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ABSTRACT 
The suitability of alternative tools or proxies for designing fisheries closure area networks 
depends first and foremost on the management objectives and how these are articulated in an 
operational sense. For instance map-based approaches (e.g. habitat suitability models, 
MARXAN analyses) may be appropriate in cases when management objectives are expressed 
simply in terms of a target area to be incorporated into the network. Alternatively, more 
sophisticated simulation models that account for dynamic interactions between fisheries, 
populations, and environmental processes (e.g. ocean circulation) may be required when 
management objectives are expressed in terms of changes in the patterns of distribution or 
abundance of species. In this paper we describe and apply a set of quantitative tools that can 
be used to provide advice on the number, size and spacing of fishery closure areas. The tools 
build on software packages and programs (ArcGIS, RAMAS, R, GRIP) that are currently 
available and being applied to address a broad range of marine spatial planning objectives. 
Together these tools form key components of a simulator that couples four sub-models of 
habitat suitability, metapopulation dynamics, dispersal and fisheries management. We apply 
these tools to demonstrate how they might be used to inform decisions on fishery closure area 
design in Area 12 using Parastichopus californicus as a case study species. We show how the 
results of a model sensitivity analysis can be used to evaluate alternative network designs using 
a range of performance criteria. We conclude with a discussion of how the set of tools may be 
applied to address a broad range of spatial management questions for a broad range of species 
in any area provided sufficient data are available. 

  



 

vi 

Outils de modélisation pour simulation visant à évaluer différents réseaux de 
zones fermées à la pêche des invertébrés benthiques des eaux peu profondes en 

Colombie-Britannique 

RÉSUMÉ 
La pertinence des différents outils ou indicateurs pour la conception de réseaux de zones de 
fermeture des pêches dépend d’abord et avant tout des objectifs de gestion des pêches et de 
leur définition sur le plan opérationnel. Par exemple, les solutions cartographiques (p. ex., 
modèles de qualité de l'habitat, analyses MARXAN) pourraient s'avérer utiles dans les cas où 
les objectifs de gestion sont exprimés simplement en fonction d'une zone cible à intégrer au 
réseau. Par ailleurs, des modèles de simulation plus sophistiqués qui tiennent compte des 
interactions dynamiques entre les pêches, les populations et les processus environnementaux 
(p. ex., la circulation océanique) peuvent être nécessaires lorsque les objectifs de gestion sont 
exprimés en fonction des changements dans les tendances en matière de répartition et 
d'abondance des espèces. Dans le présent document, nous décrivons et utilisons un ensemble 
d’outils quantitatifs pouvant servir à fournir des avis sur le nombre et la taille des zones de 
fermeture des pêches ainsi que l'espacement entre celles-ci. Ces outils sont inspirés de 
progiciels et de programmes (ArcGIS, RAMAS, langage de programmation R, IGOT) 
actuellement disponibles et appliqués à un vaste éventail d'objectifs de planification spatiale 
marine. Ensemble, ces outils constituent les éléments clés d'un simulateur qui regroupe quatre 
sous-modèles : habitat propice, dynamique de métapopulation, dispersion et gestion des 
pêches. Nous appliquons ces outils pour montrer comment ils peuvent servir à éclairer les 
décisions sur la conception des zones de fermeture de la pêche dans la zone 12 au moyen de 
Parastichopus californicus comme espèce à l'étude. Nous démontrons comment les résultats 
d'une analyse de sensibilité du modèle peuvent servir à évaluer d'autres conceptions de 
réseaux au moyen d'une gamme de critères de rendement. Pour conclure, nous analysons la 
façon dont la trousse d’outils peut être appliquée à une large gamme de questions de gestion 
spatiale pour un large spectre d’espèces se trouvant dans une zone donnée, à condition de 
disposer de suffisamment de données.
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1. INTRODUCTION 
Marine reserves are being designed and implemented around the world because they help 
protect ecosystems and to facilitate the management of single or multi-species’ of fisheries 
(Halpern 2003).  Reserves that limit resource extraction can have many beneficial effects on 
populations of marine species, including increases in recruitment, abundance, individual animal 
size and overall biomass (Barrett et al. 2007; Tetreault and Ambrose 2007; Harmelin-Vivien et 
al. 2008; Lester and Halpern 2008).  Increases in recruitment and abundance within reserve 
boundaries may in turn lead to increases outside the reserve through larval dispersal and adult 
spillover effects (Roberts et al. 2001; Russ et al. 2003; Alcala et al. 2005; Francini-Filho and 
Moura 2008; Harmelin-Vivien et al. 2008).  Reserves also provide opportunities to compare the 
structure of populations and species assemblages within reserves to areas where fishing has 
occurred (Schroeter et al. 2001; Francini-Filho and Moura 2008).  Fishery-independent data 
collected in reserves provide the means to monitor natural trends in population abundance and 
to compare trends between fished and unfished areas for improved stock assessment (Hand et 
al. 2009; Barrett et al. 2007).  Reserves are also an investment in an insurance policy against 
uncertainty in stock assessment and management, and against natural calamities.   

There may also be costs associated with implementation of reserves.   Those who are 
economically tied to fishing the species may be negatively impacted in the short term by 
reductions in the total biomass available for harvesting or spatial constraints imposed on where 
fishing can take place.  Reserve implementation may require harvesters to explore new fishing 
grounds which can reduce productivity for a time.  There is a direct cost to creating and 
maintaining reserves, including upfront costs of research, development, consultation, and 
management as technical designs are planned, tested and vetted and costs for monitoring, 
enforcing and managing the reserves once they are implemented.   

Reserve design in marine spatial planning exercises must therefore weigh benefits as well as 
costs and be evaluated against a set of performance criteria that are logically linked to well-
defined management objectives. The types of data needed to evaluate reserve design against 
specified performance criteria also require careful consideration especially as these determine 
the suitability of analytical tools for carrying out the evaluation. Thus, the suitability of alternative 
tools or proxies for designing fisheries closure area networks depends first and foremost on the 
management objectives and how these are articulated in an operational sense. For instance 
map-based approaches (e.g. habitat suitability models, MARXAN analyses) may be appropriate 
in cases when management objectives are expressed simply in terms of a target area to be 
incorporated into the network. Alternatively, more sophisticated simulation models that account 
for dynamic interactions between fisheries, populations, and environmental processes (e.g. 
ocean circulation) may be required when management objectives are expressed in terms of 
changes in the patterns of distribution or abundance of species. Thus, the amount and type of 
information needed for analysis of reserve design depends not only on the type of analysis to be 
carried out, but ultimately on the management objectives and performance criteria that will be 
used to judge reserve design success.  

In British Columbia (BC) resource managers are requesting information and advice on methods 
and biologically-based criteria that can be used to develop a coastwide network of Fishery 
Closure Areas for low mobility, benthic, broadcast spawning invertebrates (sea cucumber, sea 
urchin, bivalves, etc.) for consideration as a management tool.  For many of these commercially 
harvested species in BC, there is limited knowledge of their life history parameters, including 
survival, growth, reproduction and movement patterns.  While commercial fisheries for 
invertebrates are assessed and managed using the precautionary approach (Hand et al. 2009), 
there remains a high level of uncertainty in assumptions made about the life history parameters 
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of these species, and an additional level of precaution, such as a Fishery Closure Area Network, 
could mitigate the associated risks.   

Most research on the design of networks of reserves has focused on mobile fish species, 
whereas research on reserve design for sedentary benthic invertebrates is limited. The goal of 
this paper is to provide a set of tools that could be used independently or together, depending 
on management objectives, to aid researchers and resource managers in designing single 
species Fishery Closure Area Networks (FCANs) for sedentary benthic invertebrate in BC, 
Canada.   

The objective of this paper is to describe and apply a set of quantitative tools that can be used 
to provide advice on the number, size and spacing of single-species fishery closure areas in a 
network. The tools we describe and apply build on software packages and programs (ArcGIS, 
RAMAS, R, GRIP) that are currently available and being applied to address a broad range of 
marine spatial planning objectives. Together these tools form key components of a simulator 
that couples four sub-models of habitat suitability, metapopulation dynamics, dispersal, and 
fisheries management. Habitat suitability and species density models are used to define the 
spatial structure of the metapopulation dynamics sub-model and to set the carrying capacity and 
initial abundances of each population. Discrete populations within the metapopulation are linked 
through a model of larval dispersal. Spatially-explicit fisheries management scenarios are then 
implemented to simulate their effects on the distribution and abundance patterns of the target 
species. A baseline model is developed using the best available data and information. Once the 
baseline model is defined, a comprehensive sensitivity analysis is used to explore the influence 
of alternative reserve designs on the ability to achieve management objectives while accounting 
for key sources of uncertainty.  

These tools provide modeled information about a single species population, in a finite 
geographic area, that can be used to provide advice on the ability of differing FCAN designs to 
meet management objectives.  The presented methods are a proof of concept on how these 
tools could be implemented in BC, including an example of how the analysis could be carried 
out for a species and/or area, to address a broad range of spatial management questions and 
fishing management objectives provided there are sufficient biological and environmental 
parameters available. 

In our paper, we develop our models using data from the Giant Red Sea Cucumber 
(Parastichopus californicus).  Currently, this species is of particular interest due to: its current 
commercial fisheries re-expansion after a prolonged research and development stage (Hand et 
al. 2009); increased interest from aquaculture developers (DFO 2014); First Nation concerns 
over re-expansion and increased harvesting within their territorial waters, and; managers having 
begun implementing a number of ad-hoc Fishery Closures Areas for P. californicus, selected on 
the basis of common-sense criteria, into the fishery’s IFMP (Hand et al. 2009; Duprey et al. 
2011; Duprey 2011; Duprey 2012; DFO 2012).  Pacific Fishery Management Area (PFMA) 12, 
located between the northeast coast of Vancouver Island and the mainland (Figure 2-1), was 
used as a trial location for the presented methods and analysis.  This location was chosen due 
to the large amount of environmental and biological data available for the area.  PFMA 12 has 
been thoroughly studied by oceanographers and there is a large amount of high resolution 
modeled environmental data for the area, including data that could be used to simulate larval 
dispersal.  There have also been 4 sea cucumber surveys completed in the area (Hand et al. 
2009; Duprey 2012; N. Duprey, Fisheries and Oceans Canada, Nanaimo, BC, unpublished 
data).  Advice is not being provided for the creation of FCANs in PFMA 12, but rather methods, 
analytical techniques and the form simulator outputs could take are described in order to 
provide managers with a set of tools that could be used in developing FCANs, should this 
approach be implemented in BC.  
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Section 2 presents the development of two tools, models that predict the distribution and density 
of P. californicus.  Models were developed using boosted regression tree (BRT) analysis, and 
the environmental and survey data available in PFMA 12.  The results of these two models 
provide important inputs into the simulation tool used to explore various FCAN design 
scenarios, described in Section 3.   

Section 3 presents a simulation model that explores the ability of differing FCAN designs to 
meet conservation and management objectives under current management practices.  The 
simulation tool is a habitat-based, spatially explicit metapopulation dynamics model that 
comprises four coupled sub-models of habitat suitability, dispersal, meta-population dynamics 
and fisheries management, as well as the functions that link these four sub-components.  Such 
models are increasingly used to assess species status, prioritize research, evaluate threats, and 
inform spatial management decisions for a broad range of species in terrestrial and aquatic 
systems (Akçakaya et al. 2004; Naujokaitis-Lewis et al. 2009; Pe’er et al. 2013). In our case 
study of P. californicus, we use the simulation model to evaluate FCAN design in terms of its 
ability to maintain population abundances above the limit reference point over a 100 year time 
frame. 

The set of tools developed in Sections 2 and 3 thus include:  

• code to develop spatially-explicit predictions of the location of suitable habitat and densities 

• customized code to run, analyze and interpret boosted regression trees 

• code to build baseline models of metapopulation dynamics models linked to habitat 
suitability, dispersal and fisheries management models 

• customized code to run sensitivity analyses of baseline models  

• code to collate, analyze and interpret simulation results of interest and evaluate reserve 
design against performance criteria 

In section 4 we conclude by discussing the benefits, disadvantages, implications and 
requirements of using the presented tool to provide guidance on FCAN design.  Future research 
needs, data requirements, and restrictions on how the model results can be interpreted will also 
be discussed.  

2. PREDICTED HABITAT SUITABILITY AND DENSITY MODELS 

2.1. INTRODUCTION 
Knowledge of the location and density of a target species is important when creating a Fishery 
Closure Area Network (FCAN).  However, the geographic coverage of survey data for most 
benthic invertebrate species currently targeted by commercial fisheries in British Columbia (BC) 
is limited.  In order to fill this gap in areas that have not been surveyed, habitat suitability and 
density models can be used to estimate the probable distribution and density of a species in an 
area.  

Pacific Fishery Management Area (PFMA) 12, was selected as the study area in this analysis as 
it has been relatively well surveyed for Parastichopus californicus relative to other areas of the 
coast.  However, of the 48 Subareas in PFMA 12, 33 (69%) have not been surveyed.  In order 
to create effective FCANs information on the likely distribution and density of P. californicus in 
areas that have not been surveyed is required.  

Species distribution models (SDMs) can help meet science and management needs for 
conservation and planning by filling in information gaps related to the distribution and density of 
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species.  SDMs use algorithms to predict the distribution or density of a species by relating 
occurrence or abundance data to background environmental data.  SDMs can inform science 
and policy decisions by providing rapid and cost-effective methods for mapping and predicting 
suitable habitat for vulnerable species, important areas in the life history of fish, forecasting the 
invasion potential of non-indigenous species, and identifying candidates for protected areas.  
SDMs can also identify gaps in knowledge, thereby focusing research and exploration to 
maximize the utility of future effort and funding. 

There are a wide variety of SDMs currently available.  Boosted regression trees (BRT) are a 
relatively new machine learning modeling technique used to predict relationships between 
predictors (in this case environmental data) and response variables (biological survey data).  
Though BRT analysis is a relatively new technique, it has shown a great deal of promise.  In a 
large study comparing models using presence-only data BRT produced some of the best 
predictive models (Elith et al. 2006).  BRT analysis has also been used to predict the distribution 
of several freshwater and marine species.  For example, it has been used to analyze trawl data 
to model the distribution of demersal fish species richness in the waters around New Zealand 
(Leathwick et al. 2006); to model the distribution of 15 diadromous and 15 non-diadromous fish 
species in New Zealand to examine the relationship between diadromy and dispersal ability 
(Leathwick et al. 2008a); and to predict the distribution of 96 species of demersal fish species 
using catch data from research trawls in support of marine protected area network planning 
(Leathwick et al. 2008b).  BRT analysis was chosen based on these successful analyses 
(Leatherwick et al. 2006, 2008a, b) and its strong showing in comparative model assessments 
(Elith et al. 2006).  

In the following section we use BRT analysis to predict areas of suitable habitat for P. 
californicus in PFMA 12, and to estimate density in each patch.  

2.2. METHODS 

2.2.1. Study area 
The study area used for the predicted habitat suitability and predicted density models includes 
PFMAs 12 and 13.  These areas are roughly bounded by Cape Scott in the west, Shelter Bay in 
the north, and Middlenatch Island in the south and east (Figure 2-1).  The analyses were 
expanded to include PFMA 13 for two reasons: firstly, to increase the amount of sea cucumber 
survey data, as a large sea cucumber survey of PFMA 13 was conducted in 2008; secondly, to 
provide a better diversity of geographic locations and environmental conditions used in the 
predictive modelling.  However, only the results from PFMA 12 are considered in subsequent 
metapopulation analysis (see Section 3).   
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Figure 2-1.  Study area for habitat suitability and density modeling.  The area covers Pacific Fishery 
Management Areas (PFMAs) 12 and 13. 

2.2.2. Sea cucumber survey data 
Data on sea cucumber presence and density were obtained from surveys conducted in PFMA 
12 and 13 by Fisheries and Oceans Canada (DFO) and the Pacific Sea Cucumber Harvesters 
Association (PSCHA) between 2008 and 2010 (Duprey 2012; N. Duprey, Fisheries and Oceans 
Canada, Nanaimo, BC, unpublished data).  Surveys were only included in the analysis if they 
had been conducted in previously unfished areas, or areas that had not received commercial 
fishing pressure since 1997.  In total, 526 transects from three different surveys were used 
(Table 2-1).  Each transect was only surveyed once.  Latitude and longitude coordinates of each 
transect were obtained from the deep point of the survey (typically around 15 m depth).  When 
the deep coordinates were unavailable, the shallow water coordinates were used.  The depth 
value used in the analysis was obtained from the depth layer described below, rather than the 
depth recorded on the survey.  These surveys were used to determine the presence or absence 
of sea cucumbers, as well as the density (sea cucumbers/m2).  The density of sea cucumbers 
on each transect was calculated by dividing the total number of individuals observed by the total 
area surveyed.  Transects were not truncated by the low tide line, though this should be 
completed in future analysis for species that do not inhabit intertidal waters. 
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Table 2-1. The Pacific Fishery Management Area (PFMA), survey year, and number of transects in each 
of the Parastichopus californicus surveys included in the predictive modeling.  Transects were placed 
2km apart in 2010 and 4 km apart in 2008 and 2009. 

Survey Name PFMA PFM Subareas Year Number of 
Transects 

Johnstone Strait 12 1, 2, 22, 23, 24 2009 47 

Area 12 South Broughton 12 6, 26, 38, 39 2009 213 

Area 12 Sointula 12 3, 4, 5, 18, 19, 21 2010 114 

Johnstone Strait 13 

7, 8, 9, 10, 11, 24, 25, 
26, 27, 28, 31, 32, 33, 
35, 36, 37, 38, 39, 40, 
41, 42, 43 

2008 152 

Total     526 

2.2.3. Environmental data 
Decisions regarding which environmental variables to include were made based on ecological 
relevance and data availability.  Spatially explicit data were collated for depth, chlorophyll a 
bloom frequency, bottom tidal speed, summer and winter values for bottom non-tidal current 
velocities, and spring, summer, fall, winter, minimum, maximum and range values for 
temperature and salinity.  Some variables which are likely to be important predictors of the 
distribution and density of cucumbers, such as bottom type, facies and exposure, could not be 
included because they were not available for the study area.  Data were provided as 100 m-by-
100 m rasters (depth and chlorophyll a bloom frequency) and as a finite element grid with 
variable resolution ranging from about 100 m in narrow coastal channels to 8.5 km in open 
areas in the straits (all other data).  The median distance between points in the finite element 
grid was 313.9 m.  The data were imported into ArcMap 10.0 and interpolated to a 300 m-by-
300 m raster using the natural neighbour tool in the Spatial Analyst extension.  The 300 m-by-
300 m grid was selected based on the original resolution of the data and biological relevance for 
P. californicus. The natural neighbour technique works by drawing Thiessen polygons around 
each input point.  The natural neighbour algorithm identifies the nearest set of input points to a 
given query point (in this case, the center of the 300 m-by-300 m raster cell) and interpolates a 
value weighted by the proportion of each associated Thiessen polygon (Sibson 1981).  Land 
barriers were not considered during the interpolation process due to computational challenges.  
Instead, land was clipped out of the raster once the interpolation had been completed.  The 
types, sources and original resolution of environmental data used in this study are discussed 
below, and summarized in Table 2-2.  The range and mean of each environmental variable 
across the study area and at locations where cucumbers were sampled is also summarized in 
Table 2-2.   

Depth may play a role in determining the distribution and density of P. californicus.  Densities of 
P. californicus have been shown to be lower at deeper depths in Sitka Sound, Alaska, USA 
(Woodby et al. 2000).  However, another study in southeastern Alaska found that densities at 
depth ranges of 100-150 m can be as high as or higher than shallow water densities (Zhou and 
Shirley 1996).  Through SCUBA and small submersible surveys, both studies found a 
preference for hard substrates with rock walls, crushed shell and gravel being the preferred 
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substrate (Zhou and Shirley 1996; Woodby et al. 2000).  It is possible that results indicating that 
densities are lower in deeper water may be influenced by substrate type, as soft substrates 
such as sand and mud are found in greater proportions at deeper depths.  It is expected that the 
BC populations exhibit a similar trend with some pockets of animals found in deeper water, but 
a majority of the population inhabiting water depths <60 m (Hand et al. 2009).  The depth layer 
was obtained as a 100 m-by-100 m raster grid (Edward Gregr, unpublished data, Scitech 
Environmental Consulting, Vancouver, BC, pers. comm.).  This layer was derived from source 
data from the Living Oceans Society (75m) and the National Oceanic and Atmospheric 
Administration (NOAA; 250m).   

