

GUNFIGHT AT OD CORRAL

The skies above the earth provide the battleground for the fastest and deadliest form of combat between two human plaques or statues to commemorate the spilling of blood and the tearing of metal. The skies are uncluttered by the debris of the contesting men and their fighting machines. There is only a silent emptiness awaiting the next short violent struggle from which will emerge only one victor. No other form of combat demands the same intense concentration or fires the imagination as does air combat.
From the romantic heros
"From the romantic heros of World War I to Churchill's Asia, no single arena of battle has had such a profound effect Asia, no single arena of battle has had such a profound effect
on the overall outcome of the conflict. It is a basic precept of war that to move freely on the ground a force must have control of the air over the battlefield. To control that air a force must rely on its air combat elements to provide a sky
free of enemy air power that could harass ground and ground free of enemy air power that could harass ground and ground support operations. This fact was clearly demonstrated in
World War II, Korea, Southeast Asia, and the Middle East. World War II, Korea, Southeast Asia, and the Middle East,
The men who fight in this highly specialized arena changed little over the years; only their image has changed Gone are the flamboyant, scarf-in-the-breeze aristocrats of World War I. The air combat pilot of today is a dedicated professional. To be successful he must possess the highest qualities of eyesight, coordination, discipline, ability to concentrate motivation, and, above all, the ability to react instinctively to situations that are changing more rapidly than in any other ness of all the forces acting on his aircraft, the aerial battle situation, and his enemy's reactions. To lose concentration or react incorrectly normally means death or capture and the loss of a weapons system worth many millions of dollars Ask any fighter pilot - they've all been there many times
there is no lonelier or more frustrating feeling than having there is no lonelier or more frustrating feeling than having your enemy locked at six o'clock, even in a training environ-
ment where all that is shot down is your pride. ment where all that is shot down is your pride.
Obviously, most of the qualities required of a good air
fighter are not acquired by a gift of nature. Concentrated and realistic training is necessary to develop the skills which must be mastered in order to survive. One place where the fighter pilots of the Canadian Armed Forces have the opportunity to develop this expertise is at 417 Tactical Fighter Operational Training Squadron operating the CF104 STARFIGHTER at producing fighter pilots for our three NATO CF104 squadrons producing fighter pilots for our three NATO CF 104 squadrons
in West Germany as well as refreshing the pilots from these squadrons in supersonic air combat tactics which cannot be practised in the crowded skies over western Europe
Although it is only one aspect of the training conducted at 417 Squadron, air combat manoeuvring is by far the most demanding and quickly reveals those who have the true fighter pilot instinct and ability. The fledgling fighter pilot is brought
along slowly in this phase first learning how to hande the along slowly in this phase, first learning how to handle the learns how to manoeuvre the aircraft in relation to an "enemy" aircraft and uses the basic textbook manoeuvres which he will have to master and apply instinctively later on. As the course progresses the "enemy" becomes increasingly more evasive and the number of aircraft involved is increased requiring a high degree of co-ordination and cooperation. On his
last few missions the student must be able to

by Capt L. D. Hawn

ledge he has gained in a correct and timely fashion or suffe he ignominious fate of being "shot down" by a classmate. Al of this training is carried out under the watchful eyes of th perience in the CF104 Many of the staff have extensive exWeapons Instructors and include exchange officers from the United States and Great Britain who have a previous back ground in fighter aviation; some in actual combat. All air combat training is very closely controlled and is carried out under a very rigid set of rules that are designed to make the engagements as safe as possible without sacrificing realism. 17 's flight safety record in this regard has been outstanding There is one serious limitation to the air combat training lar type of aircraft affords little appreciation of the capablities of a real enemy in a different aircraft. If the first time a fighter pilot meets a different aircraft type in combat is during an actual conflict he stands a very good chance of spending he rest of the war as the entertainment chairman of his rison camp.
Air combat training between dissimilar aircraft is not an easy thing to arrange, but in 1975, for the second year in with Fighter Squadron 201 of the United States Naval Reserve. VF201 operates out of Dallas, Texas and flies the F8H CRUSADER, an aircraft that enjoyed more success than any other against the MIGs in North Vietnam. The pilots of VF201 are nearly all reservists who have civilian occupa ions and do their fighter flying in their time off. They a all veterans of Southeast Asia and get a considerable amount to air combat training. They and their aircraft proved to be worthy opponents for the staff of 417 and the resident Fighter Weapons Instructors Course.
Many hours of organizing must go into an event of this ort with myriad details of accommodation, messing, mai enance facilities, and entertainment being addressed. Fo many months ahead of time Captains John David and Ron tainment designed to test the endurance of both man an machine.

The advance party of VF201 arrived early on 16 Sep 75 US Navy cargo aircraft jammed with 59 maintenance per sonnel and all the equipment and spare parts that would be eeded in the next ten days. Eight mean-looking white CRU ABERS followed being led by Commander Stan Stookey, ficer of 417 Squadron, Lt. Col. Tony Bosman, and his staf and presented with a suitable Canadian libation which signaled the start of ten days of tremendous camaraderie and pro fessional exchange.
Following an evening of entertainment, all crews assembled or a mass briefing. After the usual welcomes, detailed brief ngs were given on local air traffic control procedures, the lying and social program, rules of engagement, and the relative capabilities of the STARFIGHTER and the CRU SADER. Much emphasis was placed on the fact that this was to be a learning exercise and not a competition to see required to fill out an individual report on each mission ex plaining the way he saw the aerial engement, what he learnd from it, and any recommendations for improvement There were several types of sorties planned, beginning with the simplest form of air combat - one STARFIGHTER again
st one CRUSADER. The "Zip" drivers were immediately impressed with capabilities of the CRUSADER in aerial combat Many of the overeager who got their "fangs out" too early
quickly found themselves looking over their shoulder at the gaping intake of their adversary as he was about to administer a simulated dose of hurt. It would require careful tactics and strict discipline to stay out of trouble
The majority of the engagements were multi-aircraft battles involving two STARFIGHTERS against one and then two CRUSADERS; four STARFIGHTERS against two CRUSADERS; and, finally, one STARFIGHTER against two CRU
SADERS. During the two versus two and four versus two en SADERS. During the two versus two and four versus two en-
gagements each flight of combatants operated on their own radio frequency as a great deal of radio chatter is required to effectively manage an air fight involving several aircraft. This also provided more realistic training because, with all aircraft on the same radio frequency, the "enemy" can listen in and know what you are going to do. To control this safely a staff pilot from 417 Squadron operated from the 42 Radar Squad ron facility north of Cold Lake. He was there to monitor the any pertinent information such as missile "shots", gun "kills" or disengagement calls. All engagements were tape recorded to assist in reconstructing the flight during debriefing.
Before each sortie a very comprehensive briefing was carried out by the mission leader with all participating pilots. Rules and procedures were thoroughly covered before the "enemies" split up into their individual sections to discuss the an engagement rarely goes as briefed. Normally the adversary would do something unexpected which would call upon the fighter pilot's sixth sense of being able to do the right thing at the right time. One wrong move or losing sight of the fight normally spelled instant doom. All the fights were high speed affairs with the opponents meeting head-on, but with positive separation, at closing speeds of up to 2,000 miles per hour
Only the foolish slowed to much below supersonic speed Only the foolish slowed to much below supersonic speed as
the battles raged from 40,000 feet down to a simulated ground level of 9,000 feet. If a fighter pilot passed below 9,000 feet engagements were terminated to allow safe recovery from any attitude of flight.

The most difficult part of any sortie was reconstructing events during the debriefing which followed each mission. Al-
though the fights lasted only a matter of minutes, the condithough the fights lasted only a matter of minutes, the conditions changed so rapidly and the mental stresses on the pilot were so severe that it was like trying to recall the movements of each passenger milling about in a Paris subway station at
rush hours. These debriefings were invaluable and the learning rush hours. These debriefings were invaluable and the learning
that took place in the air was consolidated by the discussion of good moves and mistakes. CRUSADER pilots were especially adept at recalling what happened owing to their extensive experience in air combat. There was also a mass debriefing at the end of each day where all the day's flying was discussed. As the exercise progressed a rapid upswing in the learning curve of the STARFIGHTER pilots was readily apparent. New
tactics were tried and either proven or disarded Fighter coor tactics were tried and either proven or discarded. Fighter coor-
dination and air combat awareness and discipline increased markedly and in the latter half of the exercise, there were even several CRUSADER pilots looking over their shoulders at the sleek nose of the CF104. The STARFIGHTER pilots gained new respect for their aircraft when they discovered what it could do when handled properly in a hostile environment.
The weatherman cooperated and the aircraft serviceability
was maintained at a high level due to a great deal of hard
work by the ground crews of 417 and VF201. This resulte 90 CF104 sorties and 74 CRUSADER sorties being accomp lished. There were no flight safety incidents, which is a tribute to the professionalism and discipline displayed by all involved VF201 personnel contributed tremendously to the succes of STAR CRUS 75. Their professionalism, motivation, and Ilexibility throughout the exercise was most impressive. The mere fact that 90 percent of their air training is directed to the air combat environment, and their willingness to pass this expertise on, provided an excellent training and learning forun Operations Officer, put it this way: "Air combat training is the very best type of training for a fighter pilot and to lose the opportunity to practise these skills would be a tragedy hat would difinitely weaken our capability as a fighter force. Commander Stookey was greatly impressed with the facilities at Col Lake and commented that "there is probably no better facility for conducting dissimilar air combat training anywher that "exchanges like STAR CRUS 75 can only benefit everyone involved both from a professional point of view as well a in the area of international cooperation toward a commo goal. Moreover, this exercise has shown unequivocally that dissimilar ACM, if properly controlled and conducted, is no only a beneficial but also a SAFE operation"
As a direct result of STAR CRUS 75, Air Command HQ recently has approved dissimilar ACM for CF104 basic course Squadron CF-5's. Thus, maximum ACM training value once gain is being achieved without sacrificing the all-important demands of FLIGHT SAFETY.

Precious Son

Above the mud the dawning sky Was clear and peaceful, vacant, blue When suddenly to delight my eye An aeroplane came into view How man could spawn this wondrous car Yet had not caused himself to learn A formula for ending war While still I mused another plane Came challenging the first to find The fittest, and there soon began A contest, so the day was primed The struggle chattered, roared with hate To signify its mortal tone, 'Til flaming fingers seized the fate other's precious son. God help us seize this costly prize The seeds of peace to sow, Not crosses row on row. wis

When a crew member feels he's not part of the "action" or that he must jealously defend his right to privacy, he may not be.

