Fisheries and Oceans Canada

Ecosystems and Oceans Science

Pêches et Océans Canada

Sciences des écosystèmes et des océans

## Canadian Science Advisory Secretariat (CSAS)

Research Document 2016/066

## Gulf Region

Assessment framework for fall-spawning Atlantic herring (Clupea harengus) in the southern Gulf of St. Lawrence (NAFO Div. 4T):

Population models and status in 2014

Douglas P. Swain

Fisheries and Oceans Canada
Gulf Fisheries Centre
343 University Avenue
Moncton, New Brunswick, E1C 9B6

## Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
Research documents are produced in the official language in which they are provided to the Secretariat.

Published by:<br>Fisheries and Oceans Canada<br>Canadian Science Advisory Secretariat<br>200 Kent Street<br>Ottawa ON K1A 0E6<br>http://www.dfo-mpo.gc.ca/csas-sccs/<br>csas-sccs@dfo-mpo.gc.ca<br><br>© Her Majesty the Queen in Right of Canada, 2016<br>ISSN 1919-5044

## Correct citation for this publication:

Swain, D.P. 2016. Assessment framework for fall-spawning Atlantic herring (Clupea harengus) in the southern Gulf of St. Lawrence (NAFO Div. 4T): Population models and status in 2014. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/066. x + 58 p.

## TABLE OF CONTENTS

LIST OF TABLES ..... iv
LIST OF FIGURES ..... V
ABSTRACT ..... ix
RÉSUMÉ ..... x
INTRODUCTION ..... 1
PART 1: CANDIDATE MODELS ..... 1
METHODS ..... 1
Single-population models ..... 1
Multiple-population models ..... 3
RESULTS ..... 3
Single-population models ..... 3
Multiple-population models ..... 4
DISCUSSION ..... 6
PART 2: STATUS BASED ON THE PREFERRED MODEL ..... 7
DATA UPDATES ..... 7
SENSITIVITY ANALYSES ..... 7
STOCK STATUS ..... 8
PROJECTIONS AND RISK ..... 9
CONCLUSIONS ..... 10
PART 1: CHOICE POPULATION MODEL ..... 10
PART 2: STATUS IN 2014 ..... 10
ACKNOWLEDGEMENTS ..... 11
REFERENCES CITED ..... 11
TABLES ..... 12
FIGURES ..... 25

## LIST OF TABLES

Table 1. Estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall-spawningherring in the North population of the southern Gulf of St. Lawrence......................................... 12
Table 2. Estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall-spawning herring in the South population of the southern Gulf of St. Lawrence ..... 13
Table 3. Estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall-spawning herring in the Middle population of the southern Gulf of St. Lawrence ..... 14
Table 4. Total estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall- spawning herring of the southern Gulf of St. Lawrence ..... 15
Table 5. Estimated beginning-of-year abundance (thousands) at age of fall-spawning herring in the North population of the southern Gulf of St. Lawrence. ..... 16
Table 6. Estimated beginning-of-year abundance at age (thousands) of fall-spawning herring in the Middle population of the southern Gulf of St. Lawrence ..... 17
Table 7. Estimated beginning-of-year abundance at age (thousands) of fall-spawning herring in the South population of the southern Gulf of St. Lawrence. ..... 18
Table 8. Total estimated beginning-of-year abundance at age (thousands) of fall-spawning herring in the southern Gulf of St. Lawrence. ..... 19
Table 9. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring in the North population of the southern Gulf of St. Lawrence ..... 20
Table 10. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring in the Middle population of the southern Gulf of St. Lawrence. ..... 21
Table 11. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring in the South population of the southern Gulf of St. Lawrence ..... 22
Table 12. Estimated instantaneous rates of fishing mortality $(F)$ at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring of the southern Gulf of St. Lawrence. Values are abundance weighted averages of the values in each region. ..... 23
Table 13. Probabilities that average $F$ for ages $5-10$ years will exceed the target level of 0.32 and that SSB will be below the Upper Stock Reference given various catch levels in 2015 for fall-spawning herring in the southern Gulf of St. Lawrence. SSB is the sum over the North, Middle and South populations and F is the abundance weighted average over the three populations. ..... 24

## LIST OF FIGURES

$$
\begin{aligned}
& \text { Figure 1. Fall herring spawning grounds (black circles) in the southern Gulf of St. Lawrence and } \\
& \text { their grouping (large red ellipses) into North, Middle, and South putative populations for } \\
& \text { assessment and management purposes............................................................................... } 25
\end{aligned}
$$

Figure 2. Residuals (observed - predicted indices) for variants of Model 1 assuming a single fall-spawning population. Circle radius is proportional to the absolute value of residuals. Black circles indicate negative residuals (i.e., observed < predicted). ..... 26
Figure 3. Estimated trend in fully recruited catchability to the fishery in Model 1B. The line is themaximum likelihood estimate (MLE) and the shading shows 95\% confidence intervals based onMCMC sampling.27
Figure 4. Estimated trend in M of ages 2 to 5 and 6+ in Model 1C. Lines are the MLEs and shading shows $95 \%$ confidence intervals based on MCMC sampling. ..... 27
Figure 5 . Estimated catchability at age (qa' in equation 2 ) to the gillnet fishery for variants of Model 1. qa' takes into account changes in mesh size and length at age, as well as non- stationarity in fully recruited $q$ in the case of Model 1B. ..... 28
Figure 6. Estimated spawning stock biomass (SSB) based on Model 1 from the 2014 assessment and from Model 1A (stationarity), Model 1B (non-stationary fishery CPUE q) and Model 1C (non-stationary M). ..... 29
Figure 7. Estimated fishing mortality ( $F$, ages 5 to 10) based on Model 1 from the 2014assessment and from Model 1A (stationarity), Model 1B (non-stationary fishery CPUE q) andModel 1C (non-stationary M).29
Figure 8. Estimated recruit abundance (millions) at age 2 based on Models 1A, 1B and 1C.Vertical lines are $95 \%$ confidence intervals based on MCMC sampling.30
Figure 9. Retrospective pattern in fully-recruited catchability to the fishery based on Model 1B.31

Figure 10. Retrospective pattern in the instantaneous rate of natural mortality (M) based on Model 1B.31

Figure 11. Retrospective patterns in estimated spawning stock biomass (SSB; left column) and the instantaneous rate of fishing mortality ( $F$; right column) for ages 5-10 for variants of Model 1 for a single fall-spawning population of Atlantic herring of the southern Gulf of St. Lawrence.... 32
Figure 12. Residuals from the CPUE index for the gillnet fishery by population (North - left column; Middle - middle column; South - right column) and variants of Model 2. Circle radius is proportional to residual magnitude. Black circles indicate negative residuals (i.e., observed < predicted).
Figure 13. Residuals from the experimental nets index by population (North - left column; Middle - middle column; South - right column) and variants of Model 2. Circle radius is proportional to residual magnitude. Black circles indicate negative residuals (i.e., observed < predicted).
Figure 14. Residuals from the acoustic (left column) and RV survey (right column) indices for the entire southern Gulf of St. Lawrence for variants of Model 2. Circle radius is proportional to residual magnitude. Black circles indicate negative residuals (i.e., observed < predicted)........ 35
Figure 15. .Estimated trends in fully recruited catchability to the gillnet fishery by population (North $=\mathrm{N}$; Middle $=\mathrm{M}$; South $=\mathrm{S}$ ) for Model 2Ba (A, upper panel; common trend among
populations) and Model 2Bb (B, lower panel; independent trends between populations). Lines show the MLEs and shading the 95\% confidence bands based on MCMC sampling.

Figure 16.Estimated trends in the instantaneous rate of natural mortality (M) by age group (ages 2 to 5 and ages $6+$ ) for Model 2Ca (A, upper panel; common trend among populations) and Model 2Cb (B, middle and lower panels; independent trends between populations with North = N, Middle = M, and South = S).

Figure 17. Estimated catchability (q) at age ( $q_{a}{ }^{\prime}$ in equation 2 ) to the gillnet fishery for variants of Model 2 that treat fall spawning herring as three populations (North - upper row; Middle middle row; South - lower row). $\mathrm{q}^{\prime}$ takes into account changes in mesh size and length at age, as well as non-stationarity in fully recruited q in the case of Models 2Ba and 2Bb. Fully recruited $q$ is constant in Model 2A (left column), varies in common among populations in 2Ba (middle column), and varies independently between populations in 2 Bb (right column).

Figure 18. Catchability at age to the experimental nets by population (North, Middle, South) for variants of Model 2. .39

Figure 19. Estimated spawning stock biomass (SSB; left column) and average $F$ for ages 5-10 years (right column) for variants of Model 2 that treat fall spawners as three separate populations (North, Middle and South). The thin orange line in the right column panels shows SSB estimated by Model 1 in the 2014 assessment. Model 2A (upper row) assumes constant fully-recruited q (prior to adjustments for changes in mesh size and fish length). Model 2Ba (middle row) allows q to vary in common among populations over time. Model 2Bb (lower row) allows q to vary independently between populations over time. Total (thick solid black line in the right column) is the SSB for the southern Gulf of St. Lawrence.
Figure 20. Estimated abundance of recruits at age-2 by population (North in upper row; Middle in second row; South in third row) and the total for the southern Gulf of St. Lawrence (bottom row) summed over populations. Circles in the panels of the bottom row are the recruit abundances estimated by single-population models (Model 2 A is compared with Model 1A, and Models 2Ba and 2 Bb with Model 1B.)
Figure 21. Retrospective patterns in fully-recruited catchability to the gillnet fishery from variants of Model 2 (Model 2Ba left column; Model 2Bb right column) for the North (upper row), Middle (middle row) and South (bottom row) populations of fall spawing Atlantic herring of the southern Gulf of St. Lawrence.

Figure 22. Retrospective patterns in spawning stock biomass (SSB) of fall spawning Atlantic herring from variants of Model 2 for the three populations (North, Middle, South) and for the entire southern Gulf of St. Lawrence. Lines are interpreted as per legend in Figure 21.
Figure 23. Retrospective patterns in the instantaneous rate of fishing mortality (F) averaged over ages 5 to 10 years of fall spawning Atlantic herring from variants of Model 2 for the three populations (North, Middle, South) of the southern Gulf of St. Lawrence. Lines are interpreted as per legend in Figure 21. 44

Figure 24. Comparison between the revised and original fishery catch-at-age (CAA) data of fall spawning Atlantic herring for the three populations of the southern Gulf of St. Lawrence. Circle size is proportional to the difference (new data - old data). The left panels show the absolute difference. The right panels show the difference as a proportion of the new values. Filled circles indicate negative values (old data $>$ new data).
Figure 25. Comparison between the revised and original fishery CPUE indices of fall spawning Atlantic herring for the three populations of the southern Gulf of St. Lawrence. Circle size is proportional to the difference (new data - old data). The left panels show the absolute
difference. The right panels show the difference as a proportion of the new values. Filled circles indicate negative values (old data > new data).46
Figure 26. Comparison between the revised and original relative selectivity matrices for mesh sizes $25 / 8$ inches (top row) and $2 \frac{3}{4}$ inches (bottom row). Circle size is proportional to the difference (new data - old data). The left panels show the absolute difference. The right panels show the difference as a proportion of the new values. Filled circles indicate negative values (old data > new data). ..... 47
Figure 27. Estimates of fully-recruited catchability to the gillnet fishery from Model 2Bb for the three populations based on the original and updated data. ..... 47
Figure 28. Estimates of SSB from Model 2Bb for the three populations (North, Middle, South) and overall for the southern Gulf of St. Lawrence, based on the original and updated catch-at- age data. ..... 48
Figure 29. Estimates of the instantaneous rate of fishing mortality F for ages 5-10 from Model 2Bb for the three populations based on the original and updated data. ..... 48
Figure 30. Residuals from the CPUE index for the gillnet fishery at different assumed levels for the $\sigma$ (sd) of process error in fishery q, by population (North in upper row; Middle in middle row; South in lower row). Circle radius is proportional to residual magnitude. Closed circles indicate negative residuals (i.e., observed < predicted). ..... 49
Figure 31. Effect of the value assumed for the $\sigma$ of process error in fishery $q$ on estimated trends in $q$ by population (North, Middle, South). ..... 50

Figure 32.Estimated trends in fully recruited catchability to the gillnet fishery of fall spawning herring by population (North, Middle, South) in the southern Gulf of St. Lawrence based on Model 2Bb fit to the updated data with $\sigma=0.1$. Lines show the MLEs and shading the $95 \%$ confidence bands based on MCMC sampling.50

Figure 33. Effect of the value assumed for the $\sigma$ of the process error in fishery $q$ on estimated SSB of fall spawning herring by population (North, Middle, South) and overall for the southern Gulf of St. Lawrence.

Figure 34. Effect of the value assumed for the $\sigma$ of the process error in fishery $q$ on estimated $F$ averaged over ages 5-10 years of fall spawning herring by population (North, Middle, South) of the southern Gulf of St. Lawrence
Figure 35. Estimated spawning stock biomass (SSB) of fall-spawning herring in the southern Gulf of St. Lawrence, by putative population (North, Middle, South) and summed over populations (Total). Line shows the MLE and shading the $95 \%$ confidence intervals based on MCMC sampling. In the lower right panel, the gold line is the upper stock reference (USR) and the red line the limit reference point (LRP).
Figure 36. Estimated abundance of fall-spawning herring 4 years and older in the southern Gulf of St. Lawrence, by putative population (North, Middle, South) and summer over populations (Total).
Figure 37. Estimated abundance-weighted average $F$ for ages 5-10 years for fall-spawning herring in the southern Gulf of St. Lawrence, by putative population (North, Middle, South) and averaged over populations (Total, weighting by abundance). Line shows the MLE and shading the $95 \%$ confidence intervals based on MCMC sampling. The black horizontal line in the lower right panel is the target F of 0.32 . .53

Figure 38. Estimated abundance of recruits at age 2 of fall spawning Atlantic herring in each putative population (North, Middle, South) and summed over populations (Total) of the southern Gulf of St. Lawrence. Vertical lines show 95\% confidence intervals.

Figure 39. Estimated spawning stock biomass (SSB) of the fall-spawning component of southern Gulf of St. Lawrence herring projected forward from 2014 to the beginning of 2015. Results are shown by putative population (North, Middle, South) and summed over populations (Total). Lines show the MLEs and shading the 95\% confidence intervals based on MCMC sampling. In the lower right panel, the gold line is the upper stock reference (USR) and the red line the limit reference point (LRP).

Figure 40. Estimated SSB projected forward to the start of 2016 assuming a catch of 29,000 t in 2015. See the caption to Figure 39 for further details.

Figure 41 . Estimated fully recruited F at ages 5 to $10\left(\mathrm{~F}_{5-10}\right)$ of fall spawning Atlantic herring by population (North, Middle, South) and for the southern Gulf of St. Lawrence (Total) projected forward to 2015 assuming a total catch of 30,000 t in the southern Gulf of St. Lawrence in 2015. The $F_{5-10}$ for the aggregate of the three populations (Total) is an abundance-weighted average. Lines show the MLE and shading the $95 \%$ confidence interval. In the lower right panel, the solid black horizontal line is $\mathrm{F}=0.32$, the target upper limit for $\mathrm{F}_{5-10}$. .56

Figure 42. Estimated probability that the abundance-weighted $F_{5-10}$ averaged over all three putative populations will exceed the estimated $F_{0.1}$ level of 0.32 in 2015 at total catch levels of 10,000 to $50,000 \mathrm{t}$, assuming that the catch is distributed among populations in the recently observed proportions.

Figure 43. Estimated probability that SSB summed over the three putative populations of fallspawning herring in the southern Gulf will fall below the USR of 172,000 t at the start of 2016 given various catch levels in 2015

Figure 44 . Estimated recruitment rates (at age 2) of fall-spawning herring by putative population (North, Middle, South) in the southern Gulf of St. Lawrence. The line shows the mean and the shading the $95 \%$ confidence intervals based on the MCMC samples. The circles and light shading indicate the mean and central $95 \%$ of the values used in the projections.


#### Abstract

The fall spawning component of Atlantic herring (Clupea harengus) in the southern Gulf of St. Lawrence has been assessed using virtual population analysis (VPA). A review of assessment inputs and models was undertaken due to poor model fit and unresolved model uncertainties. This document compares alternate model formulations (using revised data inputs described elsewhere) and presents status in 2014 based on the preferred model. The base model treated fall spawners as a single population and assumed that population dynamics parameters (e.g., natural mortality, $M$ ) and observation parameters (e.g., catchability) were stationary over time. A model incorporating process error in fully-recruited catchability to the gillnet fishery (q) provided the best fit to the data and eliminated the strong pattern in residuals. To address management requests, models treating fall spawners as three putative populations, based on three groups of spawning grounds (North, Middle and South), was examined. The greatest improvement in model fit and reduction in residual patterns occurred using a three-population model with process error in $q$, allowing $q$ to vary independently among populations. This model was chosen as the preferred model for the provision of advice.