Chlorophyll a bloom frequency may be an indicator and measure of productivity in the area.  
The chlorophyll a bloom frequency layer was obtained as a 100 m-by-100 m raster grid, though 
original resolution for the data was 1200 m (Edward Gregr, unpublished data, Scitech 
Environmental Consulting, Vancouver, BC, unpublished data, pers. comm.).  Data for this layer 
were derived from the algal_1 band from the Medium Resolution Imaging Spectrometer 
(MERIS) instrument on the European Space Agency ENVIronmental SATellite (ENVISAT) 
platform for the years 2007-2011.  The monthly bloom frequency was calculated by counting the 
number of months in the spring (defined as March 18 – June 21) when the average 
concentration of chlorophyll a was greater than 2.0 mg/m3.  Values range from 0 (no spring 
blooms in the 5 year period) to 20 (blooms every month in the spring in the 5 year period).   

Current and tidal speed may influence the distribution and density of P. californicus. Areas of 
strong currents and high exposure result in lower sea cucumber abundance, as do areas that 
are highly protected (Hand et al. 2009).  It appears the population prefers neither extreme, likely 
because strong currents negatively affect bio-deposition and increase energy costs when fixing 
to the substrate and during locomotion, while very low currents do not bring sufficient nutrient 
exchange into the habitat.  Average summer and winter values for bottom non-tidal current 
speed, bottom tidal speed and spring, summer, fall, winter, minimum, maximum and range 
values for bottom salinity and temperature were obtained from a well-validated tidal circulation 
model of the eastern North Pacific (Foreman et al. 2009). Data were obtained directly from the 
senior author of that paper (Mike Foreman, Institute of Ocean Sciences, Sydney, BC, pers. 
comm.).  All data were provided in a finite element grid with variable resolution.  

Salinity is likely to play a role in the distribution and density of P. californicus.  Echinoderms are 
considered stenohaline, meaning they generally cannot tolerate wide fluctuations in salinity 
(Stickle and Diehl 1987).  The study area has several large inlets that are fed by rivers, resulting 
in a large range of salinity values throughout the study area and the year (see Table 2-2).  
There is currently no published data specifically on the effects of changes in salinity on P. 
californicus, however studies done on the sea cucumber Apostichopus japonicus have shown 
that changes in salinity can affect the behaviour, development and survival of larvae (Kashenko 
2000), can cause mortality in juveniles (Meng et al. 2011) and can reduce the growth rate of 
adults (Yuan et al. 2010).  It is therefore likely that salinity will play a role in the distribution and 
density of P. californicus. 

Temperature is known to affect the growth and survival of several holothurian species (Asha 
and Muthiah 2005; Dong et al. 2006; Zamora and Jeffs 2012).  For example, juvenile 
Astraostichopus mollis had gradually declining daily growth rates when temperatures moved 
from 15°C to 18°C to 21°C (Zamora and Jeffs 2012).  Currently there is no published data on 
the effects of changes in temperature on P. californicus growth or survival. However, we 
assume that P. californicus does have a preferred temperature range for optimal growth and 
survival and that populations found outside of these ranges will be at a disadvantage.  It is 
therefore expected that temperature will play an important role in the distribution of P. 
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californicus at local scales, but the importance of this variable may be more difficult to ascertain 
when large geographic ranges are used. 

Table 2-2.  Summary of type, source, resolution, range and mean (in brackets) of values of environmental 
data used in the habitat suitability modeling.  The depth and chlorophyll a bloom frequency were obtained 
from E. Gregr (SciTech Consulting).  All other layers were obtained from M. Foreman. 

Variable Original 
resolution 

Study area range 
(mean) 

Sampled range 
(mean) 

Depth (m) 100 m 1 – 650 (145) 1 – 153 (15) 

Chlorophyll a bloom 
frequency 1200 m 3 -20 (10.7) 3 – 16 (7.5) 

Bottom tidal speed (m/s) 100 m – 8.5 km 0.001 – 1.70 (0.073) 0.002 – 0.48 (0.060) 

Bottom current speed (m/s) 100 m – 8.5 km - - 

Summer  0.0002 – 4.36 (0.13) 0.0005 – 1.53 (0.068) 

Winter   0.0005 – 2.93 (0.10) 0.0008 – 2.72 (0.090) 

Bottom temperature (°C) 100 m – 8.5 km - - 

Spring   6.54 – 13.29 (8.46) 7.92 – 11.49 (9.43) 

Summer   6.28 – 15.82 (9.19) 8.57 – 12.86 (10.73) 

Fall   5.57 – 10.93 (8.51) 6.14 – 9.62 (8.60) 

Winter   6.16 – 9.02 (7.60) 6.65 – 7.77 (7.23) 

Minimum   5.57 – 8.69 (7.52) 6.14 – 7.77 (7.23) 

Maximum   7.09 – 15.82 (9.38) 8.57 – 12.86 (10.73) 

Range   0.07 – 8.77 (1.86) 1.22 – 5.89 (3.51) 

Bottom salinity (psu) 100 m – 8.5 km -  - 

Spring   2.45 – 33.69 (29.76) 8.15 – 31.39 (27.19) 

Summer   1.39 – 33.66 (29.78) 6.94 – 31.87 (26.65) 

Fall   13.64 – 33.39 (30.31) 19.30 – 31.56 (28.47) 

Winter   19.51 – 32.93 (30.47) 26.46 – 31.09 (29.67) 

Minimum   1.39 – 32.34 (29.24) 6.94 – 31.09 (26.55) 

Maximum   19.51 – 33.70 (30.96) 26.46 – 31.87 (29.77) 

Range   0.03 – 20.95 (1.71) 0.11 – 19.54 (3.22) 
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2.2.4. Boosted regression tree (BRT) analysis 
BRT is a machine learning modeling technique used to quantify relationships between 
predictors and a response.  Machine learning techniques differ from traditional statistical 
approaches in that they use algorithms that learn the relationship between a response (in this 
case the presence or absence of a species and/or its density) and its predictors (in this case 
environmental variables) (Breiman 2001) rather than having an a priori assumption about the 
relationship between the predictors and the response.  BRT analysis combines two algorithms:  

1. “regression trees”, single models that partition predictors using a series of rules that 
maximizes the homogeneity of the response data; and 

2. “boosting”, a method for developing several models and combining them (Friedman et al. 
2000).   

Regression trees have several advantages, including their ability to use any type of data 
(numeric, binary, categorical, etc.), their insensitivity to outliers, and their accommodation of 
missing data in predictor variables.  However, regression trees have difficulty modeling smooth 
functions, and are very sensitive to small changes in the training data.  Boosting makes it 
possible to model complex response surfaces and helps overcome the inaccuracies of a single 
model.  The boosting algorithm calls the regression tree algorithm repeatedly, every time 
weighting the data differently so that records that were misclassified in the last round are 
emphasized.  The model is fitted in a forward, stepwise fashion until it eventually overfits the 
data (Elith et al. 2008).  The optimal number of trees in the boosted model is chosen by 
measuring prediction accuracy on independent data. 

Two separate models were constructed to predict the suitability of habitat for sea cucumbers, 
and the density of sea cucumber populations in the study area.  Habitat suitability was predicted 
using the observed presence or absence of P. californicus (represented by 1 and 0, 
respectively) as the response variable.  Presence/absence data were fit with a Bernoulli 
distribution.  The observed spatial density of P. californicus (in sea cucumbers/m2) was used as 
the response variable in the density model.  Data were fit using a Gaussian distribution.  All 
models, including those built for the parameter tuning and sensitivity analyses were built and 
analysed in R (R Development Core Team 2011) version 2.14.1 using the packages gbm 
version 1.6-3.2 (Ridgeway 2012) and dismo version 0.7-17 (Hijmans et al. 2012).  Raster layers 
of results were created using the R packages raster version 2.0-08 (Hijmans and van Etten 
2012), and rgdal version 0.7-12 (Keitt et al. 2012). 

2.2.5. Parameter tuning 
As with any predictive modeling, if a model is overfit to the training data it is less able to provide 
good predictions with new data.  Regularization methods are used to control the degree to 
which a model is fit to the data and to find a balance between model fit and predictive capability 
(Hastie et al. 2001).  With BRT, regularization is particularly important, as the algorithm allows 
the model to completely overfit training data.  In BRT, overfitting is controlled by introducing 
stochasticity, and by optimizing the number of trees used to construct the model (nt).   

Stochasticity is implemented in BRT models by only using a random selection of the training 
data at each step in model building.  The proportion of data used at each step is known as the 
bag fraction (bf).  For example, a bf of 0.75 would mean that at each step in the model building 
process 75% of the available data are selected at random (without replacement) for use.  
Optimal bag fractions will vary depending on the data used. 

In addition to adding stochasticity, the number of trees (nt) used to construct a BRT model will 
also influence the degree to which a model is fit, with larger numbers of trees being more likely 
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to overfit data.  As a rule of thumb, Elith et al. (2008) recommend fitting models with at least 
1000 trees.  In BRT, nt is determined by a combination of the learning rate, lr, and tree 
complexity, tc.  The lr, also known as the shrinkage parameter, reduces the contribution of each 
tree as it is added to the model.  Smaller lr values will cause the model to grow more slowly, and 
will result in larger numbers of trees being required.  Tree complexity, tc, indicates the number 
of nodes or splits in each tree, and controls whether or not interactions between predictors are 
fitted.  Fitting trees with a larger number of nodes reduces the total number of trees required to 
minimize error. 

In the present analysis, parameter tuning was conducted separately for both the habitat 
suitability and density models to find optimum values for bf, lr, and tc so as to reduce overfitting 
and minimize predictive error.  Several values were tested for bf (0.25, 0.5, 0.6, 0.75, 0.9), lr 
(0.01, 0.005, 0.001, 0.0005), and tc (1, 2, 3, 5, 7, 10), and were based on ranges used by Elith 
et al. (2008).  All possible combinations of bf, lr, and tc were tested (120 iterations) to determine 
the combination that minimized overall predictive error.   

The cross-validation method built into the R package dismo (Hijmans et al. 2012) was used to 
evaluate the predictive performance of each combination of parameters.  Essentially, cross-
validation works by partitioning available data into subsets (in this case 10).  These subsets are 
then used to create 10 unique sets of training data, consisting of a unique combination of 9 of 
the 10 subsets, with a corresponding test data set (the remaining subset).  The 10 training data 
sets are used to simultaneously build BRT models (using the defined values for bf, lr, and tc) 
with a given number of trees.  The nt is systematically increased and predictive performance is 
recorded until the minimum predictive error (measured by deviance), and thus the optimal nt, is 
found.  In this analysis, predictive error was measured by deviance.  Deviance is calculated as 
two times the log-likelihood (Gelman et al. 2003) with smaller values indicating better fit.  A final 
BRT model is then built using all available data and the optimal nt.  Even though a final model 
was built with all available data, the performance of each combination of tuning parameters was 
evaluated using the mean deviance of the 10 cross validation models with the optimal nt.  
Performance of the final models for predicted habitat suitability and density is reported using the 
area-under-the-curve (AUC) of the receiver-operator characteristic (ROC) of the cross validation 
models and the percent density explained (PDE), respectively, as they are clearer and more 
representative descriptors of model performance.  The AUC is a measure of predictive accuracy 
and can have values ranging from 1, indicating perfect distinction between presence and 
absence to 0.5, indicating a model is no better than random.  In this analysis, PDE compares 
the null deviance in the input abundance data with residual deviance in the cross-validated input 
abundance data in relation to cross-validated modelled predictions.  PDE is calculated as: 

(null deviance - cross-validated residual deviance)  x  100 

null deviance 

2.2.6. Sensitivity analyses 
A number of sensitivity analyses were performed to test the habitat suitability and density 
models’ sensitivity to spatial resolution, depth, and the influence of correlated and modelled 
data.  In addition to the base case scenario using a 300 m-by-300 m grid, models were built 
using 600 m and 1200 m grids to determine whether finer scale information improved the 
performance of models.   Sensitivity to depth was tested by limiting the analysis to areas 
shallower than 30 m depth (the base case used the full depth range within study area), and by 
removing depth from the analysis.  Sensitivity to correlation among environmental variables was 
tested by sequentially examining each environmental layer and, where applicable, removing all 
other variables that were either moderately correlated (Pearson’s r ≥ 0.75), or highly correlated 
(Pearson’s r ≥ 0.9). 
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Six of the 19 environmental layers (bathymetry, spring chlorophyll a bloom frequency, summer 
and winter current speed, tidal speed and fall temperature) did not have a Pearson’s r ≥ 0.75 
with any other layers, and winter and minimum temperature did not have a Pearson’s r ≥ 0.9 
with any other layers.  A total of 24 sets of environmental data layers were created for the 
correlation sensitivity analysis.  Potential sensitivity to modelled data was tested by removing all 
modelled data (tidal and current speeds, temperature and salinity), and only temperature and 
salinity.  All models built for the habitat suitability and density sensitivity analyses, including the 
base case scenarios, used the optimum parameter values identified in the parameter tuning.  As 
with the parameter tuning, cross validation (10 partitions) was used to assess the average 
performance of each sensitivity run.  The deviance of the resulting models were compared using 
a two-sided Wilcox exact rank sum test implemented using the exactRankTests version 0.8-22 
(Hothorn and Hornik 2011) package in R. 

2.2.7. Sensitivity analyses 
Spatial autocorrelation in the model residuals for both the probability and density SDMs was 
tested for using Moran’s I (Moran 1950), implemented in the R package raster package (version 
2.0-08, Hijmans and van Etten 2012).  Moran’s I ranges from -1 (perfect dispersion) to 1 (perfect 
correlation), with 0 representing a random spatial distribution. 

2.3. RESULTS 

2.3.1. Sea cucumber data 
Sea cucumbers were observed on 433 (82.3%) transects used in this analysis.  At sites where 
cucumbers were observed, there was a minimum density of 0.0021 sea cucumbers per square 
meter (sc/m2), a maximum density of 0.83 sc/m2, and a mean and median of 0.16 sc/m2 and 
0.11 sc/m2, respectively. 

2.3.2. Parameter tuning 
Deviance was used to evaluate the predictive performance of the models built during the 
parameter tuning.  Values for deviance ranged from 0.877 to 0.931 for the habitat suitability 
model, and 0.0220 to 0.0235 for the density model.  Values for AUC in the habitat suitability 
model ranged from 0.575 to 0.686. Values for PDE in the density model ranged from 3.8% to 
10.2%.  Both models passed the threshold of at least 1000 trees (Table 2-3) suggested as a 
rule of thumb by Elith et al. (2008).  Values for lr, tc, bf, and nt for optimal predictive 
performance, as well as AUC and PDE are summarized in Table 2-3. 
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Table 2-3.  Optimal parameter values for learning rate (lr), tree complexity (tc) and bag fraction (bf), AUC 
(with standard error, SE, in brackets), percent deviance explained (PDE) and the number of trees for the 
best performing models in the tuning for habitat suitability and density BRT models. 

Model Parameters AUC (SE) PDE Num. of trees (nt) 

Habitat 
suitability 

lr 0.005 
0.635 

(0.0327) 

 

1040 tc 3 NA 

bf 0.9  

Density 

lr 0.005 

NA 

 

1650 tc 7 10.2 % 

bf 0.25  

2.3.3. Sensitivity analysis 
Models of both the distribution and density of P. californicus were insensitive to variations in grid 
size, restriction or elimination of depth, the removal of correlated variables, and the removal of 
modelled data.  Model performance, as measured by deviance, of each of the 30 different 
sensitivity runs for both habitat suitability and density was not significantly different (p > 0.05) 
than the base case scenario.   

2.3.4. Boosted regression tree results 
2.3.4.1. Contribution of Variables 

The relative contribution of environmental variables was calculated in the R package gbm using 
formulae developed by Friedman (2001).  Calculations are based on the number of times a 
variable is selected for splitting and the improvement to the model caused by each split 
(Friedman and Meulman 2003).  Variable contributions are scaled to 100 so that they can be 
reported as percent contribution.   

The exact contribution of each environmental variable differed between the predicted habitat 
suitability and predicted density models (Figure 2-2), though they shared similar trends; the top 
six and the bottom three variables were the same in both models.  Tidal current speed was the 
most important predictor of habitat suitability (14.38%) and sea cucumber density (10.66%).  
Fall and winter temperature, summer and winter current speed and depth are the next five most 
important variables in both models.  Combined, the top six variables contributed 54.97% to the 
habitat suitability model, and 54.52% to the density model.  On the other end of the spectrum, 
minimum salinity and minimum and maximum temperature contributed relatively little to the 
models.  Tidal current speed, spring and fall temperature and fall salinity were relatively more 
important in the suitability model than they were in the density model.  Spring, winter, range and 
minimum salinity values as well as summer and range of temperature values were relatively 
more important in the density model than they were in the suitability model. 
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Figure 2-2.  The percent contribution of each environmental variable to the predicted habitat suitability 
model (black bars) and the predicted density model (white bars).  

2.3.4.2. Fitted Function Plots 
Fitted function plots produced from a BRT model provide a visual representation of the effect a 
predictor variable has on a response after all of the effects of other variables have been taken 
into account (Elith et al. 2008).  They are not perfect representations of the relationship, 
especially if there are a number of interactions between variables or they are highly correlated.  
However, they do provide information on the relationship between the predictor and response. 

Tidal speed 

Tidal speed was identified as the most important environmental predictor, contributing 14.4% 
and 10.7 % to models of habitat suitability and density, respectively (Figure 2-2).  When the tidal 
speed is close to 0 m/s it has a slightly negative influence on both habitat suitability and density 
(Figure 2-3 and Figure 2-4).  This changes to a positive effect once tidal speeds reach about 
0.02 m/s.  In the habitat suitability model this influence plateaus until tidal speed reaches 
approximately 0.2 m/s, at which point tidal speed has a negative effect on habitat suitability.  In 
the density model the positive relationship changes when speeds reach approximately 0.1 m/s, 
at which point tidal speed has little influence on density. 

Fall temperature 

Fall temperature was the second most important variable for the habitat suitability model, and 
the fourth most important variable for the density model, contributing 13% and 8.9% to the 
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models, respectively (Figure 2-2).  Fall temperature has a similar effect in both models (Figure 
2-3 and Figure 2-4).  There is a slight positive effect on predictions for temperatures up to about 
8 C, at which point the positive effect becomes stronger.  The relationship becomes slightly 
negative at around 9 ºC for habitat suitability, and 8.5 ºC for density. 

Summer non-tidal current speed 

Summer non-tidal current speed is the third and second most influential variable in the models 
of habitat suitability and density, contributing 10.9 and 10% to the models, respectively (Figure 
2-2).  It has a similar influence in both models (Figure 2-3 and Figure 2-4).  Low current speeds 
have a slightly negative effect on predictions of habitat suitability and density.  This effect 
diminishes as speeds reach approximately 0.25 m/s, at which point summer non-tidal current 
speeds have no influence on the responses. 

Winter temperature 

Winter temperature is the fourth most influential predictor of habitat suitability (9.2%), and the 
third most important predictor of density (9%)(Figure 2-2), though it influences the models 
slightly differently (Figure 2-3 and Figure 2-4).  Temperatures below approximately 7.2 ºC have 
a slightly negative influence on habitat suitability.  Above 7.2 ºC there is a positive relationship 
between increasing temperatures and habitat suitability, within the range observed.  For density 
the opposite is true: temperatures below approximately 7.2 ºC have a slightly positive influence 
on density, but warmer temperatures have a negative effect. 

Winter non-tidal current speed 

Winter non-tidal current speed is the fifth most important predictor in both models, contributing 
8.9% and 8.2% of information in the habitat suitability and density models, respectively (Figure 
2-2).  Current speeds around 0 m/s have a negative effect on both responses. This effect 
diminishes as speeds increase to about 0.1 and 0.25 m/s for habitat suitability and density, 
respectively (Figure 2-3 and Figure 2-4).  

Depth 

Depth is the sixth most important predictor of habitat suitability and density, contributing 8.6% 
and 7.7% to the respective models (Figure 2-2)  Depths at or close to 0 m had a negative effect 
on both predicted habitat suitability and density (Figure 2-3 and Figure 2-4). The relationship 
between both responses diminishes as depth increases before the influence plateaus at about 
25 m for habitat suitability, and 50 m for density. 



 

15 

 
Figure 2-3. Fitted function plots for the top six most influential variables for the predicted habitat suitability 
model. (Top row of graphs from left to right: Tidal current speed; and temperature fall; summer current. 
Bottom row of graphs from left to right: temperature winter; winter current; and bathymetry).  

 
Figure 2-4.  Fitted function plots for the top six most influential variables for predicted density model. (Top 
row of graphs from left to right: tidal current speed; temperature summer; and temperature winter. Bottom 
row of graphs from left to right: temperature fall; summer current; and bathymetry). 

