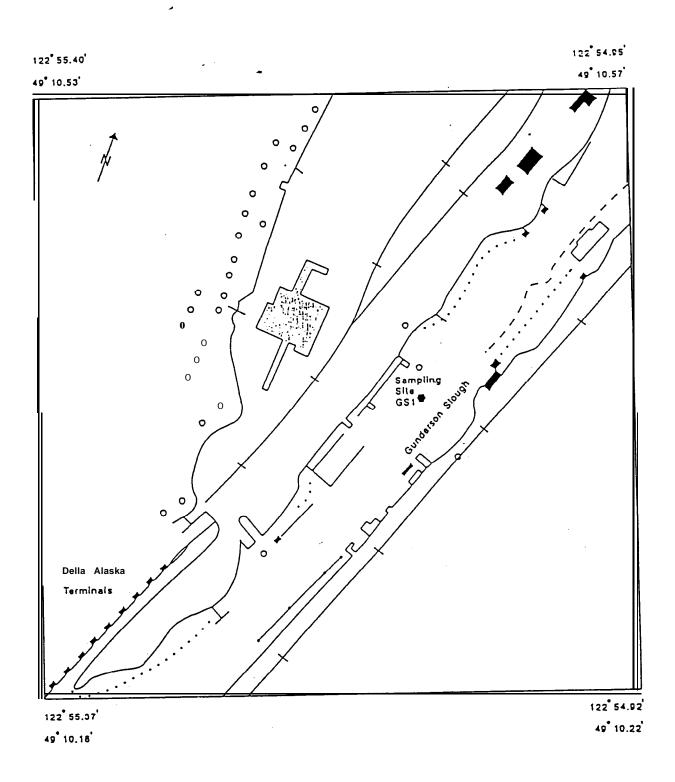
Figure I-3. Main Arm Water Quality Monitoring Site at Tilbury Island - T3 denotes the regular sample site; T1, T2, T4 and T5 are the additional sample stations for the cross-section profile. (<=Direction of river flow)

,

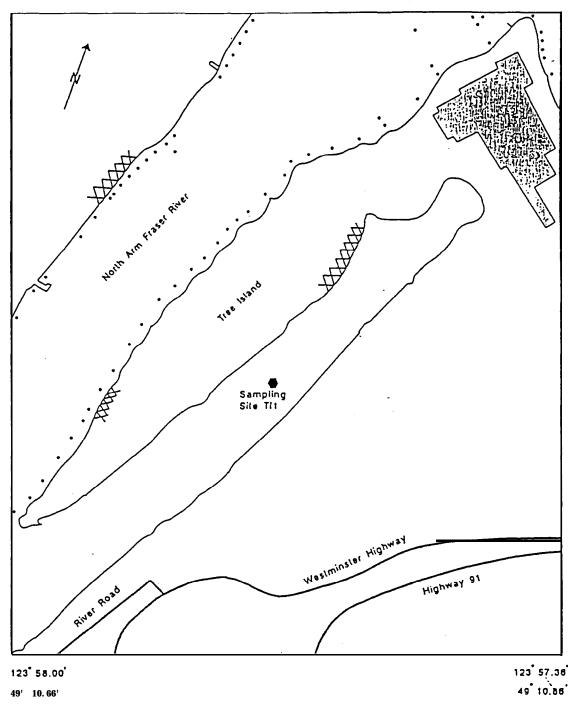


Figure I-4 Water Quality Monitoring Site at Ladner Slough, Main Arm.

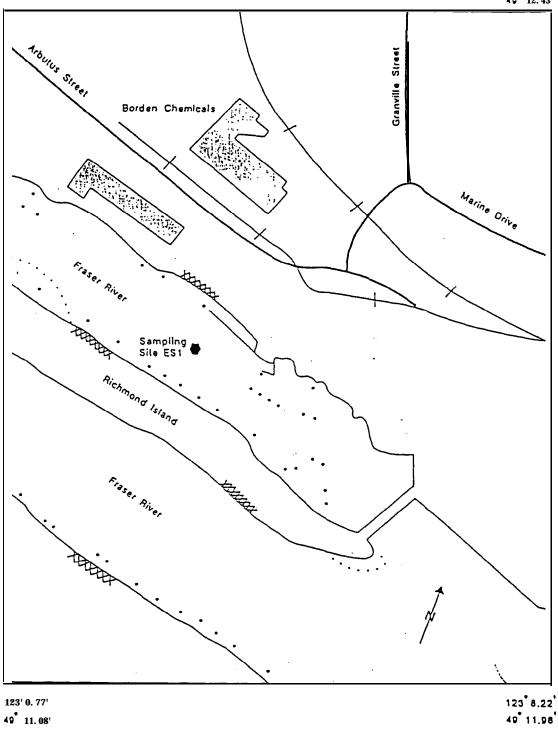
>


123 5.23'

49' 5.67'


Ł

Appendix I



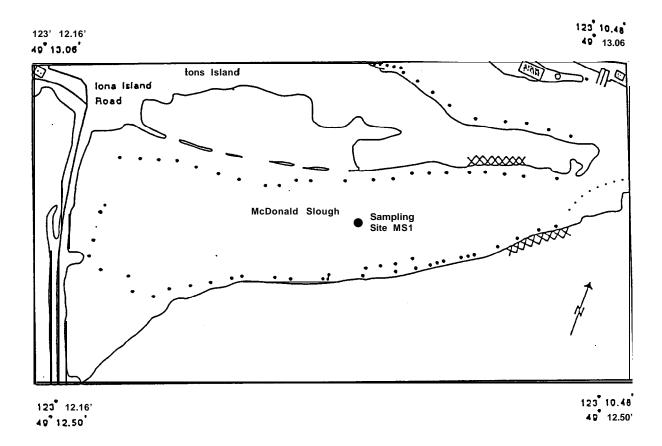


Figure I-9 Water Quality Monitoring Site at Mcdonald Slough, North Arm.

Appendix I

APPENDIX II

DETAILED LABORATORY PROCEDURES

TABLE OF CONTENTS

1	NTRODUCTION	1
2.0 F	PHYSICAL AND INORGANIC VARIABLES	5
3.0 /	ANIONS AND NUTRIENTS	6
4.0	TOTAL METALS	9
5.0 (ORGANIC COMPOUNDS	11
6.0 I	BACTERIOLOGY	14

LIST OF TABLES

Table II-1. Bottle and Preservative Guide	
Table II-2. Method Detection Limits from the Two Laboratories Provi	ding Inorganic
Water Quality Variable Analysis	

1.0 INTRODUCTION

The following method summaries were provided by Zenon Environmental Laboratories (Zenon). Zenon provided analytical services for both inorganic and organic variables from initiation of the program until March 31, 1993. On April 19, 1993 Analytical Services Laboratories (ASL) became the contract laboratory for the inorganic variables. With the few exceptions noted below, the ASL procedures and method detection limits (MDLs) were equivalent to those described by Zenon.

1.1 Sample Containers and Preservatives

A list of bottle types and preservatives used for sample collection is given below in Table II-1. The 2-litre polyethylene bottles were used as received from the laboratory. The 500 mL polyethylene bottles used for the collection of samples for metal analyses were soaked in 25% nitric acid (HNO₃) and rinsed with deionised water following the Environment Canada procedures manual (Environment Canada, 1992).

Amber glass bottles with Teflon-lined caps, used for collecting samples for organic analyses (500 mL, 1-L and 4-L sizes), were purchased commercially from Eagle Picher. These bottles were cleaned using the following procedure:

- 1. Initial washing in laboratory-grade, non-phosphate detergent;
- 2. Rinsed 3 times with distilled water;
- 3. Rinsed with 1:1 nitric acid;
- 4. Rinsed three times with ASTM-Type 1 organic-free water;
- 5. Oven-dried for one hour;
- 6. Rinsed with hexane; and finally;
- 7. Oven-dried for one hour.

All samples were stored on board the vessel in coolers with ice packs at approximately 4°C immediately after packaging. The samples were maintained under these conditions until delivery to the laboratories. Each delivery occurred within 16 hours of sample collection. All samples were clearly labelled and were accompanied by a sample transfer sheet.

Samples were received at the laboratory, packed in coolers with ice packs or ice. At the laboratory the samples were stored in a refrigerator at 4°C until analyzed. All samples were stored at the laboratory for a period of four weeks after the data were reported.

Inorganic Parameters	Maximum Holding Time	Sample Container	Preservation (Hold at 4°C)
рН	48 hours	2-L Polyethylene	None
Conductivity	"	Included in 2-L	II
Alkalinity	"	"	II
Hardness	"	"	II
Suspended solids (NFR)	7 days	"	II
Dissolved Solids (FR)	7 days	"	II
NO ₂ + NO ₃	48 hours	"	II
Ammonia	"	"	II
TKN	7 days	"	H ₂ SO ₄ (1:1 in lab)
Total Phosphorus	48 hours	"	H
Diss. Phosphorus	"	"	Lab filtration
Chloride	7 days	"	None
Sulphate	"	"	II
Fluoride	"	"	II
Mercury	14 days	500 mL or 1L glass	6 mL 10% potassium dichromate + 6 mL Conc. H₂SO₄
Metals, Total	"	500 mL Poly.	2 mL Conc. H ₂ SO ₄
Organic Parameters			
тос	48 hours	Included in 2L	None
Chlorophenols+	4 days, extract	4L pre-cleaned amber glass	n
Nonylphenol+	"	"	11
ТСМТВ	"	"	11
Resin & Fatty Acids	3 days, extract	"	Field: 4 NaOH pellets
PAHs	7 days, extract	"	None
Organochlorine Pesticides/PCBs	n	"	n
AOX	"	Included in 2L	H
Fecal Coliforms	24 hours	Sterile 250 mL Poly.	н

Table II-1. Bottle and Preservative Guide

1.2 Method Detection Limits

Detection limits were determined using the US Environmental Protection Agency Method SW-846. Briefly, a matrix spike at a concentration of three to five times the estimated detection limit is analyzed eight to ten times by the normal procedure. The detection limit is defined as three times the standard deviation of the determinations. At the detection limit, duplicates would be expected to agree with each other to 100%. The limit of quantitation is defined as 3.3 times the limit of detection. At the limit of quantitation, duplicates would be expected to agree to within 30%.

A summary of Zenon and ASL method detection limits for inorganic variables is presented in Table II-2.

In each of the following method descriptions, the heading identifies the variable, followed by the section number from *Standard Methods for the Examination of Water and Wastewater* (APHA, 1992) where a detailed description of the specific method can be found.

Analytical Variable	Method Detection Limit (MDL) (mg/L)			
,	Zenon	ASL		
рН	0.1 pH units	0.2 pH units		
Conductivity, Specific	1 uS/cm	0.2 uS/cm		
Alkalinity, Total (pH 4.5)	0.5	0.5		
Hardness, Total (Calc.)	0.1	0.05		
Residue, Non-filterable	4.0	1.0		
Residue, Filterable	4.0	1.0		
Nitrogen, NO ₂ +NO ₃	0.02	0.005		
Nitrogen, Ammonia	0.005	0.005		
Nitrogen, Total Kjel.	0.04	0.05		
Phosphorus, Total	0.003	0.001		
Phosphorus, Dissolved	0.003	0.001		
Total Organic Carbon	3.0	0.50		
Chloride	0.5	0.2		
Sulphate	1.0	0.5		
Fluoride	0.1	0.02		
Mercury, Total	0.00005	0.00005		
Cadmium, Total (GFAA ¹)	0.0001	0.0002		
Copper, Total (ICP ¹ or GFAA)	0.001	0.001		
Lead, Total (GFAA)	0.003	0.001		
Nickel, Total (GFAA)	0.005	0.001		
Zinc, Total (ICP)	0.01	0.001		
Chromium, Total (ICP)	0.005	0.001		
Arsenic, Total (Hydride ICP)	0.001	0.0001		

Table II-2. Method Detection Limits from the Two LaboratoriesProviding Inorganic Water Quality Variable Analysis

¹ GFAA = graphite furnace atomic absorption spectrophotometer; ICP = inductively coupled plasma spectrophotometer.

2.0 PHYSICAL AND INORGANIC VARIABLES

<u>pH (SM 4500-H+):</u>

pH was measured with a standard pH electrode that had been calibrated against externally prepared and validated buffer solutions. Measurement was performed prior to alkalinity titration using the Metrohm Model 636 Titroprocessor.

Conductivity (SM 2510):

The sample was equilibrated at 25°C for 90 minutes in a water bath and the conductivity was measured using a calibrated Metrohm Model 660 Conductometer.

Total Suspended Solids - [Non-Filterable residue] (SM 209C):

A well-mixed sample was filtered through a pre-weighed standard 0.45 um filter and dried to constant weight at 103-105°C. The residue retained on the filter represented the total suspended solids.

Total Dissolved Solids - [Filterable Residue] (SM 2540D):

The method utilized by Zenon incorporated a measured aliquot of homogenized sample which was vacuum filtered through a 0.45 um filter. The filtrate was then evaporated on a steam bath and further dried at 105°C to constant weight. The remaining residue was expressed as the total dissolved solids. The steam bath used was custom fabricated. The analytical balance used was a Mettler AE163.

ASL determined total dissolved solids by calculation, using all anions, cations and total organic carbon as described in SM 2540.

Hardness (SM 2340 B):

Hardness was calculated from the concentrations of calcium and magnesium determined by Inductively coupled plasma (ICP) analysis of an unpreserved, filtered sample using method SM 3120 B. Hardness is defined by the following equation:

Hardness mg/L (equivalent CaCO3) = 2.497[Ca, mg/L] + 4.118[Mg, mg/L]

3.0 ANIONS AND NUTRIENTS

Alkalinity Total 4.5 (SM 2320 B):

The sample was titrated with dilute sulphuric acid to a pH of 4.5 to determine the total alkalinity. The acid neutralizing capacity of the sample was expressed as a concentration of calcium carbonate. If the pH of the sample was greater than 8.3, the sample was titrated to the phenolphthalein endpoint (pH 8.3), and then the pH 4.5 endpoint to allow for calculation of the bicarbonate concentration. A Metrohm Autotitrator, Model 636 coupled to a Metrohm Model E503 Autosampler, was used to perform the analysis.

Chloride (SM 4500-CI- E):

The chloride in the sample displaces thiocyanate ion from mercuric thiocyanate by the formation of a soluble mercuric chloride. The liberated thiocyanate ion reacts with the ferric ion to produce the red ferric thiocyanate complex which is measured colorimetrically at 480 nm. The intensity of the red complex was measured at 480 nm against external standards using a Technicon AutoanalyzerTM - II, continuous flow instrument.

Fluoride (SM 4500 C):

Fluoride was measured using an ion-selective electrode. A total ionic strength adjustment buffer (TISAB) was added to the standards and samples prior to analysis to break up fluoride complexes and ensure a uniform ionic strength background. Millivolt readings from the samples were compared to known fluoride standards. An Orion standard calomel reference and fluoride selective electrode coupled to an Orion Research Microprocessor lonanalyzer/901 provided direct measurement of fluoride concentration based on the millivolt readings.

Sulphate (SM 4500-SO4- F):

Sulphate ion reacts with an acidic solution of barium chloride and methylthymol blue to form barium sulphate. At high pH, through the addition of NaOH, excess barium reacts with methylthymol blue to form a blue chelate. The unreacted methylthymol blue is a grey complex and is proportional to the sulphate concentration. The intensity of the grey complex was measured at 460 nm against external standards using a Technicon TRAACS[™], Model 800, continuous flow instrument.

Nitrogen, (Nitrate-Nitrite) (SM-4500-NO3- F):

Samples were analyzed using an automated colorimetric method (Technicon TRAACS[™]. Model 800, continuous flow instrument) in which nitrate is reduced to nitrite at pH 7.5 in a copper-cadmium reductor cell. The nitrite reacts under acidic conditions with sulfanilamide form diazo compound. This compound is then coupled with to а N-(1-naphthyl)-ethylenediamine dihydrochloride to form a reddish-purple azo dye that was measured at 520 nm to determine the nitrate/nitrite concentration. To determine the nitrate concentration, the reduction step is bypassed and the resulting nitrite value obtained is subtracted from the total nitrite value obtained using the reduction procedure.

Nitrogen (Ammonia) (SM 4500-NH3 C):

This automated procedure utilizes the Berthelot Reaction, in which indophenol, a bluecoloured compound, is produced when a solution of an ammonium salt is added to sodium phenoxide, and then followed with the addition of sodium hypochlorite. EDTA was added to prevent the precipitation of metal hydroxides. Sodium nitroprusside was added to intensify the blue colour. This complex was measured at 630 nm using a Technicon TRAACS[™], Model 800, continuous flow instrument.

Nitrogen, Total Kjeldahl (SM 4500, N-org B):

Zenon digested the water sample process in a hot block with a mixture of sulphuric acid, mercuric oxide and potassium sulphate to convert the free ammonia and organic nitrogen compounds to ammonium bisulphate. The digestate was then analyzed for Kjeldahl nitrogen using an automated colorimetric method. An emerald green coloured ammonium salicylate complex is formed by the reaction of ammonia, sodium salicylate, sodium nitroprusside and sodium hypochlorite in a buffered alkaline medium at a pH of 12.8-13.0. The ammonia salicylate complex was measured at 660 nm using a Technicon TRAACS[™], Model 800, continuous flow instrument.

ASL analysed the sampled digested, as described above, by specific ion potentiometry using a combination reference-ammonia ion selective electrode (EPA Method 354.4)

Phosphorus, Total and Dissolved Total (SM 4500-P):

Persulphate digestion and oxidation were employed to release phosphorus from organic and inorganic matter in the sample. The method measures all orthophosphates and condensed phosphates, both dissolved and particulate. For dissolved total phosphorous, the sample was prefiltered through a 0.45 um filter prior to digestion. After digestion, the liberated orthophosphate forms molybdophosphoric acid in ammonium molybdate solution. Molybdophosphoric acid was reduced by stannous chloride to the intensely coloured molybdenum blue, which was measured at 660 nm using a Technicon TRAACS[™], Model 800, continuous flow instrument.

Total Organic Carbon (SM 505A):

Zenon determined total organic carbon as follows: A small, accurately measured volume of sample was injected into the total carbon port of a Beckman Carbon Analyser 915A, to determine total carbon. At 950°C, packing material impregnated with cobalt oxide aids in the combustion of all carbonaceous material to CO_2 . The CO_2 is then swept into an infrared analyser for measurement. Inorganic carbon was determined by injecting an aliquot of the sample into a tube packed with quartz chips wetted with phosphoric acid. At 150°C the inorganic carbon is released as CO_2 and detected in an infrared analyser. Total organic carbon was determined from the difference of the total and inorganic carbon measurements.

ASL determined total carbon and dissolved organic carbon using method SM 5310 A and C where carbon liberated from the matrix by a persulphate-UV digestion was quantified colorimetrically.

4.0 TOTAL METALS

For most of the metals, the samples were initially scanned by Inductively coupled argon plasma (ICAP) emission spectrometry. To achieve lower method detection limits, a more sensitive Zeeman corrected graphite furnace atomic absorption spectrometry (AAS) procedure was required for some elements as described in the following sections.

Total Metals, by ICAP (SM 3030B/D & 3120 B):

The samples were first digested with nitric acid to dissolve suspended solids and remove organics by oxidation and volatilization. After digestion, samples were aspirated into an inductively coupled argon plasma (ICAP) for excitation of the atoms and subsequent emission of electromagnetic radiation. The amount of radiation emitted is proportional to the analyte's concentration. The Thermo Jarrell Ash ICAP 61E, a fully automated and simultaneous spectrometer, was used to measure the concentration of 32 elements.

Total Metals, by AAS (SM 3030 B/D & 3113 B):

Zenon used the following analysis procedure for cadmium, lead and nickel. Samples were first digested with nitric acid to dissolve suspended solids and remove organics by oxidation and volatilization. Digestates were then introduced into a graphite furnace where drying, charring, and atomization takes place. The atomic absorption of cadmium, lead and nickel were measured at 228.8, 283.3, 232.0 nm, respectively, and compared to intensity readings of calibration standards. A Varian Spectr AA-400 graphite furnace is coupled to a Varian Zeeman Graphite Tube Atomizer and a Varian Atomic Absorption Spectrometer to complete the analysis.

ASL analysed digested samples for cadmium, chromium, copper, lead, molybdenum, nickel, silver and zinc by graphite furnace AA with Zeeman background correction (EPA Method 7000).

Arsenic and Selenium (SM 3500-B & 3114C):

Samples were digested with a mixture of hydrochloric acid and potassium persulphate. Digested samples were reduced with sodium borohydride to form metal hydrides. The arsenic and selenium hydrides were separated from the liquid phase in a phase separator and were swept into an inductively coupled argon plasma for excitation and subsequent measurement of the emission spectra by simultaneous spectrophotometry. The emission signals were quantified using digested arsenic/selenium calibration standards. The hydride

generator is completely automated and is interfaced to a Thermo Jarrell Ash ICAP 61E simultaneous spectrometer.

Mercury (SM 303 F):

All forms of mercury were converted to inorganic mercury using a mixture of nitric and sulphuric acids, potassium permanganate and potassium persulphate in a water bath at 95°C. Excess permanganate was reduced using hydroxylamine hydrochloride. Inorganic mercury was then reduced to its elemental state using SnCl2 and was measured using cold vapour atomic absorption spectrophotometry at a wavelength of 253.7 nm (Milton Roy Mercury Monitor).

5.0 ORGANIC COMPOUNDS

Zenon Laboratories provided the analytical services for organic compounds for the entire 15-month period of the monitoring program. The following descriptions were supplied by Zenon.

Chlorophenolic Compounds (US EPA Method 1653):

This procedure description applies to the analysis of chlorophenols, chloroguaicols, chlorocatechols, and nonylphenol and is summary of US EPA Method 1653. The key feature of the method is that all determinations were performed by gas chromatograph mass spectroscopy (GC/MS) using selected ion monitoring to achieve the low detection limits required while providing a high degree of data confidence.

A large water sample (four litres) is adjusted to neutral pH. Potassium carbonate buffer is added and the pH is raised to between 9 and 11.5. Stable, isotopically labelled, analogs of the compounds to be analyzed for are added to the sample as surrogates. The following surrogates were used to track the recoveries during the chlorophenolic analyses:

2,4-dichlorophenol (ring-D3); pentachlorophenol (13C6); 4,5-dichlorocatechol (13C6); tetrachorocatechol (13C6); 4-chloroguaiacol (13C6); 4,5,6-trichloroguaiacol (13C6); 3,4,5,6-tetrachloroguaiacol (13C6); 5-chlorovanillin (13C6).

The chlorophenolics are converted to acetates by addition of acetic anhydride. After acetylation, the solution is extracted with hexane. The hexane is concentrated to a final volume of 100 mL, an instrument internal standard is added, and an aliquot of the concentrated extract is injected into the gas chromatograph. The compounds separated by the GC are detected using selected ion monitoring mass spectroscopy.

Detection limits of 0.000001 mg/L (1 ng/L) were achieved for the chlorophenols, with slightly higher detection limits of 0.000002 mg/L (2 ng/L) for the chlorocatechols and chloroguaiacols.

Nonylphenol was included in this chlorophenolics scan. The MDL for nonylphenol was 0.00002 mg/L (20 ng/L).

Appendix II

Resin and Fatty Acids (Modified - BC Ministry of Environment)

Water samples were spiked with the surrogate nonadecanoic acid. The pH of the sample was adjusted to a pH of 9.0 and the sample was extracted with methyl tertiary butyl ether (MTBE). The extract was dried over sodium sulphate, concentrated and methylated with diazomethane. The methylated extract was analyzed by GC/MS using selected ion monitoring instead of the usual flame ionization detection (FID) method.

Detection limits obtained for this method were 0.0005 mg/L using a four litre sample.

PCBs and Organochlorine Pesticides (BC Ministry of the Environment Method)

A one litre water sample was extracted three times with 80, 50 and 50 mL portions of dichloromethane, after the addition of the surrogate dibromobiphenyl. The extract was then dried, concentrated by rotary evaporation, and cleaned up on Florisil prior to gas chromatograph/electron capture detection (GC/ECD) analysis. Quantitation was achieved by matching the eight most prominent peaks to either the individual Aroclors 1242, 1254 or 1260 or a 1:1:1 mixture of the Aroclors depending on the best match.

Detection limits obtained from a four litre sample varied from 0.000001 mg/L to 0.00001 mg/L (1-10 ng/L) for the organochlorine pesticides. Detection limits for PCB and toxaphene analyses were 0.0002 mg/L and 0.00005 mg/L (20 ng/L and 5 ng/L), respectively.

2 - (Thiocyanomethylthio) benzothiazole (TCMTB) (Environment Canada)

An aliquot of the water sample was extracted with dichloromethane and cleaned on Florisil (deactivated with 1% water). The solvent was exchanged for acetonitrile and analyzed by high pressure liquid chromatography (HPLC).

The detection limit obtained for this analysis was 0.005 mg/L.

Polycyclic Aromatic Hydrocarbons (PAH) (US EPA Method 8270)

The deuterated surrogates naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12 were added to an aliquot of water sample which was then extracted with dichloromethane. The extract was cleaned up on silica gel and concentrated to 1 mL. Analytical quantitation is performed by GC/MS with a Hewlett Packard 5890 GC and HP 5970 mass selective detector (MSD) using selected ion monitoring.

The detection limits were 0.00001 mg/L (10 ng/L) for the low molecular weight PAH compounds and 0.00005 mg/L (50 ng/L) for most high molecular weight PAH compounds.

Adsorbable Organic Halides (AOX) (SM 5320)

The water samples were preserved with nitric acid and stored at 4°C. An appropriate sample aliquot was passed through two granular activated carbon columns in series. The columns were then rinsed with potassium nitrate solution to remove any inorganic halides. Each column was combusted and the adsorbed organohalides were converted to HX which was then micro-coulometrically titrated in the cell.

The detection limit obtained for the water samples was 0.01 mg/L.

Zenon subcontracted this work to Econotech, a local lab with extensive experience in this analysis.

6.0 BACTERIOLOGY

Fecal Coliforms - SM 9221 E1

A multiple tube fermentation technique was used to determine the fecal coliform counts for this study. The analyses were conducted at the GVRD bacteriology laboratory. A presumptive test to determine the presence of coliform bacteria was carried out followed by the verification for fecal coliforms.

Presumptive Test:

The samples were diluted and aliquots pipetted into tubes containing Lauryl Tryptose Broth (LTB). The tubes were incubated at 35 $^{\circ}$ C, and all tubes having evolved carbon dioxide buildup and growth at 24 and 48 hours, or just heavy growth at 48 hours were tested for the presence of fecal coliforms.

Verification of Fecal Coliforms:

All presumptive positive LTB tubes were inoculated into EC tubes and placed into a water bath set at 44.5 °C. The tubes were examined after 24 hours for the presence of gas (positive) and all of the results were recorded. The most probable number (MPN) value is derived from a combination of negative and positive tubes using standard MPN tables.

The MDL for this procedure was <2 MPN/100 mL.

References

APHA and WWWA. 1992. Standard methods for the examination of water and wastewater. 18th Edition. American Public Health Association and American Water Works Association.

Environment Canada. 1992. Procedures manual for sample container cleaning. Report by Environment Canada, Conservation and Protection Directorate, Pacific and Yukon Region.

APPENDIX III

REPLICATE AND INTER-LABORATORY COMPARISION RESULTS AND ANALYSIS OF STANDARD REFERENCE MATERIALS

Water Quality in the Fraser River Estuary

Lab ID	Certified range of	Zenon	ASL	4.51	
Sample ID	values @ 95%	Zenon			Certified range of
SITE	confidence	Def Samala	FR0130	FR0271	values @ 95%
5112		Ref. Sample	Blind Ref.	Blind Ref.	confidence
Parameter	ION-91 & NBS 1643	10N-91 & NBS 1643	10N-91 & TM-21	ION-91 & TM-21	10N-91 & TM-21
		93-01-29	93-08-10	94-03-22	
Physical Tests:					
pH	7.14 - 8.18	7.40	7.40	7.41	7.14 - 8.18
Specific Conductance (SC)	100.07 - 88.47	97.0	95.3	94	100.07 - 88.47
Suspended Solids (NFR)	na	na	<1	<	na
Dissolved Solids (FR)	na	na	40	56	กอ
Hardness Total	50.28 - 39.10	na	47.6	45.4	50.28 - 39.10
Anions:	······································				
Alkalinity Total @ pH 4.5	45.16 - 37.36	43.3	41.8	42.1	45.16 - 37.36
Chloride Dissolved	1.47 - 1.05	1.3	1.26	1.5	1.47 - 1.05
Fluoride Dissolved	0.078 - 0.026	<0.1	0.03	0.04	0.078 - 0.026
Sulfate	3.60 - 2.94	3.2	3.6	3.9	3.60 - 2.94
		5.2	5.0		5.00 - 2.94
Nutrients:					
Nitrogen Amm.Diss(N)	0.003	<0.005	<0.005	<0.005	0.003
Nitrogen Kjel.Tot(N)	0.14 - 0.02	0.05	0,10	0.1	0.14 - 0.02
Nitro NO3+NO2 D	0.35 - 0.23	0.290	0.286	0.33	0.35 - 0.23
Phosphorus Dissolved	na	па	<0.001	0.003	na
Phosphorus Total	0.008 - 0.001	na	0.001	0.005	0.008 - 0.001
TOTAL METALS					
Aluminum	0.120 -0.110	0.11	<0.2	<0.20	. 0.04
Arsenic	0.083 - 0.081	0.0917	<0.0001	<0.0001	
Barium	0.0527 - 0.0465	0.058	0.02	0.025	па 0.032 - 0.0129
Cadmiun	0.0132 - 0.0112	0.0125	0.0054	0.0039	0.0063 - 0.0035
Calcium	na	na	0.0094 na	13.3	0.0003 - 0.0033
Chromium	0.020 - 0.018	0.022	0.008	0.007	0.0087 - 0.0055
Cobalt	0.0243 - 0.0227	0.023	< 0.015	< 0.015	
Copper	0.0251 - 0.0195	0.023			0.006
Iron	0.110 - 0.104		0.008	0.005	0.0098 - 0.0054
Lead		0.13	< 0.03	<0.030	0.01
Magnesium	0.0362 - 0.0344	0.038	0.004	0.005	0.0071 - 0.0039
Manganese		na O O A C	1.80	2.96	па
Manganese Mercury	0.0377 - 0.0329	0.036	0.008	0.007	0.008 - 0.004
Molybdenum	na 0.106 0.102	na	<0.00005	<0.00005	na
Nickel	0.106 - 0.102	0.111	0.006	0.006	0.007
Potassiun	0.0679 - 0.0533	0.063	0.007	0.006	0.0090 - 0.0042
Selenium	na	na	<2	<2.0	na
Silver	na	na	<0.0005	<0.0005	na
Sodium	0.0025 - 0.0019	na	< 0.0001	<0.0001	
	na	na	3	<2.0	na
Tin	na	na	<0.3	<0.30	na
Zinc	0.0748 - 0.0730	∠ 0.085	0.009	0.005	0.0097 - 0.0053
ORGANIC PARAMETERS:					
Carbon Total Organic	na	na	1.49	1.54	1.83 - 0.73

Table III-1. Analysis of Standard Reference Materials as QA Samples

na - not analysed

NBS 1643c = former US National Bureau of Standards trace metal standard in water Ion 91 = CCIW - National Water Research Institute Major Ion Standard TT-21 = CCIW - National Water Research Institute Trace Metal Standard **APPENDIX IV**

ANALYTICAL RESULTS FOR QA REPLICATE DATA

Water Quality in the Fraser River Estuary

~

Minimum Detection Limits for Total Metals Analysis

Laboratory	Zenon	ASL	EC LAB	
Laboratory	MDL	MDL	MDL	UNITS
	From: 93-01	From: 93-04		
	To: 93-03	To: 94-03	:	
Physical Tests:				
Dissolved Oxygen				mg/L
Water Temperature				deg C
Air Temperature				"
PH				
Field pH				
Specific Conductance(SC)	1	0.2	2	uS/cm
Field SC				uS/cm
Suspended Solids (NFR)	4	1	10	mg/L
Dissolved Solids (FR)	4	1	10	"
Hardness Total				mg/L CaCO3
Anions:				
Alkalinity Total @pH 4.5	0.5	0.5		mg/L CaCO3
Chloride Dissolved	0.5	0.2	0.2	mg/L
Fluoride Dissolved	0.1	0.02	0.02	
Sulfate	1	0.5	0.5	Ħ
Nutrients:				
Nitrogen Amm.Diss(N)	0.005	0.005	0.002	mg N/L
Nitrogen Kjel.Tot(N)	0.04	0.05		*
Nitro NO3+NO2 D	0.02	0.005	0.002	"
Phosphorus Dissolved	0.003	0.001		mg P/L
Phosphorus Total	0.003	0.001	0.002	"
TOTAL METALS				
Aluminum	0.06	0.02	0.002	mg/L
Arsenic	0.001	0.0001	-	
Barium	0.001	0.01	0.0002	-
Cadmium	0.0001	0.0002	0.0001	-
Calcium	0.05	0.05	0.1	-
Chromium	0.005	0.001	0.0002	"
Cobalt	0.004	0.015	0.0001	-
Copper	0.001	0.001	0.0002	-
Iron	0.05		0.0004	
Lead	0.003	0.001	0.0002	
Magnesium	0.02	1	0.1	"
Manganese	0.002	0.005	0.0001	
Mercury	0.00005	0.00005	0.000005	"
Molybdenum	0.004	0.001	0.0001	
Nickel	0.005	0.001	0.0002	
Potassium	0.4	2	0.1	"
Selenium	0.03	0.0005	-	
Silver	0.03	0.0001	-	"
Sodium	0.4	· 2	0.1	"
Tin	0.02	0.3	-	
Zinc	0.01	0.001	0.0002	H
ORGANIC PARAMETER				
Carbon Total Organic	0.5	0.5	L	mg/L

	EC Lab	EC Lab	EC Lab	EC Lab	EC Lab		
	FR0018	FR0020	FR0022	FR0024	FR0026	Average	Std Dev
	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	of 5 Reps	of 5 Reps
Units	Rep 2	Rep 3	Rep 5	Rep 7	Rep 9		
	93-02-10	93-02-10	93-02-10	93-02-10	93-02-10		
	49 - 8 86	49 - 8 86	49 - 8 86	49 - 8.86	49 - 8.86		
	145 - 1.75	125 - 1.75	125 - 1.95	125 - 1.75	1.25 1.50		
-	-	-	-	-	-	-	-
deg C	-	-	-	-	-	-	-
	•	-	•	-	•		
	7.51	7.53	7.53	7.57	7.59	7.55	0.03
	-	-	-	-	-	-	•
uS/cm	726.0	572.0	482.0	380.0	290.0	490.00	169.25
uS/cm	-	-	-	-	-	-	•
mg/L	40	30	40	40			8.94
	390		260				86.14
mg/L CaCO3	103	92	86.6	77	69	85.52	13.17
mg/L CaCO3	47	47	47	47	47	47.00	0.00
-	160	118	93.3	77.1	50	99.68	41.81
	0.06	0.05	0.05	0.05	0.05	0.05	0.00
	30.0	26.0	23.8	20.5	16.8	23.42	5.06
	0.100	0.112	0.000	0.000	0.076	0.10	0.01
mg N/L	0.102	0.115	0.099	0.090	0.070	0.10	0.01
		0.100	0 100	0.100	0.100	0.10	0.00
							0.00
mg P/L				· ·			0.00
	0.041	0.057	0.070	0.039	0.048	0.00	0.01
1							
mg/L	0.75	0.85	0.96	0.76	0.63	0.79	0.12
"	-	-	-	•	-	-	•
	0.02	0.02	0.02	0.02		1 I	0.07
	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0000
	18.1	18.0	18.2	17.3	16.8	17.68	0.61
	0.0016	0.0019	0.0023	0.0018	0.0015	0.0018	0.0003
-	0.0007	0.0008	0.0008	0.0006	0.0005	0.0007	0.0001
"	0.0028	0.0029	0.0044	0.0026	0.0022	0.0030	0.0008
-	1.18	1.44	1.61	1.28	1.04	1.31	0.22
H	0.0003	0.0004	0.0008	0.0004	0.0006	0.0005	0.0002
	14.00	11.40		1	6.60	10.04	2.86
	0.0321	0.0362	0.0398	0.0329	0.0292	0.0340	0.0041
	<	<	<		<	-	
	0.0007	0.0008	0.0007	0.0007	0.0007	0.0007	0.0000
	0.0200	0.0024	0.0028	0.0021	0.0019	0.0058	0.0079
		- 1	-	-	-	-	
	.	-	-	-		-	
	.	-	-	.		.	
	97.2	72.7	58.8	43.9	29.6	60.44	26.12
		-	-	.	.		
	0.004	0.005	0.005	0.004	0.003	0.004	0.001
			ļ				<u></u>
	mg/L deg C " uS/cm uS/cm mg/L " mg/L CaCO3 mg/L " " mg N/L " " mg P/L " " " " " " " " " " " " " " " " " " "	Units FR0018 Tilbury Rep 2 93-02-10 49 - 8.86 123 - 1.93 mg/L deg C " uS/cm mg/L mg/L 2 uS/cm mg/L mg/L 40 " ng/L CaCO3 mg/L CaCO3 mg/L 0.06 " 0.102 " 0.102 " 0.102 " 0.102 " 0.102 " 0.010 " 0.020 " 0.021 " 0.0007 0.0028 1.18 0.0007 0.0020 " " 0.0200 " " 0.0007 0.0028 1.18 0.0007 0.0200 "	Units FR0018 Tilbury Rep 2 93-02-10 FR0020 Tilbury Rep 3 93-02-10 49 - 8.86 123 - 1.93 49 - 8.86 123 - 1.93 49 - 8.86 123 - 1.93 mg/L deg C - - " 7.51 7.51 7.53 7.53 uS/cm 726.0 572.0 uS/cm - - mg/L 40 30 300 mg/L CaCO3 47 47 mg/L 103 922 mg/L 0.06 0.05 mg/L 0.102 0.113 " 0.190 0.190 mg N/L 0.102 0.113 " 0.041 0.057 mg P/L 0.019 0.185 " - - " 0.001 0.001 mg/L 0.75 0.855 " - - " 0.002 0.002 mg/L 0.075 0.855 " - - " 0.0016 0.0019	FR0018 FR0020 FR0022 Units Rep 2 Rep 3 Rep 5 93-02-10 93-02-10 93-02-10 93-02-10 49 - 8.86 123 - 1.93 123 - 1.93 123 - 1.93 mg/L - - - deg C - - - mg/L - - - uS/cm 7.51 7.53 7.53 mg/L 40 30 40 " 726.0 572.0 482.0 uS/cm - - - mg/L 40 30 40 " 726.0 572.0 482.0 uS/cm - - - mg/L 40 30 40 " 390 310 260 mg/L 0.06 0.05 0.05 " 0.190 0.190 0.190 mg/L 0.102 0.113 0.099 " 0.021<	FR0018 FR0020 FR0022 FR0024 FR0024 Units Rep 2 Rep 3 Rep 5 Rep 5 Rep 7 93-02-10 93-02-10 93-02-10 93-02-10 93-02-10 mg/L 49 - 8.86 123 - 1.93 123 - 1.93 123 - 1.93 123 - 1.93 mg/L - - - - - deg C - - - - ng/L 7.51 7.53 7.53 7.57 uS/cm - - - - us/cm 726.0 572.0 482.0 380.0 us/cm - - - - mg/L 40 30 40 40 "asyle 300 310 260 210 mg/L 0.06 0.05 0.05 0.05 mg/L 0.102 0.113 0.099 0.900 "mg/L 0.102 0.113 0.099 0.0190	FR0018 FR0020 FR0022 FR0024 FR024 FR025 Statury Rep 5 Statury Rep 7 Statury Statury<	FR018 FR020 FR022 FR024 FR024 FR026 Average of 5 Reps Units Rep 2 93-02-10

•

Lab ID		EC Lab						
Client ID		FR0018	FR0020	FR0022	FR0024	FR0026	Average	Std Dev
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	of 5 Reps	of 5 Reps
	Units	Rep 2	Rep 3	Rep 5	Rep 7	Rep 9		
Sampled On:		93-02-10	93-02-10	93-02-10	93-02-10	93-02-10		
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86		
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93		
Physical Tests:								
Dissolved Oxygen	mg/L	•	-	-	-	•	•	-
Water Temerature	deg C	-	-	-	-	•	-	-
Air Temperature	-	•	-	-	•	•	-	•
pH		7.51	7.53	7.53	7.57	7.59	7.55	0.03
Field pH		-		-	-	-	-	-
Specific Conductance (SC)	uS/cm	726.0	572.0	482.0	380.0	290.0	490.00	169.25
Field SC	uS/cm	-	-	-		-	•	-
Suspended Solids (NFR)	mg/L	40	30	40	40	20	34.00	8.94
Dissolved Solids (FR)	n	390	310	260	210	170	268.00	86.14
Hardness Total	mg/L CaCO3	103	92	86.6	77	69	85.52	13.17
Anions:		47	47	47	47	47	47.00	0.00
Alkalinity Total @ pH 4.5	mg/L CaCO3	160		1		50		41.81
Chloride Dissolved	mg/L			1	1	0.05		0.00
Fluoride Dissolved		0.06		1		16.8		5.06
Sulfate		30.0	26.0	23.8	20.5	10.8	25.72	5.00
Nutrients:								
Nitrogen Amm.Diss(N)	mg N/L	0.102	0.113	0.099	0.090	0.076	0.10	0.01
Nitrogen Kjel.Tot(N)	1 "	-	-	-	• •	•	•	
Nitro NO3+NO2 D	*	0.190	•	1		1		0.00
Phosphorus Dissolved	mg P/L	0.019				1	(0.00
Phosphorus Total	14	0.041	0.057	0.070	0.059	0.048	0.06	0.01
TOTAL METALS								
Aluminum	mg/L	0.75	0.85	0.96	0.76	0.63	0.79	0.12
Arsenic	"	.	. .			-	-	
Barium		0.02	0.02	0.02	0.02	0.17	1	0.0
Cadmium		0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.000
Calcium		18.1	18.0	18.2	17.3	16.8	17.68	0.6
Chromium		0.0016	0.0019	0.0023	0.0018	0.0015	0.0018	0.000
Cobalt		0.0007	0.0008	0.0008	0.0006	0.0005	0.0007	0.000
Copper		0.0028	0.0029	0.0044	0.0026	0.0022	0.0030	0.000
Iron	"	1.18				1.04	1.31	0.2
Lead		0.0003			0.0004	0.0006	0.0005	0.000
Magnesium		14.00			8.20			2.8
Manganese		0.0321		1	1	1	0.0340	0.004
Mercury		<	<	<	< <	< <	< -	
Molybdenum		0.0007	0.0008	0.0007	0.0007	0.0007	0.0007	0.000
Nickel		0.0200				1	1	0.007
Potassium		1			-	-		
Selenium	"	.		-1	_] .	-	. -	
Silver	-		.	-	-1	-	- -	1
Sodium	.	97.2	2 72.3	58.	43.9	29.6	60.44	26.1
Tin								
Zinc	-	0.004	0.00	5 0.00	5 0.004	0.003	0.004	0.00
ODCANIC BADAMETERS.					·		<u> </u>	
ORGANIC PARAMETERS: Carbon Total Organic	mg/L		3 :	3	3 3	3 :	2.98	0.0

.