# Cadre d'évaluation de la composante des reproducteurs d'automne du hareng de I'Atlantique (Clupea harengus) dans le sud du golfe du Saint-Laurent (division 4T de l'OPANO) : modèles de population et état en 2014 


#### Abstract

RÉSUMÉ La composante de reproducteurs d'automne du hareng de l'Atlantique (Clupea harengus) dans le sud du golfe du Saint-Laurent a été évaluée au moyen d'une analyse de population virtuelle (APV). Un examen des intrants et des modèles d'évaluation a été réalisé en raison d'un mauvais ajustement du modèle et des incertitudes non résolues concernant le modèle. Le présent document permet de comparer d'autres formules de modèle (à l'aide de données révisées décrites ailleurs) et présente l'état en 2014 selon le modèle privilégié. Le modèle de base traitait les reproducteurs d'automne comme une population unique et supposait que les paramètres actuels de la dynamique des populations (p. ex., mortalité naturelle, $M$ ) et les paramètres d'observation (p. ex., capturabilité) avaient été stationnaires au fil du temps. Un modèle intégrant les erreurs dues au processus dans la capturabilité des spécimens pleinement recrutés dans la pêche au filet maillant $(q)$ a produit le meilleur ajustement aux données et a éliminé la forte tendance associée aux données résiduelles. Pour répondre aux demandes de gestion, les modèles traitant les reproducteurs d'automne en tant que trois populations présumées, en fonction de trois groupes de frayères (nord, centre et sud), ont été examinés. La plus grande amélioration de l'ajustement du modèle et la réduction des tendances résiduelles ont été obtenues à l'aide d'un modèle à trois populations avec une erreur de processus dans $q$, qui a permis de faire varier $q$ de façon indépendante parmi les populations. Ce modèle a été choisi comme modèle privilégié pour formuler cet avis.


## INTRODUCTION

At the March 2014 peer review meeting examining the assessment of Atlantic herring (Clupea harengus) in the southern Gulf of St. Lawrence (sGSL), Northwest Atlantic Fishery Organization (NAFO) Division 4T, issues were identified with the indices of abundance from the fall gillnet fishery and with the population models used to assess status of fall-spawning herring (LeBlanc et al. 2015). It was suggested that the catchability of 4 and 5 year old herring to the gillnet fishery may be decreasing due to the observed declines in weight-at-age. Two assessment models were examined, one allowing a trend in the catchability of 4 and 5 year olds to the gillnet fishery since 2004 and one assuming that catchability has been constant since the start of the time series in 1986. Estimates of recent biomass and catch advice differed substantially between the two models, though no evidence was available to determine whether one model was preferable (DFO 2015). Furthermore, both produced strong retrospective patterns and patterns in model residuals that indicated poor model fit to the data. Thus, a framework review of the assessment approach was held in April 13-15, 2015.

This document examines revised population models for fall-spawning herring in the sGSL. These models incorporate revised abundance indices based on catch rates in the fall gillnet fishery (Benoît et al. 2016) and new indices based on monitoring by experimental gillnets (Surette et al. 2016) and the annual research vessel (RV) bottom-trawl survey of the sGSL (Surette 2016). The data for all indices are summarized in Benoît et al. (2016) and are not presented here. Possible process error associated with non-stationarity in natural mortality or in catchability to the gillnet fishery was also examined. In response to requests from fisheries managers, models which treated herring from different spawning regions as independent populations were also examined.

## PART 1: CANDIDATE MODELS

## METHODS

All models were virtual population analyses (VPA) implemented in AD Model Builder (Fournier et al. 2011). Uncertainty in model estimates was evaluated based on MCMC sampling, with every $40^{\text {th }}$ of 200,000 samples saved. Models extended from 1978 to 2014 and from age 2 to ages 11+ (i.e., 11 years and older). Plus group calculations followed the FRATIO method described by Gavaris (1999).

Two sets of analyses were conducted. In the first, the fall spawning component was treated as a single, fully mixed population (Type-1 Models). In the second, this component was treated as three independent populations corresponding to the North, Middle and South spawning grounds (Type-2 Models; Fig. 1). A number of alternative formulations were compared for each of these model types.

## Single-population models

Data inputs were fishery catches at ages 2 to 11+ (in numbers), fishery catch per unit effort (CPUE) in numbers at ages 4 to 10 years from 1986 to 2014, catch rates at age in experimental nets (ages 3 yo 10, 2003 to 2013), abundance indices at ages 2 and 3 from the fall acoustic survey (1994 to 2014), and catch rates at ages 4 to 6 in the September RV survey. Catchability $(q)$ to the fishery was adjusted for changes in mesh size and fish length-at-age as follows:
$q_{a}^{\prime}=\left(p_{1} S r_{1, a, t}+\left(1-p_{1}\right) S r_{2, a, t}\right) q_{a}$
where $p_{1}$ is the proportion of nets with a mesh size of $2^{5} /{ }^{\prime \prime}$ " (as opposed to $2^{3} /{ }_{4}{ }^{4}$ ), $S r_{1, \text { a,t }}$ is the relative selectivity of a $2^{5} / 8^{\prime \prime}$ mesh net for age a in year $t$ taking into account the changes in length at age a over time, $\mathrm{Sr}_{2, \mathrm{a}, \mathrm{t}}$ is the corresponding relative selectivity for $2^{3} /{ }^{4}$ " mesh nets, and $q_{\mathrm{a}}$ is catchability at age to the fishery without accounting for changes in relative selectivity. $q_{\mathrm{a}}$ was freely estimated for each age, with the exceptions described below.

Three models were compared. Model 1A assumed that process error was negligible. This model is comparable to the models used in previous assessments, with the following two exceptions. First, in previous models, catchability to the fishery was not adjusted for changes in fish length-at-age or changes in mesh size. Second, the experimental net and RV survey indices were not available in previous assessments. Parameters for model 1A were abundance at ages 3 to 11+ at the start of 2015, $\log _{e}$ catchability at age to the fishery ( $a=$ ages 4 to 10), to the experimental nets (ages 3 to 10), to the acoustic survey (ages 2 to 3 ) and to the RV survey (ages 4 to 6), and the standard deviations of observation error at age for the fishery cpue, the experimental nets, the acoustic survey and the RV survey. The instantaneous rate of natural mortality ( $M$ ) was assumed to be constant at 0.2 for all ages (the assumption used in previous assessments).

In recent assessment reviews for NAFO 4T herring, fish harvesters have reported that their fishing protocols have changed over time including the timing of fishing relative to the tidal cycle, and the searching procedures. It has not been possible to incorporate these changes into the effort standardization when estimating CPUE. Other components of effort (e.g., number of net hauls per night) are based on average values from an end-of-season telephone survey and are not likely to be fully accounted for in the effort standardization. In order to investigate possible effects of changes in fishing effort that are not accounted for in the effort standardization, Model 1B allowed for process error in catchability to the fishery. Catchability to the fishery was modelled as logistic selectivity at age ( $S_{a}$ ) times fully recruited $q$ :
$q_{a}^{\prime}=\left(p_{1} S r_{1, a, t}+\left(1-p_{1}\right) S r_{2, a, t}\right) S_{a} q$
$q$ was allowed to vary over time following a random walk:
$q_{1986}=q_{1}$ and $q_{t}=q_{t-1} e^{\text {Qdev }}$ if $\mathrm{t}>1986$
$q_{1986}$ was freely estimated whereas values of $Q \operatorname{dev}_{t}$ were assumed to be normally distributed with a mean of 0 and a standard deviation of 0.1 . The objective function included a term penalizing departures of Qdev $_{t}$ from 0 :
$0.5 \cdot\left(\sum_{t}\right.$ $\left.^{\operatorname{dev}} v_{t}^{2}\right) / \sigma^{2}$ where $\sigma=0.1$
Similar to Model 1A, $M$ was assumed to be constant at 0.2 in Model 1B. Catchability at age to the experimental nets was assumed to be constant over time because effort was standardized and effects of size-dependent changes in q are accounted for in the index, which is based on catches in a range of mesh sizes (Surette et al. 2016).

In Model 1C, fishery catchability was assumed to be constant over time but process error was allowed in $M$. $M$ was allowed to differ between ages groups 2 to 5 years and $6+$ years. For each age group, the prior for initial $M$ in 1978 had a mean of 0.2 and a standard deviation of 0.05 . After 1978, $M$ of each age group followed independent random walks (like in equation 3). The $M$ deviations were assumed to be normally distributed with a mean of 0 and a standard deviation of 0.05 . The objective function included four penalty terms associated with the random walks in $M$, terms for the departures of the $M d e v_{t}$ values from 0 for each age group, and terms for the departures of initial $M$ of each age group from its prior.

## Multiple-population models

In these models, fall spawners using the North, Middle and South spawning grounds were treated as three separate populations. Separate fishery catches at age, CPUE indices from the gillnet fishery and indices from the experimental nets were derived for each of the three regions. The acoustic and RV survey indices were considered abundance indices for the sum of the three populations. Models were similar to the single-population models, except that population dynamics were independent for each of the three populations. Initial trials assumed that catchability was the same among populations for the gillnet fishery and for the experimental nets. However, it was clear from the results that these catchabilities differed between regions for both indices, and this was incorporated in models. Unlike in the single-population models, it was not possible to reliably estimate abundance at age 2 in 2013, at ages 2 and 3 in 2014 and at ages 2,3 and 4 in 2015. This was because the only indices available for age 2 in 2013 and ages 2 and 3 in 2014 were from the acoustic index, an index for the three populations combined. In the future, it may be possible to estimate these ages in these years if the experimental net index is available in the most recent year. At the time of the assessment framework meeting the values of this index for 2014 were not available.

As in the single-population models, three basic models were examined:

- Model 2A, assuming negligible process error;
- Model 2B, allowing process error in fully-recruited $q$ to the gillnet fishery; and
- Model 2C, allowing process error in M.

Variants of models 2B and 2C included:

- Model 2Ba and 2Ca, process error was assumed to be common among the three populations; and
- Model 2 Bb and 2 Cb , process error was assumed to be independent among the three populations.


## RESULTS

## Single-population models

Residuals between observed and predicted values were similar between models for the experimental nets, acoustic survey and RV survey, both in terms of the patterns over time and age and the sum of squared residuals (Fig. 2). Residual patterns were not extreme for these indices. However, the fishery CPUE index displayed an extreme residual pattern in Model 1A (no process error). Residuals were almost all negative prior to 1996 and all positive since then (Fig. 2a). The 2014 Model showed a similar extreme pattern in residuals (LeBlanc et al. 2014). This pattern was greatly improved in Model 1B (process error in fishery q), along with a 45\% reduction in the sum of squared residuals. Model 1C (process error in $M$ ) showed a lesser improvement in residuals for the fishery CPUE index. Although substantially reduced, the tendency for residuals to be negative prior to 1996 and positive since then persisted, and the reduction in sum of squared residuals was not as great (28\%).
Both Model 1B and Model 1C indicated a non-stationarity in the data beginning in about 1995. In Model 1B, fully-recruited $q$ to the fishery began to increase in about 1995, reaching a level over three times higher than the 1986-1994 level by 2014 (Fig. 3). In Model 1C, there was no change over time in estimated $M$ for ages 2-5, but estimated $M$ for ages $6+$ increased threefold between 1990 (0.189) and 2010 (0.596) (Fig. 4).

In Models 1A and 1C, catchability at age ( $\mathrm{q}^{\prime}$ ' in equation 2) decreased over time for ages recruiting to the gillnet fishery (Fig. 5). This reflected decreasing length at age, and occurred despite increases in the proportion of small $\left(2^{5} / 8^{\prime \prime}\right)$ mesh nets in the fishery. In Model 1B, this effect was opposed by the increasing trend in fully-recruited $q$ after 1995, resulting in increasing $q$ for the older ages.

The temporal trend in estimated spawning stock biomass (SSB) was similar between Model 1A, Model 1B, and Model 1 in 2014 (Fig. 6). Estimated SSB since 2011 was higher in Model 1A than in Model 1B due to the lower catchability estimated for Model 1A. Estimated SSB after 1995 was much higher in Model 1C than in the other models, reflecting the high 6+ $M$ estimated in this period in Model 1C.

The estimated instantaneous rate of fishing mortality $(F)$ for ages 5 to 10 diverged between Model 1C and the other models beginning about 1995 and between Models 1A and 1B beginning in about 2009 (Fig. 7). Recent estimates of $F$ were lowest in Model 1C, reflecting the high $M$ and thus high population size, and greatest in Model 1B, reflecting the higher $q$ and thus lower population size.

Temporal patterns in recruitment were similar among models, except that recent levels of recruitment were higher in Model 1C, reflecting the recent high $M$ in this model (Fig. 8). All models estimated the 2010 year-class to be the lowest on record and the 2012 year-class to be the highest on record. The estimate for the 2012 year-class is based entirely on the 2014 acoustic index of age-2 abundance, and is highly uncertain.

There were strong retrospective patterns in the estimates of fully-recruited gillnet fishery $q$ in Model 1B (Fig. 9) and of $6+M$ in Model 1C (Fig. 10). Retrospective patterns in SSB and $F$ were most severe for models 1A and 1C and somewhat less severe for Model 1B (Fig. 11).

## Multiple-population models

For Model 2A (no process error), residuals from the gillnet fishery CPUE indices showed patterns similar to the pattern observed in the single-population model. Residuals were mostly negative prior to 1995 and positive since then (Fig. 12). This pattern was not as severe as in the single-population model, particularly in the North population. It was largely eliminated in models with a random walk in $q(2 \mathrm{Ba}, 2 \mathrm{Bb})$, particularly in the model with independent random walks between regions (2Bb). Models with random walks in $M(2 \mathrm{Ca}, 2 \mathrm{Cb})$ showed only modest improvements in the residual patterns in the fishery CPUE indices.
Differences between models in the residual patterns for the experimental nets were minor (Fig. 13). Residuals from this index showed a fairly strong pattern in the North population, with most residuals negative early in this short series and positive in more recent years. This temporal pattern was evident for all the multiple-population models, but did not occur in the single-population models.
For the acoustic and RV surveys, residual patterns were very similar between all the multipopulation models (Fig. 14) and between these models and the single population models.
In Model 2Ba, which allowed a common trend in $q$ to the gillnet fishery among populations, the trend was similar to that in the single-population model, with $q$ increasing beginning in the mid1990s (Fig. 15a). However, while the trend was similar, the extent of the increase was considerably less, about two-fold compared to over three-fold in the single-population models. The gillnet fishery $q$ in the Middle population was about twice the level in the other populations.
Model 2Bb allowed independent trends in fishery $q$ between populations (Fig. 15b). Fishery $q$ showed moderate change over time in the North. In the South, $q$ began to increase in the mid1990s, with the increase becoming more sharp in the mid-2000s. The overall increase in the

South was over five-fold. In the Middle population, $q$ was relatively low in the early 1990 s and high since the late 1990s. Fishery $q$ was highest in the Middle population, except since about 2010 when estimated $q$ was higher in the South.
Models 2Ca and 2Cb incorporated random walks in $M$ which were independent between age groups 2 to 5 and 6+ (Fig. 16). In Model 2Ca, which assumed a common trend in $M$ for all populations, estimated $M$ of 2 to 5 year old herring remained steady near 0.2 for the entire time series, whereas $M$ of $6+$ herring increased slightly over time, from 0.1 prior to the mid-1990s to about 0.2 since about 2005 (Fig. 16a). Model 2Cb allowed independent trends between populations, but the estimated $M$ differed little between the populations (Fig. 16b, 16c); for all populations, estimated $M$ remained near 0.2 for 2 to 5 year-olds and near 0.1 for $6+$ fish over the entire time series. Estimated changes in $M$ were slight and resulted in minor improvements in model fit compared to changes in $q$. Thus, Models 2Ca and 2Cb are not considered further below.

Estimated catchability at age to the gillnet fishery was considerably greater in the Middle region than in other regions (Fig. 17). In Model 2A, which did not incorporate a random walk in $q$, catchability tended to decline over time in all regions for ages younger than about 9 years. This reflected decreasing herring length-at-age. In Model 2Ba, which incorporated a random walk in $q$ common to all populations, catchability at age increased in the mid-1990s for all populations, but declined in recent years. In Model 2Bb, which incorporated independent random walks in $q$ in each population, patterns in catchability differed between populations. In the North population, catchability increased in the early to mid-1990s for older ages and decreased for all ages starting in about 2005. In the Middle population, catchability increased in the mid to late 1990s and then showed a decreasing trend beginning in about 2000. In the South population, catchability of the older fish increased progressively over time beginning in the mid-1990s whereas catchability of younger fish remained roughly stable. These patterns in catchability at age appear to reflect the opposing effects of declining herring length-at-age and increasing fishing efficiency in the gillnet fishery.
As in the gillnet fishery, catchability to the experimental nets was estimated to be considerably greater for the Middle population than for the other populations (Fig. 18). Estimated catchability at age 10 in the Middle population was unusually high in all three models.