Tuning in the Awareness Frequency

Youre
day when the logel all into a tiring day, when the loadmaster, who happens to be taking a break
on the flight deck, interrupts your approach briefing with a "Hey, pilot, what's our altitude supposed to be?" As the aircraft commander, how would that grab you?
Would you tell the sergeant to mind his own business and Would you tell the sergeant to mind his own business and
return to his own crew station? Or would you remind him return to his own crew station? Or would you remind him
that, based on your several thousand hours of flying time, that, based on your several thousand hours of flying time, you fell perfectly capable of maintaining your assigned altiable and proceed to check it out?
An incident such as this actually occurred not too long ago
much to the embarrassment of the two pilots and their navigator. The loadmaster, who was aware of the planned altitude and was far from being ignorant on the importance of complying with a clearance, pointed out that the aircraft was cruising 1,000 feet lower than its assigned altitude. The pilots quickly made up the difference. A good thing, too. site direction, passed 1,000 feet beneath them. Simply an alert loadmaster who happened to be at the right place at the right time? Or an example of crew co-ordination?
One spinoff of aircrew discipline is crew coordination. Less interphone chatter, better radio communication procedure and accuracy in checklist responses are all indications of crew coordination. But there's a lot more to crew coordination
than that. Even a crew that runs its checklist with precision and seems to be the epitome of coordination may be missing a vital element of the truly coordinated crew. What is this element? It's crew member awareness.
A crew member's awareness can be dulled in several ways. One is by the crew member himself. He may have personal problems that sap his attention or divert it from all but his most basic duties. Or the aircraft commander or other members of the crew may have discouraged his curiosity and inteaircraft commander, and to some degree his other crew mates, to keep him "tuned in" with them. In any event, if he's not tuned in, look out. Your crew has just lost some of its ability to detect and head off problems.

The aircraft commander who really leads his crew will cause each crew member to feel that he is an important part
f the action. It is surprisingly easy to squelch a crew mem er's enthusiasm by "isolating" him exclusively within his own position in the aircraft. An attitude such as, "I'm just the position in the aircraft. An attitude such as, im just the
adio operator so why should I risk catching hell by pointin out that the boss has got the wrong tacan tuned," could spoil a crew's whole day. And its says a lot about the aircraft mmander.
Aircrew members, and pilots in particular, are often defen sively jealous concerning their talents and crew positions hey may resent any implication that they have made
rror. This is not an unnatural attitude, but taken to the xtreme, it can be dangerous. Let's face it, even crew membe with years of experience occasionally make mistakes. Fo xample, a navigator with a great deal of experience but ne o his squadron had a flight two miles off course wien pararescueman aboard the aircraft, noting the terrain beneath hem, tactfully pointed out the error. The PJ had been flying ver the same route for several years and knew most of the his case the PI had maintained an awareness and by doing sod assisted the navigator - who was smart enough to take a goo tip. Crew coordination? Yes, we would have to call it that. You can no doubt think of numerous instances in which crew member whose duties did not necessarily relate to th problem at hand played a great part in either solving the probem or reducing its intensity - a flight engineer who reporte an oncoming aircraft that no one else saw, a navigator who using his sextant. That they report their information without esitation indicates they are This type of crew coordination is wh
come accustomed to but may is what many of us have may not always experience. An rous jokes that we thrust upon our crew in spite of the num act remains counterparts, the wouldn't be a crew member to begin with.
It behooves a crew, and aircraft commanders in particuar, create an atmosphere in which each member feels con fortable and won't hesitate to point out what he believes nd on the same ail, as a crew, we re all fly

THE MAC FLYER

Have an Accident

by Capt J. D. Williams
1 read an article recently in "Approach" magazine which told of an ingenious technique employed by a USN squadron commander to prevent accidents. It seems that his squadron certainly be cause for a lot of self-congratulation - but the boss decided that what was required was AN ACCIDENT That's right - an accident. Ever see things spring back into shape more quickly than they do after an accident? Ever watch all the "barn doors" being closed in the hours and day immediately following a fatality? It's amazing. Things that were impossible beforehand "rall tied up" suddenly become available. Performance of all personnel improves - particularly if the cause of the accident is undetermined. Perhaps all of us subconsciously examine our own performance and attempt to eliminate any characteristic or trend which might have led to the accident had we been flying or otherwise involved. "So" reasoned the CO, "if we provide a simulated accident
we may manage to achieve many of the same results. The more we may manage to achieve many of the sa
mysterious the circumstances the better."
And away they went.
The exercise was planned to include the entire squadron and all affected base personnel. Scenario cards were prepared for all the actors, and the supporting cast were on hand to watch and learn.
Picture the situation. All is quiet around the Ops desk when he initial call is heard
Boneyard Ops this is Papa Golf Three. Papa Golf Lead just no survivors visible. I have advised tower and will remain on site until the chopper arrives."
Just about then the phones begin to ring. As it turns out they will continue to ring for several hours, days even

Now what is going to happen?
Well, for one thing there is going to be a certain amount f paperwork impounded immediately. Aircraft records, crew all will be set aside for later scrutiny.
For another thing, the Base Commander is going to have to get together a little visiting team quickly before a few families learn that they are fatherless over the local radio tation. There will be chaplains and doctors required, mayb lawyer, hopefully a few compsionte but selfentrolled riends or neighbour
Als it helps if you can recover the aircraft or any componthis unpleasant but necessary duty
Naturally a Board of Inquiry will be named and all facilities provided for them.
AND THEN there will be a lot of soul searching as dis crepancies begin to appear.
Since our enterprising CO has anticipated much of thi hassle and wants to maximize training value, he has designat as Papa Golf Lead. All actions taken will deal with this specific hard (and soft) ware. Now there are a million and one things

which can come to light in a Board of Inquiry - but here is an opportunity to see it all at no expense
Lets say the plane just dove into the water for no apparent Pilot Incapacitation? Well, lets examine his medical documents. Oh. Oh. He is two months overdue for his annual medical. Well, that'll leave a question mark but maybe its just an oversight. Lets look further. He is 25 years old and 25
pounds overweight. Last EKG was normal but we know that he is in the range for unannounced heart attacks. Still, other than that he looks fit
Control Difficulties? No reason to suspect any since he had time to eject or mention it on the radio. Unfortunately the aircraft involved has had a history of hydraulic leaks but nothing too serious and it was serviceable after the two previous flight
Instrument Error? The main attitude indicator was changed last night - in fact this was a functional check flight. They
were doing a VFR training trip anyway so the trip and check were doing a VFR training trip anyway so the trip and check if the things did fail. Anyway the navigator wouldn't have

been taken in, he has his own horizon in his scope. No, come to think of it, it works off the MAI
How about the possibility of hydraulic contamination Could the controls have been jammed by swarf, could a jack have failed internally? Is there any previous history?
While we're looking at the possibility of contamination lets have a look at the fuel and oxygen. Are all procedure being carried out properly, are SOPs up to date, is supervision adequate.
Lets consider the possibility of FOD. Are all tools account ed for? Were any work procedures interrupted the last time the bird was in the barn?
Lets consider the possibility that the pilot just decided to fy a litte lower than briefed to add a little excitement to the flight. Was he that kind of guy? Is there anything in his past which might cause us to draw that kind of conclusion.
How much did the pilot have to drink at last nights party? Wasn't he complaining of a cold a few days ago? Lets check is locker for any clues which mig
unpaid bills, Lord knows what Lets look at unit morale.
veryone essentially happy - or are there problems which have escaped our notice? Are there any personality conflict which could have caused distraction - anywhere, on the ground or in the air?

Well, I could go on and on, but I think the point is made Pick any one of your aircraft or your aircrew and scrutinize it or him and you will find discrepancies which a board would question. You will find training requirements not met, techn cal files not properly amended or annotated, engineering or ers not complied with
Review your squadron SOPs and you will find gaps into which may or may not be valid. They might not be evident to you if you didn't have an accident for no apparent reason, but believe me they will surely turn up afterwards.
Take your "deceased" crew and look into their personal affairs. Were they insured adequately, did they have prope wills. What would have become of their families. Had they ever
made any contingency plans with their wives? This may not be "Flight Safety" but it is common sense. Penniless widows and destitute orphans add unnecessarily to the heartbreak Let your guys consider this for a few minutes.
Look at your crews from another aspect. Would a board find that they had been overscheduled? Had proper meals and living conditions been available to them before flight as a proper briefing carid an. Al most certainly be asked if one day they fail to return

Picture in your minds eye what a Board of Inquiry might see if it looked at your unit right now. What shortcomings would you be required to explain if you lost a plane right
now? Unless your unit is better than any I've ever seen or read about there would be at least a few. Sure a lot of them would be "nit-picky" little things which could never cause an accident - but just how many "nits" does it take to build a cause factor? We don't know. We do know that every accident has a cause - even if we don't manage to find it. We assume that
every cause could be removed were it to be properly identified. We find that a lot of potential causes only come to light during post-crash investigations - though they would have been evident had the same investigation been held "before the fact". It is for this very reason that we strongly suggest that such an investigation could be of very real assistance in any units flight safety program.
For years now we have carried out "Flight Safety Surveys" of various units and stations and the intent has been much the that they employ too much of a scattergun approach. This sort of exercise is more of a sniper rifle technique since it concentrates on one specific airframe and aircrew. If by chance you come up "clean" you can pat your own back - and try it again in three or four months. If you come up dirty it may prime the idea pump.
By the way - I forgot to mention the fact that while all this is going on - have a disinterested crew do a really thoa good chance that they'll find at least one discrepancy which in the worst of circumstances could cause a problem. Believe me - it doesn't take much. A pilot could crash while trying to retrieve a dropped map, pen, or stopwatch. A poorly located radio frequency selector could cause him to look away from the "front window" for a fatal few seconds. Flashlights and kneeboards have come adrift before and jammed controls. themselves, ejection seat pins have been inadvertently left in place, and seat mechanisms have been improperly installed. Have a look!
If you walk through an exercise of this sort with your squadron or unit there is much to be gained. It takes on many of the aspects of a mystery drama. You provide the simulated victim and then everyone sets out to find the villain. The
interesting point in this case is that the search may well net several actual villains even though the victim is only a simulated one. Here of course the important thing to realize is that such an exercise is not to be used for "catching" anyone but rather for cleaning house. It would probably be productive to declare a moratorium on responsibility for discrepancies found. "Fix it now - and we'll never talk about it again might be the best approach in order to bring everything out cmphasis "freeze the action" and discuss it right then while it has impact.
It seems obvious to me that this sort of thing would be a one day exercise with an immediate debrief - perhaps followed by a unit "bash". The possibilities are limited only by the scale in which you wish to operate. The important thing being the aura of realism. "How could this have happened?" is a question we all have to face from time to time. If we check of an impending accident or at least lessen the impact.
Want to improve the safety of your operation? HAVE AN ACCIDENT. - but do it our way - and save.