2.3.4.3.  Predicted habitat suitability 
Results of the predicted habitat suitability model are provided on a gradient ranging from 0 to 1, 
where 0 is completely unsuitable habitat, and 1 is perfectly suitable habitat.  The results of the 
BRT modelling for predicted habitat suitability are presented in Figure 2-5.  Predictions of 
habitat suitability are able to discriminate between observed presences and observed absences 
(Figure 2-6).  When the purpose of modelling is to identify areas of potential habitat for a 
species, as in the current study, a threshold is usually chosen to distinguish between areas 
predicted to have sea cucumbers (predicted suitable habitat) and areas predicted to not have 
sea cucumbers (predicted unsuitable habitat).  In order to select a threshold, one must find a 
balance between the sensitivity (the true positive rate, or the ability to correctly identify 
presence), and the specificity (the true negative rate, or the ability to correctly identify absence) 
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of the model.  The intuitive threshold of 0.5 may not always provide an ideal balance between 
sensitivity and specificity.  For example, in the present modelling exercise a threshold of 0.5 
results in a sensitivity of 0.995 and a specificity of 0.280.  This means that the model is very 
good at correctly identifying presence (sensitivity), but is not very good at correctly identifying 
absence (specificity).  In contrast, when the threshold is increased to 0.75 the sensitivity 
remains good (0.896), while the specificity increases substantially to 0.784. 

A variety of methods can be used to identify thresholds.  Thresholds should be dependent on 
the prevalence of the species, as model results are generally biased by prevalence (Jiménez-
Valverde and Lobo 2007).  The maximum sum of sensitivity-plus-specificity is linearly related to 
prevalence and has been shown to be quite accurate (Jiménez-Valverde and Lobo 2007).  This 
method was therefore selected in the current analysis.  The threshold was calculated using the 
PresenceAbsence package version 2.14.2 in R (Freeman and Moisen 2008).  The maximum 
sum of sensitivity-plus-specificity was found to be 0.75.  In Figure 2-5, areas predicted to have 
suitable habitat for P. californicus are coloured green, orange or red.  The majority of the study 
area is predicted to be suitable habitat for P. californicus with the exception of a few areas, 
mainly at the heads of inlets, off the northern tip of Vancouver Island, and around Discovery 
Passage, Malcolm Island, and the Broughton Archipelago. 

 
Figure 2-5.  Boosted regression tree predictions of habitat suitability for Parastichopus californicus in 
Pacific Fishery Management Area 12. Areas in blue are predicted to be unsuitable habitat, while those 
that are green, orange or red are predicted to be suitable. 
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Figure 2-6.  Density plot comparing predicted habitat suitability values and P. californicus observations 
from survey data.  Predicted habitat suitability is on the x-axis; dotted lines represent observed absences 
and solid lines represent observed presences.  Vertical lines indicate the mean.  This plot indicates that 
the model is, on average, predicting a difference between observed presences and observed absences. 

2.3.4.4. Predicted density 
Results of the predicted sea cucumber density (sc/m2) model are presented in Figure 2-7.  
Areas of higher density tend to be closer to shore and up in the inlets, though there are patches 
of higher predicted densities throughout Queen Charlotte Strait and Discovery Passage.  The 
north coast of Vancouver Island, the area around Malcolm Island, Johnstone Strait, Bute Inlet, 
and the area between Quadra and Cortes Islands have large areas of predicted low densities. 

There is a linear relationship between the observed densities of sea cucumbers and the 
predicted densities (Figure 2-8), however it is not the ideal one-to-one relationship.  When 
observed densities are high the predicted values tend to be lower than the observed values and 
when observed densities are low the model results tend to over-estimate density.  
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Figure 2-7.  Boosted regression tree predictions of sea cucumber density (sc/m2).  Colours are divided 
into quartiles of the predicted density. 
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Figure 2-8.  Plot comparing the observed (x-axis) and predicted (y-axis) spatial density of sea cucumbers 
per square meter (sc/m2).  The dashed line indicates a one-to-one relationship.   

2.3.5. Spatial autocorrelation 
The model residuals for the probability SDM had Moran’s I = 0.111, while the density SDM had 
Moran’s I = 0.107.  These results suggest that spatial autocorrelation is not an issue in these 
analyses. 

2.4. DISCUSSION 
Section 2 presented a demonstration of BRT modelling and its use in predicting the distribution 
and density of low-mobility benthic invertebrates.  In this section we provide a discussion of the 
results of the models of predicted habitat suitability and density, the interplay between those 
models, the influence of key environmental predictors, the limitations and uncertainties 
associated with this type of analysis, and a description of how these models can be used in the 
context of developing an FCAN. 

2.4.1. Sensitivity analysis 
Both evaluation techniques and threshold selection have been evolving in the literature recently.  
Future applications of this method should evaluate the consequences of type 1 and type 2 
errors in their analysis, review recent literature on the subject, and select the most appropriate 
methods. The relative prevalence of a species can also influence appropriate methods for both 
evaluating the model performance and threshold selection.  
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2.4.2. Habitat suitability 
Results of the habitat suitability modelling predict that P. californicus is a generalist species and 
can be found throughout the study area.  The main exceptions, where they are not predicted to 
be present, are the heads of many of the larger inlets.  These distribution patterns are 
consistent with our knowledge of the distribution of this species.  They have been seen 
throughout the coast in a variety of habitats, though are less commonly seen at the heads of 
inlets (N. Duprey, personal observation).  Many of the inlet heads in the study are subject to low 
tidal currents, which was associated with low abundance.  Groundtruthing of the habitat 
suitability model in unsurveyed areas would help provide information on the validity of the 
results.  

2.4.3. Density 
Results of the BRT density model indicate that predicted density of P. californicus is not 
homogenous, but varies throughout the study area.  Generally, areas closer to shore and up in 
inlets tend to have higher predicted densities, though there are other patches with predicted 
high densities.  There are several large patches where density is predicted to be low, most 
notably the north coast of Vancouver Island, the area around Malcolm Island, Johnstone Strait, 
Bute Inlet, and the area between Quadra and Cortes Islands.  Model predictions of density 
seem to have a reasonable relationship with observed densities (Figure 2-8), and predictions of 
many of the areas of low density match our knowledge of the area.  However, some of the 
predictions of higher density in unsurveyed areas, particularly at the heads of large inlets, do not 
match our understanding of the distribution of sea cucumbers from survey data. As mentioned 
in the habitat suitability section, P. californicus is not commonly seen at the heads of inlets (N. 
Duprey, pers. obs.).  Additionally, the habitat suitability model does not predict those areas to 
have suitable habitat.  This discrepancy does not necessarily mean that the density model is 
incorrect, but this result certainly warrants further investigation. As with the habitat suitability 
model, groundtruthing the density model would help validate results. 

2.4.4. Interplay between the two models 
The contrast between predictions of habitat suitability and density in the heads of large inlets 
highlights the importance of considering the interplay between the models of habitat suitability 
and density when forming conclusions about the distribution and density of the species.  Areas 
may be predicted to be suitable, but may have low predicted densities, or the inverse may be 
true.  Therefore, the two maps should not be considered in isolation, and other knowledge of the 
biology, distribution and density of the species must be considered.  

2.4.5. Contribution of environmental variables 
According to the BRT models developed in this analysis, the main drivers of the distribution and 
density of P. californicus can be grouped into three main categories: 

1. water speed (tidal, and summer and winter current speeds); 

2. temperature (fall and winter values); and  

3. depth. 

Of the six most influential variables in predicting the distribution and density of our study 
species, three related to water speed: tidal, summer current, and winter current speeds.  The 
fitted function plots suggest that when values for those variables are close to zero, they have a 
negative influence on predicted habitat suitability and density.  As the water speed increases 
this negative effect diminishes and becomes positive before an inflection point at speeds around 
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0.2 m/s.  At that point water speed has very little influence, or, in the case of tidal speed in the 
habitat suitability model, has a negative influence.  This is consistent with our knowledge of 
habitat preferences of P. californicus.  It seems that P. californicus does not prefer areas with 
very weak currents, nor do they inhabit areas with strong currents (Hand et al. 2009).   

Temperature, specifically fall and winter values, also appears to be influential in the predicted 
distribution and density of P. californicus.  The fitted function plots indicate that P. californicus 
are more likely to be found, and in greater densities, in areas where the temperature is 
approximately 8 to 8.5 °C in the fall, and areas cooler than 7.2 °C in the winter.  Studies by 
Zamora and Jeffs (2012) have shown temperature changes of 3°C can affect the growth of sea 
cucumbers, so it is possible P. californicus preferentially inhabit areas within a certain 
temperature range.  Further studies on the biology and physiology of this species of sea 
cucumber are needed to confirm whether or not the model results accurately reflect the 
temperature preferences of P. californicus in Areas 12 and 13. 

Finally, depth was identified as an important predictor of the distribution and density of P. 
californicus in our study area.  The influence of depth on the two responses modelled differed.  
Depths at or close to 0 m had a negative influence on both responses.  As depth increases it 
begins to have a slightly positive effect on habitat suitability up to a depth of about 25 m at 
which point it is no longer very influential.  In the density model depth continues to have a 
negative influence on density, although this influence diminishes, up to a depth of about 50 m, 
at which point it has a slightly positive influence.  These results should be interpreted with 
caution as they may be biased by the depth restriction of the sea cucumber survey data used in 
this modelling exercise (~15 m; see Limitations and Uncertainty section below).  Further 
research into the distribution and abundance of P. californicus below divable depths would likely 
benefit model predictions. 

2.4.6. Limitations and uncertainty 
While the model results correspond with much of our existing knowledge of the distribution and 
density of P. californicus, it is important to note some of the limitations of these types of models 
generally.  Models, such as the one developed here, provide approximations of reality based on 
observations.  These representations are not perfect, and the performance of these models can 
be highly influenced by the type and quality of input data used.  Therefore it is important that the 
results be interpreted with a degree of caution.  

One limitation of the model is the scale.  Models should be built on a scale that is biologically 
relevant to the study species (generally based on range, size and mobility), that is appropriate 
for the available data (so that data are not extrapolated or interpolated too much), and on a 
scale that is computationally feasible.  These factors do not always align, and sometimes trade-
offs must be made.  For example, if the study species is relatively small and immobile, a smaller 
grid size is more appropriate.  However, environmental data may not be finely enough resolved 
for such a detailed map, or the study area may be so large that it is not computationally practical 
to operate on such a fine scale. In such cases the scale of the analysis needs to be done in 
such a way so as to balance the biological appropriateness, the resolution of data, and the size 
of the study area.  

The existence of spatial autocorrelation in a model violates the assumption of independent and 
identically distributed residuals, and can result in an increase of type I error (false positives).  
There are several methods to account for spatial autocorrelation in SDMs (e.g., review by 
Dormann et al. 2007), including some specifically for use with BRT (Crase et al. 2012).  
However, these methods should only be applied in areas that have been sampled.  
Extrapolating results into areas that have not been sampled is not recommended, because the 
relationship between predictors and the modelled response may be different in other areas 
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(Dormann et al. 2007).  Therefore, at this time there are no appropriate methods to account for 
spatial autocorrelation in unsampled areas, though that may change as new techniques are 
developed.  Spatial autocorrelation was not an issue in the present analysis.  However, future 
analyses should continue to test for spatial autocorrelation because it may be an issue with 
different species or study areas.  

One source of uncertainty is whether or not all influential environmental variables and/or ranges 
of the variables were captured and included in the analysis.  In particular, the poor fit of the 
density model suggests that important environmental or other influential variables were not 
adequately captured.  Obvious absences are the lack of bottom type and facies information.  
Studies in BC and Alaska have shown that P. californicus appears to have a habitat preference 
for hard substrates or mixed substrates (Campagna and Hand 1999; Zhou and Shirley 1996; 
Woodby et al. 2000).  Bottom type would therefore likely be an important predictor of distribution 
and density.  Unfortunately reliable bottom type and facies information is not available for much 
of the coast of BC, including the study area used here.  Other variables that are likely to have a 
role in the distribution and density of a species, such as exposure, should be included when 
available and feasible.  Additionally, sea cucumbers sampling may not have occurred 
throughout the entire ranges of the environmental variables found within the study area. 
Therefore extrapolation into un-sampled environmental variables ranges may pose a problem 
for predictions. The addition of these data may improve results of the models. 

Along with missing environmental predictors, another potential source of bias is the biological 
data.  In this study, stock assessment surveys of P. californicus were used to provide 
information on the responses modelled.  These surveys are designed to provide good spatial 
coverage and assess the biomass of sea cucumbers within the most common fishable depths.  
Transects typically go to approximately 15 m depth. We attempted to address the potential bias 
associated with this by removing depth as a predictor, and also limiting the analysis to 30 m 
depth in the sensitivity analysis.  There were no significant changes in the predictive 
performance of the model.  However, harvest of sea cucumbers only occurs at depths that are 
accessible to SCUBA divers (< 30 m), so the potential bias in the survey data may not be a 
large issue.  It may be worth exploring in further analysis though.  Additionally, there may be 
sampling and positional uncertainty associated with the biological data. This includes the 
possibility that P. californicus may not have been seen on a surveyed transect at the time of 
surveying, but they may be present at another time of year which would impact the habitat 
suitability and density predictions.   

Threshold selection is another large source of uncertainty when developing habitat suitability 
models.  Most methods for selecting a threshold to differentiate between areas where a species 
is predicted to be present, and those where it is predicted to be absent, rely on statistical 
methods rather than biology.  Consequently, some important biological drivers may be ignored.  
Selecting an appropriate threshold is challenging, and ideally the effectiveness of different 
thresholds should be tested in the field.  If groundtruthing is not possible, it is advisable to test a 
range of possible thresholds, or simply use the gradient provided in the analysis rather than 
creating a Boolean response (i.e., present or absent). 

2.4.7. Conclusion 
The analysis in Section 2 has presented a demonstration of the use of BRT models to predict 
the distribution and density of a low-mobility benthic invertebrate species, the sea cucumber P. 
californicus.  The models produced using these methods can be used in multiple ways to 
facilitate the formation of FCANs.  Firstly, they can be used on their own to provide scientists 
and managers with valuable information on the predicted distribution and abundance of a 
species of interest in areas that have not yet been fully surveyed.  These data can help guide 
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future research into the distribution, density of the species, as well as the environmental drivers 
that may be responsible for those responses.  If the models are sufficiently reliable, they can 
also be used to help inform management decisions.  Secondly, they can be used as input layers 
into additional modelling to explore the effect different FCAN designs have on meeting 
conservation and management objectives.  This use will be further described and demonstrated 
in Section 3. 

3. SIMULATION TOOL 

3.1. INTRODUCTION 
In this section, we build a simulation model that can be used to explore the effects of Fishery 
Closure Area Network (FCAN) designs on the probabilities of meeting conservation and 
management targets.  The simulation model and results are constructed and analyzed with a 
set of tools available to the scientific community and customized to meet the objectives of this 
paper. We refer to the simulation model as a ‘simulator’. The simulator consists of four sub-
models of habitat suitability, dispersal, meta-population dynamics and fisheries management. 
The sub-models are coupled through various link functions.  The metapopulation dynamics 
model uses outputs from the habitat suitability model to define the spatial structure, carrying 
capacity, and initial abundance of discrete populations. The dispersal model specifies how these 
discrete populations are connected through transport of larvae in the pelagic zone until they 
settle and recruit as juveniles in distant populations.  The fisheries model defines the locations 
where different types of fishing occur, and the number of individuals removed at each time step.  
Such complex spatially-explicit models are increasingly used to assess species status, prioritize 
research, evaluate threats and inform management decisions for a broad range of species in 
terrestrial and aquatic systems (Akçakaya et al. 2004; Naujokaitis-Lewis et al. 2009; Naujokaitis-
Lewis et al. 2013; Pe’er et al. 2013). 

A common practice for development, analysis and application of coupled habitat-based 
metapopulation dynamics models is to carry out a whole-model sensitivity analysis (Saltelli et al. 
2006: Naujokaitis-Lewis et al. 2009; Pe’er et al. 2013).  Whole-model sensitivity analyses allow 
developers and users to quantify the influences of uncertainties in parameter values and model 
structures on simulation results.  By identifying influential model parameters and assumptions, 
sensitivity analyses can be used to prioritize research, identify potential management 
intervention points, and develop management strategies that are robust to those sources of 
uncertainty.  We use a global sensitivity analysis to evaluate the relative importance of a 
parameter on model predictions averaged across the entire parameter space.  Specifically, our 
simulator allows users to measure the relative influences of parameters associated with habitat 
suitability, dispersal, population dynamics, and fisheries management including the number, 
size, and location of Fishery Closure Area Networks.  Due to time constraints, we limit our 
sensitivity analysis to a subset of these parameters (Table 3-5).  All parameters and functions 
included in our sensitivity analyses were varied independently.  

Conservation and fisheries management objectives may relate to maintenance of a species’ 
abundance and distribution patterns, its ecological functions, or demographic, behavioural or 
genetic diversity.  Our set of tools allows users to evaluate network design primarily in relation to 
a species abundance and distribution patterns. They also allow users to consider alternative 
network designs using conservation and fisheries management criteria, including the 
percentage of populations occupied, population-specific or metapopulation abundance, 
probability of extinction, percent decline in the population, and probability of falling below a limit 
reference point.  In the context of sea cucumber fisheries management, one objective would be 
to prevent the abundance within PFM Subareas from declining by more than 50% compared to 
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unfished biomass, the current limit reference point (Hand et al. 2009).  In this paper, we 
consider the influence of model parameters on the magnitude of population decline expected at 
the end of 20 years and 100 years of fishing, and the likelihood that subareas will fall below the 
limit reference point.  We modified GRIP to give the simulations 20 years to equilibrate prior to 
imposing fisheries management.  This prevents our results in the first few years of fisheries 
management from being driven by initial conditions (Pe’er et al. 2013).  We could have reported 
results for any specified time horizon.  However, we report results at 100 years as this time 
horizon is commonly used in species assessments (e.g. IUCN 2012).  We also report results at 
20 years as this corresponds roughly to one human generation and was of interest to sea 
cucumber fishery managers.  

The first component of our simulator is the predicted habitat suitability model (Section 2); this 
static part of the model is used to define the spatial structure of sea cucumber habitat patches 
that are suitable for survival, growth and reproduction in the study area (i.e. suitable habitat).  In 
our simulation tool, patches of suitable habitat are assumed to support spatially-structured 
populations, thus the terms patch and population are treated synonymously (sensu Akçakaya 
and Root 2002).  The second component of the simulator, the metapopulation dynamics model, 
simulates population-specific demography; spatially-explicit predictions of adult density 
(predicted density model from Section 2) are used to initialize population-specific abundances 
and carrying capacities.  The third component, the dispersal model, is used as a basis for 
simulating the movement of larvae among populations.  Thus metapopulation in this context is 
defined as a set of spatially-structured populations linked by dispersal.  The final component of 
the simulator is the fishery management model.  It simulates the effects of commercial, 
recreational, and First Nation fisheries on the demography of populations. 

To evaluate the performance of alternative FCAN designs, we begin by identifying conservation 
and fishery management objectives.  These objectives serve as performance criteria against 
which we compare the effectiveness of various FCAN designs.  In this paper, we evaluate 
FCAN design in terms of its ability to prevent abundance within subareas from falling below the 
limit reference point (50% of unfished biomass).  This performance criterion reflects the fact that 
commercial sea cucumber fisheries are assessed and managed at the scale of Pacific Fishery 
Management Subareas (described in more detail below).  However, our simulator and set of 
tools allow users to evaluate alternative FCAN designs using conservation and fisheries 
management criteria, including the percentage of populations occupied, population-specific or 
metapopulation abundance, probability of extinction, percent decline in the population, and 
probability of falling below a limit reference point.  

We develop a baseline scenario that represents the best available data, knowledge, and 
understanding about P. californicus distribution, population dynamics and dispersal, as well as 
the actual dynamics of fisheries in PFMA 12.  We then carry out a whole-model sensitivity 
analysis (as in Curtis and Naujokaitis-Lewis 2008; Naujokaitis-Lewis et al. 2013) by randomly 
varying habitat, dispersal, and population parameters as well as commercial and other (e.g., 
recreational and First Nation) fishery management scenarios, and alternative FCAN network 
design scenarios in order to quantify the relative influences of all input parameters on model 
predictions.  Model predictions generated during the sensitivity analyses are then used to 
investigate relationships between FCAN design (namely size, number, configuration, and 
connectivity of the sites that make up the network) and the probability of meeting conservation 
and fishery management objectives.  Depending on the form and strength of these relationships 
following analysis of simulation results, model predictions can be used to identify optimal FCAN 
designs for meeting management objectives, and to develop simple rules of thumb for informing 
decisions on FCAN design in management areas with fewer data. The following section 
describes: the tools used to build the simulator, the structure of each of the four model sub-
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components and how they are linked, the methods used to carry out the sensitivity analyses, 
and the analysis of model output. 