Although the long-term trends in SSB were similar among models, recent estimates of SSB were highest from Model 2Bb and lowest from Model 2Ba (Fig. 19). Average total SSB over the last 5 years was $17 \%$ higher in Model 2A and $21 \%$ higher in Model 2Bb compared to Model 2Ba. These differences are primarily due to differences in the North population. North SSB was $49 \%$ higher in Model 2Bb and 26\% higher in Model 2A compared to Model 2Ba. In contrast, South SSB was $20 \%$ lower in Model 2Bb than in Model 2A and 15\% lower than in Model 2Ba. Differences in Middle region SSB were slight between models. Estimates of $F$ averaged over ages 5 to 10 years ( $F_{5-10}$ ) were similar between Models 2 A and 2Ba, except that recent estimates for the North population averaged about 30\% higher for Model 2Ba. Recent estimates of $F_{5-10}$ diverged most for Model 2Bb, with estimates of North and South $F$ averaging $65 \%$ and $128 \%$ respectively of the Model 2Ba estimates.
Like in the single-population models, estimates of the strength of the 2010 year-class by all three models were the weakest on record for the North population, the South population and all three populations combined (Fig. 20). For the Middle population, the 2010 year-class was estimated to be weak, but not as weak as the 2008 year-class and some year-classes in the 1980s and late 1970s. No estimates of the strengths of the 2011 and 2012 year-classes are available for the multiple-population models.
Retrospective patterns in the estimates of fishery $q$, SSB and $F_{5-10}$ are shown in Figures 21 to 23. Overall, retrospective patterns in SSB were worst for Model 2A and best for Model 2Bb.

Retrospective patterns in $F_{5-10}$ also tended to be worst for Model 2A and best for either Model 2 Ba or Model 2 Bb , depending on the population.

## DISCUSSION

The severe residual pattern in Model 1A indicates a non-stationarity in the dynamics of this stock or in its fishery beginning in the early to mid-1990s. This non-stationarity could reflect an increasing trend in catchability to the gillnet fishery (Model 1B) or increasing natural mortality of herring 6 years and older (Model 1C).

Of the single-population models examined here, Model 1B provided the best fit to the data, with little blocking in its residuals with respect to age and year and with the least severe retrospective pattern. This model accounted for non-stationarity by allowing catchability to the fishery to vary over time. An increasing trend in catchability was estimated, beginning in the mid-1990s. Catchability to commercial fisheries is expected to increase over time as technological improvements are implemented. Herring harvesters have reported changes in fishing procedures which have not been incorporated in effort standardization. Increases in fishing efficiency resulting from these changes in fishing procedures may underlie the estimated increase in catchability.

Model 1C accounted for non-stationarity by allowing $M$ to vary. This model estimated a large increase in 6+ $M$ between the early 1990s and about 2009. The estimated trend in $M$ is not consistent with estimates of consumption of herring by fish, seabirds and marine mammals (Benoît and Rail 2016). Estimated consumption increased sharply in the early 1980s as cod biomass increased and decreased sharply in the late 1980s as cod biomass collapsed. Since then, Benoît and Rail (2016) estimated that declining consumption by demersal fishes (cod and white hake) has been offset by increasing consumption by gannets and grey seals. Tuna abundance increased sharply in the southern Gulf between 2003 and 2012, resulting in an increasing trend in the estimated consumption of herring, though the magnitude of this increase is uncertain due to high uncertainty in absolute tuna abundance. Given the trend in herring biomass estimated by Model 1C (Fig. 6), these consumption estimates imply changes in $M$ that are quite different from those estimated by Model 1C. This model also did not fit the data as well as Model 1B, showing substantial blocking of residuals and a more severe retrospective pattern.

Model 1B is recommended as the preferred single-population VPA model based on its superior fit to the data (e.g., no severe residual patterns) and the plausibility of non-stationary catchability to the fishery. Implementation of a Statistical Catch-at-age version of this model is also recommended as a possible solution to the retrospective problem.

Splitting the fall spawning component into three separate populations improved the residual patterns for the gillnet fishery CPUE index. Nonetheless, a tendency for residuals prior to 1996 to be negative and those since then to be positive persisted within each of the three populations. Unlike in the single-population model, allowing process error in $M$ did not result in substantial improvements in this residual pattern. Moreover, estimated changes in $M$ were slight, even when changes were permitted to be independent between populations. On the other hand, allowing process error in fishery $q$ resulted in substantial improvements in the residual pattern as well as the best overall fit to the data (i.e., the greatest reductions in sum of squared residuals). The improvement was greatest when $q$ was allowed to vary independently between populations (Model 2Bb). It is plausible that $q$ may vary independently between populations due to regional variation in the fisheries and trends in population abundance. For example, catchability to fisheries may be density-dependent, increasing as population size decreases (Winters and Wheeler 1985). Model 2Bb estimated that SSB of the South population has declined sharply since about 2005. Thus, the sharp rise in fishery $q$ in this area since 2005 may
partly reflect increasing $q$ due to decreasing population abundance. Model 2Bb is recommended as the preferred multiple-population model.

## PART 2: STATUS BASED ON THE PREFERRED MODEL

## DATA UPDATES

A number of data updates became available after fitting and comparing the models above. The fishery catch-at-age was updated to include winter catches in NAFO subdivision 4Vn. These catches, averaging $14 \%$ of the annual totals, had been omitted from the 1978 to 1997 data. In addition, revised fishery CPUE indices and relative selectivity matrices (which account for effects of changes in fish length-at-age) became available during the assessment framework meeting as a result of issues identified during the review.

The main change to the fishery catch-at-age (CAA) was the addition of the winter catches in 4 Vn , which had been excluded in the original 1978 to 1997 CAA. These catches were mostly added to the CAA for the North region (Fig. 24; for details see Benoît et al. 2016). The update also corrected a problem in 1994, when some mobile gear catches of North fish had been incorrectly assigned to the Middle CAA (indicated by the filled circles in Fig. 24). The update to the CPUE indices revised the age-aggregated trends for the North and Middle populations (Fig. 25). In the South, the revised index was greater than the original index by a factor that varied little over time. The revision to the relative selectivity matrices tended to increase selectivity for young fish and decrease it for older fish (Fig. 26).
The preferred model (Model 2Bb) was fitted to these updated data and results were compared to those from the initial model fit. Changes in the estimates of fully-recruited catchability $(q)$ to the gillnet fishery were minor for the North and Middle regions (Fig. 27). There was a substantial increase in estimated $q$ for the South region but there was little change in its trend over time. There was negligible change to the estimates of SSB, except for an increase in the estimates for the North population in the 1980s and early 1990s (Fig. 28). This increase, averaging 14\% from 1980 to 1993, resulted from the increased catch attributed to the North in the updated data (Fig. 24). There was also a 5\% increase in SSB for the North in 2012 to 2014. All changes to the SSB estimates for the Middle and South populations were negligible, and most are not discernible in Figure 28. Changes in estimated fishing mortality were also negligible, except in 1981 and 1983 for the Middle population (Fig. 29). In summary, these changes associated with the updated data do not result in any substantial changes to conclusions about stock status in relation to SSB and F.

## SENSITIVITY ANALYSES

The value chosen for the standard deviation in process error (e.g., $\sigma$ in equation 4) is meant to strike a reasonable compromise between an undue influence of noise in the input data when the standard deviation is set too high and a poor fit to the data when process error is too severely constrained. Results from the preferred model were compared with $\sigma$ set at $0.02,0.05$ or 0.10 . With $\sigma$ set at 0.02 , blocking in the residuals from the CPUE index remained severe for the Middle and South populations, with most residuals negative prior to 1995 or 1996 and positive since then (Fig. 30). Increasing $\sigma$ to 0.05 resulted in a substantial reduction in the sum of squared residuals, particularly for the South population, but the residual pattern remained severe for the Middle population. Increasing $\sigma$ further to 0.10 resulted in a further reduction in the sum of squared residuals, though this reduction was modest except for the Middle population. The residual pattern was also less severe for the Middle population with $\sigma$ set at 0.10 . These results suggest that $\sigma$ must be increased to 0.10 to provide a good fit to the CPUE
data with acceptable residual patterns, though it could be argued that a lower value between 0.05 and 0.10 may be adequate.

Estimated trends in $q$ were negligible in all regions with $\sigma$ set at 0.02 (Fig. 31), consistent with the negligible improvement in model fit at this level of $\sigma$. Trends in $q$ remained comparatively minor at all levels of $\sigma$ in the North population. In the Middle population, there was strong variation in $q$ with $\sigma$ set at 0.1 , and intermediate variation with $\sigma$ at 0.05 . In the South population, the estimated change in $q$ was much greater with $\sigma$ at 0.10 than at the lower levels. The estimated trends in q were fairly smooth even at $\sigma=0.1$, suggesting that the influence of noise in the data on the estimated trend was not undue even at this level of process error. Estimates of fishery $q$ and their uncertainty are compared among populations in Figure 32, based on the preferred model fit to the updated data with $\sigma=0.1$.

Effects of the choice of $\sigma$ on estimates of SSB and $F_{5-10}$ were minor in most cases (Figs. 33 and 34). For both variables, the level chosen for $\sigma$ had a negligible effect on estimates for the Middle population. For the North population, there were negligible differences in estimates of SSB and $F_{5-10}$ between $\sigma=0.02$ and $\sigma=0.05$, but estimates were somewhat higher since 2009 for SSB and slightly lower for $F_{5-10}$ in recent years with $\sigma=0.1$. For the South population, estimates of SSB and $F_{5-10}$ differed very little between $\sigma=0.02$ and $\sigma=0.05$ but were slightly higher for SSB and lower for $F_{5-10}$ in recent years with $\sigma=0.1$. In conclusion, estimates of SSB and $F_{5-10}$ were not very sensitive to the value chosen for $\sigma$ (within the range examined), and conclusions about stock status were in general the same at all three levels.

## STOCK STATUS

Estimated SSB has been at a high level since 2009 for the North population (Fig. 35; Table 1). For the South population, estimated SSB was at a high level from the mid-1980s to the mid2000s, but has declined sharply in recent years and is now approaching the lowest levels on record (Fig. 35; Table 2). SSB of the Middle population increased from 1980 to the late 2000s but has declined in recent years to an intermediate level (Fig. 35; Table 3). Summed over all three putative populations, estimated SSB was firmly in the healthy zone in 2009 (Fig. 35; Table 4) but has declined steadily since then and is now estimated to be at the border between the healthy and cautious zones (the upper stock reference or USR). The probability that total SSB was below the USR at the beginning of 2014 is estimated to be $63 \%$.

Estimated adult (ages 4+) abundance increased sharply in the early 1980s in the North population and the mid-1980s in the South population (Fig. 36; Tables 5 and 7). Adult abundance increased gradually over the 1978 to 2014 period in the Middle population (Fig. 36; Table 6). In the South population adult abundance remained high from the late 1980s to 2010 but has declined sharply since then. In the North population, estimated adult abundance declined in the early 1990s to an intermediate level where it remained until the mid-2000s. It began to increase in 2007 and has been at a high level since 2009. Summed over all three putative populations, adult abundance has been at a high level since the early to mid-1980s (Table 8). Total adult abundance is estimated to have been at the highest level on record in 2011 but has declined since then. For most of the time series estimated adult abundance was highest in the North and lowest in the Middle population. However, with the recent sharp decline in the South population, estimated adult abundance was lowest in this population for the first time in 2014.

Estimated abundance-weighted average $F$ over ages $5-10$ was high in the late 1970 s for the North population, the late 1970s and early 1980s for the Middle population, 1980 for the South population and 1978 to 1980 for the abundance-weighted average over all three populations (Fig. 37; Tables 9 to 12). Estimated $F_{5-10}$ was at a relatively low level between the early or mid-

1980s and the early 1990s but then increased to an intermediate level. In recent years, estimated $\mathrm{F}_{5-10}$ has been declining for the North population, stable for the Middle population and increasing for the South population.

The management goal for this stock is to restrict fishing mortality to below F0.1, which for fallspawning herring in the southern Gulf is estimated to be 0.32 for abundance averaged $F$ over ages 5 to 10 (LeBlanc 2016). Average ages $5-10 F$ for the total fall-spawning component is estimated to have been above this level in all but one year from 1994 to 2008 but then declined below this level (Fig. 37). The probability that $F$ was above this level in 2014 is estimated to be only $1.5 \%$.

Estimated recruit abundance was relatively high in 2006 to 2009 (2004 to 2007 year-classes) in the North population and in 2006 to 2008 in the Middle and South populations (Fig. 38). In contrast, the 2010 year-class, the most recent year-class for which there is an estimate (observed in 2012), is estimated to be the weakest on record in the North and South populations, and summed over all populations.

## PROJECTIONS AND RISK

The populations were projected forward to obtain estimates of SSB at the beginning of 2015. This required predictions of abundance at age-2 in 2013 and age-3 in 2014. Predictions were obtained using the estimates of SSB in 2011 and 2012 and recruitment rates (the number of age-2 recruits divided by the SSB that produced them) randomly sampled from the five most recent estimates of recruitment rate (the rates for the 2006 to 2010 year-classes). Projections were based on the MCMC samples (200,000 samples with each $40^{\text {th }}$ sample saved), which propagated uncertainty in the model estimates into the projections. Summed over all populations, estimated SSB at the beginning of 2015 was $182,000 \mathrm{t}$, just above the USR (Fig. 39). However, uncertainty was high, with a $95 \%$ confidence interval of 109,000 to $295,000 \mathrm{t}$ and a $47 \%$ chance that SSB was below the USR.

The populations were projected further to the start of 2016 assuming various catch levels in 2015. The total annual catch of the three populations was varied from $10,000 \mathrm{t}$ to $50,000 \mathrm{t}$ in steps of $2,000 \mathrm{t}$. Total catch was divided among populations based on the observed catch proportions in the last five years, using a randomly-selected year for each MCMC iteration. For each population and iteration, a partial recruitment vector was randomly selected from the five most recent estimates (2008 to 2012) and a vector of catch weights-at-age was randomly selected from the four most recent years (2011 to 2014). Fewer years were used for weights-atage because of the declining trend in weight-at-age (Benoît et al. 2016). The abundance of age2 recruits was predicted as described above. Estimates of SSB and $F_{5-10}$ are shown in Figures 40 and 41 for catches of 29,000 and $30,000 \mathrm{t}$ in 2015, respectively. Predicted SSB in 2016 is very uncertain in this example, with a $95 \%$ confidence interval spanning from 97,000 to $350,000 \mathrm{t}$. This stems mostly from uncertainty in SSB of the North population, which is estimated to currently have much greater SSB than both the other populations (Fig. 40). With a catch of 29,000 $t$ in 2015, the estimated probability that total SSB will be less than the USR at the start of 2016 is $39 \%$. With a total catch of $30,000 t$ in $2015, F_{5-10}$ in 2015 is expected to remain low for the North population, increase above the 0.32 level for the Middle population and rise to a very high level in the South population (Fig. 41), assuming that the catch is distributed among populations in the proportions observed in recent years. Under these conditions, the probability that the average $F_{5-10}$ over all populations equals or exceeds the 0.32 limit is estimated to be $56 \%$.
Under the conditions of these projections, the estimated probabilities that $F_{5-10}$ will equal or exceed 0.32 in 2015 and that total SSB will be below the USR at the start of 2016 are shown in Figures 42 and 43 and Table 13 for catch levels of 10,000 to $50,000 \mathrm{t}$ in 2015. The probability
that the weighted average $F_{5-10}$ of the three populations will exceed the target maximum level of 0.32 in 2015 is estimated to be $38 \%$ with a total catch of $28,000 \mathrm{t}, 56 \%$ with a catch of $30,000 \mathrm{t}$, and $95 \%$ with a catch of $38,000 \mathrm{t}$ (Table 13). At these levels of catch the estimated probabilities that SSB will be below the USR at the beginning of 2016 are $38.5 \%, 39.5 \%$ and $43.1 \%$, respectively.

The uncertainty in estimated SSB in these projections is very high (Figs. 39 and 40). This is in part due to high uncertainty in recruitment levels in the near future (Fig. 44). The recruitment rates used in the projections were sampled from the most recent five values, which varied between a high value for the 2006 year-class (particularly in the North population) to the lowest values observed (the 2011 year-class). Estimated recruitment rates show a declining trend from the 2006 to the 2011 year-classes. If the recent low values persist for the projected yearclasses, then these projections are overly optimistic. Estimates of recruitment for the 2011 and 2012 year-classes are available only from the single-population model. Based on this model, year-class strength remained very low in 2011 but was at the highest level observed in 2012. However, these estimates, particularly the 2012 estimate, are very uncertain (Fig. 8). If the 2012 year-class is indeed very strong, then projections may be overly pessimistic.