Lab ID	1	Zenon	Zenon	Zenon	Zenon	Zenon		· · · · ·
Client ID		FR0019	FR0021	FR0023	FR0025	FR00027	Average	Std Dev
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	of 5 Reps	of 5 Reps
5112	Units	Rep 1	Rep 4	Rep 6	Rep 8	Rep 10		
Sampled On:	0	93-02-10	93-02-10	93-02-10	93-02-10	93-02-10		
Sampled On.		22-10	JJ-02-10	22-10	35-02-10	33-02-10		
Latitude (N)		49 - 8.86	49 - 8.86	49 • 8.86	49 - 8.86	49 - 8.86		
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93		
Physical Tests:								
Dissolved Oxygen	mg/L	•	-	-	-	-	-	•
Water Temerature	deg C	•	-	-	•	-	•	-
Air Temperature	"	-	-	-	-	-	•	-
рН		7.70	7.60	7.60	7.70	7.60	7.64	0.05
Field pH		•		-	-	-	-	-
Specific Conductance (SC)	uS/cm	667.0	505.0	474.0	321.0	287.0	450.8	153.2
Field SC	uS/cm	-	-	-	-	-	-	-
Suspended Solids (NFR)	mg/L	37	53	55	49	35	45.8	9.2
Dissolved Solids (FR)	۳	356	272	247	175	153	240.6	81.1
Hardness Total	mg/L CaCO3	95.9	84.1	81.3	67.7	62.6	78.32	13.3
Anions:								
Alkalinity Total @ pH 4.5	mg/L CaCO3	49.3	49.4	49.2	49.3	42.3	48	3
Chloride Dissolved	mg/L	153	109	100	5.7	47.2	83	57.3
Fluoride Dissolved		<	<	<	<	0.10	1	-
Sulfate	"	27.5	21.2	19.6	13.7	12.4	18.88	6.1
Nutrients:								
Nitrogen Amm.Diss(N)	mg N/L	0.076	0.093	1	0.055		1	0.015
Nitrogen Kjel.Tot(N)	1 "	0.26	0.24	1	4	0.17	1	0.04
Nitro NO3+NO2 D		0.190	0.200			1		0.008
Phosphorus Dissolved	mg P/L	0.017	0.020			0.016		0.002
Phosphorus Total		0.051	0.043	0.047	0.032	0.037	0.042	0.008
TOTAL METALS								
Aluminum		0.60	0.79	0.78	0.67	0.11	0.59	0.28
Arsenic	mg/L	0.00	<	1				0.20
		0.02	0.02				0.02	•
Barium								
Cadmium Calcium		<	<		1			0.9
		17.3	16.7	1			10.24	0.9
Chromium		<	<				-	•
Cobalt		<	<				-	
Copper		0.0030	0.0040		1	1	•	0.0008
Iron		1.04	1.39	1	1	0.32	1.06	0.44
Lead		<pre></pre>	<pre></pre>	<				
Magnesium		12.80						2.71
Manganese		0.0320	0.0400	0.0400	0.0350	0.0200	0.0334	0.0082
Mercury		<	<	<	<	<	•	
Molybdenum		<	<	1	1		1	
Nickel		<	1	1			1	0.0035
Potassium		3.7	1	1		1	1	0.8
Selenium		<	<	1		<pre></pre>		
Silver		<	<					ŀ
Sodium		77.9			1	25.7	48.2	21.2
Tin		0.03		1	<	<	•	
Zine		<	<	<	. <	 	-	
		ļ	1	Į	<u> </u>	ļ	 	1
ORGANIC PARAMETERS:	_			-				
Carbon Total Organic	mg/L	3	2	2	2	3	2	

-

		4.01	4.01	ASL	ASL	ASL	ASL	Average	Std Dev
Lab ID		ASL FR0143	ASL FR0144	FR0145	FR0146	FR0147	FR0148	of 6 Reps	of 6 Reps
Client ID		1	1	1	Tilbury		Tilbury	of o Reps	of 6 Keps
SITE		Tilbury	Tilbury	Tilbury		Tilbury			
	Units	Replicate	Replicate	Replicate	Replicate 93-08-24	Replicate 93-08-24	Replicate 93-08-24		
Sampled On:		93-08-24	93-08-24	93-08-24	93-08-24	93-08-24	93-08-24		
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86		
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93		
Physical Tests:									
Dissolved Oxygen	mg/L	9.0		-	.	-	-		
Water Temerature	deg C	17.2			.	-	-	-	
Air Temperature		15.8			.			-	
pH		7.71	7.72	7.71	7.72	7.73	7.70	7.72	0.01
Field pH		7.5							
Specific Conductance (SC)	uS/cm	104.0	105.0	105.0	120.0	104.0	104.0	107.60	6.95
			105.0	105.0	120.0	104.0	104.0	107.00	0.72
Field SC	uS/cm	88						32.40	1.34
Suspended Solids (NFR)	mg/L	35	31	31	34	33	33		
Dissolved Solids (FR)		56	57	55	1	57	55	57.20	2.86
Hardness Total	mg/L CaCO3	50.7	51.2	50.9	50.8	51.4	50.7	51.00	0.29
Anions:									
Alkalinity Total @ pH 4.5	mg/L CaCO3	41	41.6	40.7	42	41.1	41.5	41.38	0.50
Chloride Dissolved	mg/L	1.8	1.8	1.7	6(5.5)	1.8	1.8	1.78	0.05
Fluoride Dissolved	"	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.00
Sulfate		8.2	8.4	7.9	9.1	9.2	6.8	8.28	0.98
Nutrients:									
Nitrogen Amm.Diss(N)	mg N/L	0.009	0.009	0.011	0.005	0.008	0.009	0.008	0.002
	mg N/L	0.003	0.14	0.17	0.17	0.16	0.11	0.008	0.002
Nitrogen Kjel.Tot(N) Nitro NO3+NO2 D		0.025	0.025	0.077	0.020	0.032	0.022	0.035	0.024
	D/L				1			0.035	0.003
Phosphorus Dissolved	mg P/L	0.020	0.019	0.012	1	0.013	0.013	0.013	0.003
Phosphorus Total		0.043	0.039	0.044	0.043	0.043	0.029	0.040	0.000
TOTAL METALS									
Aluminum	mg/L	0.30	0.30	0.30	0.33	0.33	0.32	0.313	0.015
Arsenic		0.0005	0.0004	0.0004	0.0005	0.0005	0.0004	0.0005	0.0001
Barium		0.02	0.02	0.02	0.02	0.02	0.02	0.015	0.000
Cadmium	"	<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	-	•
Calcium	"	15.40	15.60	15.50	15.40	15.60	15.40	15.48	0.10
Chromium		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	•	
Cobalt	"	<0.015	<0.015	<0.015	< 0.015	<0.015	< 0.015	•	-
Copper	-	0.002	0.002	0.004	0.002	0.002	0.002	0.002	0.001
Iron		0.34	0.34	0.34		0.36	0.37		0.013
Lead	"	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001		
Magnesium	-	2.97	3.00	2.98	L	3.01	2.96	2.982	0.019
Manganese		0.024	0.024	0.025	0.025	0.024	0.026	0.025	0.001
Mercury		< 0.00005	<0.00005	<0.00005	< 0.00005	-0.00005	<0.00005		
Molybdenum		<0.0000	<0.0003	<0.0003	<0.001	<0.001	<0.0003		
Nickel		0.001	0.001	< 0.001	<0.001	0.001	< 0.001	0.001	0.000
Potassium		<2	<2	<0.001	<0.001	<2	<2	0.001	0.000
Selenium		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	· ·	
Silver		< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	-	
									~
Sodium		2.9	2.9	2.9	2.9	2.9	2.9	2.9	0.0
Tin		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	'	
Zinc		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	
ORGANIC PARAMETERS:									
Carbon Total Organic	mg/L	2.0	2.0	2.0	2.1	2.1	2.1	2.0	0.1

۰.

_

Lab ID Client ID SITE Sampled On: Latitude (N) Longitude (W) Physical Tests: Dissolved Oxygen Water Temerature	Units mg/L deg C	Zenon FR0004 Oak Rep 1 93-01-25 49 - 12.11 123 - 7.15	Zenon FR0005 Oak Rep 2 93-01-25 49 - 12.11 123 - 7.15	Zenon FR0006 Oak Rep 3 93-01-25 49 - 12.11 123 - 7.15	Zenon FR0007 Oak Rep 4 93-01-25 49 - 12.11	Zenon FR0008 Oak Rep 5 93-01-25 49 - 12.11	Average of 5 Reps	Std Dev of 5 Reps
SITE Sampled On: _atitude (N) _ongitude (W) Physical Tests: Dissolved Oxygen Water Temerature	mg/L.	Oak Rep 1 93-01-25 49 - 12.11	Oak Rep 2 93-01-25 49 - 12.11	Oak Rep 3 93-01-25 49 - 12.11	Oak R e p 4 93-01-25	Oak Rep 5 93-01-25		
Sampled On: _atitude (N) _ongitude (W) Physical Tests: Dissolved Oxygen Water Temerature	mg/L.	Rep 1 93-01-25 49 - 12.11	Rep 2 93-01-25 49 - 12.11	Rep 3 93-01-25 49 - 12.11	Rep 4 93-01-25	Rep 5 93-01-25		
Latitude (N) Longitude (W) Physical Tests: Dissolved Oxygen Water Temerature	mg/L.	93-01-25 49 - 12.11	93-01-25 49 - 12.11	93-01-25 49 - 12.11	93-01-25	93-01-25		
Latitude (N) Longitude (W) Physical Tests: Dissolved Oxygen Water Temerature		49 - 12.11	•	49 - 12.11				
Longitude (W) Physical Tests: Dissolved Oxygen Water Temerature			•		49 - 12.11	49 - 12 11	└──── <u></u>	
Physical Tests: Dissolved Oxygen Water Temerature		123 - 7.15	•	123 - 7.15			1	
Dissolved Oxygen Water Temerature					123 - 7.15	123 - 7.15	i	
Dissolved Oxygen Water Temerature							1	
Water Temerature		-	-					
	deg C		- 1	-	-	•		-
1. T		-	-	-	•			-
Air Temperature		-	-	-	•	-	-	-
н		7.40	7.40	7.40	7.40	7.40	7.40	0.00
Field pH		-	-	-	-	-	-1	-
Specific Conductance (SC)	uS/cm	3900.0	3770.0	3970.0	3670.0	3970.0	3856.00	132.21
Field SC	uS/cm	-	-	-	-	-	-	-
Suspended Solids (NFR)	mg/L	21	18	17	14	16	17.20	2.59
Dissolved Solids (FR)		2270	2200	2310	2120	2310	2242.00	81.67
Hardness Total	mg/L CaCO3	395	392	419	366	394	393.20	18.78
Anions:								
Alkalinity Total @ pH 4.5	mg/L CaCO3	54.4	54.3	54.6	54.1	54.5	54.38	0.19
Chloride Dissolved	mg/L	1100	1070	1140	1050	1130	1098.00	38.34
fluoride Dissolved	"	0.11	0.13	0.13	0.13	0.13	0.13	0.01
Sulfate		161.0	163.0	183.0	177.0	179.0	172.60	9.94
Nutrients:							i 1	
Nitrogen Amm.Diss(N)	mg N/L	0.085	0.088	0.096	0.093	0.086	0.090	0.005
Nitrogen Kjel. Tot(N)		0.35	0.36	0.35	0.34	0.34	0.35	0.01
Nitro NO3+NO2 D		0.270	0.270	0.270	0.280	0.270	0.272	0.004
Phosphorus Dissolved	mg P/L	0.019	0.020	0.015	0.021	0.019	0.019	0.002
Phosphorus Total		0.065	0.064	0.062	0.056	0.063	0.062	0.004
•								
TOTAL METALS	1							
Aluminum	mg/L	0.57	0.51	0.45	0.45	0.26	0.45	0.12
Arsenic	, , , , , , , , , , , , , , , , , , ,	0.0020	0.0010	<	<	0.0010	0.00	0.00
Barium	•	0.02	0.02	0.02	0.02	0.02	0.02	0.00
Cadmium		<	<	<	<	<		-
Calcium		43.4	43.3	45.4	41.1	43.3	43.30	1.52
Chromium	"	<	<	<	<	<		
Cobalt	•	<	<	<	<	<	.	-
Copper		0.005	-	0.006	0.005	0.006	0.006	0.001
ron		0.90	0.87	0.79	0.78	0.56	0.78	0.13
ead.		<	<	<	<	<		
Magnesium		69.60	68.90	74.30	64.00	69.50	69.26	3.65
Manganese	"	0.042	0.042	0.041	0.040	0.039	0.041	0.001
Mercury		5.07£	<	<	<	0.039 c	0.041	0.001
Molybdenum		<		<	<			
Nickel		<	0.006	0.006	<	<	0.006	0.000
Potassium		20.3	19.8	21.6	18.5	20.0	20.04	1.11
Selenium		د.v2 >	17.0 ~	< 21.0	18.5	20.0	20.04	1.11
Silver		<		<	/			•
Sodium		513	511	554	495	517	518.00	21.79
lin		> 213	0.03	0.04	495	/10	0.04	21.75
Zinc		0.015	0.03	0.04	<	0.012	0.04	0.01
		0.015	0.019	0.015		0.012	0.015	0.003
DRGANIC PARAMETERS:	+		1				├───┤	
Carbon Total Organic	mg/L	3	3	3	3	3	3	c

-

Lab ID	· · · · · · · · · · · · · · · · · · ·	ASL	ASL	ASL	ASL	ASL	ASL	Average	Std Dev
Client ID		FR0131	FR0132	FR0133	FR0134	FR0135	FR0136	of 6 Reps	of 6 Reps
SITE		Oak	Oak	Oak	Oak	Oak	Oak		-
SIL	Units	Replicate	Replicate	Replicate	Replicate	Replicate	Replicate		
Sampled On:	Cinta	93-08-23		93-08-23	93-08-23	93-08-23	93-08-23		
Latitude (N)		49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11		
		123 - 7.15	123 - 7.15		123 - 7.15	123 - 7.15	123 - 7.15		
Longitude (W)		123 - 7.15	125 - 7.15	125 - 7.15	125 - 7.15	125 - 7.15	145 - 7.15		
Physical Tests:									
Dissolved Oxygen	mg/L	8.4	•	-	•	-	-	-	-
Water Temerature	deg C	18.5	-	•	-	-	-	-	-
Air Temperature	"	16.5	-	-	-	-	-	-	-
рН		7.40	7.45	7.45	7.45	7.45	7.45	7.45	0.00
Field pH		7.5	-	•	•	-	-		-
Specific Conductance (SC)	uS/cm	97.7	97.9	97.7	97.7	98.0	98.2	97.90	0.21
Field SC	uS/cm	90	-	•	-	-	-	-	-
Suspended Solids (NFR)	mg/L	22	22	21		22	25	23.00	1.87
Dissolved Solids (FR)	"	51	51	52	52	52	53	52.00	0.71
Hardness Total	mg/L CaCO3	44.8	44.3	46.6	46.2	46.6	46.2	45.98	0.96
Anions:									
Alkalinity Total @ pH 4.5	mg/L CaCO3	37.4	38.3	38	37.7	38	41.8	38.76	1.71
Chloride Dissolved	mg/L cacos	1.6	1.4	1.5			1.1	1.44	0.21
Fluoride Dissolved	mg/L	0.04	0.04	0.04	1		1	1 1	0.00
		7.6	7.7	7.5		1	7.5	7.56	0.13
Sulfate		7.0	1.7		, ,,	/.4		1.50	0.15
Nutrients:									
Nitrogen Amm.Diss(N)	mg N/L	<0.005	<0.005	<0.005		4	< 0.005		-
Nitrogen Kjel.Tot(N)	"	0.20	0.14	0.19	1	0.21	0.13	0.16	0.03
Nitro NO3+NO2 D	"	0.027	0.027	0.027	1	1	0.025	0.028	0.004
Phosphorus Dissolved	mg P/L	0.012	0.013	0.013	1		0.013		0.000
Phosphorus Total	"	0.061	0.045	0.044	0.044	0.041	0.045	0.044	0.002
TOTAL METALS									
Aluminum	mg/L	0.27	0.27	0.27	0.27	0.27	0.27	0.270	0.000
Arsenic		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0000
Barium		0.02	0.02	0.02	0.02			0.015	0.000
Cadmium		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	
Calcium	-	13.60	1	14.20				13.95	0.31
Chromium		< 0.001	< 0.001	< 0.001			< 0.001		
Cobalt		<0.015	< 0.015	< 0.015		1	<0.015		
Copper	-	0.001	0.002	0.002		ļ		0.002	0.000
Iron		0.39	1	1		1	1		0.024
Lead		<0.001	0.002	0.001				•	
Magnesium		2.64		2.72	1				0.05
Manganese		0.024		0.025	1				0.001
Manganese Mercury		<0.00005			1				0.001
Molybdenum		<0.001	<0.000	<0.0003				• •	
Nickel		0.001	0.001	0.001			1		0.000
Potassium		<2				1		1 1	0.000
		<0.0005				1			•
Selenium			1	<0.0003	1				
Silver		< 0.0001		1	1				0.1
Sodium		2.8	•						0.1
Tin	_	<0.3	1	1			1		
Zinc	"	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
ORGANIC PARAMETERS:		†		<u> </u>	1				
Carbon Total Organic	mg/L	1.9	1.9	1.9	1.9	1.9	2.0	1.9	0.0

--

_

Laboratory	·		Zenon FR0042	Zenon FR0045	Zenon FR0178	Zenon FRO179
Client ID						
SITE			Tilbury	Tilbury	Oak	Oak
				duplicate		duplicate
Co			93-02-22		93-10-19	
Sampled on:	MDL	UNITS	93-02-22		33-10-13	
Chlorophenolics:	MDL	UNITS				
Pentachlorophenol	0.000001	mg/L	<	<	~ ~	
2,3,4,6+2,3,5,6-Tetrachlorophenol	0.000001	111E/L	· <		<	
2,3,4,5-Tetrachlorophenol		H	<	<	<	
3,4,5-Trichlorophenol		N	<	<	<	•
2,3,4-Trichlorophenol	и		<	<	<	
2,3,5-Trichlorophenol	"		<	<	<	
2,3,6-Trichlorophenol	•	61	<	<	<	
2,4,5-Trichlorophenol		*	<	<	<	
2,4,6-Trichlorophenol	"	8	<	<	<	
2,4-Dichlorophenol	"	н	<	<	<	
2,6-Dichlorophenol		H	<	<	<	
2,5-Dichlorophenol	n	Ħ	<	<	<	•
3,5-Dichlorophenol	"	*	<	<	<	
2,3-Dichlorophenol	\$P	11	<	<	<	
3,4-Dichlorophenol	11	*	<	<	<	
4-Chlorophenol	н	*	<	<	<	
Tetrachloroguaiacol	0.000002	*	<	<	<	
3,4,5-Trichloroguaiacol	"	*	0.000007	0.000007	<	
3,4,6-Trichloroguaiacol		*	<	<	<	
4,5,6-Trichloroguaiacol	"	**	0.000003		<	
4,5-Dichloroguaiacol	"	51	0.000013	0.000014	<	
4,6-Dichloroguaiacol	"	*	<	<	<	
4-Chloroguaiacol			<	<	<	
5-Chloroguaiacol			<	<	< <	
6-Chloroguaiacol			0.000002		<	
Tetrachlorocatechol	·	н	0.000002	0.000002	<	
3,4,5-Trichlorocatechol			< 0.000000	< 0.000007	<	
3,4-Dichlorocatechol 3,5-Dichlorocatechol			~ ~	~ ~	~ ~	
4,5-Dichlorocatechol			0.000006		~	
4-Chlorocatechol			< 0.000000	< 0.000007	<	
Tetrachloroveratrole			~ ~	~ ~	<	
3,4,5-Trichloroveratrole		n	0.000005	-	<	
4,5-Dichloroveratrole		н	<	<	<	
2,6-Dichlorosyringaldehyde			<	<	. <	
2-Chlorosyringaldehyde	"		<	<	<	
3,4,5-Trichlorosyringol	"	н	<		<	
Trichlorotrimethoxybenzene	H		<	<	<	
5,6-Dichlorovanillin		n	0.000002	<	<	
6-Chlorovanillin		H	0.000008		<	
Nonylphenol	0.000005	"	<	<	<	
Surrogate Recovery		%				
d3-Dichlorophenol		**		91	56	
13C6-Pentachlorophenol		8		93	95	
13C6-Chloroguaiacol		"		82		
13C6-Trichloroguaiacol		*		90	89	
13C6-Tetrachloroguaiacol	ļ	и	ļ	92	102	
13C6-Dichlorocatechol	1	"		83	68	
13C6-Tetrachlorocatechol		"	 	86		
13C6-Chlorovanillin	<u> </u>	м	ļ	67	86	
Absorbable Organic Halides	· [· · · · · · · · · · · · · · · · · ·	L	ļ			
Lab ID	Zenon	Zenon	Zenon	Zenon	Zenon	Zenon
Client ID	FR0009	FR0012	FR0070	FR0072	FR0084	FR008
SITE	Mission	Mission	Mission	Mission	Oak	Oak
		duplicate		duplicate		duplicat
Sampled On:	93-01-25	93-01-25	93-04-19	93-04-19	93-05-17	93-05-11
	1			1	1	

Replicate Data: Chlorophenols and AOX

Replicate Data: Acids, Pesticides and PCBs

Laboratory	1		Zenon	Zenon	Zenon	Zenon
Client ID		<u>.</u>	FR0048	FR0050	FR0084	FR0086
SITE			Oak	Oak	Oak	Oak
······································				duplicate		duplicate
Sampled On:			93-02-23	93-02-22	93-05-17	93-05-17
	MDL	UNITS				
Resin and Fatty Acids						
Abietic Acid	0.0005	mg/L	<	<	<	<
Arachidic Acid		n	<	<	<	<
Behenic Acid	n		<	<	<	<
Chlorodehydroabietic	N	*	<	<	<	<
Dehydroabietic Acid	-	M	<	<	<	<
Dichlorodehydroabietic	H	**	<	<	_ <	<
Isopimaric Acid		61	<	<	<	<
Lauric Acid	*		<	<	<	<
Levo Pimaric Acid	n	H	<	<	<	<
Lignoceric Acid	n	14	<	<	<	<
Linoleic Acid	n	44	<	<	<	<
Linolenic Acid	11	11	<	<	<	<
Myristic Acid	н	1	<	<	<	<
Neoabietic Acid	H	P9	<	<	<	<
Oleic Acid	**	11	<	<	<	<
Palmitric Acid	н	n	<	<	<	0.0012
Palustric Acid	н	N	<	<	<	<
Pimaric Acid	"	11	<	<	<	<
Sandaraco Pimaric Acid	"		<	<	<	<
Stearic Acid	n	n	<	<	<	<
Surrogate Recovery						
Nonadecanoic Acid		%	50	48	74	63
Organochlorine Pesticide	s and PCBs					
Aldrin	0.000001	mg/L	<	<	<	<
BHC alpha-	H	"	<	<	<	<
BHC beta-	м		<	<	<	<
BHC delta-	er .		<	<	<	<
Chlordane alpha-	0.000005	**	<	<	<	
Chlordane gamma-	11	H	<	<	<	1
DDE pp'-	и	*	<		<	
DDD p p'-	**	**	0.000011	0.000007	<	<
DDT pp'-	11	Ħ	<	<	: <	<hr/>
Dieldrin			<	<	. <	
Endosulfan I		*	<	. <	: <	
Endosulfan II	"	Ħ	<	<	: <	
Endosulfan sulphate	0.00001	*	<	<	: <	
DDT op'-	0.000005	H	<	: <	: <	: < : <
Endrin	0.000005	n	<	: <	: <	: <
Hexachlorobenzene	0.0000005	n	0.000001	0.000001	<	: <
Heptachlor	0.000001	N N	<	: <	: <	<
Heptachlor epoxide	0.000002	"	<	: <	<	
Lindane BHC gamma-	0.000001		<		<	
Methoxychlor	0.00001	*	<	. <	1	
Mirex	0.00001	N	<	<	< <	
Nonachlor trans-	0.000005	N	<	< <	< <	: <
Oxychlordane	0.000005	*	<		< <	<
Toxaphene	0.00005	*	<	: <	< <	
PCBs - Total	0.00002	Ħ	<	: <	< <	
Surrogate Recovery		%	1		1	
Dibromobiphenyl		1	92	2 81		1

APPENDIX V

CROSS SECTION DATA, MAIN RIVER SITES

Water Quality in the Fraser River Estuary

Minimum Detection Limits for Total Metals Analysis

aboratory	Zenon	ASL	
	MDL	MDL	UNITS
	From: 93-01	From: 93-04	
	To: 93-03	To: 94-03	
Physical Tests:			~
Dissolved Oxygen			mg/L
Water Temperature			deg C
Air Temperature			•
pH			
Field pH			
Specific Conductance(SC)	1	0.2	uS/cm
Field SC		•	uS/cm
Suspended Solids (NFR)	4	1	mg/L
Dissolved Solids (FR)	4	1	
Hardness Total			mg/L CaCO
Anions:	1		
Alkalinity Total @ pH 4.5	0.5	0.5	mg/L CaCO
Chloride Dissolved	0.5	0.2	mg/L
Fluoride Dissolved	0.1	0.02	•
Sulfate	1	0.5	
Nutrients:			
Nitrogen Amm.Diss(N)	0.005	0.005	mg N/L
Nitrogen Kjel.Tot(N)	0.04	0.05	
Nitro NO3+NO2 D	0.02	0.005	
Phosphorus Dissolved	0.003	0.001	mg P/L
Phosphorus Total	0.003	0.001	
	<u> </u>		ļ
TOTAL METALS			
Aluminum	0.06	1	
Arsenic	0.001		•
Barium	0.001		
Cadmium	0.0001	0.0002	
Calcium	0.05	0.05	
Chromium	0.005	0.001	. •
Cobalt	0.004	0.015	. •
Copper	0.001	0.001	
Iron	0.05	5 0.03	. "
Lead	0.003	0.001	
Magnesium	0.02	0.01	
Manganese	0.002		5 "
Mercury	0.0000	1	5 "
Molybdenum	0.004		
Nickel	0.00	1	
Potassium	0.4		2 .
Selenium	0.0		5 "
Silver	0.0		
Sodium	0.4		2 "
Tin	0.0		
Zinc	0.0	1	
ORGANIC PARAMETEI	1		
IONOMING I MANING LUI	~~	1	1

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID		FR0097	FR0098	FR0099	FR0100	FR0101	FR0102
SITE		Mission	Mission	Mission	Mission	Mission	Mission
	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep.
Sampled On:		93-05-31	93-05-31	93-05-31	93-05-31	93-05-31	93-05-31
Latitude (N)		49 - 8.11	49 - 8.15	49 - 8.18	49 - 8.21	49 - 8.24	49 - 8.11
Longitude (W)		122 - 16.72	122 - 16.7	122 - 16.8	122 - 16.83	122 - 16.8	122 - 16.72
Physical Tests:				11.0		10.8	10.9
Dissolved Oxygen	mg/L	11.2	11.2	11.2	11 13.7	10.8	10.9
Water Temperature	deg C	13.9	13.8	13.8			15.4
Air Temperature		16.3	16.3	16.3	16.3	16.3	
pH		7.75	7.76	7.72	7.70	7.65	7.75
Field pH	e (7.3	7.2	7.3	7.2	7.2	7.4
Specific Conductance (SC)	uS/cm	94.0	97.9	92.5	90.3	83.8	87.9
Field SC	uS/cm	74	65	74	68	62	75
Suspended Solids (NFR)	mg/L	64	91	179	81	63	83
Dissolved Solids (FR)	64	46	51	45	44	40	47
Hardness Total	mg/L CaCO3	42.1	47.6	39.8	39.7	34.7	44.5
Anions:	- <u>A-N-</u>						
Alkalinity Total @ pH 4.5	mg/L CaCO3	39.9	40.9	38.7	37.3	33.8	40.1
Chloride Dissolved	mg/L	1.2	0.8	1.3	1.3	1.1	0.8
Fluoride Dissolved	<u>-</u>	0.03	0.03	0.03	0.03	0.03	0.03
Sulfate	H	5.5	6.4	5.8	6.1		5.9
Sullate							
Nutrients:			ĺ				
Nitrogen Amm.Diss(N)	mg N/L	0.007	1	1	<0.005		0.007
Nitrogen Kjel.Tot(N)	•	0.14	1	0.11	0.12	1	0.15
Nitro NO3+NO2 D	*	0.071	0.079	0.069	0.071		0.078
Phosphorus Dissolved	mg P/L	0.007	0.007	0.005	0.007		0.009
Phosphorus Total		0.108	0.099	0.082	0.066	0.061	0.08
TOTAL METALS							
Aluminum	mg/L	1.1	0.98	0.71	0.78	0.46	0.73
Arsenic		0.0007					0.000
Barium		0.024			0.022	1	0.023
Cadmium	•	<0.0002			<0.0002	1	<0.0002
Calcium		11.8		4	11.4	1	12.1
Chromium		0.002		4	0.001	1	0.00
		< 0.002	1			1	<0.01
Cobalt		1					0.00
Copper		0.004	0.004	0.004	0.004	0.002	0.00
Iron		0.001	0.001	0.001	0.001	<0.001	0.00
Lead	-	0.001			0.001		
Magnesium	-	3.05				1	
Manganese	-	0.054	4			1	
Mercury	-	< 0.00005	1		1		1
Molybdenum	-	< 0.001		1			<0.00
Nickel		0.004	1				
Potassium		<2					
Selenium	•	< 0.0005					1
Silver		0.0001		4	-		
Sodium	*	<2		-			1
Tin	•	<0.3				1	
Zinc	•	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00
ORGANIC PARAMETERS:			<u> </u>		<u> </u>		
Carbon Total Organic	mg/L	2.30	2.55	2.35	2.35	2.00	2.3

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID		FR0165	FR0166	FR0167	FR0168	FR0169	FR0170
SITE		Mission	Mission	Mission	Mission	Mission	Mission
	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep.
Sampled On:	Child	93-10-04	93-10-04	93-10-04	93-10-04	93-10-04	93-10-04
		33-10-04	33-10-01		222-10-04		
Latitude (N)		49 - 8.11	49 -8.15	49 - 8.18	49 - 8.21	49 - 8.24	49 - 8.11
Longitude (W)		122 - 16.7	122 - 16.75	122 - 16.80	122 - 16.83	122 - 16.86	122 - 16.72
		122 - 10.7	122 - 10.75	122 - 10.80	122 - 10.85	122 - 10.80	122 - 10.72
Physical Tests:				-			
Dissolved Oxygen	mg/L	9.6	9.5	9.5	9.5	9.5	9.6
Water Temperature	deg C	13.9	13.9	13.9	13.9	14	13.9
Air Temperature	N	13.8	13.8	13.8	13.8	13.8	13.8
pH		7.26	7.43	7.48	7.45	7.49	7.54
Field pH		7.75	7.7	7.75	7.8	7.75	7.75
Specific Conductance (SC)	uS/cm	125	123	131	122	123	121
Field SC	uS/cm	120	118	117	117	118	119
Suspended Solids (NFR)	mg/L	5	4	4	2	10	6
Dissolved Solids (FR)	- W	68	70	67	67	66	67
Hardness Total	mg/L CaCO3	61.9	62.7	62.2	60	59.2	60.8
Anions:	·						
Alkalinity Total @ pH 4.5	mg/L CaCO3	50.9	53.9	50.2	50.7	48.7	50.5
Chloride Dissolved	mg/L	1.5	1.4	1.4	1.3	1.4	1.5
Fluoride Dissolved	"	0.03	0.03	0.03	0.03	0.04	0.03
Sulfate		10.3	10.4	9.9	10.4	10.2	10.3
Nutrients:							
Nitrogen Amm.Diss(N)	mg N/L	0.043	0.043	0.043	0.043	0.047	0.044
Nitrogen Kjel.Tot(N)	"	0.174	0.187	0.2	0.238	0.234	0.189
Nitro NO3+NO2 D	"	0.047	0.047	0.039	0.039	0.038	0.043
Phosphorus Dissolved	mg P/L	0.01	0.011	0.01	0.008	0.01	0.01
Phosphorus Total	••	0.015	0.016	0.015	0.015	0.015	0.016
TOTAL METALS							
Aluminum	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic		0.0005	0.0004	0.0004	0.0004	0.0004	0.0004
Barium		0.000	0.015	0.015	0.014	0.016	0.016
Cadmium		<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002
Calcium		18.3	<0.0002	18.6	17.8	<0.0002	-0.0002
Chromium		< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt		<0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001
-							
Copp er Iron		< 0.001	0.002	0.002	0.001	0.002	0.001
Lead		0.103	0.114 <0.001	0.091	0.199	0.164	0.102 <0.001
	-	< 0.001		< 0.001	0.002	0.002	
Magnesium		3.97	3.94	3.82	3.78	3.69	3.84
Manganese		0.012	0.011	0.011	0.013	0.015	0.012
Mercury	-	< 0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Molybdenum		< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Nickel		< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Potassium		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Selenium		< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silver		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sođium		3.6	3.6	3.5	3.5	3.4	3.4
Tin		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Zinc	*	<0.001	0.002	0.004	0.003	0.002	0.001
ODCIANICIDADANCETEDO		<u> </u>					
ORGANIC PARAMETERS: Carbon Total Organic	mg/L	2.09	2.09	2.14	2.14	2.14	2.19
Calori I Gan O'Banic	шg/с	2.09	2.09	2.14	2.14	2.14	2.19

		ASL	ASL	ASL	ASL	ASL	ASL
Lab ID		FR0229	FR0230	FR0231	FR0232	FR0233	FR0234
Client ID		Mission	Mission	Mission	Mission	Mission	Mission
SITE	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep.
	Units	A-sec 1 94-02-07	94-02-07	94-02-07	94-02-07	94-02-07	94-02-07
Sampled On:		94-02-07	94-02-07	34-02-07			
		49 - 8.11	49 -8.15	49 - 8.18	49 - 8.21	49 - 8.24	49 - 8.11
Latitude (N)		122 - 16.72	122 - 16.75	122 - 16.80	122 - 16.83	122 - 16.86	122 - 16.72
Longitude (W)		122 - 10.72	122 - 10.75	122 - 10.00	122 - 10.05		
Physical Tests:							
Dissolved Oxygen	mg/L	12.8	12.6	12.7	12.8	12.8	12.7
Water Temperature	deg C	1.1	1	1	0.9	1	1
Air Temperature		-4	-4	-4	-4	-4	-4
pH		7.28	7.51	7.5	7.54	7.54	7.51
Field pH		7.45	7.45	7.4	7.5	7.55	7.4
Specific Conductance (SC)	uS/cm	141	137	135	136	132	132
Field SC	uS/cm	78	76	76	76	76	77
Suspended Solids (NFR)	mg/L	12	7	8	9	11	7
Dissolved Solids (FR)	"	84	85	87	86	86	86
Hardness Total	mg/L CaCO3	55.2	58.3	58.4	58.7	58.6	58.7
Anions:							
Alkalinity Total @ pH 4.5	mg/L CaCO3	53.4	52.6	53.7	52.3	52.1	53.3
Chloride Dissolved	mg/L	2	1.9	1.9	1.9	1.8	1.8
Fluoride Dissolved		0.04	0.04	0.04	0.04	1	0.04
Sulfate	*	9.5	9.4	10.1	9.8	10.1	9.2
Nutrients:							
Nitrogen Amm.Diss(N)	mg N/L	0.017	0.014	0.031	0.015	0.015	0.019
Nitrogen Kjel. Tot(N)	" "	0.17	0.17	0.16	0.17	0.15	0.18
Nitro NO3+NO2 D		0.14	0.134	0.133	0.129		0.139
	mg P/L	0.015	0.015	0.015	0.015		0.015
Phosphorus Dissolved Phosphorus Total	mg r/L	0.029	0.027	0.029	0.028		0.027
riosphorus rotat		0.025	0.027				
TOTAL METALS							
Aluminum	mg/L	<0.20	<0.20	<0.20	0.21		<0.20
Arsenic	11	0.0006	0.0006	0.0005	0.0007		
Barium		0.019	0.019	0.019	0.018		1
Cadmium	•	<0.0002	<0.0002	<0.0002	<0.0002	1	
Calcium	*	15.6	16.6	16.6	16.7	1	
Chromium	•	0.001	0.001	0.001	<0.001		0.001
Cobalt	*	<0.015	<0.015	<0.015	<0.015		
Copper		0.002	0.002	0.002	<0.001		
Iron	•	0.212	0.195	0.199	0.174		1
Lead		<0.001		<0.001	<0.001		
Magnesium	**	3.93	4.11	4.11	4.12		
Manganese	•	0.019	0.017	0.017	0.018		1
Mercury	*	<0.00005	<0.00005	<0.00005	<0.00005	< 0.00005	
Molybdenum		<0.001	<0.001	0.001	<0.001	<0.001	<0.00
Nickel		<0.001	< 0.001	<0.001	<0.001	<0.001	<0.00
Potassium		<2.0		<2.0	<2.0	<2.0	<2.0
Selenium		<0.0005		<0.0005		< 0.0005	<0.000
Silver	*	<0.0001				<0.0001	<0.000
Sodium	•	3.6			1		
Tin	**	<0.30			1	1	
Zinc		0.002					1
							<u> </u>
ORGANIC PARAMETERS:	_				2.7	2.8	2.4
Carbon Total Organic	mg/L	2.7	2.7	2.7	2.1	2.0	<u> </u>

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon	Zenon
Client ID		FR0059	FR0060	FR0061	FR0062	FR0063	FR0064
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
	Units	X-sec I	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep
Sampled On:		93-03-09	93-03-09	93-03-09	93-03-09	93-03-09	93-03-09
					40.000	40 0.04	49 - 8.76
Latitude (N)	1	49 - 8.76	49 - 8.81	49 - 8.86	49 - 8.90	49 - 8.94	
Longitude (W)		123 - 1.81	123 - 1.85	123 - 1.93	123 - 1.99	123 - 2.04	123 - 1.81
Physical Tests:		<u>.</u>					
Dissolved Oxygen	mg/L	-	-	8.8			
Water Temperature	deg C	-	-	5.2			
Air Temperature		•	-	8			1
pH		7.5	7.6	7.6	7.5	7.6	7.6
Field pH		-	-	7.45			
Specific Conductance (SC)	uS/cm	289	188	160	159	174	208
Field SC	uS/cm		-	100			
Suspended Solids (NFR)	mg/L	62	69	53	45	49	63
Dissolved Solids (FR)	111 <u>8</u> /L	159	111	96	81		
		66.1	58.9	56	55.2	1	
Hardness Total	mg/L CaCO3	00.1	20.9	00	2.2		00.1
Anions:							
Alkalinity Total @ pH 4.5	mg/L CaCO3	46.7	46.6	46	45.9	45.9	1
Chloride Dissolved	mg/L	47.1	20.2	12.2	11.9	1	
Fluoride Dissolved	-	<	<	<	<	1	
Sulfate	*	18.8	15.5	14.6	14.5	14.9	16.3
Nutrients:		. <u></u> .					
Nitrogen Amm.Diss(N)	mg N/L	0.048	0.057	0.036	0.078	0.067	0.048
Nitrogen Kjel. Tot(N)	~	0.22	<	<	<	0.29	0.26
Nitro NO3+NO2 D	"	0.18	0.19	0.18	0.17	0.18	0.17
Phosphorus Dissolved	mg P/L	0.017		0.007	0.01	0.014	0.009
Phosphorus Total	" "	0.093		0.082	0.077		0.092
moment a coment of							
TOTAL METALS	<i>a</i>	1.08	1.18	0.97	0.95	0.8	3 1.1
Aluminum	mg/L			0.001	0.001		< 0.001
Arsenic		0.001	0.001				
Barium		0.026		1	0.019		0.010
Cadmium		<	<	<			
Calcium	*	15.2			1	1	
Chromium		<	<		1	·	
Cobalt	**	<	<	<	<		<
Copper		0.004					
Iron		1.94	2.08	1.74	1.68	1.5	5 1.93
Lead	*	<	<	<	<	(·	<
Magnesium		6.83				1	
Manganese		0.057	0.06	0.052	0.051	0.04	4 0.055
Mercury		<	<	<	<	< ·	< <
Molybdenum		<	: <	<	· <	< ·	< <
Nickel	*	<	0.005	<		< ·	< <
Potassium	•	1.8	1		1.1	ι	1 1.4
Selenium		<					< .
Silver						1	< .
		27.1					
Sodium		1					<
Tin Zinc		< <					<
2111C							
ORGANIC PARAMETERS:			_				
Carbon Total Organic	mg/L	3	3	3		3	3

ab ID		ASL	ASL	ASL	ASL	ASL FR0095	ASL FR0096
Client ID			FR0092	FR0093	FR0094		Tilbury
ITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury X-sec 5	X-sec 1 rep.
	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	93-05-31	93-05-31
Sampled On:		93-05-31	93-05-31	93-05-31	93-05-31	93-03-31	93-03-31
		10 0 70	49 - 8.81	49 - 8.86	49 - 8.90	49 - 8.94	49 - 8.76
atitude (N)				123 - 1.93	123 - 1.99	123 - 2.04	123 - 1.81
ongitude (W)		123 - 1.81	123 - 1.65	125 - 1.95	125 - 1.77	123 - 2.01	
Physical Tests:							
Dissolved Oxygen	mg/L	10.2	10.4	10.4	10.3	10.2	10.2
Water Temperature	deg C	14.3	14.2	14.2	14.1	14	14.2
Air Temperature	۳	17.1	17.1	17.1	17.1	17.1	17.1
pH		7.64	7.66	7.66	7.65	7.61	7.6
Field pH		7.5	7.5	7.5	7.4	7.5	7.:
Specific Conductance (SC)	uS/cm	91.2	90.2	89.1	< 89.0	88.6	90.1
Field SC	uS/cm	70	70	70	70	71	6
Suspended Solids (NFR)	mg/L	74	89	· 158	95	93	93
Dissolved Solids (FR)	"	46	47	44	45	44	4
Hardness Total	mg/L CaCO3	44.6	46	43.6	41.3	40.7	42.4
Anions:		36.6	39.1	36.5	37.6	36.3	38.
Alkalinity Total @ pH 4.5	mg/L CaCO3	1.9	1.6	1.1	1.8	1.3	1.
Chloride Dissolved	mg/L	0.03	0.03	0.03	0.03	0.03	0.0
Fluoride Dissolved	н	6.1	5.8	5.7	6	6.2	
Sulfate		0.1	2.6	5.7			
Nutrients:							<0.00
Nitrogen Amm.Diss(N)	mg N/L	<0.005	<0.005	<0.005	0.024	1	<0.00
Nitrogen Kjel. Tot(N)	"	0.14	0.15	0.15	0.17		0.1
Nitro NO3+NO2 D	**	0.086	0.077	0.069	1		1
Phosphorus Dissolved	mg P/L	0.011	0.009	0.007	1	1	0.00
Phosphorus Total	"	0.047	0.059	0.078	0.079	0.082	0
TOTAL METALS							
Aluminum	mg/L	0.62	0.69	0.7	0.63	0.6	0.6
Aluminum	"	0.0006	0.0007	1		0.0006	0.000
		0.019	0.023			0.023	0.02
Barium		<0.0002	<0.0002			<0.0002	<0.00
Cadmium		13.4	1		1	1	
Calcium		0.001	0.002				
Chromium		<0.001	< 0.015		1		
Cobalt	**	0.013			1	1	
Copper		0.004	0.005	0.00.			
Iron		0.001	0.001	0.00	0.00	0.001	0.0
Lead		2.7			1		
Magnesium			1	1		•	
Manganese		0.045					
Mercury		<0.0003	1		1	1	1
Molybdenum	-			1	_		
Nickel	-	0.002		1	-	- 1	
Potassium	-	<2	1		-	-	1
Selenium	*	< 0.0005				- ·	· · ·
Silver		0.0001			1		
Sodium	*	<2	1		-		- 1
Tin	*	<0.3		1	- 1		
Zinc	*	<0.00	5 <0.00 5	5 <0.00	5 <0.00	J 0.00	
ORGANIC PARAMETERS:	··· · · · · · · · · · · · · · · ·		1		1	-	
Carbon Total Organic	mg/L	2.40	2.5	2.3	0 2.3	5 2.2	5 2