3.2. METHODS 

3.2.1. Software tools 
We used a combination of RAMAS GIS software (Akcakaya and Root 2002) and R code to build 
a baseline metapopulation dynamics simulation model and carry out a comprehensive 
sensitivity analysis of the baseline model. RAMAS GIS is software that allows users to build 
single-species models of metapopulation dynamics that are spatially-explicit and linked to 
models of dispersal, harvest, supplementation, or other functions that govern population 
dynamics (e.g. disease transmission). It is one of the most widely used commercial software 
packages for assessing species status, performing population viability analyses, and assessing 
alternative management actions for species at risk (Naujokaitis-Lewis et al. 2009). The software 
has been applied to the analyses of fisheries management of Pacific herring and Atlantic herring 
(Akçakay et al. 2004), and in calculations of recovery targets for threatened and endangered 
freshwater fishes in Canada (Velez-Espino and Koops 2012). One of the limitations of this 
software, however, is the lack of functions for carrying out comprehensive sensitivity analyses of 
baseline models.  

To compare the relative performance of alternative FCANs – given a high degree of uncertainty 
in habitat suitability, dispersal, population dynamics and fisheries management implementation 
– we used GRIP 1 (Generation of Random Input Parameters), a freely available open source 
program that facilitates computationally efficient and comprehensive analysis of the sensitivity of 
model predictions to changes in input parameters (Curtis and Naujokaitis-Lewis 2008). The 
program must be used with a baseline model developed with RAMAS software. It works by 
reading in the baseline model, randomly varying the values of input parameters by drawing on 
distributions specified in the code, producing batch files to run a specified number of scenarios 
and collating simulation results of interest into a comma delimited (CSV) file for further statistical 
analysis (e.g. boosted regression analysis, random forest analysis, Naujokaitis-Lewis et al. 
2013). The program is written in R (RCDT 2011), an open source statistical programming 
language. GRIP 1 code is well annotated so that it can be easily modified to address different 
questions in sensitivity analyses or to incorporate functions or parameters that are specific to 
populations, species or areas. GRIP 1 has been customized in other studies to compare the 
performance of alternative minimum size limits for endangered marine fish managed by CITES 
(Curtis & Vincent 2008), to predict risks associated with climate change and range distributions 
for threatened birds (Naujokaitis-Lewis et al. 2013), to explore the effects of poaching on 
abalone population dynamics (Abbey Camaclang, University of Queensland, Queensland, 
Australia, unpublished data) and to provide advice on the amount and configuration of critical 
habitat needed to meet specified recovery goals (Janelle Curtis, Fisheries and Oceans Canada, 
Nanaimo, BC, unpublished data).  

3.2.2. Study area 
The study area used for the simulation tool covers most of PFMA 12 (Figure 3-1).  The only 
exceptions are the elimination of approximately half of PFM Subarea 1 and all of Subarea 25.  
These were removed to match the extent of an ocean circulation model that exists for this area.  
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Figure 3-1. The study area for the simulation tool. The area covers most of Pacific Fisheries Management 
Area (PFMA) 12, except for approximately half of PFM Subarea 1 and all of PFM Subarea 25 (both in the 
southeast corner of the study area.) 

3.2.3. Simulator sub-component descriptions and parameterization 
In the following section we describe the four sub-components of the simulator and how they 
were parameterized.  The sub-components include: 

1. a habitat suitability model;  

2. a metapopulation dynamics model; 

3. a dispersal model; and  

4. a fisheries management model. 

For each model a description is provided for the parameters used in both the baseline scenario 
(our best approximation of reality) and a range of parameter values explored in sensitivity 
analyses.  Whole-model sensitivity analysis is considered a best practice for the development, 
analysis and application of coupled habitat-based metapopulation dynamics models (Saltelli et 
al. 2006: Naujokaitis-Lewis et al. 2009; Pe’er et al. 2013).  Whole-model sensitivity analyses 
allow developers and users to quantify the influences of uncertainties in parameter values and 
model structures on simulation results.  By identifying influential model parameters and 
assumptions, sensitivity analyses can be used to prioritize research, identify potential 
management intervention points, and develop management strategies that are robust to those 
sources of uncertainty.  Our tool allows users to measure the relative influences of parameters 
associated with habitat suitability, dispersal, population dynamics, and fisheries management 
including the number, size, and location of Fishery Closure areas. Due to time constraints, we 
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limit our sensitivity analysis to a subset of these parameters (Table 3-6). All parameters and 
functions included in our sensitivity analyses were varied randomly and independently. 

3.2.3.1. Spatial structure of discrete populations 
In this simulator– as is often assumed in habitat-based, spatially-explicit metapopulation models 
(Akcakaya and Root 2002) – patches of suitable habitat are assumed to support spatially 
structured populations of sea cucumbers that are linked to each other via dispersal.  Thus 
discrete patches of suitable habitat are treated as subpopulations within a metapopulation.  
However the true spatial structure of discrete sea cucumber populations is not known and may 
not correspond to the spatial structure of suitable habitat. Also, sea cucumbers may not meet 
the criteria for a strict definition of metapopulation, whereby dynamics are driven by local 
extinction and recolonization processes. Nevertheless, ours is a convenient approach for 
simulating the dynamics of spatially structured groups of individuals, as well as the movements 
of individuals among those groups, while maintaining tractable computations. We defined 
patches of suitable habitat on the basis of a habitat suitability threshold, depth, and a 
neighbourhood distance.  Habitat suitability thresholds are used to distinguish habitat of 
sufficient quality to support survival, growth and reproduction.  The analyses used to identify the 
amount and distribution of suitable habitat are described in Section 2.  In our baseline scenario, 
the habitat suitability threshold was selected as 0.75 (see Section 2 for a justification for using 
0.75).  Although P. californicus is recorded to depths of 256 m in BC (N. Duprey, personal 
observation), areas of suitable habitat in our simulations were restricted to depths equal to or 
shallower than 30 m. The occurrence data used to build the habitat suitability model is from 
surveys occurring in water equal two or shallower than 15 m. It seems biologically reasonable to 
extrapolate those data into slightly deeper water that are still within diveable depths (30 m) 
where they are known to regularly exist and reproduce (N. Duprey, personal communication).  
However, there are no data on the presence, distribution and reproductive capability of P. 
californicus in water deeper than 30 m. Therefore the authors felt it was more precautionary to 
presume that area below 30 m were not suitable for the survival, growth and reproduction of 
populations of P. californicus.  Additionally few fishers harvest sea cucumbers below this depth, 
and so any sea cucumbers below 30 m are not accessible to the fishery, nor are they 
considered in stock assessments.  The neighbourhood distance is used to combine discrete 
patches of closely-spaced suitable habitat into spatially-structured populations. In our case, we 
arbitrarily set the neighbourhood distance to 850 m as this was the smallest neighbourhood 
distance we could use while maintaining the computations required for tractable simulation. 
RAMAS GIS default settings require that the maximum number of patches be less than 500 
populations. By setting the neighbourhood distance to 850 m, we could reduce the number of 
spatially discrete populations in our simulations to 370. While assuming a neighbourhood 
distance of 850 m makes the computations more tractable, this distance may be larger than the 
typical foraging or home range distance of most sedentary invertebrates including sea 
cucumbers.  

RAMAS has a built-in function to define habitat patches on the basis of neighbourhood 
distances.  However, it does not allow for the inclusion of impassable barriers, such as land.  
Habitat patches were therefore calculated using several tools in ArcMap 10.0 (ESRI 2011).  
First, the Cost Distance tool in the Spatial Analyst extension was used to calculate the 
cumulative distance, measured from center point to center point, from each patch of suitable 
habitat (two or more adjacent cells of suitable habitat) to every other raster cell in the study 
area.  To the greatest extent possible, land was included as a barrier to more accurately 
represent connectedness between cells of suitable habitat.  For example, the distance between 
two nearby cells of suitable habitat that were separated by a peninsula would be measured 
around the peninsula rather than across it.  The Reclassify tool was then used to select only 
those cells that fell within the defined neighbourhood distance of each cell of suitable habitat 
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(Figure 3-2A).  If the buffer around a cell of suitable habitat did not touch another buffer, it was 
considered a unique habitat patch (Figure 3-2B, left).  However, if the buffer of one or more cells 
of suitable habitat overlapped or were touching the buffers of other cells of suitable habitat, they 
were all joined into a single habitat patch (Figure 3-2B, right).  The reclassified raster was then 
converted into discrete polygons representing each habitat patch.  Management scenarios in 
the population dynamics model operate on a PFM Subarea level; in order to simulate those 
cases when different fisheries management actions were applied to different parts of a 
population straddling multiple PFM Subareas patches overlapping PFM Subarea boundaries 
were further divided along boundary lines (Figure 3-2C and D).  Algorithms used in RAMAS 
require habitat patches to be separated by at least one cell, so the habitat suitability of cells that 
fell along PFM Subarea boundaries were set to zero (Figure 3-2E).  This resulted in a very small 
proportion of habitat area (< 5%) being removed.  In total 370 discrete habitat patches were 
identified using a habitat suitability threshold of 0.75 and a neighbourhood distance of 850 m 
(Figure 3-3). To circumvent the “find patches” routine in RAMAS GIS, this map of discrete 
patches was imported into the RAMAS GIS Spatial Module as an ASCII file where suitable and 
unsuitable habitat were set to 1 and 0, respectively, and the neighbourhood distance was set to 
1. 

 
Figure 3-2.  Schematics of how habitat patches were formed.  Cells of suitable habitat are represented in 
black, while the buffer, or neighbourhood distance, is grey and white cells are cells of neither suitable 
habitat nor within the buffer distance from a cell of suitable habitat.  A) A single 300x300 m cell of suitable 
habitat surrounded by a buffer with a neighbourhood distance of 850 m.  B) Two habitat patches, outlined 
in black.  The first (on the left) is a single cell of suitable habitat and its buffer, while the second (on the 
right) shows two cells of suitable habitat whose buffers are directly adjacent to one another.  They are 
therefore joined into a single patch of habitat.  C) A single habitat patch that is crossed by a PFM Subarea 
boundary (dotted line).  D) Two separate habitat patches (indicated by diagonal lines) after being split by 
a PFM Subarea boundary.  E) The two resulting separate habitat patches after cells along the PFMA 
Subarea boundary have been deleted. 
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Figure 3-3. Map of the 370 populations of Parastichopus californicus identified using a habitat suitability 
threshold of 0.75 and a neighbourhood distance of 850 m, excluding suitable habitat deeper than 30 m. 
Each population is represented bv a different colour. 

The habitat suitability threshold and neighbourhood distance for P. californicus in PFMA 12 are 
important parameters in our simulator as they influence the number, configuration and size of 
each habitat patch, which informs the overall metapopulation structure. We used the maximum 
sum of sensitivity-plus-specificity to select a habitat suitability threshold that effectively balances 
sensitivity and specificity (Jiménez-Valverde and Lobo 2007), which in our baseline model was 
0.75. We then used the smallest neighbourhood distance that produced fewer than 500 
populations in combination with the baseline habitat suitability threshold. However, the true 
values for the habitat suitability threshold and the neighbourhood distance are unknown.  

GRIP 1 was originally designed to investigate the effects of uncertainties associated with 
landscapes and the distribution of suitable habitat by varying the habitat suitability threshold and 
neighbourhood distances in a sensitivity analysis. In our analysis, we varied the habitat 
suitability maps directly to address these sources of uncertainty because of computational 
challenges associated with recalculating the matrix of distances among all pairs of populations 
(i.e. pairwise population distances) for each replicate scenario. For similar reasons our version 
of GRIP does not vary the number of populations in the landscape. These are acceptable 
changes to the code because in our case we are primarily interested in the influence of reserve 
design as opposed to uncertainty in the population structure. Instead of varying the location of 
suitable habitat automatically in our sensitivity analysis, we vary the location, size, and number 
of populations that are part of an FCAN in each scenario. In order to facilitate sensitivity 
analyses with alternative habitat structures produced manually, we added code to allow us to 
vary and build a baseline metapopulation dynamics model (i.e. *.mp file) automatically by 
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reading in CSV and ASCII files that define alternative habitat suitability maps and corresponding 
matrices of pairwise distances.  

To account for these sources of uncertainty, a total of 13 metapopulation structures (one of 
which was the baseline, described above) were derived from combinations of 4 habitat 
suitability thresholds (0.7, 0.75, 0.8, and 0.9) and 4 neighbourhood distances (600 m, 850 m, 
1450 m, and 1700 m; (Table 3-1).  Some combinations (neighbourhood distance of 600 m with 
the thresholds of 0.7, 0.75 and 0.8) were not possible as they resulted in more populations than 
RAMAS could handle.  The intention was to use these 13 metapopulation structures in our 
whole –model sensitivity analyses to explore the influence of uncertainties associated with the 
baseline habitat suitability map on our simulation results. The simulation tool is designed to 
allow users to quantify the uncertainties associated with the amount and location of suitable 
habitat and their influences on model results. However, only the baseline metapopulation 
structure is explored in this paper.   

Table 3-1.  Summary of the sensitivity, specificity, number of populations, initial abundance and area 
(suitable habitat and neighbourhood distance buffer) for all alternative habitat suitability scenarios 
prepared.  The baseline scenario 0.75 (bold) is the only one used in the presented simulation results. ND, 
is the neighbourhood distance. 

Threshold ND Sensitivity Specificity Number of 
populations 

Initial 
abundance  

Area 
(km2) 

0.70 850 m 0.940 0.624 428 116,293,312 1017 

 1450 m - - 294 - 1328 

 1700 m - - 272 - 1409 

0.75 850 m 0.896 0.785 370 56,388,900 975 

 1450 m - - 305 - 1294 

 1700 m - - 279 - 1377 

0.80 850 m 0.822 0.839 418 101,206,215 886 

 1450 m - - 303 - 1207 

 1700 m - - 277 - 1292 

0.90 600 m 0.263 0.989 384 48,585,396 408 

 850 m - - 316 - 533 

 1450 m - - 232 - 798 

 1700 m - - 221 - 868 

3.2.3.2. Metapopulation Dynamics Model 
The core of the demographic model is a stage-based matrix upon which several functions 
operate to simulate population processes including density-dependent population growth and 
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density-independent dispersal.  A stage-based matrix model keeps tracks of the number of 
individuals in each life history stage included in the model and their contributions to other life 
history stages through growth, reproduction or other processes. Given the lack of population-
specific estimates of vital rates (i.e. stage-specific survival and fecundities), this same core 
matrix model is assumed for all populations in our simulations. Few data are available to 
estimate the life history parameters for P. californicus.  We therefore constructed our 
demographic model using what information is currently available for this species (e.g. Cameron 
and Fankboner 1986, 1989; Fankboner and Cameron 1988; Hannah et al. 2012) and by 
drawing on data from previous simulation studies (e.g. Humble 2005; Humble et al. 2008; Hand 
et al. 2009; Hajas et al. 2011), unpublished data, expert judgment, and published information on 
related species to provide a baseline and a range of values for unknown or highly uncertain 
parameters.  In the following sections, we describe the life stages considered in the population 
dynamics model, the methods and data used to parameterize fecundity and survival rates of 
each stage, and then the functions that govern metapopulation dynamics in our simulations. 

Table 3-2: Lefkovich matrix of stage-specific fecundities and transition probabilities (S) for mixed sexes, 
including baseline values. The fecundity of adult females is represented by fa, and is multiplied by 0.5 to 
account for an equal sex ratio. g12, g23, and g34 are the probabilities of survival from age 1 to 2, age 2 to 3 
and 3 to 4, respectively. g44  and g4a represent the probabilities of surviving and remaining in the juvenile 
stage for an additional year or surviving and maturing to the adult stage, respectively. gaa is the survival 
probability of adults. Transition rates are applied to stage-specific abundances at each time step, which in 
our model, corresponds to a year. j1 are animals almost 2 years old; j2 are animals almost 3 years old; j3 
are animals almost 4 years old; j4+ are animals greater than 4 years old. 

 j1 j2 j3 j4+ Adults 

j1 0 0 

 

0 

 

0 0.5*fa 

j2 g12 

0.20 

0 0 0 0 

j3 0 g23 

0.20 

0 0 0 

j4+ 0 0 g34 

0.69 

g44 

0.5 

0 

Adults 0 0 0 g4a 

0.19 

gaa 

0.69 

A Lefkovich matrix (Caswell 1989) of stage-specific fecundities and transition probabilities 
(Table 3-2) was used as the basis for simulating population demography and growth because of 
the challenges associated with ageing sea cucumbers and the lack of age-specific data for P. 
californicus (Boutillier et al. 1998; Hand et al. 2009).  The key assumption of stage-based 
matrices is that all individuals within a stage experience the same survival, growth, and 
fecundity rates (Crouse et al. 1987).  In a stage matrix, the value in the ith row of the jth column 
represents the proportion of individuals in the jth stage that transition to the ith stage (Akçakaya 
and Root 2005). GRIP 1 includes simple code for reading in survival and fecundity rates for age-
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based matrices. Because ours is a stage-based matrix, we customized the code to read in and 
record all the transition probabilities, as described below. 

We group individuals into five stages based on their development, habitat use, size, and 
vulnerability to fishing. 

Adult P. californicus are broadcast spawners (Phillips and Boutillier 1998). Larvae survive, 
disperse and grow in the pelagic zone until they settle on benthic substrate as juveniles. The 
larval period is estimated to range from 51 to 125 days (Strathmann 1978; Cameron and 
Fankboner 1989).  In our baseline scenario we assume that larvae drift pelagically until they 
settle onto suitable benthic habitat as juveniles where they experience high mortality associated 
with predation during their first year.  We implicitly simulate larvae that are born, survive and 
grow as described below, but do not reproduce. Larvae are assumed to be highly vulnerable to 
predators and exhibit cryptic behaviours both in the pelagic zone and as they settle onto benthic 
substrata.  Larvae and young juveniles are rarely observed during surveys (Cameron and 
Fankboner 1989; Hand et al. 2009).  

The first two stages in our model represent juveniles that are in their second (j1, just about to 
turn 2 years old) and third (j2, just about to turn 3 years old) years that survive and grow, but do 
not reproduce and are not harvested.  All surviving individuals spend one year in each stage.  
The residence time of juveniles in each of these stages is one year. 

The third stage in our matrix represents juveniles that are in their fourth year (j3, just about to 
turn 4 years old) that survive and grow, but do not reproduce and are not harvested.  In their 
fourth year, they are assumed to be large enough to evade predation by sea stars (Cameron 
and Fankboner 1989) but are still not reproductively mature. The residence time of juveniles in 
this stage is one year. 

The fourth stage in our matrix, j4+, represents juveniles that are at least four years old.  Age at 
maturity is unknown in this species, but juveniles are estimated to mature after 5 years of age 
(Fankboner & Cameron 1985; Humble 2005).  Of those individuals that survive one year in this 
stage, a proportion remains immature while the remainder mature into adults.  The average 
residence time in this stage is two years.  Juveniles in this stage are not harvested in our 
simulations because recruitment to the fishery is assumed to begin at 5-8 years of age 
(Fankboner & Cameron 1988; N. Duprey, Fisheries and Oceans Canada, Nanaimo, BC, 
unpublished data). This is because fishers tend to select larger, and therefore older, individuals.  

The fifth stage represents adults that survive, grow, and reproduce and are subject to 
commercial, recreational and First Nation fishing mortality.  The maximum age of P. californicus 
is not known, but in our model is defined by the transition probabilities; the proportion of each 
cohort that remains in the adult stage diminishes at a rate of 1- gaa until all individuals in that 
cohort have died.  In our baseline scenario, individuals that survive to the adult stage survive on 
average an additional 3.23 years and approximately 1% survive for 12 years as adults.  In our 
sensitivity analysis, we explore a range of adult survival rates whereby average residence times 
ranged from 2.13 to 7.14 years, and approximately 1% of individuals spend 7 – 30 years as 
adults before they die.  

The top row of the stage matrix represents stage-specific fecundities while the remaining cells 
represent the transition probabilities (Table 3-2).  In our matrix, only adults produce juveniles, j1, 
that are just about to turn one year old at the end of each time step.  The matrix assumes an 
equal sex ratio (Cameron and Fankboner 1986), simulates both sexes together (i.e. mixed 
sexes), and assumes, for simplicity, that all individuals are born in a single pulse (i.e. birth 
pulse).   
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Fecundity of adults (fa) 

In our model, we define fecundity as the number of viable larvae produced by mature females 
multiplied by larval survival rate at each time step (i.e. recruits per adult per time step).  In the 
case of broadcast spawners, like P. californicus, the effective number of larvae produced per 
adult female is a function of the proportion of mature females spawning at each time step, the 
number of viable eggs produced, the fertilization efficiency, and the proportion of larvae that 
disperse to and settle in suitable habitat.  None of these parameter values are known for P. 
californicus; therefore we use a two-pronged approach to define baseline fecundity and the 
ranges explored in a sensitivity analysis.  