CPL O.G. DARLING
While employed on the Flight Line at CFB Chat ham on 17 Nov 75, Cpl O.G. Darling noted smok coming from CF-101 number 101056 during its start. While some smoke is usually present during the start cycle, the abnormal density of the smoke and found bits of metal a position where the CF101 had been started As the aircraft was now CF101 had be heff Cpl Darling ook immediate action to recall the Voodoo and the aircraft returned to the line.
Investigation revealed that the starter had seized and was dationed in such a and " G " forces of flight may have caused the starter to fall free of the engine. The resulting damage to the to fall free of the engine. The resulting damage to the inflight fire and possible loss of the aircraft.

Cpl Darling's alertness, good judgement, initiative and technical knowledge prevented an aircraf accident.
MCPL R.A. MICKELSON
MCpI Mickelson was detailed to supervise and assist with the replacement of a $\mathrm{CH}-136$ Helicopter assist with the replacement of a $\mathrm{CH}-136$ Helicopter
main rotor hub. While readying the newly overhauld rotor hub for installation MCpl Mickelson decided to give the rotor hub a thorough inspection even though the rotor hub had been certified serviceably by the overhaul contractor. This inspection revealed that the spacers under the main rotor pillow blocks had been omitted during overhaul. Had this roto hub been allowed to fly in its condition sever vibration of the main rotor system followed by possible cracking of the pillow blocks could have ensued.

Due to MCpI Mickelsons extra efforts an un satisfactory condition was detected and corrected and a possible in flight failure was averted.

CPL K.F. GARTH

After completing a " B " check on a T-33 Aircraft, Cpl Garth decided to go one step further and visually check the fuel load. After opening the port tip tank fuel cap, he spotted an object lying at the bottom of the tank which turned out to be a refuelling hose nozzle protective cover. - (Non Canadian Forces pat tern)
Cpl Garth's thoroughness in extending his in spection beyond the requirements of a " B " check prevented what could have been a serious air incident.

Cpl O.G. Darling

Cpl S.W. Schneider
MCpl R.A. Mickelson

CPL S.W. SCHNEIDER

While conducting a routine survey on a Cosmopolitan engine at CFB Ottawa (S), Cpl Schneider noticed a small oil leak coming from the reduction gear box area. A further investigation revealed not only a leaky A.C. Alternator drive seal, but both male and female drive splines worn far beyond normal wear
This discovery led to a Special Inspection of the fleet. Two reduction gear boxes had to be changed due to excess wear of the drive splines.
As this check was not specifically precribed for this Periodic Inspection, Cpl Schneider's attention to details and the thoroughness of his investigation demonstrated his high degree of professional competence and averted a situation which could have caused a serious in-flight problem due to the loss of A.C. power.

PTE A.R. BEASLEY

Cpl A.R. Smith and Pte A.R. Beasley installed an aileron on a CF101 and completed the required functional checks. Pte Beasley was then detailed to disconnect the external hydraulic power cart at which time he carried out a routine FOD check before re-installing the cover panel. Pte Beasley demonstrated thoroughness and outstanding workmanship in checking the hydraulic lines in the area. He noticed the engine main fuel line located behind the hydraulic liner was chaffing against a Smith and they checked a nearby aircraft and found the fuel line to have ample clearance. The rest of the UE aircraft were a chor Pete Beasley was not directly involved or required to check the fuel line his awareness resulted in the
discovery and rectification of a most hazardous aircraft condition.

CAPT B. WEBSTER

Captain Bill Webster was flying a wheel equipped single Otter with two passengers and a crewman on board while conducting an exercise in northern Manitoba. After two hours of flying over desolate forested and muskeg terrain, the aircraft arrived along the coast of Hudson Bay about 170 miles 1000 for 1000 feet above sea level, the engine emitted a bang which sounded somewhat like a backfire. Engine tem peadings and pressures were checked and were found switched as a precautionary measure The engine then appeared to run normally for about one minute when another loud bang was heard accompanied by a power loss, smoke, and the odour of oil fumes in the cockpit. Captain Webster immediately turned towards the only available landing area, a curving strip of sandy beach about 3000 feet long, and executed a force landing without damage to the aircraft, Initial inspection of the engine revealed a large crack in one of the cylinder walls. A replacement was flown to the beach, the aircraft repaired on site and was then flown off the beach, serviceable, within 24 hours of the incident. Strip analysis of the cylinder revealed that the cause of damage was a broken ex haust valve, which in turn caused extensive damage to the top of the piston and cylinder.
Captain Webster's quick reaction in correctly assessing the situation, immediately selecting a suit able force landing area and then executing a success ful force landing obviously saved a valuable aircraft But, more importantly, his professionalism and pilot ability turned a potentially dangerous situation which could have resulted in injury or loss of life to his passengers and crew in a very remote area o Canada, into a succesful operation.

Capt B. Webste

Cp. K.F. Garth
MWO J.N. Arsenault

MWO J.N. ARSENAULT

During a conversion training flight for student pilots and flight engineers the left hand landing gear would not fully extend and could not be moved either up or down. MWO Arsenault, the staff FE on och, Onvestigated the problem and followe the aplicable procedures he proceeded windows to measure the distance between the upper and lower shelf brackets. The resulting measurement confirmed the landing gear was not sufficiently down to engage the friction washers and would probably collapse on landing.
Further inspection by MWO Arsenault revealed that a large bushing (drag pin bushing) was wedged sideways between the shelf brackets, preventing the friction washers from engaging and jamming the rear tandem screw jack mechanism. He suggested to he Aircraft Commander that the manual lowering system be engaged in an attempt to free the under carrage. After carefully briefing and co-ordinating crew activies NuO Arsenaut was able to raise tudent pilots to remove the bushing. The landing ear was then manually cranked down and craft landed uneventfully.
MWO Arsenault demonstrated his superior tech nical knowledge of the Hercules by quickly and successfully troubleshooting and rectifying a serious in-flight emergency. His actions not only provided his student engineers with a dramatic example of expert fault-finding but prevented serious damage to a Canadian Forces aircraft and possible injury to the flight crew.

CPL M.S. HOOLEY

A visiting Argus had been placed unserviceable for low torque in one engine. The problem had been diagnosed as a faulty fuel control unit and Cp Hooley was assigned to change this component. Prior to proceeding with the work, however, Cpl Hooley made a thorough check of the aircraf history and discovered that two fuel control units and two engine-driven pumps had been changed on hat engine in the previous two months in an effor o correct a similar snag. Because of this, Cpl Hooley suspected the fault must be elsewhere and after onsidering other possibilities concluded there might be a leak in the high pressure fuel line to one cylinder. Conducting a thorough inspection of such lines, he discovered fuel stains near a flexible portion of one line, however, the line appeared in good Pressurization of the line wower, revealed a sub tantial in an area where the fuel would stantial leak in an area where the raw fuel would aust, presenting a serious

Cpl Hooley's methodical and knowledgeable
pproach to rectification of the snag prevented a possible costly and dangerous in-flight fire. The professional attitude and conscientious action played is considered deserving of commendation.

CPL M.P. GROOMS

During a periodic inspection of a CF101 aircraft Cpl Grooms was inspecting the upper portion of the rudder around the rudder balance weight. While tapping the skin looking for loose rivets he heard a rattle' inside the rudder. He reported his findings and the rudder was removed for further investigation to determine the source of the 'rattle'. The 'upper rudder balance weight' was removed and three lead weights were found detached from their mount and loose inside the upper portion of the rudder. Had this situation gone undetected it is possible that the weights could have moved and caused the rudder to bind or jam. Cpl Grooms' conscientiousness and sense of responsibility in pursuing the source of the rattle prevented what could have been a serious incident or accident.

PTE M.D. DUNHAM

Pte Dunham, as part of an aircraft towing crew, was detailed to move an Argus out to the east side of 11 Hangar to refuel the aircraft for 23 knots with with the starboard wing tip 50 feet from the east side of the hangar. The aircraft brakes were applied and the main wheels chocked fore and aft. As Pte Dunham was returning to the line crew section to await the arrival of the fuel tender, a gust of wind, recorded at 36 knots, hit the tail of the aircraft and caused it to turn through a 90 degree starboard and caused it to turn through a 90 degree starboard approximately 30 to 40 feet from the hangar.
At the first sound of movement, Pte Dunham with regard only for the aircraft, ran back under the aircraft, replaced the expelled chock from the starboard wheel, then proceeded to the port side and threw the expelled chock from the port main-wheel in front of the moving wheels. This chock was immediately ejected by the then increasing momentum of the aircraft, nearly hitting Pte Dunham. The expelling of the port chock happened at least three times as witnessed by other personnel who were running back to the aircraft to assist. Pte Dunham finally was able to have a chock bite into the partially cy tarmac and the aircraft came to a stop
Had Pte Dunham not responded immediately and had he not persisted in his efforts to have a chock tay under the port main-wheels, severe damage had sufficient momentum to cause the aircraft to hit the hangar.
the hangar.
At the time of the accident, Pte Dunham had been mployed on line crew six weeks and on the Argus aircraft 25 months.

MCpl W.L. Fox

CPL R.H. HRYNYK

Cpl J.H. Thibault

While inspecting a CF104 after the aircraft had gone through a major modification program, Cp Hrynyk extended his acceptance survey beyond the normal level. In the engine compartment he discovered that the throttle cable was rubbing against a wire bundle which had been enlarged as a result of the modification program. Cpl Hrynyk took it upon himself to inspect other such modified aircraft on the unit and found that the fault existed in other aircraft.

As a result of his thoroughness and initiative a serious hazard was discovered which could have resulfunction with the subsequent loss of an aircraft

CPL W.M. DAY

On 22 Jan 76, while observing weapons being loaded on an Argus aircraft, Cpl W.M. Day, an I \& E Technician, noticed that the power cable used on the C-10 bomb hoist did not plug completely into the 1200 amp power source. This exposed three prongs which were subject to being shorted out on the metal workstand used in the bomb bay. After pointing this out to the loadcrew, CpI Day investigated further and found that this was not an isolated case but a characteristic of all C-10 hoists. Realizing that the potential of a serious electrical fire and explosive hazard existed at a critical phase of the aircraft servicing procedure, Cpl Day developed an effective factory Condition Report to point out and rectify factory Condition Report to point out and rectify the situation.
As a result of his awareness, concern and pro fessional approach, Cpl Day may well have averted a most serious accident.