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID		FR0171	FR0172	FR0173	FR0174	FR0175	FR0176
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
SILE	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep.
Sampled On:	Childs	93-10-05	93-10-05	93-10-05	93-10-05	93-10-05	93-10-05
Sampled On.		33-10-03	35-10-05		22-10-05		
Latituda (NI)		49 - 8.76	49 - 8.81	49 - 8.86	49 - 8.90	49 - 8,94	49 - 8.76
Latitude (N)		123 - 1.81	123 - 1.85	123 - 1.93	123 - 1.99	123 - 2.04	123 - 1.81
Longitude (W)		125 - 1.81	125 • 1.65	125 - 1.75	125 - 1.57	125 - 2.04	125 - 1.01
Physical Tests:				·····			
Dissolved Oxygen	mg/L	9.4	9.5	9.4	9.4	9.5	9.4
Water Temperature	deg C	14.2	14.3	14.2	14.3	14.5	14.3
Air Temperature		12	12	12	12	12	12
pH		7.48	7.47	7.43	7.5	7.53	7.53
Field pH		7.55	7.6	7.65	7.65	7.65	7.6
Specific Conductance (SC)	uS/cm	302	141	130	129	133	210
Field SC	uS/cm	235	130	123	125	128	178
Suspended Solids (NFR)	mg/L	8	7	7	6	6	7
Dissolved Solids (FR)	-8 - H	155	77	70	71	72	112
Hardness Total	mg/L CaCO3	72.5	59.1	57	57.7	56.7	65.2
Anions:							
Alkalinity Total @ pH 4.5	mg/L CaCO3	48.3	49.8	48.9	49.1	48.9	49.6
Chloride Dissolved	mg/L	51.1	7	4.1	4.8	6	26.6
Fluoride Dissolved		0.03	0.03	0.03	0.03	0.03	0.03
Sulfate	H	16.9	12	10.8	10.2	10.4	14.1
Nutrients:							
Nitrogen Amm.Diss(N)	mg N/L	0.023	0.025	0.027	0.041	0.037	0.033
Nitrogen Kjel. Tot(N)	*	0.171	0.165	0.228	0.303	0.198	0.249
Nitro NO3+NO2 D		0.044	0.052	0.046	0.041	0.052	0.051
Phosphorus Dissolved	mg P/L	0.009	0.011	0.011	0.014	0.013	0.009
Phosphorus Total	"	0.018	0.019	0.024	0.027	0.029	0.021
TOTAL METALC							
TOTAL METALS	- -	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	mg/L	0.20	0.0004	0.0005	0.0004	0.0004	0.0004
Arsenic Barium	*	0.0004	0.0004	0.0003	0.0004	0.0004	0.0004
		<0.0002	<0.0013	< 0.0002	<0.002	<0.0002	<0.002
Cadmium		<0.0002 17.7	<0.0002	-0.0002	16.9	16.4	17.3
Calcium		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt				0.013	0.002	0.002	0.001
Copper		0.001	0.001			0.002	0.169
Iron		0.202		0.202	0.141 <0.001	0.193	<0.001
Lead		<0.001	0.001	0.001	3.75	3.82	5.34
Magnesium		6.87	•	3.79	1	0.015	0.015
Manganese		0.017	1	0.015			<0.0005
Mercury		<0.00005		<0.00005		< 0.00005	1
Molybdenum	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel		<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Potassium	-	<2.0		<2.0		<2.0	<2.0 <0.0005
Selenium	-	< 0.0005	< 0.0005	<0.0005	1	<0.0005	<0.0003
Silver	-	< 0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	
Sodium	•	33		5.1			18.4
Tin		<0.30		<0.30			
Zinc		0.004	0.008	0.006	0.003	0.003	0.003
ORGANIC PARAMETERS:							
Carbon Total Organic	mg/L	2.19	2.41	2.25	2.14	2.19	2.14

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID		FR0223	FR0224	FR0225	FR0226	FR0227	FR0228
SITE		Oak	Oak	Oak	Oak	Oak	Oak
	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep.
Sampled On:		94-02-07	94-02-07	94-02-07	94-02-07	94-02-07	94-02-07
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24-02-07
Latitude (N)		49 - 12.06	49 - 12.08	49 - 12.11	49 - 12.14	49 - 12.17	49 - 12.06
Longitude (W)		123 - 7.13	123 - 7.14	123 - 7.15	123 - 7.17	123 - 7.18	123 - 7.13
				120			125 7.15
Physical Tests:							
Dissolved Oxygen	mg/L	12	12	12.2	12.2	12	11.9
Water Temperature	deg C	2.5	2.3	2.2	2.2	2.2	2.2
Air Temperature	*	-4	-4	-4	-4	-4	-4
рН		7.07	7.15	7.07	7.14	7.12	7.09
Field pH		7.45	7.5	7.5	7.5	7.5	7.5
Specific Conductance (SC)	uS/cm	897	459	455	660	755	743
Field SC	uS/cm	600	280	270	205	420	380
Suspended Solids (NFR)	mg/L	23	19	13	15	7	19
Dissolved Solids (FR)	"	494	284	276	86	86	452
Hardness Total	mg/L CaCO3	114	81.4	80.1	98.9	104	103
Anions:							
Alkalinity Total @ pH 4.5	mg/L CaCO3	45.1	44.2	44.7	44.6	44.8	44.4
Chloride Dissolved	mg/L	192	98.7	94.7	156	181	182
Fluoride Dissolved		0.05	0.05	0.04	0.05	0.05	0.05
Sulfate	"	37.7	21	20.3	27.6	32.4	31.9
Nutrients:							
Nitrogen Amm.Diss(N)	mg N/L	0.041	0.038	0.039	0.041	0.043	0.051
Nitrogen Kjel. Tot(N)	"	0.28	0.25	0.23	0.23	0.22	0.25
Nitro NO3+NO2 D	н	0.169	0.167	0.166	0.169	0.17	0.171
Phosphorus Dissolved	mg P/L	0.024	0.021	0.024	0.023	0.023	0.029
Phosphorus Total	"	0.043	0.04	0.039	0.043	0.035	0.045
						· · · · ··· ·	
TOTAL METALS	_						
Aluminum	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	м	0.0008	0.0006	0.0008	0.0005	0.0008	0.0005
Barium	41	0.015	0.015	0.015	0.015	0.015	0.018
Cadmium	*	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Calcium	44	18	16	16	17	17.1	16.9
Chromium	M	0.002	0.001	0.001	0.002	0.002	0.001
Cobalt	*	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Copper	*	<0.001	0.002	0.002	0.002	0.002	0.003
Iron	*	0.5	0.383	0.399	0.269	0.347	0.739
Lead	n	<0.001	<0.001	<0.001	<0.001	<0.001	0.002
Magnesium	**	16.7	10	9.76	13.7	14.8	14.8
Manganese	**	0.03	0.029	0.028	0.02	0.026	0.046
Mercury		<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Molybdenum	*	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	"	0.001	0.002	0.001	<0.001	0.001	0.002
Potassium	•	4.9	3.1	3	3.8	4.3	4.2
Selenium	*	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silver	•	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium	N	111	57.4	55.2	87.9	96.6	95.9
Tin		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Zinc	•	0.004	0.002	0.002	0.002	0.005	0.002
ORGANIC PARAMETERS: Carbon Total Organic	/	2.9			~ ~	~~	• •
Carbon Total Organic	mg/L	2.9	2.8	2.7	2.7	2.7	2.9

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID		ASL FR0235	FR0236	FR0237	FR0238	FR0239	FR0240
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
SILE	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	•	X-sec 1 rep
Sampled On:	Onits	94-02-08	94-02-08	94-02-08	94-02-08	94-02-08	94-02-08
Sampled On.		94-02-00	34-02-08	34-02-08	34-02-08	34-02-00	34-02-00
Latitude OD		49 - 8.76	49 - 8.81	49 - 8.86	49 - 8.90	49 - 8.94	49 - 8.76
Latitude (N)		49 - 8.76	49 - 8.81	123 - 1.93	123 - 1.99		123 - 1.81
Longitude (W)		123 - 1.01	123 - 1.65	125 - 1.95	123 • 1.99	123 - 2.04	125 - 1.61
Physical Tests:	<u> </u>						
Dissolved Oxygen	mg/L	11.9	12	12.2	12.4	12.2	12
Water Temperature	deg C	2.3	2.3	2.2	2.2	2.2	2.3
Air Temperature	•	-1	-1	-1	-1	-1	-1
рН		7.6	7.63	7.58	7.63	7.62	7.63
Field pH		7.46	7.5	7.55	7.55	7.5	7.5
Specific Conductance (SC)	uS/cm	6790	4030	3730	4180	4920	6470
Field SC	uS/cm	3900	2500	2200	2200	2800	3900
Suspended Solids (NFR)	mg/L	18	4	6	11	17	35
Dissolved Solids (FR)		4820	2540	2400	2720	3180	4250
Hardness Total	mg/L CaCO3	752	416	394	447	527	684
A 1							
Anions:		46.4	44.8	45.4	45.6	45.7	46.9
Alkalinity Total @ pH 4.5	mg/L CaCO3		1170	1100	1260	1450	
Chloride Dissolved	mg/L	2220 0.17	0.1	0.1	0.1	0.12	
Fluoride Dissolved		299	167	157	172	208	
Sulfate		299	101	157	1/2	208	205
Nutrients:			-				
Nitrogen Amm.Diss(N)	mg N/L	0.057	0.053	0.055	0.057	0.061	0.046
Nitrogen Kjel. Tot(N)	м	0.24	0.21	0.19	0.19	0.19	0.19
Nitro NO3+NO2 D	"	0.197	0.188	0.183	0.183	0.185	0.195
Phosphorus Dissolved	mg P/L	0.024	0.022	0.023	0.024	0.025	0.025
Phosphorus Total		0.048	0.028	0.033	0.036	0.05	0.066
TOTAL METALS							<u> </u>
Aluminum	mg/L	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	" "	0.0008	0.0006		0.0038	0.0009	
Barium	*	<0.020	< 0.010		0.01	< 0.010	1
Cadmium	ŧt	< 0.0002	< 0.0002	1		< 0.0002	
Calcium		55.1	35	33.8	1	1	
Chromium	**	0.001	0.001	0.002	0.002	< 0.001	0.001
Cobalt		< 0.030	< 0.015	< 0.015	< 0.015	1	1
		<0.001	0.002				
Copper Iron		0.641	1		4		1
Lead		<0.002	1	<0.001	<0.001	< 0.001	
Magnesium		149	79.7		86.2	103	
Magnesium		0.02		0.014	4	0.018	1
Manganese	-	<0.0005		<0.00005		<0.00005	
Molybdenum	•	0.002		0.001	0.001	0.001	+
Nickel	•	0.001	0.001	0.001	0.001	0.002	
Potassium	•	45	1		1		
Selenium		<0.0005	<0.0005		1	<0.0005	
Silver	-	0.0003		0.0001	0.0001	0.0002	
Solver		1220		577		785	
		<0.60	1	1		1	
Tin Zinc		0.005	0.004			1	
ORGANIC PARAMETERS:							
Carbon Total Organic	mg/L	2.9	3.6	3.2	3.2	2.5	8.2

.

Client ID STE FR0104 Oak FR0105 Oak FR0105 Oak FR0107 Oak FR0107 Oak FR0107 Oak FR0107 Oak FR0107 Oak FR0108 Oak FR01	L.1. ID		ASL	ASL	ASL	ASL	ASL	ASL
STE Oak Oak Oak Oak Oak Name 3 Sampled On: 39.6601 39.661 34.8 36.7 7.6 7.7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.5 7.5.5 7.5.5 7.5.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FR0109</td>								FR0109
Units Xase 1 Xase 2 Xase 3 Xase 4 Xase 5 Xase 5 Xase 5 Yase 1 Yase 7 Yase 7 <thyas 7<="" th=""> Yase 7<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thyas>								
Sampled On: 93.06-01	SILE	1 Inite	-					X-sec 1 rep
Dissolved Onit Disk Disk <thdisk< th=""> Disk Disk</thdisk<>	Completion:	Outs		-				93-06-01
Longitude (W) 123 - 7.14 123 - 7.14 123 - 7.15 123 - 7.17 123 - 7.18 123 - 7.15 123	Sampled On:		93-00-01	33-00-01	35-00-01	33-00-01	77-00-01	
Longitude (W) 123 - 7.14 123 - 7.14 123 - 7.15 123 - 7.17 123 - 7.18 123 - 7.15 123			49 - 12 06	49 - 12 08	49 - 12 11	49 - 12 14	49 - 12 17	49 - 12.06
Langinue (in) Lin (in) <thlin)<="" th=""> <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>123 - 7.13</td></t<></thlin>								123 - 7.13
Dissolved Oxygen mg/L 10.6 10.4 10.2 10.2 10.2 10.2 Water Temperature deg C 14.5 14.3 14.8 14.1 14.5 1 Air Temperature " 21.5	Longitude (w)		125 - 7.15	145 - 7.14	125 - 7.15	123 - 7.17	125 1.10	120 1110
Disolve Organ mg/L 14.5 14.3 14.8 14.1 14.5 1 Air Temperature " 21.5	Physical Tests:							
Air Temperature * 21.5 7.55 7.55 7.50 7.55 7.50 7.55 7.50 7.55 7.50 7.55 <td>Dissolved Oxygen</td> <td>mg/L</td> <td>10.6</td> <td>10.4</td> <td></td> <td>10.2</td> <td></td> <td>10.1</td>	Dissolved Oxygen	mg/L	10.6	10.4		10.2		10.1
Air Temperature * 21.5 7.50 <td>Water Temperature</td> <td>deg C</td> <td>14.5</td> <td>14.3</td> <td>14.8</td> <td>14.1</td> <td>14.5</td> <td>14.3</td>	Water Temperature	deg C	14.5	14.3	14.8	14.1	14.5	14.3
pH 7.40 7.55 7.55 7.55 7.50 7.55 Field pH 7.3 7.4 7.3 7.4 7.3 7.4 7.4 Specific Conductance (SC) uS/cm 97 92 91 92 91 Suspended Solids (NFR) mg/L 59 66 58 53 37 Dissolved Solids (FR) mg/L 50 445 445 447 46 Anions:	-		21.5	21.5	21.5	21.5	21.5	21.5
Field pH 7.3 7.4 7.3 7.4 7.4 7.4 Specific Conductance (SC) uS/cm 75.0 73.0 71.0 72.0 71.0 Suspended Solids (NFR) mg/L 59 66 58 53 37 Dissolved Solids (FR) " 50 445 445 44 41.7 4 Anions: mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Alkalinity Total @ pH 4.5 mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Floride Disolved mg/L 3.2 19 1.6 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	•		7.40	7.50	7.55	7.55	7.50	7.55
Specific Conductance (SC) uS/cm 75.0 73.0 71.0 72.0 71.0 <th< td=""><td>•</td><td></td><td>7.3</td><td>7.4</td><td>7.3</td><td>7.4</td><td>7.4</td><td>7.4</td></th<>	•		7.3	7.4	7.3	7.4	7.4	7.4
Field SC uS/cm 97 92 91 92 91 Suspended Solids (NPR) mg/L 59 66 58 53 37 Dissolved Solids (FR) " 50 445 447 446 Hardness Total mg/L CaCO3 41 40.6 39.9 42 41.7 44 Anions: Mikalinity Total (@ pH 4.5 mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Chioride Dissolved mg/L 3.2 1.9 1.6 1.8 <t< td=""><td>-</td><td>uS/cm</td><td>75.0</td><td>73.0</td><td>71.0</td><td>72.0</td><td>71.0</td><td>73.0</td></t<>	-	uS/cm	75.0	73.0	71.0	72.0	71.0	73.0
Suspended Solids (NFR) mg/L 59 66 58 53 37 Dissolved Solids (FR) " 50 45 45 47 46 Hardness Total mg/L CaC03 41 40.6 39.9 42 41.7 4 Anions: Mikalinity Total @ pH 4.5 mg/L CaC03 38.2 36.1 34.9 35.3 35.5 3 Fluoride Dissolved " 0.03	•				91	92	91	94
Displace Conduction Note 50 45 45 47 46 Hardness Total mg/L CaCO3 41 40.6 39.9 42 41.7 4 Anions: mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Alkalinity Total @pH 4.5 mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Chloride Dissolved mg/L 3.2 1.9 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.12 1.2 1.1 1.12 1.2 1.1 1.12 1.2 1.0 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>53</td> <td>37</td> <td>38</td>			1			53	37	38
Dissive to bothe (17) mg/L CaCO3 41 40.6 39.9 42 41.7 44 Anions: mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Akalinity Total (@ pH 4.5 mg/L 3.2 1.9 1.6 1.8	-		1	1				1
Anions: mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Alkalinity Total @ pH 4.5 mg/L 3.2 1.9 1.6 1.8 1.	• •	mall Carcos						1
Alkalinity Total @ pH 4.5 mg/L CaCO3 38.2 36.1 34.9 35.3 35.5 3 Chloride Dissolved mg/L 3.2 1.9 1.6 1.8 1.8 Fluoride Dissolved " 0.03 0.04 0.04 0.06 0.00 0.01 0.01 0.01 0.03 0.04	Haraness I otal	mg/L CaCOS		40.0	57.7		11.7	
Name	Anions:							ĺ
Chloride Dissolved mg/L 3.2 1.9 1.6 1.8 1.8 Fluoride Dissolved " 0.03 0.02 0.03 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.044 0.005 0.000 0.001 0.001 </td <td>Alkalinity Total @ pH 4.5</td> <td>mg/L CaCO3</td> <td>38.2</td> <td>1</td> <td>34.9</td> <td>35.3</td> <td>35.5</td> <td>37.0</td>	Alkalinity Total @ pH 4.5	mg/L CaCO3	38.2	1	34.9	35.3	35.5	37.0
Induct Disorted " 6.3 4.8 6 6.3 5.3 Nutrients: Nitrogen Amm.Diss(N) mg N/L 0.019 0.009 0.006 0.006 0.007 0.007 Nitrogen Kjel. Tot(N) " 0.15 0.2 0.17 0.14 0.12 0.008 Nitrogen Kjel. Tot(N) " 0.078 0.078 0.083 0.083 0.082 0.0 Phosphorus Dissolved mg P/L 0.015 0.011 0.01 0.011 0.001 0.061 0.065 0.0 Phosphorus Total " 0.079 0.074 0.072 0.061 0.065 0.0 TOTAL METALS Muminum mg/L 0.43 0.43 0.43 0.44 0.0004 0.0002 0.0001 0.001 0.001	Chloride Dissolved	mg/L	3.2	1.9	1.6	1.8	1.8	2.5
Nutrients: mg N/L 0.019 0.009 0.006 0.006 0.007 0.007 Nitrogen Amm.Diss(N) mg N/L 0.019 0.009 0.006 0.006 0.007 0.007 Nitrogen Kjel.Tot(N) " 0.078 0.078 0.083 0.083 0.082 0.0 Phosphorus Dissolved mg P/L 0.015 0.011 0.01 0.006 0.066 0.065 0.0 Phosphorus Total " 0.079 0.074 0.072 0.061 0.065 0.0 Barium mg/L 0.43 0.43 0.43 0.43 0.45 0.444 Cadmium " 0.022 0.002 0.0002 <0.002	Fluoride Dissolved		0.03	0.03	0.03	0.03	0.03	0.03
Nitrogen Amm. Diss(N) mg N/L 0.019 0.009 0.006 0.006 0.007 0.007 Nitrogen Kjel. Tot(N) " 0.15 0.2 0.17 0.14 0.12 0 Nitro NO3+NO2 D " 0.078 0.078 0.083 0.083 0.082 0. Phosphorus Dissolved mg P/L 0.015 0.011 0.01 0.006 0.0065 0.000 Phosphorus Total " 0.079 0.074 0.072 0.061 0.005 0.000 Barium mg/L 0.43 0.43 0.43 0.43 0.41 0.0002 <0.0002	Sulfate	••	6.3	4.8	6	6.3	5.3	5.3
Nitrogen Amm. Diss(N) mg N/L 0.019 0.009 0.006 0.006 0.007 0.007 Nitrogen Kjel. Tot(N) " 0.15 0.2 0.17 0.14 0.12 0 Nitro NO3+NO2 D " 0.078 0.078 0.083 0.083 0.082 0. Phosphorus Dissolved mg P/L 0.015 0.011 0.01 0.006 0.0065 0.000 Phosphorus Total " 0.079 0.074 0.072 0.061 0.005 0.000 Barium mg/L 0.43 0.43 0.43 0.43 0.41 0.0002 <0.0002						 		
Nitrogen Kjell Tot(N) * 0.15 0.07 0.017 0.14 0.12 0.07 Nitro NO3+NO2 D * 0.078 0.078 0.083 0.083 0.082 0.0 Phosphorus Dissolved mg P/L 0.015 0.011 0.011 0.011 0.011 0.008 0.0 Phosphorus Total * 0.079 0.074 0.072 0.061 0.005 0.0 Phosphorus Total * 0.0079 0.074 0.072 0.061 0.005 0.0 Phosphorus Total * 0.001 0.010 0.004 0.0005 0.000 Barium mg/L 0.43 0.43 0.43 0.44 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 <0.002		ma N/I	0.019	0,000	0.006	0.006	0.007	0.013
Nitro NO3+NO2 D * 0.078 0.078 0.083 0.082 0.082 Phosphorus Dissolved mg P/L 0.015 0.011 0.01 0.01 0.008 0. Phosphorus Total * 0.079 0.074 0.072 0.061 0.008 0. Aluminum mg/L 0.43 0.43 0.43 0.43 0.44 0.0005 0.0001 0.0004 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0002 <0.0002	•	ing ivit	1	1	1			1
Allo files mg P/L 0.015 0.011 0.01 0.01 0.008 0. Phosphorus Total " 0.079 0.074 0.072 0.061 0.065 0. TOTAL METALS " 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0005 0.0005 0.0004 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.001	· ·				1		i	
Integrine is Disorted ing it is it it is <td></td> <td>DZ</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>•</td>		DZ			1		1	•
TOTAL METALS mg/L 0.43 0.43 0.43 0.43 0.44 Aluminum mg/L 0.0005 0.0005 0.0004 0.0004 0.0005 0.00 Barium " 0.002 0.002 0.0002 <0.0002	-	mg P/L	1				1	1
Aluminum mg/L 0.43 0.43 0.43 0.445 0.44 Arsenic " 0.0005 0.0004 0.0004 0.0005 0.00 Barium " 0.02 0.02 0.017 0.018 0.018 0.00 Cadmium " 0.02 0.0002 <0.0002	Phosphorus Total		0.079	0.074	0.072	0.001	0.005	0.035
Arsenic " 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 Barium " 0.02 0.002 0.0017 0.018 0.018 0.002 Cadmium " 0.002 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	TOTAL METALS							
Barium " 0.002 0.017 0.018 0.018 0.018 Barium " 0.002 0.002 0.0017 0.018 0.018 0.018 0.012 Cadmium " 0.002 0.001 0.011 0.012 0.002 0.001 0.0	Aluminum	mg/L	0.43	0.43	0.43	0.45	0.44	0.3
Barium " 0.02 0.02 0.017 0.018 0.018 0.018 Cadmium " <0.0002			0.0005	0.0005	0.0004	0.0004	0.0005	0.0004
Cadmium * <0.0002		*	0.02	0.02	0.017	0.018	0.018	0.018
Calcium " 12.3 12.3 12.1 12.7 12.6 12.6 Chromium " 0.001 0.001 <0.001			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Chromium " 0.001 0.001 <0.001			1		1		1	
Cohontanin " <0.015		*1	1	1	1	1		
Copper " 0.004 0.003 0.002 0.004 0.004 0.01 Iron " 0.001 <0.001				1		1	1	
Iron " <0.001	-		[1				
Lead " <0.001			0.004	0.003	0.002	0.004	0.004	
Magnesium " 2.51 2.43 2.35 2.49 2.46 2.46 Manganese " 0.047 0.04 0.038 0.042 0.039 0.0 Mercury " <0.0005		ta	-0.001	-0.001	0.001	~0.001	<0.001	<0.001
Manganese " 0.047 0.04 0.038 0.042 0.039 0. Manganese " 0.047 0.04 0.038 0.042 0.039 0. Mercury " <0.00005				1		1	1	1
Mercury " <0.00005		-	1	-	1	1	1	1
Molybdenum " 0.001 <0.001	-		1			1	1	
Nickel " 0.001 0.001 <0.001	•					•		
Potassium " <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	•			1			1	1
Setenium " <0.0005								1
Silver " <0.0001			1		-	1	1	1
Sodium " 3.4 2.4 2.1 2.6 2.5 Tin " <0.3	Selenium	*	1					1
Tin * <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.	Silver	*						1
Zinc " 0.005 <0.005 <0.005 <0.005 0.009 <0 ORGANIC PARAMETERS:	Sodium	**	3.4	2.4		1		1
ORGANIC PARAMETERS:	Tin	Ħ	<0.3	8 <0.3	<0.3	<0.3	1	
	Zinc	*	0.005	s <0.005	<0.00	< 0.005	0.009	< 0.00
		<u></u>						
Carbon Total Organic mg/L 2.35 2.30 2.45 2.40 2.30	ORGANIC PARAMETERS: Carbon Total Organic	mg/L	2.35	2.30	2.4	2.40	2.30	2.4

.

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID		FR0158	FR0159	FR0160	FR0161	FR0162	FR0163
SITE		Oak	Oak	Oak	Oak	Oak	Oak
	Units	X-sec 1	X-sec 2	X-sec 3	X-sec 4	X-sec 5	X-sec 1 rep
Sampled On:		93-10-04	93-10-04	93-10-04	93-10-04	93-10-04	93-10-04
Latitude (N)		49 - 12.06	49 - 12.08	49 - 12.11	49 - 12.14	49 - 12.17	49 - 12.06
Longitude (W)		123 - 7.13	123 - 7.14	123 - 7.15	123 - 7.17	123 - 7.18	123 - 7.13
Physical Tests:							
Dissolved Oxygen	mg/L	9.2	9.1	9.1	9	9.1	9
Water Temperature	deg C	15	15.1	15	15	15	
Air Temperature	*	13	13	13	13	13	
pН		6.95	7.04	7.13	7.19	7.33	
Field pH		7.35	7.45	7.55	7.55	7.5	1
Specific Conductance (SC)	uS/cm	158	182	170	162	176	
Field SC	uS/cm	220	170	155	158	160	
Suspended Solids (NFR)	mg/L	8	8	6	5	5	1
Dissolved Solids (FR)	n	89	98	94	92	102	1
Hardness Total	mg/L CaCO3	61.8	63.2	62.4	62.6	64.1	68.7
Anions:				40.0	40.0	49	49
Alkalinity Total @ pH 4.5	mg/L CaCO3	48.9	48.7	48.5	48.8	1	
Chloride Dissolved	mg/L	14.5	18.9	15.9	15.7		
Fluoride Dissolved		0.03	0.04	0.04	0.04	0.04	
Sulfate		11.7	13	12.5	12.2	12.3	14.2
Nutrients:							1
Nitrogen Amm.Diss(N)	mg N/L	0.03	0.031	0.025	0.027	0.027	0.028
Nitrogen Kjel. Tot(N)	"	0.243	0.209	0.215	0.182	0.155	0.25
Nitro NO3+NO2 D		0.046	0.082	0.048	0.046	0.048	0.052
Phosphorus Dissolved	mg P/L	0.012	0.012	0.011	0.013	0.01	0.012
Phosphorus Total	"	0.021	0.023	0.02	0.017	0.017	0.021
-							
TOTAL METALS							
Aluminum	mg/L	<0.20	<0.20			1	
Arsenic	**	0.0005	0.0005	0.0006	1	1	
Barium	*	0.012	0.014	1	1		
Cadmium	*	<0.0002	<0.0002		1		1
Calcium	•	17.5	17.7			1	
Chromium		<0.001	<0.001	<0.001	1	1	· ·
Cobalt	•	<0.015	<0.015	•			
Copper	-	0.001	0.005				
Iron		0.155	0.15			1	1
Lead	•	<0.001	0.005				
Magnesium	**	4.4	4.62			1	
Manganes e	-	0.017	0.017		1	1	
Mercury	-	<0.00005	<0.00005				1
Molybdenum	•	<0.001	<0.001	<0.001			
Nickel		< 0.001	<0.001				
Potassium	*	<2.0	<2.0				
Selenium	*	< 0.0005	<0.0005		1		
Silv er	*	<0.0001	<0.0001	1	1		1
Sodium	**	11.8					
Tin	•	<0.30	<0.30				
Zinc		0.004	0.005	0.002	0.001	0.003	3 0.003
				<u> </u>	l		
ORGANIC PARAMETERS:		2.14	- 2.19	2.09	2.09	2.19	2.14
Carbon Total Organic	mg/L	4.14	2.19	1 2.05	1 2.09	1	للانف ا

.

	Mis	ssion	Oak Str	eet Bridge	Tilbury Island		
Parameter	P ¹	P(ties) ²	Р	P(ties)	P	P(ties)	
Ag	95	41	97	41	95	89	
Al	94	91	52	49	99	98	
Alkalinity	72	71	96	96	83	83	
Analyzable organic halides	NA	NA	NA	NA	NA	NA	
As	60	58	95	95	73	72	
Ba	92	92	72	71	100	100	
Ca	99	99	98	98	92	92	
Cd	100	NA	100	NA	100	NA	
Со	100	NA	100	NA	97	41	
Cr	89	52	93	69	96	87	
Cu	84	78	67	66	97	97	
Dissolved chloride	97	97	95	95	88	88	
Dissolved fluoride	95	90	100	100	100	100	
Dissolved ammonia	95	95	95	95	51	51	
Dissolved nitrate/nitrite	88	88	100	100	90	90	
Dissolved oxygen	100	100	99	99	95	95	
Dissolved phosphorous	97	97	71	70	49	49	
Fecal coliform	NA	NA	NA	NA	NA	NA	
Fe	88	88	75	75	99	99	
Field pH	99	99	93	92	98	98	
Filterable residue	98	98	87	86	83	83	
Hardness	99	99	97	97	80	80	
Hg	100	NA	100	NA	100	NA	
K	100	NA	98	97	100	100	
Mg	99	99	97	97	81	81	
Mn	100	100	84	84	76	76	
Мо	100	NA	100	NA	97	41	
Na	99	99	95	95	83	83	
Non-filterable residue	93	93	68	68	99	99	
Ni	94	86	80	59	85	77	
Pb	89	52	93	53	70	22	
рН	94	94	97	97	91	91	
Specific conductivity	91	91	94	94	83	83	
Se	100	NA	100	NA	100	NA	
Sn	100	NA	93	69	97	41	
Sulphate	98	98	99	99	87	87	
Total organic carbon	97	97	100	100	52	51	
Total nitrogen	98	98	80	80	95	95	
Total phosphorous	99	99	83	83	98	98	
Water temperature	100	100	99	99	93	93	
Zn	91	90	79	77	31	30	

Results of the Kruskal-Wallis One-way ANOVA on Cross-Sectional Profile Data.

¹P is the probability that the stations are the same within the site

²P(ties) compensates for tied values.

APPENDIX VI

WATER QUALITY DATA FOR FEDERAL/PROVINCIAL SITE AT HOPE

Water Quality in the Fraser River Estuary

			Code	PY0331	PY0331	PY0331	PY0331	PY0331
				05-Jan-93	19-Jan-93	02-Feb-93	16-Feb-93	02-Mar-93
Specific Conductance	Lab		uS/cm	161	149	154	165	172
ANIONS			<u> </u>					
Alkalinity	Total		mg/L CaCO3	63	64	61	64	66
Chloride	Dissolved		mg/L	1.6	1.8	1.6	2	2.4
Fluoride	Dissolved		H ·	0.07	0.06	0.06	0.06	0.06
Sulphate	Dissolved			12.3	12.6	13.1	13.2	15
Hardness	Calc.		•	71.3	67.7	65.1	66.4	71.8
NUTRIENTS								
Nitrogen Tot	Dissolved	uv Rep.1	mg/L N	0.19	0.19	0.21	0.16	0.24
Nitrogen Tot	Dissolved	uv Rep.2	, n	0.21	0.19	0.21	0.18	0.23
Nitrogen Tot	Dissolved	uv Rep.3	*	0.19	0.18	0.21	0.16	0.19
Nitrogen	Nitrate	Nitrite Re. l	м	0.128	0.129	0.143	0.106	0.17
Nitrogen	Nitrate	Nitrite Re.2		0.13	0.117	0.145	0.127	0.172
Nitrogen	Nitrate	Nitrite Re.3	M	0.118	0.111	0.151	0.102	0.14
Phosphorus	Total Rep. 1		mg/L P	0.018	0.023	0.031	0.02	0.012
Phosphorus	Total Rep.2		"	0.025	0.023	0.036	0.027	0.012
Phosphorus	Total Rep.3			0.015	0.025	0.025	0.022	0.012
METALS			1		-			
Aluminium	Total	ICP/CONC	mg/L	0.187	0.232	0.417	0.188	0.049
Arsenic	Total	ICP		0.0004	0.0004	0.0005	0.0006	0.0005
Barium	Total	ICP/CONC		0.0186	0.0182	0.0194	0.0187	0.083
Cadmium	Total	ICP/CONC		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Calcium	Non-Filterab	Extr. ICP	"	20.8	19.5	18.3	18.5	20.1
Cobalt	Total	ICP/CONC		0.0002	0.0002	0.0004	0.0002	0.0001
Chromium	Total	ICP/CONC	"	0.0005	0.001	0.001	0.0007	0.0003
Copper	Total	ICP/CONC	н.	0.0011	0.0013	0.0016	0.0015	0.0004
Iron	Total	ICP/CONC		0.245	0.272	0.579	0.245	0.0805
Lead	Total	ICP/CONC		< 0.0002	0.0002	0.0003	<0.0002	<0.0002
Magnesium	Non-Filterab	Extr. ICP		4.7	4.6	4.7	4.9	5.2
Manganese	Total	ICP/CONC		0.0088	0.0092	0.017	0.0079	0.0078
Mercury	Total	FAA	•		<0.000005	<0.000005	<0.000005	<0.00000
Molybdenum	Total	ICP/CONC		0.0009	0.0008	0.0007	0.0009	0.0007
Nickel	Total	ICP/CONC		0.0008	0.0011	0.0017	0.0009	0.0004
Potasium	Non-Filterab			0.84	0.94	0.81	1.03	0.82
Selenium	Total	ICP		0.0002	0.0001	0.0001	0.0002	0.0002
Sodium	Non-Filterab	Extr. ICP		4	5	4.6	5.1	5.1
Zinc	Total	ICP/CONC		0.0012	0.0022	0.0021	0.012	0.0009
ΑΟΧ			mg/L	0.03	0.05	0.04		0.07

-

			Code	PY0331	PY0331	PY0331	PY0331	PY0331
				30-Mar-93	12-Apr-93	27-Apr-93	25-May-93	08-Jun-93
Specific Conductance	Lab		uS/cm	158	130	121	100	100
ANIONS								
Alkalinity	Total		mg/L CaCO3	63	54	53	44	41
Chloride	Dissolved		mg/L	2.1	1.5	1.4	0.6	0.7
Fluoride	Dissolved		<u>8</u>	0.04	0.05	0.06	0.05	0.05
Sulphate	Dissolved			11.3	8.4	8.2	5.8	6.8
Hardness	Calc.			67.5	61.7	59.6	48.1	48.9
NUTRIENTS								
Nitrogen Tot	Dissolved	uv Rep.1	mg/L N	0.27	0.36	0.27	0.18	0.09
Nitrogen Tot	Dissolved	uv Rep.2	"	0.27	0.37	0.32	0.14	0.09
Nitrogen Tot	Dissolved	uv Rep.2	W	0.24	0.36	0.3	0.14	0.1
Nitrogen	Nitrate	Nitrite Re.1	H	0.16	0.178	0.1	0.085	0.021
Nitrogen	Nitrate	Nitrite Re.2		0.167	0.178	0.154	0.003	0.021
Nitrogen	Nitrate	Nitrite Re.2		0.167	0.193	0.134	0.073	0.020
Nurogen	Nitrate	Nume Ke.5		0.142	0.165	0.127	0.002	0.039
Phosphorus	Total Rep. 1		mg/L P	0.112	0.29	0.2	0.181	0.142
Phosphorus	Total Rep.2		"	0.121	0.3	0.2	0.209	0.143
Phosphorus	Total Rep.3		н.	0.114	0.32	0.203	0.304	0.103
METALS								
Aluminium	Total	ICP/CONC	mg/L	0.308	5.83	3.38	3.59	2.47
Arsenic	Total	ICP		0.0013	0.0026	0.0017	0.0014	0.0002
Barium	Total	ICP/CONC		0.0245	0.0706	0.0446	0.043	0.05
Cadmium	Total	ICP/CONC		<0.0001	0.0012	0.0007	0.0007	
Calcium	Non-Filterab	Extr. ICP	Ħ	18.8	17.4	16.9	15	15.3
Cobalt	Total	ICP/CONC		0.0001	0.0047	0.0027	0.0027	0.0004
Chromium	Total	ICP/CONC		0.0008	0.0124	0.007	0.0061	0.0043
Copper	Total	ICP/CONC	н	0.0017	0.0112	0.0067	0.006	0.0042
Iron	Total	ICP/CONC	"	0.435	9.53	5.4	5.4	3.36
Lead	Total	ICP/CONC		<0.0002	0.005	0.0027	0.0029	0.0016
Magnesium	Non-Filterab	Extr. ICP	"	5	4.4	4.3	2.6	2.6
Manganese	Total	ICP/CONC		0.0115		0.12	0.126	0.0698
Mercury	Total	FAA		7E-06			< 0.000005	
Molybdenum	Total	ICP/CONC		0.0006	9			0.0006
Nickel	Total	ICP/CONC		0.0008	0.0151			0.0052
Potasium	Non-Filterab		•	0.97		0.84	1	0.76
Selenium	Total	ICP		0.0002			1	
Sodium	Non-Filterab			5			ł.	
Zinc	Total	ICP/CONC	"	0.0019		1		
AOX			mg/L	0.04	0.03	0.02		

Page 2

			Code	PY0331	PY0331	PY0331	PY0331	PY0331
				22-Jun-93	06-Jul-93	20-Jul-93	03-Aug-93	17-Aug-93
Specific Conductance	Lab		uS/cm	108	112	117	112	114
ANIONS							-	
Alkalinity	Total		mg/L CaCO3	44	47	48	46	47
Chloride	Dissolved		mg/L	0.7	0.7	0.7	0.7	0.7
Fluoride	Dissolved			0.04	0.06	0.03	0.05	0.05
Sulphate	Dissolved			7.6	6.8	5.8	7.7	9.1
Hardness	Calc.		Ħ	45.5	55.8	69.7	55.3	55.4
NUTRIENTS								
Nitrogen Tot	Dissolved	uv Rep.1	mg/L N	0.11	0.18	0.1	0.1	0.06
Nitrogen Tot	Dissolved	uv Rep.2	· •	0.11	0.17	0.1	0.11	0.07
Nitrogen Tot	Dissolved	uv Rep.3	*	0.1	0.18	0.11	0.36	0.05
Nitrogen	Nitrate	Nitrite Re. 1	m	0.046	0.038	0.025	0.021	0.01
Nitrogen	Nitrate	Nitrite Re.2	"	0.049	0.035	0.028	0.022	0.023
Nitrogen	Nitrate	Nitrite Re.3		0.045	0.042	0.028	0.021	<0.002
Phosphorus	Total Rep. 1		mg/L P	0.107	0.16	0.085	0.12	0.049
Phosphorus	Total Rep.2		,	0.14	0.16	0.083	0.13	0.049
Phosphorus	Total Rep.3		"	0.133	0.16	0.086	0.14	0.048
METALS								
Aluminium	Total	ICP/CONC	mg/L	1.6	3.23	1.47	1.94	1.24
Arsenic	Total	ICP		0.0008	0.0015	0.0009	0.0006	0.0008
Barium	Total	ICP/CONC		0.0261	0.0386	0.0263	0.0297	0.0213
Cadmium	Total	ICP/CONC		0.0002	0.0004	0.0002	0.0003	0.0002
Calcium	Non-Filterab	Extr. ICP		13.7	16.7	22	16.6	16.8
Cobalt	Total	ICP/CONC	"	0.0011	0.0022	0.0011	0.0015	0.0009
Chromium	Total	ICP/CONC		0.0025	0.0045	0.0028	0.0037	0.0019
Copper	Total	ICP/CONC	ĸ	0.0031	0.0078	0.0031	0.0037	0.0026
Iron	Total	ICP/CONC		2.11	4.3	1.83	2.76	1.76
Lead	Total	ICP/CONC		0.0012	0.0022	0.001	0.0016	0.0013
Magnesium	Non-Filterab	Extr. ICP		2.8	3.5	3.6	3.4	
Manganese	Total	ICP/CONC		0.0528		0.0463		
Mercury	Total	FAA		<0.000005		6E-06		<0.000005
Molybdenum	Total	ICP/CONC		0.0006		0.0006	0.0006	1
Nickel	Total	ICP/CONC		0.0035		0.0036	0.0045	1
Potasium	Non-Filterab	1		0.65		0.7	0.79	
Selenium	Total	ICP	1	0.0001	0.0001	0.0001	<0.0001	
Sodium	Non-Filterab	1	"	1.9		2.5	2.4	
Zinc	Total	ICP/CONC		0.0055	0.0125	0.0057	0.0078	0.007
AOX			mg/L				0.01	<0.01

~

-

			Code	PY0331	PY0331	PY0331	PY0331	PY0331
				31-Aug-93	14-Sep-93	28-Sep-93	09-Oct-93	12-Oct-93
Specific Conductance	: Lab		uS/cm	111	114	134	136	145
ANIONS								
Alkalinity	Total		mg/L CaCO3	45	48	52	56	55
Chloride	Dissolved		mg/L	0.7	1.4	1.3	1	1.1
Fluoride	Dissolved			0.04	0.04	0.06	0.05	0.06
Sulphate	Dissolved		"	10.1	9	9.1	7.6	8.7
Hardness	Calc.			54.4	54.1	60.4	61.2	62.2
NUTRIENTS								
Nitrogen Tot	Dissolved	uv Rep.1	mg/L N	0.11	0.09	0.12	0.25	0.11
Nitrogen Tot	Dissolved	uv Rep.2	"	0.11	0.08	0.11	0.23	0.11
Nitrogen Tot	Dissolved	uv Rep.3	Ħ	0.1	0.08	0.12	0.24	0.11
Nitrogen	Nitrate	Nitrite Re. 1	n	0.043	0.036	0.025	0.155	0.047
Nitrogen	Nitrate	Nitrite Re.2	H	0.057	0.027	0.026	0.127	0.036
Nitrogen	Nitrate	Nitrite Re.3	N	0.038	0.03	0.026	0.146	0.047
Phosphorus	Total Rep. 1		mg/L P	0.038	0.023	0.015	0.092	0.015
Phosphorus	Total Rep.2		, n	0.048	0.024	0.016	0.1	0.015
Phosphorus	Total Rep.3		H	0.048	0.029	0.016	0.052	0.016
METALS								
Aluminium	Total	ICP/CONC	mg/L	0.771	0.596	0.185	1.35	0.21
Arsenic	Total	ICP	n	0.0004	0.0004	0.0004	0.0011	0.0003
Barium	Total	ICP/CONC	м	0.0178	0.0167	0.0153	0.026	0.0152
Cadmium	Total	ICP/CONC	"	0.0001	0.0001	<0.0001	0.0002	<0.0001
Calcium	Non-Filterab	Extr. ICP	"	16.4	16.2	17.6	18.5	18.1
Cobalt	Total	ICP/CONC		0.0007	0.0004	0.0002	0.0014	0.0002
Chromium	Total	ICP/CONC		0.0013	0.001	0.0004	0.0025	0.0005
Copper	Total	ICP/CONC	"	0.0019	0.0017	0.0013	0.0041	0.0011
Iron	Total	ICP/CONC	N	1.04	0.755	0.221	2.4	0.257
Lead	Total	ICP/CONC	"	0.0008	0.0008	0.0003	0.0015	0.0003
Magnesium	Non-Filterab	Extr. ICP	•	3.2	3.3	4	3.7	4.1
Manganese	Total	ICP/CONC		0.0293	0.0175	0.009	0.0799	0.0084
Mercury	Total	FAA		<0.000005	<0.000005	<0.000005	<0.000005	<0.000005
Molybdenum	Total	ICP/CONC	"	0.0004	0.0008	0.0008	0.0004	0.0008
Nickel	Total	ICP/CONC		0.0020	0.0014	0.0008	0.0037	0.0007
Potasium	Non-Filterab	Extr. AA		0.8	0.75	0.85	0.6	0.7
Selenium	Total	ICP	"	0.0001	<0.0001	0.0002	0.0002	0.0001
Sodium	Non-Filterab	Extr. ICP		2.2	2.3	3.2	2.4	3.3
Zinc	Total	ICP/CONC		0.0051	0.0029	0.0025	0.0073	0.0021
AOX			mg/L	0.01	0.01	0.02		0.03
		L	I					