In our first approach we begin by assuming that at t = 0, the metapopulation of sea cucumbers 
in PFMA 12 is at or near an equilibrium population size, or the carrying capacity, K.  In the 
absence of density-dependent processes or other density-independent factors that might 
influence population abundance trends, we assume that lambda (the dominant eigenvalue) in 
our matrix model is 1.  To achieve a lambda ~ 1 with the transition probabilities assumed for our 
baseline model (described below), fecundity must be 30 recruits per adult per time step (λ = 
1.0018).  However, because fecundity is an uncertain parameter, we crosscheck our estimated 
baseline fecundity value, and determine a plausible range of values to use in the sensitivity 
analysis, by calculating it a second way.  We synthesized available information on the 
proportion of mature females spawning at each time step, number of viable eggs produced, the 
fertilization efficiency, and the proportion of larvae that disperse to and settle in suitable habitat.  
For each unknown value we drew on expert knowledge, simulation results, or published 
estimates from related species to define a range of plausible values, and used those ranges to 
calculate a plausible minimum and maximum value for fecundity.  

The proportion of females breeding each year is unknown for P. californicus. In our baseline 
simulation, we assumed the proportion of females spawning at each time step to be 0.9 to 
account for variability in the size and age at physiological and behavioural maturity, and the 
sublethal effects of a variety of stressors that may affect individuals, including diseases, injuries, 
and food limitations.   

There were no estimates of the annual reproductive output of P. californicus available in the 
literature and no unpublished estimates to the best of our knowledge.  Therefore we estimated 
the number of oocytes produced by adults with a statistical model fit to published estimates of 
the number of oocytes per gram of body wall (in 1,000s), y, and adult body wall weight, x, 
available for nine tropical sea cucumber species (Conand 1993, Figure 3-4). Allometric 
approaches to estimate life history parameters are widely used to address gaps in biological 
information when developing population dynamics models. The estimates were obtained from 
Figure 6 in Conand (1993) using DataThief (B. Tummers, DataThief III. 2006). The equation of 
the fitted line (adjusted r2 = 0.76, p = 0.0014) was:  

xey 0023.0*46.97 −=  

Surveys of P. californicus included random transects where 25-50 animals were collected then 
split longitudinally and weighed without gut or coelomic content  (Hand et al. 2009; Duprey et al. 
2011).  The mean and standard deviation of body wall weight (i.e. split and drained weight) of P. 
californicus collected from 2000-2010 in PFMA 12 was 304.17 g ±112.18 g (n=1469).  Based on 
this allometric relationship, the mean number of oocytes per gram of body wall for large adult P. 
californicus was predicted to be 48,343 (± SD of 16,260), and the total expected annual oocyte 
production (± SD) of a large adult female  was calculated as 14,704,490 (± 7,339,699), taking 
into consideration the SD in weight and uncertainty in the predicted y. 

http://datathief.org/
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Figure 3-4: Model fitted to estimates of the number of oocytes per gram of body wall as a function of body 
wall weight (g) for 9 species of sea cucumber (solid circles). The predicted number of oocytes per gram of 
body weight for adult P. californicus is represented by the open circle. The number of oocytes per g of 
body wall is in 1,000s. Estimates were extracted from Figure 6 in Conand (1993) with DataThief 
(Tummers 2006).  

Egg viability is unknown in P. californicus and is probably difficult to estimate using histological 
examinations of oocytes.  One laboratory study of Cucumaria frondosa larval rearing (Hamel 
and Mercier 1996) reported that approximately 45% of eggs were lost before or during 
fertilization, which we assumed in our calculations of fecundity. These losses were attributed in 
part to nonviable eggs, or eggs that were fertilized by multiple spermatozoa.   

Because P. californicus are synchronous broadcast spawners, fertilization rates may be 
influenced by release timing, spawner density, and environmental factors such as current speed 
(Pennington 1985).  Fertilization rates, however, are unknown in this species, but have been 
reported to range from 0.69 to 0.9 in laboratory studies of C. frondosa (Hamel and Mercier 
1996) and Australostichopus mollis (Morgan 2009), respectively.  These fertilization rates are 
much higher than observed in situ where up to 40% of echinorderm eggs were fertilized by 
males within 2 m of release point (Pennington 1985). In our calculations, we assumed that the 
fertilization rates can range from 1% to 40%. 

Following spawning, embryos/larvae are distributed to surrounding patches of habitat via 
currents and tides.  The behaviour of developing larvae while dispersing is not known, and was 
not accounted for in our simulations.  The literature indicates that P. californicus larvae are 
assumed to drift in pelagic waters for 51-125 days (Strathmann 1978; Cameron and Fankboner 
1989).  In our simulation 90 days, the approximate mid point of the estimated range, was 
selected for the baseline scenario.  The fate of larvae is generally governed by their behaviour, 
species interactions, ocean circulation patterns, tidal influences and other characteristics of the 
water therefore it is difficult to predict the location that larvae will disperse to and settle on and 
the number that will survive to settlement. In the absence of information about ocean circulation 
patterns and larval dispersal/survival for P. californicus, we assume that the proportion of larvae 
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that successfully disperse to and settle on suitable habitat is the same as the proportion of 
suitable habitat available in less than 30 m depth within the study area: 0.154.  

Taking into consideration the proportion of mature females spawning at each time step, number 
of viable oocytes produced, the fertilization efficiency, and the proportion of larvae that disperse 
to and settle in suitable habitat, our baseline estimate of the number of larvae produced is 
183,424. The lower and upper quartiles of plausible values were 3,725 and 320,344, 
respectively. The degree to which egg production varies interannually is unknown and was not 
reported for any species in our literature review.   

Allee effects were ignored in our simulations because of the lack of information available on 
fertilization rates at low population abundance, and because our predicted initial population 
sizes are based on surveys of areas where commercial fishing had not taken place in recent 
years (i.e. metapopulation abundance is at or close to equilibrium). 

In order to calculate an estimate of fecundity, we need to multiply the number of larvae 
produced by their survival rate.  Larval survival rate, S0, is the annual survival rate of larvae 
which settle as juveniles during their first year.  Survival rates of early life history stages are 
generally unknown in marine invertebrates, and sea cucumbers are no exception.  However, 
some data are available on the survival rates of sea cucumber larvae reared in experimental 
aquaria for short periods of time (e.g. a few weeks to several months, Table 3-3).  We use 
published estimates of daily survival rate from a variety of sea cucumber species to estimate the 
survival rate of larvae until they settle at 90 days, assuming that larval survival is constant until 
they settle onto benthic substrates.  The mean (± SD) of these estimates is 0.144 (±0.155), but 
it may be far less in the wild due to predation, food limitations and unfavourable ocean 
conditions.  Once settled, we arbitrarily assume that 0.001 survive to the end of their first year 
(i.e. S0 = 0.00014).   

Table 3-3: Published estimates of sea cucumber larval survival rate. 

Source Species 
Survival 
rate (%) 

Time 
(days) 

Daily survival 
rate 

Asha & Muthia (2005); 
average of optimal 
treatments Holothuria spinifera 84.5 12 0.9861 

Guisado et al. (2012) Athyonidium chilensis 0.24 240 0.9752 

Knauer (2011); average 
of feeding trials Holothuria scabra 46.2 12 0.9377 

Li et al. (2011); average 
of optimal treatments Apostichopus japonicas 89.5 9 0.9878 

Mercier & Hamel (1996) Cucumaria frondosa 15 17 0.8945 

Morgan (2009); average 
of treatments Australostichopus mollis 46 22 0.9654 

By multiplying the plausible ranges of the average number of larvae produced per female at 
each time step by plausible estimates of larval survival, the 25th percentile of fecundity values 
was calculated as 5.2 recruits per adult per time step, which would result in a declining 
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population in a deterministic model with λ = 0.83.  By contrast the 75th percentile was 44.8 
recruits per adult per time step, which corresponds to an increasing population in a deterministic 
model with λ = 1.053. Thus the fecundity value we use as our baseline, 30 recruits per adult per 
time step, falls within the range of plausible values determined on the basis of expert 
knowledge, simulations, and studies based on related species.  

Juvenile survival rates (g12, g23, g34, g44, g4a) 

The survival rate of benthic juveniles is not known, although experimental studies of the survival 
of juvenile sandfish, Holothuria scabra, released onto soft substrata near mangrove, seagrass 
and coral flat habitats suggest that they are highly vulnerable to predation at this stage (Dance 
et al. 2003).  Cameron and Fankboner (1989) reported that predation by S. dawsoni was more 
prevalent on small size classes compared to larger size classes in aquarium experiments.  Thus 
we assumed in our baseline that j1 and j2 share a relatively higher vulnerability to predation by 
other echinoderms than older, larger juveniles.  Specifically, in our baseline model, we assume 
that the annual survival rates of j1 and j2 are 0.2 and we varied these survival probabilities from 
0.15 to 0.25 in our sensitivity analysis. However, j2 individuals may survive at rates closer to 0.3-
0.4 if they are larger than 3-4 cm in length (Matt Slater, personal communication). In their fourth 
year, juveniles are assumed to be large enough to evade predation by most predators, including 
other echinoderms, and therefore are predicted to have the same survival rate as adults (0.69, 
see below).  In their fifth year, juveniles are assumed to have the same survival rate as adults, 
however, a proportion of these juveniles transition to the adult stage.  At each time step, 0.31 
are assumed to die of natural causes, 0.5 survive and remain in this stage, and 0.19 mature and 
transition to the adult stage.  Future simulations could explore the influence of survival rates of 
juvenile sea cucumbers which may be higher than assumed in this paper (e.g. varying j2 from 
0.15 to 0.4) 

Adult survival rate (ga,a) 

Most published estimates of adult natural mortality rate, M, are derived from stock assessments 
or simulation models (Table 3-4) whereby annual survival rate is calculated as:  

S = e-M 

No estimates of survival or mortality rate were available for P. californicus. Therefore we 
calculated annual survival rate based on the value of M assumed by Humble (2005) and 
Humble et al. (2008) in analyses of rotational harvest rates for this species in BC, where gaa = 
0.69 (Table 3-4).  In our sensitivity analyses, we varied gaa from approximately 0.55 to 0.85, 
which includes most estimates of adult survival available for related species (Table 3-4).  This 
range corresponds roughly to maximum ages of 13 and 30 years, respectively, in our model.  
The degree to which larval, juvenile and adult transition probabilities vary over time is unknown 
and was not reported for any species in our literature review.  We assumed transition rates 
varied lognormally with a coefficient of variation (CV) of 20%. 
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Table 3-4: Estimates of the instantaneous natural mortality, M (or annual survival rate, S) of adult sea 
cucumbers, converted to annual survival rate.   

Source Species M  S 
(year-1) Comments 

Jensen (1996,1997) as 
cited in Herrero Pérezrul 
& Chávez (2005)  

Parastichopus 
parvimensis 1.50 0.223 Natural mortality, where 

S = 100*e^-M 

Pauly (1980) and 
Rikhter & Efanov 
(1976), as cited in 
Chavez et al. (2011) 

Parastichopus 
parvimensis 0.83 0.436 Natural mortality, where 

S = 100*e^-M 

Hoenig (1983) as cited 
in Chavez et al. (2011) 

Parastichopus 
parvimensis 0.85 0.427 Natural mortality, where 

S = 100*e^-M 

Jensen (1996, 1997) as 
cited in Chavez et al. 
(2011)  

Parastichopus 
parvimensis 0.90 0.406 Natural mortality, where 

S = 100*e^-M 

Hearn et al. (2005) Isostichopus 
fuscus 0.174 0.840 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Actinopyga 
echinites 0.80 0.449 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Actinopyga 
miliaris 0.50 0.606 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Bohadschia 
marmorata 0.18 0.835 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Bohadschia 
sp. "lines" 1.12 0.326 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Bohadschia 
vitiensis 0.70 0.496 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) Holothuria atra 0.38 0.683 predicted from stock 

assessment 
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Source Species M  S 
(year-1) Comments 

Dissanayake and 
Stefansson (2012) 

Holothuria 
fuscogilva 0.54 0.582 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Holothuria 
scabra 0.47 0.625 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Holothuria 
spinifera 0.21 0.810 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Stichopus 
chloronotus 0.30 0.740 predicted from stock 

assessment 

Dissanayake and 
Stefansson (2012) 

Thelenota 
anax 0.17 0.843 predicted from stock 

assessment 

Humble (2005) and 
Humble et al. (2008) 

Parastichopus 
californicus 0.37 0.690 based on simulations, 

and maximum age of 14 

Given the baseline fecundities and transition probabilities, the dominant eigenvalue of the matrix 
(i.e. λ, Caswell 1989) is 1.0018. Thus populations in our baseline scenario are predicted to grow 
at a negligible rate of 0.18% in the absence of any functions that operate on the matrix (e.g. 
density dependence, stochastic processes, exploitation). Below we describe two additional 
functions that influence population size and growth and how these functions were 
parameterized.  

Initial abundance of adults  

In our simulations we track the abundances of all five stages in each population at each time 
step. However, except when otherwise specified, abundance refers only to the abundance of 
adults.  In the baseline scenario the initial abundance for each habitat patch was calculated by 
multiplying the area (in m2) of all suitable habitat in each patch by the mean predicted density (in 
sea cucumbers/m2) of all the cells of suitable habitat in the patch (see population density model 
predictions in Section 2).  In our sensitivity analysis, population abundances were varied by 
drawing from normal distributions with a mean equal to the population’s calculated carrying 
capacity and assuming a CV of 20% (Table 3-6).  

For this study, we only report trends in abundance of adults because fishers tend to select 
larger individuals when fishing and juveniles are infrequently encountered and counted in 
fishery-independent surveys. Our carrying capacity values are therefore expressed in terms of 
the number of adults per population. Because initial abundances in RAMAS models must 
include all individuals from all modeled stages, we added some code to predict the initial 
abundances of juvenile stages based on adult abundances and assuming a stable stage 
distribution. 

Density-Dependence 

The effects of density-dependence on vital rates were simulated at each time step by calculating 
the expected rate of population growth, Rt, and adjusting the affected vital rates equally to 
achieve the predicted Rt (Akçakaya and Root 2002).  The baseline model of density-
dependence is a Beverton-Holt model, based on published population growth models available 
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for other sea cucumber species (Herrero Pérezrul and Chávez 2005; Chavez et al. 2011).  The 
form of the Beverton-Holt function is:  



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 −=
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NReRR t

t
*)ln(* max

max  

And the form of the Ricker function is: 
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Where, in both equations, Rt is the expected population growth, Rmax is the maximum number of 
recruits produced per adult female per time step, Nt is the population size of large adults at time 
t, and K is the carrying capacity of the population.  The ceiling model predicts that population 
abundance will either grow according to λ, the dominant eigenvalue of the Lefkovich matrix, until 
it reaches K, or it will decline according to λ until it reaches zero (Akcakaya and Root 2002).  In 
a global sensitivity analysis, one would typically vary the model of density dependence (e.g. 
Curtis and Vincent 2008) to account for uncertainty in the nature and strength of density-
dependent population growth.  Due to time constraints, we did not vary the model of density 
dependence and only used the Beverton-Holt model. However, our simulation tool has the 
capacity to consider a variety of models of density dependence in population growth, including a 
Ricker function, ceiling model, exponential growth, and any of these in combination with Allee 
effects.  All three models are coded into the simulator tool and all three could be run with or 
without Allee effects in a global sensitivity analysis in the future. 

Density-dependence is assumed to affect all populations in the same manner, and to affect the 
vital rates of all benthic individuals, specifically the survival rates of juveniles and adults, as well 
as fecundities.  For our baseline simulation, we used an Rmax of 1.27 which is the average of 
published estimates for Isostichopus fuscus (1.25, Herrero Pérezrul & Chávez 2005) and the 
warty sea cucumber, Parastichopus parvimensis (1.29, Chavez et al. 2011).  The carrying 
capacity, K, for large adults in each population was assumed to be the same as initial 
abundance because these were based on estimates derived from unfished populations 
assumed to be at or close to equilibrium population size.  However, in our sensitivity analysis, 
we varied K independently of initial abundance by drawing from the same distribution for each 
population (Table 3-6).   

Stochasticity 

Environmental conditions in ecosystems are rarely static, but rather change over a range of 
spatial and temporal scales. The Pacific decadal oscillation and El Nino are two examples of 
periodic changes in environmental conditions that influence the distribution and abundance of 
marine organisms in BC.  In order to represent changes in environmental conditions that could 
influence the dynamics of sea cucumbers, we randomly varied the carrying capacity, K, at each 
time step by drawing from a normal distribution with a mean K and an estimated standard 
deviation.  In our paper, the standard deviation in K was calculated based on abundance 
estimates obtained from a long-term monitoring study of unfished sites from 1997 to 2007 (Hand 
et al. 2009).  These unfished areas were control sites in a study of the effects of fishing in 
experimental fishing areas (EFA).  The data from the EFA control sites were obtained by 
monitoring the densities of P. californicus in four 10,000 m segments of shoreline using SCUBA.   
The density of each of the four areas was calculated within years and sites. For each site, the 
mean and standard deviation of density was calculated to obtain at estimate of the coefficient of 
variation (CV) in abundance across years.  Then a mean (± SD) of CVs was calculated across 
the four sites as 0.18 (± 0.9).  In our baseline scenario we assumed that the CV in K was 0.18 
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(Table 3-6).  In our sensitivity analysis, the CV in K was randomly drawn from a normal 
distribution with mean = 0.18 and SD = 0.9 (Table 3-5). 

In our analyses, we did not simulate or record any effects of local or regional catastrophes due 
to lack of information. However, effects of catastrophes may be easily incorporated into a 
baseline model and sensitivity analysis. For simplicity, we assumed that environmental 
stochasticity was lognormally distributed.  

Correlations among populations in vital rates  

Inter-annual variability in carrying capacity, survival rates and fecundity can be correlated 
among discrete populations when environmental or other factors influence population dynamics 
in similar ways across part or all of a region.  Because populations in our study area are 
influenced by some environmental processes that occur over regional scales, but fall within a 
complex network of channels and inlets subject to different environmental processes over 
smaller scales (e.g. freshwater influx) we assume a 0.5 correlation among populations in our 
baseline scenario, although the true level of correlation among populations is unknown.  In our 
sensitivity analyses, the degree of correlation in K, transition probabilities and fecundity varied 
from 0 to 1 by sampling from a uniform distribution.   

3.2.3.3. Dispersal Model 
At each time step t in our model, larvae are born, survive, and then disperse. The degree to 
which larvae disperse from natal populations and the distances they travel prior to settlement 
onto benthic substrata are unknown in P. californicus, as is the case for most marine 
invertebrate species.  This is a perennial issue in models that simulate the dynamics of spatially 
structured populations in marine systems.  Typically, such models apply a simple dispersal 
kernel (e.g. a Laplacian dispersal probability density function) to predict the probability of larvae 
being transpoted a specified distance away from the source population (e.g. Botsford et al. 
2009; Pepino et al. 2012). Such dispersal kernels have been applied in similar studies to 
evaluate reserve design.  However, our study system is characterized by a complex network of 
inlets and channels (Figure 3-1).  This poses significant computational challenges for 
implementing simple dispersal functions such as Laplacian dispersal because movement of 
larvae are constrained to the network of channels and inlets, while simple dispersal kernels 
typically assume that the probabilities of dispersing in any given direction are equal.  

One alternative to dispersal kernels is to simulate the movement of larvae using a model of 
ocean circulation (Robinson et al. 2005).  In such simulation models, the movement of larvae 
are either simulated assuming that they behave like particles that drift passively with currents 
and tides, or the movement of larvae exhibit simple behaviours such as diel migrations, 
phototaxis, chemotaxis, or aggregation.  This approach requires the development (or 
availability) of a model of the circulation patterns of water within the study area.  Even when 
such models are available, simulating particle movements and analyzing results can be 
computationally intensive (Foreman et al. 2009).  However, simulating particle movements can 
be more informative than simple dispersal kernels as the latter tend to ignore the influences of 
currents, winds, and tides as well as larval behaviour.  An ocean circulation model is available 
for PFMA 12, and was one of the reasons the study area was selected for this case study.  
However, unavoidable delays and time constraints prevented the inclusion of the results of the 
circulation model in the present analysis.  However, our tool has the flexibility of incorporating 
output from a variety of dispersal models or empirical field studies, provided that the outputs are 
expressed as probabilities of dispersal amongst population pairs.  