MCPL J.G. PETERS

While carrying out an airframe acceptance check on an Otter aircraft MCpl Peters observed that the
rudder control pedals appeared to have excessive movement at the hook up point. Although not part
of the check, he disassembled the cover and the of the check, he disassembled the cover and the
connecting rods. He found a 0.250 inch diameter connecting rods. He found a 0.250 inch diameter would have resulted in the loss of rudder control at the pilot's position.
A serious inflight hazard was possibly averted because of MCpl Peters' initiative and professional approach towards flight safety

CPL J.H. THIBAULT

Cpl Thibault was detailed to carry out a daily inspection on a CH135 aircraft. On checking the Minor Defect Sheet Cpl Thibault noticed that minor entry (fluid left on the ground after the aircraft had been standing for a period of time) required rectification.
On checking the aircraft, Cpl Thibault noticed that, although the hydraulic header tank was full, a considerable amount of fluid, along with dus the aircraft was noticable in the "hell hol evening thoroughly cleaning out this area. Again the next morning, he carried on with his work, doing a systematic check of the entire hydraulic system. This check, lasted most of the day, required Cpl Thibault to work in a very small area which offered very little room to work.
The results were rewarding. Due to Cpl Thibault's attention to detail, a very serious defect was located, resulting in an urgent UCR being submitted requesting that all CH 135 aircraft be inspected prior to next flight. This inspection, when carried out, resulted in three aircraft of six on 408 Squadron strength being grounded for the same fault.
Through his alertness, initiative, and attention to could have resulted in a serious accident.

MCPL W.L. FOX

On the morning of 25 Nov 75, Eastern Flying Service Flight 301, a P31 aircraft with a crew of two and two passengers on board, declared an emergency after experiencing a complete navigational aids failure while on final approach at Charlottetown airport. The weather at Charlottetown was 400 feet obscured ceiling with $1 / 2$ mile visibility in snow. The weather at Summerside was 500 feet obscured ceiling with visibility $5 / 8$ of a mile in snow and winds from the north-east at 25 gusting to 35 knots. The base was attem
winter storm.
Flight 301 climbed to 2500 feet and squawked emergency advising Charlottetown Air Radio that he was requesting a precision radar approach at Summerside. Moncton (MOT) Radar received the emergency squawk and advised Summerside that the aircraft was 30 NM SSE of the Base. CFB Summerside had just restored electrical power following a power failure. MCpl Fox, the duty radar controller was attempting to re-align his equipment. As a result of the power failure the radar was left with weak video and a loss of the SIF. Communications with Flight 301 were weak and intermittent. MCpl Moncton Radar was able to positively identify a Moncton Radar was able to positively identify a further complicate matters, Flight 301 was experi encing electrical problems resulting in the inter mittent radio recention, windshield icing and finally the failure of both directional gyros. the falle of
ins for a immediately commenced giving instrucwhich, by this time, was only 85 percent cleared of snow. On final approach from 9 miles to 5 miles, MCpl Fox was unable to obtain any glide path information due to the precipitation, lack of SIF and the altitude of the aircraft. MCpl Fox's cool, calm and reassuring instructions coaxed the pilot down in altitude so that he was able to intercept the glide path at 4 miles. At two miles from touchdown, Flight 301 began to drift well right of the oncourse. Only through determined efforts by MCpl Fox issuing clear precise control instructions was the aircraft able to correct back to the on-course at $3 / 4$ miles, at which point the pilot of Flight 301 picked up the approach lights and made a successful landing.
MCpl Fox's full utilization of his equipment, considering the weak video, the unserviceability of the SIF and the weak intermittent communications, coupled with his calm professional attitude during possibly several lives. As stated later by the pilot of Flight 301 "'MCpl Fox's competent handling of this difficult emergency averted a certain forced landing".

LOW LEVEL WIND
 SHEAR - the invisible monster

by Mr. E.J.A. Hamilton

Loch Ness has its Nessie; Lake Okanogan has its Ogopogo; the Himalayas have their Abominable Snowman; and the Rockies have their Susquatch. Now the world's flying frater-
nity has its own invisible monster whose perambulations are marked by the broken aircraft and bodies that fleetingly scar the neighbourhoods of the world's aerodromes. The culprit, Low Level Wind Shear, has not yet been given a nickname like his famous comrades but is thought to be a reincarnation of one of the famed RAF "gremlins"
A wind shear is a spatial change in the wind vector or, more simply, a change in the direction and/or speed of the local wind as a result of a change of location. The atmosphere on
occasion can produce some dramatic wind shears close to the ground. Direction changes of 180 degrees and speed changes of 50 knots or more within 60 m of the ground have been observed.
Let's take a look at the results of the invisible monster's actions during the final approach and initial take off phases of aircraft operation. To simplify explanations, wind condiions will be described in terms of the lateral and longitudinal aircraft. decreases sharply, temporary decreases of air speed and lift will occur allowing the aircraft to sink below the planned approach path and necessitating an increase of power to regain position on that path and to avoid undershooting. However, if position on the planned approach path can be re-established, a decrease of power, to a value lower than the original, will
then be necessary to stay on that path. This follows because a lower headwind component demands a lower power setting to maintain an approach path of equivalent slope. Figure 1 illustrates the point.
If, during the final approach, the headwind component increases rapidly, temporary increases of air speed and lift will occur forcing the aircraft above the intended flight path and necessitating a reduction in power to regain position on that
path and to avoid being high at the normal touch down point path and to avoid being high at the normal touch down point.
However, when position on the intended flight path has been re-established and the headwind component has begun to stablize at a new and higher speed, an increase of power, beyond the original level, will be required to avoid undershooting, since a stronger headwind obviously requires a higher power setting to maintain an approach path of equivalent slope. This sudden requirement to reduce power, followed
very shortly by an urgent need to increase power, beyond its very shortly by an urgent need to increase power beyond its
original value, constitute the monster's "double whammy". Mammy Yokum would be put to shame. Figure 2 illustrates a case of increasing headwind component.
If during the final approach of an aircraft the cross wind component changes rapidly the aircraft will be moved laterally off the runway centre line extension, necessitating banking manoeuvres, perhaps at a very low level, to regain proper position on the approach path. Such manoeuvres may be ex-

Figure 1. Sharply Decreasing Headwind Component

Figure 2. Sharply Increasing Headwind Component

Figure 3
tremely dangerous if the change in crosswind component is accompanied by a sudden increase in headwind component, a likely combination and one that proved to be too much for the crew in the following case
The aircraft remained on the glide slope until the captain disengaged the autopilot near the middle marker after the flight engineer called "three hundred feet." Almost immediately, the first officer spotted the approach lights off to his right
at about the one to two oclock position at about the one to two o'clock position. The captain looked
up, saw the lights, and manually banked the jumbo to align up, saw the lights, and manually banked the jumbo to align
it with the runway. The autothrottle system remained coupled to the automatic speed command of 145 knots . After the pilot aligned the aircraft with the runway, the flight engineer called "decision height." Realizing that the aircraft was below glide
path and low, the captain manually over-rode the autothrottl system and increased back pressure slightly. In spite of the co and flight engineer cautioned the captain. More power wa applied but the jumbo continued its rapid descent and the ircraft's right main landing gear struck an approach light pier and was ripped off."

Approximate winds encountered during ILS approach

$\begin{aligned} & \text { Altitude } \\ & \text { (feet) } \end{aligned}$	Direction (magnetic)	Speed (knots)	Longitudinal Component	Lateral Component
1,000	1910	35	23.0 tail-wind	26.0 left crosswind
900	$191{ }^{\circ}$	32	22.6	
800	$193{ }^{\circ}$	31	22.15	25.4
700	1950	30	21.7	25.1
600	1970	28	20.4	24.3
500	$200{ }^{\circ}$	24	18.0	23.0
400	2050	20	11.8	17.3
300	$225{ }^{\circ}$	15	5.8	12.1
200	$260{ }^{\circ}$	12	3.3 head wind	4.1
100	$310{ }^{\circ}$	8	6.0	2.0
Surface	315°	8	4.0	2.0

Approximate wind conditions encountered during this approach were computed from information available in the fligh data recorder and are presented in Table I. Note the fairly stable wind conditions at the beginning and end of the ap proach path, the significant lateral and longitudinal shears of 8 and 9 knots per 100 ft between the 300 and 200 ft levels. Analysis of the flight recorder data showed that the autopilot automatically coupled to the ILS) compensated for the initial power surplus situation, presumably without the pilot's aware ness, leaving him to cope with the ultimate power deficient stage of the wind shear effect. Fortunately, although the airraft settled on the runway, skidded and burned, there were fataiities and comparatively few injuries
Sudden wind shears during the take off phase of aircraft sociated with the approach. Sharply increasing heaswind com-
ponents serve only to enhance the climb gradient, a negative problem. The monster, like the gremlins, is sometimes bene
volent. Sharply decreasing headwind components during climb out will result in a power deficient situation which may require a decrease in climb gradient and a consequent reduction in the margin of obstacle clearance. Sharp changes in the ateral wind speed during climb out may displace the aircraft beyond the normal obstacle clearance segment if the intended climb out path is not monitored closely and maintained.
Having analyzed the monster's "MO" let's consider his habitat. Low level wind shears, of sufficient strength to create real problems, will invariably be associated with steep temperature gradients and/or obstructions to the wind flow such as
large buildings, mountains and valleys. When considering the occurrence of steep temperature gradients the warm and cold front come quickly to mind but don't forget that some of the steepest temperature gradients are associated with night time radiational cooling which can foster marked low level wind shears. Foehn type winds, like the Chinook, are also associated with steep temperature gradients and strong wind shears. Lesser temperature gradients and wind shears are associated with sea and land breezes as well as anabatic and katabatic winds.
Everybody realizes that extreme wind shears are associated with thunderstorms. Even the untrained observer will recog. ections and speeds of movement of clouds at different levels and/or locations in a thunderstorm's vicinity. It is imperative to remember also that a wind shear line associated with the thunderstorm's squall wind can precede the thunderstorm by a considerable distance, with no visible evidence of its prescence. Figure 3 illustrates the situation
Statistics show that the maximum number of cases of strong shears occur in a stable flow or within a stable atmosthe nickname "LO-BLO". Add his name to your weather check list. Think of those clear cold prairie nights. Watch out! Be prepared! Don't let LO-BLO get you!