## CONCLUSIONS

## PART 1: CHOICE POPULATION MODEL

The model historically used for the fall spawning component of herring in the southern Gulf of St. Lawrence treats this component as a single population. This model assumes that population dynamics parameters (e.g., natural mortality) and observation parameters (e.g., catchability) are stationary over time. However, a severe pattern in the residuals from the gillnet fishery CPUE index indicates a non-stationarity that is not accounted for in this model. This problem can be addressed by allowing process error in fully-recruited $q$ to the gillnet fishery. Estimated $q$ showed a strong increasing trend beginning in 1995. A model allowing process error in $M$ does not perform as well in terms of residual patterns and fit to the data. Furthermore, the estimated trend in $M$ is not consistent with the trend expected from estimated temporal variation in consumption of herring by predators.
There is a desire for finer scale assessment of southern Gulf herring for management purposes. Models treating fall spawners as three populations were examined. The populations corresponded to fall spawners using the North, Middle and South spawning grounds. Residual patterns were improved but the tendency for residuals to be negative early and positive late in the time series persisted. Allowing process error in $M$ did little to improve residual patterns. The greatest improvement in model fit and reduction in residual patterns occurred using a threepopulation model with process error in $q$, allowing $q$ to vary independently among populations. This model was chosen as the preferred model for providing advice. Estimated fishery $q$ varied little over time in the North but increased over time in the South. Estimated $q$ in the Middle region resembled that in the South until the late 2000s, when it remained stable at a level below that in the South. Implementation of a Statistical Catch-at-Age version of this model is recommended as a possible solution to the retrospective problem.

## PART 2: STATUS IN 2014

Based on the preferred multi-population model, status in 2014 varied between populations. Estimated SSB in 2014 was high for the North population. Estimated SSB of the South population has been declining since 2009 and is now approaching record low levels, with SSB in 2014 estimated to be 20\% of the level in the North population. In the Middle population, estimated SSB has shown an increasing trend since 1980, with SSB in 2014 estimated to be
$20 \%$ of the level in the North. Populations were projected forward to estimate status at the beginning of 2015 and 2016. Projections were very uncertain due to uncertainties in the abundance of age-2 recruits in 2013 to 2015, which have not yet been observed. Summing over all three populations, projected total SSB at the beginning of 2015 was estimated to be 182,000 t , with a $47 \%$ chance of being below the USR of $172,000 \mathrm{t}$. A management goal for this stock is to limit $F$ for ages 5-10 years to levels below 0.32 . Under the conditions of these projections, the probability of exceeding this limit in 2015 is estimated to be $38 \%, 56 \%$ or $95 \%$ with catches of $28,000,30,000$ or $38,000 \mathrm{t}$, respectively.

## ACKNOWLEDGEMENTS

Hugues Benoît, Claude LeBlanc, Allain Mallet and Tobie Surette provided the data inputs for these models. I thank Hugues, Claude and Tobie for comments and discussion, Noel Cadigan and Sean Cox for constructive comments on this work and Sean Cox for help with troubleshooting of the ADMB code. Hugues Benoît provided Figure 1.

## REFERENCES CITED

Benoît, H.P., and Rail, J.-F. 2016. Principal predators and consumption of juvenile and adult Atlantic Herring (Clupea harengus) in the southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/065. viii + 42 p.

Benoît, H.P., LeBlanc, C., Surette, T., and Mallet, A. 2016. Background and data inputs for models evaluated as part of the 2015 southern Gulf of St. Lawrence fall-spawning herring assessment framework review. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/063. ix +48 p.

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., and Sibert J. 2011. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods \& Software 27: 233-249.

Gavaris, S. 1999. ADAPT (ADAPTive framework). User's Guide. Vers. 2.1.
LeBlanc, C.H. 2016. History of the assessment of southern Gulf of St. Lawrence Atlantic herring (Clupea harengus) stocks to 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/062. v + 28 p.
LeBlanc, C.H., Mallet, A., Surette, T., and Swain, D. 2015. Assessment of the NAFO Division 4T southern Gulf of St. Lawrence Atlantic herring (Clupea harengus) stocks in 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/025. vi + 142 p.

Surette, T.J. 2016. Abundance indices of Atlantic herring (Clupea harengus) from the southern Gulf of St. Lawrence based on the September multispecies bottom trawl survey. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/064. vii +33 p.
Surette, T.J., LeBlanc, C.H., and Mallet, A. 2016. Abundance indices and selectivity curves from experimental multi-panel gillnets for the southern Gulf of St. Lawrence fall herring fishery. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/067. vi + 21 p.
Winters, G.H., and Wheeler, J.P. 1985. Interaction between stock area, stock abundance, and catchability coefficient. Can. J. Fish. Aquat. Sci. 42: 989-998.

## TABLES

Table 1. Estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall-spawning herring in the North population of the southern Gulf of St. Lawrence.

| Year |  |  |  |  |  |  |  |  | Age (years) |  | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 5370 | 6416 | 5638 | 7379 | 1841 | 1997 | 5927 | 653 | 248 | 7216 | 30899 |
| 1979 | 27859 | 7952 | 7789 | 2232 | 2235 | 732 | 990 | 1196 | 243 | 1366 | 16783 |
| 1980 | 15411 | 26969 | 7481 | 6089 | 653 | 818 | 262 | 491 | 268 | 298 | 16360 |
| 1981 | 27206 | 22035 | 27830 | 6628 | 5141 | 377 | 202 | 76 | 248 | 149 | 40650 |
| 1982 | 28313 | 34615 | 26749 | 28454 | 6307 | 5010 | 287 | 91 | 47 | 280 | 67226 |
| 1983 | 17213 | 42270 | 38670 | 23687 | 20955 | 4686 | 4058 | 112 | 16 | 110 | 92293 |
| 1984 | 13956 | 24891 | 54823 | 37043 | 20202 | 15863 | 3828 | 3316 | 58 | 58 | 135192 |
| 1985 | 22330 | 22978 | 30445 | 54669 | 32043 | 16847 | 12690 | 3067 | 2835 | 17 | 152614 |
| 1986 | 30896 | 35671 | 29709 | 30004 | 45933 | 25599 | 12767 | 8673 | 1283 | 2023 | 155991 |
| 1987 | 15515 | 37688 | 47856 | 26472 | 24950 | 33020 | 16372 | 7944 | 5565 | 2097 | 164276 |
| 1988 | 13211 | 20431 | 38422 | 43824 | 20680 | 18136 | 21841 | 9632 | 4437 | 4744 | 161716 |
| 1989 | 46621 | 19327 | 24412 | 31803 | 33150 | 15378 | 12341 | 15197 | 6394 | 5162 | 143836 |
| 1990 | 32633 | 69965 | 24970 | 21200 | 22627 | 22199 | 9590 | 8324 | 9956 | 6951 | 125815 |
| 1991 | 8455 | 35798 | 83844 | 20860 | 14621 | 13553 | 12002 | 5018 | 4335 | 9874 | 164109 |
| 1992 | 13722 | 10429 | 38842 | 70228 | 15519 | 10694 | 8354 | 6928 | 3098 | 8691 | 162354 |
| 1993 | 6284 | 20346 | 11704 | 37523 | 50890 | 10099 | 6949 | 4606 | 3408 | 4941 | 130120 |
| 1994 | 17631 | 9088 | 26101 | 11658 | 28200 | 36637 | 7285 | 4916 | 2712 | 4730 | 122239 |
| 1995 | 11072 | 19702 | 11600 | 25306 | 8115 | 16310 | 18203 | 3650 | 2024 | 3179 | 88387 |
| 1996 | 12536 | 16762 | 24176 | 11165 | 15088 | 3426 | 5725 | 5993 | 1126 | 1369 | 68067 |
| 1997 | 26055 | 16824 | 22156 | 23110 | 6782 | 7090 | 1422 | 2186 | 2126 | 894 | 65764 |
| 1998 | 14844 | 33442 | 20259 | 21049 | 13463 | 3585 | 3537 | 702 | 805 | 1244 | 64644 |
| 1999 | 11650 | 20740 | 42194 | 18372 | 13645 | 6201 | 1548 | 1195 | 350 | 418 | 83924 |
| 2000 | 10895 | 17396 | 26375 | 40500 | 10280 | 4728 | 2494 | 569 | 534 | 284 | 85764 |
| 2001 | 10626 | 15047 | 23035 | 23655 | 22992 | 4958 | 2254 | 1067 | 234 | 338 | 78533 |
| 2002 | 28913 | 16816 | 19384 | 19905 | 14602 | 12807 | 3038 | 1313 | 692 | 363 | 72103 |
| 2003 | 20613 | 39324 | 21356 | 15273 | 11689 | 8110 | 8033 | 1765 | 871 | 547 | 67643 |
| 2004 | 12521 | 27161 | 47596 | 16953 | 7033 | 5466 | 3405 | 2242 | 308 | 212 | 83216 |
| 2005 | 8537 | 16011 | 31401 | 42922 | 11073 | 3834 | 3294 | 1785 | 1053 | 121 | 95482 |
| 2006 | 26065 | 11809 | 19751 | 30474 | 26287 | 4527 | 1269 | 1643 | 724 | 365 | 85040 |
| 2007 | 47527 | 34347 | 14230 | 18838 | 20008 | 13537 | 2271 | 585 | 532 | 359 | 70361 |
| 2008 | 28750 | 40646 | 39613 | 11436 | 11626 | 8201 | 5117 | 617 | 241 | 353 | 77204 |
| 2009 | 47361 | 45510 | 74100 | 40883 | 10842 | 9055 | 5538 | 1694 | 155 | 129 | 142396 |
| 2010 | 22284 | 49770 | 39471 | 52191 | 25610 | 5897 | 4505 | 2772 | 923 | 104 | 131473 |
| 2011 | 23357 | 23457 | 52283 | 37157 | 39414 | 16215 | 2999 | 2429 | 1258 | 355 | 152110 |
| 2012 | 2191 | 21837 | 23391 | 52149 | 32946 | 28117 | 8642 | 1823 | 1281 | 458 | 148807 |
| 2013 | na | 2135 | 25527 | 25256 | 47278 | 25752 | 18517 | 4826 | 1004 | 560 | 148720 |
| 2014 | na | na | 2336 | 26449 | 23294 | 36710 | 18102 | 13721 | 3574 | 1316 | 125502 |
| 2015 | na | na | na | 2296 | 25300 | 18258 | 26269 | 13305 | 9636 | 4465 | na |

Table 2. Estimated beginning-of-year biomass ( $t$ ) at age and for ages 4+ (SSB) of fall-spawning herring in the South population of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 3862 | 10266 | 6720 | 3727 | 1491 | 1860 | 2145 | 312 | 434 | 3523 | 20213 |
| 1979 | 13009 | 5569 | 10512 | 5315 | 2758 | 1040 | 1350 | 927 | 88 | 1468 | 23457 |
| 1980 | 8418 | 12927 | 6236 | 9937 | 3995 | 1928 | 795 | 1012 | 648 | 595 | 25147 |
| 1981 | 11508 | 12136 | 10233 | 3867 | 4083 | 1135 | 317 | 229 | 106 | 25 | 19996 |
| 1982 | 16851 | 14500 | 13012 | 7612 | 3242 | 3697 | 796 | 177 | 112 | 64 | 28712 |
| 1983 | 9199 | 25228 | 16953 | 10907 | 5968 | 1840 | 2318 | 363 | 28 | 105 | 38482 |
| 1984 | 15671 | 13302 | 32647 | 15445 | 8429 | 4308 | 1302 | 1532 | 143 | 33 | 63839 |
| 1985 | 17251 | 25852 | 16343 | 30715 | 13162 | 6424 | 3136 | 907 | 1200 | 108 | 71995 |
| 1986 | 15795 | 27587 | 33848 | 15976 | 24753 | 10414 | 4794 | 1983 | 589 | 954 | 93311 |
| 1987 | 8179 | 19217 | 37160 | 28648 | 13576 | 18665 | 8064 | 3563 | 1496 | 1167 | 112339 |
| 1988 | 5234 | 10880 | 20508 | 36281 | 23492 | 10395 | 12069 | 4791 | 1485 | 1031 | 110052 |
| 1989 | 17234 | 7830 | 13190 | 18139 | 29198 | 18332 | 7670 | 8112 | 3013 | 1496 | 99151 |
| 1990 | 17581 | 25900 | 10211 | 12963 | 16098 | 23801 | 14710 | 6015 | 6069 | 3469 | 93336 |
| 1991 | 4483 | 19291 | 31334 | 8581 | 9747 | 11843 | 9285 | 9160 | 3513 | 5325 | 88787 |
| 1992 | 8762 | 5531 | 21381 | 28870 | 7087 | 7935 | 9518 | 6328 | 6877 | 6234 | 94231 |
| 1993 | 3214 | 12994 | 6240 | 21549 | 23743 | 5619 | 6344 | 7286 | 3901 | 9631 | 84313 |
| 1994 | 13605 | 4663 | 17066 | 6625 | 18702 | 19738 | 4627 | 5368 | 5927 | 10647 | 88700 |
| 1995 | 3524 | 15203 | 5970 | 17399 | 5699 | 12852 | 11781 | 3361 | 3514 | 8589 | 69164 |
| 1996 | 15696 | 5333 | 18785 | 6293 | 14536 | 4396 | 8060 | 7024 | 2065 | 6566 | 67726 |
| 1997 | 18038 | 21109 | 7171 | 20270 | 4904 | 9591 | 2400 | 3638 | 2870 | 3171 | 54015 |
| 1998 | 15074 | 23168 | 26101 | 6807 | 13192 | 3668 | 5804 | 1636 | 2105 | 3046 | 62358 |
| 1999 | 8900 | 21065 | 29382 | 24771 | 5293 | 7947 | 2157 | 2598 | 886 | 1610 | 74645 |
| 2000 | 24861 | 13334 | 27738 | 30196 | 14776 | 3218 | 3355 | 778 | 920 | 728 | 81708 |
| 2001 | 16900 | 34478 | 17939 | 27826 | 20497 | 8356 | 1964 | 1768 | 436 | 732 | 79517 |
| 2002 | 18734 | 26850 | 45918 | 18762 | 19942 | 12455 | 3484 | 851 | 839 | 465 | 102717 |
| 2003 | 10300 | 25392 | 34054 | 44903 | 14445 | 12535 | 6544 | 1665 | 378 | 504 | 115028 |
| 2004 | 10195 | 13553 | 30585 | 31229 | 28878 | 10011 | 6344 | 2357 | 527 | 343 | 110274 |
| 2005 | 5595 | 13002 | 15564 | 29251 | 25238 | 18836 | 6949 | 3807 | 1016 | 242 | 100903 |
| 2006 | 18873 | 7787 | 16393 | 16224 | 24253 | 17780 | 8855 | 4511 | 1614 | 474 | 90103 |
| 2007 | 12706 | 24901 | 9506 | 16451 | 13800 | 16323 | 10242 | 3787 | 2378 | 797 | 73284 |
| 2008 | 15609 | 10898 | 30098 | 8602 | 11235 | 7833 | 7279 | 4703 | 1960 | 1596 | 73306 |
| 2009 | 9051 | 24797 | 20225 | 33557 | 10036 | 11691 | 6038 | 4122 | 2750 | 1360 | 89780 |
| 2010 | 2229 | 9515 | 21812 | 15158 | 23394 | 5409 | 4326 | 3001 | 2378 | 1547 | 77024 |
| 2011 | 5142 | 2347 | 10029 | 20848 | 11705 | 13825 | 2765 | 1287 | 890 | 1670 | 63021 |
| 2012 | 577 | 4827 | 2348 | 10064 | 18034 | 8580 | 6636 | 566 | 152 | 525 | 46904 |
| 2013 | na | 564 | 5653 | 2533 | 9198 | 13483 | 4355 | 2336 | 96 | 67 | 37720 |
| 2014 | na | na | 628 | 5718 | 1978 | 5923 | 6943 | 1824 | 879 | 19 | 23913 |
| 2015 | na | na | na | 548 | 4734 | 989 | 2890 | 2381 | 595 | 384 | na |