To simulate dispersal in our network of channels and inlets in this paper, we assume that the 
per unit area dispersal rate from population i to population j is equal for all population j that are 
within a threshold distance of population i, Dmax, where the distance between pairs of 
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populations (i.e. pairwise distance) is calculated as the minimum distance larvae must travel 
through the network to arrive at population j.  

To calculate dispersal rates, we first calculate the distances between each pair of populations in 
the study area as described above and construct a matrix of pairwise distances. The matrix of 
pairwise distances between all habitat patches was calculated using GIS software.  The 
distance between patches was measured from a single point placed within each habitat patch.  
The point was not necessarily located in the center of the habitat patch, as the centroid 
sometimes fell outside the patch (e.g., on land or an area of unsuitable habitat).  The location of 
each point is determined using the genpointinpoly function (position = LABEL) in the Geospatial 
Modelling Environment software (version 0.7.1.0) (Beyer 2012).  Distances between the points 
were calculated using a 300x300 m cost distance raster created for each habitat patch.  The 
cost distance rasters are calculated using the cost distance tool in the Spatial Analyst extension 
of ArcMap 10.0 (ESRI 2011).  Land barriers were considered in the cost distance raster to the 
greatest extent possible.  However, twelve narrow land barriers could not easily be removed.  
The maximum potential error in pairwise population distance calculation for these land barriers 
ranged approximately from 2 to 13 km (mean = 6.8 km).  The actual errors caused by these 
barriers are much smaller than the maximum potential error, and do not affect all pairwise 
distances.  The errors caused by not taking these land barriers into account is unlikely to affect 
results because patch size was generally larger than these distances and the mean distance 
between the habitat patches was an order of magnitude larger (mean = 59 km).  In future 
applications of these tools, uncertainties associated with land barriers could be reduced.  

In our baseline model we assume that larvae are capable of dispersing up to 30 km (= Dmax) 
during the course of their pelagic stage (51-120 days). This value and range was based on the 
mean larval dispersal distances of several invertebrate species (Shanks et al. 2003; Siegel et al. 
2003; Shanks 2009).  

We then construct a matrix of pairwise dispersal rates which represents the proportion of larvae 
that disperse from the ith population to the jth population, mij, at each time step.  If a pair of 
populations falls within the threshold distance, a dispersal rate is calculated and we refer to that 
pair of populations as being connected.  For each population i, we identify all of the 
neighbouring populations that fall within the threshold distance, Dmax, and calculate mij as the 
inverse of the total number of populations connected to population i weighted by each 
population’s area.  In this manner, larvae have an equal per unit area probability of settling in 
their natal population i as they do in any of the population js connected to population i. 
Stochasticity in dispersal rates is introduced by randomly varying the rates at each time step 
assuming a 10% coefficient of variation (CV).  Dispersal rates are assumed to be independent 
of the densities of sea cucumbers in populations i and j.  

Given uncertainty in the dispersal patterns of larval P. californicus, we vary the threshold 
distance, Dmax, across the range of plausible values in our global sensitivity analysis, which 
includes two special cases.  In the first special case we assume that there is no dispersal from 
any population i, such that no pairs of populations are connected and all larvae recruit to their 
natal populations (i.e. Dmax = 0).  In this case, the mij are all equal to 0 and each population 
retains 100% of its surviving larvae.  In the second special case we assume that Dmax is infinitely 
large, populations are equally connected such that larvae from population i are as likely to settle 
in cells within their natal populations as they are to settle in cells within any other population 
within the study area.  Thus mij is simply calculated as the inverse of the total number of 
populations weighted by their areas. Once all of the mij are calculated, the matrix of pairwise 
dispersal rates is imported into the RAMAS Metapop file (*.mp) using customized GRIP code. 
Thus, the dispersal matrix can be generated externally using any dispersal model specified by 
the user. Users can now read in a dispersal matrix created using any external model (e.g. ocean 
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circulation model, Laplacian dispersal kernel), provided the matrix elements are expressed as 
proportions of larvae dispersing from population i to population j. Code could be modified to 
randomly import one of multiple dispersal matrices based on alternative dispersal models in 
order to assess the influence of dispersal model assumptions on simulation results. Users can 
also weight dispersal rates by patch area. This allows users to consider the influence of simple 
assumptions about dispersal patterns. 

In GRIP 1, once dispersal rates are generated by the dispersal model, they are randomly varied 
to assess their relative influence on model predictions. For simplicity, this functionality was 
turned off. Dispersal mortality was set to zero in this version of GRIP because it was 
incorporated into estimates of larval survival when constructing the stage matrix. Both of these 
functions remain in the code. In addition, the CSV file now records the mean proportion of 
larvae leaving natal populations and the mean pairwise dispersal rates. Also, our customized 
code no longer assumes that dispersal rates are symmetrical among populations. 

3.2.3.4. Fisheries Management Model 
Population dynamics and fisheries management occur at different spatial scales. Our study 
area, Pacific fishery management area (PFMA) 12 is subdivided into Pacific fishery 
management (PFM) subareas (Figure 3-5), and each of these can include zero, one or multiple 
patches of suitable habitat or populations. In our simulations, each population falls within a 
single PFM Subarea. While metapopulation dynamics are simulated at the patch scale, sea 
cucumber fisheries management is generally implemented at the scale of subareas or groups of 
subareas called quota management areas (QMAs).  Two types of fishing events are simulated: 
commercial harvest and other harvest (i.e. First Nations or recreational). Commercial harvest 
was simulated within populations that fall outside the FCAN. Other harvest was implemented 
concurrently with commercial harvest but only in populations that were part of the FCAN.  
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Figure 3-5: The Subarea boundaries of Pacific Fisheries Management Area (PFMA) 12. The different 
colours represent the different subareas within the PFMA.  

Currently the P. californicus commercial fishery is managed through an annual Integrated 
Fishery Management Plan (IFMP) that specifies the allowable catch by time and location. The 
IFMP implementation commences on October 1st and ends the following September 30th.  
Commercial fishery quotas are calculated for each open Pacific Fishery Management (PFM) 
Subarea (see Duprey et al. 2011 for methods of how each PFM Subarea is assessed).  The 
annual harvest rate used in calculating quotas is based on recommendations made in Hand et 
al. (2009) and is 4.2% or 6.7% of the estimated biomass depending on the PFM Subarea.  
Recently, management of the commercial fishery has shifted from all open PFM Subareas being 
harvested annually to developing a 3-year rotation, where PFM Subareas are harvested once 
every three years at a harvest rate of 10%.  This rotational scheme is still being finalized and it 
may take several more years to fine tune how the rotation schedule will function with all the 
open PFM Subareas throughout BC, but the current plan is to move the commercial fishery in 
that direction. 

In the fisheries management structure of the FCANs described in this analysis, populations of P. 
californicus that are a part of the FCAN are closed to commercial fishing, but remain open to 
other forms of harvest (i.e., recreational and First Nation).  However, other forms of harvest are 
not simulated in areas that are open to commercial fishing. This section describes the three key 
components in our fisheries management model that specify 

1. the location of areas closed to commercial fishing; 

2. the location, frequency, and intensity of commercial harvest, and;  
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3. the location, frequency, and intensity of other types of harvest. 

In our baseline model we use the existing management structure for PFMA 12 that defines the 
location, frequency and intensity of commercial harvest.  In our global sensitivity analysis we 
vary the size, number, and location of FCANs as well as harvest parameters to explore the 
influences these factors have on our capacity to achieve multiple management objectives.  In 
the following sections we describe the three components of the fisheries management scenarios 
and the parameters used to build our baseline fisheries management model.  In subsequent 
sections we describe the management objectives used to evaluate the performance of 
alternative FCAN designs and methods used in our global sensitivity analyses to explore the 
influence of FCAN attributes on our ability to meet management objectives.  

3.2.4. Areas included in the FCAN 
In the baseline model, subareas that are currently closed to commercial fishing are treated as 
being part of an FCAN.  Our study area largely represents PFMA 12 (Figure 3-5), which is 
subdivided into 48 PFM Subareas, but it does not include PFM Subarea 12-25. All populations 
within a PFM Subarea are either open or closed to commercial exploitation. In the baseline 
model, PFM Subareas 5, 6, 12, 14, 15, 18, 19, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 42, 
43, 44, 45, 46, 47, and 48 are closed to fishing. For the remaining PFM subareas where 
commercial fishing takes place, the scheduling of rotational openings for commercial harvest is 
established by quota management area (QMA), each of which comprises one or more PFM 
subareas (see Table 3-5 for scheduling of commercial rotations).  PFM Subareas can be closed 
for one of three reasons: 

1. the density falls below the management threshold for harvest (2.5 sea cucumbers per meter 
of shoreline);  

2. they have not been surveyed; or  

3. they are current no-take areas.  

Table 3-5. Quota Management Areas (QMA) are groupings of PFM Subareas used to manage total 
allowable catches (TACs). There are four QMA located within Pacific Fisheries Management Area 
(PFMA) 12. The PFM Subareas located within each QMA are listed with the anticipated schedule of 
openings to commercial fishing (Rotation years). 

QMA Name 
3yr 

Harvest 
Rate 

Years Open Subareas 

12A N. Queen Charlotte 
Strait 10% 2012, 2015, 2018, 

2021, 2024,… 
12-9 to 12-11, 12-

13, 12-16 

12B S. Queen Charlotte 
Strait 10% 2013, 2016, 2019, 

2022, 2025,… 
12-7, 12-8, 12-17, 

12-40, 12-41 

12C Johnstone Strait 10% 2011, 2014, 2017, 
2020, 2023,… 

12-1 to 12-4, 12-21 
to 12-24* 

12D Gilford Island 10% 2013, 2016, 2019, 
2022, 2025,… 

12-20, 12-26, 12-38, 
12-39 
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In our sensitivity analysis, we explore the influence of spatial management scale by either 
implementing closures at the PFM subarea scale, or at the population scale. To achieve this, we 
modified GRIP code to vary the scale at which FCANs are managed (i.e. subarea or 
population), and code to vary which subareas and populations are part of the FCAN in each 
scenario. Populations are selected to be part of the FCAN on either the PFM Subarea scale (as 
in the baseline scenario) or they are selected individually at the population level  (e.g., not all 
populations in a PFM Subarea are necessarily closed).  The first step in the code is to randomly 
select the spatial management scale (subarea or population). If management occurs at the PFM 
subarea scale, the number of areas included in the FCAN are selected from a uniform 
distribution ranging from 1–47 (the number of PFM Subareas in the study area), and 
commercial harvest is closed in all the populations that fall within those subareas. If 
management occurs at the population scale, the number of populations included in the FCAN is 
randomly selected from a uniform distribution ranging from 1–370 (Table 3-6), and commercial 
harvest is closed in those areas. Once the number of PFM subareas or populations has been 
selected, the areas or populations to be included in the FCAN are randomly drawn from the set 
with equal probabilities. By virtue of randomly varying which subareas or populations are 
included in the FCAN, we randomly vary a number of other FCAN metrics (e.g. total shoreline, 
total area, pairwise population distance) which we can use to evaluate the relative influences of 
FCAN attributes on model predictions. 

3.2.5. Commercial fisheries 
While fisheries management parameters have been incorporated into GRIP in previous studies 
(Curtis and Vincent 2008), we added the capacity to simulate two types of fishing pressure, so 
that we could implement commercial and other harvest concurrently. In both types of fishing, 
users can specify distributions for harvest rates and implementation uncertainty. Note that other 
types of fisheries management could easily be incorporated into our analyses, including size 
limits, supplementation and translocation, while the range of harvest rates can be varied easily 
in sensitivity analyses. 

In our baseline scenario, we use the existing commercial harvest management regime 
implemented in PFMA 12.  Harvest occurs every three years (rather than annually) with an 
exploitation rate of 10% of the population estimated in year 0.   Due to financial constraints and 
geographical extent of the P. californicus fishery, biomass surveys of the same areas are not 
repeated regularly.  Therefore, the current practice in fisheries management is to estimate the 
population abundance before opening a PFM Subarea, setting a TAC for each PFM Subarea, 
and applying this TAC in subsequent years, until a new survey of the PFM Subarea can be 
completed.  Therefore, for our simulations the total number of adults harvested from each 
population during each harvest event is fixed throughout the time horizon of the simulation. 
Although subsequent surveys are likely to occur over long time horizons, estimating when these 
new surveys would occur is difficult and no attempt was made to do so in the baseline and 
sensitivity analysis.   

In our sensitivity analysis the frequency of harvest and exploitation rates are varied.  
Commercial harvest in PFMA 12 is currently managed on a three year rotation.  However, some 
PFMAs in BC are commercially harvested every year.  In those areas the annual harvest rate is 
set at 4.2%.  Because two different harvest frequencies are utilized in BC, they were both tested 
in the sensitivity analysis.  In both scenarios, a range of exploitation rates were implemented in 
the sensitivity analysis to test plausible changes to management harvest goals.  Harvest rates 
were randomly sampled from a normal distribution around the current management harvest 
rates (4.2% for 1-year rotation; 10% for 3-year rotation) with a coefficient of variation (CV) of 5% 
(Table 3-6).   
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In both our baseline and sensitivity analysis simulations, two modifications were made to the 
harvest rate to incorporate uncertainty.  First, we adjusted the harvest rate to better reflect how 
the harvest rate is implemented.  In practice, commercial harvest rates are applied to the 90% 
lower confidence bounds (LCB) of the bootstrapped estimate of the population size (Duprey et 
al. 2011; Duprey 2011, 2012).  The presented simulation tool estimates mean population 
abundance, not the 90% LCB of the population abundance.  If the above harvest rates were to 
be applied to the mean population estimate used in the simulator, the results would not be 
accurately replicating the management regime currently in place for the fishery. Therefore, a 
correction factor was developed to adjust the harvest rate so it could be applied to mean 
population abundances.  Using the survey data collected and analyzed for PFMA 12 (Duprey 
2012; N. Duprey, Fisheries and Oceans Canada, Nanaimo, BC, unpublished data) a correction 
factor was calculated to compensate for the difference between the 90% LCB and the mean 
population estimates.  The 90% LCB was found to be 66% of the mean estimate.  Therefore, a 
0.66 harvest rate correction factor was set for all Subareas within PFMA 12.  After the 
application of the correction factor the harvest rates for the annual and 3-year rotational fishing 
regimes used in the simulator were 2.8% and 6.7%, respectively.  In either scenario, target 
harvest rate and frequency were constant throughout the duration of the time horizon. However, 
we assumed there was uncertainty associated with implementation of TACs within PFM 
Subareas (Table 3-5).  To incorporate this into our model we added some stochasticity to the 
actual proportion of the population harvested. Therefore, the number of individuals harvested 
from population i at time step t (Ci,t) was calculated using the equation:  

^
066.0 ii NC ⋅=  

where iN
^

is drawn from a normal distribution with mean Ni and standard deviation Ni·0.05 (i.e. 
0.05% CV).  

3.2.6. Other fisheries 
Currently, areas closed to commercial harvesting of P. californicus are still open to other forms 
of harvesting, such as recreational and First Nation food, social, and ceremonial (FSC) harvest 
(hereafter consolidated into Other Exploitation Rate, OER).  For this analysis Fisheries 
Management requested that FCAN designs be structured to include OER in areas that are 
closed to commercial fishing.  Landings of P. californicus are not currently recorded for 
recreational or First Nation FSC harvests.  Therefore without landing data for these types of 
exploitations Fisheries Managers were asked to provide their best estimate of the amount of the 
population being exploited by these user groups.  In our baseline scenario, Fisheries 
Management indicated that an appropriate annual OER of 0.75% be simulated to account for 
these types of removals (P. Ryall, Fisheries and Oceans Canada, Vancouver, BC, personal 
communication).  As with the calculations of the commercial harvest rate, a correction factor of 
0.66 was applied to this estimate to reflect the fact that management calculates TAC according 
to the 90% LCB of the initial biomass estimate. Therefore, the annual OER harvest rate used in 
the simulator is 0.50%.  In each scenario, target harvest rate and frequency were constant 
throughout the duration of the time horizon. However, we assume that there is uncertainty in 
estimates of abundance in population i at time t = 0 (Ni) due to sampling error as well as 
uncertainty associated with the implementation of TACs within PFM Subareas. Thus the actual 
number of individuals harvested in FCANs from population i at each time step t (Ci) is given by 
the equation:  

^
005.0 ii NC ⋅=  
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where iN
^

is drawn from a normal distribution with mean Ni and standard deviation Ni ·0.05 (i.e. 
5% CV).  

3.2.7.  Modeling time horizon 
The dynamics of metapopulation models during the first time steps are typically driven by initial 
conditions (Pe’er et al. 2013). Therefore we allow the model to run for 20 time steps (years) 
prior to implementing fisheries management scenarios. Results are shown from time step 20 to 
120 simulating 100 years of fisheries management, starting in 2011 (see Table 3-5 for schedule 
of rotation in PFMA 12).  

Table 3-6. Model parameters that may be varied in a sensitivity analysis 

Parameter Baseline 
Value 

Range Used in 
Sensitivity Analysis Assumptions 

Varied 
in this 
paper 

Habitat 
suitability 
threshold 

0.75 0.7, 0.75, 0.8, 0.9 

Habitat with suitability 
values greater than the 
defined threshold are 
assumed to be of sufficient 
quality to support survival, 
growth, reproduction and 
movement 

No 

Neighbourhood 
distance 850 m 600m, 850m, 1450m, 

1700m 

Used to define the spatial 
structure of discrete 
populations linked by 
dispersal  

No 

Fecundity 30 
15 – 45 (sampled 

from a uniform 
distribution) 

Population is at or near 
equilibrium abundance Yes 

g12 0.2 
Sampled from 

lognormal distribution 
with CV = 20% 

Small juveniles more 
vulnerable to predation than 
larger juveniles and adults 

Yes 

g23 0.2 
Sampled from 

lognormal distribution 
with CV = 20% 

Small juveniles more 
vulnerable to predation than 
larger juveniles and adults 

Yes 

g34 0.69 
Sampled from 

lognormal distribution 
with CV = 20% 

Large juveniles have same 
survival rate as adults Yes 

g44 0.5 
Sampled from 

lognormal distribution 
with CV = 20% 

Juveniles mature between 
5-8 years of age. Yes 
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Parameter Baseline 
Value 

Range Used in 
Sensitivity Analysis Assumptions 

Varied 
in this 
paper 

g4a 0.19 
Sampled from 

lognormal distribution 
with CV = 20% 

There is a staged 
progression from juvenile to 
adult 

Yes 

gaa 0.69 
Sampled from 

lognormal distribution 
with CV = 20% 

Sea cucumbers live 
approximately 12-14 years. Yes 

Models of 
Density-
Dependence 

Beverton-Holt 

 

Beverton-Holt 

Ricker 

Ceiling model 

 

Density influences survival 
and fecundity of large 
adults. 

No 

Rmax 

 
1.27 1.05 – 1.29 

Baseline estimates are 
taken from stock 
assessments of related 
species. 

 

Yes 

K 

Based on 
predictions of 
adult density; 
mean density 

* area of 
suitable 
habitat. 

Sampled from a 
normal distribution 

with CV = 10% 

Surveys were carried out 
when population is at or 
close to equilibrium; density 
model is correct 

Yes 

Standard 
Deviation in K CV = 18% 

CV in K is sampled 
from a normal 

distribution with 
mean = 0.18, SD = 

0.09. 

Based on estimates of 
annual variation in 
abundance in unfished 
sites. May be over-
estimated due to sampling 
error.  

Yes 

Initial 
Abundances 

Based on 
predictions of 
adult density; 
mean density 

* area of 
suitable 
habitat. 

Vary independently 
for each population 

with CV = 10% 

Habitat model is correct; 
assume stable age structure 
at time = 0. 

Yes 

Correlations 
among 

0.5 Sampled from 
uniform distribution, 

A value of 0 means that 
populations are 
uncorrelated in survival 

Yes 
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Parameter Baseline 
Value 

Range Used in 
Sensitivity Analysis Assumptions 

Varied 
in this 
paper 

populations 0-1 rates, fecundity and K 
among years, while a value 
of 1 means they are 
perfectly correlated.  

Dmax 30 km 
Vary from 0 to 300 

km, sampling from a 
uniform distribution. 

Fit oceanographic model 
output to dispersal-distance 
function; larvae move 
passively. 