CAUGHT IN THE ACT

During preflight inspection a UH-1N, the helicopter mechanic discovered an oil leak in the combining gearbox compartment. After removing access panels and wiping off excess oil, he checked the area with the engines running, but there was no further trace of the leak. Engines were shut down, panels replaced, and number two engine restarted. As he accomplish-
ed a routine post engine-start leak check, he spotted an oil leak ed a routine post engine-start leak check, he spotted an oil leak
near the oil cooler blower. Without informing the pilots, the mechanic attempted to wipe the oil with a rag. But the oil cooler blower sucked the rag from his hand and promptly gobbled it up, damaging the blower. Investigators pointed out that there was no communication or coordination between the mechanic and the pilots concerning the mechanic's intended action

The unit to which the helicopter is assigned no longer uses rags to wipe up oil leaks in the combining gearbox on " N " model Hueys while engines are running.

Courtesy MAC Flyer

COLLECTIVE CHALLENGE-76

The tasks were easy, all the competitors had to do were, put a weight on the end of a 35 foot rope into a barrel, takewithout a to five unknown locations, fly a navigation trip and then fly a three minute circuit also to the exact second, and finally identify the location of 12 air photos by a six figure grid reference
The 430 ETAH team from Valcartier performed the tasks better than any other 10 TAG team and were rewarded by
winning the General Turcot Trophy in the second annual 10 winning the General Turcot Trophy in the second annual 10 Twelve crews participated in this year's competitio by 430 ETAH in CFB Valcartier. The crews came from all the 10 TAG helicopter squadrons and competed as squadron teams made up of two crews per team, one CH-136 crew and one CH- 135 crew. The 450 Sqn team had one crew each from dmonton and Ottawa flying the CH-147.
The competition consisted of five separate events spread points for errors made and the lowest aggragate of points de cided the winners
The first event was a two part navigation exercise. On the first part the crews were given, one minute prior to lift of only the heading on which to depart. After passing a given location they were then allowed to request the grid reference were given in code, which is not a very difficult problem for the crew as long as they used the proper code to decipher the message. The second part of the navigation test was a pre planned trip with the crews getting the check points and average ground speeds one hour before departure time. At each check point the crew had to land and get the exact time enter d on their \log cards by the check point officials on the time being the time for the end of one leg and the start of the

Events two and three were hovering events to test crew ability and co-operation. For number two event a crew member on board the helicopter held one end of a 35 foot rope with a weight attached to the other end. The objective of the解 barrel, and then land behind a finish line. The most difficul art of this task seemed to be landing the helicopter
end of a rope forward, sidewards, and backwards down a one meter wide corridor which was marked out on the ground The helicopters were back into the air (500^{\prime} AGL) for the last two events. For the fourth event the competitors wer timed leaving the heliport and arriving overhead at a destina ion airfied. They were then timed to the closest second on six mile track to fly before they ran off the map. They then had to continue for a further 10 miles and then locate themselves on a small square of map provided by the organizers Points were awarded for each 10 meters they were off from where they should have been. Several of the participants ound much to their dismay that they could fly the trip muct more accurately than they could guess where they shoul

The old weight in the barrel trick.
BGen Lacroix is oftered some champagne from the Gen Turcot Trophy

LCol Lehmann, CO 430 ETAH, and his winning crews accepting the Gen Turcot Trophy from LGen Turcot. The winning members are from
left to right Capt Lemieux, Capt Cauchon, Sgt Jobin, Capt Desrosiers, and MCpl Turcotte

The welcoming committee greets new arrivals. Maj Norm Guay and
others greet Maj Zvanitajs and Capt Robertson

The final test was photo recognition. Each crew was given 12 air photos and a short two leg route to fly. All that was required of the crew was to identify the location of each photo on their map by a six figure grid reference. The photos were taken right along track and a couple of crews found that
ver the ground where the pictures were taken they don find what they were looking for
The competition ended with an all ranks presentation wreot (setid) Jurcot (retired) presen (heis year the competition bro
from all across Canada to compete in precise and demandin
events. While there can only be one winner, everyone won with the experiences, fellowships, and co-operation gained, throughout the week. The spirit and enthusiasm of the competitors can probably best de described by the casual remark or one of che - "The pilots upon retung from thoto more pictures than we did, but it sure is crowded with four guys in the cockpit"

maintain your cool

BY Capt Kirkwood

The unending flow of incident reports that has crossed my esk in the last few months contains a large number of hype ventilation incidents. Many of these resulted from pilo apprehension over an aircraft problem. In a couple of cases, he pilot hyperventilated while reacting to a suspected prob hyperventilation was more serious than the aircraft mal hyperventilation was
The second of the three basic rules for aircraft emergencies Analyze the situation and take proper action." There are very few emergencies in the ATC aircraft we fly that demand in instantaneous response
With this in mind, let's look at some advice given to m years ago by an "old head." His method for dealing with emer encies was to take a deep breath and say "What have we hould do ""He then would take action and wo What is the worst possible consequence of this situation? His method involved very calculated, deliberate, and timely actions without any evidence of hurrying. This metered re ponse also fosters an organized, unexcited frame of mind After considering the worst possible consequence and ex cuting his plan to resolve the situation, he turned his attentio to himself and asked "Am I in immediate danger," and "
what point should this danger be past." Establishing this fact prevents one's excitement level from increasing unnecessarily past the time when there is a reason for it. Obviously, this technique would have to be modified for a low altitude, critical emergency such a
the same principles
the same principles apply, During stressful situations, people experience a "time compression." This is the familiar "a second seems like an hour" feeling and often leads to very rushed and, hence, inaccurate
action. The human mind functions quite rapidly at times like this. Rate of speech is also increased but not to the same extent. Verbalizing your thoughts can provide the slowing effect needed for an objective evaluation and accurate re sponse. Hearing your own voice may also give you a key to just how excited you really are.
In addition to plain excitement, there is one other common cause for hyperventilation. If you have gone to 100 percent and Emergency on your O_{2} regulator, you are pressure breath ing. You must make a concentrated effort not to breathe too deeply or rapidly when O_{2} is being rammed down your Let's try to maintain our cool and keep bad situations from getting worse

Hot Rocks and Cold Weather

by Lt Col Richard C. Jones

HO TAC/DOVX

All aircrew members have read, scanned, and perused numerous articles and stories which document the tales and woes of flying machines and of the many problems associated We have all, at one time or another, sat back while readin these documents and said, "Gosh, what a dingbat," "Damn, that was a dumb decision," "Does this guy really fly?," or You've got to be kidding me!'
Now if you're a Hot Rock crew member, you can immediately identify all the inadequate skills the unlucky crew member demonstrated while being involved in an accident or incident, condemn him and then very rationally state unde It isn't essential at all for a Hot Rock to reflect about the current poop he's read or heard regarding winter experien ces, or the high accident potential of cold weather operation or even the trend analysis provided by his squadron and wing stan/eval people. This is not enough evidence for a Hot Rock he's from the old school where "the worse the weather, the greater the challenge!" Hot Rock's philosophy is: "How can a guy win any money on the range or establish the prope
hero image with others in his unit unless he takes a chance o two with excessive crosswinds or by cracking minimums occasionally?" Sure, Hot Rock says he knows about the prob lems associated with winter weather. "Winter complicates our existence; a body can't get to Happy Hour at the club so easily; you can't put the top down on your sports car and le your scarf fly; walking into Operations gets your cigar soggy interesting to watch at the swimming pool!!"
Now wait a minute, Hot Rock, let's try and put things into a more meaningful perspective! Let's look at some rea Hying problems that have occurred because of winter weather fact, I would like to interview you and have you give us our views regarding some incidents and accidents that wer erious demonstrations of poor preparation, lack of proficien
and, perhaps the most serious, bad judgmen
into severe icing? In fact, this guy was this one pilot who got into severe icing? In lact, this guy was iced-over so bad he couldn't see out of the cockpit. He made two missed ap proaches an
starvation."
Hot Rock: "I could have gotten it on the ground. The il flying that machine must have had weak ey
"I see. Well, what about another incident where a tactical pilot landed his bird on an icy runway; his approach was high Off the end he goes, bending the airframe and collapsing both the nose gear and his ego." Hot Rock: "Obviously this pitan necessary when landin on a slick runway. Anyway, just because the command trend on a slick runway. Anyway, just because the command trend
analysis program identified this particular area of flying - too
high and hot during instrument approaches - as an adverse trend, it ain't necessarily so. Good pilots like me thrive on thi type of challenge."

Well, Hot Rock, what do you think about the T-39 pilot who tried to bust minimums trying to get home? He hit
three miles short of the runway, destroyed the aircraft, killed himself, the co-pilot and three passengers.
Hot Rock: "Well, this pilot must have been a low-time guy. Experience will prove that when attempting an instru ment approach when the weather is below minimums, if you plan and purposely keep the bird a bit high on the glide and the airspeed on the plus side, you'll be O.K. T've flown at least a dozen below-minimum approaches and the weather is not going to hurt you. Those GCA controllers sure get upset wher you stay high on the glide slope, though."
"O. K. Hot Rock, have your fun. Yo
deal of respect for these GCA guys - they're always available to you when you really need them! Besides, it's not very funny when you're trying to bring in a sick bird with 100 -and-a-half in blowing snow
"Hot Rock, you certainly can analyze a problem. You are probably an expert in other associated weather problems, too;
some that don't involve flying the aircraft. What do you think some that don't involve flying the aircraft. What do you think
about a flight mechanic refueling a big bird and walking on an icy wing? This one slipped off, crushed his spine and paralyzed himself from the waist down
Hot Rock: "I can tell you what I'd do, I'd court martial him for not wearing his parachute! In fact, this reminds me of some experiences I had when I was enlisted. We used to wait until a guy got up high on a maintenance stand. Then we'd kick the brake off and give it a big shove. Boy! We used how to hold on. Besides, that's what they pay those guys to do - if he can't preflight the bird without busting his bippy, that's his problem."
Gee, Hot Rock, you certainly get righi to the heart of the problem. It certainly is enlightening to discuss winter safety with a crew member like you." End of interview

All Hot Rock types have a reputation for being all speed and no direction. However, it is rewarding and comforting to TAC. Nor do we have crew members who would regard trend analysis, accident reports, or flying safety bulletins with contempt, complacency, or a cavalier attitude - right?
Wrong! Unfortunately we do have our share of Hot Rock crew members; that dangerous minority who visualize themselves as select individuals and attempt to create an image by
overextending their capabilities and those of their expensive weapons systems. We do have some guys who are sure "this couldn't happen to me," or demonstrate an alarming complacency regarding crew coordination, checklist requirements, flight planning, briefings, approach planning, and/or trend analysis. They scoff at past experiences or significant findings
of accident/incident reports. With this type of attitude, add winter weather and you have a real "smokin' hole" candidate. This know-it-all attitude is a big challenge and can be overcome only if crew members are made to realize that common sense and aircrew professionalism are basic considerations In addition, commanders must provide proper supervision and management techniques to insure that the dangerous attitude of guys like Hot Rock are stamped out.
member and the problems he may pose to tho flyink crew program and the successful completion of the mission. Those of us who do see the potential hazards while flying during winter months become deeply concerned. In fact, our concern goes even farther. Since experience shows winter flying to be more hazardous than flying during the summer months we're providing a self-inspection check. We're trying to cover all types of ar ". so wether Operation" shapter apply Dash One

WINTER FLYING CHECKLIST

A. Flight Planning
. Check for proper personal and survival equipment
2. Check enroute, terminal, and alternate weather.
3. Check enroute, terminal, and alternate NOTAMS
4. determine if NAVAIDS are operational.