-

·			Code	PY0331	PY0331	PY0331	PY0331	PY0331
				26-Oct-93	23-Nov-93	07-Dec-93	21-Dec-93	04-Jan-94
Specific Conductance	Lab		uS/cm	141	152	165	163	157
ANIONS								
Alkalinity	Total		mg/L CaCO3	56	61	66	65	63
Chloride	Dissolved		mg/L	1	1.8	2.3	2.2	1.8
Fluoride	Dissolved			0.05	0.06	0.05	0.06	0.06
Sulphate	Dissolved		•	10.8	11.2	11.8	12.3	11.6
Hardness	Calc.		"	62.1	70.6	77.3	76.2	73.9
NUTRIENTS								
Nitrogen Tot	Dissolved	uv Rep.1	mg/L N	0.1	0.17	7.8	0.2	0.22
Nitrogen Tot	Dissolved	uv Rep.2	Ŭ,	0.11	0.18	7.4	0.2	0.24
Nitrogen Tot	Dissolved	uv Rep.3	"	0.11	0.16	8	0.21	0.23
Nitrogen	Nitrate	Nitrite Re. 1	-	0.051	0.096	0.122	0.118	0.146
Nitrogen	Nitrate	Nitrite Re.2		0.053	0.109	0.118	0.113	0.152
Nitrogen	Nitrate	Nitrite Re.3	۳	0.057	0.095	0.138	0.129	0.147
Phosphorus	Total Rep. 1		mg/L P	0.015	0.013	0.023	0.026	0.022
Phosphorus	Total Rep.2		"	0.016	0.014	0.024	0.026	0.026
Phosphorus	Total Rep.3		"	0.014	0.014	0.024	0.028	0.024
METALS								
Aluminium	Total	ICP/CONC	mg/L	0.167	0.126	0.23	0.175	0.143
Arsenic	Total	ICP	*	0.0004	0.0004	0.0004	0.0004	0.0004
Barium	Total	ICP/CONC	*	0.0161	0.0155	0.018	0.0178	0.0173
Cadmium	Total	ICP/CONC	*	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Calcium	Non-Filterab	Extr. ICP		17.9	20.3	22.3	21.9	21.1
Cobalt	Total	ICP/CONC	"	0.0001	0.0002	0.0003	0.0002	0.0002
Chromium	Total	ICP/CONC		0.0005	0.0004	0.0006	0.0005	0.0005
Copper	Total	ICP/CONC		0.0013	0.0016	0.0015	0.0014	0.0018
Iron	Total	ICP/CONC		0.208	0.199	0.364	0.295	0.219
Lead	Total	ICP/CONC	۰.	0.0002	<0.0002	<0.0002	<0.0002	0.0002
Magnesium	Non-Filterab	Extr. ICP		4.2	4.8	5.3	5.2	5.2
Manganese	Total	ICP/CONC	•	0.0079	0.0085	0.0147	0.013	0.0081
Mercury	Total	FAA		<0.000005	<0.000005	<0.000005		6E-06
Molybdenum	Total	ICP/CONC		0.0007	0.0007	0.0006	0.0006	0.0007
Nickel	Total	ICP/CONC	*	0.0006	0.0008	0.0011	0.0010	0.0009
Potasium	Non-Filterab			0.7	0.8	0.9	0.8	0.9
Selenium	Total	ICP	•	0.0001	0.0001	0.0001	<0.0001	<0.0001
Sodium	Non-Filterab		"	3.4	4.2	4.9	4.7	4.3
Zinc	Total	ICP/CONC	•	0.0027	0.002	0.0021	0.0029	0.0027
ΑΟΧ			mg/L	0.02	0.04	0.05	0.04	0.03

•

APPENDIX VII

WATER QUALITY DATA FOR MISSION SITE

Water Quality in the Fraser River Estuary

Minimum Detection Limits for Total Metals Analysis

Laboratory	Zenon	ASL		
	MDL	MDL	UNITS	
	From: 93-01	From: 93-04		
	To: 93-03	To: 94-03		
Physical Tests:				
Dissolved Oxygen			mg/L	
Water Temperature			deg C	
Air Temperature				
pН				
Field pH				
Specific Conductance(SC)	1	0.2	uS/cm	
Field SC			uS/cm	
Suspended Solids (NFR)	4	1	mg/L	
Dissolved Solids (FR)	4	1	т. <u>9</u> — и	
Hardness Total		-	mg/L CaCO3	
Anions:				
Alkalinity Total @ pH 4.5	0.5	0.5	mg/L CaCO3	
Chloride Dissolved	0.5	0.2		
Fluoride Dissolved	0.1	0.02	"	
Sulfate	1	0.5		
Nutrients:				
Nitrogen Amm.Diss(N)	0.005	0.005	mg N/L	
Nitrogen Kjel.Tot(N)	0.04	0.05	11	
Nitro NO3+NO2 D	0.02	0.005		
Phosphorus Dissolved	0.003	0.001	mg P/L	
Phosphorus Total	0.003	0.001	11	
TOTAL METALS	. <u></u>			
Aluminum	0.06	0.02	mg/L	
Arsenic	0.001	0.0001	111g/L	
Barium	0.001	0.01	*	
Cadmium	0.0001	0.0002	*1	
Calcium	0.05	0.002		
Chromium	0.005	0.001		
Cobalt	0.003	0.001	**	
Copper	0.004	0.013		
Iron	0.001	0.001	\$7	
Lead .	0.003	0.03		
Magnesium	0.003	0.01		
Manganese	0.002	0.01	*	
Mercury	0.0002	0.0005		
Molybdenum	0.004	0.000	w	
Nickel	0.005	0.001	Ħ	
Potassium	0.005	0.001	•	
Selenium	0.03	0.0005		
Silver	0.03	0.0001		
Sodium	0.03	2		
Tin	0.02	0.3	н	
Zinc	0.02	0.001		
	0.01	0.001		
I ORGANIC PARAMETERS	;			
	0.5			

Laboratory	Zenon			Zenon	
ORGANIC PARAMETERS	MDL	UNITS		MDL	UNITS
Adsorbable Organic Halide (AOX):	0.01	mg/L	Resin and Fatty Acids:		
Chlorophenolics:			Abietic Acid	0.0005	mg/L
Pentachlorophenol	0.000001	mg/L	Arachidic Acid	0.0005	u
2,3,4,6+2,3,5,6-Tetrachlorophenol	Ħ	11	Behenic Acid	0.0005	"
2,3,4,5-Tetrachlorophenol	**		Chlorodehydroabietic	0.0005	n
3,4,5-Trichlorophenol	H	91	Dehydroabietic Acid	0.0005	"
2,3,4-Trichlorophenol	11		Dichlorodehydroabietic	0.0005	м
2,3,5-Trichlorophenol	99		Isopimaric Acid	0.0005	"
2,3,6-Trichlorophenol	н		Lauric Acid	0.0005	
2,4,5-Trichlorophenol	*		Levo Pimaric Acid	0.0005	"
2,4,6-Trichlorophenol			Lignoceric Acid	0.0005	"
2,4-Dichlorophenol	N	"	Linoleic Acid	0.0005	u
2,6-Dichlorophenol	11		Linolenic Acid	0.0005	"
2,5-Dichlorophenol	11	"	Myristic Acid	0.0005	
3,5-Dichlorophenol		"	Neoabietic Acid	0.0005	"
2,3-Dichlorophenol	11	"	Oleic Acid	0.0005	u
3,4-Dichlorophenol			Palmitric Acid	0.0005	н
4-Chlorophenol		"	Palustric Acid	0.0005	"
Tetrachloroguaiacol	0.000002		Pimaric Acid	0.0005	11
3,4,5-Trichloroguaiacol		"	Sandaraco Pimaric Acid	0.0005	11
3,4,6-Trichloroguaiacol			Stearic Acid	0.0005	91
4,5,6-Trichloroguaiacol					
4,5-Dichloroguaiacol	"	н	Antisapstain Compounds:		
4,6-Dichloroguaiacol	**		ТСМТВ	0.005	mg/L
4-chloroguaiacol		н	Organochlorine Pesticides an		
5-Chloroguaiacol	"	41	Aldrin	0.000001	1 0
6-Chloroguaiacol	"	"	BHC alpha-	0.000001	
Tetrachlorocatechol	и	"	BHC beta-	0.000001	
3,4,5-Trichlorocatechol	**	"	BHC delta-	0.000001	1
3,4-Dichlorocatechol	"		Chlordane alpha-	0.000005	
3,5-Dichlorocatechol	н	"	Chlordane gamma-	0.000005	
4,5-Dichlorocatechol	"	"	DDE pp'-	0.000005	
4-Chlorocatechol	н	"	DDD pp'-	0.000005	
Tetrachloroveratrole	"	"	DDT pp'-	0.000005	1
3,4,5-Trichloroveratrole	м	, H	Dieldrin	0.000005	
4,5-Dichloroveratrole		1 "	Endosulfan I	0.000005	4
2,6-Dichlorosyringaldehyde	"	"	Endosulfan II	0.000005	
2-Chlorosyringaldehyde			Endosulfan sulphate	0.00001	1
3,4,5-Trichlorosyringol	*	"	DDT op'-	0.000005	
Trichlorotrimethoxybenzene	"		Endrin	0.000005	
5,6-Dichlorovanillin		11	Hexachlorobenzene	5E-07	
6-Chlorovanillin			Heptachlor	0.000001	
Nonylphenol	0.000005	11	Heptachlor epoxide	0.000002	•
			Lindane BHC gamma-	0.000001	•
1) All results are blank corrected			Methoxychlor	0.00001	
2) Organic analyses are not corrected		ite	Mirex	0.00001	1
recoveries except for isotope dilution			Nonachlor trans-	0.000005	'
3) MDL = Minimum Detectable Lim	it		Oxychlordane	0.000005	'
4) \leq = Less than MDL			Toxaphene	0.00005	
			PCBs - Total	0.00002	1

Minimum Detection Limits for Organic Analysis

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon	ASL	ASL
Client ID		FR0009	FR0015	FR0046	FR0058	FR0066	FR0070	FR0076
SITE		Mission						
SILE	UNITS	WIISSION	WIISSION	WIISSION	1411331011	1411351011	MISSION	Wilssion
Sampled On:	CITIS	93-01-25	93-02-09	93-02-22	93-03-08	93-03-22	93-04-19	93-05-03
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		1	122 - 16.8				122 - 16.8	122 - 16.80
		122 - 10.0	122 - 10.0	122 - 10.0	122 - 10.0	122 - 10.0	122 10.0	122 10:00
Physical Tests:								
Dissolved Oxygen	mg/L	13.4	13.8	13.4	8.8	-	11.2	11
Water Temperature	deg C	1	5	1	5.1	-	7	9.5
Air Tempurature		3	6	0	10	-	11	10.5
рН		7.5	7.5	7.4	7.6	7.6	7.39	7.3
Field pH		7.1	7.2	7.7	7.35	•	7.15	6.9
Specific Conductance (SC)	uS/cm	143	136	146	138	132	119	121
Field SC	uS/cm	95	80	110	3300	-	210	140
Suspended Solids (NFR)	mg/L	13	5	4	20	9	55	59
Dissolved Solids (FR)	H	86	83	91	90	83	83	79
Hardness Total	mg/L CaCO3	62.7	56.5	58.5	54.7	55.6	59	57.2
Anions:								
Alkalinity Total @ pH 4.5	mg/L CaCO3	56.4	53	58.4	53.5	52.2	48.3	46
Chloride Dissolved	mg/L	2.3	2.3	2.2	2.4	2	1.9	1.6
Fluoride Dissolved	" "	<		<	1	<	0.04	0.04
Sulfate		12.8	1			11.8	8.3	6.8
bonate .								
Nutrients:								
Nitrogen Amm.Diss(N)	mg N/L	0.036		0.016		0.008	0.008	
Nitrogen Kjel.Tot(N)	M	0.16		<		0.11	0.27	0.27
Nitro NO3+NO2 D	M	0.15	0.16	0.13	0.15	0.15	0.137	0.15
Phosphorus Dissolved	mg P/L	<				0.014	0.02	0.043
Phosphorus Total	•	0.021	0.022	0.016	0.037	0.034	0.142	0.094
TOTAL METALS								
Aluminum	mg/L	0.32	0.1	0.07	0.57	0.24	1.94	0.58
Arsenic	"	<	<	0.001	<	<	0.0003	0.0006
Barium	m	0.018	0.015	0.014	0.017	0.017	0.035	0.026
Cadmium		<	<	<	<	<	<0.0002	0.0011
Calcium	•	18.2	16.4	16.9	15.7	15.8	16.2	16.3
Chromium	"	<	<	<	<	<	0.003	0.001
Cobalt		<	<	<	<	<	< 0.015	<0.015
Copper	-	0.008	0.001	<	<	0.003	0.001	0.005
Iron		0.42	0.22	0.18	0.91	0.41	2.34	0.638
Lead	-	<	1		1			<0.001
Magnesium		4.2	3.77	3.96	3.76	3.91	4.51	3.99
Manganese		0.021		1		1	1	0.056
Mercury	*	<		1				<0.00005
Molybdenum	*	<		1	<	<	< 0.001	<0.001
Nickel		0.008	<	<	<	<	1	0.003
Potassium		1.2			0.8	0.8		<2.0
Selenium	-	<	1		1			<0.0005
Silver		<	1		1			< 0.0001
Sodium		4.29	1	1	1		3.4	3.1
Tin		<	<	1	1	1	1	
Zinc	-	0.014	1	1				<0.005
D CTERIOLOCICIA		ļ		<u> </u>				
BACTERIOLOGICAL: Fecal Coliform	MPN/100 mL	800	800	300	_	230	50	500
	MEN/100 ML	000	800	300		230		500
ORGANIC PARAMETERS:		1					1	
Total Organic Carbon	mg/L	3.0	1.0	2.0	2.0	3.0	0.5	4.0

.

-

÷

UNITS mg/L deg C " uS/cm uS/cm mg/L uS/cm mg/L uS/cm mg/L g/L CaCO3	ASL FR0087 Mission 93-05-17 49 - 8.18 122 - 16.80 10.8 12.8 13.3 7.50 7.5 102.0 79 377 66 81.8	ASL FR0099 Mission X-sec 3 93-05-31 49 - 8.18 122 - 16.80 11.2 13.8 16.3 7.72 7.3 92.5 74 179 45	ASL FR0111 Mission 93-06-14 49 - 8.18 122 - 16.80 10.6 13.5 15.0 7.64 7.6 96.6 69 50	ASL FR0115 Mission 93-06-28 49 - 8.18 122 - 16.80 10.6 15.6 17.5 7.50 7.9 101.0	ASL FR0119 Mission 93-07-12 49 - 8.18 122 - 16.80 9.6 16.0 17.2 7.60 7.7	ASL FR0123 Mission 93-07-26 49 - 8.18 122 - 16.80 9.9 18.1 20.2 7.55
mg/L deg C " uS/cm uS/cm mg/L " ng/L CaCO3	Mission 93-05-17 49 - 8.18 122 - 16.80 10.8 12.8 13.3 7.50 7.5 102.0 79 377 66	Mission X-sec 3 93-05-31 49 - 8.18 122 - 16.80 111.2 13.8 16.3 7.72 7.3 92.5 74 179 45	Mission 93-06-14 49 - 8.18 122 - 16.80 10.6 13.5 15.0 7.64 7.6 96.6 69	Mission 93-06-28 49 - 8.18 122 - 16.80 10.6 15.6 17.5 7.50 7.9 101.0	Mission 93-07-12 49 - 8.18 122 - 16.80 9.6 16.0 17.2 7.60	Mission 93-07-26 49 - 8.18 122 - 16.80 9.9 18.1 20.2
mg/L deg C " uS/cm uS/cm mg/L " ng/L CaCO3	93-05-17 49 - 8.18 122 - 16.80 10.8 12.8 13.3 7.50 7.5 102.0 79 377 66	X-sec 3 93-05-31 49 - 8.18 122 - 16.80 11.2 13.8 16.3 7.72 7.3 92.5 74 179 45	93-06-14 49 - 8.18 122 - 16.80 10.6 13.5 15.0 7.64 7.6 96.6 69	93-06-28 49 - 8.18 122 - 16.80 10.6 15.6 17.5 7.50 7.9 101.0	93-07-12 49 - 8.18 122 - 16.80 9.6 16.0 17.2 7.60	93-07-26 49 - 8.18 122 - 16.80 9.9 18.1 20.2
mg/L deg C " uS/cm uS/cm mg/L " ng/L CaCO3	49 - 8.18 122 - 16.80 10.8 12.8 13.3 7.50 7.5 102.0 79 377 66	93-05-31 49 - 8.18 122 - 16.80 11.2 13.8 16.3 7.72 7.3 92.5 74 179 45	49 - 8.18 122 - 16.80 10.6 13.5 15.0 7.64 7.6 96.6 69	49 - 8.18 122 - 16.80 10.6 15.6 17.5 7.50 7.9 101.0	49 - 8.18 122 - 16.80 9.6 16.0 17.2 7.60	49 - 8.18 122 - 16.80 9.9 18.1 20.2
deg C " uS/cm uS/cm mg/L " ng/L CaCO3	49 - 8.18 122 - 16.80 10.8 12.8 13.3 7.50 7.5 102.0 79 377 66	122 - 16.80 11.2 13.8 16.3 7.72 7.3 92.5 74 179 45	49 - 8.18 122 - 16.80 10.6 13.5 15.0 7.64 7.6 96.6 69	122 - 16.80 10.6 15.6 17.5 7.50 7.9 101.0	9.6 16.0 17.2 7.60	122 - 16.80 9.9 18.1 20.2
deg C " uS/cm uS/cm mg/L " ng/L CaCO3	10.8 12.8 13.3 7.50 7.5 102.0 79 377 66	11.2 13.8 16.3 7.72 7.3 92.5 74 179 45	10.6 13.5 15.0 7.64 7.6 96.6 69	10.6 15.6 17.5 7.50 7.9 101.0	9.6 16.0 17.2 7.60	9.9 18.1 20.2
deg C " uS/cm uS/cm mg/L " ng/L CaCO3	12.8 13.3 7.50 7.5 102.0 79 377 66	13.8 16.3 7.72 7.3 92.5 74 179 45	13.5 15.0 7.64 7.6 96.6 69	15.6 17.5 7.50 7.9 101.0	16.0 17.2 7.60	18.1 20.2
deg C " uS/cm uS/cm mg/L " ng/L CaCO3	12.8 13.3 7.50 7.5 102.0 79 377 66	13.8 16.3 7.72 7.3 92.5 74 179 45	13.5 15.0 7.64 7.6 96.6 69	15.6 17.5 7.50 7.9 101.0	16.0 17.2 7.60	18.1 20.2
deg C " uS/cm uS/cm mg/L " ng/L CaCO3	12.8 13.3 7.50 7.5 102.0 79 377 66	13.8 16.3 7.72 7.3 92.5 74 179 45	13.5 15.0 7.64 7.6 96.6 69	15.6 17.5 7.50 7.9 101.0	16.0 17.2 7.60	18.1 20.2
" uS/cm mg/L " ng/L CaCO3	13.3 7.50 7.5 102.0 79 377 66	16.3 7.72 7.3 92.5 74 179 45	15.0 7.64 7.6 96.6 69	17.5 7.50 7.9 101.0	17.2 7.60	20.2
uS/cm mg/L " ng/L CaCO3	7.50 7.5 102.0 79 377 66	7.72 7.3 92.5 74 179 45	7.64 7.6 96.6 69	7.50 7.9 101.0	7.60	
uS/cm mg/L " ng/L CaCO3	7.5 102.0 79 377 66	7.3 92.5 74 179 45	7.6 96.6 69	7.9 101.0	1	7 55
uS/cm mg/L " ng/L CaCO3	102.0 79 377 66	92.5 74 179 45	96.6 69	101.0	771	
uS/cm mg/L " ng/L CaCO3	79 377 66	74 179 45	69		1	7.4
mg/L " ng/L CaCO3	377 66	179 45			105.0	106.0
# ng/L CaCO3	66	45	< <u> 1</u>	83	80	91
-				54	57	30
-	81.8		52	53	56	56
ng/L CaCO3		39.8	48.1	51.6	44.2	47.7
ng/L CaCO3						<u>. </u>
	50.6	38.7	38.3	41.8	48.2	45.6
mg/L	2.3	1.3	1.1	1	0.9	1.1
"	0.04	0.03	0.04	0.04	0.04	0.04
	10.5	5.8	8.5	7.0	8.5	8.8
mg N/L	0.013	0.007	<0.005	0.027	<0.005	0.009
H	0.75	0.11	0.15	0.09	0.12	0.14
H	0.113	0.069	0.069	0.052	0.056	0.100
mg P/L	0.066	0.005	0.008	0.002	0.007	0.004
۳	0.478	0.082	0.046	0.049	0.059	0.027
mal	. 56	0.71	0.39	0.45	0.58	0.46
mg/L						0.0005
						0.02
						<0.0002
			1			14.10
			1		<0.001	0.006
			<0.015	< 0.015	< 0.015	<0.015
						0.010
					0.47	0.65
		0.001	0.001			<0.001
		2.69	2.89	3.07	3.01	3.05
		0.054	0.034	0.033	0.023	0.032
*	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
*	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	0.015	0.003	0.002	0.002	0.004	0.002
	<2	<2	<2	<2	<2	<
	<0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	<0.000
	<0.0001	0.0003	<0.0001	<0.0001	<0.0001	<0.0001
	2.9	· <2	2.1	2.1	2.2	2.3
m	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
*	0.032	<0.005	0.005	<0.005	<0.005	0.008
m)//	-			~		
41°N/100 mL	50	50	4	<2	13	13
	1					
		mg/L 5.6 " 0.0017 " 0.085 " 0.0002 " 16.1 " 0.011 " <0.015 " 0.012 " 9.22 " 0.003 " 9.22 " 0.003 " 0.292 " <0.0005 " <0.0015 " <2 " <0.0005 " <0.0015 " <29 " <0.0005 " <0.0001 " <29 " <0.0005 " <0.0001 " <29 " <0.0005 " <0.0001 " <29 " <0.0005 " <0.0001	mg/L 5.6 0.71 0.0017 0.0006 0.085 0.024 0.0002 <0.0002	mg/L 5.6 0.71 0.39 0.0017 0.0006 0.0004 0.085 0.024 0.02 0.0002 <0.0002	mg/L 5.6 0.71 0.39 0.45 0.0017 0.0006 0.0004 0.0004 0.085 0.024 0.02 0.002 0.0002 <0.0002	mg/L 5.6 0.71 0.39 0.45 0.58 " 0.0017 0.0006 0.0004 0.0004 0.0003 " 0.085 0.024 0.02 0.02 0.002 " 0.0002 <0.0002

-

÷.

~] ·

-

Lab ID		ASL	ASL	ASL	ASL	ASL
Client ID		FR0127	FR0137	FR0151	FR0155	FR0167
SITE		Mission	Mission	Mission	Mission	Mission
	UNITS		Replicate			X-sec 3
Sampled On:	00	93-08-09	93-08-23	93-09-06	93-09-20	93-10-04
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80
		122 - 10.00	122 - 10.80	122 - 10.80	122 - 10.00	122 - 10.00
Physical Tests:						
Dissolved Oxygen	mg/L	9.8	9.2	9.4	9.1	9.5
Water Temperature	deg C	18.9	18.4	17.5	14.2	13.9
Air Tempurature	*	19.2	17.1	22.1	12.9	13.8
pH		7.55	7.77	7.68	7.2	7.48
Field pH		7.5	7.5	7.5	7.55	7.75
Specific Conductance (SC)	uS/cm	104.0	103.0	105.0	120	131
Field SC	uS/cm	92	90	108	105	117
Suspended Solids (NFR)	mg/L	26	24	16	9	4
Dissolved Solids (FR)		53	55	59	59	67
Hardness Total	mg/L CaCO3	50.9	50	52.6	52.2	62.2
Anions:						
Alkalinity Total @ pH 4.5	mg/L CaCO3	42.7	41.6	44.1	44.3	50.2
Chloride Dissolved	mg/L	1.2	1.3	0.8	0.7	1.4
Fluoride Dissolved	*	0.03	0.04	0.03	0.03	0.03
Sulfate	H	6.2	8.0	8.8	8.1	9.9
Nutrients:						
Nitrogen Amm.Diss(N)	mg N/L	<0.005	<0.005	0.006	0.007	0.043
Nitrogen Kjel. Tot(N)		0.15	0.10	0.17	0.129	0.2
Nitro NO3+NO2 D		0.029	0.015	0.023	0.029	0.039
Phosphorus Dissolved	mg P/L	0.025	0.010	0.008	0.008	0.01
Phosphorus Total	м	0.028	0.032	0.022	0.021	0.015
				·		
TOTAL METALS	~				~	~
Aluminum	mg/L	0.38	0.27	<0.2	<0.20	<0.20
Arsenic		0.0003	0.0005	0.0003	0.0004	0.0004
Barium	"	0.02	0.02	0.02	0.018	0.015
Cadmium		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Calcium	"	15.00	15.30	15.80	16.2	18.6
Chromium	"	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	ti	<0.015	<0.015	<0.015	< 0.015	<0.015
Copper	"	0.001	0.001	0.001	<0.001	0.002
Iron	H	0.38	0.30	0.21	0.153	0.091
Lead	"	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	•	3.27	2.86	3.21	3.32	3.82
Manganese	•	0.022	0.018	0.017	0.011	0.011
Mercury	"	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Molybdenum		<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	-	<0.001	0.001	<0.001	<0.001	<0.001
Potassium	*	<2	<2	<2	<2	<2.0
Selenium	*	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silver	**	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium	**	2.4	2.2	2	3	3.5
Tin	*	<0.3	<0.3	<0.3	<0.30	<0.30
Zinc	*	0.009	<0.005	0.002	<0.001	0.004
BACTERIOLOGICAL:		_				
Fecal Coliform	MPN/100 mL	2	130	23	60	23
ORGANIC PARAMETERS:	<u> </u>					
Total Organic Carbon	mg/L	2.9	2.3	2.0	1.8	1.8

Lab ID		ASL	ASL	ASL	ASL	ASL
Client ID		FR0177	FR0182	FR0186	FR0190	FR0208
SITE		Mission	Mission	Mission	Mission	Mission
	UNITS	ļ				
Sampled On:		93-10-18	93-11-01	93-11-15	93-11-29	93-12-13
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80
Physical Tests:						
Dissolved Oxygen	mg/L	10.6	9.2	11	12.7	11.6
Water Temperature	deg C	11.1	8.9	5.5	3	3.9
Air Tempurature	,	11.5	8.5	4	5.5	7.5
рН		7.75	7.68	7.73	7.7	7.52
Field pH		7.6	7.65	7.8	7.3	7.45
Specific Conductance (SC)	uS/cm	118	120	128	131	120
Field SC	uS/cm	82	145	82	78	75
Suspended Solids (NFR)	mg/L	8	9	11	- 1	34
Dissolved Solids (FR)	, n	64	66	68	90	84
Hardness Total	mg/L CaCO3	56.8	59.7	62	61.5	55.5
Anions:						
Alkalinity Total @ pH 4.5	mg/L CaCO3	48.4	49	51.5	53.6	46.8
Chloride Dissolved	mg/L	1.3	1.6	1.8	1.4	2.6
Fluoride Dissolved	"	0.06	0.04	0.04	0.05	0.04
Sulfate		10.6	10.9	9.7	12.6	10
Nutrients:			· · · ·			
Nitrogen Amm.Diss(N)	mg N/L	0.027	0.031	0.029	0.029	0.034
Nitrogen Kjel.Tot(N)	"	0.186	0.17	0.185	0.196	0.233
Nitro NO3+NO2 D	*	0.044	0.087	0.092	0.166	0.318
Phosphorus Dissolved	mg P/L	0.01	0.015	0.006	0.02	0.028
Phosphorus Total	'n	0.016	0.024	0.026	0.02	0.099
TOTAL METALS		· · ·				
Aluminum	mg/L	<0.20	0.21	0.22	<0.20	1.29
Arsenic	*	0.0004	0.0005	0.0003	0.0005	0.0006
Barium	"	0.017	0.016	0.018	0.016	0.026
Cadmium		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Calcium		16.6	17.5	17.9	17.9	15.8
Chromium		<0.001	<0.001	<0.001	<0.001	0.002
Cobalt	•	<0.015	<0.015	<0.015	<0.015	<0.01
Copper		<0.001	<0.001	0.001	<0.001	0.003
Iron	*	0.054	0.22	0.254	0.167	1.0
Lead	*	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	*	3.73	3.85	4.21	4.08	3.89
Manganese	*	0.01	0.014	0.017	0.017	0.046
Mercury	"	<0.00005	<0.00005	<0.00005	<0.00005	<0.0000
Molybdenum		<0.001	<0.001	<0.001	0.001	<0.00
Nickel	H	<0.001	<0.001	<0.001	0.001	0.001
Potassium		<2.0	<2.0	<2.0	<2.0	<2.0
Selenium	*	<0.0005	<0.0005	<0.0005	<0.0005	<0.000
Silver		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium	14	3.2	3.1	3	4	3.2
Tin		<0.30	<0.30	<0.30	<0.30	<0.30
Zinc	*	0.001	0.007	0.004	0.002	0.002
BACTERIOLOGICAL:				[[
Fecal Coliform	MPN/100 mL	22	· 90	70	30	130
ORGANIC PARAMETERS:						
Total Organic Carbon	mg/L	2.1	2.2	3.0	3.4	2.

Lab ID		ASL	ASL	ASL	ASL	ASL
Client ID		FR0212	FR0216	FR0220	FR0231	FR0259
SITE		Mission	Mission	Mission	Mission	Mission
	UNITS				X-sec 3	
Sampled On:		93-12-27	94-01-11	94-01-25	94-02-07	94-02-22
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80
Physical Tests:	_			10.6	10.7	10.4
Dissolved Oxygen	mg/L	11.6	11.8	12.6	12.7	12.4 3.8
Water Temperature	deg C	2.7	4.2	3.9	1	3.8 7
Air Tempurature	"	5	8	8.5	-4 7.5	7.63
pH		7.18	7.43	7.91 7.35	7.3 7.4	7.83
Field pH	. 6/	7.6	7.25		135	143
Specific Conductance (SC)	uS/cm	133	114	120	76	82
Field SC	uS/cm	89	75	74		82
Suspended Solids (NFR)	mg/L	9	5	4	8 87	
Dissolved Solids (FR)		72	70	76	87 58.4	86 57.4
Hardness Total	mg/L CaCO3	63.2	49.7	54.4	28.4	51.4
Anions:						
Alkalinity Total @pH 4.5	mg/L CaCO3	51.5	44.4	47.9	53.7	53
Chloride Dissolved	mg/L	1.9	1.6	1.8	1.9	2
Fluoride Dissolved		0.04	0.04	0.05	0.04	0.04
Sulfate	*	11.5	10	9.8	10.1	10
Nutrients:						
Nitrogen Amm.Diss(N)	mg N/L	0.022	0.018	0.017	0.031	0.026
Nitrogen Kjel.Tot(N)	""""""""""""""""""""""""""""""""""""""	0.151	0.147	0.149	0.16	0.21
Nitro NO3+NO2 D		0.148	0.199	0.154	0.133	0.189
Phosphorus Dissolved	mg P/L	0.01	0.014	0.013	0.015	0.017
Phosphorus Total	**************************************	0.013	0.02	0.018	0.029	0.024
r nosphorus rouar		0.015	0.02	0.010	0.02	0.021
TOTAL METALS						
Aluminum	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	*	0.0006	0.0004	0.0008	0.0005	0.0005
Barium	*	0.015	0.013	0.018	0.019	0.018
Cadmium	•	<0.000 2	<0.0002	<0.0002	<0.0002	<0.0002
Calcium	**	18.4	14.1	15.5	16.6	16.1
Chromium	**	<0.001	0.001	0.001	0.001	<0.001
Cobalt	•	<0.015	<0.015	<0.015	<0.015	<0.015
Copper	м	0.001	0.001	0.003	0.002	0.001
Iron		0.104	0.172	0.158	0.199	0.225
Lead	'n	<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	*	4.2	3.54	3.79	4.11	4.16
Manganese		0.013	0.013	0.012	0.017	0.016
Mercury	*	<0.00005	<0.00005	<0.00005	<0.00005	< 0.00005
Molybdenum		0.001	<0.001	0.001	0.001	<0.001
Nickel		0.001	<0.001	<0.001	<0.001	<0.001
Potassium	*	<2.0	<2.0	<2.0	<2.0	<2.0
Selenium	*	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silver	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium		4.2	3.5	3.7	3.8	4.3
Tin	•	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Zinc	•	0.001	0.004	0.004	0.001	0.007
BACTERIOLOGICAL:	<u></u>					
Fecal Coliform	MPN/100 mL	33	70	130	140	230
ORGANIC PARAMETERS:	7	2.6	2.5	2.2	2.3	2.7
Total Organic Carbon	mg/L	2.6	2.5	2.2	2.3	2.1

Lab ID		ASL	ASL
Client ID		FR0264	FR0268
SITE		Mission	Mission
5112	UNITS	Mission	WIISSION
Sampled On:	UNITS .	94-03-07	94-03-22
Latitude (N)		49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.80	122 - 16.80
		122 10.00	122 10.00
Physical Tests:			
Dissolved Oxygen	mg/L	12.8	11.7
Water Temperature	deg C	4.1	5.2
Air Tempurature	· •	10	6
pH		7.56	7.56
Field pH		7.55	7.65
Specific Conductance (SC)	uS/cm	117	124
Field SC	uS/cm	75	80
Suspended Solids (NFR)	mg/L	59	48
Dissolved Solids (FR)		78	81
Hardness Total	mg/L CaCO3	52.5	56.6
Anions:			
Alkalinity Total @ pH 4.5	mg/L CaCO3	45.1	47
Chloride Dissolved	mg/L	2.3	2.3
Fluoride Dissolved	"	0.06	0.04
Sulfate	"	9.8	8.9
Nutrients:		0.010	0.015
Nitrogen Amm.Diss(N)	mg N/L	0.019	0.015
Nitrogen Kjel.Tot(N) Nitro NO3+NO2 D		0.27	0.2
		0.178	0.159
Phosphorus Dissolved Phosphorus Total	mg P/L	0.034 0.107	0.003
Phosphorus Total		0.107	0.114
TOTAL METALS			
Aluminum	mg/L	0.58	0.6
Arsenic	"	0.0006	0.0005
Barium	"	0.024	0.027
Cadmium	"	<0.0002	<0.0002
Calcium		14.7	15.7
Chromium	"	<0.001	<0.001
Cobalt		<0.015	< 0.015
Copper	•	0.003	0.005
Iron		0.647	0.649
Lead		<0.001	<0.001
Magnesium	"	3.83	4.23
Manganese		0.047	0.041
Mercury		<0.00005	<0.00005
Molybdenum	•	<0.001	<0.001
Nickel		0.003	0.002
Potassium	•	<2.0	<2.0
Selenium	-	<0.0005	<0.0005
Silver	-	<0.0001	<0.0001
Sodium	*	3.7	3.7
Tin	-	<0.30	<0.30
Zinc	•	0.007	0.002
BACTERIOLOGICAL:		1	
Fecal Coliform	MPN/100 mL	50	30
ORGANIC PARAMETERS:		<u> </u>	
Total Organic Carbon	mg/L	2.3	2.1
rown Or Barne Cartoon	ung/D		2.1

.

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon	Zenon	Zenon
Client ID		FR0046	FR0066	FR0070	FR0087	FR0111	FR0119	FR0127
SITE		Mission	Mission	Mission	Mission	Mission	Mission	Mission
SILE	UNITS	WIISSION	WIISSION	IVIISSION	INTISSION	TATISSION	MISSION	MISSION
Sampled On:	ONITS	93-02-22	93-03-22	93-04-19	93-05-17	93-06-14	93-07-12	93-08-09
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.8	122 - 16.8	122 - 16.8	122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80
ORGANIC PARAMETERS:								
Adsorbable Org. Halide (AOX)	mg/L	0.04	0.03	0.02	<0.01	<0.01	0.01	<0.01
Chlorophenolics:	mg/L	0.04	0.03	0.02	<0.01	<0.01	0.01	<0.01
-						0 000004		
Pentachiorophenol	mg/L					0.000004		
2,3,4,6+2,3,5,6-Tetrachlorophenol								<
2,3,4,5-Tetrachlorophenol								<
3,4,5-Trichlorophenol	-		<	<	<	<	<	<
2,3,4-Trichlorophenol	-		^{<}	<	<	<	<	<
2,3,5-Trichlorophenol	-	<	<	<	<	<	<	<
2,3,6-Trichlorophenol	-	<	<	<	<	<	<	<
2,4,5-Trichlorophenol	-	<	<	<	<	<	<	<
2,4,6-Trichlorophenol		<	<	<	<	0.000002	<	<
2,4-Dichlorophenol	*	<	<	<	. <	<	<	<
2,6-Dichlorophenol	*	<	<	<	<	<	<	<
2,5-Dichlorophenol	*	<	<	<	<	<	<	<
3,5-Dichlorophenol	*	<	<	<	<	<	<	<
2,3-Dichlorophenol	*	<	<	<	<	<	<	<
3,4-Dichlorophenol	*	<	<	<	<	<	<	<
4-Chlorophenol	"	<	<	<	<	<	<	<
Tetrachloroguaiacol	*	<	<	<	<	<	<	<
3,4,5-Trichloroguaiacol		0.000011	<	0.000009	<	<	<	<
3,4,6-Trichloroguaiacol	*	<	<	<	<	<	<	<
4,5,6-Trichloroguaiacol	"	<	<	0.000004	0.000008	<	<	<
4,5-Dichloroguaiacol	"	0.000014	0.000006	0.000004	0.000002	0.000005	<	<
4,6-Dichloroguaiacol	*	<	<	<	· <	<	<	<
4-Chloroguaiacol		<	<	<	<	<	<	<
5-Chloroguaiacol		<	<	<	<	0.000008	0.000005	<
6-Chloroguaiacol	"	<	<	<	<	<	<	<
Tetrachlorocatechol	"	0.000003	<	0.000005	0.000008	<	<	<
3,4,5-Trichlorocatechol		0.000008	<	0.000008	<	0.000002	<	<
3.4-Dichlorocatechol	"	<		<	<	<	<	<
3,5-Dichlorocatechol				Ż	e e	2		-
4,5-Dichlorocatechol		0.000008	2	0.000006	, i i i i i i i i i i i i i i i i i i i			
4-Chlorocatechol		2.000000		2.000000				
Tetrachloroveratrole								
3,4,5-Trichloroveratrole		0.000006	<	0.000003				
4,5-Dichloroveratrole		0.00000		0.000003	<	<pre></pre>	<	<
2,6-Dichlorosyringaldehyde	н							<pre></pre>
					<	< 1	<	<
2-Chlorosyringaldehyde	-		<	<	<	<	<	<
3,4,5-Trichlorosyringol	*	<pre></pre>	<	<	<	<	<	<
Trichlorotrimethoxybenzene	-	<	<	<	<	<	<	<
5,6-Dichlorovanillin	N	0.000002	<	<	<	<	<	<
	*	1 0 00007	· /	0.000007		0.000002	<	· · ·
6-Chlorovanillin Nonylphenol		0.000007		0.000007		0.000002		

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon
Client ID		FR0151	FR0167	FR0177	FR0182	FR0190
SITE		Mission	Mission	Mission	Mission	Mission
SILE	UNITS	Wission	X-sec 3	1411351011	WIISSION	IVIISSION
Sampled On:	ONIIS	93-09-06	93-10-04	93-10-18	93-11-01	93-11-29
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80
ORGANIC PARAMETERS:						
Adsorbable Org. Halide (AOX)	mg/L	<0.01	0.02		0.02	0.02
Chlorophenolics:						
Pentachlorophenol	mg/L	<	<	<	<	<
2,3,4,6+2,3,5,6-Tetrachlorophenol	н	<	<	<	<	<
2,3,4,5-Tetrachlorophenol	Ħ	<	<	<	<	<
3,4,5-Trichlorophenol		<	<	<	<	<
2,3,4-Trichlorophenol	*	e e	<	<	<	
2,3,5-Trichlorophenol			<	· · · ·	<	
2,3,6-Trichlorophenol			<	\ \ \	/ \ \	
2,4,5-Trichlorophenol		<	<	<	<	
2,4,6-Trichlorophenol			<	<	0.000003	0.000004
2,4.Dichlorophenol		<	\ \	/	0.000003	0.00004
2,6-Dichlorophenol		<	<	~ ~	<	
		\ \	<	/		
2,5-Dichlorophenol		<		<i>'</i> <	\ \	
3,5-Dichlorophenol			< <			
2,3-Dichlorophenol		<		<	<	
3,4-Dichlorophenol	• ·	<	<	<	<	<
4-Chlorophenol		<	<	<	<	<
Tetrachloroguaiacol		<	<	<	<	0.000002
3,4,5-Trichloroguaiacol	"	<	<	<	<	0.000005
3,4,6-Trichloroguaiacol		<	<	<	<	<
4,5,6-Trichloroguaiacol	*	<	<	<	<	<
4,5-Dichloroguaiacol	*	0.000002	0.000002	· <	0.000002	<
4,6-Dichloroguaiacol	**	<	<	<	<	<
4-Chloroguaiacol	**	<	<	<	<	<
5-Chloroguaiacol	•	0.000003	0.000002	<	0.000003	<
6-Chloroguaiacol	64	<	<	<	<	<
Tetrachlorocatechol	••	<	<	<	<	<
3,4,5-Trichlorocatechol	**	<	<	<	<	0.000005
3,4-Dichlorocatechol	**	<	<	<	<	<
3,5-Dichlorocatechol	••	<	<	<	<	<
4,5-Dichlorocatechol	**	<	<	<	<	0.000004
4-Chlorocatechol	**	<	<	<	<	<
Tetrachloroveratrole	*1	<	<	<	<	<
3,4,5-Trichloroveratrole	*	<	<	<	<	0.000002
4,5-Dichloroveratrole	•		<	<	<	<
2,6-Dichlorosyringaldehyde	*	<	<	<	<	<
2-Chlorosyringaldehyde	*	<	<	<	<	<
3,4,5-Trichlorosyringol		<	<		<	<
Trichlorotrimethoxybenzene		<	<	<	<	<
5,6-Dichlorovanillin	**	<	<		<	<
6-Chlorovanillin		<	<	<	<	0.000006
Nonylphenol		· · · ·	<	<		2.000000
ronyiphenoi					`	
				I	<u> </u>	L

Lab ID		Zenon	Zenon	Zenon	Zenon
Client ID		FR0212	FR0220	FR0259	FR0268
SITE		Mission	Mission	Mission	Mission
	UNITS				
Sampled On:		93-12-27	94-01-25	94-02-22	94-03-22
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.80	122 - 16.80	122 - 16.80	122 - 16.80
ORGANIC PARAMETERS:					
Adsorbable Org. Halide (AOX)	mg/L	0.03	0.02	0.03	0.02
Chlorophenolics:					
Pentachlorophenol	mg/L	<	<	<	0.00000
2,3,4,6+2,3,5,6-Tetrachlorophenol		<	<	<	0.00000
2,3,4,5-Tetrachlorophenol		<	<	<	-
3,4,5-Trichlorophenol		<	<	<	<
2,3,4-Trichlorophenol		<	<	<	•
2,3,5-Trichlorophenol		<	<	<	•
2,3,6-Trichlorophenol		<	<	<	•
2,4,5-Trichlorophenol	•	<	<	<	•
2,4,6-Trichlorophenol	н	0.000006	<	0.000004	0.00000
2,4-Dichlorophenol	**	<	<	<	
2,6-Dichlorophenol		<	<	<	
2,5-Dichlorophenol		<	<	<	
3,5-Dichlorophenol	Ħ	<	<	<	
2,3-Dichlorophenol		<	<	<	
3,4-Dichlorophenol		<	<	<	
4-Chlorophenol		<	<	<	
Tetrachloroguaiacol		<	<	<	
3,4,5-Trichloroguaiacol		0.000010	<	0.000005	0.00000
3,4,6-Trichloroguaiacol		<	<	<	
			<	0.000003	
4,5,6-Trichloroguaiacol	*	0.000008	<		0.00000
4,5-Dichloroguaiacol		0.000008		<	0.00000
4,6-Dichloroguaiacol			<	<	
4-Chloroguaiacol		0.000006	<	<	
5-Chloroguaiacol		0.000000	<		
6-Chloroguaiacol				<	0.00000
Tetrachlorocatechol					0.00000
3,4,5-Trichlorocatechol		0.000012			
3,4-Dichlorocatechol		<	<		
3,5-Dichlorocatechol	•	<	<	<	
4,5-Dichlorocatechol		0.00008	<	0.000004	0.00000
4-Chlorocatechol	•	<	<	<	
Tetrachloroveratrole	*	<	<	<]
3,4,5-Trichloroveratrole		0.000003	<	0.000002	
4,5-Dichloroveratrole		<	<	<	
2,6-Dichlorosyringaldehyde	*	<	<	1	
2-Chlorosyringaldehyde	*	<	<	<	
3,4,5-Trichlorosyringol		<	<	<	1
Trichlorotrimethoxybenzene		<	<	<	
5,6-Dichlorovanillin	•	<	<	<	ł
6-Chlorovanillin	•	0.000005	<	0.000004	0.00000