Table 3. Estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall-spawning herring in the Middle population of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 881 | 1649 | 2257 | 2350 | 694 | 1297 | 2291 | 650 | 153 | 4964 | 14656 |
| 1979 | 4069 | 1303 | 2020 | 1127 | 1589 | 413 | 953 | 920 | 519 | 2860 | 10401 |
| 1980 | 2040 | 4045 | 1449 | 1332 | 513 | 364 | 100 | 189 | 147 | 150 | 4244 |
| 1981 | 3612 | 2940 | 4448 | 1270 | 692 | 320 | 247 | 12 | 60 | 168 | 7216 |
| 1982 | 4621 | 4596 | 3477 | 3546 | 824 | 326 | 160 | 16 | 0 | 71 | 8420 |
| 1983 | 2051 | 6917 | 5383 | 2966 | 2813 | 649 | 227 | 89 | 12 | 42 | 12181 |
| 1984 | 2213 | 2940 | 7960 | 3096 | 1627 | 925 | 248 | 94 | 5 | 4 | 13960 |
| 1985 | 2919 | 3649 | 3610 | 7843 | 2148 | 1185 | 484 | 103 | 52 | 1 | 15426 |
| 1986 | 4814 | 4668 | 4778 | 3651 | 7015 | 1710 | 895 | 242 | 16 | 29 | 18335 |
| 1987 | 1404 | 5880 | 6321 | 4350 | 3099 | 5574 | 1139 | 620 | 134 | 9 | 21247 |
| 1988 | 2574 | 1867 | 6283 | 6401 | 3617 | 2335 | 3972 | 876 | 427 | 10 | 23921 |
| 1989 | 11223 | 3853 | 2120 | 5133 | 5188 | 2531 | 1704 | 3007 | 436 | 364 | 20483 |
| 1990 | 9924 | 16866 | 5025 | 1953 | 4325 | 4291 | 1995 | 1327 | 2435 | 558 | 21909 |
| 1991 | 1739 | 10889 | 20468 | 4534 | 1373 | 3346 | 2854 | 1500 | 967 | 2362 | 37404 |
| 1992 | 5001 | 2146 | 12067 | 18286 | 3572 | 816 | 2270 | 1678 | 793 | 1944 | 41426 |
| 1993 | 1239 | 7417 | 2424 | 11579 | 14068 | 2741 | 543 | 1790 | 1279 | 2077 | 36501 |
| 1994 | 5215 | 1797 | 9741 | 2530 | 8986 | 10257 | 2012 | 298 | 1372 | 2405 | 37602 |
| 1995 | 2214 | 5828 | 2302 | 10153 | 2042 | 6288 | 6537 | 1466 | 151 | 2836 | 31775 |
| 1996 | 5441 | 3352 | 7228 | 2429 | 7536 | 1062 | 2531 | 2850 | 868 | 1003 | 25508 |
| 1997 | 9001 | 7318 | 4505 | 7512 | 1839 | 4066 | 688 | 1339 | 1447 | 1015 | 22410 |
| 1998 | 6653 | 11564 | 9072 | 3916 | 4604 | 1191 | 2557 | 404 | 883 | 1546 | 24172 |
| 1999 | 4367 | 9297 | 14654 | 8193 | 2564 | 1656 | 551 | 1327 | 137 | 679 | 29761 |
| 2000 | 5791 | 6543 | 12302 | 14242 | 4647 | 1110 | 646 | 128 | 368 | 186 | 33629 |
| 2001 | 6142 | 8037 | 8945 | 11234 | 8542 | 2276 | 355 | 186 | 0 | 293 | 31832 |
| 2002 | 10513 | 9788 | 10865 | 8730 | 7484 | 5444 | 1270 | 147 | 102 | 163 | 34204 |
| 2003 | 7173 | 14301 | 12481 | 9853 | 6118 | 4817 | 2993 | 752 | 80 | 116 | 37209 |
| 2004 | 4689 | 9452 | 17545 | 11151 | 6078 | 3966 | 3231 | 1561 | 405 | 83 | 44019 |
| 2005 | 2786 | 5999 | 11042 | 16978 | 8020 | 3668 | 2209 | 1605 | 606 | 106 | 44234 |
| 2006 | 13192 | 3863 | 7380 | 9695 | 11108 | 3841 | 2103 | 1010 | 677 | 241 | 36055 |
| 2007 | 14486 | 17420 | 4741 | 7318 | 7572 | 6543 | 2083 | 1147 | 337 | 215 | 29955 |
| 2008 | 8354 | 12425 | 21059 | 4092 | 5106 | 3883 | 2920 | 814 | 587 | 141 | 38603 |
| 2009 | 6210 | 13271 | 22863 | 21842 | 4382 | 4954 | 3157 | 1039 | 393 | 180 | 58809 |
| 2010 | 1762 | 6528 | 11688 | 16207 | 15024 | 2600 | 2117 | 1566 | 518 | 295 | 50014 |
| 2011 | 5714 | 1855 | 6886 | 11185 | 12231 | 9615 | 1135 | 800 | 712 | 225 | 42788 |
| 2012 | 2692 | 5364 | 1856 | 6881 | 10007 | 8139 | 5000 | 305 | 152 | 132 | 32473 |
| 2013 | na | 2628 | 6281 | 1988 | 6123 | 7249 | 4595 | 2527 | 52 | 12 | 28827 |
| 2014 | na | na | 2938 | 6562 | 1786 | 4200 | 4263 | 2643 | 1628 | 0 | 24020 |
| 2015 | na | na | na | 3011 | 6151 | 1092 | 2365 | 1903 | 1849 | 1355 | na |

Table 4. Total estimated beginning-of-year biomass (t) at age and for ages 4+ (SSB) of fall-spawning herring of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 10113 | 18330 | 14615 | 13456 | 4026 | 5154 | 10363 | 1616 | 835 | 15704 | 65768 |
| 1979 | 44936 | 14825 | 20321 | 8673 | 6582 | 2185 | 3293 | 3043 | 850 | 5693 | 50640 |
| 1980 | 25868 | 43942 | 15167 | 17358 | 5161 | 3110 | 1157 | 1691 | 1063 | 1044 | 45751 |
| 1981 | 42326 | 37111 | 42511 | 11764 | 9917 | 1832 | 767 | 316 | 413 | 342 | 67862 |
| 1982 | 49785 | 53711 | 43239 | 39613 | 10372 | 9033 | 1243 | 284 | 159 | 415 | 104358 |
| 1983 | 28463 | 74416 | 61006 | 37561 | 29736 | 7174 | 6603 | 563 | 55 | 256 | 142955 |
| 1984 | 31840 | 41133 | 95430 | 55584 | 30259 | 21096 | 5378 | 4942 | 206 | 95 | 212991 |
| 1985 | 42501 | 52478 | 50398 | 93227 | 47354 | 24456 | 16310 | 4077 | 4087 | 126 | 240035 |
| 1986 | 51505 | 67926 | 68335 | 49631 | 77700 | 37723 | 18456 | 10898 | 1888 | 3005 | 267637 |
| 1987 | 25098 | 62784 | 91336 | 59470 | 41625 | 57259 | 25575 | 12127 | 7195 | 3273 | 297861 |
| 1988 | 21019 | 33179 | 65213 | 86507 | 47789 | 30866 | 37881 | 15299 | 6349 | 5785 | 295689 |
| 1989 | 75077 | 31011 | 39722 | 55074 | 67536 | 36241 | 21715 | 26317 | 9843 | 7022 | 263470 |
| 1990 | 60138 | 112732 | 40205 | 36116 | 43050 | 50290 | 26294 | 15667 | 18460 | 10978 | 241060 |
| 1991 | 14678 | 65978 | 135646 | 33975 | 25742 | 28742 | 24141 | 15678 | 8815 | 17561 | 290299 |
| 1992 | 27485 | 18106 | 72290 | 117384 | 26177 | 19445 | 20142 | 14935 | 10768 | 16869 | 298010 |
| 1993 | 10737 | 40756 | 20368 | 70652 | 88701 | 18459 | 13836 | 13681 | 8588 | 16649 | 250934 |
| 1994 | 36451 | 15548 | 52908 | 20814 | 55888 | 66632 | 13924 | 10583 | 10011 | 17782 | 248541 |
| 1995 | 16810 | 40733 | 19873 | 52858 | 15856 | 35450 | 36521 | 8477 | 5690 | 14603 | 189327 |
| 1996 | 33672 | 25447 | 50189 | 19888 | 37160 | 8884 | 16316 | 15867 | 4059 | 8938 | 161302 |
| 1997 | 53094 | 45251 | 33832 | 50891 | 13524 | 20748 | 4510 | 7163 | 6443 | 5079 | 142190 |
| 1998 | 36570 | 68174 | 55432 | 31771 | 31259 | 8443 | 11899 | 2742 | 3792 | 5836 | 151174 |
| 1999 | 24916 | 51102 | 86230 | 51335 | 21503 | 15804 | 4256 | 5120 | 1373 | 2708 | 188330 |
| 2000 | 41548 | 37273 | 66415 | 84938 | 29703 | 9056 | 6495 | 1476 | 1821 | 1198 | 201101 |
| 2001 | 33668 | 57562 | 49919 | 62716 | 52031 | 15590 | 4573 | 3022 | 670 | 1363 | 189883 |
| 2002 | 58160 | 53454 | 76166 | 47397 | 42028 | 30705 | 7792 | 2311 | 1633 | 991 | 209024 |
| 2003 | 38087 | 79017 | 67891 | 70028 | 32252 | 25461 | 17569 | 4183 | 1329 | 1167 | 219880 |
| 2004 | 27405 | 50167 | 95726 | 59334 | 41989 | 19443 | 12980 | 6160 | 1240 | 638 | 237509 |
| 2005 | 16918 | 35012 | 58007 | 89151 | 44331 | 26338 | 12452 | 7197 | 2675 | 468 | 240619 |
| 2006 | 58130 | 23459 | 43523 | 56393 | 61648 | 26147 | 12228 | 7163 | 3014 | 1080 | 211198 |
| 2007 | 74718 | 76668 | 28477 | 42607 | 41380 | 36403 | 14596 | 5518 | 3248 | 1371 | 173600 |
| 2008 | 52714 | 63969 | 90769 | 24130 | 27968 | 19917 | 15317 | 6134 | 2788 | 2090 | 189113 |
| 2009 | 62623 | 83577 | 117188 | 96282 | 25260 | 25700 | 14733 | 6856 | 3299 | 1669 | 290986 |
| 2010 | 26275 | 65813 | 72971 | 83556 | 64028 | 13906 | 10948 | 7339 | 3819 | 1945 | 258511 |
| 2011 | 34213 | 27658 | 69198 | 69190 | 63349 | 39655 | 6899 | 4516 | 2861 | 2250 | 257918 |
| 2012 | 5461 | 32028 | 27595 | 69094 | 60987 | 44836 | 20278 | 2694 | 1584 | 1116 | 228184 |
| 2013 | na | 5327 | 37460 | 29777 | 62600 | 46484 | 27468 | 9688 | 1152 | 639 | 215267 |
| 2014 | na | na | 5902 | 38729 | 27058 | 46834 | 29309 | 18187 | 6082 | 1335 | 173435 |
| 2015 | na | na | na | 5856 | 36185 | 20340 | 31524 | 17588 | 12079 | 6205 | na |

Table 5. Estimated beginning-of-year abundance (thousands) at age of fall-spawning herring in the North population of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | 4+ |
| 1978 | 72572 | 55308 | 28765 | 31005 | 6742 | 7369 | 18237 | 2042 | 846 | 18551 | 113557 |
| 1979 | 248738 | 59346 | 41431 | 9111 | 8068 | 2480 | 3065 | 3350 | 693 | 3903 | 72100 |
| 1980 | 185673 | 198304 | 40439 | 25160 | 2463 | 2754 | 808 | 1319 | 698 | 755 | 74398 |
| 1981 | 295718 | 149900 | 144198 | 27615 | 17428 | 1201 | 586 | 216 | 577 | 352 | 192175 |
| 1982 | 404469 | 242063 | 118886 | 106172 | 20021 | 13726 | 756 | 231 | 124 | 618 | 260535 |
| 1983 | 223551 | 330235 | 188632 | 89050 | 70083 | 14071 | 10822 | 302 | 42 | 263 | 373264 |
| 1984 | 208304 | 183020 | 270066 | 145839 | 69424 | 49110 | 10574 | 8481 | 152 | 140 | 553786 |
| 1985 | 348914 | 170204 | 148513 | 210267 | 108990 | 51364 | 35847 | 7824 | 6766 | 40 | 569611 |
| 1986 | 257463 | 285367 | 137542 | 116748 | 153621 | 75962 | 34979 | 22944 | 3130 | 4715 | 549641 |
| 1987 | 176312 | 210547 | 231187 | 101426 | 84008 | 100671 | 45226 | 20687 | 14342 | 4946 | 602493 |
| 1988 | 188727 | 142873 | 162806 | 165375 | 68932 | 55633 | 61350 | 25414 | 11232 | 11830 | 562573 |
| 1989 | 638641 | 150995 | 114609 | 117788 | 110132 | 46458 | 35060 | 40743 | 16146 | 12652 | 493588 |
| 1990 | 336427 | 522127 | 122400 | 80917 | 74677 | 67065 | 27089 | 22436 | 25593 | 16829 | 437006 |
| 1991 | 112729 | 275366 | 421327 | 84797 | 51666 | 41832 | 34589 | 13786 | 11590 | 24686 | 684273 |
| 1992 | 258911 | 92294 | 220692 | 302705 | 59232 | 36373 | 25316 | 20141 | 8728 | 23363 | 696549 |
| 1993 | 110243 | 211938 | 75025 | 170561 | 202750 | 36859 | 22935 | 13789 | 10111 | 13763 | 545794 |
| 1994 | 238263 | 89978 | 169488 | 57145 | 116527 | 137218 | 25034 | 15364 | 7930 | 13324 | 542029 |
| 1995 | 208911 | 195073 | 73420 | 127167 | 35435 | 62731 | 64322 | 11550 | 5919 | 8709 | 389253 |
| 1996 | 179082 | 171042 | 158011 | 53939 | 65600 | 13705 | 20087 | 19778 | 3342 | 3689 | 338150 |
| 1997 | 400851 | 146296 | 137614 | 108496 | 28024 | 27694 | 5059 | 7096 | 6483 | 2422 | 322887 |
| 1998 | 255932 | 327862 | 115763 | 99759 | 55634 | 13375 | 12863 | 2266 | 2478 | 3513 | 305650 |
| 1999 | 219810 | 209493 | 267052 | 84275 | 57576 | 23578 | 5412 | 4093 | 1054 | 1216 | 444256 |
| 2000 | 184662 | 179342 | 164845 | 191037 | 42478 | 18326 | 8811 | 1892 | 1727 | 812 | 429929 |
| 2001 | 189747 | 150472 | 142192 | 111580 | 97014 | 19067 | 8165 | 3618 | 754 | 1073 | 383463 |
| 2002 | 444812 | 154273 | 116771 | 91726 | 60840 | 49068 | 10890 | 4406 | 2253 | 1115 | 337069 |
| 2003 | 322084 | 364112 | 124886 | 69739 | 48504 | 31433 | 28688 | 5984 | 2705 | 1663 | 313601 |
| 2004 | 195642 | 263700 | 293805 | 83104 | 30313 | 21777 | 12565 | 7758 | 1017 | 650 | 450989 |
| 2005 | 142289 | 160114 | 213610 | 211436 | 49215 | 15712 | 12478 | 6351 | 3570 | 382 | 512754 |
| 2006 | 420403 | 115771 | 128250 | 162096 | 115803 | 18708 | 4978 | 5866 | 2505 | 1202 | 439407 |
| 2007 | 565792 | 343474 | 93006 | 96604 | 91782 | 57117 | 9159 | 2248 | 1922 | 1235 | 353073 |
| 2008 | 429109 | 461885 | 267654 | 67269 | 62845 | 41421 | 24026 | 2627 | 919 | 1278 | 468038 |
| 2009 | 584705 | 350074 | 370499 | 197503 | 43025 | 33913 | 19779 | 5987 | 576 | 483 | 671765 |
| 2010 | 289409 | 478554 | 281938 | 277610 | 124925 | 25420 | 18164 | 10661 | 3370 | 372 | 742460 |
| 2011 | 311429 | 236943 | 390171 | 222496 | 194157 | 75419 | 12547 | 9487 | 4803 | 1286 | 910366 |
| 2012 | 28092 | 253914 | 193316 | 316052 | 174319 | 132628 | 39104 | 7471 | 4946 | 1710 | 869546 |
| 2013 | na | 22962.0 | 207537 | 157850 | 250149 | 126233 | 84554 | 21447 | 4015 | 2147 | 853932 |
| 2014 | na | na | 18396 | 166343 | 119457 | 176492 | 83420 | 59140 | 15273 | 4767 | 643289 |
| 2015 | na | na | na | 14441 | 129742 | 87781 | 121055 | 57348 | 41180 | 16179 | na |