Yes 

Scale of 
fisheries 
management 

PFM Subarea 
Randomly sampled, 
either PFM Subarea 

or population 
 Yes 

Number of 
PFM Subareas 
in the FCAN 

25 
Sampled from a 

uniform distribution, 
1-47 

 Yes 

Number of 
populations in 
FCAN 

153 

If managed at 
population scale, 
sampled from a 

uniform distribution, 
1 - 370 

 Yes 

Commercial 
harvest rate  

(3-year 
rotation) 

6.6% 
Sampled from a 

normal distribution 
with CV = 5% 

Used when there was a 3-
year rotational harvest Yes 

Commercial 
harvest rate 
(annual) 

2.8% 
Sampled from a 

normal distribution 
with CV = 5% 

Used when there was 
annual harvest; This was 
only used in the sensitivity 
analysis; not used in the 
baseline 

Yes 

Other 
Exploitation 
Rate 

0.50% 
Sampled from a 

normal distribution 
with CV = 5% 

 Yes 

Commercial 
harvest 
frequency 

Every three 
years 

Randomly sample 
either 1 or 3 years  Yes 
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Figure 3-6. Distribution of biological input parameters used in the sensitivity analysis. The mean is 
indicated with a red vertical line.  

3.2.8. FCAN metrics 
In addition to the number of PFM Subareas or populations included in the FCAN, a variety of 
metrics related to the size and structure of each of the simulated FCAN designs was included in 
the sensitivity analyses.  By virtue of randomly varying populations that are included in the 
FCAN, we also randomly vary the area, spacing, carrying capacity, connectivity, and shoreline 
length associated populations in FCANs. By exploring relationships between these parameters 
and our performance criteria, we can identify potential attributes of FCAN design that could be 
managed to help achieve management objectives.  

The first set of metrics relates to the length of shoreline included in the FCAN.  Shoreline length 
included in the FCAN is of particular interest in the case of the P. californicus fishery as it is 
currently managed based on the number of sea cucumbers per meter of shoreline rather than 
by density of cucumbers per meter squared.  Two separate metrics were calculated: 
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1. the length of shoreline included in the FCAN; and 

2. the proportion of shoreline in the study area included in the FCAN. 

The length of shoreline affected by each of the 370 populations was estimated using ArcMap 
9.2. Population polygons (which included both areas of suitable habitat and the neighbourhood 
distance buffers; see Section 3.2.3) which were overlaid on the shoreline map used by Fisheries 
Management to measure the shoreline length of each PFM Subarea (Duprey et al. 2011).  The 
base layer maps used to create the population polygons are more accurate low mean water 
shoreline representations than the fisheries management file and were created using different 
projections.  Therefore the two maps did not overlay perfectly and simple rules were needed to 
estimate the amount of affected shoreline (the amount of shoreline in the fisheries management 
shoreline map affected by population polygons used in modeling) in the fisheries management 
shoreline.  For all populations, lines were drawn from the edges of their polygon perpendicular 
to the fisheries management shoreline to mark the start and end locations of where the two 
overlapped.  For a segment of shoreline to be deemed affected by an population polygon it had 
to be a perpendicular distance of 600 m from the population’s polygon and be located within the 
same PFM Subarea.  Population ploygons that did not have any shoreline meeting these criteria 
were given an affected shoreline length of zero.  A small number of populations were located on 
land due to the poorer spatial accuracy of Fisheries Management’s sea cucumber shoreline 
compared to the shoreline files used to create the populations.  These populations were given 
an affected length of one meter.  The length of all affected segments of shoreline was then 
summed for each population.   

The first shoreline metric, the length of shoreline included in the FCAN, was calculated by 
summing the amount of affected shoreline for each of the populations included in the FCAN.  
The second shoreline metric, the proportion of shoreline included in the FCAN, was calculated 
in two ways, depending on whether areas were included in the FCAN by PFM Subarea or by 
population.  If areas were included in the FCAN by PFM Subarea, the entire shoreline length of 
each PFM Subarea was summed and divided by the shoreline length of the entire study area.  If 
areas were included in the FCAN by population, the length of all populations included in the 
FCAN were summed and divided by the entire shoreline length in the study area.  

The second set of metrics relates to the amount of area contained within the simulated FCAN.  
Two separate, but closely related, metrics were calculated:  

1. the area of suitable habitat included; and  

2. the total area (suitable habitat plus neighbourhood distance buffer, see Section 3.2.1) 
included in the FCAN. 

Both of these metrics were calculated at the population level rather than the PFM Subarea level 
regardless of how areas were included in the FCAN. 

The total affected shoreline length of all the populations was 2,375,473 m (75.3 % of the 
shoreline in PFMA 12); the total area of all the populations was 975.25 2 (32 % of the area of 
PFMA 12). 
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Figure 3-7. Distribution of management input parameters used in the sensitivity analysis. The mean is 
indicated with a vertical, red line. Commercial exploitation rate has two modes due to annual and 3-year 
rotational harvest regimes occurring in the same histogram. 

3.3. ANALYSIS 

3.3.1. FCAN performance metrics 
Several metrics were calculated to evaluate the ability of each simulated FCAN to meet 
conservation and management objectives for both the baseline scenario and each scenario in 
the sensitivity analysis.  The percent decline of the metapopulation from the unfished biomass 
was calculated at 20 and 100 years, as: 

1001
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where B0 is the biomass at t = 0 (unfished biomass, corresponding to 2010 in our simulations), 
and Bt is the biomass at t = 20 or 100.  In cases where populations increase the percent decline 
was set to zero. Percent decline is broadly used to assess extinction risk (IUCN 2001). 

To quantify the influence of model parameters on our ability to achieve specific fishery 
management objectives, we customized GRIP code to calculate two new metrics related to 
management objectives: 

1. the number of subareas that fell below a specified limit reference point (LRP) in year 20 or 
year 100, and  

2. the proportion of years in which at least one subarea fell below the LRP over 20 or 100 
years.  
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In our case, the LRP was 50% of original biomass. The number of PFM Subareas below the 
LRP was calculated using the following formula:  

)( LRPSubareasCountN LRPSubarea <=<  

at both 20 and 100 years.  The proportion of all years in the time horizon where at least one 
PFM Subarea was below the LRP was calculated as:  

t
LRPeastOneSubarYearsAtLeaCountP LRPeastOneSubarYearsAtLea

)( <
=<  

Where t is either 20 or 100 years. Note that additional performance metrics related to the 
distribution or abundance patterns of individuals could be programmed into the code. The LRP, 
time horizon and spatial scale at which metrics are calculated can be easily modified in GRIP.  

3.3.2. Boosted regression tree analysis for variable importance 
Boosted regression tree (BRT) analysis was conducted on the sensitivity analysis scenarios to 
determine the relative importance of various input parameters in meeting conservation and 
management objectives.  See Section 2 for a full description of BRT analysis.  In this context, 
the various biological and management input parameters were used as the predictor variables, 
and the FCAN performance metrics were used as the response variables.   

The same methods described in Section 2 were used to build BRT models for the simulator 
sensitivity analyses, with one important exception.  Due to time constraints, it was not possible 
to optimize the parameter settings for the BRT analysis, and default settings in dismo were 
used.  The default settings for learning rate (lr), bag fraction (bf), and tree complexity (tc) are 
0.1, 0.75, and 1, respectively.  A tc of 1 means that interactions were not modeled. While there 
are likely to be important interactions between variables such as harvest rate and number or 
area of subpopulations in the FCAN, we did not investigate interactions due to time constraints. 
Future analyses of simulation output should fully explore the role of interactions that might 
inform management decisions.  As with the analysis in Section 2, all models were built and 
analysed in R (R Development Core Team 2011) version 2.14.1 using the packages gbm 
version 1.6-3.2 (Ridgeway 2012) and dismo version 0.7-17 (Hijmans et al. 2012).   

3.4. RESULTS 

3.4.1. Baseline simulation results 
IMPORTANT NOTE: the following discussion of results is for illustrative purposes only, it is 
meant to give an idea on how interpretation could proceed with simulations outputs.  In some 
parts a full analysis was not completed, however these results do give much insight into how 
results would be used for interpretations.  

A total of 1,000 stochastic runs were used in the simulation of our baseline scenario, which 
represents our best approximation of biological parameters and the current management 
regime.  Output from the baseline runs of the simulator show P. californicus populations, in 
PFMA 12, experience mean declines of 2.95 % after 20 years and 2.90 % after 100 years 
(Figure 3-8).  No PFM Subareas were below the LRP at 20 and 100 years, therefore the 
proportion of PFM Subareas below LRP over 20 and 100 year time horizons was 0.  

Our results suggest that the productivity of populations may be sufficient to support the current 
harvest rate. However, two key assumptions of our baseline model influence how populations 
respond to harvest. The first assumes that populations are at equilibrium prior to the onset of 
fishing, which means in the absence of fishing, density-dependence, dispersal, stochasticity, 
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and other drivers of population change, the populations are expected to remain at the initial 
abundance. The second assumes that as populations decline, productivity will increase through 
compensatory increases in survival and/or fecundity. This is a property of the Beverton-Holt 
model used to simulate density-dependence in population growth, and a common assumption in 
fisheries models. The degree to which productivity increases is a function of Rmax, which in our 
model is 1.27, i.e. populations can grow up to a maximum of 27% per time step when 
abundance is low. Thus compensatory density-dependence counteracts the effects of 
population decline associated with harvest. With an assumed Beverton-Holt model governing 
density-dependence in our baseline model, an Rmax of 1.27 and a range of 1.05 to 1.30 explored 
in our sensitivity analyses, the maximum population growth rate at each time step exceeded the 
harvest rate averaged among years in all scenarios. Future simulations that explore the 
influence of alternative models of density dependence (i.e. Ricker, Ceiling) would be useful in 
the context of informing conservative fisheries management decisions. 

 
Figure 3-8. The mean percent decline of 1,000 stochastic runs over a 100 year period.  

3.4.2. Sensitivity analysis 
A total of 29 variables, both continuous and categorical, were randomly and independently 
varied in 5,000 scenarios in order to test the sensitivity of the simulator outputs to varying inputs 
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(Table 3-6 for a list of the 29 variables) and to evaluate their relative influence in achieving the 
conservation and management objectives. With 5000 unique sets of input parameter values 
explored in our scenarios, we were able to sample a considerable portion of the parameter 
space. However, scenarios explored in this manner are influenced by the distributions from 
which parameters are drawn. For instance, parameter values drawn from a normal distribution 
will tend to cluster around the mean, while those drawn from uniform distributions will be more 
evenly represented across the parameter space. In our case, we focus on analysis of scenarios 
that cluster around our baseline model which represents the best available information on 
habitat, dispersal, population dynamics and fisheries management. Scenarios that include 
parameter values drawn from the extreme ends of probability distributions are deemed less 
likely to occur and of lesser concern for informing decisions on FCAN design. The potential 
influences of parameter ranges and probability distributions specified in future sensitivity 
analyses should be considered in relation to study objectives. 

For the purposes of this study, Fisheries Management indicated that one of their objectives was 
to ensure population did not decline below 50% of the initial biomass at 20 and 100 years.  They 
also requested information on the number of PFM Subareas below LRP at 20 and 100 years, 
and the proportion of years where at least one PFM Subarea was below LRP over the 20 or 100 
year time horizon.  Therefore, the results of the sensitivity analysis are broken down according 
to those three performance metrics. 

Metapopulation Percent Decline 

The performance metric that provided the most information on the relative performance of 
difference FCAN scenarios explored in the sensitivity analyses was percent metapopulation 
decline (i.e. percent decline). The mean percent metapopulation decline across all sensitivity 
analyses scenarios was 4.46% and 4.72% at 20 and 100 years, respectively. 

Boosted Regression Tree (BRT) analysis was carried out to rank the relative influence each of 
the 29 input variables had on metapopulation percent decline at 100 years. The three most 
influential variables in the BRT analysis were Standard Deviation in K (49.88 %), Initial 
Abundance of the Metapopulation (34.39 %), and Shoreline Length of an FCAN (3.32 %).  The 
relative influences of all variables are listed in Table 3-7, and the results of some of the more 
influential variables from the BRT are presented below.  Variables are divided into two 
categories based on the degree of control fisheries managers have in manipulating their values: 

1. Biological Variables (managers have no control); and 

2. Management Variables (managers have control through management action). 

Number of PFM Subareas Below LRP  

Of the 5,000 FCAN scenarios in the sensitivity analyses, only 4 (0.08%) had one or more PFM 
Subareas below LRP at 20 years, and 24 (0.48%) at 100 years.  Since the LRP was rarely 
surpassed, this indicates that the current management regime is likely maintaining populations 
above the LRP and therefore the development of a FCAN for PFMA 12 may have limited 
influence on the risk of exceeding the LRP over short (20 year) or long (100 year) time frames, 
given the current management regime and key assumptions in our simulator.  

Proportion of Years in Which at least One PFM Subarea is Below LRP during the time horizon 

Of the 5,000 scenarios in the sensitivity analyses only 9 (0.18%) and 43 (0.86%) scenarios had 
a PFM subarea fall below the LRP during the  20 and 100 year time horizons, respectively.  As 
with the previous performance metric, the LRP was rarely surpassed. Thus our simulations 
predict that the current management regime is likely to maintain populations above the LRP 
throughout the assessed time frames (20 and 100 years).  Therefore this result also supports 
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the conclusion that if the current management regime was to continue under the same 
assumptions built into our simulator, the development of an FCAN for PFMA 12 may have 
limited benefits in terms of reducing the risk of exceeding the LRP during short (20 year) and 
long (100 year) time frames.  

Table 3-7. Relative influence of variables varied in the sensitivity analysis. 

Variables 
Relative 

influence (%) 

Standard Deviation in K (SD in K) 49.88 
Initial Abundance Metapopulation 34.39 
Shoreline Length (ShoreLength) 3.32 
Total Area of FCAN (Area) 2.80 
Suitable Habitat Area (Area_SH) 2.30 
Commercial Exploitation rate 1.08 
Commercial Harvest Frequency 0.89 
Correlation 0.88 
Survival - Adult (G_aa) 0.86 
Number of Populations in FCAN 0.85 
Other Exploitation Rates 0.72 
Proportion of Shoreline in FCAN (PropShore) 0.66 
Mean Connected Distance 0.63 
Mean Population K 0.31 
Fecundity 0.29 
Rmax 0.07 
Survival - Proportion of Year 4+ remaining juvenile (G_44) 0.06 
Dmax 0.01 
Survival - Year 1 to 2 0.01 
FCAN designed at PFM Subarea or Population scale 0.00 
Number of PFM Subareas in FCAN 0.00 
Sum of Metapopulation K 0.00 
Dispersal Scenario 0.00 
Mean Proportion Dispering 0.00 
Mean Pairwise Dispersal Rate 0.00 
Connectivity 0.00 
Survival - Year 2 to 3 0.00 
Survival - Year 3 to 4 0.00 
Survival - Proportion of Year 4+ that mature to adult 0.00 

Biological Variables 
Standard Deviation in K  

The standard deviation in K (SD in K) represents the year-to-year variability in environmental 
conditions that influence the population’s survival, growth, reproduction and movement. The SD 
in K is the most influential parameter in our BRT analysis, contributing 49.9% to the model 
predicting percent decline of the metapopulation at 100 years.  Results from the fitted function of 
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the BRT model and a scatterplot of SD in K versus percent decline (Figure 3-9) indicate that as 
the value of SD in K increases, the percent decline also increases. SD in K does not appear to 
be very influential at values less than 0.2.  However, the percent decline at 100 years begins to 
increase with values greater than 0.2.  When SD in K is larger than 0.3 the percent decline 
increases more rapidly, though there is greater variance in the results associated with fewer 
samples in that range. 

 
Figure 3-9. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the Standard Deviation 
in K (SD in K) was normally sampled from a mean of 0.18 with a standard deviation of 0.09. 

Initial Abundance of the Metapopulation 

Initial abundance represents the total number of adult P. californicus in all the populations in the 
study area at time zero.  Initial abundance was the second most influential parameter in the 
BRT analysis.  It contributed 34.4% to the model predicting percent decline of the 
metapopulation at 100 years.  The fitted function and scatter plots of the initial abundance of the 
metapopulation and the percent decline (Figure 3-10) suggest that when the initial population 
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size is below 35 million it appears to have little influence, though there is a great deal of 
variance.  Once the population size reaches approximately 45 million there is a slight positive 
relationship between the initial abundance and percent decline. We interpret this result as an 
artefact of the way in which commercial harvest rates were implemented in our simulations. In 
practice, quotas are established on the basis of abundance estimated from fishery-independent 
surveys. Quotas remain constant and are updated only when new abundance estimates 
become available. However, areas are rarely revisited to update abundance information. In our 
simulations, we assume that quotas are never updated with new information, so the same 
number of individuals are removed during each fishing event for the duration of the time horizon. 
While the same proportion is removed during the first fishing event (6.6% in a three-year 
rotation), as populations decline in response to fishing, the number of individuals removed at 
each fishing event is proportionally larger in populations that were larger at t=0. Therefore 
populations that are larger at t=0 are likely to exhibit proportionally greater declines in response 
to harvest. This result underscores the importance of carrying out frequent surveys to update 
quotas and ensure populations remain above management thresholds. 

 
Figure 3-10. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the Initial Abundance of 
the Metapopulation was the sum of all population abundances varied independently for each population 
by a CV of 10 %.  
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Correlation in Vital Rates and Carrying Capacity 

Correlation in vital rates and carrying capacity governs the degree to which the dynamics of 
populations are synchronous.   Results from the BRT analysis indicate that in the presented 
case study the correlation in vital rates and carrying capacity has a very minor influence in the 
model’s predictions of percent decline at 100 years (0.9%).  The correlation has almost no 
influence on percent decline until the correlation reaches about 0.7 (Figure 3-11).  At that point 
there is a slight positive relationship between the amount of correlation between vital rates and 
carrying capacity and the percent decline.  

 
Figure 3-11. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the Correlation in vital 
rates and carrying capacity was equally sampled from 0.0 to 1.0.  
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Management Variables 
Commercial Exploitation Rates 

Commercial exploitation rates were applied at 1- or 3-year rotations to all populations outside of 
the FCANs.  The BRT analysis indicates that commercial exploitation rate is the sixth most 
important variable when predicting percent decline at 100 years (Table 3-7).  Generally, the 
greater the exploitation rate the greater the declines in the total population (Figure 3-12).  

 
Figure 3-12. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the Commercial 
Exploitation Rate was sampled from a normal distribution of values with a mean of 2.8 % (annual 
scenarios) and 6.7 % (3-year rotation scenarios). 

Commercial Harvest Frequency 

In the sensitivity analysis, commercial harvest frequency is a categorical variable that stipulates 
whether fishing occurs annually or every 3 years.  Annual fishing appears to incur greater 
declines in the population compared to fishing at a 3-year rotation (5.06% and 4.36%, 
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respectively). However, in the BRT analysis commercial harvest frequency was not very 
influential in the model predicting percent decline at 100 years (Table 3-12).  

 
Figure 3-13. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the commercial Harvest 
Frequency was sampled from annual or 3-year harvesting regime. 

Other Exploitation Rates (may include First Nation FSC and Recreational harvests) 

Other Exploitation Rates (OER) are removals that occur in populations located within the FCAN 
designs from either recreational or First Nation harvests. These harvest rates occur annually.  
BRT analysis indicated that OER was the eleventh most influential variable in the model when 
predicting percent metapopulation decline at 100 years. A fitted function plot of the BRT model 
and a scatterplot of OER versus percent decline indicate that as OER increase, population 
decline also increased slightly at 100 years (Figure 3-14).  
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Figure 3-14. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the Other Exploitation 
Rate was equally sampled from 0.00 to 0.10 %.  

Number of PFM Subareas in the FCAN 

The number of PFM Subareas in the FCAN is a count of the number of Subareas included in 
the FCAN.  BRT analysis did not identify this variable as having any influence on the model 
predicting percent decline at 100 years.  Declines appear to become more commonly zero when 
more PFM Subareas are included in the FCAN design (Figure 3-15). 
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Figure 3-15. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the number of Pacific 
Management Subareas in the Fishery Closure Area Network was equally sampled from 0 to 47.  

Number of populations in the FCAN 

The number of populations in the FCAN is a count of all the populations selected to be in the 
FCAN for a particular run.  These populations are not subjected to commercial exploitation.  The 
BRT analysis indicates that the number of populations in the FCAN is the tenth most influential 
variable when predicting the percent decline of the metapopulation at 100 years.  The BRT fitted 
function plot and the scatterplot in Figure 3-16 show that there was a weak negative correlation 
between the number of populations in the FCAN and percent decline.   
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Figure 3-16. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the number of 
populations in the Fishery Closure Area Network was equally sampled from 0 to 370. 

Shoreline Length of an FCAN (of populations only) 

Shoreline Length of an FCAN represents the total length of shoreline associated with the 
populations used in a simulation’s FCAN design.  In our sensitivity analysis networks that are 
associated with greater shoreline length have lower declines in population abundance (Figure 3-
17).  
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Figure 3-17. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the Shoreline Length is 
the meters of shoreline affected by the populations contained within the Fishery Closure Area Network for 
that scenario.  