	T	<u> </u>	_		
Lab ID		Zenon	Zenon	Zenon	Zenon
Client ID		FR0046	FR0087	FR0177	FR0259
SITE		Mission	Mission	Mission	Mission
	UNITS				
Sampled On:		93-02-22	93-05-17	93-10-18	94-02-22
	ļ				
Latitude (N)		49 - 8.18	49 - 8.18	49 - 8.18	49 - 8.18
Longitude (W)		122 - 16.8	122 - 16.80	122 - 16.80	122 - 16.80
ORGANIC PARAMETERS:		1			
Resin and Fatty Acids:					
Abietic Acid	mg/L	<	<	<	<
Arachidic Acid		<	<	<	<
Behenic Acid	"	<	<	<	<
Chlorodehydroabietic		<	<	<	<
Dehydroabietic Acid		<	<	<	< < <
Dichlorodehydroabietic		<	<	<	<
Isopimaric Acid	"	<	<	<	<
Lauric Acid		<	<	<	<
Levo Pimaric Acid		<	<	<	< < <
Lignoceric Acid		<	<	<	<
Linoleic Acid	"	<	<	<	
Linolenic Acid		<	<	<	< < <
Myristic Acid		<	<	0.0005	<
Neoabietic Acid	•	<	<	<	<
Oleic Acid	*	<	<	<	<
Palmitric Acid		<	<	0.0007	< < <
Palustric Acid		<	<	<	<
Pimaric Acid		<	<	<	<
Sandaraco Pimaric Acid	-	<	<	<	<
Stearic Acid		<	<	<	<
Antisapstain Compounds:	1				
ТСМТВ	mg/L	<	<	<	<
Organochlorine Pesticides and PCB	s:				
Aldrin	mg/L		<	<	<
BHC alpha-			<	• <	<
BHC beta-			<	<	<
BHC delta-	*		<	<	<
Chlordane alpha-			<	<	<
Chlordane gamma-			<	<	<
DDE pp-			<	<	<
DDD pp'-			<	<	<
DDT pp'-	-		<	<	
Dieldrin	n -		<	<	<
Endosulfan I			<	<	<
Endosulfan II	-		<	<	<
Endosulfan sulphate	· •		<	<	<
DDT op'-	•		<	<	<
Endrin			<	<	<
Hexachlorobenzene			<	<	<
Heptachlor			<	<	, i
Heptachlor epoxide			<	<	<
Lindane BHC gamma-	•		<	<	Ś
Methoxychlor			<	<	2
Mirex		_	<	<	2
Nonachlor trans-			<	<	2
Oxychlordane			<		2
Toxaphene	*		<	<	v v v v v v v v v v v v v v v v v v v
			<	<	<
PCBs - Total					

•

APPENDIX VIII

WATER QUALITY DATA FOR TILBURY ISLAND SITE

Water Quality in the Fraser River Estuary

Minimum Detection Limits for Total Metals Analysis

Laboratory	Zenon	ASL	
	MDL	MDL	UNITS
	From: 93-01	From: 93-04	
	To: 93-03	To: 94-03	
Physical Tests:			
Dissolved Oxygen			mg/L
Water Temperature			deg C
Air Temperature			*
pН			
Field pH			
Specific Conductance(SC)	1	0.2	uS/cm
Field SC			uS/cm
Suspended Solids (NFR)	4	1	mg/L
Dissolved Solids (FR)	4	1	п
Hardness Total			mg/L CaCO
Anions:]	
Alkalinity Total @ pH 4.5	0.5	0.5	mg/L CaCO
Chloride Dissolved	0.5		-
Fluoride Dissolved	0.1	0.02	
Sulfate	1	0.5	
Nutrients:			
Nitrogen Amm.Diss(N)	0.005	0.005	mg N/L
Nitrogen Kjel.Tot(N)	0.04	0.05	
Nitro NO3+NO2 D	0.02	0.005	
Phosphorus Dissolved	0.002	0.001	mg P/L
Phosphorus Total	0.003	0.001	mg1/L
	0.003	0.001	
TOTAL METALS			· · · · · · · · · · · · · · · · · · ·
Aluminum	0.06	0.02	mg/L
Arsenic	0.001		
Barium	0.001	0.01	-
Cadmium	0.0001	1	
Calcium	0.05	0.0002	
Chromium	0.005	0.001	
Cobalt	0.004	0.015	
Copper	0.001	0.001	
Iron	0.05		· ·
Lead	0.003	0.001	
Magnesium	0.02		
Manganese	0.002		
Mercury	0.00005		_
Molybdenum	0.004		
Nickel	0.005	0.001	
Potassium	0.4	•	
Selenium	0.03	0.0005	
Silver	0.03	0.0001	*
Sodium	0.4	2	•
Tin	0.02	0.3	
Zinc	0.01	0.001	*
	l	,	
ORGANIC PARAMETER			
Carbon Total Organic	0.5	. 0.5	mg/L

Laboratory	Zenon			Zenon	
ORGANIC PARAMETERS	MDL	UNITS		MDL	UNITS
Adsorbable Organic Halide (AOX):	0.01	mg/L	Resin and Fatty Acids:		
Chlorophenolics:	0.01		Abjetic Acid	0,0005	mg/L
Pentachlorophenol	0.000001	mg/L	Arachidic Acid	0.0005	"
2,3,4,6+2,3,5,6-Tetrachlorophenol	N.000001	"	Behenic Acid	0.0005	H
	11		Chlorodehydroabietic	0.0005	17
2,3,4,5-Tetrachlorophenol	н	. 11	Dehydroabietic Acid	0.0005	11
3,4,5-Trichlorophenol			Dichlorodehydroabietic	0.0005	
2,3,4-Trichlorophenol	**	н	Isopimaric Acid	0.0005	и.
2,3,5-Trichlorophenol	**		Lauric Acid	0.0005	
2,3,6-Trichlorophenol		67	Levo Pimaric Acid	0.0005	89
2,4,5-Trichlorophenol	н	n	Lignoceric Acid	0.0005	
2,4,6-Trichlorophenol			Linoleic Acid	0.0005	"
2,4-Dichlorophenol		н	Linolenic Acid	0.0005	
2,6-Dichlorophenol			Myristic Acid	0.0005	"
2,5-Dichlorophenol			Neoabietic Acid	0.0005	u
3,5-Dichlorophenol			Oleic Acid	0.0005	91
2,3-Dichlorophenol			Palmitric Acid	0.0005	
3,4-Dichlorophenol			Palustric Acid	0.0005	· •
4-Chlorophenol			Pimaric Acid	0.0005	
Tetrachloroguaiacol	0.000002		Sandaraco Pimaric Acid	0.0005	
3,4,5-Trichloroguaiacol		11		0.0005	u
3,4,6-Trichloroguaiacol			Stearic Acid	0.0005	
4,5,6-Trichloroguaiacol	и	1			
4,5-Dichloroguaiacol	"	"	Antisapstain Compounds:	0.005	
4,6-Dichloroguaiacol	"		ТСМТВ	0.005	mg/L
4-chloroguaiacol	"	н	Organochlorine Pesticides an		
5-Chloroguaiacol	"	11	Aldrin	0.000001	mg/L
6-Chloroguaiacol			BHC alpha-	0.000001	
Tetrachlorocatechol	"	"	BHC beta-	0.000001	
3,4,5-Trichlorocatechol	"		BHC delta-	0.000001	
3,4-Dichlorocatechol		"	Chlordane alpha-	0.000005	
3,5-Dichlorocatechol		11	Chlordane gamma-	0.000005	
4,5-Dichlorocatechol	"		DDE pp'-	0.000005	
4-Chlorocatechol	н	н	DDD pp'-	0.000005	
Tetrachloroveratrole			DDT pp'-	0.000005	
3,4,5-Trichloroveratrole		"	Dieldrin	0.000005	
4,5-Dichloroveratrole	и		Endosulfan I	0.000005	
2,6-Dichlorosyringaldehyde	H		Endosulfan II	0.000005	
2-Chlorosyringaldehyde	"		Endosulfan sulphate	0.00001	
3,4,5-Trichlorosyringol		"	DDT op'-	0.000005	
Trichlorotrimethoxybenzene			Endrin	0.000005	1
5,6-Dichlorovanillin	"		Hexachlorobenzene	5E-07	"
6-Chlorovanillin		*	Heptachlor	0.000001	
Nonylphenol	0.000005		Heptachlor epoxide	0.000002	
			Lindane BHC gamma-	0.000001	
1) All results are blank corrected			Methoxychlor	0.00001	
 2) Organic analyses are not corrected 	for surrog	ate	Mirex	0.00001	"
recoveries except for isotope dilution	methode		Nonachlor trans-	0.000005	
 3) MDL = Minimum Detectable Lim 			Oxychlordane	0.00000	1
3) MDL = Minimum Delectable Link () $\zeta = I$ are then MDI			Toxaphene	0.00005	

Toxaphene

PCBs - Total

Minimum Detection Limits for Organic Analysis

4) \leq = Less than MDL

_

11

0.00005

0.00002

	Zenon	Zenon	Zenon	Zenon	Zenon	ASL	ASL	ASL
							FR0075	FR0088
				Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
UNITS				X-sec 3			·	÷
	93-01-26	93-02-10	93-02-22	93-03-09	93-03-22	93-04-19	93-05-03	93-05-18
	49 - 8.86	49 - 8.86	49 - 8,86	49 - 8,86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
		123 - 1.93	123 - 1.93	123 - 1.93			123 - 1.93	123 - 1.93
ma/l	12.9	12	126	8 8		114	10.8	11.2
						1		14
ucg C *					-			25.2
					7.5		7.42	7.84
					-	7.45	7.25	7.6
uS/cm			4090	160	3440	140	135	114.0
uS/cm			2000	100	-	95	77	88
	35	35	9	53	10	88	59	685
	156	507	2370	96	1980	132	101	70
mg/L CaCO3	66.8	120	384	56	346	60.1	54.6	102
• • • • • •								
	AG 6	0 O L		46	50.1	44.2	44	51.9
÷			1					2.8
mg/L				1				0.04
			•	1	1			70.8
	15.5	30.7		14.0	152	0.0	0.7	70.0
								0.000
mg N/L					1			0.007
					1	1		0.73 0.109
								0.109
mg P/L								0.122
	0.063	0.041	0.032	0.082	0.034	0.217	0.103	0.774
mg/L	1							8.4
**	1	l I						0.0025
								0.112
			1	1		1		< 0.0002
	1		1	1			•	0.018
				í	1	1		<0.015
-			1		1			
-								13.7
	1.34	0.99	0.18					0.002
	2.40	170	60 4					5.43
	1							
	2.041		1	1			1	<0.0000
		1		1				<0.001
-					1	1		4
-					1	1		
	1				1			
-			1			1		
	1	1	1	9	495		3.5	1
	<			1	1	1		1
	<			1	0.07			
		·	ļ	<u> </u>		<u> </u>	ł	
MPN/100 m	7000	11000	8000	1300	5000	1700	50	80
<u> </u>		ļ	ļ	ļ	<u> </u>			ļ
	1	1	1	1 Contraction	1	1	1	1
	mg/L deg C " uS/cm uS/cm mg/L " mg/L CaCO3 mg/L CaCO3 mg/L " " mg N/L " " mg P/L " " " " " " " " " " " " " " " " "	UNITS FR0013 Tilbury 93-01-26 49 - 8.86 123 - 1.93 mg/L 12.8 deg C 2 " 4 7.3 7.3 US/cm 284 US/cm 150 mg/L 35 " 156 mg/L CaCO3 66.8 mg/L CaCO3 66.8 mg/L CaCO3 66.8 mg/L CaCO3 66.8 mg/L 35 " 15.5 mg N/L 0.068 " 0.3 " 25.5 mg P/L 0.006 " 0.063 mg P/L 0.006 " 0.063 mg P/L 1.12 " 4 0.006 " 0.068 " 0.3 " 2.5 mg P/L 0.006 " 0.063 " 2.5 " 16.1 " < " 1.12 " 4 " 1.5 " 15.5 mg N/L 0.068 " 0.3 " 2.5 " 15.5 mg P/L 0.006 " 0.063 " 1.12 " 4 " 1.5 "	UNITS FR0013 FR0016 Tilbury 93-01-26 93-02-10 49 - 8.86 49 - 8.86 123 - 1.93 123 - 1.93 mg/L 12.8 12 deg C 2 4 * 4 4 * 4 * 4 * 4 * 4 * 3 * 12 * 156 507 mg/L 284 951 uS/cm 150 185 mg/L 35 35 * 156 507 mg/L CaCO3 66.8 120 mg/L CaCO3 66.8 120 mg/L CaCO3 66.8 120 mg/L 35 38.9 mg/L 44.3 233 * < < < * 15.5 38.9 mg/L 0.068 0.081 * 0.3 0.22 * 0.26 0.19 mg P/L 0.006 0.019 * 0.063 0.041 * 0.3 0.22 * 0.26 0.19 mg P/L 0.006 0.019 * 0.063 0.041 * 0.22 * 3 * 3 * 3 * 44.3 233 * < < < < < < < < < < < < < < < < < < <	UNITS FR0013 Tilbury FR0016 Tilbury FR0042 Tilbury 93-01-26 93-02-10 93-02-22 49 - 8.86 49 - 8.86 49 - 8.86 123 - 1.93 mg/L 123 - 1.93 123 - 1.93 123 - 1.93 mg/L 12.8 12 12.6 deg C 2 4 3 7.3 7.6 7.3 7.3 7.6 7.3 0.50 185 2000 mg/L 35 35 uS/cm 156 507 2370 mg/L 35 35 9 " 156 507 2370 mg/L 35 38.9 166 mg/L 0.068 0.081 0.073 " 0.26 0.19 0.16 mg P/L 0.068 0.081 0.032 " 0.26 0.19 0.019 " 0.26 0.19 0.16 mg/L 1.12 0.52	FR0013 Tilbury FR0016 Tilbury FR0022 Tilbury FR0011 Tilbury 93-01-26 93-02-10 93-02-22 93-03-09 93-01-26 93-02-10 93-02-22 93-03-09 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 123 - 1.93 123 - 1.93 123 - 1.93 123 - 1.93 mg/L 12.8 12 12.6 8.8 deg C 2 4 3 5.2 " 4 4 5 8 7.3 7.6 7.3 7.45 uS/cm 150 185 2000 100 mg/L 35 35 9 53 mg/L CaCO3 66.8 120 384 56 mg/L CaCO3 46.6 49.8 55.7 46 mg/L 0.3 0.22 0.19 <	FR0013 Tilbury FR0016 Tilbury FR0042 Tilbury FR0061 Tilbury FR0063 Tilbury 93-01-26 93-02-10 93-02-22 93-03-09 93-03-22 49 - 8.86 123 - 1.93 134 150 175 745 75 75 75 75 75 76 75 100 100 100 100 100	FR0013 Tilbury FR0016 Tilbury FR004 Tilbury FR0061 Tilbury FR0065 Tilbury FR0065 Tilbury FR0069 Tilbury 93-01-26 93-02-10 93-02-22 93-03-22 93-03-22 93-03-22 93-04-19 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 49 - 8.86 123 - 1.93 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

,

Lab ID		ASL	ASL	ASL	ASL	ASL	ASL
Client ID	1	FR0093	FR0112	FR0116	FR0120	FR0122	FR0126
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
	UNITS	X-sec 3					
Sampled On:		93-05-31	93-06-15	93-06-29	93-07-13	93-07-26	93-08-09
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93
Longhuide (11)							
Physical Tests:	_						9.1
Dissolved Oxygen	mg/L	10.4	10.4	9.8	9.5	9.0 17.5	9.1 19.0
Water Temperature	deg C	14.2	14.2	16.0 18.1	16.5 18.5	17.5	19.0
Air Temperature		17.1	17.1	7.50	7.90	7.50	7.46
pH		7.66	7.84	7.50	7.90	7.50	7.5
Field pH		7.5	7.4	100.0	117.0	107.0	104.0
Specific Conductance (SC)	uS/cm	89.1	94.5	75	82	107.0	98
Field SC	uS/cm	70	60	62	82 72	44	39
Suspended Solids (NFR)	mg/L	158		53	54	55	56
Dissolved Solids (FR)		44	52 47.9	48.2	54 43.7	48.4	51
Hardness Total	mg/L CaCO3	43.6	47.9	40.2	43.7	40.4	21
Anions:							
Alkalinity Total @ pH 4.5	nıg/L CaCO3	36.5	37.5	43.2	44.4	45.1	44.8
Chloride Dissolved	mg/L	1.1	1.5	0.6	1.3	1.1	1.5
Fluoride Dissolved	"	0.03	0.04	0.04	0.04	1	0.03
Sulfate	Ħ	5.7	8.1	6.9	8.3	6.7	6.7
Nutrients:							
Nitrogen Amm.Diss(N)	mg N/L	<0.005	0.005	0.021	0.012	0.005	0.007
Nitrogen Kjel. Tot(N)	ŤĦ	0.15	0.15	0.18	0.14	0.15	0.23
Nitro NO3+NO2 D	Ħ	0.069	0.077	0.058	0.052	0.043	0.029
Phosphorus Dissolved	mg P/L	0.007	0.009	0.002	0.008	0.006	0.027
Phosphorus Total	*	0.078	0.071	0.056	0.087	0.021	0.036
TOTAL METALS:							
Aluminum	mg/L	0.7	0.45	0.46	0.46	0.42	0.46
Arsenic	Ň	0.0006	0.0004	0.0005	0.0004	0.0006	0.0004
Barium	"	0.023	0.02	0.02	0.02	0.02	0.20
Cadmium		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0002
Calcium		12.9	14.4	14.50	12.00	14.20	14.90
Chromium		0.001	<0.001	<0.001	<0.001	0.001	0.001
Cobalt		< 0.015	<0.015	<0.015	<0.015	< 0.015	<0.01
Copper		0.003	0.002	0.003	0.002	0.002	0.002
Iron	**		0.50		0.65		0.51
Lead		0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Magnesium		2.77	2.86	2.91	3.33	1	3.3
Manganese		0.046	0.037		0.048		0.032
Mercury	•	<0.00005	<0.00005	1	<0.00005		<0.0000
Molybdenum		< 0.001	< 0.001	<0.001	<0.001	1	<0.00
Nickel		0.002	0.002		0.003	1	0.004
Potassium		<2	<2	<2	<2		<
Selenium		<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.000
Silver		0.0002	<0.0001	<0.0001	<0.0001		<0.0001
Sodium		<2	2.0				2.6
Tin		<0.3	<0.3	<0.3	<0.3		<0.3
Zinc		<0.005	<0.005		1		0.004
PACTERIOLOGICAL							
BACTERIOLOGICAL:		50	70	80	23	<2	30
Fecal Coliform	MPN/100 m	50	70	80	23		30
ORGANIC PARAMETERS:				<u> </u>			
Total Organic Carbon	mg/L	2.3	2.1	2.6	2.8	2.7	3.

		ACT	451	ASL	ASL	ASL	ASL
Lab ID Client ID	i	ASL FR0143	ASL FR0152	FR0154	FR0173	FR0174A	FR0181
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
SHE	UNITS	Replicate	Thousy	Thousy	X-sec 3	Thousy	1.100.19
Sampled On:	citito	93-08-24	93-09-07	93-09-20	93-10-05	93-10-18	93-11-01
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93
Physical Tests:							
Dissolved Oxygen	mg/L	9.0	9.2	9.2	9.4	10.4	9.3
Water Temperature	deg C	17.2	18.2	15	14.2	12	9.4
Air Temperature	ř I	15.8	16.2	11	12	11.9	9
рН		7.71	7.68	7	7.43	7.6	7.63
Field pH]	7.5	7.4	7.5	7.65	7.5	7.35
Specific Conductance (SC)	uS/cm	104.0	106.0	119	130	132	140
Field SC	uS/cm	88	109	225	123	200	191
Suspended Solids (NFR)	mg/L	35	16	16	7	21	9
Dissolved Solids (FR)	"	56	60	59	70	71	71
Hardness Total	mg/L CaCO3	50.7	51.9	48.3	57	58.6	59.9
Anions:							
Alkalinity Total @ pH 4.5	mg/L CaCO3	41	43.9	42.6	48.9	48.2	49.4
Chloride Dissolved	mg/L	1.8	1.7	1.4	4.1	5.2	3.9
Fluoride Dissolved		0.04	0.03	0.03	0.03	0.06	0.04
Sulfate	"	8.2	8.7	9.3	10.8	10.8	11
Nutrients:						0.020	
Nitrogen Amm.Diss(N)	mg N/L	0.009	0.015	0.011	0.027	0.039	0.031
Nitrogen Kjel. Tot(N)		0.23	0.16	0.154	0.228	0.169 0.054	0.17 0.07
Nitro NO3+NO2 D		0.025	0.034	0.035	0.046 0.011	0.034	0.07
Phosphorus Dissolved	mg P/L	0.020 0.043	0.011 0.027	0.011 0.034	0.011	0.015	0.013
Phosphorus Total		0.043	0.027	0.034	0.024	0.037	0.027
TOTAL METALS:							
Aluminum	mg/L	0.30	<0.2	<0.20	<0.20	<0.20	<0.20
Arsenic		0.0005	0.0003	0.0003	0.0005	0.0004	0.0005
Barium	_	0.02	0.02	0.016	0.017	0.014	0.016
Cadmium		< 0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002
Calcium		15.40	15.50	15.3	16.6	17.1	17.3
Chromium		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.015
Cobalt		< 0.015	<0.015 0.001	<0.015 <0.001	<0.015 0.002	<0.015 <0.001	<0.013
Copper		0.002			0.002	0.145	0.179
Iron		0.34 <0.001	0.21 <0.001	0.2 <0.001	0.202	<0.143	< 0.001
Lead Magnesium		<0.001	<0.001	3.22	3.79	3.86	<0.001 4.09
Magnesium Manganese		0.024	0.016	0.018	0.015	0.016	0.014
Manganese		<0.00005	<0.00005	< 0.00005	<0.00005	<0.00005	<0.00005
Molybdenum	•	<0.00003	<0.001	<0.000	<0.001	<0.001	< 0.001
Nickel		0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Potassium		<2	<2	<2	<2.0	<2.0	<2.0
Selenium		<0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005
Silver		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Sodium	•	3	3	4	5.1	5.5	5.3
Tin	+	<0.3	<0.3	<0.30	<0.30	<0.30	<0.30
Zinc	•	<0.005	0.003	<0.001	0.006	<0.001	0.004
BACTERIOLOGICAL:						· · ·	
Fecal Coliform	MPN/100 m	500	. 17	130	30	2300	230
ORGANIC PARAMETERS:							
Total Organic Carbon	mg/L	2.0	1.8	1.7	2.3	2.0	2.5

-

ab ID		ASL	ASL	ASL	ASL	ASL	ASL ·
Client ID		FR0188	FR0189	FR0207	FR0213	FR0215	FR221
ITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
	UNITS						
ampled On:		93-11-16	93-11-29	93-12-13	93-12-28	94-01-10	94-01-25
•					40 0.00	49 - 8.86	49 - 8.86
atitude (N)	1	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	123 - 1.93
ongitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 • 1.95
Physical Tests:							
Dissolved Oxygen	mg/L	10.6	12.4	11.6	11.8	11.8	12.2
Water Temperature	deg C	5.5	3	4.8	2.8	4.9	4.
Air Temperature	•	3	6	6	1	7	6.
h i i i i i i i i i i i i i i i i i i i		7.46	7.85	7.5	7.26	7.37	7.6
Field pH		7.4	7.35	7.4	7.4	7.3	7.
Specific Conductance (SC)	uS/cm	463	699	131	700	1420	103
Field SC	uS/cm	280	450	70	431	800	71
Suspended Solids (NFR)	mg/L	57	27	44	31	15	2
Dissolved Solids (FR)	Ħ	238	432	88	371	820	63
Hardness Total	mg/L CaCO3	91.9	108	47	109	186	13
Anions: Alkalinity Total @ pH 4.5	mg/L CaCO3	49.7	45.9	38.6	43.2	41.2	39.
Alkalimity I otal (2) pri 4.3 Chloride Dissolved	mg/L CaCOS mg/L	98.6	164	10.4	174	398	26
Fluoride Dissolved	""""""""""""""""""""""""""""""""""""""	0.06	0.06	0.04	0.04	0.05	0.0
Sulfate		22.5	31.5	9	32.1	59.4	44.
Nutrients:	mg N/L	0.059	0.056	0.096	0.047	0.055	0.03
Nitrogen Amm.Diss(N)	Ing IV/L	0.345	0.23	0.353	0.235	0.229	0.11
Nitrogen Kjel. Tot(N)		0.124	0.17	0.347	0.177		0.19
Nitro NO3+NO2 D	mg P/L	0.0124	0.027	0.039	0.015	0.024	0.01
Phosphorus Dissolved Phosphorus Total	mg 17L	0.012	0.068	0.061	0.05	0.038	0.03
rnosphorus rotat		0.00					
TOTAL METALS:				1.00	<0.20	<0.20	0.2
Aluminum	mg/L	0.51	0.2	1.02 0.0007	0.0005		0.003
Arsenic	*	0.0004	0.0005	0.0007	0.0003		0.00
Barium	"	0.019	0.015		<0.0014		<0.00
Cadmium		<0.0002	<0.0002	< 0.0002	<0.0002		-0.00
Calcium	*	19.2	18.9	12.5	<0.001		0.0
Chromium		0.001	<0.001	0.001	<0.001	1	<0.0
Cobalt		<0.015	< 0.015	< 0.015	0.001		0.0
Copper	*	0.003	0.002	0.003	0.001		0.4
Iron		0.698	0.389	1.02	<0.001		<0.0
Lead		<0.001	< 0.001	0.001			21
Magnesium	•	10.6	15	3.82			0.0
Manganese		0.047	0.025	0.047			<0.000
Mercury	•	<0.00005		<0.00005			0.00
Molybdenum	**	< 0.001		< 0.001			0.0
Nickel		< 0.001		0.002		9.9	0.0
Potassium		2.6	3.9	<0.0005			<0.00
Selenium		< 0.0005					<0.00
Silver		<0.0001		<0.0001	1		
Sodium	*	55	95.6				<0.
Tin		< 0.30			1		
Zinc	*	0.005	0.002	0.006	<0.00	0.005	0.0
BACTERIOLOGICAL:			1				
Fecal Coliform	MPN/100 m	8000	500	8000	5000	0 11000	30
ODGANUC BADAN (FTEDS		<u> </u>		<u> </u>	<u> </u>		<u> </u>
ORGANIC PARAMETERS:		1	1	2.6	5 2 .	1 2.0	

•

Lab ID		ASL	ASL	ASL	ASL
Client ID		FR0237	FR0256	FR0263	FR0269
SITE		Tilbury	Tilbury	Tilbury	Tilbury
	UNITS	X-sec 3			
Sampled On:		94-02-08	94-02-21	94-03-07	94-03-22
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93
Physical Tests:			10.0	12.3	11.4
Dissolved Oxygen	mg/L	12.2	12.2 4.2	4.8	4.9
Water Temperature	deg C	2.2 -1	4.2	4.8	5.5
Air Temperature		7.58	7.33	7.53	7.55
pH Field pH		7.55	7.45	7.55	7.45
Specific Conductance (SC)	uS/cm	3730	2900	215	203
Field SC	uS/cm	2200	1700	145	130
Suspended Solids (NFR)	mg/L	6	17	85	39
Dissolved Solids (FR)	" "	2400	1800	134	130
Hardness Total	mg/L CaCO3	394	299	54.5	60.6
1 THT ARTOOD & CAN		574			
Anions:					
Alkalinity Total @ pH 4.5	mg/L CaCO3	45.4	43.3	38.6	47
Chloride Dissolved	mg/L	1100	830	33.6	25.5
Fluoride Dissolved	•	0.1	0.21	0.04	0.0
Sulfate	"	157	119	11.9	11.3
Nutrients:					
Nitrogen Amm.Diss(N)	mg N/L	0.055	0.069	0.024	0.024
Nitrogen Kjel.Tot(N)	"	0.19	0.315	0.27	0.17
Nitro NO3+NO2 D		0.183	0.264	0.235	0.182
Phosphorus Dissolved	mg P/L	0.023	0.017	0.014	0.043
Phosphorus Total	۳	0.033	0.05	0.067	0.101
TOTAL METALS:					
Aluminum	mg/L	<0.20	<0.20	0.72	0.56
Arsenic		0.0006	0.0005	0.0008	0.0007
Barium	۳	0.011	0.011	0.026	0.024
Cadmium	*	<0.0002	<0.0002	<0.0002	<0.000
Calcium	*	33.8	26.8	13	15.1
Chromium	*	0.002	<0.001	0.001	<0.00
Cobalt		<0.015	<0.015	<0.015	<0.01
Copper		0.002	0.005	0.004	0.003
Iron		0.347	0.442	0.917	0.63
Lead	*	<0.001	<0.005	<0.001	<0.00
Magnesium		75.3	56.5	5.37	5.5
Manganese		0.014	0.019	0.056	0.03
Mercury		<0.00005	< 0.00005	<0.00005	<0.0000
Molybdenum	"	0.001	< 0.005	< 0.001	<0.00
Nickel	-	0.001	0.002	0.004	0.00
Potassium	-	21.4	16.4	<2.0	<2.0
Selenium		< 0.0005	<0.0005	<0.0005	<0.000
Silver		0.0001	<0.001 435	<0.0001 20.2	<0.000 17.
Sodium	**	577	1	<0.30	<0.3
Tin Zinc		<0.30 0.006	<0.30 0.02	<0.30	0.00
BACTERIOLOGICAL:		C000	6000		10
Fecal Coliform	MPN/100 m	6000	5000	230	15
ORGANIC PARAMETERS:					
Total Organic Carbon	mg/L	3.2	• 1.7	2.4	3.

1

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon	Zenon	Zenon
Client ID		FR0013	FR0042	FR0065	FR0069	FR0088	FR0112	FR0120
SITE		Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury	Tilbury
SILE	UNITS					-		
Sampled On:		93-01-26	93-02-22	93-03-22	93-04-19	93-05-18	93-06-15	93-07-13
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
Longitude (W)		123 - 1.93	123 - 1.93		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93
		125 1.55	100 100					
ORGANIC PARAMETERS:								
Adsorbable Org. Halide (AOX)	mg/L	0.03	0.04	0.03	0.02	0.01	<0.01	<0.01
Chlorophenolics:								
Pentachlorophenol	mg/L	<	<	<	<	<	0.000005	<
2,3,4,6+2,3,5,6-Tetrachlorophenol		<	<	<	<	<	<	<
2,3,4,5-Tetrachlorophenol		<	<	<	<	<	<	<
3,4,5-Trichlorophenol		<	<	<	<	<	<	<
2,3,4-Trichlorophenol		<	<	<	<	<	1	<
2,3,5-Trichlorophenol		<	<	<	<	<	1	<
2,3,6-Trichlorophenol	"	<	<	<	<	<	<	<
2,4,5-Trichlorophenol	"	<	<	<	<	<		<
2,4,6-Trichlorophenol		<	<	<	<	<	0.000003	<
2,4-Dichlorophenol	н	<	<	<	<	<	<	<
2,6-Dichlorophenol	"	<	<	<	<	<	<	<
2,5-Dichlorophenol		<	<	<	<	<	<	<
3,5-Dichlorophenol	н	<	<	<	<	<	<	<
2,3-Dichlorophenol	м	<	<	<	<	<	<	<
3,4-Dichlorophenol	**	<	<	<	<	<	<	<
4-Chlorophenol	п	<	<	<	<	<	<	<
Tetrachloroguaiacol		<	<	<		<	<	<
3,4,5-Trichloroguaiacol		0.000012	0.000007	<	0.000005	<	: <	<
3,4,6-Trichloroguaiacol		<	<	<	<	<	<	<
4,5,6-Trichloroguaiacol	-	<	0.000003	<	0.000003			<
4,5-Dichloroguaiacol		0.000013	0.000013	<	0.000003	0.000002	0.000005	<
4,6-Dichloroguaiacol		<	<	<	: <	<	: <	<
4-Chloroguaiacol	"	<	<	<	: <	: <	: <	<
5-Chloroguaiacol		<	<	. <	<	0.000006	0.000008	<
6-Chloroguaiacol		<	<	. <	<	< <	: <	<
Tetrachlorocatechol		<	0.000002	<	0.000003	0.000008	0.000002	2 <
3.4.5-Trichlorocatechol		0.000012	0.000006	<	0.000006	0.000007	0.000003	s <
3,4-Dichlorocatechol		<	<	: <	: <	<	: <	<
3.5-Dichlorocatechol		<	<	: <	: <	: <	: <	<
4,5-Dichlorocatechol		<	0.000006	; <	: <	: <	0.000003	<
4-Chlorocatechol		<	<	<	: <	: <	< <	<
Tetrachloroveratrole		<	: <	< <	: <	: <	< <	<
3,4,5-Trichloroveratrole	-	0.000005	0.000005	; <	0.000002	<	< <	
4,5-Dichloroveratrole		<	<	: <	: <		< <	<
2,6-Dichlorosyringaldehyde		<	: <	< <	< <	: <	< <	-
2-Chlorosyringaldehyde	-	<	: <	< <	< <	: <	< <	-
3,4,5-Trichlorosyringol			: <	< <	< <	: <	< <	
Trichlorotrimethoxybenzene		<	:	< <	< <	. <	< <	
5,6-Dichlorovanillin	-	0.000004	0.000002			< <	< <	: •
6-Chlorovanillin	ų	0.000008			0.000004	<	< <	: ·
Nonylphenol			:	< <	< <		< <	: •
rionyiphenoi						1		

Lab ID	T	Zenon						
Client ID		FR0126	FR0152	FR0173	FR0174A	FR0189	FR0213	FR221
SITE		Tilbury						
	UNITS			X-sec 3				
Sampled On:		93-08-09	93-09-07	93-10-05	93-10-18	93-11-29	93-12-28	94-01-25
Latitude (N)		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
Longitude (W)		123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93	123 - 1.93
ORGANIC PARAMETERS:								
Adsorbable Org. Halide (AOX)	mg/L	<	<0.01	0.02		0.02	0.02	0.02
Chlorophenolics:								
Pentachlorophenol	mg/L	<	<	<	<	<	<	<
2,3,4,6+2,3,5,6-Tetrachlorophenol	"	<	<	<	<	0.000002	0.000004	<
2,3,4,5-Tetrachlorophenol		<	<	<	<	<	<	<
3,4,5-Trichlorophenol	"	<	<	<	<	<	<	<
2,3,4-Trichlorophenol	"	<	<	<	<	<	<	<
2,3,5-Trichlorophenol	"	<		<	<	<	<	<
2,3,6-Trichlorophenol	*	< <	<	<	<	<	<	<
2,4,5-Trichlorophenol	"	<	<	<	<	1	<	<
2,4,6-Trichlorophenol	-	<	<		<	0.000004	0.000004	<
2,4-Dichlorophenol	۳	<	<	<	<	<	<	<
2,6-Dichlorophenol	"	<	<	<	<	<	<	<
2,5-Dichlorophenol		· <	<	<	<	<	<	<
3,5-Dichlorophenol	"	<	<	<	<	<	0.000001	<
2,3-Dichlorophenol	*	<	<	<	<	<	<	<
3,4-Dichlorophenol	"	<	<	<	<	<	<	<
4-Chlorophenol	"	<	<	<	<	<	<	<
Tetrachloroguaiacol		<	<	<	<	0.000002	0.000002	<
3,4,5-Trichloroguaiacol		<	<	<	<	0.000007	0.000007	<
3,4,6-Trichloroguaiacol	"	<	<	<	<	<	<	<
4,5,6-Trichloroguaiacol		<	<	<	<	<	<	<
4,5-Dichloroguaiacol	"	<	<	0.000002	<	<	0.000007	<
4,6-Dichloroguaiacol		<	<	<	<	<	<	· <
4-Chloroguaiacol	"	<	<	<	<	<		<
5-Chloroguaiacol		<	<	<	<	<	0.000007	<
6-Chloroguaiacol		<	<	<	<	<	<	<pre></pre>
Tetrachlorocatechol	"	<	0.000002	<	<	<	<	
3,4,5-Trichlorocatechol		<	<	<	<	0.000006	0.000011	<
3,4-Dichlorocatechol		<	<	<	<	<	<	<
3,5-Dichlorocatechol	۳	<	<	<	<	<	<	<
4,5-Dichlorocatechol	•	<	<	<	<	0.000007	0.000008	<
4-Chlorocatechol		<	<	<	<	<	<	
Tetrachloroveratrole	•	<	1	<	<	<	<	
3,4,5-Trichloroveratrole		<		<	<	0.000003	0.000003	
4,5-Dichloroveratrole		<	<	<	<	<	<	
2,6-Dichlorosyringaldehyde	•	<		<	<	<	<	
2-Chlorosyringaldehyde	•	<		<	<	<	<	
3,4,5-Trichlorosyringol			1	<	<			
Trichlorotrimethoxybenzene			<	<	<			
5,6-Dichlorovanillin		<	<	<	<	1		.
6-Chlorovanillin					<	1		
Nonylphenol							<	
		1]. `					

.....

_

.....

Lab ID		Zenon	Zenon
Client ID		FR0256	FR0269
SITE		Tilbury	Tilbury
	UNITS	·	
Sampled On:		94-02-21	94-03-22
Latitude (N)		49 - 8.86	49 - 8.86
Longitude (W)		123 - 1.93	123 - 1.93
ORGANIC PARAMETERS:			
Adsorbable Org. Halide (AOX)	mg/L	0.03	0.02
Chlorophenolics:			
Pentachlorophenol	mg/L	<	0.000006
2,3,4,6+2,3,5,6-Tetrachlorophenol	n	<	0.000002
2,3,4,5-Tetrachlorophenol	м	<	<
3,4,5-Trichlorophenol		<	<
2,3,4-Trichlorophenol		<	<
2,3,5-Trichlorophenol		<	<
2,3,6-Trichlorophenol	"	<	<
2,4,5-Trichlorophenol		<	1
2,4,6-Trichlorophenol	"	0.000002	0.000003
2,4-Dichlorophenol	"	<	<
2,6-Dichlorophenol		<	<
2,5-Dichlorophenol	"	<	<
3,5-Dichlorophenol	"	<	<
2,3-Dichlorophenol	*	<	<
3,4-Dichlorophenol		<	<
4-Chlorophenol	н	<	<
Tetrachloroguaiacol		<	<
3,4,5-Trichloroguaiacol	н		0.000004
3,4,6-Trichloroguaiacol		<	: <
4,5,6-Trichloroguaiacol			. <
4,5-Dichloroguaiacol		0.000003	0.000006
4,6-Dichloroguaiacol	•	<	: <
4-Chloroguaiacol			<
5-Chloroguaiacol			<
6-Chloroguaiacol			<
Tetrachlorocatechol		<	0.000004
3 4 S-Trichlorocatechol	-		1
3,4-Dichlorocatechol	H		
3,5-Dichlorocatechol			
		0.000003	0.000004
4,5-Dichlorocatechol		0.00000.	
4-Chlorocatechol	н		
Tetrachloroveratrole			
3,4,5-Trichloroveratrole			
4,5-Dichloroveratrole			
2,6-Dichlorosyringaldehyde			
2-Chlorosyringaldehyde		1	
3,4,5-Trichlorosyringol		'	
Trichlorotrimethoxybenzene			
5,6-Dichlorovanillin		0.00000	< 2 0.00000
6-Chlorovanillin Nonylphenol			< 0.00000

Lab ID	·····	Zenon	Zenon	Zenon	Zenon
Client ID		FR0042	FR0088	FR0174A	FR0256
SITE		Tilbury	Tilbury	Tilbury	Tilbury
SHE	UNITS	Thoury	Thoury	Thoury	Thoury
Sampled On:	UNITS	93-02-22	93-05-18	93-10-18	94-02-21
Sampled On:		93-02-22	93-03-18	73-10-18	94-02-21
Latitude OD		49 - 8.86	49 - 8.86	49 - 8.86	49 - 8.86
Latitude (N)		123 - 1.93		123 - 1.93	
Longitude (W)		123 • 1.93	123 • 1.93	123 - 1.93	123 - 1.93
Resin and Fatty Acids:	<u></u>				
Abietic Acid	mg/L	<	<	<	<
Arachidic Acid	*	<	<	<	<
Behenic Acid		<	<		
Chlorodehydroabietic		<	<	<	< < < < < < < < < < < < < <
Dehydroabietic Acid		<	<	<	<
Dichlorodehydroabietic		<	<pre></pre>	<	<
Isopimaric Acid		<		 	<
Lauric Acid		<			<
Levo Pimaric Acid	"	<	<		
Lignoceric Acid		<			
Linoleic Acid	**	<			
Linolenic Acid		<		1	
Myristic Acid		<	<	(1
Neoabietic Acid	н	<			1
Oleic Acid		<			1
Palmitric Acid		<			1
Palustric Acid		<			1
Pimaric Acid					
Sandaraco Pimaric Acid	Ħ				
			1	1	· · · ·
Stearic Acid				0.0003	0.0034
Antisapstain Compounds:					
ТСМТВ	mg/L	<	<	<	<
Organochlorine Pesticides and PCE					
Aldrin	mg/L				
BHC alpha-			<		
BHC beta-			<		
BHC delta-			<		
Chlordane alpha-			<		
Chlordane gamma-	-	-	<		
DDE pp'-			<	ł .	
DDD pp-		-	<	<	
DDT pp'-		-	<	<	<
Dieldrin		-	<	<	<
Endosulfan I		-	<		
Endosulfan II	*		<	<	<
Endosulfan sulphate		-	<	<	<
DDT op-	. •		<	<	<
Endrin	•		<		<
Hexachlorobenzene		-	<	<	<
Heptachlor			<	<	<
Heptachlor epoxide			<	<	<
Lindane BHC gamma-			<	<	<
Methoxychlor	*		<	<	<
Mirex			<	<	<
Nonachlor trans-	*	-	<	<	<
Oxychlordane		-	<		<
Toxaphene	*	-	<		<
PCBs - Total	*		<	<	<

-

.