Table 6. Estimated beginning-of-year abundance at age (thousands) of fall-spawning herring in the Middle population of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | 4+ |
| 1978 | 11901 | 14212 | 11515 | 9872 | 2542 | 4784 | 7050 | 2031 | 523 | 12761 | 51079 |
| 1979 | 36328 | 9726 | 10747 | 4598 | 5737 | 1401 | 2950 | 2577 | 1478 | 8170 | 37658 |
| 1980 | 24575 | 29743 | 7833 | 5506 | 1935 | 1224 | 307 | 507 | 384 | 381 | 18078 |
| 1981 | 39261 | 19999 | 23046 | 5290 | 2345 | 1018 | 716 | 34 | 139 | 399 | 32986 |
| 1982 | 66009 | 32140 | 15455 | 13233 | 2616 | 893 | 420 | 40 | 0 | 156 | 32813 |
| 1983 | 26630 | 54040 | 26260 | 11152 | 9407 | 1949 | 606 | 239 | 32 | 99 | 49745 |
| 1984 | 33036 | 21615 | 39212 | 12188 | 5593 | 2864 | 685 | 241 | 14 | 10 | 60807 |
| 1985 | 45616 | 27030 | 17612 | 30164 | 7307 | 3612 | 1368 | 262 | 125 | 2 | 60452 |
| 1986 | 40120 | 37347 | 22120 | 14207 | 23460 | 5073 | 2451 | 641 | 39 | 67 | 68057 |
| 1987 | 15952 | 32848 | 30535 | 16668 | 10434 | 16994 | 3146 | 1616 | 345 | 22 | 79760 |
| 1988 | 36767 | 13059 | 26621 | 24155 | 12058 | 7162 | 11157 | 2312 | 1082 | 24 | 84571 |
| 1989 | 153736 | 30102 | 9955 | 19010 | 17237 | 7648 | 4841 | 8063 | 1100 | 891 | 68744 |
| 1990 | 102306 | 125869 | 24631 | 7454 | 14273 | 12963 | 5636 | 3578 | 6260 | 1351 | 76145 |
| 1991 | 23193 | 83761 | 102854 | 18432 | 4852 | 10326 | 8226 | 4120 | 2585 | 5904 | 157299 |
| 1992 | 94363 | 18989 | 68563 | 78821 | 13632 | 2777 | 6879 | 4879 | 2233 | 5225 | 183007 |
| 1993 | 21736 | 77258 | 15536 | 52633 | 56048 | 10003 | 1793 | 5358 | 3796 | 5785 | 150952 |
| 1994 | 70475 | 17796 | 63253 | 12404 | 37134 | 38414 | 6914 | 933 | 4012 | 6776 | 169839 |
| 1995 | 41776 | 57700 | 14570 | 51020 | 8917 | 24186 | 23099 | 4639 | 442 | 7769 | 134641 |
| 1996 | 77727 | 34203 | 47241 | 11736 | 32766 | 4250 | 8881 | 9405 | 2575 | 2705 | 119559 |
| 1997 | 138473 | 63635 | 27982 | 35266 | 7598 | 15885 | 2449 | 4347 | 4411 | 2749 | 100687 |
| 1998 | 114699 | 113372 | 51843 | 18557 | 19024 | 4443 | 9300 | 1304 | 2716 | 4366 | 111551 |
| 1999 | 82391 | 93908 | 92746 | 37580 | 10821 | 6296 | 1928 | 4545 | 412 | 1973 | 156302 |
| 2000 | 98158 | 67456 | 76885 | 67181 | 19203 | 4303 | 2283 | 426 | 1191 | 530 | 172003 |
| 2001 | 109685 | 80365 | 55217 | 52992 | 36043 | 8754 | 1287 | 632 | 0 | 930 | 155855 |
| 2002 | 161735 | 89802 | 65451 | 40232 | 31184 | 20858 | 4550 | 492 | 331 | 499 | 163597 |
| 2003 | 112084 | 132417 | 72986 | 44989 | 25385 | 18670 | 10688 | 2550 | 249 | 352 | 175869 |
| 2004 | 73270 | 91767 | 108303 | 54662 | 26197 | 15801 | 11923 | 5400 | 1336 | 255 | 223875 |
| 2005 | 46431 | 59988 | 75119 | 83636 | 35644 | 15033 | 8366 | 5712 | 2055 | 334 | 225899 |
| 2006 | 212770 | 37876 | 47921 | 51569 | 48936 | 15870 | 8249 | 3606 | 2342 | 793 | 179286 |
| 2007 | 172456 | 174200 | 30985 | 37529 | 34735 | 27610 | 8398 | 4410 | 1217 | 737 | 145620 |
| 2008 | 124686 | 141195 | 142289 | 24073 | 27600 | 19612 | 13710 | 3462 | 2241 | 512 | 233499 |
| 2009 | 76670 | 102084 | 114313 | 105516 | 17388 | 18554 | 11274 | 3671 | 1462 | 675 | 272854 |
| 2010 | 22881 | 62772 | 83489 | 86207 | 73288 | 11206 | 8535 | 6021 | 1890 | 1056 | 271692 |
| 2011 | 76185 | 18733 | 51386 | 66974 | 60249 | 44722 | 4748 | 3125 | 2718 | 816 | 234738 |
| 2012 | 34515 | 62375 | 15337 | 41706 | 52948 | 38392 | 22626 | 1251 | 585 | 493 | 173338 |
| 2013 | na | 28259 | 51062 | 12424 | 32399 | 35536 | 20983 | 11231 | 209 | 45 | 163888 |
| 2014 | na | na | 23130 | 41273 | 9158 | 20193 | 19647 | 11391 | 6958 | 1 | 131751 |
| 2015 | na | na | na | 18937 | 31546 | 5251 | 10898 | 8201 | 7900 | 4910 | na |

Table 7. Estimated beginning-of-year abundance at age (thousands) of fall-spawning herring in the South population of the southern Gulf of St. Lawrence.

|  | Age (years) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | 4+ |
| 1978 | 52189 | 88501 | 34284 | 15658 | 5462 | 6865 | 6599 | 976 | 1481 | 9058 | 80384 |
| 1979 | 116150 | 41561 | 55915 | 21692 | 9956 | 3525 | 4180 | 2597 | 250 | 4194 | 102308 |
| 1980 | 101420 | 95053 | 33710 | 41063 | 15077 | 6491 | 2455 | 2720 | 1687 | 1507 | 104709 |
| 1981 | 125089 | 82556 | 53020 | 16114 | 13842 | 3615 | 920 | 657 | 247 | 59 | 88473 |
| 1982 | 240733 | 101400 | 57832 | 28404 | 10291 | 10129 | 2095 | 448 | 297 | 141 | 109637 |
| 1983 | 119472 | 197096 | 82700 | 41004 | 19961 | 5525 | 6180 | 980 | 74 | 251 | 156675 |
| 1984 | 233891 | 97811 | 160821 | 60809 | 28966 | 13338 | 3598 | 3918 | 373 | 78 | 271900 |
| 1985 | 269554 | 191494 | 79721 | 118133 | 44770 | 19585 | 8860 | 2313 | 2864 | 249 | 276495 |
| 1986 | 131629 | 220692 | 156702 | 62163 | 82785 | 30903 | 13135 | 5247 | 1436 | 2223 | 354594 |
| 1987 | 92943 | 107356 | 179516 | 109762 | 45709 | 56905 | 22277 | 9279 | 3856 | 2752 | 430056 |
| 1988 | 74774 | 76087 | 86900 | 136911 | 78305 | 31886 | 33901 | 12640 | 3760 | 2572 | 386876 |
| 1989 | 236078 | 61174 | 61925 | 67180 | 97004 | 55384 | 21790 | 21749 | 7609 | 3668 | 336308 |
| 1990 | 181250 | 193284 | 50055 | 49476 | 53128 | 71906 | 41553 | 16214 | 15602 | 8400 | 306335 |
| 1991 | 59779 | 148395 | 157457 | 34881 | 34443 | 36551 | 26757 | 25164 | 9393 | 13312 | 337958 |
| 1992 | 165316 | 48943 | 121485 | 124441 | 27050 | 26991 | 28841 | 18395 | 19371 | 16759 | 383334 |
| 1993 | 56387 | 135349 | 40002 | 97950 | 94593 | 20506 | 20936 | 21813 | 11576 | 26829 | 334205 |
| 1994 | 183848 | 46166 | 110815 | 32478 | 77282 | 73924 | 15902 | 16775 | 17330 | 29991 | 374497 |
| 1995 | 66485 | 150522 | 37786 | 87432 | 24887 | 49430 | 41628 | 10636 | 10275 | 23531 | 285604 |
| 1996 | 224224 | 54414 | 122780 | 30402 | 63202 | 17582 | 28281 | 23182 | 6129 | 17699 | 309256 |
| 1997 | 277503 | 183554 | 44541 | 95163 | 20263 | 37467 | 8542 | 11813 | 8750 | 8593 | 235131 |
| 1998 | 259888 | 227141 | 149150 | 32259 | 54513 | 13685 | 21105 | 5277 | 6476 | 8606 | 291070 |
| 1999 | 167920 | 212778 | 185964 | 113627 | 22332 | 30218 | 7542 | 8898 | 2670 | 4681 | 375931 |
| 2000 | 421376 | 137461 | 173363 | 142432 | 61058 | 12472 | 11857 | 2586 | 2976 | 2079 | 408821 |
| 2001 | 301783 | 344780 | 110734 | 131257 | 86484 | 32139 | 7116 | 5994 | 1400 | 2323 | 377446 |
| 2002 | 288220 | 246328 | 276612 | 86461 | 83093 | 47719 | 12489 | 2856 | 2734 | 1427 | 513391 |
| 2003 | 160942 | 235113 | 199149 | 205036 | 59939 | 48584 | 23370 | 5646 | 1174 | 1532 | 544428 |
| 2004 | 159296 | 131587 | 188796 | 153085 | 124476 | 39883 | 23409 | 8156 | 1739 | 1052 | 540596 |
| 2005 | 93244 | 130016 | 105875 | 144093 | 112167 | 77198 | 26322 | 13549 | 3443 | 766 | 483413 |
| 2006 | 304405 | 76342 | 106445 | 86300 | 106840 | 73470 | 34726 | 16111 | 5584 | 1558 | 431033 |
| 2007 | 151256 | 249009 | 62132 | 84365 | 63301 | 68874 | 41297 | 14564 | 8587 | 2738 | 345858 |
| 2008 | 232976 | 123838 | 203364 | 50598 | 60732 | 39560 | 34173 | 20013 | 7482 | 5783 | 421705 |
| 2009 | 111744 | 190745 | 101126 | 162113 | 39825 | 43787 | 21566 | 14566 | 10224 | 5093 | 398300 |
| 2010 | 28950 | 91488 | 155798 | 80630 | 114116 | 23313 | 17445 | 11544 | 8677 | 5544 | 417066 |
| 2011 | 68557 | 23702 | 74846 | 124841 | 57659 | 64303 | 11571 | 5029 | 3398 | 6050 | 347697 |
| 2012 | 7402 | 56130 | 19405 | 60997 | 95417 | 40470 | 30026 | 2318 | 586 | 1960 | 251178 |
| 2013 | na | 6061 | 45955 | 15830 | 48666 | 66093 | 19887 | 10380 | 385 | 255 | 207452 |
| 2014 | na | 0 | 4949 | 35962 | 10143 | 28477 | 31997 | 7863 | 3758 | 70 | 123217 |
| 2015 | na | na | na | 3449 | 24277 | 4754 | 13318 | 10262 | 2541 | 1392 | na |

Table 8. Total estimated beginning-of-year abundance at age (thousands) of fall-spawning herring in the southern Gulf of St. Lawrence.

|  | Age (years) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | 4+ |
| 1978 | 136662 | 158021 | 74564 | 56536 | 14747 | 19018 | 31886 | 5049 | 2850 | 40370 | 245020 |
| 1979 | 401216 | 110633 | 108093 | 35401 | 23760 | 7405 | 10195 | 8525 | 2421 | 16267 | 212067 |
| 1980 | 311668 | 323100 | 81982 | 71728 | 19475 | 10470 | 3570 | 4546 | 2769 | 2643 | 197184 |
| 1981 | 460068 | 252455 | 220264 | 49018 | 33616 | 5834 | 2222 | 907 | 963 | 810 | 313634 |
| 1982 | 711211 | 375603 | 192172 | 147809 | 32928 | 24748 | 3271 | 719 | 422 | 914 | 402984 |
| 1983 | 369653 | 581371 | 297592 | 141206 | 99451 | 21544 | 17608 | 1521 | 148 | 613 | 579685 |
| 1984 | 475231 | 302446 | 470099 | 218836 | 103983 | 65312 | 14856 | 12640 | 539 | 228 | 886493 |
| 1985 | 664084 | 388728 | 245846 | 358564 | 161067 | 74561 | 46075 | 10400 | 9755 | 291 | 906558 |
| 1986 | 429212 | 543406 | 316364 | 193118 | 259866 | 111938 | 50565 | 28832 | 4605 | 7004 | 972293 |
| 1987 | 285207 | 350751 | 441238 | 227856 | 140151 | 174570 | 70649 | 31582 | 18543 | 7719 | 1112309 |
| 1988 | 300267 | 232019 | 276327 | 326441 | 159296 | 94681 | 106408 | 40367 | 16074 | 14426 | 1034020 |
| 1989 | 1028455 | 242271 | 186489 | 203978 | 224374 | 109490 | 61691 | 70554 | 24855 | 17210 | 898640 |
| 1990 | 619983 | 841280 | 197086 | 137847 | 142078 | 151934 | 74278 | 42228 | 47454 | 26581 | 819486 |
| 1991 | 195701 | 507522 | 681638 | 138109 | 90961 | 88709 | 69572 | 43070 | 23569 | 43902 | 1179530 |
| 1992 | 518590 | 160226 | 410740 | 505967 | 99914 | 66141 | 61036 | 43414 | 30331 | 45347 | 1262889 |
| 1993 | 188366 | 424545 | 130563 | 321144 | 353391 | 67368 | 45664 | 40960 | 25483 | 46377 | 1030950 |
| 1994 | 492586 | 153940 | 343556 | 102027 | 230942 | 249557 | 47850 | 33072 | 29271 | 50091 | 1086366 |
| 1995 | 317172 | 403295 | 125776 | 265618 | 69240 | 136346 | 129049 | 26825 | 16636 | 40009 | 809498 |
| 1996 | 481033 | 259659 | 328032 | 96077 | 161567 | 35537 | 57249 | 52365 | 12046 | 24092 | 766965 |
| 1997 | 816827 | 393485 | 210137 | 238925 | 55885 | 81046 | 16050 | 23256 | 19644 | 13764 | 658706 |
| 1998 | 630519 | 668375 | 316756 | 150574 | 129170 | 31503 | 43268 | 8846 | 11669 | 16485 | 708271 |
| 1999 | 470121 | 516179 | 545762 | 235482 | 90728 | 60092 | 14882 | 17536 | 4136 | 7871 | 976489 |
| 2000 | 704196 | 384259 | 415093 | 400650 | 122739 | 35101 | 22951 | 4904 | 5894 | 3422 | 1010753 |
| 2001 | 601215 | 575617 | 308143 | 295829 | 219541 | 59961 | 16568 | 10243 | 2154 | 4326 | 916764 |
| 2002 | 894767 | 490403 | 458834 | 218419 | 175118 | 117645 | 27930 | 7754 | 5318 | 3040 | 1014058 |
| 2003 | 595110 | 731642 | 397021 | 319764 | 133828 | 98686 | 62746 | 14180 | 4128 | 3547 | 1033899 |
| 2004 | 428208 | 487054 | 590904 | 290851 | 180986 | 77461 | 47898 | 21313 | 4091 | 1957 | 1215460 |
| 2005 | 281965 | 350118 | 394604 | 439165 | 197026 | 107943 | 47166 | 25612 | 9069 | 1482 | 1222067 |
| 2006 | 937578 | 229989 | 282616 | 299965 | 271579 | 108047 | 47952 | 25583 | 10430 | 3554 | 1049726 |
| 2007 | 889504 | 766683 | 186123 | 218497 | 189818 | 153601 | 58854 | 21222 | 11725 | 4711 | 844550 |
| 2008 | 786771 | 726918 | 613307 | 141940 | 151177 | 100593 | 71909 | 26102 | 10642 | 7573 | 1123242 |
| 2009 | 773119 | 642903 | 585938 | 465132 | 100238 | 96254 | 52618 | 24225 | 12262 | 6251 | 1342919 |
| 2010 | 341240 | 632814 | 521225 | 444447 | 312329 | 59939 | 44144 | 28226 | 13937 | 6972 | 1431219 |
| 2011 | 456172 | 279379 | 516403 | 414311 | 312065 | 184444 | 28866 | 17642 | 10918 | 8152 | 1492801 |
| 2012 | 70009 | 372419 | 228059 | 418754 | 322684 | 211489 | 91755 | 11039 | 6117 | 4164 | 1294061 |
| 2013 | na | 57281 | 304554 | 186104 | 331215 | 227863 | 125424 | 43057 | 4609 | 2447 | 1225272 |
| 2014 | na | na | 46475 | 243577 | 138758 | 225162 | 135064 | 78394 | 25990 | 4837 | 898256 |
| 2015 | na | na | na | 36828 | 185565 | 97786 | 145271 | 75811 | 51621 | 22481 | na |