Proportion of Shoreline in the FCAN 

The Proportion of shoreline in the FCAN is calculated two different ways depending on whether 
the FCAN is managed at the population or PFM Subarea scale (see Section 3.2.3.4).   
Proportion of shoreline in the FCAN is the total shoreline length of all the populations (or PFM 
Subareas) in the FCAN divided by the entire shoreline length of the study area.  The proportion 
of the total shoreline of PFMA 12 included in the FCAN design has a negative relationship with 
population decline (Figure 3-18).  At proportions of shoreline above 0.40 there only appears to 
be a small reduction in population declines (Figure 3-18). 
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Figure 3-18. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios where the proportion of 
shoreline affected is the total shoreline length of the populations contained within the Fishery Closure 
Area Network for each scenario.  

Total Area and Area of Suitable habitat in an FCAN 

The area within an FCAN is represented by two variables in the analysis: one variable 
measures the area of suitable habitat (area suitable habitat); and the other measures the area 
of suitable habitat and the neighbourhood distance buffer (total area).  In the BRT analysis the 
area of suitable habitat and the total area were the fifth and fourth most influential variables, 
respectively (Table 3-7).  For both parameters, as the amount of area in a FCAN increases the 
percent decline in the metapopulation decreases (Figures 3-19 and 3-20).   
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Figure 3-19. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios as a function of the total area 
(suitable habitat and buffer) of all the populations located in the Fishery Closure Area Network.  
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Figure 3-20. The fitted function from boosted regression tree analysis (A) and the percent decline in the 
metapopulation (B) at year 100, from 5,000 sensitivity analyses scenarios as a function of the area of 
suitable habitat (suitable habitat only, no buffer) of all the populations located in the Fishery Closure Area 
Network. 

3.5. DISCUSSION 
When absorbing, analysing and discussing the output of a large multi-layered sensitivity 
analysis such as the one presented, it is important to account for the uncertainty associated with 
many of the input parameters.  All the input parameters included here have a certain level of 
uncertainty and, as the sensitivity analyses indicate, a certain level of influence on the 
simulation results.  While interpreting the simulation results the relative uncertainty and relative 
influence of each parameter should be taken into account when determining research priorities, 
management consideration and management action (Figure 3-21). 
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Figure 3-21. The levels of a parameter’s uncertainty and influence should be used to inform decisions 
related to research priorities and management actions. When a parameter’s influence is low, 
management or research action may not be warranted, as learning about or manipulating a parameter will 
have little influence on the predicted outcomes. However highly influential parameters can exert 
significant influence on predicted outcomes; advice on actions related to an influential parameter depend 
on the level of uncertainty associated with the parameter and whether or not the parameter can be 
manipulated through management action.  

3.5.1. Biological parameters  
SD in K 

Population theory and empirical studies indicate that populations that fluctuate widely from year 
to year are significantly more vulnerable to declines and extinction than populations that exhibit 
stable dynamics. Populations can vary in response to changes in environmental conditions, 
species interactions (including diseases outbreaks, fishing) and changes in a habitat’s carrying 
capacity.  In our study the variability in K was approximated on Experimental Fishing Area (EFA) 
research conducted on P. californicus populations between 1997 and 2007 (see analytical 
methods above).  The estimated values for SD in K used here (mean = 0.18, SD = 0.09) is high 
and may reflect sampling errors associated with survey methods as much or more than actual 
variations in the carrying capacity of sea cucumber habitat. Thus variability in K is an 
uncertainty. The estimate of SD in K used in these simulations comes from data that were 
collected over a small area in each of four EFAs.  In any case, our best estimate of the 
variability in K, and the value used in the baseline scenario, falls below the threshold of where 
the variability in K has an influence on magnitude of decline (Figure 3-9).  As this value is highly 
influential on simulation results and has a high degree of uncertainty attached to it, conducting 
research to better estimate the degree to which populations naturally fluctuate from year to year 
would reduce the uncertainty in simulation predictions and reduce the parameter space that 
needs to be explored when providing advice on FCAN design. Current best practice when 
providing advice is to identify designs that are robust to uncertainties, and the degree to which 
populations vary over time is not only an uncertain parameter, but a highly influential parameter.  

Initial abundance 

In theory and practice, small populations are generally more vulnerable to declines, extinction 
and stochastic events.  In our case we are simulating large populations that are unlikely to be 
influenced by demographic stochasticity. In contrast to expectations, there was a positive 
relationship between Initial Abundance and percent decline at 100 years (as Initial Abundance 
increased declines increased; Figure 3-10).  We interpret this result in the context of current 
management practices and how these were incorporated into our simulations. In practice, 
quotas for each PFM Subarea are determined on the basis of an estimate of abundance 
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calculated using data obtained during fishery-independent SCUBA surveys. The quotas are 
then fixed at that amount indefinitely or until abundance estimates are updated. Because 
fishery-independent surveys are infrequently repeated within subareas, or not repeated at all, 
the fixed quota is applied each year regardless of the true abundance within subareas. (there 
are a few coastal areas that have been re-surveyed, but most have only been surveyed once).  
In populations with larger abundances, this fixed harvest amount is larger than in small 
populations because the quota is set as a percentage of abundance estimates. Because 
estimates of abundance have a strong influence on the quotas applied within subareas during 
each harvest year, and because there is a high degree of uncertainty in the initial abundance as 
well as population trajectories over time, abundances should be estimated in ways that reduce 
uncertainty and estimated frequently over time so that quotas can be adjusted accordingly. 
Otherwise, managers run the risk of unknowingly causing undesirable declines. 

Correlation in Vital Rates 

The correlation in vital rates governs the degree to which carrying capacity and vital rates, like 
survival rates or fecundity, are correlated among populations.. A high correlation means that in 
good years all populations have high survival rates, fecundity and carrying capacities, but in bad 
years all populations do poorly, for instance when regional drivers such as PDO or El Nino 
negatively affect all populations within a region. Therefore when the correlation is high among 
populations, the metapopulation is more vulnerable to declines.   Consistent with theoretical 
predictions, as the correlation value in our simulations increased the population declines 
increased (Figure 3-11).  There is a large amount of uncertainty in the real value of correlation in 
vital rates and carrying capacity in populations in any PFMA in BC, and PFMA 12 is no 
exception.  However, for PFMA 12, using the described assumptions and management regime 
the correlation in vital rates had a small influence on metapopulation declines and therefore may 
not warrant extensive research funding at this time. In practice, estimating survival and fecundity 
rates in multiple populations is very expensive and not typically available for a species.  

3.5.2. Management variables 
Commercial exploitation rate 

The impact of increasing the commercial exploitation rate on the metapopulation was negative 
at both the annual and 3-year rotational schedules.  Commercial harvest catches for sea 
cucumber in BC are estimated accurately, as harvest landings are all recorded by third party 
providers and historically there have been few reports or known incidents of poaching in BC.  
For PFMA 12, using the described assumptions and management regime, commercial 
exploitation rate over the range explored in our sensitivity analysis had a relatively small 
influence on metapopulation declines.  While this influence is small, managers have complete 
control over the harvest rate used which may make it an ideal intervention point. We note that 
higher harvest rates exert a stronger influence on model outcomes based on results not 
included in this paper. It is also noted that our simulation modelled removals being removed 
from the PFMA uniformly, while in reality the fishery is patchy with small areas within a PFMA 
being targeted and harvested heavily. In future runs of the simulation tool it would be more 
realistic to have scenarios where removals were also patchy within the PFMA. 

Commercial harvest frequency 

The sensitivity analysis indicated that annual harvest regimes caused higher declines in the 
population than when a 3-year rotational harvest schedule was implemented, possibly because 
annual harvesting has a higher exploitation rate (4.2% annually) compared to the 3-year harvest 
rate (10% once every 3-years).  For PFMA 12, using the described assumptions and 
management regime, commercial harvest frequency had a small influence on metapopulation 
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decline.  However, there is little uncertainty in this parameter as fishery management plans 
explicitly indicate an annual or 3-year fishing regime.  Therefore, harvest frequency, as a 
management action, can be controlled and may be a useful intervention point.   

Other Exploitation Rates 

For PFMA 12, using the described assumptions and management regime, the range of other 
exploitation rates sampled (0% to 1% annually) had a small influence on metapopulation decline 
at 100 years.  However, these values were not determined by data, but are speculations by 
managers on the true range of other exploitations occurring in the population.  Currently there 
are no landings or reporting methods for P. californicus caught recreationally or by First Nations 
in BC.  This parameter is highly uncertain and it is possible that the rate of removal is higher 
than the ranged used here. Because both recreational catch and First Nation harvesting can be 
controlled by fisheries managers, more research should be completed to quantify this 
parameter. This is especially important because simulation results not included in this paper 
indicate that higher exploitation rates have the potential to be more influential on population 
declines than those explored in this paper.  

Shoreline length 

Sea cucumber density is routinely expressed in terms of number of sea cucumbers per meter of 
shoreline length rather than per unit area when informing fishery management decisions. Our 
analysis shows that the amount of shoreline associated with a FCAN influences total population 
declines. Thus, shoreline length could be a useful attribute to consider when designing FCAN.  

Total area and area of suitable habitat in an FCAN 

While the calculated area is a known value there is a degree of uncertainty as to the true size 
and location of the habitat patches and density modelling (Section 2).  Ideally other mapping 
layers, with varying levels of uncertainty around patch size and location, would have been 
included in our sensitivity analyses (see Section 3) in order to quantify the degree of uncertainty 
and its influence on model outcomes.  Overall, area is relatively influential to the simulator and 
may be a good management intervention point as declines are less severe with increases in 
either total area or area of suitable habitat (Figure 3-19 and 3-20).   

Number of populations in the FCAN 

Similar to Area of a FCAN design the results of the relationship between the Number of 
Populations and metapopulation decline can be used to inform management decisions.  
Unpublished results indicate that higher exploitation rates increase the negative effect that 
Number of Populations in the FCAN design has on population declines. 

Number of PFM Subarea in the FCAN 

Similar to Area of a FCAN design the results of the relationship between the Number of 
Populations and metapopulation decline can be used to inform management decisions.  
Unpublished results indicate that higher exploitation rates increases the benefits of increasing 
the Number of Populations in the FCAN in terms of achieving management goals. 

Proportion of shoreline in the FCAN 

Similar to the area of FCANs, the results of the relationship between the proportion of Shoreline 
in the FCAN and decline can be used to inform management decisions. 
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4. CONCLUSIONS AND OBJECTIVE REVIEW 

4.1. ASSESS THE PERFORMANCE OF THE SIMULATION TOOL’S ABILITY TO 
EVALUATE FISHERY CLOSURE NETWORK DESIGNS FOR SEA 
CUCUMBERS THAT VARY IN NUMBER, SIZE AND LOCATION, AS WELL AS 
UNDER VARIOUS SCENARIOS OF DATA AVAILABILITY 

Output from comprehensive sensitivity analyses, such as ours, can be used to provide science 
advice on the amount, number and configuration of habitat patches to include under different 
management strategies by examining the relationships between metrics and simulation results 
of interest. For example, Curtis and Naujokaitis-Lewis (2008) used plots of extinction probability 
as a function of the number of populations and mean geographic distance among populations to 
estimate the amount and spacing of populations needed to maintain viable metapopulations of 
sand lizards. In a similar analysis, Curtis and Vincent (2008) calculated the minimum fish size 
limit needed to meet both conservation and fishery management objectives across a range of 
exploitation rates. The general approach used in both studies to provide advice can be 
represented in Figure 4-1.  

 
Figure 4-1. A schematic of how varying Fishery Closure Area Network (FCAN) metric (such as number of 
PFM Subareas included in FCAN) can be used to predict percent decline in the population and in 
achieving FCAN objectives (in this case remaining below the limit reference point; LRP). The three 
different lines (solid line, hashed line and dotted line) represent different parameter values (for example 
low, medium and high other exploitation rate). 

In the schematic, percent decline is plotted as a function of an unspecified FCAN metric and 
three hypothetical relationships between the two variables are plotted. In all cases, there is an 
influence of the FCAN metric (e.g. number of populations in FCAN or total area of FCAN) on 
percent decline, but the form of the relationships differ. The dotted and dashed lines represent 
two cases in which the relationship between percent decline and the FCAN metric intersect a 
specified management objective, in our case for Parastichopus californicus the LRP.  We could 
use those relationships to provide science advice on the attributes of the FCAN required in 
order to prevent populations from falling below the LRP, along with confidence intervals. Those 
attributes might be the number of populations, or total habitat area, or shoreline length needed 
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in the FCAN design to prevent populations from falling below the LRP. By contrast, the solid line 
represents a situation in which populations never fall below the LRP regardless of the FCAN 
attribute. This situation represents the analysis in our paper: given the specified management 
scenario, input parameters and ranges explored in our sensitivity analyses, our simulations 
suggest that at the scales of PFMA 12 and its subareas, sea cucumber populations are unlikely 
to fall below the LRP regardless of how many populations or PFM Subareas are included in the 
FCAN. Very few scenarios in our comprehensive sensitivity analysis led to PFM Subareas 
falling below the LRP over 20 or 100 years. When we plot percent decline as a function of 
FCAN metrics in our study, the relationships consistently fall below the specified limit reference 
point (i.e. 50% of B0). We interpret these results as meaning that the current management 
strategy of 3 year rotations coupled with a precautionary harvest rate is likely to be sustainable 
over the short and long term. This interpretation is consistent with previous stock assessments 
using quite different analytical approaches for P. californicus and which were used as the basis 
for setting the precautionary harvest levels simulated in our analyses (Hand et al. 2009).  

An important concept to bear in mind is that the required number, size and configuration of 
habitat needed to meet conservation or fishery management objectives depend not only the 
strength and form of the relationships between these metrics and the likelihood of achieving the 
objectives, but they also depend strongly on interactions among variables and on the objectives 
themselves. For example, in their analysis of minimum size limits, Curtis and Vincent (2008) 
noted a strong interaction between the size limit needed to meet multiple objectives and the 
harvest rate; more stringent size limits were needed to meet conservation and fishery 
management objectives when harvest rates were greater. They also noted that as the 
stringency of the conservation or fishery management objectives increase so too did the 
stringency of the management strategy. In our case, if the LRP were set at 5 or 10%, our 
relationships would likely intersect the LRP and allow us to provide quantitative advice on the 
FCAN attributes required to achieve objectives. Based on simulation results not included in our 
paper, increases in commercial and other harvest rates would change the form of the 
relationship between percent decline and FCAN attributes such that they could intersect the 
LRP. As we were not asked to consider a broader range of harvest rates in our analyses, these 
results are not included. But we emphasize the importance of considering interactions among 
variables and impact the nature of the conservation or fishery management objectives could 
have on the science advice that could be provided. We also note that if we applied this set of 
tools to other populations, or other species, the general conclusions could be very different.  

4.2. ASSESS THE PERFORMANCE OF THE SIMULATION TOOL’S ABILITY TO 
EVALUATE ALTERNATIVE FISHERY CLOSURE NETWORK DESIGNS FOR 
SEA CUCUMBERS BASED ON A RANGE OF PERFORMANCE MEASURES 
AND PLAUSIBLE COMMERCIAL AND FIRST NATIONS FISHERY 
MANAGEMENT SCENARIOS. 

The performance measures used to evaluate alternative fishery closure network designs in this 
paper were the percent decline, the number of Subareas that fell below LRP, and the proportion 
of years that any Subarea fell below LRP at set intervals (20 and 100 years in this case).  The 
code is already designed to record population occupancy and probability of extinction, as well 
as cumulative harvest over time.  In addition to these metrics, the code we used to build our 
simulator is flexible enough to allow users to evaluate alternative FCAN designs based on any 
performance measure that can be calculated from the predicted/simulated distribution and 
abundance patterns over space and/or time.  There is the potential to build in other types of 
indicators, but these would need to be assessed in terms of their ability to be included in the 
simulator. 
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The code allows users to simulate a variety of plausible commercial and other fishery 
management scenarios.  It can incorporate up to two types of harvest (e.g., commercial and 
other harvest rates), and those harvest rates can be applied to any stage at any frequency and 
across any spatial scale that is equal to or larger than the population scale (e.g., populations, 
Subareas, PFMAs). Harvest can be applied as a proportion of the population or at a fixed 
number of individuals throughout time. 

4.3. EVALUATE UNCERTAINTY IN PARAMETER ASSUMPTIONS AND 
SIMULATION TOOL RESULTS AND, BASED ON SENSITIVITY ANALYSIS, 
PROVIDE RECOMMENDATIONS FOR WAYS TO REDUCE UNCERTAINTY. 

Several parameters used in the presented tools were unknown for P. californicus and therefore 
are uncertain. The sensitivity analyses presented in the paper is a tool to quantify the relative 
influence of variables on model results.  We have described the degree of uncertainty in the 
variables that were identified as being highly influential in the current analysis. One important 
source of uncertainty that was not considered is role of interactions between variables in model 
outcomes.  Due to time constraints, there was insufficient time to test the variables used in the 
sensitivity analyses for interactions. This step is especially important, as interactions between 
variables can be strong and could change the relative influence they have on simulation results.  
If the presented suite of tools is used in a full analysis, interactions between variables should be 
fully explored. This would reduce the uncertainty in parameter influence and make a synthesis 
of parameter influence more defensible.  

Research priorities can be developed from the outputs of these tools by comparing the relative 
influence parameters have on management indicators (areas of suitable habitat, population 
density and size, percent population decline, remaining above the LRP, etc) and ascertaining 
the certainty of the parameter.  Reducing the uncertainty in some of the parameters may be 
possible through research (e.g., standard deviation in K) while research into other parameters 
may be cost/time prohibitive (e.g., survival of each year class of juveniles in the wild).  

4.4. ASSESS THE APPLICABILITY OF THE SIMULATION TOOL TO OTHER LOW-
MOBILITY, SHALLOW-WATER BENTHIC INVERTEBRATES. 

This suite of tools can be used for a variety of low-mobility shallow-water benthic invertebrate 
species in BC (e.g. Geoduck (Panopea generosa) and Red Sea Urchin (Strongylocentrotus 
franciscanus)).  Indeed, a similar analysis is being used to evaluate the influence of poaching on 
the dynamics of abalone populations in Barkley Sound (Camaclang et al. in prep).  The 
predicted habitat suitability models and predicted density models could be constructed for many 
species of low-mobility benthic invertebrate species as long as biologically relevant 
environmental and population data exists for the area of interest. The environmental data used 
here were highly detailed due to the extensive research that has focused on the Broughton 
Archipelago.  Sensitivity analysis in the habitat suitability and density models explored different 
resolutions of environmental data and found that there was no significant difference in the 
performance of the model for PFMA 12.  Similar models can be built at a variety of resolutions 
for any coastal area where environmental data exist. 

The metapopulation dynamics model could easily be re-tuned for a different species by 
programming the life history parameters specific to the target species.  In fact, some species 
may have less uncertainty in some of the parameters used in the model, which could reduce 
uncertainty in the results.  The dispersal model is a basic model that again could be fine-tuned 
for another species, incorporating any known information on larval pelagic duration, behaviour 
and movements.  
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Finally, the fisheries management model can be re-written to incorporate the management 
regime used for the target species.  All in all these tools could be fully replicated and customized 
for another species, either in part or in full, but only if there was the expertise available to 
complete these tasks.  It is important to note that while these are valuable tools, they cannot be 
re-tuned to other species nor re-run for P. californicus unless the users have expertise in spatial 
analysis, simulation modelling, the R programming language, and RAMAS software. 

4.5. PROVIDE A DISCUSSION ON THE SUITABILITY OF PROXIES OR 
ALTERNATIVE METHODS TO IDENTIFY CANDIDATE COMMERCIAL 
FISHERY CLOSURE LOCATIONS FOR LOW-MOBILITY BENTHIC 
INVERTEBRATES.  

The suitability of proxies or alternative methods for identifying candidate FCANs depend first 
and foremost on the management objectives.  For example, if the management objective is 
simply expressed as a desired proportion of suitable habitat (e.g., 50% of available habitat), a 
map-based approach would be sufficient.  Map-based approaches could range in complexity 
from simply plotting known habitat to modelled predictions of suitable habitat, as described in 
Section 2.  Tools such as MARXAN could be used to optimize the placement of closed areas 
when there are also other objectives, such as minimizing cost.  The benefit of using these 
approaches is they are relatively straight-forward to apply, so long as you have the appropriate 
data.  The disadvantage is that they typically only provide a snapshot of what is in fact a very 
dynamic system. 

When objectives are expressed in terms of the change of distribution or abundance of a species 
over time, more sophisticated tools are required.  These tools must have the capability to 
account for dynamic processes over time, as well as methods to account for uncertainty.  The 
strength of the set of tools that we present is that they can be applied in either scenario.  The 
component parts can be used individually, or as a combined tool.  The main drawback of our 
simulation approach is the level of expertise and time required to carry out the analysis. 
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