APPENDIX IX

WATER QUALITY DATA FOR OAK STREET BRIDGE SITE

Water Quality in the Fraser River Estuary

Minimum Detection Limits for Total Metals Analysis

Laboratory	Zenon	ASL	
	MDL	MDL	UNITS
	From: 93-01	From: 93-04	
	To: 93-03	To: 94-03	
Physical Tests:			
Dissolved Oxygen			mg/L
Water Temperature			deg C
Air Temperature			N N
pН			
Field pH			
Specific Conductance(SC)	1	0.2	uS/cm
Field SC	_		uS/cm
Suspended Solids (NFR)	4	1	
Dissolved Solids (FR)	4	1	
Hardness Total		-	mg/L CaCO
······································			
Anions:			
Alkalinity Total @ pH 4.5	0.5	0.5	mg/L CaCO
Chloride Dissolved	0.5	0.5	
Fluoride Dissolved	0.1	0.02	
Sulfate	1	0.02	
		0.5	
Nutrients:			
Nitrogen Amm.Diss(N)	0.005	0.005	mg N/L
Nitrogen Kjel.Tot(N)	0.005	0.005	
Nitro NO3+NO2 D	0.04	0.005	
Phosphorus Dissolved	0.02		
Phosphorus Total	0.003	0.001	mg P/L
r nosphorus rotar	0.003	0.001	
TOTAL METALS			
Aluminum	0.06	0.02	ma/l
Arsenic	0.001	0.0001	mg/L
Barium	0.001	0.001	
Cadmium	0.0001		
Calcium	0.001	0.0002	-
Chromium		0.05	-
Cobalt	0.005	0.001	-
	0.004	0.015	-
Copper Iron	0.001	0.001	-
Iron Lead	0.05	0.03	-
Lead Magnesium	0.003	0.001	
Manganese	0.02	0.01	-
Manganese Mercury	0.002	0.005	*
•	0.00005	0.00005	
Molybdenum Nickel	0.004	0.001	
	0.005	0.001	
Potassium	0.4	2	M
Selenium	0.03	0.0005	
Silver	0.03	0.0001	-
Sodium	0.4	2	Ħ
Fin I	0.02	0.3	*
Zinc	0.01	0.001	
ORGANIC PARAMETERS			
Carbon Total Organic	0.5	. 0.5	mg/L

.

· .

Minimum Det	ection Limit	s for Org	anic Analysis
-------------	--------------	-----------	---------------

Laboratory	Zenon			Zenon	
ORGANIC PARAMETERS	, MDL	UNITS		MDL	UNITS
Adsorbable Organic Halide (AOX):	0.01	mg/L	Resin and Fatty Acids:		
Chlorophenolics:			Abietic Acid	0.0005	mg/L
Pentachlorophenol	0.000001	mg/L	Arachidic Acid	0.0005	-
2,3,4,6+2,3,5,6-Tetrachlorophenol	"		Behenic Acid	0.0005	- 11
2,3,4,5-Tetrachlorophenol		n	Chlorodehydroabietic	0.0005	
3,4,5-Trichlorophenol	11	11	Dehydroabietic Acid	0.0005	n
2,3,4-Trichlorophenol			Dichlorodehydroabietic	0.0005	11
2,3,5-Trichlorophenol	**	н	Isopimaric Acid	0.0005	н
2,3,6-Trichlorophenol	н	н	Lauric Acid	0.0005	"
2,4,5-Trichlorophenol			Levo Pimaric Acid	0.0005	11
2,4,6-Trichlorophenol	n		Lignoceric Acid	0.0005	и
			Linoleic Acid	0.0005	
2,4-Dichlorophenol		n	Linolenic Acid	0.0005	
2,6-Dichlorophenol		w	Myristic Acid	0.0005	H
2,5-Dichlorophenol	н		Neoabietic Acid	0.0005	"
3,5-Dichlorophenol			Oleic Acid	0.0005	11
2,3-Dichlorophenol			Palmitric Acid	0.0005	
3,4-Dichlorophenol 4-Chlorophenol			Palustric Acid	0.0005	· •
4-Chlorophenol Tetrachloroguaiacol	0.000002		Pimaric Acid	0.0005	
	0.000002		Sandaraco Pimaric Acid	0.0005	н
3,4,5-Trichloroguaiacol 3,4,6-Trichloroguaiacol	н	u	Stearic Acid	0.0005	и
4,5,6-Trichloroguaiacol	H		Antisapstain Compounds:		
4,5-Dichloroguaiacol			TCMTB	0.005	mg/L
4,6-Dichloroguaiacol	н		Organochlorine Pesticides a		
4-chloroguaiacol			Aldrin	0.000001	mg/L
5-Chloroguaiacol			BHC alpha-	0.000001	
6-Chloroguaiacol			BHC beta-	0.000001	
Tetrachlorocatechol			BHC delta-	0.000001	
3,4,5-Trichlorocatechol			Chlordane alpha-	0.000005	
3,4-Dichlorocatechol			Chlordane gamma-	0.000005	
3,5-Dichlorocatechol			-	0.000005	1
4,5-Dichlorocatechol			DDE pp'- DDD pp'-	0.000005	1
4-Chlorocatechol				0.000005	
Tetrachloroveratrole			DDT pp'- Dieldrin	0.000005	
3,4,5-Trichloroveratrole			Endosulfan I	0.000005	
4,5-Dichloroveratrole			Endosulfan II	0.000005	
2,6-Dichlorosyringaldehyde			Endosulfan sulphate	0.00001	
2-Chlorosyringaldehyde			DDT o p'-	0.000005	
3,4,5-Trichlorosyringol			Endrin	0.000005	1
Trichlorotrimethoxybenzene		н	Hexachlorobenzene	5E-07	""
5,6-Dichlorovanillin			Heptachlor	0.000001	
6-Chlorovanillin	0.000005		Heptachlor epoxide	0.000002	
Nonylphenol	0.000005	<u> </u>	Lindane BHC gamma-	0.000001	
1) All results are blank corrected			Methoxychlor	0.00001	
 All results are blank corrected Organic analyses are not corrected 	for surroas	te	Mirex	0.00001	
2) Organic analyses are not corrected recoveries except for isotope dilution 1			Nonachlor trans-	0.00001	
3) MDL = Method Detectable Limit	nemous			0.00000	
4) $< =$ Less than MDL			Oxychlordane	0.00005	
4 $j > - Less man wide$			Toxaphene	0.00003	1
			PCBs - Total	0.00002	

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon	ASL	ASL	ASL
Client ID		FR0001	FR14	FR0048	FR0053	FR0067	FR0073	FR0078	FR0084
SITE		Oak	Oak	Oak	Oak	Oak	Oak	Oak	Oak
	Units				X-sec 3				
Sampled On:		93-01-25	93-02-09	93-02-23	93-03-08	93-03-23	93-04-20	93-05-04	93-05-17
· · · · · · · · · · · · · · · · · · ·									
Latitude (N)		49 - 12.11	49 - 12.11	49 - 12.11	1	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11
Longitude (W)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
Physical Tests:	-								
Dissolved Oxygen	mg/L	11.2	12	12.4	10.4		11.3	10.8	10.4
Water Temperature Air Temperature	deg C	3	6	5	6		9.1	10	13.5
pH		5 7.4	11 7.4	8 7.6	7 7.6	7.3	11 7.46	15 6.91	22.5 7.50
Field pH		/. 4 7	7.05	7.15	7.3	1.5	7.40	7.25	7.50
Specific Conductance (SC)	uS/cm	4220	5700	6360	5260	1320	115	118	97.3
Field SC	uS/cm	2200	3200	3400	98		80	73	80
Suspended Solids (NFR)	mg/L	16	22	14	18	32	76	55	224
Dissolved Solids (FR)	n	2460	2580	3830	3030	725	60	55	64
Hardness Total (Calc.)	mg/L CaCO3	456	580	634	548	147	50.1	48.3	62.2
	-								
Anions:									
Alkalinity Total @ pH 4.5	mg/L CaCO3	54.8	51.7	58.7	58.2	45.0	40.1	41.2	47.8
Chloride Dissolved	mg/L	1220	1700	1920	1520	343	4.6	3.2	2.7
Fluoride Dissolved	"	0.14	0.15	0.16	0.16	< 0.10	0.04	0.03	0.04
Sulfate	*	190	315	274	203	52.2	8.7	5.8	10.9
Nutrients:									
Nitrogen Amm.Diss(N)	mg N/L	0.089	0.042	0.089	0.054	0.061	<0.005	0.018	0.011
Nitrogen Kjel.Tot(N)	mg N/L	0.089	0.042	0.089	0.034	0.001	0.28	0.018	0.011
Nitro NO3+NO2 D		0.27	0.24	0.17	0.17	0.25	0.15	0.172	0.111
Phosphorus Dissolved	mg P/L	0.018	0.009	0.015	0.018	0.029	0.03	0.023	0.04
Phosphorus Total	и	0.062	0.046	0.034	0.042	0.074	0.14	0.088	0.23
TOTAL METALS									
Aluminum	mg/L	0.27	0.33	0.19	0.1	0.24	1.86	0.45	3.37
Arsenic	м	0.001	0.001	0.001	<	0.001	0.0004	0.0006	0.0013
Barium		0.019	0.014	0.019	0.019	0.016	0.032	0.015	0.051
Cadmium		<	0.0001	<		<	<0.0002	<0.0002	<0.0002
Calcium	"	49.3	47.5	54.3	47.8	19.7	13.5	13.8	14.4
Chromium		<	<	<	<	<	0.003	0.001	0.007
Cobalt		<	>	<	1		< 0.015	< 0.015	<0.015
Copper		0.004	0.002	<	0.004	0.004	0.006		0.008
Iron Lead		0.588	0.7	0.52	0.41	0.57	2.27	0.47 <0.001	5.48 0.001
Magnesium		80.8	112	121	104		0.001	<0.001	5.17
Manganese		0.041	0.034		0.03	0.034	0.062	0.033	0.17
Mercury		<	<	<	1	<	<0.0002	<0.00005	<0.00005
Molybdenum	•	<	<	<			0.001	<0.000	<0.001
Nickel	-	<	<	<			0.005	0.002	0.01
Potassium		23.4	30.2	33	30.3	7	<2	<2	<2
Selenium	•	<	<	<	•	<	<0.0005	<0.0005	<0.0005
Silver	*	<	<	<		<	0.0001	<0.0001	<0.0001
Sodium	•	573	808	909	834	170	4.8	3.8	2.5
Tin	۳	0.05	0.04	<	1		<0.30	<0.3	<0.3
Zinc	*	0.022	<	<	<	0.09	0.011	<0.005	0.022
				[ļ			
BACTERIOLOGICAL:									
Fecal Coliform	MPN /100 mL	3000	800	800	500	17000	220	110	30
ORGANIC PARAMETERS:									
Carbon Total Organic	mg/L	3.0	1.0	2.0	3.0	8.0	4.9	4.9	3.0
CALOUI TOWN OF BALLE	ing/L	3.0	1.0	2.0		i. 8.0	4.9	4.9	3.0

Client ID FR0160 Oak FR0110 Oak FR0114 Oak FR0114 Oak FR0114 Oak FR0124 Oak FR0124 O	ASL	SL	Т	ASL	ASL	ASL	ASL		Lab ID
SITE Oak Oak <thoak< td="" th<=""><td>R0128</td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></thoak<>	R0128	1					1		
Units X-sec 3 93.06-14 93.06-14 93.06-14 93.06-28 93.07-12 93.07-27 93.07 Latitude (N) 49 - 12.11 49 - 12.11 123 - 7.15 <tde< td=""><td>Oak</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td></tde<>	Oak		1		1		1		
Sampled On: 93.06-01 93.06-14 93-06-28 93.07-27 73.07 73.77 73.57 77.77 73.57 93.07-27 73.07 73.57 93.07-27 73.07 73.57 93.07 10.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Units</td><td></td></th<>								Units	
Latitude (N) Langitude (W) 49 - 12.11 123 - 7.15 123 - 7.1	-08-10	7-27	9	93-07-12	93-06-28	93-06-14			Sampled On:
Longitude (W) 123 - 7.15 123			İ						
Longitude (W) 123 - 7.15 123	- 12.11	12.11	4	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11		Latitude (N)
Physical Tests: mg/L 10.2 10.8 9.5 9.4 Water Temperature deg C 14.8 13.5 16.5 18.2 Air Temperature " 21.5 17.5 16.5 18.2 PH 7.55 7.54 7.25 7.44 7.46 Specific Conductance (SC) uS/cm 91 62 79 90 Suspended Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) " 45 48 52 54 43.3 Andens: mg/L 1.6 1.5 1.7 7 1.9 Choirdo Dissolved Solids (FR) mg/L 58 51 52 42 37 Dissolved Solids (FR) mg/L 6.03 34.4 39.2 44.2 40.9 Alkalinity Total (2p H 4.5 mg/L 6.03 0.033 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4	3 - 7.15	- 7.15	1	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15		
Dissolved Oxygen mg/L 10.2 10.8 13.5 16.3 18.5 Water Temperature de C 14.8 13.5 16.5 18.2 pH 7.15 7.54 7.25 7.34 7.46 Field pH 7.3 7.5 7.54 7.25 7.44 7.46 Field PH 7.3 7.5 7.54 7.25 7.44 7.46 Field PH 7.3 7.5 7.54 7.25 7.44 7.46 Specific Conductance (SC) uS/cm 91 62 79 90 Field SC uS/cm 91 62 79 90 Dissolved Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) mg/L 6403 39.9 43.6 48.4 41.3 46.6 Anlons: Anlons: Anlons: Anlons: Anlons: Anlons: Anlons: Anlons: Anlons: Anlons: Nutrents: Nutre									
Water Temperature deg C 14.8 13.5 16.3 18.5 Air Temperature " 21.5 17.5 16.5 18.2 pH 7.55 7.54 7.25 7.74 7.46 Field PH 7.3 7.5 7.7 7.3 Specific Conductance (SC) uS/cm 91 62 79 90 Suspended Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) " 45 48 52 54 53 Hardness Total (Calc.) mg/L Cacco 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved mg/L 1.6 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.04 0.004 0.044 Sulfate " 0.17 0.15 0.010 0.007 Nitrogen Amm.Diss(N) mg N/L 0.006 -0.003 0.005 0.005 Nitrogen Kjel.Tot(N) "									
Air Temperature * 21.5 17.5 16.5 18.2 pH 7.55 7.54 7.25 7.44 7.46 Specific Conductance (SC) uS/cm 91 62 79 90 Suspended Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) * 45 48 52 54 53 Hardness Total (Calc.) mg/L CaCO3 39.9 43.6 48.4 41.3 46.6 Ahlons: Aklainity Total (@ pH 4.5 mg/L CaCO3 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved mg/L 1.6 1.5 1.5 1.7 1.9 Fluoride Dissolved mg/L 0.03 0.03 0.04 0.04 0.04 Nutrients: Nitrogen Amm.Diss(N) mg/L 0.006 <0.005	9.		5	9.5		10.8	10.2		Dissolved Oxygen
pH 7.55 7.54 7.25 7.44 7.46 Field pH 7.3 7.5 7.7 7.3 Specific Conductance (SC) uS/cm 91 62 79 90 Suspended Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) " 45 48 52 54 53 Hardness Total (Calc.) mg/L CaCO3 39.9 43.6 48.4 41.3 46.6 Anions:	19.	1	· ·			1	14.8	deg C	Water Temperature
Field pH 7.3 7.5 9.7 7.7 7.3 Specific Conductance (SC) uS/cm 91 62 79 90 Suspended Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) " 45 48 52 54 53 Anions: Atkalinity Total (2p H 4.5 mg/L CaCO3 39.9 43.6 48.4 41.3 46.6 Aklainity Total (2p H 4.5 mg/L CaCO3 34.9 34.4 39.2 44.2 40.9 Chioride Dissolved mg/L 1.6 1.5 1.7 1.9 1.6 Fluoride Dissolved " 0.03 0.03 0.04 0.04 0.04 Nutrients: " 6 7.4 6.5 8.1 6.4 Nitrogen Amm.Diss(N) mg NL 0.006 -0.005 0.023 <0.005	17.	18.2						*	Air Temperature
Specific Conductance (SC) us/cm 71.0 89.0 98.7 100.0 103.0 Field SC us/cm 91 62 79 90 Dissolved Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) " 45 48 52 54 53 Hardness Total (Calc.) mg/L CaCO3 39.9 43.6 48.4 41.3 46.6 Anloins:	7.7	1			7.25				-
Field SC uS/cm 91 62 79 90 Suspended Solids (NFR) mg/L 38 51 52 42 37 Disslved Solids (FR) " 45 44 45 44 41.3 46.6 Anlons: mg/L CaC03 39.9 43.6 48.4 41.3 46.6 Alkalinity Total (@ pH 4.5 mg/L CaC03 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved mg/L 1.6 1.5 1.7 1.9 1.9 Fluoride Dissolved " 0.03 0.04 0.04 0.04 Nutrients: " 0.03 0.053 0.010 0.17 Nitrogen Amm.Diss(N) mg N/L 0.066 <0.005	7.		1						•
Suspended Solids (NFR) mg/L 58 51 52 42 37 Dissolved Solids (FR) " 45 48 52 54 53 Hardness Total (Calc.) mg/L CaC03 39.9 43.6 48.4 41.3 46.6 Anions:	100.				98.7				-
Dissolved Solids (FR) $n_{g/L}$ CacO3 39.9 43.6 48.4 52 54 53 Hardness Total (Calc.) $m_{g/L}$ CacO3 39.9 43.6 48.4 41.3 46.6 Anlons: Alkalinity Total (@ pH 4.5 $m_{g/L}$ CacO3 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved $m_{g/L}$ 1.6 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.04 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: mg N/L 0.006 <0.005 0.023 <0.005 0.017 Nitrogen Amm.Diss(N) mg N/L 0.006 0.003 0.001 0.007 Phosphorus Dissolved mg/L 0.031 0.033 0.053 0.063 Murinnum mg/L 0.43 0.30 0.39 0.52 0.40 Aluminum m_g/L 0.43	9								
Hardness Total (Calc.) mg/L CaCO3 39.9 43.6 48.4 41.3 46.6 Anlons: Anlons: Makalinity Total (@ pH 4.5 mg/L CaCO3 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved mg/L 1.6 1.5 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.03 0.04 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: " 0.17 0.15 0.10 0.17 0.20 Nitrogen Amm.Diss(N) mg N/L 0.006 <0.005	3	_	1			1		mg/L	
Anions: mg/L CaCO3 34.9 34.4 39.2 44.2 40.9 Alkalinity Total @ pH 4.5 mg/L 1.6 1.5 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.03 0.04 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: " 0.17 0.15 0.10 0.17 0.20 Nitrogen Amm.Diss(N) mg N/L 0.006 <0.005	5							*	
Alkalinity Total @ pH 4.5 mg/L cacos 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved mg/L 1.6 1.5 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.03 0.04 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: Nitrogen Amm.Diss(N) mg N/L 0.006 <0.005 0.023 <0.005 0.010 Nitrogen Kjel.Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitrosen Kjel.Tot(N) " 0.017 0.063 0.003 0.001 0.007 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.39 0.52 0.40 Arsenic " 0.004 0.0004 0.0004 0.0002 0.022 0.022 Cadminum " 0.017 0.2 0.022 0.022 0.022 Cadium " 12.1 13.2	46.	46.6	.3	41.3	48.4	43.6	39.9	mg/L CaCO3	Hardness Total (Calc.)
Alkalinity Total @ pH 4.5 mg/L cacos 34.9 34.4 39.2 44.2 40.9 Chloride Dissolved mg/L 1.6 1.5 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.03 0.04 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: Nitrogen Amm.Diss(N) mg N/L 0.006 <0.005 0.023 <0.005 0.010 Nitrogen Kjel.Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitrosen Kjel.Tot(N) " 0.017 0.063 0.003 0.001 0.007 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.39 0.52 0.40 Arsenic " 0.004 0.0004 0.0004 0.0002 0.022 0.022 Cadminum " 0.017 0.2 0.022 0.022 0.022 Cadium " 12.1 13.2		-+							Aniona
Chloride Dissolved mg/L 1.6 1.5 1.7 1.9 Fluoride Dissolved " 0.03 0.03 0.04 0.04 0.04 Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: " 0.17 0.15 0.10 0.17 0.23 Nitrogen Kjel. Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitro NO3 + NO2 D " 0.083 0.081 0.059 0.057 0.047 Phosphorus Dissolved mg P/L 0.010 0.006 0.003 0.001 0.007 Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.0017 0.02 0.02 0.022 0.022 Chardinum " 0.017 0.02 0.02 0.022 0.022 Cadimium " 0.017 0.02 0.02 0.002 0.002 Chool 0.001	39.	40.0	2	44 7	20.2	24.4	24.0		
Fluoride Dissolved * 0.03 0.03 0.04 0.04 0.04 Sulfate * 6 7.4 6.5 8.1 6.4 Nutrients:	39. 1.						1	-	
Sulfate " 6 7.4 6.5 8.1 6.4 Nutrients: Nitrogen Amm.Diss(N) mg N/L 0.006 <0.005	0.0							mg/L	
Nutrients: mg N/L 0.006 <0.005 0.023 <0.005 0.010 Nitrogen Kjel.Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitro N03+NO2 D " 0.083 0.081 0.059 0.057 0.047 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.053 0.055 0.050 TOTAL METALS " 0.072 0.063 0.033 0.004 0.0004 Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.017 0.02 0.02 0.002 0.002 Cadmium " 0.017 0.02 0.002 <0.002	7.							"	
Nitrogen Amm.Diss(N) mg N/L 0.006 <0.005 0.023 <0.005 0.010 Nitrogen Kjel.Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitro NO3+NO2 D " 0.083 0.081 0.059 0.057 0.047 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.053 0.065 0.050 Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.017 0.02 0.02 0.02 0.02 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.001 0.001 0.001 Chromium <td></td> <td>0.4</td> <td>1</td> <td>6.1</td> <td>0.5</td> <td>/.4</td> <td>0</td> <td></td> <td>Sullate</td>		0.4	1	6.1	0.5	/.4	0		Sullate
Nitrogen Kjel.Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitro NO3+NO2 D " 0.083 0.081 0.059 0.057 0.047 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.053 0.065 0.050 TOTAL METALS " 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0002 0.001 C.001 0.001<				· · · · · · · · · · · · · · · · · · ·					Nutrients:
Nitrogen Kjel.Tot(N) " 0.17 0.15 0.10 0.17 0.20 Nitro NO3+NO2 D " 0.083 0.081 0.055 0.057 0.047 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.053 0.065 0.050 TOTAL METALS " 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.017 0.02 0.02 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.001 Chromium " 0.015 <0.015	0.00	0.010	15	<0.005	0.023	<0.005	0.006	mg N/L	Nitrogen Amm.Diss(N)
NITO NOS+NO2 D mg P/L 0.083 0.081 0.093 0.007 0.004 Phosphorus Dissolved mg P/L 0.01 0.006 0.003 0.001 0.007 Phosphorus Total " 0.072 0.063 0.053 0.055 0.057 TOTAL METALS " 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.0017 0.02 0.02 0.02 0.02 Barium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.001 0.001 0.001 Chromium " 12.1 13.2 14.60 11.90 13.70 Chromium " 0.001 <0.001	0.1	0.20	7	0.17	0.10	0.15	0.17	"	
Phosphorus Total " 0.072 0.063 0.053 0.065 0.050 TOTAL METALS mg/L 0.43 0.30 0.39 0.52 0.40 Aluminum mg/L 0.43 0.30 0.094 0.0004 0.0004 0.0004 0.0004 Arsenic " 0.017 0.02 0.02 0.02 0.02 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.002 Cadmium " 0.017 0.02 0.002 0.002 0.002 Calcium " 13.2 14.60 11.90 13.70 Chromium " 0.001 0.001 0.001 0.001 0.001 Cobalt " 0.002 0.003 0.002 0.003 0.002 Iron " 0.001 <0.001	0.03	0.047	7	0.057	0.059	0.081	0.083		Nitro NO3+NO2 D
TOTAL METALS mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 Barium " 0.017 0.02 0.02 0.02 0.02 Cadmium " 0.017 0.02 0.002 <0.002	0.01	0.007	1	0.001	0.003	0.006	0.01	mg P/L	Phosphorus Dissolved
Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.0004 0.0004 0.0004 0.0004 0.0005 Barium " 0.017 0.02 0.02 0.02 0.02 Cadmium " <0.002	0.03	0.050	5	0.065	0.053	0.063	0.072	۳	Phosphorus Total
Aluminum mg/L 0.43 0.30 0.39 0.52 0.40 Arsenic " 0.0004 0.0004 0.0004 0.0004 0.0005 Barium " 0.017 0.02 0.02 0.02 0.02 Cadmium " <0.002									TOTAL METALC
Arsenic " 0.0004 0.0004 0.0004 0.0004 0.0005 Barium " 0.017 0.02 0.02 0.02 0.02 Cadmium " <0.002	0.4	0.40		0.57	0.30	0.20	0.42		
Barium " 0.017 0.02 0.02 0.02 0.02 Cadmium " <0.002	0.000							mg/L	
Cadmium " <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 Calcium " 12.1 13.2 14.60 11.90 13.70 Chromium " <0.001	0.000								
Calcium " 12.1 13.2 14.60 11.90 13.70 Chromium " <0.001	<0.000		· •						
Chromium " <0.001 <0.001 <0.001 0.001 0.001 Cobalt " <0.015	13.9	4	ł						
Cobalt " <0.015 <0.015 <0.015 <0.015 <0.015 Copper " 0.002 0.003 0.002 0.003 0.002 Iron " 0.48 0.48 0.48 0.46 0.66 Lead " 0.001 <0.001	<0.00	1	1						
Copper " 0.002 0.003 0.002 0.003 0.002 Iron " 0.048 0.48 0.48 0.46 0.66 Lead " 0.001 <0.001	<0.01								
Iron " 0.48 0.48 0.48 0.46 0.66 Lead " 0.001 <0.001 <0.001 <0.001 <0.001 Magnesium " 2.35 2.60 2.89 2.82 3.02 Manganese " 0.038 0.034 0.029 0.026 0.033 Mercury " <0.0005 <0.0005 <0.00005 <0.00005 <0.00005 <0.0001 <0.001 Nickel " <0.001 0.002 <0.001 0.003 0.001 Potassium " <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 </td <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.00								
Lead " 0.001 <0.001 <0.001 <0.001 <0.001 Magnesium " 2.35 2.60 2.89 2.82 3.02 Manganese " 0.038 0.034 0.029 0.026 0.033 Mercury " <0.0005 <0.0005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0001 <0.001 Nickel " <0.001 0.002 <0.001 0.003 0.001 Potassium " <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	0.00		- i				0.002		Iron
Magnesium " 2.35 2.60 2.89 2.82 3.02 Manganese " 0.038 0.034 0.029 0.026 0.033 Mercury " <0.0005	<0.00						0 001		
Manganese " 0.038 0.034 0.029 0.026 0.033 Mercury " <0.0005	2.9								
Mercury " <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 </td <td>0.03</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>÷</td>	0.03								÷
Molybdenum " <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td><0.0000</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td>	<0.0000					1			-
Nickel " <0.001 0.002 <0.001 0.003 0.001 Potassium " <2	0.00					1			
Potassium " <2 <2 <2 <2 <2	<0.00								-
	<					, i		•	
selenium	<0.000	<0.0005		<0.0005	< 0.0005	<0.0005	<0.0005		Selenium
Silver " <0.0001 <0.0001 <0.0001 <0.0001	<0.000	<0.0001						*	
Sodium " 2.1 2.2 2.5 2.6 3.1	3	3.1							Sodium
Tin " <0.3 <0.3 <0.3 <0.3 <0.3	<0								
Zine " <0.005 0.036 <0.005 0.005 0.010	<0.00	0.010)5	0.005	<0.005	0.036	<0.005	**	Zinc
BACTERIOLOGICAL:									
Fecal Coliform MPN /100 mL 14 50 70 30 17	8	17		30	70	50	14	MPN /100 mL	Fecal Coliform
ORGANIC PARAMETERS:									ODCANIC PADAMETERS.
Carbon Total Organic mg/L 2.5 2.0 2.4 3.2 2.3	2	23	2	2.7	24	20	25	ma/l	

.....

~

Lab ID	T	ASL	ASL	ASL	ASL	ASL	ASL
Client ID		FR0131	FR0150	FR0156	FR0160	FR0178	FR0183
SITE		Oak	Oak	Oak	Oak	Oak	Oak
	Units				X-sec 3		
Sampled On:		93-08-23	93-09-06	93-09-21	93-10-04	93-10-19	93-11-02
Latitude (N)		49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11
Longitude (W)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
Dt t t							
Physical Tests: Dissolved Oxygen	mg/L	8.4	9.4	9	9.1	9.6	9.6
Water Temperature	deg C	18.5	18.0	14	15	11.5	9.5
Air Temperature	ucg C	16.5	15.0	11	13	11	9.5
pH		7.40	7.52	7.35	7.13	7.59	7.51
Field pH		7.5	7.5	7.45	7.55	7.6	7.3
Specific Conductance (SC)	uS/cm	97.7	130.0	125	170	187	143
Field SC	uS/cm	90	140	100	155	125	170
Suspended Solids (NFR)	mg/L	22	7	13	6	24	14
Dissolved Solids (FR)		51	72	62	94	43	76
Hardness Total (Calc.)	mg/L CaCO3	44.8	52.6	49.1	62.4	61.9	58.3
Anions:							
Alkalinity Total @ pH 4.5	mg/L CaCO3	37.4	43.1	43.5	48.5	48.2	48.2
Chloride Dissolved	mg/L	1.6	8.3	2.8	15.9	17.3	7.8
Fluoride Dissolved		0.04	0.03	0.04	0.04	0.05	0.04
Sulfate		7.6	9.6	9.8	12.5	12.5	10.6
Nutrients:							
Nitrogen Amm.Diss(N)	mg N/L	<0.005	0.007	<0.005	0.025	0.043	0.044
Nitrogen Kjel.Tot(N)	"	0.20	0.21	0.149	0.215	0.189	0.15
Nitro NO3+NO2 D	۳	0.027	0.028	0.039	0.048	0.054	0.082
Phosphorus Dissolved	mg P/L	0.012	0.011	0.014	0.011	0.02	0.024
Phosphorus Total		0.061	0.025	0.024	0.02	0.053	0.033
TOTAL METALS							
Aluminum	mg/L	0.27	<0.2	<0.20	<0.20	<0.20	<0.20
Arsenic		0.0005	0.0003	0.0004	0.0006	0.0005	0.0005
Barium	"	0.02	0.02	0.014	0.014	0.017	0.014
Cadmium		<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002
Calcium	"	13.60	15.20	15.4	17.6	17	16.5
Chromium	۳	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	"	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Copper	"	0.001	0.001	<0.001	0.001	0.002	<0.001
Iron	*	0.39	0.29	0.158	0.151	0.299	0.199
Lead	•	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
Magnesium	•	2.64	3.54	3.25	4.48	4.72	4.11
Manganese	**	0.024	0.020	0.015	0.017	0.027	0.016
Mercury		<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	< 0.00005
Molybdenum		<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001
Nickel		0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Potassium	-	<2	<2	<2	2.1	<2.0	<2.0
Selenium	_	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silver	-	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001
Sodium	-	2.8	7	5	12.7	12.3	7.6
Tin Zinc		<0.3 <0.005	<0.3 0.002	<0.30 <0.001	<0.30 0.002	<0.30 0.001	<0.30 0.004
Zinc		~0.005	0.002	·<0.001	0.002	0.001	0.004
BACTERIOLOGICAL:							
Fecal Coliform	MPN /100 mL	170	130	130	1600	2200	4000
ORGANIC PARAMETERS: Carbon Total Organic	mg/L	1.9	1.9	i	2.1	2.3	2.7
Caroon rotal Organic	mg/L	1.9	1.9		4 .1	4.3	۷.

	ASL	ASL	ASL	ASL	ASL	ASL
	1					FR0219
	Oak	Oak	Oak	Oak	Oak	Oak
Units						04.01.24
	93-11-15	93-11-30	93-12-14	93-12-2/	94-01-11	94-01-24
			40 12 11	40 1211	40.12.11	49 - 12.11
						123 - 7.15
	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	125 - 7.15
_					116	11.9
-						4.9
deg C	1	· •		1	1	8.8
		-		-		7.15
		4		1	1	7.25
	1					170
		I				110
						11
mg/L		•			1	104
		-	-			50.4
mg/L CaCO3	69.1	493	44.3	170	+	50.4
<u></u>						<u> </u>
		40.0	22.7	10.6	25	41.5
						19.5
mg/L						0.04
				1		10.9
	13	192	0.2	57.4	10.5	
	<u> </u>					
	0.027	0.083	0.059	0.06	0.035	0.05
mg N/L						0.18
				1	1 1	0.192
ma P/I					1 1	0.026
mg F/L				ł	i (0.044
	0.080	0.027				
						· · · · · · · · · · · · · · · · · · ·
	0 49	<0.20	0.4	<0.20	0.3	0.22
111 <u>6</u> 712				1	0.0006	0.0011
					0.013	0.017
					<0.0002	<0.0002
					11.3	12.8
		1			<0.001	0.001
				1		< 0.01
					1	0.003
						0.33
ч						<0.00
						4.4
						0.02
						<0.0000
						0.00
		1			1	0.00
			ł			<2.
.					1	<0.000
						< 0.000
		1		-	1	14.
				1	ł	<0.3
			1		1	0.00
~	0.005	0.002	0.00			0.50
	L		<u> </u>	+	1	
	1.404	14000	300	500	2200	170
MPN /100 mL	1400	14000	300			
	1	i	1	1		1
			1			
	" "	Units FR0185 Oak 93-11-15 93-11-15 49 - 12.11 123 - 7.15 49 - 12.11 123 - 7.15 mg/L 10.8 deg C 5.5 * mg/L 10.8 deg C 5.5 " 4 7.64 7.3 uS/cm 218 uS/cm 120 mg/L 34 " 112 mg/L CaCO3 69.1 mg/L 0.037 mg/L 0.037 " 0.274 0.04 13 mg P/L 0.007 " 0.0037 " 0.004 " 0.007 " 0.007 " 0.007 " 0.0015 " 0.002 " 0.001 " 0.001 " 0.001 " 0.001 " 0.001 " 0.001 " 0.0	FR0185 Oak FR0191 Oak Units 93-11-15 93-11-30 49 - 12.11 123 - 7.15 49 - 12.11 123 - 7.15 12 mg/L 10.8 49 - 12.11 123 - 7.15 122 123 - 7.15 mg/L 10.8 49 - 12.11 123 - 7.15 12 mg/L 10.8 7.3 12 7.3 uS/cm 218 4430 44 73 uS/cm 120 26600 2600 mg/L 34 100 10 93 mg/L 34 102 100 493 mg/L CaCO3 48.7 0.01 48.5 mg/L mg/L 0.037 0.083 0.083 mg/L 0.037 0.083 0.083 " 0.018 0.057 mg/L 0.037 0.086 0.057 mg/L 0.49 0.000 <0.002	Inits FR0185 Oak FR0191 Oak FR0210 Oak Units 93-11-15 93-11-30 93-12-14 49 - 12.11 49 - 12.11 49 - 12.11 123 - 7.15 123 - 7.15 123 - 7.15 123 - 7.15 123 - 7.15 mg/L 10.8 12 11.4 deg C 5.5 3 4.8 7.64 7.48 7.24 7.54 7.64 7.48 7.3 7.3 7.25 uS/cm 120 2600 mg/L 34 10 30 - 112 2640 94 mg/L CaCO3 48.7 48.5 mg/L CaCO3 48.7 48.5 32.7 mg/L CaCO3 48.7 48.5 32.7 mg/L CaCO3 48.7 48.5 32.7 mg/L 0.0037 0.083 0.059 - 0.0274 0.36 0.282 mg/L 0.0037 0.083 0.059 - 0.0	FR0185 Oak FR0191 Oak FR0210 Oak FR0211 Oak FR0211 Oak units 93-11-15 93-11-30 93-12-14 93-12-27 49 - 12.11 123 - 7.15 mg/L deg C 10.8 12 11.4 11.6 7.64 7.48 7.24 6.91 7.54 7.3 7.25 7.4 uS/cm 120 2600 85 820 mg/L 34 10 30 10 mg/L 34 10 30 10 mg/L 34 10 30 10 mg/L 28.7 48.5 32.7 49.5 mg/L 0.04 0.11 0.03 0.05 * 13 192 8.9 57.4 mg/L 0.037 0.083 0.059 0.06 * 0.118 0.164 0.362 0.19 mg/L 0.037 </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Lab ID		ASL	ASL	ASL	ASL
Client ID		FR0225	FR0260	FR0266	FR0267
SITE		Oak	Oak	Oak	Oak
	Units	X-sec 3			
Sampled On:		94-02-07	94-02-22	94-03-08	94-03-21
Latitude (N)		49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11
Longitude (W)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
Physical Tests:					
Dissolved Oxygen	mg/L	12.2	11.8	12.4	11.4
Water Temperature	deg C	2.2	4.8	4.7	5
Air Temperature		-4	3	3	1
pH		7.07	7.44	7.41	7.34
Field pH	ľ	7.5	7.4	7.55	7.6
Specific Conductance (SC)	uS/cm	455	1070	251	335
Field SC	uS/cm	270	650	160	212
Suspended Solids (NFR)	mg/L	13	38	78	31
Dissolved Solids (FR)	۳	276	667	167	206
Hardness Total (Calc.)	mg/L CaCO3	80.1	133	61	66.8
Anions:					
Alkalinity Total @ pH 4.5	mg/L CaCO3	44.7	42.7	33.8	41.8
Chloride Dissolved	mg/L	94.7	281	49	63.4
Fluoride Dissolved	"	0.04	0.04	0.04	0.04
Sulfate	"	20.3	43.9	13	15.9
Nutrients:		0.000	0.057	0.046	0.045
Nitrogen Amm.Diss(N)	mg N/L "	0.039 0.23	0.057 0.26	0.045 0.28	0.047 0.26
Nitrogen Kjel.Tot(N) Nitro NO3+NO2 D		0.166	0.252	0.226	0.20
Phosphorus Dissolved	mg P/L	0.024	0.031	0.034	0.017
Phosphorus Total	" " "	0.024	0.051	0.109	0.08
-					
TOTAL METALS	7	<0.00	0.22	0.77	0.45
Aluminum	mg/L	<0.20	0.33	0.77	0.47
Arsenic Barium		0.0008	0.0006	0.0009	0.0005
Cadmium		0.015	0.016	0.025 <0.0002	<0.002
Calcium		<0.0002	< 0.0002	<0.0002 13.4	<0.0002
Chromium		16 0.001	17.9 <0.001	0.001	<0.001
Cobalt	м	< 0.001	<0.001	< 0.015	<0.00
		0.013	0.013	0.013	0.003
Copp er Iron		0.002	0.002	1.11	0.00
Lead		< 0.001	< 0.001	0.001	<0.00
Magnesium		<0.001 9.76	21.5	6.68	~0.00 7.74
Manganese		9.78	0.029	0.063	0.03
Manganese	м	<0.00005	<0.0005	<0.0005	<0.0000
Molybdenum	"	<0.000	<0.001	<0.001	<0.00
Nickel	•	0.001	0.001	0.004	0.00
Potassium	M	3	6.3	<2.0	2.
Selenium	•	<0.0005	<0.0005	<0.0005	< 0.000
Silver		<0.0001	<0.0001	<0.0001	<0.000
Sodium		55.2	155	32.2	38.
Tin		< 0.30	<0.30	<0.30	<0.30
Zinc		0.002	0.084	0.007	0.00
BACTERIOLOGICAL:		0000			
Fecal Coliform	MPN /100 mL	8000	14000	8000	2300
ORGANIC PARAMETERS:					
Carbon Total Organic	mg/L	2.7	2.3	2.5	2.

Lab ID		Zenon						
Client ID		FR0001	FR0048	FR0067	FR0073	FR0084	FR0110	FR0118
SITE		Oak						
SILE	Units	our	0				• •••	
Sampled On:	Cina	93-01-25	93-02-23	93-03-23	93-04-20	93-05-17	93-06-14	93-07-12
			10 10 11	40 10 11	40 10 11	40 12 11	40 10 11	49 - 12.11
Latitude (N)		49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	
Longitude (W)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
ORGANIC PARAMETERS:								
Adsorbable Org. Halide (AOX)	mg/L	0.04	0.03	0.03	0.02	0.01	-	0.01
Chlorophenolics:								· · · ···· ·
Pentachlorophenol	mg/L	<	<	0.000013	<	0.000003	0.000003	<
2,3,4,6+2,3,5,6-Tetrachlorophenol	•	<	<	<	<	<	<	<
2,3,4,5-Tetrachlorophenol	•	<	<	<	<	<	<	<
3,4,5-Trichlorophenol		<	<	<	<	<	<	<
2,3,4-Trichlorophenol	n	<	<	<	<	<	<	<
2,3,5-Trichlorophenol	۳	<	<	<	<	<	<	<
2,3,6-Trichlorophenol	**	<	<	<	<	<	<	<
2,4,5-Trichlorophenol	**	<	<	<	<	<	<	<
2,4,6-Trichlorophenol	"	<	<	<	<	<	0.000003	<
2,4-Dichlorophenol	*	<	<	<	<	<	<	<
2,6-Dichlorophenol	Ħ	<	<	<	<	<	<	<
2,5-Dichlorophenol	*	<	<	. <	<	<	<	<
3,5-Dichlorophenol	۳	<	<	<	<	<	<	<
2,3-Dichlorophenol	н	<	<	<	<	<	<	<
3,4-Dichlorophenol		<	<	<	<	<	<	<
4-Chlorophenol	N	<	<	<	<	<	<	<
Tetrachloroguaiacol	"	<	<	<	<	<	<	<
3,4,5-Trichloroguaiacol		<	0.000005	<	0.000005	<	<	<
3,4,6-Trichloroguaiacol	•	<	<	<	<	<	<	<
4,5,6-Trichloroguaiacol		<	0.000003	. <	0.000003	0.000002	<	<
4,5-Dichloroguaiacol		<	0.000014	0.000005	0.000004	<	0.000004	<
4,6-Dichloroguaiacol		<	<	<	<	<	<	<
4-Chloroguaiacol	•	<	<	<	<	<	<	<
5-Chloroguaiacol	*	<	<	<	<	<	0.000005	0.000002
6-Chloroguaiacol	н	<	<	<		<	<	<
Tetrachlorocatechol		0.000002	0.000003	<	0.000004	0.000003	<	<
3,4,5-Trichlorocatechol		0.000002	0.000006	<	0.000007	0.000003	0.000002	<
3,4-Dichlorocatechol		<	<	<	<	<	<	<
3,5-Dichlorocatechol		<	<	<	<	<	<	<
4,5-Dichlorocatechol		<	0.000006	0.000006	0.000006	<	<	<
4-Chlorocatechol		<	<	<		<	0.000003	<
Tetrachloroveratrole		<	<	<		<	<	<
3,4,5-Trichloroveratrole		<	0.000004	<	0.000002	<	<	<
4,5-Dichloroveratrole	"	<	<	<	1	<	<	<
2,6-Dichlorosyringaldehyde		<	<	<	<	<	<	<
2-Chlorosyringaldehyde		<	<	<	<	<	<	<
3,4,5-Trichlorosyringol	-	<	<	<	<	<	<	<
Trichlorotrimethoxybenzene	•	<	<	<	<	<	<	<
5,6-Dichlorovanillin		<	0.000003	<	<	<	<	<
6-Chlorovanillin	*	0.000002	0.000012	<	0.000009	<	0.000002	<
Nonylphenol	•	<	<	<	<	<	<	<
······		1				1		

Lab ID		Zenon	Zenon	Zenon	Zenon	Zenon	Zenon
Client ID		FR0128	FR0150	FR0160	FR0178	FR0183	FR0191
SITE		Oak	Oak	Oak	Oak	Oak	Oak
	Units			X-sec 3			
Sampled On:		93-08-10	93-09-06	93-10-04	93-10-19	93-11-02	93-11-30
Latitude (N)		49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11
Longitude (W)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
ORGANIC PARAMETERS:							
Adsorbable Org. Halide (AOX)	mg/L	<0.01	<0.01	0.02		0.02	0.02
Chlorophenolics:							
Pentachlorophenol	mg/L	<	<	<	<	<	<
2,3,4,6+2,3,5,6-Tetrachlorophenol	M	<	<	<	<	<	0.000003
2,3,4,5-Tetrachlorophenol	M	<	<	<	<	<	<
3,4,5-Trichlorophenol		<	<	<	<	<	<
2,3,4-Trichlorophenol	*	<	<	<	<	<	<
2,3,5-Trichlorophenol	•	0.000001	<	<	<	<	<
2,3,6-Trichlorophenol	*	<	<	<	<	<	<
2,4,5-Trichlorophenol		<	<	<	<	<	<
2,4,6-Trichlorophenol	*	0.000001	<	0.000002	<	<	0.000012
2,4-Dichlorophenol	*	<	<	<	<	<	<
2,6-Dichlorophenol		<	<	<	<	<	<
2,5-Dichlorophenol	*	<	<	<	<	<	<
3,5-Dichlorophenol	*	<	<	<	<	<	<
2,3-Dichlorophenol		<	<	<	<	<	<
3,4-Dichlorophenol	**	<	<	<	<	<	<
4-Chlorophenol	*	<	<	<	<	<	<
Tetrachloroguaiacol		<	<	<	<	<	0.000002
3,4,5-Trichloroguaiacol		<	<	<	<	<	0.00006
3,4,6-Trichloroguaiacol	•	<	<	<	<	<	<
4,5,6-Trichloroguaiacol	•	<	<	_ <	<	<	<
4,5-Dichloroguaiacol		<	<	0.000003	<	<	<
4,6-Dichloroguaiacol	-	<	<	<	<	<	<
4-Chloroguaiacol	-	<	<	<	<	<	<
5-Chloroguaiacol	•	<	0.000003	<	<	<	<
6-Chloroguaiacol	•	<	<	<	<	<	<
Tetrachlorocatechol	-	<	<	<	<	<	<
3,4,5-Trichlorocatechol		<	<	<	<	<	0.000006
3,4-Dichlorocatechol		<	<	<	<	<	<
3,5-Dichlorocatechol	•	<	<	<	<	<	<
4,5-Dichlorocatechol		<	<	0.000002	<	<	0.000006
4-Chlorocatechol		<	<	<	<	<	<
Tetrachloroveratrole	-	<	<	<	<	<	<
3,4,5-Trichloroveratrole	•	<	<	<	<	<	0.000002
4.5-Dichloroveratrole		<	<	<	<	<	<
2,6-Dichlorosyringaldehyde		<	<	<	<	<	<
2-Chlorosyringaldehyde		<	<	<	<	<	<
3,4,5-Trichlorosyringol	-	<	<	<	<	<	<
Trichlorotrimethoxybenzene		<	<	<	<	<	<
5,6-Dichlorovanillin	-	<	<	<	<	<	<
6-Chlorovanillin		<	<	0.000002	<	<	0.000003
Nonylphenol		<	<	<	<	<	<

.