Review weather forecasts for icing, turbulence, or
B. Pre-Flight

1. Insure frost, snow, and ice are removed from air craft.
2. Pre-heat engines if required
3. Pre-heat cockpit.
4. Check fuel drains for water and presence of ice
5. Check for ice on pitot tubes and static po
6. Check closely for fuel, oil, and hydraulic leak cold weather means rapid expansion and contrac tion of fluid lines and connections.
C. Start/Taxi/Run-up
7. Check cockpit/cabin or flight compartment for heat.
8. Check operation of anti/de-ice system.
9. Review cold weather starting procedures and limitations
10. Exercise caution when taxiing and during engin
11. Direct ground crewnen to observe wing flap or
other system operations.
12. Remember that painted areas on runways and taxi

Ways are more slippery than non-painted areas.
7. Allow adequate warm-up of flight instruments radio/NAVAIIS
flight manual.
8. Maintain extra clearance from obstructions durin
brake and/or reverse checks - watch for skids
9. Insure proper oil temperatures prior to high engine power settings
0. Watch for creeping during engine run-up; run up symmetrical engines if required (multi-engine)
D. Takeoff

1. Turn on anti and de-ice equipment prior to takeoff,
in accordance with your Dash One.
2. If necessary, use asymmetrical power to maintain
directional control on an icy runway.
3. Recycle landing gear and flaps, if in accordance with your flight manual.
structural icing during climb-out.
. Maintain engine temperature within limits, for antiice operation.
4. Use Pilot-to-Metro Service and enroute radios for significant enroute and destination weather and don't forget to give PIREPs if you encounter weather hazards

Be aware of alternate requirements/facilities.

Descen

1. Use additional power on reciprocating engines to prevent cooling. For jets, keep the RPM up to
insure adequate compressor bleed air.
. Consider the use of flaps and gear, if required, to descend.
2. Turn windshield heat on; use defrosters.
3. Use ATIS, if available, to review current weather a tanding information.
4. Deternine tace approach to be flown and your 6. Take note of any significtegory minimums.
area.
5. Review approach plate for the following:
a. Decision height, minimum descent altitude

Emergency altitudes
c. Missed approach/go-around procedures
8. Review approach and landing lighting
10. Determine recommended rate of descent from in-
strument approach procedure chart.
11. Determine runway conditions to include length,
12. Stopping distance, and RCR.
12. Consider increasing airspeed if ice has accumulated
on aircraft.
3. Use minimal reverse thrust initially (if applicable) if ice is on runway.
15. Be aware of nose wheel steering capabilities and restrictions.

16. Slow to taxi speed before turning off runway and | taxi with caution |
| :--- |

G. Shutdown

1. Insure proper chocks or sand bags are used for slippery surfaces.
2. After wheels are chocked, release parking brakes. 3. To prevent frosting of windows, whenever practical
3. Dilute reciprocating engines if required.

If you are a professional aircrew member, the above checklist will contain some valid and thought provoking tems. If you are a Hot Rock, don't pay any attention to his. You may want to get the recognition as TAC's next winter flying statistic.

Otter Challenge -76

Like the Belmont Stakes, Otter Challenge is the third jewel in the crown of 10 Tactical Air Group sponsored flying competitions. It has become an annual event hosted in the past
by CFB Cold Lake, CFB Montreal and most recently, on the 15th of May passed, by CFB Trenton. The challenge is a competition between Air Reserve Squadrons using the CSR 123 "Steam" Otter aircraft in the light transport role. For the uninitiated, the light transport role as applied to the Air Reserve involves much more than flying passengers and luggage from A to B. It includes low level navigation missions that must be, and are, flown to a time over
target tolerance of plus or minus 30 seconds. To a " B " 104 pilot this may seem to be a generous allowance but how do you gain or lose 30 seconds if you can only adjust your ground speed by 5 KTS?
Visual and photo reconnaissance missions are flown by the Air Reservist using the same criterion for accuracy and detail as that required by Regular Force pilots flying aircraft much more suitably equipped
The Otter aircraft is an excellent platform and is used frequently for parachute and free fall supply dropping mis-
sions. Close crew co-operation ensures accuracy and safety. It is usually a very short walk from the target to where the item dropped comes to rest.
Any one ever having watched an Otter take-off or land can not help but be impressed with the small amount of runway used. Maximum take-off performance distances of betemperature conditions. temperature conditions.
The Otter Challenge Competition included all the aforementioned exercises in one $1-1 / 2$ hour mission. Each squadron was invited to enter four crews consisting of the pilot, technical crewman, and safety crewman. Squadron crews were as-
signed different routes so that there would be no temptation signed different routes so that there would be no temptation
to compare notes. An airborne umpire flying a Kiowa helicopto compare notes. An airborne umpire flying a Kiowa hericop-
ter observed selected targets throughout the day to ensure programmed altitudes were adhered to and that missed targets
grater were not "re-attacked". Thanks to the co-operation of CFB throughout the morning and into the late afternoon. When the moke had settled, (Otter exhaust) the winners were declared. During the social evening that followed, Col R.M. Edwards, Deputy Commander Air Transport Group, presented the BGen Howard Trophy to Montrealer, Capt Ivan Morrell and his 438 score of 475 points out of a possible 540 . The second place crew was only one point off the pace with 474 points and only 15 points separated the first four crews. The BGen Rohmer Trophy, awarded for the first time this year to the Air Reserve Squadron obtaining the highest cumulative point score in the competition, was presented to Maj Bill Turnbull, team leader from 411 Air Reserve Squadron Toronto by Col J.R. Pattee,
Deputy Commander Air Reserve Group.

Capt Ivan Morrell, 438 ARS St Hubert, winner of the BGen Howard trophy.

Radar Approaches-Control

 Information After Control LimitsThe 1975 Check Pilot Conference recommended that the procedure of transmitting elevation information to aircraf after passing radar control limits on a PAR be re-instituted Commands and Groups were queried on this proposal and all agreed that in the interest of flight safety the information should be provided.

Therefore, commencing 1 Aug 76 final controllers will provide aircraft conducting PARs with control instructions to Surveillance approaches are unchanged.

Working on the flightline is much different in the winter han in summer. Everything takes longer when it's cold, partly because there's more to do, such as deicing and preheating
People don't move as fast in bulky cold weather clothing. AGE is hard to start. Vechicles must move more slowly
With the winter here for some and approaching soon for others, we talked to flightline supervisors at five northern bases. All have had years of cold weather experience. We put together the following article from their comments.

PREPARATION

Winter preparations begin as early as the close of last winter and as late as 90 days before the first snowfall is predicted When you read this, it will be too late. Equipment and people hould already be prepared. Snow fence should be up. Deic and preheat equipment should be checked out and fully opera-
tional. Safety ropes, and harnesses, anti-freeze, squeegies. tional. Safety ropes, and harnesses, anti-freeze, squeegies rooms, shovels, deicing fluid and cold weather clothing shoul be available and ready for use.
Some bases brief all newcomers about cold weather main
 on the subject just before winter hits. People have to be recertified on handling the equipment and reminded to check out sufficient cold weather gear. Supervisors can't assume that everyone knows about frostbite, chill factors, warm hand ticking to cold tools, carbon monoxide poisoning, slippery urfaces, the importance of deicing and preheating and the ike.

SNOW REMOVAL

Everyone agreed on the importance of snow removal. Sand and salt are never used because of the FOD and corrosion Toblems they cause One base uses urea but and corrosion now the hard way right down to the bare ramp. Snow re moval is especially important where aircraft are parked. The dangers of aircraft sliding forward and jumping chocks during engine runs are obvious. Choppers have a tendency to turn.
Traction is not a problem with just aircraft. People and ehicles can also skip and slide, if the ramp is not cleare popery. People shoald ed tires won hands down. Speaking about chains, have you ever tried to tow an aircraft on ice? Chains or no chains a clean ramp is the only route to go.
Grounding point must be kept clear. This is very important because when it gets cold the dangers of static electricic increase as the humidity goes down. People think there is le langer of fire when it gets cold n. Pople. The increased doesn't evaporate away as quickly together create a real danger.
DEICING
On the subject of deicing, the most important word is coordination between operations and maintenance. Comexactly when the aircraft will depart. If the aircraft is delayed
the entire deicing operation may have to be repeated. This is especially important since the cost of deicing fluid is expected to almost double. The best way to conserve deice fluid is to clean the aircraft first. Some bases use the broom/satety harness method and others blow dry snow off with the MB-3 snows whether they are going to fly or not This is done for two reasons: The snow is easier to remove, and there is better chance the sun will help keep the aircraft clear. Most units park aircraft with the flaps and slats retracted. No matter how you cut it, snow removal is a dangerous operation and that's why everybody tries to do it during daylight hours and with low winds.
The deicing fluid is generally diluted to a mixture that will be effective to 20 degrees below the expected low temperature. Of course a 100% mixture is used on alert aircraft.
sized. Ice and frost can jam controls, destroy the airflow over the wings, and add considerable weight to an aircraft.