Table 9. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring in the North population of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  | F5-10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 0.0012 | 0.0889 | 0.9497 | 1.1463 | 0.8002 | 0.6773 | 1.4944 | 0.8808 | 1.4035 | 1.4035 | 1.1498 |
| 1979 | 0.0266 | 0.1836 | 0.2988 | 1.1080 | 0.8747 | 0.9214 | 0.6429 | 1.3685 | 1.6056 | 1.6056 | 1.0126 |
| 1980 | 0.0140 | 0.1186 | 0.1814 | 0.1672 | 0.5180 | 1.3475 | 1.1175 | 0.6262 | 1.2173 | 1.2173 | 0.3545 |
| 1981 | 0.0002 | 0.0318 | 0.1061 | 0.1216 | 0.0388 | 0.2629 | 0.7303 | 0.3544 | 0.2092 | 0.2092 | 0.1044 |
| 1982 | 0.0028 | 0.0494 | 0.0890 | 0.2154 | 0.1527 | 0.0378 | 0.7191 | 1.4970 | 0.8361 | 0.8361 | 0.1945 |
| 1983 | 0.0000 | 0.0011 | 0.0573 | 0.0490 | 0.1556 | 0.0857 | 0.0437 | 0.4822 | 0.5810 | 0.5810 | 0.0928 |
| 1984 | 0.0020 | 0.0089 | 0.0503 | 0.0912 | 0.1013 | 0.1148 | 0.1011 | 0.0259 | 1.7879 | 1.7879 | 0.0971 |
| 1985 | 0.0010 | 0.0131 | 0.0407 | 0.1139 | 0.1610 | 0.1842 | 0.2462 | 0.7161 | 0.1670 | 0.1670 | 0.1580 |
| 1986 | 0.0012 | 0.0106 | 0.1046 | 0.1291 | 0.2226 | 0.3186 | 0.3252 | 0.2699 | 0.2614 | 0.2614 | 0.2255 |
| 1987 | 0.0103 | 0.0571 | 0.1350 | 0.1862 | 0.2121 | 0.2953 | 0.3764 | 0.4107 | 0.2888 | 0.2888 | 0.2623 |
| 1988 | 0.0231 | 0.0204 | 0.1237 | 0.2065 | 0.1946 | 0.2617 | 0.2093 | 0.2536 | 0.4004 | 0.4004 | 0.2215 |
| 1989 | 0.0014 | 0.0100 | 0.1481 | 0.2557 | 0.2960 | 0.3394 | 0.2464 | 0.2650 | 0.3372 | 0.3372 | 0.2822 |
| 1990 | 0.0003 | 0.0145 | 0.1670 | 0.2486 | 0.3795 | 0.4621 | 0.4755 | 0.4605 | 0.3414 | 0.3414 | 0.3741 |
| 1991 | 0.0000 | 0.0213 | 0.1307 | 0.1588 | 0.1510 | 0.3022 | 0.3408 | 0.2571 | 0.2400 | 0.2400 | 0.2183 |
| 1992 | 0.0002 | 0.0072 | 0.0577 | 0.2008 | 0.2743 | 0.2612 | 0.4075 | 0.4891 | 0.6466 | 0.6466 | 0.2483 |
| 1993 | 0.0031 | 0.0235 | 0.0722 | 0.1810 | 0.1904 | 0.1869 | 0.2007 | 0.3533 | 0.3833 | 0.3833 | 0.1963 |
| 1994 | 0.0000 | 0.0034 | 0.0873 | 0.2779 | 0.4193 | 0.5577 | 0.5736 | 0.7538 | 0.6922 | 0.6922 | 0.4807 |
| 1995 | 0.0000 | 0.0107 | 0.1083 | 0.4619 | 0.7499 | 0.9388 | 0.9793 | 1.0402 | 1.1776 | 1.1776 | 0.7365 |
| 1996 | 0.0022 | 0.0175 | 0.1760 | 0.4548 | 0.6623 | 0.7966 | 0.8405 | 0.9154 | 0.8659 | 0.8659 | 0.6618 |
| 1997 | 0.0010 | 0.0341 | 0.1217 | 0.4679 | 0.5397 | 0.5669 | 0.6034 | 0.8522 | 0.7300 | 0.7300 | 0.5219 |
| 1998 | 0.0002 | 0.0051 | 0.1175 | 0.3497 | 0.6585 | 0.7048 | 0.9452 | 0.5650 | 1.3946 | 1.3946 | 0.5249 |
| 1999 | 0.0035 | 0.0397 | 0.1350 | 0.4851 | 0.9448 | 0.7843 | 0.8510 | 0.6628 | 0.8278 | 0.8278 | 0.6930 |
| 2000 | 0.0047 | 0.0321 | 0.1903 | 0.4776 | 0.6010 | 0.6085 | 0.6902 | 0.7204 | 0.6615 | 0.6615 | 0.5165 |
| 2001 | 0.0070 | 0.0536 | 0.2384 | 0.4065 | 0.4817 | 0.3601 | 0.4169 | 0.2735 | 0.2938 | 0.2938 | 0.4312 |
| 2002 | 0.0002 | 0.0113 | 0.3155 | 0.4372 | 0.4604 | 0.3367 | 0.3988 | 0.2877 | 0.5056 | 0.5056 | 0.4169 |
| 2003 | 0.0000 | 0.0145 | 0.2073 | 0.6332 | 0.6008 | 0.7169 | 1.1078 | 1.5724 | 1.7045 | 1.7045 | 0.7572 |
| 2004 | 0.0004 | 0.0107 | 0.1290 | 0.3239 | 0.4571 | 0.3569 | 0.4823 | 0.5761 | 1.2734 | 1.2734 | 0.3857 |
| 2005 | 0.0062 | 0.0219 | 0.0760 | 0.4020 | 0.7673 | 0.9495 | 0.5547 | 0.7305 | 0.9902 | 0.9902 | 0.5114 |
| 2006 | 0.0021 | 0.0190 | 0.0834 | 0.3688 | 0.5068 | 0.5142 | 0.5948 | 0.9159 | 0.8989 | 0.8989 | 0.4474 |
| 2007 | 0.0029 | 0.0494 | 0.1240 | 0.2299 | 0.5956 | 0.6660 | 1.0488 | 0.6951 | 0.7040 | 0.7040 | 0.4924 |
| 2008 | 0.0036 | 0.0205 | 0.1039 | 0.2469 | 0.4169 | 0.5392 | 1.1895 | 1.3177 | 1.3141 | 1.3141 | 0.4941 |
| 2009 | 0.0003 | 0.0165 | 0.0886 | 0.2580 | 0.3262 | 0.4244 | 0.4181 | 0.3747 | 0.8454 | 0.8454 | 0.3005 |
| 2010 | 0.0000 | 0.0042 | 0.0368 | 0.1576 | 0.3047 | 0.5060 | 0.4495 | 0.5974 | 0.8684 | 0.8684 | 0.2437 |
| 2011 | 0.0042 | 0.0035 | 0.0107 | 0.0440 | 0.1811 | 0.4569 | 0.3185 | 0.4514 | 1.0696 | 1.0696 | 0.1789 |
| 2012 | 0.0016 | 0.0017 | 0.0027 | 0.0338 | 0.1228 | 0.2502 | 0.4006 | 0.4209 | 0.9314 | 0.9314 | 0.1315 |
| 2013 | na | 0.0217 | 0.0213 | 0.0787 | 0.1488 | 0.2142 | 0.1575 | 0.1395 | 0.0568 | 0.0568 | 0.1447 |
| 2014 | na | na | 0.0421 | 0.0485 | 0.1082 | 0.1771 | 0.1747 | 0.1620 | 0.0140 | 0.0140 | 0.1235 |

Table 10. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring in the Middle population of the southern Gulf of St. Lawrence.

| Year | Age (years) |  |  |  |  |  |  |  |  |  | F5-10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 0.0019 | 0.0795 | 0.7179 | 0.3428 | 0.3959 | 0.2834 | 0.8062 | 0.1183 | 0.2861 | 0.2861 | 0.4410 |
| 1979 | 0.0000 | 0.0164 | 0.4688 | 0.6656 | 1.3444 | 1.3170 | 1.5602 | 1.7041 | 3.0322 | 3.0322 | 1.3923 |
| 1980 | 0.0061 | 0.0551 | 0.1926 | 0.6535 | 0.4424 | 0.3367 | 2.0101 | 1.0946 | 0.4509 | 0.4509 | 0.6299 |
| 1981 | 0.0001 | 0.0578 | 0.3548 | 0.5043 | 0.7652 | 0.6842 | 2.6910 | 4.2472 | 1.0387 | 1.0387 | 0.7727 |
| 1982 | 0.0001 | 0.0021 | 0.1263 | 0.1412 | 0.0941 | 0.1880 | 0.3632 | 0.0100 | 0.2518 | 0.2518 | 0.1416 |
| 1983 | 0.0086 | 0.1208 | 0.5676 | 0.4902 | 0.9891 | 0.8462 | 0.7204 | 2.6358 | 2.4260 | 2.4260 | 0.7511 |
| 1984 | 0.0007 | 0.0049 | 0.0623 | 0.3116 | 0.2373 | 0.5388 | 0.7591 | 0.4603 | 2.3340 | 2.3340 | 0.3397 |
| 1985 | 0.0000 | 0.0004 | 0.0148 | 0.0514 | 0.1649 | 0.1876 | 0.5583 | 1.7121 | 0.4420 | 0.4420 | 0.1097 |
| 1986 | 0.0000 | 0.0014 | 0.0830 | 0.1086 | 0.1224 | 0.2776 | 0.2168 | 0.4194 | 1.3706 | 1.3706 | 0.1456 |
| 1987 | 0.0001 | 0.0102 | 0.0344 | 0.1237 | 0.1763 | 0.2208 | 0.1081 | 0.2010 | 2.5383 | 2.5383 | 0.1869 |
| 1988 | 0.0000 | 0.0714 | 0.1368 | 0.1374 | 0.2554 | 0.1916 | 0.1248 | 0.5429 | 0.0159 | 0.0159 | 0.1802 |
| 1989 | 0.0000 | 0.0006 | 0.0893 | 0.0866 | 0.0850 | 0.1053 | 0.1023 | 0.0531 | 0.1879 | 0.1879 | 0.0871 |
| 1990 | 0.0000 | 0.0019 | 0.0899 | 0.2293 | 0.1237 | 0.2549 | 0.1132 | 0.1250 | 0.0539 | 0.0539 | 0.1635 |
| 1991 | 0.0000 | 0.0002 | 0.0661 | 0.1017 | 0.3582 | 0.2061 | 0.3224 | 0.4127 | 0.2854 | 0.2854 | 0.2231 |
| 1992 | 0.0000 | 0.0007 | 0.0644 | 0.1410 | 0.1095 | 0.2374 | 0.0499 | 0.0509 | 0.0540 | 0.0540 | 0.1280 |
| 1993 | 0.0000 | 0.0000 | 0.0252 | 0.1488 | 0.1778 | 0.1694 | 0.4538 | 0.0893 | 0.1464 | 0.1464 | 0.1646 |
| 1994 | 0.0000 | 0.0000 | 0.0149 | 0.1300 | 0.2288 | 0.3086 | 0.1989 | 0.5460 | 0.1283 | 0.1283 | 0.2441 |
| 1995 | 0.0000 | 0.0000 | 0.0163 | 0.2428 | 0.5411 | 0.8018 | 0.6985 | 0.3886 | 0.9105 | 0.9105 | 0.4893 |
| 1996 | 0.0000 | 0.0008 | 0.0923 | 0.2347 | 0.5240 | 0.3513 | 0.5145 | 0.5571 | 0.4525 | 0.4525 | 0.4653 |
| 1997 | 0.0000 | 0.0049 | 0.2107 | 0.4172 | 0.3367 | 0.3354 | 0.4303 | 0.2705 | 0.2947 | 0.2947 | 0.3735 |
| 1998 | 0.0000 | 0.0008 | 0.1217 | 0.3394 | 0.9057 | 0.6348 | 0.5158 | 0.9516 | 1.0779 | 1.0779 | 0.6381 |
| 1999 | 0.0000 | 0.0000 | 0.1225 | 0.4714 | 0.7221 | 0.8145 | 1.3089 | 1.1395 | 1.3035 | 1.3035 | 0.6316 |
| 2000 | 0.0000 | 0.0002 | 0.1722 | 0.4227 | 0.5855 | 1.0068 | 1.0847 | 7.0021 | 0.4155 | 0.4155 | 0.5279 |
| 2001 | 0.0000 | 0.0053 | 0.1166 | 0.3302 | 0.3470 | 0.4543 | 0.7613 | 0.4474 | 0.4230 | 0.4230 | 0.3535 |
| 2002 | 0.0000 | 0.0073 | 0.1749 | 0.2605 | 0.3130 | 0.4686 | 0.3792 | 0.4817 | 0.6570 | 0.6570 | 0.3297 |
| 2003 | 0.0000 | 0.0010 | 0.0891 | 0.3408 | 0.2741 | 0.2484 | 0.4828 | 0.4465 | 0.6588 | 0.6588 | 0.3257 |
| 2004 | 0.0000 | 0.0002 | 0.0585 | 0.2276 | 0.3554 | 0.4358 | 0.5359 | 0.7659 | 1.3605 | 1.3605 | 0.3554 |
| 2005 | 0.0037 | 0.0246 | 0.1762 | 0.3360 | 0.6091 | 0.4002 | 0.6417 | 0.6914 | 0.9025 | 0.9025 | 0.4453 |
| 2006 | 0.0000 | 0.0008 | 0.0445 | 0.1952 | 0.3723 | 0.4364 | 0.4262 | 0.8865 | 1.2476 | 1.2476 | 0.3435 |
| 2007 | 0.0000 | 0.0023 | 0.0524 | 0.1073 | 0.3716 | 0.5001 | 0.6862 | 0.4769 | 1.1391 | 1.1391 | 0.3511 |
| 2008 | 0.0000 | 0.0112 | 0.0990 | 0.1253 | 0.1971 | 0.3536 | 1.1176 | 0.6620 | 1.2061 | 1.2061 | 0.3937 |
| 2009 | 0.0000 | 0.0011 | 0.0822 | 0.1645 | 0.2393 | 0.5765 | 0.4272 | 0.4640 | 0.5051 | 0.5051 | 0.2500 |
| 2010 | 0.0000 | 0.0001 | 0.0204 | 0.1583 | 0.2939 | 0.6588 | 0.8046 | 0.5955 | 1.0838 | 1.0838 | 0.2943 |
| 2011 | 0.0000 | 0.0000 | 0.0087 | 0.0350 | 0.2506 | 0.4814 | 1.1340 | 1.4755 | 1.7689 | 1.7689 | 0.2946 |
| 2012 | 0.0000 | 0.0001 | 0.0107 | 0.0525 | 0.1988 | 0.4042 | 0.5005 | 1.5885 | 2.9846 | 2.9846 | 0.2748 |
| 2013 | na | 0.0003 | 0.0128 | 0.1051 | 0.2728 | 0.3926 | 0.4109 | 0.2788 | 5.5637 | 5.5637 | 0.3282 |
| 2014 | na | na | 0.0000 | 0.0688 | 0.3561 | 0.4168 | 0.6737 | 0.1660 | 0.1487 | 0.1487 | 0.2824 |

Table 11. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring in the South population of the southern Gulf of St. Lawrence.