·

Lab ID		Zenon	Zenon	Zenon	Zenon ED0267
Client ID		FR0211	FR0219	FR0260	FR0267
SITE		Oak	Oak	Oak	Oak
Sampled On:	Units	93-12-27	94-01-24	94-02-22	94-03-21
Letitude OID		49 - 12.11	49 - 12.11	49 - 12.11	49 - 12.11
Latitude (N)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
Longitude (W)		125 - 7.15	125 - 7.15	125 - 7.15	125 - 7.15
ORGANIC PARAMETERS:					
Adsorbable Org. Halide (AOX)	mg/L	0.03	0.02	0.03	0.02
Chlorophenolics:					
Pentachlorophenol	mg/L	<	<	<	0.000010
2,3,4,6+2,3,5,6-Tetrachlorophenol	н	0.000002	<	<	0.000002
2,3,4,5-Tetrachlorophenol	Ħ	<	<	<	<
3,4,5-Trichlorophenol	Ħ	<	<	<	<
2,3,4-Trichlorophenol	**	<	<	<	<
2,3,5-Trichlorophenol	*	<	_ <	<	<
2,3,6-Trichlorophenol	*	<	<	<	<
2,4,5-Trichlorophenol	*	<	<	<	<
2,4,6-Trichlorophenol		0.000006	<	0.000003	0.000002
2,4-Dichlorophenol		<	<	<	<
2,6-Dichlorophenol		<	<	<	<
2,5-Dichlorophenol		<	<	<	<
3,5-Dichlorophenol	*	<	<	<	<
2,3-Dichlorophenol		<	<	<	<
3,4-Dichlorophenol	*	<	<	<	<
4-Chlorophenol	*	<	<	<	<
Tetrachloroguaiacol	-	<	<	_<	<
3,4,5-Trichloroguaiacol	N	0.000010	<	0.000003	0.000002
3,4,6-Trichloroguaiacol		<	<	<	<
4,5,6-Trichloroguaiacol		<	<	<	<
4,5-Dichloroguaiacol		0.000008	<	0.000005	0.000004
4,6-Dichloroguaiacol	**	<	<	<	<
4-Chloroguaiacol	•	<	<	<	<
5-Chloroguaiacol		0.000006	<	<	
6-Chloroguaiacol	*	<	<	<	. <
Tetrachlorocatechol		<	<	<	0.00000
3,4,5-Trichlorocatechol		0.000012	<	<	<
3,4-Dichlorocatechol		<	<	<	<
3,5-Dichlorocatechol	•	<	<	<	<
4,5-Dichlorocatechol		0.000008	<	0.000005	0.00000
4-Chlorocatechol		<	<	<	-
Tetrachloroveratrole	•	<	<	<	
3,4,5-Trichloroveratrole		0.000003	<	<	
4,5-Dichloroveratrole	•	<	<	<	-
2,6-Dichlorosyringaldehyde		<	<	<	
2-Chlorosyringaldehyde		<	<	<	-
3,4,5-Trichlorosyringol		<	<	<	•
Trichlorotrimethoxybenzene	*	<	<	<	•
5,6-Dichlorovanillin		<	<	<	0.00000
6-Chlorovanillin		0.000005	<	0.000004	0.00000:
Nonylphenol	м	1 -	<	<	.

Client ID FR0048 FR0084 Gak		<u> </u>	7	7	7	Zenon
STTE Oak Oak <td>Lab ID</td> <td></td> <td>Zenon</td> <td>Zenon</td> <td>Zenon</td> <td></td>	Lab ID		Zenon	Zenon	Zenon	
Units Units 93-02-23 93-05-17 93-10-19 94-02-22 Latitude (N) 49 - 12.11 49 - 12.11 49 - 12.11 123 - 7.15 123						
Sampled On: 93-02-23 93-02-23 93-05-17 93-10-19 94-02-22 Latitude (N) 49-12.11 49-12.11 49-12.11 123 - 7.15 1	SITE		Oak	Oak	Oak	Oak
Latitude (N) 49 - 12.11 49 - 12.11 123 - 7.15 49 - 12.11 123 - 7.15 Resin and Fatty Acids: 123 - 7.15		Units				
Longitude (W) 123 - 7.15 123	Sampled On:		93-02-23	93-05-17	93-10-19	94-02-22
Longitude (W) 123 - 7.15 123						
Resin and Fatty Acids: mg/L Arashidic Acid mg/L Arashidic Acid " Behenic Acid " Dichlorodehydroabietic " Dichlorodehydroabietic - Lisopimaric Acid " <						
Abietic Acid mg/L Arachidie Acid " Behenic Acid " Chlorodehydroabietic " Dichtorodehydroabietic " Dichtorodehydroabietic " Lauric Acid " Lavic Acid " <td>Longitude (W)</td> <td></td> <td>123 - 7.15</td> <td>123 - 7.15</td> <td>123 - 7.15</td> <td>123 - 7.15</td>	Longitude (W)		123 - 7.15	123 - 7.15	123 - 7.15	123 - 7.15
Abietic Acid mg/L Arachidie Acid " Behenic Acid " Chlorodehydroabietic " Dichtorodehydroabietic " Dichtorodehydroabietic " Lauric Acid " Lavic Acid " <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Arachidic Acid • <		~		_		
Behenic Adid - <		mg/L	1			
Chlorodehydraabietic • <		-	1			<
Dehydroabietic Acid • <			1			<
Dichlorodehydroabietic • <	•		1			<
Isopimaric Acid • <		"				<
Laurie Acid		•	1 .			<
Levo Pinnaric Acid • <		*	1			<
Lignoceric Acid • <		•				<
Linoleic Acid • <		*				<
Linolenic Acid • <	0	•			-	<
Myristic Acid * <	Linoleic Acid	*		-	0.001	<
Neabilito Acid • <	Linolenic Acid	*			<	<
Oleic Acid " <	Myristic Acid	••	<			0.0007
Palmitric Acid * <	Neoabietic Acid	•	<		<	<
Palustric Acid * <	Oleic Acid	**	<	<	<	0.0008
Pimaric Acid " <	Palmitric Acid	*	<	<	<	0.0024
Sandaraco Pimaric Acid " <	Palustric Acid		<	<	<	<
Staric Acid " <	Pimaric Acid		<	<	<	<
Stearic Acid " < < < 0.002 Antisapstain Compounds: mg/L 0.007 <	Sandaraco Pimaric Acid	*	<	<	<	<
Antisapstain Compounds: TCMTBmg/L 0.007 <TCMTBmg/L 0.007 <			<	<	<	0.0025
TCMTB mg/L 0.007 < < Organochlorine Pesticides and PCBs mg/L <						
Aldrinmg/L<<<BHC alpha-"<		mg/L	0.007	<	<	<
Aldrinmg/L<<<BHC alpha-"<						
BHC alpha-						
BHC beta- BHC delta- $<$ $<$ $<$ Chlordane alpha- Chlordane gamma- DDE p p'- $<$ $<$ $<$ DDE p p'- DDD p p'- $<$ $<$ $<$ DDT p p'- Dieldrin $<$ $<$ $<$ Endosulfan I Endosulfan II $<$ $<$ $<$ Endosulfan sulphate DDT o p'- $<$ $<$ $<$ DDT o p'- Endrin $<$ $<$ $<$ Image: Constraint of the second se		mg/L			1	<
BHC delta- Chlordane alpha- Chlordane gamma- DDE p p'- DDD p p'- DDT p p'- DDT p p'- DIT p p'- Dieldrin Choosulfan I Endosulfan II Endosulfan sulphate DDT o p'- Endrin Hexachlorobenzene Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Heptachlor Mirex Nonachlor trans- Oxychlordane Kanton Sama Kanton		"	1			<
Chlordane alpha-"<<<Chlordane gamma-"<						<
Chlordane gamma- " <						<
DDE p p'-" $<$ $<$ $<$ DDD p p'-"0.000011 $<$ $<$ DDT p p'-" $<$ $<$ $<$ Dieldrin" $<$ $<$ $<$ Endosulfan I" $<$ $<$ $<$ Endosulfan II" $<$ $<$ $<$ Endosulfan sulphate" $<$ $<$ $<$ DDT o p'-" $<$ $<$ $<$ Endrin" $<$ $<$ $<$ Hexachlorobenzene"0.000001 $<$ Heptachlor" $<$ $<$ Heptachlor epoxide" $<$ $<$ Lindane BHC gamma-" $<$ $<$ Mirex" $<$ $<$ Nonachlor trans-" $<$ $<$ Oxychlordane" $<$ $<$						<
DDD p p'- " 0.000011 DDT p p'- " <			<	1		<
DDT p p'DDT p p'DieldrinEndosulfan IEndosulfan IIEndosulfan sulphateDDT o p'EndrinHexachlorobenzene0.000001HeptachlorHeptachlorHeptachlorMethoxychlorMirexNonachlor trans-Oxychlordane		*	<	1		<
Dieldrin"<<<Endosulfan I"<			0.000011	<	<	<
Endosulfan II"<<<Endosulfan sulphate"<	DDT pp'-		<	<	<	<
Endosulfan II"<<<Endosulfan sulphate"<		•			<	
Hexachlorobenzene"0.000001<<Heptachlor"<		•				<pre></pre>
Hexachlorobenzene"0.000001<<Heptachlor"<		-		1	<	
Hexachlorobenzene"0.000001<<Heptachlor"<		*			<	<pre> </pre>
Hexachlorobenzene"0.000001<<Heptachlor"<	DDT op'-	*	<		<	<
Heptachlor"<<<Heptachlor epoxide"<	Endrin	•				
Heptachlor epoxide"<<Lindane BHC gamma-"<	Hexachlorobenzene	•	0.000001			<
Heptachlor epoxide"<<Lindane BHC gamma-"<	Heptachlor	*	<			
Methoxychlor"<<Mirex"<			<		<	-
Methoxychlor"<<Mirex"<			<	<		<
Mirex"<<Nonachlor trans-"<		"	<			<
	-		<			
					<	
					<	
E e e e e e e e e e e e e e e e e e e e						1
PCBs - Total " < < <						

APPENDIX X

.

. 2

,

WATER QUALITY DATA FOR MAIN ARM AND NORTH ARM SLOUGHS

Water Quality in the Fraser River Estuary

Lab ID				Zenon	ASL	Zenon	ASL
Client ID				FR0035	FR0249	FR0036	FR0250
SITE	Zenon	ASL		McDonald SL	McDonald Sl.	McDonald SL	McDonald Sl.
	MDL	MDL		Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	From 93-01	From 93-04	UNITS	1.0m	1.0 m	6.0m	5.5 m
Sampled On:	To 93-03	To 94-03		93-02-11	94-02-23	93-02-11	94-02-23
				49 - 12.78	49 - 12.78	49 - 12.78	49 - 12.78
Latitude (N)				123 - 11.26	123 - 11.26	123 - 11.26	123 - 11.26
Longitude (W)				125 - 11.20	125 - 11.20	120 11.20	
Physical Tests:							10.0
Dissolved Oxygen			mg/L	10.6	10.5	10.4	10.2
Water Temperature			deg C	5	5.1	6.5	6.1
Air Temperature			*	2	1	2	1
pH				7.6		7.7	7.58
Field pH				7.2		7.35	7.8
Specific Conductance(SC)	1	0.2	uS/cm	11600		28200	46000
Field SC			uS/cm	8100		10000	24000
Suspended Solids (NFR)	4	1	mg/L	7		19	25
Dissolved Solids (FR)	4	1		7820		19000	30300
Hardness Total			mg/L CaCO3	1060	•	2780	5030
Anions:	1				ļ		
Alkalinity Total @ pH 4.5	0.5	0.5	mg/L CaCO3	61.7	68.8	83.4	98.7
Chloride Dissolved	0.5	1	mg/L	4430	4890	9800	14000
Fluoride Dissolved	0.1	1		0.28	1	0.56	0.66
Sulfate	1		N	460	657	1730	1830
Nutrients:	0.005	0.005	mg N/L	0.061		0.049	0.01
Nitrogen Amm.Diss(N)	0.003			0.3			
Nitrogen Kjel. Tot(N)	0.02			0.24		1	1
Nitro NO3+NO2 D	0.003		1	0.021			
Phosphorus Dissolved Phosphorus Total	0.003	1		0.035		1	
-				1			
TOTAL METALS				0.08	0.92	0.27	<2.0
Aluminum	0.00			1			
Arsenic	0.001						
Barium	0.00			0.012	1		<0.002
Cadmium	0.000			0.0001		1	
Calcium	0.0:			78.1			< 0.001
Chromium	0.00						< <0.1
Cobalt	0.004				< <0.04		1
Copper	0.00			0.00	1		
Iron	0.0	1		0.29		1	< <0.010
Lead	0.00				< <0.010		
Magnesium	0.0			210			
Manganese	0.00			0.024			
Mercury	0.0000	1	1	·	< <0.0000		< <0.00003 < 0.000
Molybdenum	0.00				< 0.00		
Nickel	0.00			0.00			1
Potassium	0.		2 "	57.		1	
Selenium	0.0			1	< <0.000		
Silver	0.0		l "		< <0.00		< <0.00
Sodium	0.		2 "	173		477	
Tin	0.0			0.0			
Zinc	0.0	1 0.00	1 "	<u> </u>	< 0.00	4	< <0.00
BACTERIOLOGICAL:							
Fecal Coliform			mpn /100m	1 80	0 500	0	- 130

_

٠

Lab ID			Zenon	ASL	Zenon	ASL
Client ID			FR0037	FR0251	FR0038	FR0252
SITE	Zenon	ASL	Eburne Sl.	Eburne SL	Eburne SL	Eburne SL
	MDL	MDL	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	From 93-01	From 93-04	1.0m	1.0 m	4.0m	3.5 m
Sampled On:	To 93-03	To 94-03	93-02-11	94-02-23	93-02-11	94-02-23
Latitude (N)			49 - 12.16	49 - 12.16	49 - 12.16	49 - 12.16
Longitude (W)			123 - 8.58	123 - 8.58	123 - 8.58	123 - 8.58
Loughade (W)						
Physical Tests:				10.0	10.8	11
Dissolved Oxygen			11.2	10.9	10.8	4.9
Water Temperature			5.5	4.5	2	
Air Temperature		1	2	1	7.6	7.3
рН			7.7	7.38	7.6	7.3
Field pH			7.3	7.65	30500	F
Specific Conductance(SC)	1	0.2	20800	12000 7000	21000	10500
Field SC			17500	8	17	10500
Suspended Solids (NFR)	4		252		20900	1240
Dissolved Solids (FR)	4	1	13500	8250		
Hardness Total			1740	· 1300	2770	190
Anions:						
Alkalinity Total @ pH 4.5	0.5	0.5	73.3	59.4	85.1	
Chloride Dissolved	0.5	0.2	11800		1	
Fluoride Dissolved	0.1	0.02	0.44	0.34	0.6	
Sulfate	1	0.5	901	515	1660	75
Nutrients:						
Nitrogen Amm.Diss(N)	0.005	0.005	0.037	0.054	0.017	0.05
Nitrogen Kjel. Tot(N)	0.04	0.05	0.23	0.19	0.21	0.18
Nitro NO3+NO2 D	0.02	0.005	0.29	0.374	0.34	0.37
Phosphorus Dissolved	0.003	0.001	0.033	0.037	0.048	0.0
Phosphorus Total	0.003	0.001	0.053	0.048	0.061	0.04
TOTAL METALS						
Aluminum	0.06	5 0.02	0.14	<0.60	0.09	<0.6
Arsenic	0.00			0.0008	0.001	0.000
Barium	0.00				0.009	< 0.03
Cadmium	0.000				<	< <0.00
Calcium	0.0			86	180	5 12
Chromium	0.00				<	<) <0.00
Cobalt	0.00			< < 0.045	; <	< <0.04
Соррег	0.00					3 <0.00
Iron	0.0				0.2	3 0.94
Lead	0.00					< <0.01
Magnesium	0.0			1		39 39
Magnesium Manganese	0.00					8 <0.0
Manganese	0.0000			< <0.0000		< <0.000
Molybdenum	0.00			< 0.002		< 0.00
Nickel	0.00		1	< 0.01:		< 0.0
Potassium	0.00		2 96.9		1	0 1
Selenium	0.0			< <0.000		< <0.00
Silver	0.0			< <0.00		< <0.0
Sodium	0.		2 2880	1		0 31
Tin	0.0				4	
Zinc	0.0			< 0.00		< 0.0
BACTERIOLOGICAL: Fecal Coliform			130	0 500	0	- 30

Lab ID			Zenon	ASL	Zenon	ASL/Zenon
Client ID			FR0039	FR0253	FR0040	FR0254
SITE	Zenon	ASL	Tree Is. SI	Tree Is. SL	Tree Is. Sl	Tree Is. SL
SILD	MDL	MDL	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	From 93-01	From 93-04	1.0m	1.0 m	3.0m	3.0 m
Sampled On:	To 93-03	To 94-03	93-02-10	94-02-22	93-02-10	94-02-22
Sampled On.	1075-05	10,7405	73-02-10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Latitude (N)			49 - 11.08	49 - 11.08	49 - 11.08	49 - 11.08
Longitude (W)			122 - 57.70	122 - 57.70	122 - 57.70	122 - 57.70
Physical Tests:						
Dissolved Oxygen			13.6	11.6	13.2	11.8
Water Temperature			4	3.8	4	3.8
Air Temperature			11.5	6	11.5	6
рН			7.7	7.47	7.7	7.44
Field pH			7.25	7.65	7.15	7.6
Specific Conductance(SC)	1	0.2	142	660	172	1290
Field SC			90	450	155	900
Suspended Solids (NFR)	4	1	5	7	5	5
Dissolved Solids (FR)	4	1	87	330	102	842
Hardness Total			50.3	78.1	51.9	160
Anions:			46.0	40.	45.7	41.7
Alkalinity Total @ pH 4.5	0.5	0.5	45.9	40.1		
Chloride Dissolved	0.5	1 .	8.4	125	17	360
Fluoride Dissolved	0.1	0.02	<	0.04		0.05
Sulfate	1	0.5	11.2	29.5	10.5	55
Nutrients:						
Nitrogen Amm.Diss(N)	0.005	0.005	0.04	0.051	0.054	0.069
Nitrogen Kjel. Tot(N)	0.04	0.05	0.2	0.22	0.2	0.28
Nitro NO3+NO2 D	0.02	0.005	0.2	0.252	0.21	0.26
Phosphorus Dissolved	0.003	0.001	0.014	0.024	0.008	0.026
Phosphorus Total	0.003	0.001	0.022	0.038	0.017	0.038
		I				
TOTAL METALS						
Aluminum	0.06	1	0.14	0.3	0.14	0.25
Arsenic	0.001		<	0.0004		0.0008
Barium	0.001		0.014			0.017
Cadmium	0.0001		<	<0.0002	<	
Calcium	0.05		14.4	14.4	14.6	19.3
Chromium	0.005	0.001	<		<	
Cobalt	0.004		<	<0.015	<	< 0.015
Copper	0.001		0.002	0.002		0.002
Iron	0.05	1	0.35	0.386		
Lead	0.003	1	<		<	
Magnesium	0.02		3.49			1
Manganese	0.002	1	0.023			•
Mercury	0.00005		<		<	
Molybdenum	0.004		<		<	
Nickel	0.005		<		<	1
Potassium	0.4		0.9			
Selenium	0.03		<			1
Silver	0.03		<		<	
Sodium	0.4		6.5			
Tin	0.02		<		1	
Zinc	0.01	0.001	<	0.003	<	0.002
BACTERIOLOGICAL:						
Fecal Coliform			1100	1700		5000

ab ID			Zenon	ASL	Zenon	ASL
Client ID			FR0028	FR0242	FR0029	FR0243
SITE	Zenon	ASL	Ladner Sl	Ladner SL	Ladner SL	Ladner Sl.
	MDL	MDL	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	From 93-01	From 93-04	1.0m	1.0 m	5.0m	5.0 m
Sampled On:	To 93-03	To 94-03	93-02-10	94-02-21	93-02-10	94-02-21
			49 - 5.54	49 - 5.54	49 - 5.54	49 - 5.54
Latitude (N)			123 - 5.40	123 - 5.40	123 - 5.40	123 - 5.40
Longitude (W)			125-5.40	125 0.10		
Physical Tests:					12.4	11.2
Dissolved Oxygen			11.4	11	4.8	11.4
Water Temperature			4.8	4.8	4.8	6.
Air Temperature			4	6.5	7.6	7.4
pH			7.6	7.35	7.6	7.5
Field pH			7.2	7.65		1710
Specific Conductance(SC)	1	0.2	9620	12500	11300	1050
Field SC			7100	9000	8000	1
Suspended Solids (NFR)	4		11	10	12	1230
Dissolved Solids (FR)	4	1	5820	9040	6960	•
Hardness Total			912	1460	1060	199
Anions:						
Alkalinity Total @ pH 4.5	0.5	0.5	63.8	67.4	62.9	
Chloride Dissolved	0.5	0.2	2900	4100	3520	1
Fluoride Dissolved	0.1	0.02	0.21	0.24	0.27	
Sulfate	1	0.5	409	558	459	79
Nutrients:						
Nitrogen Amm.Diss(N)	0.005	0.005	0.107	0.096	0.089	0.0
Nitrogen Kjel. Tot(N)	0.04		0.31	0.39	0.27	0.3
Nitro NO3+NO2 D	0.02		0.29	0.326	0.27	0.32
Phosphorus Dissolved	0.003		0.021	0.052	0.022	0.04
Phosphorus Total	0.003		0.041	0.066	0.043	0.05
TOTAL METALS						
Aluminum	0.06	0.02	0.18	<0.60	0.18	<0.2
Arsenic	0.001		1			0.000
Barium	0.001			1		< 0.01
Cadmium	0.0001		•			< <0.00
	0.00					5 12
Calcium	0.00		1			
Chromium	0.004			<0.04	1	< <0.0
Cobalt	0.00					5 0.00
Copper	0.00	-				0.3:
Iron Lead	0.00					< <0.0
	0.00	-	1	1	1	ol 4
Magnesium	0.00		1			
Manganese	0.000				· •	< <0.000
Mercury	0.000					< <0.0
Molybdenum	0.00		1	1	1	
Nickel	0.00	-	49.1			-
Potassium	0.0	1	1	< <0.000	1	< <0.00
Selenium	0.0	-		< <0.00		< <0.0
Silver			1480	1	1	
Sodium	0.					-
Tin Zinc	0.0		1	< 0.00		< <0.0
BACTERIOLOGICAL: Fecal Coliform			230	230	0	- 23

Lab ID			Zenon	ASL	Zenon	ASL
Client ID			FR0030	FR0244	FR0031	FR0245
SITE	Zenon	ASL	Deas SL	Deas SL	Deas SL	Deas SL
	MDL	MDL	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	From 93-01	From 93-04	1.0m	1.0 m	4.0m	6.5 m
Sampled On:	To 93-03	To 94-03	93-02-10	94-02-21	93-02-10	94-02-21
Latitude (N)			49 - 7.04	49 - 7.04	49 - 7.04	49 - 7.04
Longitude (W)			123 - 3.72	123 - 3.72	123 - 3.72	123 - 3.72
Physical Tests:	1					
Dissolved Oxygen			12.8	11.9	8.6	10.3
Water Temperature			3.5	4.3	4.5	5.1
Air Temperature		1	4	6	4	6
pH			7.7	7.45	7.5	7.45
Field pH			7.25	7.55	6.65	7.5
Specific Conductance(SC)	1 1	0.2	3290	7450	16500	26000
Field SC			2000	4350	13000	13400
Suspended Solids (NFR)	4	1	6	12	7	21
Dissolved Solids (FR)	4	6	1830	5140	10800	16900
Hardness Total	· ·	-	305	843	1410	2650
Anions:					70.0	79.2
Alkalinity Total @ pH 4.5	0.5		1	47.4		
Chloride Dissolved	0.5	1	1		1	1
Fluoride Dissolved	0.1		1	0.2		
Sulfate	1	0.5	206	330	715	1070
Nutrients:						
Nitrogen Amm.Diss(N)	0.005	0.005	0.067	0.065	0.176	
Nitrogen Kjel. Tot(N)	0.04	0.05	0.2	0.27	0.4	0.28
Nitro NO3+NO2 D	0.02	0.005	0.2	0.307	0.27	0.307
Phosphorus Dissolved	0.003	0.001	0.015	0.034	0.028	0.048
Phosphorus Total	0.003	0.001	0.027	0.044	0.039	0.062
TOTAL METALS	<u> </u>		<u> </u>			
Aluminum	0.06	0.02	0.14	<0.40	0.1	<1.0
Arsenic	0.001	1		0.0006		
Arsenic Barium	0.001					
Cadmium	0.0001				{	
Calcium	0.001	1		1		
Chromium	0.005	1				
				<0.030		< 0.075
Cobalt	0.004					
Copper Iron	0.00				1	1
	0.003					
Lead	0.003	1		1		
Magnesium	0.002					1
Manganese	0.0000					
Mercury	0.000					1
Molybdenum	0.00				1	
Nickel	0.00		15.8	4		
Potassium	0.03					1
Selenium					1	< <0.001
Silver	0.03					
Sodium	0.4					
Tin Zinc	0.02			1		< <0.00
Cana			<u> </u>			
BACTERIOLOGICAL:			3000	800		- 2300
Fecal Coliform	_1	1		800	<u> </u>	

Lab ID			Zenon	ASL	Zenon	ASL
Client ID			FR0032	FR0246	FR0033	FR0247
SITE	Zenon	ASL	Gundersen Sl.	Gundersen SL	Gundersen SL	Gundersen SL
	MDL	MDL	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	From 93-01	From 93-04	1.0m	1.0 m	4.0m	4.0 m
Sampled On:	To 93-03	To 94-03	93-02-10	94-02-22	93-02-10	94-02-22
t			49 - 10.39	49 - 10.39	49 - 10.39	49 - 10.39
Latitude (N)			122 - 55.11	122 - 55.11	122 - 55.11	122 - 55.11
Longitude (W)			122 - 55.11			
Physical Tests:				10.0	. 12.8	12.2
Dissolved Oxygen			13		12.8	12.2
Water Temperature			4	3.5	11.5	4
Air Temperature			11.5		7.7	7.49
pH			7.7		7.25	7.55
Field pH			7.05	1		
Specific Conductance(SC)	1	0.2	225	1	•	
Field SC			150			
Suspended Solids (NFR)	4	1	5		1	1
Dissolved Solids (FR)	4	1	130		60.5	
Hardness Total	<u></u>		58.1	79.3	60.5	144
Anions:						
Alkalinity Total @ pH 4.5	0.5					
Chloride Dissolved	0.5	0.2	28.8		1	
Fluoride Dissolved	0.1	0.02		0.04		1
Sulfate	1	0.5	24.4	20.5	25.9	51.4
Nutrients:						
Nitrogen Amm.Diss(N)	0.005	0.005	0.038	0.05	0.041	0.054
Nitrogen Kjel. Tot(N)	0.04	0.05	0.45	0.26	0.2	0.23
Nitro NO3+NO2 D	0.02	0.005	0.19	0.294	0.22	0.415
Phosphorus Dissolved	0.003	0.001	0.015	0.032	0.02	0.032
Phosphorus Total	0.003	0.001	0.026	0.038	0.024	0.043
TOTAL METALS		<u> </u>			<u> </u>	1
Aluminum	0.06	0.02	0.13	<0.20	0.16	0.28
Arsenic	0.001		<	< 0.0006	5 <	0.0014
Barium	0.001		0.013	0.016	0.014	0.01
Cadmium	0.000			< < 0.0002	2 <	< <0.000
Calcium	0.0			15.3	15.4	19.9
Chromium	0.00		1	< <0.001	<	< 0.00
Cobalt	0.004			< <0.01	5 <	< <0.01
Copper	0.00					0.00
Iron	0.0	1		1	5 0.32	0.39
Lead	0.00			< <0.001		< <0.00
Magnesium	0.0					5 22.
Manganese	0.00			1		
Manganese	0.0000			< <0.0000	1	< <0.0000
Molybdenum	0.00			< 0.00	ı ·	< 0.00
Nickel	0.00			5 0.00		< 0.00
Potassium	0.		2 1.:		9 1.:	
Selenium	0.0			< <0.000	s ·	< <0.000
Silver	0.0			< <0.000	1 .	< <0.000
Sodium	0.		2 16.	2 57.	5 19.:	3 16
Tin	0.0			< <0.3		< <0.3
Zinc	0.0	- 1		< 0.00		< 0.01
BACTERIOLOGICAL: Fecal Coliform			50	0 300	0	- 170

Lab ID Client ID SITE	7		Zenon FR0035 McDonald SI.	Zenon FR0249 McDonald SI.	Zenon FR0036 McDonald SI.	Zenon FR0250 McDonald Si. Bottom + 1m
Sampled On:	Zenon MDL	UNITS	Surface - 1m 1.0m 93-02-11	Surface - 1m 1.0 m 94-02-23	Bottom + 1m 6.0m 93-02-11	5.5 m 94-02-23
Latitude (N) Longitude (W)			49 - 12.78 123 - 11.26	49 - 12.78 123 - 11.26	49 - 12.78 123 - 11.26	49 - 12.78 123 - 11.26
ORGANIC PARAMETERS:		_				
Carbon Total Organic Adsorbable Org. Halide as Cl	0.5 0.01	mg /L	3 0.03	<5 0.03	3 0.03	<10 0.02
Chlorophenolics:	0.01		0.03	0.05	0.03	0.02
Pentachlorophenol	0.000001	mg/L	<	<	<	<
2,3,4,6+2,3,5,6-Tetrachlorophenol	•		<	<	<	<
2,3,4,5-Tetrachlorophenol			<	< <	<	
3,4,5-Trichlorophenol 2,3,4-Trichlorophenol		•	<	<	<	
2,3,5-Trichlorophenol	•	•	<	<	<	<
2,3,6-Trichlorophenol		•	<	<	<	<
2,4,5-Trichlorophenol		•	<	<	× •	
2,4,6-Trichlorophenol 2,4-Dichlorophenol			<pre></pre>	<	<	
2,6-Dichlorophenol	•	•	<	<	<	<
2,5-Dichlorophenol	•	•	<	<	<	<
3.5-Dichlorophenol	•	•	<	<	<	<
2,3-Dichlorophenol			<	<	<	<
3,4-Dichlorophenol 4-Chlorophenol				<		
Tetrachloroguaiacol	0.000002	•	<	<	<	<
3,4,5-Trichloroguaiacol	•	•	0.000004	<	0.000002	<
3,4,6-Trichloroguaiacol	•	•	<	<	<	<
4,5,6-Trichloroguaiacol		•	0.000002	<	<	<pre></pre>
4,5-Dichloroguaiacol			0.000005	0.000003	0.000003	
4,6-Dichloroguaiacol 4-chloroguaiacol						
5-Chloroguaiacol	-		<	<	0.000009	
6-Chloroguaiacol	•	•	<	<		
Tetrachlorocatechol	•		<	<		
3,4,5-Trichlorocatechol 3,4-Dichlorocatechol			0.000006			
3,5-Dichlorocatechol	•	•				
4,5-Dichlorocatechol	•	•	<	<		
4-Chlorocatechol	•	•	<	<		
Tetrachloroveratrole	•		<	<	1	•
3,4,5-Trichloroveratrole 4,5-Dichloroveratrole			0.000003		1	
2,6-Dichlorosyringaldehyde	-	•			1	
2-Chlorosyringaldehyde	•	•	<	<	<	: •
3,4,5-Trichlorosyringol		•	<	<	<	· •
Trichlorotrimethoxybenzene	•	•	<	: <	<	
5,6-Dichlorovanillin	1 :		0.000007	0.000005	0.000006	0.00000
6-Chlorovanillin Nonylphenol	0.000005	•	0.00007	<	<	
Resin and Fatty Acids:				1		
Abietic Acid	0.0005	mg/L	<		4	
Arachidic Acid	0.0005				1	
Behenic Acid Chlorodehydroabietic	0.0005		<			
Dehydroabietic Acid	0.0005	•				1
Dichlorodehydroabietic	0.0005	•	<		1	
Isopimaric Acid	0.0005		<			
Lauric Acid	0.0005					
Levo Pimaric Acid Lignoceric Acid	0.0005	•				
Linoleic Acid	0.0005	•		. <		< ·
Linolenic Acid	0.0005	•	<	: <		۰ ·
Myristic Acid	0.0005	· ·	<		1	< 0.000
Neoabietic Acid	0.0005		<		:	
Oleic Acid Palmitric Acid	0.0005				0.0009	S
Palmitric Acid	0.0005	•		1		
Pimaric Acid	0.0005	·			: •	<
Sandaraco Pimaric Acid	0.0005	· ·	-	1	: ·	<
Stearic Acid	0.0005	•		0.0006	<u>ا</u>	<

Lab ID	T	I	Zenon	Zenon	Zenon	Zenon
Client ID			FR0035	FR0249	FR0036	FR0250
SITE	•		McDonald Sl.	McDonald Sl.	McDonald Sl.	McDonald Sl.
SILE	Zenon		Surface - Im	Surface - 1m	Bottom + 1m	Bottom + 1m
	MDL	UNITS	1.0m	1.0 m	6.0m	5.5 m
Sampled On:			93-02-11	94-02-23	93-02-11	94-02-23
Samples on.						
Antisapstain Compounds:						
ТСМТВ	0.005	mg/L	<	<	<	<
Organochlorine Pesticides and PCBs						
Aldrin	0.000001	mg/L	<	<	<	<
BHC alpha-	0.000001	•	<	<	<	<
BHC beta-	0.000001	•	<	<	<	
BHC delta-	0.000001	• 1	<	<	<	
Chlordane alpha-	0.000005	•	<	<	<	<
Chlordane gamma-	0.000005		<	<		/
DDE pp'-	0.000005		<		<	<
DDD pp'-	0.000005		<	<		<
DDT pp-	0.000005		<			<
Dieldrin	0.000005		<			<
Endosulfan I	0.000005		<			<
Endosulfan II	0.000005		<			<
Endosulfan sulphate	0.00001		<	1		<
DDT op'-	0.000005					<
Endrin	0.000005		<	1		
Hexachlorobenzene	0.0000005		<			<
Heptachlor	0.000001		<	1		1
Heptachlor epoxide	0.000002		<			<
Lindane BHC gamma-	0.000001		<			<
Methoxychlor	0.00001					<
Mirex	0.00001				1	<
Nonachlor trans-	0.000005			-		
Oxychlordane	0.000005				1	
Toxaphene	0.00005	-			1	
PCBs - Total	0.00002		<u>`</u> `			· · · · · · · · · · · · · · · · · · ·
Polyaromatic Hydrocarbons:						
Benz(a)anthracene	0.00001	mg/L		0.00003	s <	0.00002
7 12-Dimethylbenz(a)anthracene	0.00005	•		< <	< <	<
Dibenz(a h)anthracene	0.00001	•		<	< <	< <
Chrysene	0.00001	•		< •	< <	<
Benzo(b+k)fluoranthene	0.00001	•		< ·	< <	< <
3-Methylcholanthrene	0.00002	•		< •	< •	< <
Benzo(j)fluoranthene	0.00001	•			<	< •
Benzo(g h i)perylene	0.00002	•	.		<	<
Benzo(c)phenanthrene	0.00001	•			< •	< •
Pyrene	0.00001	•	0.0000	1 ·	< 0.0000	
Benzo(a)pyrene	0.00001	•		< ·	< ·	< •
Dibenzo(a h)pyrene	0.00005	•		<	< ·	<
Dibenzo(a i)pyrene	0.00005	•		< .		< •
Dibenzo(a l)pyrene	0.00005	•	1 .	< ·		<
Indeno(1 2 3-c d)pyrene	0.00001			<		<
Acenaphthene	0.00001	•		< 0.0000	י וו	< ·
Acenaphthylene	0.00001	•		<		< .
Anthracene	0.00001	•		<	< ·	< .
Fluoranthene	0.00001	•		< 0.0000	1	< < < 0.0000 < 0.0000
Fluorene	0.00001	•		< 0.0000	1	<
Naphthalene	0.00001	•	0.0000		9	< 0.0000
Phenanthrene	0.00001	•	0.0000			
Total PAH	0.00005	· ·	0.0000			< 0.0000
Total low MW PAH	0.00005	•	0.0000	6 0.0001	·	<
Total high MW PAH	0.00005	· ·	I	<	<	<

Lab ID Client ID SITE	Zenon MDL	Zenon FR0037 Eburne SI. Surface - 1m 1.0m	Zenon FR0251 Eburne St. Surface - Im 1.0 m	Zenon FR0038 Eburne Sl. Bottom + 1m 4.0m	Zenon FR0252 Eburne SI. Bottom + 1m 3.5 m
Sampled On:		93-02-11	94-02-23	93-02-11	94-02-23
Latitude (N) Longitude (W)		49 - 12.16 123 - 8.58	49 - 12.16 123 - 8.58	49 - 12.16 123 - 8.58	49 - 12.16 123 - 8.58
ORGANIC PARAMETERS: Carbon Total Organic	0.5	,	<	. 2	<
Adsorbable Org. Halide as Cl	0.0	0.03	0.02	0.04	0.03
Chlorophenolics:		0.00	0.02		
Pentachiorophenol	0.000001	<	<	<	<
2,3,4,6+2,3,5,6-Tetrachlorophenol	•	<	<	<	0.000002
2,3,4,5-Tetrachlorophenol 3,4,5-Trichlorophenol		< <	<	<	<
2,3,4-Trichlorophenol	-	, v	<	<	~
2,3,5-Trichlorophenol	•	<	<	<	<
2,3,6-Trichlorophenol	•	· <	<	<	<
2,4,5-Trichlorophenol		<	<	<	<
2,4,6-Trichlorophenol		< /	0.000002	< <	0.000002
2,4-Dichlorophenol 2,6-Dichlorophenol		<	<	< <	<
2,5-Dichlorophenol	•		<	/	<
3,5-Dichlorophenol	· ·	<	<	<	<
2,3-Dichlorophenol	•	<	<	<	<
3,4-Dichlorophenol	•	<	<	<	<
4-Chlorophenol		<	<	< 1	<
Tetrachloroguaiacol 3,4,5-Trichloroguaiacol	0.000002	< 0.000003	<	<	<
3,4,6-Trichloroguaiacol		<	<	<	<
4,5,6-Trichloroguaiacol	•	<	<	<	<
4,5-Dichloroguaiacol	•	<	0.000004	<	0.000003
4,6-Dichloroguaiacol	•	<	<	<	<
4-chloroguaiacol		>	< 1	<	<
5-Chloroguaiacol 6-Chloroguaiacol		0.000007	<	<	
Tetrachlorocatechol		<	<	· · ·	<
3,4,5-Trichlorocatechol	· ·	0.000005	<	<	<
3,4-Dichlorocatechol	· ·	<	<	<	<
3,5-Dichlorocatechol	•	<	<	<	<
4,5-Dichlorocatechol 4-Chlorocatechol		<	 	<	0.000003
4-Chlorocatechol Tetrachloroveratrole		< <	V V	<	<pre></pre>
3,4,5-Trichloroveratrole	•	0.000002	/	· ~	<
4,5-Dichloroveratrole	·	<	<	<	<
2,6-Dichlorosyringaldehyde	•	<	<	<	<
2-Chlorosyringaldehyde	•	<	<	<	<
3,4,5-Trichlorosyringol		<	<	<	<
Trichlorotrimethoxybenzene 5.6-Dichlorovanillin		< /	~ /	<	
6-Chlorovanillin	•	0.000007	0.000006	<	0.000004
Nonyiphenol	0.000005	<	<	<	<
Resin and Fatty Acids:					
Abietic Acid	0.0005	<	<	<	<
Arachidic Acid	0.0005	×	V V	<	
Behenic Acid Chlorodehydroabietic	0.0005	<		<	
Dehydroabietic Acid	0.0005	<	<	<	
Dichlorodehydroabietic	0.0005	<	<	<	<
Isopimaric Acid	0.0005	<	<	<	<
Lauric Acid	0.0005	<	<	<	<
Levo Pimaric Acid	0.0005	<	<	<	<
Lignoceric Acid Linoleic Acid	0.0005	-	< 0.0008	< <	
Linolenic Acid	0.0005	<	<	<	
Myristic Acid	0.0005	<	0.0007	<	
Neoabietic Acid	0.0005	<	<	<	<
Oleic Acid	0.0005	0.0012	0.0018	<	0.0009
Palmitric Acid	0.0005	<	0.0008	<	0.0008
Palustric Acid	0.0005	<	<	<	
Pimaric Acid Sandaraco Pimaric Acid	0.0005	<	<	<	
Stearic Acid	0.0005	<	0.001	<	0.001