PEOPLE PROBLEMS

The biggest people problem stated was the rush factor to get out of the cold. It causes tunnel vision to get the job done without regard for safety. Take the guy who orders a fuel servicing cart and about 45 minutes later one shows up. He is reluctant to order another if a leak develops on the one he has. don't get proper rest and nutrition, they fatigue faster and tend to become more irritable. When they become more irritable, any small problems are accentuated.
Supervisors sometimes have a hard time convincing a man to go in to warm up. That's the reason for the buddy system It takes about one winter for a man to get accustomed to working in the cold. The cold weather maintenance classes seem to be no substitute for actual experience. People don't
realize how fast flesh freezes in sub-zero cold, the value of air realize how fast flesh freezes in sub-zero cold, the value of air
space in clothing and boots, or how easy it is to slip off an icy aircraft. They don't believe that clean clothes are warmer than dirty or greasy clothing. They don't take the time to put down the ice pegs on ladders.
Unless you've experienced a white-out how can you know how bad it is? It can cause complete disorientation. Chopper spotters can tell you that it can happen in an instant. They have an agreement with the pilots whereby everybody goes see them, both the chopper and crew chief move to their right People don't see well if their parkas are zipped full up and vehicle drivers have difficulty seeing when the windshield is covered with frost. Add these two facts together and you have a dangerous conbination

EXPOSURE CONTROL

Exposure control methods vary but basically they are designed to make sure nobody stays out in the cold too long, depending upon the temperature and wind (chill factor). We
don't want anyone to crawl into a lite-all to get out of the cold don't want anyone to crawl into a lite-all to get out of the cold and die from carbon monoxide poisoning. Nost places The local commander usually determines how long people can stay out. At one base the flightline is closed for maintenance at - $50 \mathrm{~F}^{\mathrm{O}}$ effective temperature. If they've got to go out when the temperature is lower than that, time limits are set. The maximum time out at $-60^{\circ} \mathrm{F}$ (effective) is 10 minutes and would appeciate your comments or actul experi-to your

The Elusive Cotter Pin

Earlier this year a USAF T-38A Aircraft was abandoned and subsequently destroyed because a cotter pin had not been installed in one of the flight control system connections. This was not an isolated case but acutally occurs all too frequently in most air forces.
A review of USAF and Allied Air Force accident and incident reports associated with flight control system separation over the past few years revealed a series of events where a
single missing cotter pin was a major contributing factor. single missing cotter pin was a major contributing factor. today's tactical aircraft that has a more important function than the cotter pin. It is widely used throughout the manufacture and assembly of the F-5 and other tactical and commercial aircraft, and one of its more important functions is to join and hold securely aircraft flight control system connections. In view of this, the improper installation of, or the failure of control of the aircraft, often resulting in the destruction of the aircraft and injury to the crew
The selection of the combination of castellated nut and cotter pin as a fastener from a large variety of aircraft fasteners is determined by numerous factors: the environmental effect of heat and chemical action, vibration, relative motion, and stresses to which the assembled parts are subjected. However, the most important factor is the frequency of fastener removal ments or to open up an access area to other components of the aircraft. Such frequent removal of a locknut would destroy its locking capabilities.
The design engineers say that for securing certain assemblies the castellated nut and cotter pin combination is outstanding in ensuring a positive lock. A careful inspection of the castellated nut and cotter pin fastener assembly suggests why. When nut and bolt it passes through the common axis of both. The
forces required to separate the nut from the bolt are consider ably greater than those that are exerted during normal oper ably greater than those that are exerted during normal opera
tion. This locking feature is the cotter pin's greatest contribu tion and accounts for its long history of usage as a mechanical fastener.
Little skill is required to secure the castellated nut, bolt and cotter pin. The only requirement is to tighten the nut to th low side of the torque range and, if necessary, tighten until should not be loosened to obtain lignment. Then insert and secure the cotter pin.
One major disadvantage of the cotter pin is its small size, and because of this it is occasionally overlooked and omitte during assembly or maintenance. Furthermore, its small size helps it to escape the scrutiny of the mechanics and inspectors The loss of any portion of the flight control system because
of system separation reflects the importance of the function of the cotter pin. Failure to verify the completion of an as sembly or maintenance task often creates alarming situations A quick review of the accident and incident reports indicates no particular part of the flight control system is immune. Some malfunctions were actually discovered before takeof but were imporperly diagnosed by the pilot. However, most separations come as a surprise to the pilot and often during crucial manoeuver such as outlined below.
During a formation join-up, the instructor pilot occupying the rear cockpit quickly responded to the alarm from the
pilot in the front cockpit that he had no aileron control. The aileron control had become disconnected from the front cock pit control stick. Two ROK air force pilots experienced a jammed aileron while performing a high rate aileron roll that required maximum flying skill to avoid the destruction of the aircraft (note Figure 1). An aircraft with a disconnected rudder was successfully abandoned moments after takeof
covery from an air-to-ground training sortie. During pullup the aircraft began to roll to the left; the roll was stopped by applying as much force as the pilot could exert on the righ alleron. Fortunately, there was a nearby auxiliary runway where he landed before his strength diminished.
Missing cotter pins are also related to other systems and even to the ejection seat. There were two incidents where seat belt initiators have unexpectedly fired during seat adjust a cotter pin in the canopy balance spring that allowed th retainer spring assembly to backout. When the seat was raised, the bell crank caught on the retainer spring pin and fired the initiator and man/seat separator. This forced the pilot onto the control stick and instrument panel. Another simple oversigh became apparent shortly after takeoff when the pilot noticed the aft stick movements were becoming increasingly more difficult and finally became almost impossible. A new pitch fore and aft attach bolts were not installed. The pitch trim had dropped free and became wedged against the airframe.
The accident and incident reports discussed in this article were but a few of those reviewed, and all were caused by the omission of something as apparently simple as a cotter pin.

In each case the postflight inspection revealed the castellated In each case the postflight inspection revealed the casteliated and the linkage was found disconnected. The nut had fallen off because it did not have a cotter pin installed, and furthermore, the required inspections following the last maintenance performed in this area had failed to detect the missing cotter pin.
Cotter pin and castellated nut usage has declined in recent years, but not because technology has developed a better fesmissing cotter pin. Occasionally, a system control will become disconnected because of metal fatigue, but in the vast majority of cases the mechanic and/or quality control inspector is at fault. The acceptance of maintenance responsibility is a cornerstone of air safety
Quality assurance is fundamentally the grass roots of knowledge and attitude. How can we ensure that the individual rectly? The answer is strong management and verification programs - programs designed to foster understanding of the quality assurance mission and to make the technician aware of his individual contribution toward the overall quality goal. This is essentially what quality awareness is all about.

Northrop F. 5 Technical Digest

here's how to install cotter pins

PREFERRED INSTALLATION
ALTERNATIVE INSTALLATION
Figure 1
Shown in Figure 1 are the preferred and alternate methods of cotter pin installatio Figure 2 shows unsatisfactory installations.

HEAD AND UPPER PRONG NOT FIRMLY SEATED AGAINST BOLT

COTTER PIN ABOVE NUT

Amid the cheers of thousands of wellwishers, a silver grey monster of the skies dipped through the early morning haze
at Lakehurst. New Jersey, on August 29 , 1929 By circling the at Lakehurst, New Jersey, on August 29, 1929. By circling the
globe in only 21 days with a load of paying passengers at globe in only 21 days with a load of paying passengers at
$\$ 9,000$ a ticket the Graf Zeppelin seemed to have proven the economic and aerodynamic practicability of the airship. What happened to the idea, and why does it still capture the imagination of designers and transportation executives? If you put these questions to Ralph Schncider, President
of the Canadian Airship Development Corporation he would probably tell you that the airship was the viction of circumprobably tell you that the airship was the victim of circum-
stance - the idea arrived before the technology needed to exploit it. And he would hasten to add that this is no longer the case.
"First of all we don't have the safety problems associated with hydrogen anymore. Helium has become a plentiful and relatively inexpensive by-product of natural gas production. It
is no longer necessary to use primitive materials either why is no longer necessary to use primitive materials either - why
they used animal tissue to line the gas bags in the early days," he grins, "and don't forget the computers and new navigation aids - they're solving a lot of design and operating riddles." Mr. Schneider, a Naval Architect and Aeronautical Engineer, is also President of Hoverjet, a firm which manufactures hovercraft equipment.
He stresses that the only way to sort out the many conflicting opinions about the value of airships is to construct a small one with contemporary materials and technology and That is why th
tion of the prototype CAD-1, scheduled to fly in early 1977. This time around the airship is envisaged as an aerial freight train rather than a people-carrier.
"The beauty of the airship is the constant lift-regardless of speed. It can take off or come to rest almost vertically and it can hover almost inde finitely," says Mr. Schneider.
Although airships are not able to compete with convenreason there is a special place for them in communications and transport. Swivelling engines controlled by wind gust sensors will make them much more manoeuverable than they were in the old days. The conventional mooring process will be replaced by a system of winches which will load and unload
containerized cargo from the hover containerized cargo from the hover mode. This way goods can eliminating any intermediate form of transport, thus improv
ing cargo safety and security

- The airship should also be useful for tourist cruising, scientific exploration, disaster relief, surveying, and as a monitor The CAD-1 is being built teer group consisting of aeronautical engineers, model build university professors and students as well as enthusiastic mem bers of Mr. Schneider's Hoverjet staff. It is of the non-rigid or "blimp" type, 120 feet long, 40 feet in diameter and power ed by two $100 H P$ Continental aircraft engines. It will be float ed by $92,000 \mathrm{cu}$. ft. of helium and will carry a payload of 1575 pounds.
As the wheel has no counterpart in nature, it was truly the product of the inventiveness of mankind's early engineers
Man's ambition to fly early times, by watching the other hand, was inspired in very of Icarus' unfortunate experience. Da Vinci and other in ventors toyed with the idea of flight for hundreds of years but it was not until 1783 that air travel was first accomplished by de Rozier and d'Arlandes in the Montgolfier brothers
paper balloon. However, the one-way haphazard balloon paper balloon. However, the one-way haphazard balloon
flights were little more than very dangerous entertainment for early air travelers. The ability to propel and steer the balloon was still to be developed.
"Aeronauts" began sailing around in powered and controlled airships in 1852 (over 50 years before the Wright Brothers), when a Frenchman named Giffard made a 17 -mile flight near Paris using a three horsepower steam engine. By 1873 ,
another Frenchman names Spiess developed the theories of another Frenchman names Spiess developed the theories of
balloon construction sufficiently to be able to patent the basic principles of the rigid airship or structurally-supported balloon. But it was not until over twenty years later that construction of the first rigid airship was begun in Germany, by an Austrian engineer named Schwartz. The ship had an aluminum framework and was covered by aluminum sheeting eight-thousandths of an inch thick
The one and only test flight was noted by a wealthy, retired
army officer, Count Ferdinand yon Zeppelin army officer, Count Ferdinand von Zeppelin, a name that was
to become synonymous with rigid airship development. He had been a balloonist with General Grant's army during the American Revolution and as a result was interested in their military potential. The Count began construction of one of his own airships in 1898 using Schwartz's idea of an aluminum
framework but using fabric covering framework but using fabric covering. Nine years and three
prototypes later, he had ironed out most of the problems

The GRAF ZEPPELIN which for nine long years ruled the skies of the
world covering a distance of $1,053,389$ miles and carrying 16,000 world covering a distance of
paying and satisfied customers.

The Goodyear "Early Warning" blimps which served with the U.S.
Navy until 1962 were the largest and last of 242 built for that Service. A rotating 40 feet radar antenna was housed in the 85 foot diameter envelope. The "ZPG 3 W" was 400 feet long, weighed 47 tons ame was
powered by two 1525 h.p. engines which gave the craft a speed of 90 powered bey two $152 \mathrm{~h} . \mathrm{p}$. engines which gave the cratt a speed of 90
mph, a useful load of 11 tons and a range of 5,000 miles. The 24 -man crev. was accommodated comfortably in an 83 foot gondola on cruise
which could last up to 80 hours. which could last up to 80 hours.

The designed role of the U.S. Navy Zeppelin aircraft carriers Akron and Macon (shown here) was to conduct long range over water re-
connaissance and search operations. Cruising at 60 miles per hour witl their "hook on" aircraft 50 miterations. Cruising at ather flank, these parshous wiuld search a path 200 mil
a day in good weather.
of construction, power and mooring and in October 1907, the "LZ-3" flew successfully, so impressing the German Military Board that they bought it. With his next airship he de monstrated the commercial viability of this new form of tra vel by crossing the Alps to Switzerland and returning in only
12 hours. By 1910, he had formed his own air transport company and in four years carried thousands of paying passenger at fares ranging from $\$ 50$ to $\$ 150$ depending on the length of the jaunt. His company flew over 100,000 miles without a fatality - an amazing accomplishment in those days
When war broke in 1914, Zeppelins were pressed into
military service Ger military service. German strategists believed the airship was the key to victory and ambitious plans were evolved to exploit continuous development, the Zeppelin never succeeded in becoming a worthwhile military wea
Captured German warcraft did, however, help to sow the seeds that led to the postwar development of airships in other countries, namely the U.S.A., Italy and Britain.
The 1920's and 30's became the golden age for airships and at the same time their darkest hour. In 1923, the American became the first rigid airship to fly with safe helium rather than flammable hydrogen gas. In 1926 the Italian-built Norge flew 2700 miles from Italy over the North Pole to Alaska.
Lighter than air Transatlantic travel had been attempted as early as 1910, and in 1919 the British R34 succeeded in making the round trip with 31 passengers. in 1930 the R100 visited Montreal as part of her trials, crossing the Atlantic the R101's tragic crash in the same year and were buried with the economic depression. Only the Germans persisted with regular scheduled airship service to South America.
Hugo Eckener, the new champion of the airship in Germany realized the shortcomings of earlier designs and planned an even larger craft which would link his country with North America. The last word in design, the new Zeppelin had acfeet long had hydreg capacity of 7,000000 cubic feet feet long, had a hydrogen capacity of $7,000,000$ cubic feet ad produced over 5,000 horsepower!
fortable, spacious and popular with its crew. There were three bars, a library, sick bay, dining room, lounge with piano,
4. Cette scène du récent film de Warner Brothers "Zeppelin" nous
fait voir quel destin ont connu le "Hindenburg" et les dirigeables allemands pendant la guerre. Une balle incendiaire, une étincelle d'un pot d'échappement ou drélectricité statique suffisait à transformer ce monstres gavés d'hydrogène en bûchers funéraires.
de sa 35^{e} traversée de l'Atlantique. Trente-cinq des cent personnes qui se trouvaiont an bord perirent et te cho que subit commerical commerical.
Giffard et qu'ils étes souples sillonnaient les cieux depuis qu'ils ne comportaient pas d'armature pour soutenir l'enveloppe, leur perfectionnement fut nécessairement freiné par les matériaux disponibles. La forme des "Blimps" ressemble a celle des ballons et est le résultat de la pression qu'exerce le gaz sur la paroi interne de Taérostat. Leurs dimensions et la au rapport résistance/poids de la toile qui est utilisée. Lorsque les nouvelles toiles synthétiques, légères et résistantes, firent leur apparition, il devint possible d'en faire des blimps plus gros, plus sûrs et plus résistants.
Pendant la Seconde Guerre mondiale, quatorze escadrons américains de blimps fonctionnaient à partir de plus de 50 bases en Amérique du Nord et du Sud, en Afrique et en
Europe Aucun des 89000 navires u 'ils escortèrent ne fut Europe. Aucun des 89000 navires qu'ils escortèrent ne fut l'air pendant dix jours par un temps qui clouait au sol les avions.
Les dimensions et la polyvalence du dirigeable s'accrurent pendant la guerre et le perfectionnement du blimp atteignit son point culminant en 1958 avec le lancement, par la compagnie Goodyear, de dirigeables de détection avancée d'une longueur de 400 pieds. Le dernier des blimps de la Marine améri-
caine fut mit au rancart en 1962 . L'utilisation de l'hélicoptère caine fut mit au rancart en 1962. L'utilisation de l'hélicoptère Et qu'en est-il de l'avenir du diri qu'a connu au cours des ans l'escadron publicitaire de blimps de Goodyear ouvrira la voie, selon les promoteurs du dirigeable, aux gros modeles de transport. Le "Mayflower", dirigeable de Goodyear transportant des passagers, fut récemment retiré du service après une carrière de huit ans au cours de laquelle il parcourut presqu'un demi-million de milles et passa 12500 heures dans les airs sans inciden
firme britannique pour la construction de dun diriyeable porteur de fret et aux Etats-Unis la NASA a investi des capitaux dans la recherche sur les dirigeables. On prêtend même que la Marine américaine songe encore à employer les blimps pour la chasse aux sous-marins.
Quoiqu'il en sera, il faudra vérifier les avantages uniques du dirigeable (montté verticale, faibles niveaux de bruit, dictions des visionnaires ne se réalisent une fois pour toutes Ralph Schneider et le CAD-1 du Canada fourniront quel. ques réponses à ces questions.

5. Les constructeurs du Zeppelin n’avaient jamais entendu parter de la cabine "bôte à sardine" C Cette photo de le la alle a a manger du R100
témoigne bien de le l'immensité des dirigeables dass les anées, témoigne bien de l'immensité des dirigeables dans les années 30 . Le
R100 comtait 25 confortables cabines à deux couchettes, toutes situées devant tes moturs dans la a acelle ed esorte qu'elles étaient pra-
tiquement insonorisése et exmptes de vibrations. tiquement insonorisées et exemptes de vibrations.

6. Les enthousiastes qui ont goûté aux joies du vol en ballon conser vent précieusement leur carte de membre du club des dirigeables. La
copagnie Goodyear exploite quatre petits dirigeables à partir de bases copagnie Goodyear exploite quatre petits dirigeables a partir de bases
í Los Angeles, Houston et Miami aux États-Unis, et Rome en Italie. Les vols ne coutcout qu"une bagatelle et et entrent dans Ie cadre du pro ramme de relations publiques de la compagnie. A licure actuelle,
es ballons sont les seuls dirigeables au monde transportant des pas eses bal
sagers.

. Les quatre derniers dirigeables transportant des passagers sont exploités aux États-Unis et en Europe par leur fabricant, la compagni Goodyear. Ils parcourent plus de 10000 milles par année
portent 24000 passagers dans leur rôle de relations publiques.

Comments

COMMUNICATION

Last year, in the world of commercial aviation a number of accidents happened which could probably have been avoided had aircrew made some pireps or at least well timed remarks to Tower. In particular, wind-shear and severe turbulence on final át times were experienced but not reported. Finally, someone lands, crashes and everyone stotes, "Oh yes, we had problems on landing due to
turbulence etc." Pass the word - if an unsafe condition or flight hazard exists, relay the information to the tower and other fights.
This could pertain to birds, wind-shear, turbulence, ice and This could pertain to birds, wind-shear, turbulence, ice ance. Snow, braking conditions, or anytherise your judgement and responsibility. Help the guy behind you live to fly another day.

SUBJECT: SHORT ARTICLE ON "BIRD HAZARDS TO AIRCRAFT'
"Bird Hazards to Aircraft" is a detailed review of the serious problem of bird/aircraft collisions. The book is the result of years of research and was written under the Aircraft, National Research Council of Canada. It is inter national in scope and discusses most aspects of this complicated subject.
Sufficient copies of "Bird Hazards to Aircraft" have been distributed throughout the Canadian Forces to pro vide those most responsible for aircraft accident prevention copy for
Centre, Supply and services Ottawa from the Publishing er Clarke, Irwin \& Company Limited 791 St. Clair Ave West Toronto. The hard cover edition costs $\$ 9.50$ and the soft cover $\$ 5.95$ plus handling expenses.

THE FIVE COMMANDMENTS
(NOTE - these commandments didn't arrive on a mountain top and are not carved in stone. They are however, of tremendous value - they too many lives.)

1. Before all else - control your aircraft, or all is lost
2. Avoid inadvertent contact with the earth or its natural or unnatural appendages
3. Do not exceed limitations - neither yours nor those of your aircraft.
4. Think - analytically, before you act. Hasty actions can earn you an eternity in which to repent If the situation is doubtful, act immediately to save yourself. We can buy new airplanes.

NATIONAL DEFENCE HEADQUARTER DIRECTORATE OF FLIGHT SAFETY

1 gunfight af o.d. corral
3 funing in the awareness frequency
4 have an accident - our way

good show

10 low level wind shear
12 collective challenge. 76
13 maintain your cool
14 hot rocks and cold weather
16 otter challenge. 76
17 winter flightline
18 the elusive cotter-pin
20 here come the airships
24 editorial

In a recent issue of the Cold Lake Courier the Base Commander highlighted several points which I feel have an immediate and long term bearing on air operational effectiveness and flight safety. Well said Col Gulyas and, therefore, benefit of Flight Comment readers everywhere.

 (1)
 иоп!
 - appores snd anb lapuersa 1 sa II

 op snid suose snou anb luanuour snou sayply sश 'sәap.reă ap

sa