-

I	<u> </u>	Zenon	Zenon	Zenon	Zenon
Lab ID	1	FR0037	FR0251	FR0038	FR0252
Client ID	1		Eburne Sl.	Eburne SI.	Eburne SL
SITE	- I	Eburne Sl. Surface - 1m	Surface - Im	Bottom + 1m	Bottom + 1m
	Zenon	. 1.0m	i.0 m	4.0m	3.5 m
	MDL	93-02-11	94-02-23	93-02-11	94-02-23
Sampled On:	<u> </u>	93-02-11	94-02-23	75-02-11	
Antisapstain Compounds:					
ТСМТВ	0.005	<	<	<	<
Organochlorine Pesticides and PCBs					
Aldrin	0.000001	<	<	<	<
BHC alpha-	0.000001	<	<	<	<
BHC beta-	0.000001	<	<	<	<
BHC delta-	0.000001	<	<	<	<
Chlordane alpha-	0.000005	<	<	<	<
Chlordane gamma-	0.000005	<	<	<	<
DDE pp'-	0.000005	<	<	<	< <
DDD pp'-	0.000005	<	<	<	
DDT pp'-	0.000005	<	< <	<	<
Dieldrin	0.000005	<		<	
Endosulfan I	0.000005	<	<	<	<
Endosulfan II	0.000005	<	<	<	
Endosulfan sulphate	0.00001	<	<	<	<
DDT op-	0.000005	<	<	<	<
Endrin	0.000005	<		<	<
Hexachlorobenzene	0.0000005	<	<	<	<
Heptachlor	0.000001			<	<
Heptachlor epoxide	0.000002	<	1	<	<
Lindane BHC gamma-	0.000001	<	1	<	<
Methoxychlor	0.00001		<		<
Mirex	0.00001		<		<
Nonachlor trans-	0.000005	~	1		<
Oxychlordane	0.000005				<
Toxaphene	0.00005			<	<
PCBs - Total	0.00002				
Polyaromatic Hydrocarbons:					
Benz(a)anthracene	0.00001	<	0.00002		0.00003
7 12-Dimethylbenz(a)anthracene	0.00005	<	<	<	<
Dibenz(a h)anthracene	0.00001	<		: <	<
Chrysene	0.00001	<	0.00001		<
Benzo(b+k)fluoranthene	0.00001	<	< <	: <	
3-Methylcholanthrene	0.00002			<	<
Benzo(j)fluoranthene	0.00001		< <	<	
Benzo(g h i)perylene	0.00002	<	<	<	<
Benzo(c)phenanthrene	0.00001	-	<	<	
Рутепе	0.00001	0.0000		0.00001	
Benzo(a)pyrene	0.00001		<		
Dibenzo(a h)pyrene	0.00005		-		
Dibenzo(a i)pyrene	0.00005	1	<		
Dibenzo(a l)pyrene	0.00005	•	<		
Indeno(1 2 3-c d)pyrene	0.00001		<		0.0000
Acenaphthene	0.00001	0.0000	1 0.0000	3 <	
Acenaphthylene	0.00001	1 .	<u>.</u>		
Anthracene	0.00001				
Fluoranthene	0.00001	0.0000	1		0.0000
Fluorene	0.00001	1	< 0.0000		0.0000
Naphthalene	0.00001	0.0000			
Phenanthrene	0.00001	0.0000			1
Total PAH	0.00005	0.0001			
Total low MW PAH	0.00005	0.0001	2 0.0002 < 0.0000		
Total high MW PAH	0.00005		<u> </u>	<u>•</u>	1

Lab ID		Zenon	Zenon	Zenon	Zenon
Client ID SITE		FR0039 Tree Is. Sl.	FR0253 Tree Is, SL	FR0040 Tree Is. Si.	FR0254 Tree Is. Sl.
SILE	Zenon	Surface - 1m	Surface - Im	Bottom + 1m	Bottom + 1m
	MDL	1.0m	1.0 m	3.0m	3.0 m
Sampled On:		93-02-10	94-02-22	93-02-10	94-02-22
Latitude (N)		49 - 11.08	49 - 11.08	49 - 11.08	49 - 11.08
Longitude (W)		122 - 57.70	122 - 57.70	122 - 57.70	122 - 57.70
ORGANIC PARAMETERS:					
Carbon Total Organic	0.5	2	2.2	2	2.7
Adsorbable Org. Halide as Cl	0.01	0.03	0.02	0.02	0.03
Chlorophenolics:					
Pentachlorophenol	0.000001	<	<	<	<
2,3,4,6+2,3,5,6-Tetrachlorophenol		<	~ ~	<	
2,3,4,5-Tetrachlorophenol 3,4,5-Trichlorophenol			~	<	<
2,3,4-Trichlorophenol	-	· · ·	<	<	<
2,3,5-Trichlorophenol	•	<	<	<	<
2,3,6-Trichlorophenol	•	<	<	<	<
2,4,5-Trichlorophenol	·	<	<	<	<
2,4,6-Trichlorophenol	•	<	0.000002	<	<
2,4-Dichlorophenol		× 1	< /	× 1	<
2,6-Dichlorophenol		V	< .	<	<
2,5-Dichlorophenol 3,5-Dichlorophenol		× /			
2,3-Dichlorophenol	•	<	<	<	<
3,4-Dichlorophenol	•	<	<	<	<
4-Chlorophenol	•	<	<	<	<
Tetrachloroguaiacol	0.000002	<	<	<	<
3,4,5-Trichloroguaiacol	•	0.000005	0.000003	0.000007	0.000002
3,4,6-Trichloroguaiacol		<	<	<	<
4,5,6-Trichloroguaiacol		0.000004	0.000002	0.000005	0.000002
4.5-Dichloroguaiacol			0.000005	0.000018	0.00004
4,6-Dichloroguaiacol 4-chloroguaiacol	.	<	<	<	
5-Chloroguaiacol	•	<	<	0.000007	<
6-Chloroguaiacol	•	<	<	<	<
Tetrachlorocatechol	•	<	<	<	<
3,4,5-Trichlorocatechol	•	0.000009	<	<	<
3,4-Dichlorocatechol		<	<	<	
3,5-Dichlorocatechol	1 .	<	0.000003	<	
4,5-Dichlorocatechol 4-Chlorocatechol			0.00003	<	
Tetrachloroveratrole	•	<	<	<	<
3.4.5-Trichloroveratrole		<	<	<	<
4,5-Dichloroveratrole	-	<	<	<	<
2,6-Dichlorosyringaldehyde	•	<	<	<	<
2-Chlorosyringaldehyde	•	<	<	<	<
3,4,5-Trichlorosyringol		<	<	<	
Trichlorotrimethoxybenzene	1 .	<		0 00007	
5,6-Dichlorovanillin 6-Chlorovanillin		0.000009	0.000006	0.000007	0.000008
Nonylphenol	0.000005	<	<	<	<
Resin and Fatty Acids:		·			
Abietic Acid	0.0005	<	<		<
Arachidic Acid	0.0005	<	<		
Behenic Acid	0.0005	<	<	<	
Chlorodehydroabietic	0.0005				1
Dehydroabietic Acid Dichlorodehydroabietic	0.0005			<	
Isopimaric Acid	0.0005			<	
Lauric Acid	0.0005	<	<	<	•
Levo Pimaric Acid	0.0005	<	<	<	
Lignoceric Acid	0.0005	<	<	<	-
Linoleic Acid	0.0005	<	<pre></pre>	<	
Linolenic Acid	0.0005	<pre></pre>			
Myristic Acid	0.0005		0.0005		
Neoabietic Acid Oleic Acid	0.0005		0.0011		
Palmitric Acid	0.0005		0.001	0.0007	0.001
Palustric Acid	0.0005		:	<	
Pimaric Acid	0.0005	<	<	<	. ·
Sandaraco Pimaric Acid	0.0005	<	-		
Stearic Acid	0.0005	<	0.0009	<	0.001

Lab ID		Zenon	Zenon	Zenon	Zenon
Client ID	ļ	FR0039	FR0253	FR0040	FR0254
SITE		Tree Is. Sl.	Tree Is. Sl.	Tree Is. Sl.	Tree Ls. Sl.
	Zenon	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	MDL	1.0m	1.0 m	3.0m	3.0 m 94-02-22
Sampled On:		93-02-10	94-02-22	93-02-10	94-02-22
Antisapstain Compounds:	0.005	<	<	<	<
TCMTB Organochlorine Pesticides and PCBs	0.005				
Aldrin	0.000001	<	<	<	<
BHC alpha-	0.000001	<	<	<	<
BHC beta-	0.000001	<	<	<	<
BHC delta-	0.000001	<	<	<	<
Chlordane alpha-	0.000005	<	<	<	<
Chlordane gamma-	0.000005	<	<	<	<
DDE pp'-	0.000005	<	<	<	<
DDD pp'-	0.000005	<	<	<	4
DDT pp'-	0.000005	<	<	<	<
Dieldrin	0.000005	<	<	<	<
Endosulfan I	0.000005	<	<	<	<
Endosulfan II	0.000005	<	<	<	< < < < < < < < < < < < < < < < < < <
Endosulfan sulphate	0.00001	<	<	<	5
DDT op-	0.000005	<	<	<	
Endrin	0.000005	<	<	<	3
Hexachlorobenzene	0.0000005	<	<	1 1	
Heptachlor	0.000001	<	<		1
Heptachlor epoxide	0.000002	<	<		
Lindane BHC gamma-	0.000001	<	<	V V)
Methoxychlor	0.00001	<	<		
Mirex	0.00001	<	<	<	
Nonachlor trans-	0.000005	<		<	<
Oxychlordane	0.000005	<		- - -	
Toxaphene	0.00005				<
PCBs - Total	0.00002			· <u> </u> `	
Polyaromatic Hydrocarbons:					
Benz(a)anthracene	0.00001	<	0.00002	<	0.00002
7 12-Dimethylbenz(a)anthracene	0.00005	<		< <	<
Dibenz(a h)anthracene	0.00001			< <	
Chrysene	0.00001	<	0,0000		
Benzo(b+k)fluoranthene	0.00001	<	0.0000		
3-Methylcholanthrene	0.00002	<		< <	
Benzo(j)fluoranthene	0.00001	-	4 ·	< <	
Benzo(g h i)perylene	0.00002	<	·	< <	
Benzo(c)phenanthrene	0.00001	-		< <	
Pyrene	0.00001	<	< <u>0.0000</u>		
Benzo(a)pyrene	0.00001	•		< <	1
Dibenzo(a h)pyrene	0.00005	•	<	< <	
Dibenzo(a i)pyrene	0.00005		< ·	< <	1
Dibenzo(a l)pyrene	0.00005	· ·	<	<	
Indeno(1 2 3-c d)pyrene	0.00001	•	<	<	
Acenaphthene	0.00001	0.0000		< 0.00002	
Acenaphthylene	0.00001			<	
Anthracene	0.00001	· ·	<	<	
Fluoranthene	0.00001	1	<	<	0.00002
Fluorene	0.00001	0.0000	-	< 0.0000	
Naphthalene	0.00001	0.0000		< 0.00009	
Phenanthrene	0.00001	· ·	< 0.0000		< 0.00003
Total PAH	0.00005	0.0001			
Total low MW PAH	0.00005	0.0001	3	< 0.00013	
Total high MW PAH	0.00005		< 0.0000	<u> </u>	< 0.00008

Lab ID Client ID SITE Sampled On:	Zenon MDL	Zenon FR0028 Ladner SI. Surface - 1m 1.0m 93-02-10	Zenon FR0242 Ladner SI. Surface - Im 1.0 m 94-02-21	Zenon FR0029 Ladner SI. Bottom + 1m 5.0m 93-02-10	Zenon FR0243 Ladner Sl. Bottom + 1m 5.0 m 94-02-21
Latitude (N) Longitude (W)		49 - 5.54 123 - 5.40	49 - 5.54 123 - 5.40	49 - 5.54 123 - 5.40	49 - 5.54 123 - 5.40
ORGANIC PARAMETERS: Carbon Total Organic	0.5	3	0	3	ব
Adsorbable Org, Halide as Cl	0.01	0.03	0.03	0.03	0.03
Chlorophenolics:	0.000001		0.000002		0.000002
Pentachlorophenol 2,3,4,6+2,3,5,6-Tetrachlorophenol	•	 	0.00002	<	<
2,3,4,5-Tetrachlorophenol	•	<	<	<	<
3,4,5-Trichlorophenol		< 1	< 1	V V	<
2,3,4-Trichlorophenol 2,3,5-Trichlorophenol		< <	· · · · ·	<	
2,3,6-Trichlorophenol	-	<	<	<	<
2,4,5-Trichlorophenol	•	<	<	<	<
2.4.6-Trichlorophenol		V V	0.000002	<	0.000003
2,4-Dichlorophenol 2,6-Dichlorophenol	•	< <	< <	<pre></pre>	<
2,5-Dichlorophenol	•	< v	v v	<	<
3,5-Dichlorophenol	•	<	<	<	<
2,3-Dichlorophenol		< 1	V V	< <	<
3,4-Dichlorophenol 4-Chlorophenol	-	<	· · · · · · · · · · · · · · · · · · ·	<	<pre></pre>
Tetrachloroguaiacol	0.000002	V	<	<	<
3,4.5-Trichloroguaiacol	•	0.000005	<	<	<
3,4,6-Trichloroguaiacol		< 1	V 1	< 1	<
4,5,6-Trichloroguaiacol 4,5-Dichloroguaiacol		0.000012	0.000002	0.000006	0.000027
4,6-Dichloroguaiacol	•	<	<	<	<
4-chloroguaiacol	•	<	<	<	<
5-Chloroguaiacol		<	<	<	<
6-Chloroguaiacol Tetrachlorocatechol	•	<	~ ~	<	
3,4,5-Trichlorocatechol	•	0.000005	<	0.000007	
3,4-Dichlorocatechol	•	<	<	<	<
3,5-Dichlorocatechol		<	<	<	
4,5-Dichlorocatechol 4-Chlorocatechol		V V	<	<	<
Tetrachloroveratrole	•	V V		<	<
3,4,5-Trichloroveratrole	•	<	< <	<	<
4,5-Dichloroveratrole	•	<	<	<	<
2.6-Dichlorosyringaldehyde 2-Chlorosyringaldehyde		× 1	× 1	< /	<
3,4,5-Trichlorosyringol	•	/	<		
Trichlorotrimethoxybenzene	•	<	<	<	<
5,6-Dichlorovanillin	•	0.000006	<	<	· <
6-Chlorovanillin Nonylphenol	0.000005	0.000041	0.000002	0.000007	0.000037
Resin and Fatty Acids:	0.00005			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Abietic Acid	0.0005	<	<	<	<
Arachidic Acid	0.0005	<	<	<	<
Behenic Acid Chlorodehydroabietic	0.0005	< <	<	< <	
Dehydrosbietic Acid	0.0005	<	<	<	
Dichlorodehydroabietic	0.0005	<	<	<	<
Isopimaric Acid	0.0005	<	<	<	<
Lauric Acid Levo Pimaric Acid	0.0005	<pre> </pre>	<pre></pre>	<	
Lignoceric Acid	0.0005	<	~	<	
Linoleic Acid	0.0005	<	<	<	<
Linolenic Acid	0.0005	<	<	<	<
Myristic Acid	0.0005	0.0012	0.0005	< <	<
Neosbietic Acid Oleic Acid	0.0005	0.0022	0.0008	<	
Palmitric Acid	0.0005	0.0064	0.0006	0.0016	0.0007
Palustric Acid	0.0005	<	<	<	-
Pimaric Acid	0.0005	<	<	<pre> </pre>	-
Sandaraco Pimaric Acid Stearic Acid	0.0005	< 0.01	< 0.0011	< 0.0015	< 0.001

~

m		_			
Lab ID		Zenon	Zenon	Zenon	Zenon
Client ID	1	FR0028	FR0242	FR0029	FR0243
SITE		Ladner Sl.	Ladner Sl.	Ladner SI.	Ladner Sl.
	Zenon	Surface - 1m	Surface - Im	Bottom + 1m	Bottom + 1m
	MDL	1.0m	1.0 m	5.0m	5.0 m
Sampled On:		93-02-10	94-02-21	93-02-10	94-02-21
Antisapstain Compounds:					
TCMTB	0.005	<	<	<	<
Organochlorine Pesticides and PCBs					
Aldrin	0.000001	<	<	<	<
BHC alpha-	0.000001	<	<	<	<
BHC beta-	0.000001	<	<	<	<
BHC delta-	0.000001	<	< <	<	<
Chlordane alpha-	0.000005	<		<	
Chlordane gamma-	0.000005	<	<	<	< <
DDE pp-	0.000005	<	<	<	<
DDD pp-	0.000005	<	<	<	<
DDT pp'-	0.000005	<	<	<	<
Dieldrin	0.000005	<	<	<	<
Endosulfan I	0.000005	<	<	<	<
Endosulfan II	0.000005	<	<	<	<
Endosulfan sulphate	0.00001	<	<	<	<
DDT op-	0.000005	<	<	<	<
Endrin	0.000005	< A	<	<	<
Hexachlorobenzene	0.0000005	<	<	<	<
Heptachlor	0.000001	<	<	<	<
Heptachlor epoxide	0.000002	<	<	<	<
Lindane BHC gamma-	0.000001	<	<	<	<
Methoxychlor	0.00001	<	< < <	<	<
Mirex	0.00001	<		<	<
Nonachlor trans-	0.000005	<	< <	<	<
Oxychlordane	0.000005	<		<	<
Toxaphene	0.00005	<	<	<	<
PCBs - Total	0.00002	<	<	<	<
Polyaromatic Hydrocarbons:					
Benz(a)anthracene	0.00001	<	0.00003	<	0.00003
7 12-Dimethylbenz(a)anthracene	0.00005	<	0.00005	× ×	0.00005
Dibenz(a h)anthracene	0.00001	<		<	
Chrysene	0.00001	<	0.00001	<	
Benzo(b+k)fluoranthene	0.00001	<	0.0001	<	0.00001
3-Methylcholanthrene	0.00002	<	2	<	<
Benzo())fluoranthene	0.00001	<		· · · ·	
Benzo(g h i)perylene	0.00002			<	-
Benzo(c)phenanthrene	0.00002	<		<	
Pyrene	0.00001	<	0.00003		0.00003
Benzo(a)pyrene	0.00001	<	<u></u>	<	<u></u>
Dibenzo(a h)pyrene	0.00005			<	
Dibenzo(a i)pyrene	0.00005	<		<	
Dibenzo(a I)pyrene	0.00005	<	<	<	
Indeno(1 2 3-c d)pyrene	0.00003				
Acenaphthene	0.00001	0.00001	0.00001	<	0.00002
Acenaphthylene	0.00001	0.00001	0.0001	<	0.0002
Anthracene	0.00001			<	
Fluoranthene	0.00001		0.00004	<	0.00003
Fluoranciene	0.00001		0.00004		0.00003
Naphthalene	0.00001	0.00004	0.00001	0.00002	
Phenanthrene			•	0.00002	0.00007
Total PAH	0.00001	0.00001	0.00004	0.00001	0.00004
Total low MW PAH	0.00005	0.00006	0.00022		0.00025
	0.00005	0.0000	0.00011	<	0.00015
Total high MW PAH	0.00005	<u></u>	0.00011	<u> </u>	0.0001

_

,

Lab ID Client ID SITE	Zenon	Zenon FR0030 Deas SI. Surface - 1m	Zenon FR0244 Deas SI. Surface - 1m	Zenon FR0031 Deas SI. Bottom + 1m	Zenon FR0245 Deas Sl. Bottom + 1m
Sampled On:	MDL	1.0m 93-02-10	1.0 m 94-02-21	4.0m 93-02-10	6.5 m 94-02-21
Latitude (N) Longitude (W)		49 - 7.04 123 - 3.72	49 - 7.04 123 - 3.72	49 - 7.04 123 - 3.72	49 - 7.04 123 - 3.72
ORGANIC PARAMETERS:					
Carbon Total Organic	0.5 0.01	3 0.02	<3 0.03	3 0.03	<5 0.04
Adsorbable Org. Halide as Cl Chlorophenolics:	0.01	0.02	0.05	0.05	
Pentachlorophenol 2,3,4,6+2,3,5,6-Tetrachlorophenol	0.000001	V	0.000002	< <	0.000001
2,3,4,5-Tetrachlorophenol	•	<	<	<	<
3,4,5-Trichlorophenol	•	<	<	<	<
2,3,4-Trichlorophenol 2,3,5-Trichlorophenol		<pre></pre>	~ ~ ~	< <	\ \ \
2,3,6-Trichlorophenol	•	<	<	<	<
2,4,5-Trichlorophenol	:	<	>	<	< 0.000002
2.4.6-Trichlorophenol 2.4-Dichlorophenol		<	0.000002	<	<
2,6-Dichlorophenol	· ·	<	<	<	<
2,5-Dichlorophenol		<	<	< <	<
3,5-Dichlorophenol 2,3-Dichlorophenol		<	<	<	\ \ \
3,4-Dichlorophenol	•	<	<	<	<
4-Chlorophenol	•	<	<	<	<
Tetrachloroguaiacol	0.000002	0.000006	< 0.000002	<	<
3,4,5-Trichloroguaiacol 3,4,6-Trichloroguaiacol	•	<	<	<	<
4,5,6-Trichloroguaiacol	•	0.000005	<	<	<
4,5-Dichloroguaiacol		0.000018	0.000003	0.000004	0.000003
4,6-Dichloroguaiacol 4-chloroguaiacol			<	<	~ ~
S-Chloroguaiacol	•	<	<	<	<
6-Chloroguaiacol	•	<	<	<	<
Tetrachiorocatechol		0.000006		< 0.000006	<
3,4,5-Trichlorocatechol 3,4-Dichlorocatechol	•	<	<		<
3,5-Dichlorocatechol	. •	<		<	· <
4,5-Dichlorocatechol	•	<		<	<
4-Chlorocatechol Tetrachloroveratrole			<	<	<
3.4.5-Trichloroveratrole	•	<	<	<	<
4,5-Dichloroveratrole	•	<	<	<	<
2.6-Dichlorosyringaldehyde		<	<	<	<
2-Chlorosyringaldehyde 3,4,5-Trichlorosyringol					
Trichlorotrimethoxybenzene	•	<		<	<
5,6-Dichlorovanillin	•	0.000009		<	1
6-Chlorovanillin Nonylphenol	0.000005	0.000061	0.000003	<	
Resin and Fatty Acids:	0.00005	`			
Abietic Acid	0.0005	<			1
Arachidic Acid	0.0005		1	1	1
Behenic Acid Chlorodehydroabietic	0.0005		1		[
Dehydroabietic Acid	0.0005	<	: <	: <	<
Dichlorodehydroabietic	0.0005	<		1	
Isopimaric Acid Lauric Acid	0.0005		1		3
Lauric Acid Levo Pimaric Acid	0.0005				1
Lignoceric Acid	0.0005	<		: <	<
Linoleic Acid	0.0005				
Linolenic Acid Myristic Acid	0.0005			1	
Neosbietic Acid	0.0005		:		
Oleic Acid	0.0005	0.002			
Palmitric Acid	0.0005	0.0038	0.0006	4	
Palustric Acid Pimaric Acid	0.0005				1
Sandaraco Pimaric Acid	0.0005		<		
Stearic Acid	0.0005	0.003	0.0011	<	0.0007

_

				7	7
Lab ID		Zenon	Zenon	Zenon FR0031	Zenon FR0245
Client ID		FR0030	FR0244		
SITE	_	Deas Sl.	Deas Sl.	Deas Sl.	Deas SL
	Zenon	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	MDL	1.0m	1.0 m	4.0m	6.5 m
Sampled On:		93-02-10	94-02-21	93-02-10	94-02-21
Antisapstain Compounds:					
TCMTB	0.005	<	<	<	<
Organochlorine Pesticides and PCBs					
Aldrin	0.000001	<	<	<	<
BHC alpha-	0.000001	<	<	<	<
BHC beta-	0.000001	<	<	<	<
BHC delta-	0.000001	<	<	<	<
Chlordane alpha-	0.000005	<		<	<
Chlordane gamma-	0.000005	<	<	<	< <
DDE p p'-	0.000005	<	<	<	<
DDD pp'-	0.000005	<	<	<	,
DDT pp-	0.000005	<	< <	<	< <
Dieldrin	0.000005	<		<	
Endosulfan I	0.000005	<	< < <	<	<
Endosulfan II	0.000005	<	<	<	<
Endosulfan sulphate	0.00001	<		<	<
DDT op'-	0.000005	<	<	<	<
Endrin	0.000005	<	<	<	<
Hexachlorobenzene	0.0000005	<	<	<	<
	0.0000001	<	<	<	<
Heptachlor		<	1	<	<
Heptachlor epoxide	0.000002			<	
Lindane BHC gamma-	0.000001			<	
Methoxychlor	0.00001		<	<	
Mirex	0.00001		l	<	< < <
Nonachlor trans-	0.000005	<	1	<	
Oxychlordane	0.000005	<		<	
Toxaphene	0.00005		1	<	
PCBs - Total	0.00002	<u> </u>	<u> </u>		
Polyaromatic Hydrocarbons:					
Benz(a)anthracene	0.00001	<		<	
7 12-Dimethylbenz(a)anthracene	0.00005	<		<	
Dibenz(a h)anthracene	0.00001	<		<	
Chrysene	0.00001	<		<	
Benzo(b+k)fluoranthene	0.00001	<	0.00001	<	<
3-Methylcholanthrene	0.00002	<	<	<	<
Benzo(j)fluoranthene	0.00001	<	: <	<	<
Benzo(g h i)perylene	0.00002	<		<	<
Benzo(c)phenanthrene	0.00001	<		<	<
Pyrene	0.00001	<	0.00002	<	0.00002
Benzo(a)pyrene	0.00001	<		<	<
Dibenzo(a h)pyrene	0.00005	<		<	<
Dibenzo(a i)pyrene	0.00005	<		<	<
Dibenzo(a l)pyrene	0.00005	<			<
Indeno(1 2 3-c d)pyrene	0.00001	<	. <	<	<
Acenaphthene	0.00001	<			<
Acenaphthylene	0.00001			<	
Anthracene	0.00001	<		<	<
Fluoranthene	0.00001				
Fluorene	0.00001				1
Naphthalene	0.00001	0.00002	0.00004		
Phenanthrene	0.00001		0.00003		
Total PAH	0.00005			(1
Total low MW PAH	0.00005				
	0.00005				1
Total high MW PAH	1 0.00005	_!	<u> </u>	1	. 0.0000

Appendix X

-

Lab ID Client ID SITE Sampled On:	Zenon MDL	Zenon FR0032 Gundersen SI. Surface – 1m 1.0m 93-02-10	Zenon FR0246 Gundersen SI. Surface - 1m 1.0 m 94-02-22	Zenon FR0033 Gundersen Si. Bottom + 1m 4.0m 93-02-10	Zenon FR0247 Gundersen Sl. Bottom + 1m 4.0 m 94-02-22
Latitude (N) Longitude (W)		49 - 10.39 122 - 55.11	49 - 10.39 122 - 55.11	49 - 10.39 122 - 55.11	49 - 10.39 122 - 55.11
ORGANIC PARAMETERS:			2.5	3	2.3
Carbon Total Organic Adsorbable Org. Halide as Cl	0.5	3 0.02	0.02	0.03	0.02
Chlorophenolics:					
Pentachlorophenol	0.000001	<	<	<	0.000004
2,3,4,6+2,3,5,6-Tetrachlorophenol			<	<	~ ~
2,3,4,5-Tetrachlorophenol 3,4,5-Trichlorophenol	•		<	<	<
2,3,4-Trichlorophenol	•	<	<	<	<
2.3,5-Trichlorophenol	•	<	<	<	<
2,3,6-Trichlorophenol		<	<	<	<
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol			0.000003	<	0.000001
2,4,0-1 richlorophenol 2,4-Dichlorophenol	•		<	<	
2,6-Dichlorophenol	· ·	<	- <		<
2,5-Dichlorophenol	•	<	<	<	<
3,5-Dichlorophenol				<	<
2,3-Dichlorophenol				<	
3,4-Dichlorophenol 4-Chlorophenol		<	. <	<	<
Tetrachloroguaiacol	0.000002	<	: <	<	<
3,4,5-Trichloroguziacol	-	0.000005	0.000005	0.000008	<
3,4,6-Trichloroguaiacol				0.000004	
4,5,6-Trichloroguaiacol	:	0.000004			0.000002
4,5-Dichloroguaiacol 4,6-Dichloroguaiacol			< 0.00012	<	
4-chloroguaiacol	•		< <		<
5-Chloroguaiacol		<	< <	: <	
6-Chloroguaiacol	•	<	< <	<	1
Tetrachlorocatechol					1
3,4,5-Trichlorocatechol 3,4-Dichlorocatechol				1	
3,5-Dichlorocatechol				<	
4,5-Dichlorocatechol	•		< 0.000002		
4-Chlorocatechol	•	4	< <	< <	1
Tetrachloroveratrole		1	<		
3.4.5-Trichloroveratrole	1 :				
4,5-Dichloroveratrole 2,6-Dichlorosyringaldehyde					
2-Chlorosyringaldehyde	•	.	< .	< <	
3,4,5-Trichlorosyringol	· ·		< •	< <	(·
Trichlorotrimethoxybenzene	· ·	•	< .	< <	· ·
5,6-Dichlorovanillin		0.00001	< 0.000003 0 0.00003		0.00000
6-Chlorovanillin Nonylphenol	0.000005	0.00001	<	<	
Resin and Fatty Acids:					
Abietic Acid	0.0005		< ·	< <	< ·
Arachidic Acid	0.0005		1		
Behenic Acid	0.0005		1	< <	
Chlorodehydroabietic Dehydroabietic Acid	0.0005				
Dichlorodehydroabietic	0.0005		< .	< .	< ·
Isopimaric Acid	0.0005		< .	< <	<
Lauric Acid	0.0005	1	<		
Levo Pimaric Acid	0.0005				
Lignoceric Acid Linoleic Acid	0.0005		<		<
Linolenic Acid	0.0005				<
Myristic Acid	0.0005	1	<	< .	<
Neoabietic Acid	0.0005			<	
Oleic Acid	0.0005		< 0.000 < 0.00		< 0.00
Palmitric Acid	0.0005		< 0.00	<	< 0.00
Palustric Acid Pimaric Acid	0.0005	1	<	<	<
Sandaraco Pimaric Acid	0.0005		<	<	<
Stearic Acid	0.0005		< 0.001	2	< 0.001

-

Lab ID		Zenon	Zenon	Zenon	Zenon
Client ID		FR0032	FR0246	FR0033	FR0247
SITE		Gundersen SI.	Gundersen SI.	Gundersen Sl.	Gundersen Sl.
	Zenon	Surface - 1m	Surface - 1m	Bottom + 1m	Bottom + 1m
	MDL	1.0m	1.0 m	4.0m	4.0 m
Sampled On:		93-02-10	94-02-22	93-02-10	94-02-22
t dias data Compoundat					
Antisapstain Compounds: TCMTB	0.005	<	<	<	<
Organochlorine Pesticides and PCB					
Aldrin	0.000001	<	<	<	<
BHC alpha-	0.000001	<	<	<	<
BHC beta-	0.000001	<	<	<	<
BHC delta-	0.000001	<	<	<	V V V V V V V
Chlordane alpha-	0.000005	<	<	<	
Chlordane gamma-	0.000005	<	<		
DDE pp'-	0.000005	<	<	<	2
DDD pp-	0.000005	<	<		7
DDT pp-	0.000005	<	<	× ×	< <
Dieldrin	0.000005		n	/	
Endosulfan I	0.000005			<	<
Endosulfan II	0.000005			· ~	< < < < < < < < < < < < < < < < < < <
Endosulfan sulphate	0.00001		1		<
DDT op-	0.000005		í	<	<
Endrin	0.000005			1	<
Hexachlorobenzene	0.0000005				<
Heptachlor	0.000001				<
Heptachlor epoxide	0.000002			<	<
Lindane BHC gamma-	0.00001			<	<
Methoxychlor	0.00001		r	<	<
Mirex Nonachlor trans-	0.000005		1	<	<
Oxychlordane	0.000005	<	I	<	<
Toxaphene	0.00005		. <	< <	<
PCBs - Total	0.00002	<	<	< <	<
Polyaromatic Hydrocarbons:			0,0000	<	0.00004
Benz(a)anthracene	0.00001				1
7 12-Dimethylbenz(a)anthracene	0.00005				
Dibenz(a h)anthracene	0.00001				
Chrysene	0.00001		< 0.0000	-1	
Benzo(b+k)fluoranthene	0.00001			< <	1
3-Methylcholanthrene	0.00002			< <	<pre></pre>
Benzo(j)fluoranthene	0.00002			< <	0.00005
Benzo(g h i)perylene Benzo(c)phenanthrene	0.00001			< <	0.00001
Pyrene	0.00001	0.0000	0.0000	3 0.00001	0.00014
Benzo(a)pyrene	0.00001			< <	: <u>0.00002</u>
Dibenzo(a h)pyrene	0.00005		<	< <	: <
Dibenzo(a i)pyrene	0.00005	.	< .	< <	: <
Dibenzo(a l)pyrene	0.00005	ļ .	<	< <	7
Indeno(1 2 3-c d)pyrene	0.00001	· ·	< ·	< <	
Acenaphthene	0.00001	· ·	< 0.0000		
Acenaphthylene	0.00001	· ·	<	< •	
Anthracene	0.00001	· ·		<	0.00001
Fluoranthene	0.00001	· ·	< 0.0000	3 0.0000	
Fluorene	0.00001		<	< ·	< 0.00003
Naphthalene	0.00001	0.0007			
Phenanthrene	0.00001	0.0003			
Total PAH	0.00005	0.001			
Total low MW PAH	0.00005	0.001			
Total high MW PAH	0.00005	1	< 0.0001	3	< 0.00059

APPENDIX XI

FIELD PROFILE DATA, MAIN AND NORTH ARM SLOUGHS

Water Quality in the Fraser River Estuary

SAMPLE DATE / TIME: 11 February 1993 / 0850 PST

SITE ID: MacDonald Slough: Latitude 49°12.78'N Longitude 123°11.26'W

DEPTII (metres)	TEMPERATURE (C°)	DISSOLVED OXYGEN ⁽¹⁾ (ppm)	CONDUCTIVITY ⁽²⁾ (µmhos/cm)	SALINITY ⁽²⁾ (°/∞)	pH ⁽²⁾
0	4.5	11.6	8000	7.0	
1	5.0	10.6	8100	7.3	7.20
2	5.5	11.0	15000	14.0	
3	6.0	10.4	20000	20.0	
4	6.0	10.4	21000 ·	21.0	
5	6.5	10.4	24000	24.0	
6	6.5	10.4	24500	24.5	7.35
7	6.5	10.4	25000	25.0	

NOTES: Sampling position was in mid channel. High tide was at 0825 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity was determined with a YSI Model 33 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in Beak's laboratory prior to each sampling date.

SAMPLE DATE / TIME: 10 February 1993 / 1015 PST

SITE ID: Gunderson Slough: Latitude 49°10.39'N Longitude 122°55.11'W

DEPTH (metres)	TEMPERATURE (C°)	DISSOLVED OXYGEN ⁽¹⁾ (ppm)	CONDUCTIVITY ⁽²⁾ (µmhos/cm)	SALINITY ⁽²⁾ (°/00)	pII ⁽³⁾
0	4.0	13.0	145	1.0	
1	4.0	13.0	150	1.0	7.05
2	4.0	13.0	150	1.0	
3	4.0	12.8	160	1.0	
4	4.0	12.8	170	1.0	7.05
5	4.0	10.8	340	1.0	

NOTES: Sampling position was in mid channel. High tide was at 0750 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity was determined with a YSI Model 33 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in Beak's laboratory prior to each sampling date.

SAMPLE DATE / TIME: 10 February 1993 / 1140 PST

SITE ID: Tree Island Slough: Latitude 49°11.08'N Longitude 122°57.70'W

DEPTII (metres)	TEMPERATURE (C°)	DISSOLVED OXYGEN ⁽¹⁾ (ppm)	CONDUCTIVITY ⁽²⁾ (µmhos/cm)	SALINITY ⁽²⁾ (°/∞)	рП ⁽³⁾
0	4.0	13.6	90	0.5	
1	4.0	13.6	90	0.5	7.25
2	4.0	13.6	105	0.5	
3	4.0	13.2	155	0.5	7.15
4	4.0	11.2	850	1.0	
NOTES	Sampling position	was in mid chan	nel High tide was at 0	150 PST	

NOTES: Sampling position was in mid channel. High tide was at 0750 PST.

⁽¹⁾ Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

⁽²⁾ Conductivity was determined with a YSI Model 33 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date.

⁽³⁾ pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in Beak's laboratory prior to each sampling date.

SAMPLE DATE / TIME: 09 February 1993 / 1315 PST

SITE ID: Deas Slough: Latitude 49°07.04'N Longitude 123°03.72'W

DEPTII (metres)	TEMPERATURE (C°)	DISSOLVED OXYGEN ⁽¹⁾ (ppm)	CONDUCTIVITY ⁽²⁾ (µmhos/cm)	SALINITY ⁽²⁾ (°/∞1)	pII ⁽³⁾
0	4.0	13.0	1900	3.0	
1	3.5	12.8	2000	3.0	7.25
2	3.5	12.0	1500	3.5	
3	4.0	11.4	7000	6.0	
4	4.5	8.6	13000	12.5	6.65
5	4.5	7.6	14000	13.5	

NOTES: Sampling position was in mid channel. High tide was at 0715 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity was determined with a YSI Model 33 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in Beak's laboratory prior to each sampling date.

SAMPLE DATE / TIME: 09 February 1993 / 0915 PST

SITE ID: Ladner Slough: Latitude 49°05.54'N Longitude 123°05.40'W

DEPTH (metres)	TEMPERATURE (C°)	DISSOLVED OXYGEN ⁽¹⁾ (ppm)	CONDUCTIVITY ⁽²⁾ (µmhos/cm)	SALINITY ⁽²⁾ (°/00)	pH ⁽³⁾		
0	4.2	11.5	7000	6.0			
1	4.2	11.5	7000	6.5	7.20		
2	4.2	11.5	7500	6.5			
3	4.2	11.6	8500	7.5			
4	4.2	11.7	9000	8.0			
5	4.2	11.6	9500	8.5	7.40		
6	4.5	6.6	11000	9.5			
NOTES: (1)							
(2)	 (2) Conductivity was determined with a YSI Model 33 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date. 						
(3)			Model 607 pH meter pro r to each sampling date.	ecalibrated with b	uffer		

PROJECT:Fraser River Estuary Management Program, New WestminsterSAMPLE DATE / TIME:11 February 1993 / 1045 PST

SITE ID: Eburne Slough: Latitude 49°12.16'N Longitude 123°08.58'W

DEPTH (metres)	TEMPERATURE (C°)	DISSOLVED OXYGEN ⁽¹⁾ (ppm)	CONDUCTIVITY ⁽²⁾ (µmhos/cm)	SALINITY ⁽²⁾ (°/00)	pH ⁽³⁾
0	5.5	12.0	10000	9.0	
1	5.5	11.2	17500	14.0	7.30
2	6.0	10.6	20000	19.0	
3	6.5	10.0	21000	19.0	
4	7.0	10.8	22000	20.0	7.45
5	6.5	8.0	23000	22.0	

NOTES: Sampling position was in mid channel. High tide was at 0825 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity was determined with a YSI Model 33 meter precalibrated and adjusted in Beak's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in Beak's laboratory prior to each sampling date.

Sample Date / Time: 21 February 1994 / 1005 PST

Site ID:

Ladner Slough: Latitude 49°05.54'N Longitude 123°05.40'W

Depth (metres)	Temperature (C°)	Dissolved Oxygen ⁽¹⁾ (mg/L)	Conductivity ⁽²⁾ (µmhos/cm)	Salinity ⁽²⁾ (°/00)	pH(3)
0	4.5	11.2	8500	7.8	7.50
1*	4.8	11.0	9000	8.0	7.65
2	4.9	11.0	9400	8.4	7.60
3	5.0	11.0	9800	9.0	7.65
4	5.0	11.1	10200	9.1	7.60
5*	· 5.0	11.2	10500	9.5	7.55
6	5.1	9.8	10800	9.6	7.50

NOTES: Sampling position was in mid channel and high tide of 4.4 meters was at 0605 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity and salinity were determined with a YSI Model 33 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in IRC's laboratory prior to each sampling date.

Sample Date / Time:

21 February 1994 / 0830 PST

Site ID:

Deas Slough: Latitude 49°07.04'N Longitude 123°03.72'W

Depth (metres)	Temperature (C°)	Dissolved Oxygen ⁽¹⁾ (mg/L)	Conductivity ⁽²⁾ (µmhos/cm)	Salinity ⁽²⁾ (°/∞)	pH(3)
0	4.1	12.1	3300	3.3	7.50
1*	4.3	11.9	4300	3.9	7.55
2	4.4	11.7	4500	4.1	7.55
3	4.5	11.2	5000	4.5	7.65
4	4.7	10.6	8500	8.1	7.55
5	5.1	10.2	12800	11.8	7.50
6.5*	5.1	10.3	13400	12.5	7.50
7.5	5.1	10.4	14000	13.2	7.50

NOTES: Sampling position was in mid channel and high tide of 4.4 meters was at 0605 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity and salinity were determined with a YSI Model 33 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in IRC's laboratory prior to each sampling date.

Sample Date / Time: 22 February 1994 / 0800 PST

Site ID:

Gunderson Slough: Latitude 49°10.39'N Longitude 122°55.11'W

Depth (metres)	Temperature (C°)	Dissolved Oxygen ⁽¹⁾ (mg/L)	Conductivity ⁽²⁾ (µmhos/cm)	Salinity ⁽²⁾ (°/∞)	pH(3)
0	3.5	12.2	220		7.70
1*	3.5	12.2	270		7.70
2	3.5	12.2	350		7.65
3	3.7	12.1	520		7.60
4*	4.0	12.0	700		7.55
4.5	4.1	11.7	800		7.50
NOTES: (1)	 NOTES: Sampling position was in mid channel and high tide of 4.4 meters was at 0625 PST. (1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate. 				
(2) Conductivity and salinity were determined with a YSI Model 33 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date.					
(3)	(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in IRC's laboratory prior to each sampling date.				

Sample Date / Time: 23 February 1994 / 0825 PST

Site ID: MacDonald Slough: Latitude 49°12.78'N Longitude 123°11.26'W

Depth (metres)	Temperature (C°)	Dissolved Oxygen ⁽¹⁾ (mg/L)	Conductivity ⁽²⁾ (µmhos/cm)	Salinity ⁽²⁾ (°/∞)	pH(3)
0	4.3	10.9	7500	7.0	7.70
1*	5.1	10.5	9500	8.5	7.85
2 ·	5.9	10.1	19000	17.5	7.85
3	6.0	10.0	20500	20.0	7.85
4	6.1	10.1	23500	23.2	7.85
5	6.1	10.1	23700	23.7	7.85
5.5*	6.1	10.2	24000	24.2	7.80
6.3	6.2	10.1	24500	24.8	7.70
NOTES:	0645 PST.		d channel and high the second se		·

(1) Dissolved oxygen and temperature were determined with a TSI Moder 54 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

(2) Conductivity and salinity were determined with a YSI Model 33 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date.

(3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in IRC's laboratory prior to each sampling date.

Sample Date / Time: 23 February 1994 / 0950 PST

Site ID: Eburne Slough: Latitude 49°12.16'N Longitude 123°08.58'W

Depth (metres)	Temperature (C°)	Dissolved Oxygen ⁽¹⁾ (mg/L)	Conductivity ⁽²⁾ (µmhos/cm)	Salinity ⁽²⁾ (°/∞)	pH(3)	
0	4.3	11.1	3700	3.0	7.75	
1*	4.5	10.9	7000	6.3	7.65	
2	4.8	11.0	9300	7.8	7.70	
3	4.8	11.0	9800	8.4	7.70	
3.5*	4.9	11.0	10500	9.5	7.70	
4.1	5.0	10,8	11500	10.0	7.60	
 NOTES: Sampling position was in mid channel and high tide of 4.4 meters was at 0645 PST. (1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate. 						
(2)	(2) Conductivity and salinity were determined with a YSI Model 33 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date.					
(3)		pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in IRC's laboratory prior to each sampling date.				
(*) Sampling dep	Sampling depths.				

Sample Date / Time: 22 February 1994 / 0945 PST

Site ID: Tree Island Slough: Latitude 49°11.08'N Longitude 122°57.70'W

Depth (metres)	Temperature (C°)	Dissolved Oxygen ⁽¹⁾ (mg/L)	Conductivity ^{a)} (µmhos/cm)	Salinity ⁽²⁾ (°∕∞)	pH ^{rs}
0	3.5	12.0	320		7.65
1*	. 3.8	11.6	450		7.65
2	4.0	11.8	600	0.2	7.65
3*	3.8	11.8	900	0.5	7.60
3.5	4.0	11.6	950	1.1	7.60

NOTES: Sampling position was in mid channel and high tide of 4.4 meters was at 0625 PST.

(1) Dissolved oxygen and temperature were determined with a YSI Model 54 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date. Dissolved oxygen values were adjusted for salinity where appropriate.

- (2) Conductivity and salinity were determined with a YSI Model 33 meter precalibrated and adjusted in IRC's laboratory prior to each sampling date.
- (3) pH was determined with a Canlab Model 607 pH meter precalibrated with buffer solutions in IRC's laboratory prior to each sampling date.
- (*) Sampling depths.