|  | Age (years) |  |  |  |  |  |  |  |  |  | F5-10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 0.0277 | 0.2592 | 0.2577 | 0.2529 | 0.2381 | 0.2962 | 0.7325 | 1.1613 | 0.7214 | 0.7214 | 0.3868 |
| 1979 | 0.0005 | 0.0094 | 0.1087 | 0.1638 | 0.2277 | 0.1616 | 0.2298 | 0.2314 | 0.8817 | 0.8817 | 0.1936 |
| 1980 | 0.0058 | 0.3838 | 0.5381 | 0.8874 | 1.2280 | 1.7540 | 1.1186 | 2.1991 | 3.7882 | 3.7882 | 1.1722 |
| 1981 | 0.0100 | 0.1559 | 0.4241 | 0.2484 | 0.1124 | 0.3458 | 0.5192 | 0.5920 | 0.5774 | 0.5774 | 0.2208 |
| 1982 | 0.0000 | 0.0039 | 0.1439 | 0.1527 | 0.4221 | 0.2940 | 0.5592 | 1.6044 | 0.3585 | 0.3585 | 0.2643 |
| 1983 | 0.0001 | 0.0034 | 0.1075 | 0.1476 | 0.2032 | 0.2290 | 0.2558 | 0.7677 | 1.2217 | 1.2217 | 0.1871 |
| 1984 | 0.0000 | 0.0045 | 0.1085 | 0.1062 | 0.1914 | 0.2091 | 0.2416 | 0.1133 | 0.3927 | 0.3927 | 0.1464 |
| 1985 | 0.0000 | 0.0005 | 0.0488 | 0.1556 | 0.1707 | 0.1995 | 0.3239 | 0.2766 | 0.1370 | 0.1370 | 0.1721 |
| 1986 | 0.0038 | 0.0065 | 0.1560 | 0.1075 | 0.1749 | 0.1273 | 0.1475 | 0.1079 | 0.0849 | 0.0849 | 0.1417 |
| 1987 | 0.0001 | 0.0114 | 0.0709 | 0.1377 | 0.1601 | 0.3179 | 0.3666 | 0.7033 | 0.7437 | 0.7437 | 0.2344 |
| 1988 | 0.0007 | 0.0060 | 0.0574 | 0.1446 | 0.1463 | 0.1807 | 0.2439 | 0.3076 | 0.3461 | 0.3461 | 0.1697 |
| 1989 | 0.0000 | 0.0006 | 0.0244 | 0.0347 | 0.0994 | 0.0873 | 0.0956 | 0.1322 | 0.0944 | 0.0944 | 0.0831 |
| 1990 | 0.0000 | 0.0050 | 0.1612 | 0.1622 | 0.1740 | 0.7886 | 0.3015 | 0.3459 | 0.3895 | 0.3895 | 0.3961 |
| 1991 | 0.0000 | 0.0001 | 0.0353 | 0.0542 | 0.0438 | 0.0369 | 0.1747 | 0.0617 | 0.1036 | 0.1036 | 0.0715 |
| 1992 | 0.0000 | 0.0017 | 0.0153 | 0.0742 | 0.0770 | 0.0540 | 0.0793 | 0.2632 | 0.0977 | 0.0977 | 0.0889 |
| 1993 | 0.0000 | 0.0000 | 0.0084 | 0.0370 | 0.0465 | 0.0543 | 0.0216 | 0.0301 | 0.0473 | 0.0473 | 0.0404 |
| 1994 | 0.0000 | 0.0003 | 0.0370 | 0.0662 | 0.2469 | 0.3743 | 0.2022 | 0.2902 | 0.4986 | 0.4986 | 0.2808 |
| 1995 | 0.0004 | 0.0037 | 0.0174 | 0.1245 | 0.1475 | 0.3584 | 0.3854 | 0.3513 | 0.4471 | 0.4471 | 0.2526 |
| 1996 | 0.0001 | 0.0002 | 0.0548 | 0.2057 | 0.3229 | 0.5219 | 0.6730 | 0.7743 | 0.8199 | 0.8199 | 0.4612 |
| 1997 | 0.0003 | 0.0076 | 0.1226 | 0.3572 | 0.1925 | 0.3739 | 0.2816 | 0.4011 | 0.5008 | 0.5008 | 0.3485 |
| 1998 | 0.0000 | 0.0000 | 0.0720 | 0.1678 | 0.3900 | 0.3958 | 0.6637 | 0.4814 | 0.9699 | 0.9699 | 0.4119 |
| 1999 | 0.0002 | 0.0049 | 0.0667 | 0.4211 | 0.3825 | 0.7355 | 0.8706 | 0.8953 | 1.0631 | 1.0631 | 0.5180 |
| 2000 | 0.0006 | 0.0162 | 0.0782 | 0.2989 | 0.4418 | 0.3611 | 0.4822 | 0.4132 | 0.5776 | 0.5776 | 0.3537 |
| 2001 | 0.0030 | 0.0203 | 0.0474 | 0.2572 | 0.3946 | 0.7452 | 0.7130 | 0.5849 | 0.7592 | 0.7592 | 0.3838 |
| 2002 | 0.0037 | 0.0126 | 0.0994 | 0.1664 | 0.3367 | 0.5139 | 0.5939 | 0.6893 | 0.7991 | 0.7991 | 0.3333 |
| 2003 | 0.0014 | 0.0194 | 0.0631 | 0.2991 | 0.2074 | 0.5302 | 0.8527 | 0.9777 | 0.7447 | 0.7447 | 0.3661 |
| 2004 | 0.0031 | 0.0174 | 0.0702 | 0.1110 | 0.2777 | 0.2155 | 0.3468 | 0.6624 | 1.0927 | 1.0927 | 0.2155 |
| 2005 | 0.0000 | 0.0000 | 0.0044 | 0.0991 | 0.2231 | 0.5989 | 0.2909 | 0.6865 | 0.7937 | 0.7937 | 0.2793 |
| 2006 | 0.0009 | 0.0060 | 0.0325 | 0.1099 | 0.2391 | 0.3761 | 0.6689 | 0.4293 | 0.7586 | 0.7586 | 0.3004 |
| 2007 | 0.0000 | 0.0025 | 0.0054 | 0.1287 | 0.2701 | 0.5008 | 0.5244 | 0.4660 | 0.4721 | 0.4721 | 0.3379 |
| 2008 | 0.0000 | 0.0026 | 0.0267 | 0.0394 | 0.1271 | 0.4067 | 0.6528 | 0.4716 | 0.7572 | 0.7572 | 0.2974 |
| 2009 | 0.0000 | 0.0024 | 0.0265 | 0.1511 | 0.3355 | 0.7203 | 0.4250 | 0.3180 | 0.8163 | 0.8163 | 0.3134 |
| 2010 | 0.0000 | 0.0008 | 0.0215 | 0.1353 | 0.3736 | 0.5005 | 1.0438 | 1.0230 | 0.6547 | 0.6547 | 0.3946 |
| 2011 | 0.0000 | 0.0000 | 0.0046 | 0.0688 | 0.1540 | 0.5616 | 1.4079 | 1.9498 | 1.3727 | 1.3727 | 0.3161 |
| 2012 | 0.0000 | 0.0000 | 0.0037 | 0.0258 | 0.1672 | 0.5105 | 0.8622 | 1.5957 | 2.1017 | 2.1017 | 0.3003 |
| 2013 | na | 0.0027 | 0.0452 | 0.2451 | 0.3359 | 0.5254 | 0.7280 | 0.8159 | 2.0178 | 2.0178 | 0.4880 |
| 2014 | na | na | 0.1610 | 0.1929 | 0.5578 | 0.5599 | 0.9372 | 0.9296 | 0.8118 | 0.8118 | 0.5828 |

Table 12. Estimated instantaneous rates of fishing mortality (F) at age and for fully-recruited ages 5 to 10 (F5-10) of fall-spawning herring of the southern Gulf of St. Lawrence. Values are abundance weighted averages of the values in each region.

| Year | Age (years) |  |  |  |  |  |  |  |  |  | F5-10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |  |
| 1978 | 0.0114 | 0.1834 | 0.5958 | 0.7585 | 0.5223 | 0.4406 | 1.1846 | 0.6282 | 0.8439 | 0.8972 | 0.7865 |
| 1979 | 0.0166 | 0.1034 | 0.2174 | 0.4720 | 0.7170 | 0.6346 | 0.7390 | 1.1235 | 2.4016 | 2.1355 | 0.6997 |
| 1980 | 0.0107 | 0.1908 | 0.3292 | 0.6168 | 1.0602 | 1.4813 | 1.1951 | 1.6194 | 2.6775 | 2.5725 | 0.8835 |
| 1981 | 0.0029 | 0.0745 | 0.2087 | 0.2045 | 0.1198 | 0.3877 | 1.2747 | 0.6712 | 0.4233 | 0.6444 | 0.2178 |
| 1982 | 0.0016 | 0.0331 | 0.1085 | 0.1967 | 0.2322 | 0.1481 | 0.5710 | 1.4817 | 0.4990 | 0.6630 | 0.2074 |
| 1983 | 0.0007 | 0.0130 | 0.1163 | 0.1124 | 0.2440 | 0.1912 | 0.1415 | 1.0050 | 1.3003 | 1.1420 | 0.1722 |
| 1984 | 0.0009 | 0.0072 | 0.0712 | 0.1077 | 0.1337 | 0.1527 | 0.1655 | 0.0613 | 0.8379 | 1.3312 | 0.1228 |
| 1985 | 0.0006 | 0.0060 | 0.0414 | 0.1224 | 0.1639 | 0.1884 | 0.2704 | 0.6435 | 0.1617 | 0.1431 | 0.1591 |
| 1986 | 0.0019 | 0.0083 | 0.1286 | 0.1206 | 0.1984 | 0.2639 | 0.2738 | 0.2437 | 0.2157 | 0.2159 | 0.1946 |
| 1987 | 0.0064 | 0.0387 | 0.1020 | 0.1583 | 0.1925 | 0.2954 | 0.3613 | 0.4860 | 0.4253 | 0.4574 | 0.2463 |
| 1988 | 0.0147 | 0.0186 | 0.1041 | 0.1754 | 0.1755 | 0.2291 | 0.2115 | 0.2871 | 0.3618 | 0.3901 | 0.1975 |
| 1989 | 0.0009 | 0.0064 | 0.1039 | 0.1672 | 0.1948 | 0.1955 | 0.1818 | 0.1998 | 0.2563 | 0.2777 | 0.1884 |
| 1990 | 0.0002 | 0.0104 | 0.1559 | 0.2166 | 0.2770 | 0.5989 | 0.3507 | 0.3881 | 0.3193 | 0.3420 | 0.3655 |
| 1991 | 0.0000 | 0.0116 | 0.0989 | 0.1248 | 0.1214 | 0.1817 | 0.2747 | 0.1578 | 0.1907 | 0.2048 | 0.1648 |
| 1992 | 0.0001 | 0.0047 | 0.0463 | 0.1603 | 0.1984 | 0.1756 | 0.2121 | 0.3441 | 0.2524 | 0.3754 | 0.1836 |
| 1993 | 0.0018 | 0.0117 | 0.0471 | 0.1318 | 0.1499 | 0.1439 | 0.1285 | 0.1466 | 0.1954 | 0.1593 | 0.1427 |
| 1994 | 0.0000 | 0.0021 | 0.0577 | 0.1925 | 0.3310 | 0.4650 | 0.3960 | 0.5128 | 0.5003 | 0.5000 | 0.3792 |
| 1995 | 0.0001 | 0.0066 | 0.0704 | 0.3088 | 0.5065 | 0.7041 | 0.7375 | 0.6544 | 0.7194 | 0.6961 | 0.5247 |
| 1996 | 0.0009 | 0.0116 | 0.1186 | 0.3491 | 0.5015 | 0.6074 | 0.7072 | 0.7886 | 0.7541 | 0.7857 | 0.5472 |
| 1997 | 0.0006 | 0.0170 | 0.1337 | 0.4163 | 0.3862 | 0.4323 | 0.4057 | 0.5143 | 0.5301 | 0.4999 | 0.4254 |
| 1998 | 0.0001 | 0.0027 | 0.0968 | 0.3094 | 0.5816 | 0.5607 | 0.7156 | 0.5721 | 1.0852 | 1.0890 | 0.5015 |
| 1999 | 0.0017 | 0.0181 | 0.1096 | 0.4520 | 0.7798 | 0.7629 | 0.9203 | 0.9043 | 1.0270 | 1.0870 | 0.6074 |
| 2000 | 0.0016 | 0.0208 | 0.1401 | 0.4049 | 0.5194 | 0.5694 | 0.6220 | 1.1046 | 0.5695 | 0.5724 | 0.4542 |
| 2001 | 0.0037 | 0.0269 | 0.1479 | 0.3266 | 0.4253 | 0.5803 | 0.5709 | 0.4665 | 0.5964 | 0.5715 | 0.3976 |
| 2002 | 0.0013 | 0.0112 | 0.1652 | 0.2974 | 0.3755 | 0.4320 | 0.4829 | 0.4479 | 0.6659 | 0.6682 | 0.3659 |
| 2003 | 0.0004 | 0.0137 | 0.1132 | 0.3778 | 0.3626 | 0.5363 | 0.9063 | 1.1331 | 1.3685 | 1.1861 | 0.4750 |
| 2004 | 0.0013 | 0.0105 | 0.0973 | 0.1937 | 0.3190 | 0.3002 | 0.4294 | 0.6572 | 1.2251 | 1.1876 | 0.2842 |
| 2005 | 0.0038 | 0.0142 | 0.0758 | 0.2901 | 0.4289 | 0.6222 | 0.4229 | 0.6985 | 0.8957 | 0.8689 | 0.3935 |
| 2006 | 0.0012 | 0.0117 | 0.0576 | 0.2645 | 0.3772 | 0.4089 | 0.6195 | 0.6053 | 0.9021 | 0.9152 | 0.3674 |
| 2007 | 0.0019 | 0.0235 | 0.0725 | 0.1698 | 0.4461 | 0.5621 | 0.6291 | 0.4926 | 0.5793 | 0.6373 | 0.4014 |
| 2008 | 0.0019 | 0.0156 | 0.0772 | 0.1523 | 0.2604 | 0.4509 | 0.9207 | 0.5820 | 0.8998 | 0.8816 | 0.3928 |
| 2009 | 0.0003 | 0.0098 | 0.0766 | 0.1995 | 0.3148 | 0.5883 | 0.4228 | 0.3541 | 0.7806 | 0.7850 | 0.2949 |
| 2010 | 0.0000 | 0.0033 | 0.0296 | 0.1537 | 0.3273 | 0.5325 | 0.7530 | 0.7711 | 0.7645 | 0.7311 | 0.2969 |
| 2011 | 0.0029 | 0.0030 | 0.0096 | 0.0500 | 0.1895 | 0.4993 | 0.8893 | 1.0600 | 1.3380 | 1.3646 | 0.2385 |
| 2012 | 0.0007 | 0.0012 | 0.0033 | 0.0345 | 0.1484 | 0.3279 | 0.5763 | 0.7998 | 1.2399 | 1.7256 | 0.1893 |
| 2013 | na | 0.0091 | 0.0235 | 0.0946 | 0.1884 | 0.3323 | 0.2903 | 0.3389 | 0.4703 | 0.3615 | 0.2275 |
| 2014 | na | na | 0.0338 | 0.0732 | 0.1574 | 0.2470 | 0.4279 | 0.2396 | 0.1654 | 0.0256 | 0.2080 |

Table 13. Probabilities that average $F$ for ages 5-10 years will exceed the target level of 0.32 and that SSB will be below the Upper Stock Reference given various catch levels in 2015 for fall-spawning herring in the southern Gulf of St. Lawrence. SSB is the sum over the North, Middle and South populations and F is the abundance weighted average over the three populations.

| Catch $(1,000 \mathrm{t})$ | $F>0.32$ | SSB $<$ USR |
| :---: | :---: | :---: |
| 10 | 0.000 | 0.284 |
| 12 | 0.000 | 0.300 |
| 14 | 0.000 | 0.311 |
| 16 | 0.000 | 0.319 |
| 18 | 0.002 | 0.330 |
| 20 | 0.012 | 0.341 |
| 22 | 0.044 | 0.352 |
| 24 | 0.114 | 0.363 |
| 26 | 0.235 | 0.372 |
| 28 | 0.379 | 0.385 |
| 30 | 0.557 | 0.395 |
| 32 | 0.711 | 0.406 |
| 34 | 0.830 | 0.415 |
| 36 | 0.907 | 0.424 |
| 38 | 0.951 | 0.431 |
| 40 | 0.975 | 0.440 |
| 42 | 0.985 | 0.448 |
| 44 | 0.992 | 0.455 |
| 46 | 0.996 | 0.463 |
| 48 | 0.998 | 0.470 |
| 50 | 0.999 | 0.476 |

## FIGURES



Figure 1. Fall herring spawning grounds (black circles) in the southern Gulf of St. Lawrence and their grouping (large red ellipses) into North, Middle, and South putative populations for assessment and management purposes.


Figure 2. Residuals (observed - predicted indices) for variants of Model 1 assuming a single fallspawning population. Circle radius is proportional to the absolute value of residuals. Black circles indicate negative residuals (i.e., observed < predicted).


Figure 3. Estimated trend in fully recruited catchability to the fishery in Model 1B. The line is the maximum likelihood estimate (MLE) and the shading shows 95\% confidence intervals based on MCMC sampling.


Figure 4. Estimated trend in M of ages 2 to 5 and 6+ in Model 1C. Lines are the MLEs and shading shows 95\% confidence intervals based on MCMC sampling.


Figure 5. Estimated catchability at age (qa'in equation 2) to the gillnet fishery for variants of Model 1. qa' takes into account changes in mesh size and length at age, as well as non-stationarity in fully recruited $q$ in the case of Model 1B.


Figure 6. Estimated spawning stock biomass (SSB) based on Model 1 from the 2014 assessment and from Model 1A (stationarity), Model 1B (non-stationary fishery CPUE q) and Model 1C (non-stationary M).


Figure 7. Estimated fishing mortality (F, ages 5 to 10) based on Model 1 from the 2014 assessment and from Model 1A (stationarity), Model 1B (non-stationary fishery CPUE q) and Model 1C (non-stationary M).


Figure 8. Estimated recruit abundance (millions) at age 2 based on Models 1A, 1B and 1C. Vertical lines are $95 \%$ confidence intervals based on MCMC sampling.


Figure 9. Retrospective pattern in fully-recruited catchability to the fishery based on Model 1B.


Figure 10. Retrospective pattern in the instantaneous rate of natural mortality (M) based on Model 1B.


Figure 11. Retrospective patterns in estimated spawning stock biomass (SSB; left column) and the instantaneous rate of fishing mortality (F; right column) for ages 5-10 for variants of Model 1 (which assumes a single fall-spawning population of Atlantic herring in the southern Gulf of St. Lawrence).


Figure 12. Residuals from the CPUE index for the gillnet fishery by population (North - left column; Middle - middle column; South - right column) and variants of Model 2. Circle radius is proportional to residual magnitude. Black circles indicate negative residuals (i.e., observed < predicted).


Figure 13. Residuals from the experimental nets index by population (North - left column; Middle - middle column; South - right column) and variants of Model 2. Circle radius is proportional to residual magnitude. Black circles indicate negative residuals (i.e., observed < predicted).


Figure 14. Residuals from the acoustic (left column) and RV survey (right column) indices for the entire southern Gulf of St. Lawrence for variants of Model 2. Circle radius is proportional to residual magnitude. Black circles indicate negative residuals (i.e., observed < predicted).


Figure 15. Estimated trends in fully recruited catchability to the gillnet fishery by population (North = N; Middle $=M$; South $=S$ ) for Model 2Ba (A, upper panel; common trend among populations) and Model 2Bb (B, lower panel; independent trends between populations). Lines show the MLEs and shading the 95\% confidence bands based on MCMC sampling.


Figure 16. Estimated trends in the instantaneous rate of natural mortality ( $M$ ) by age group (ages 2 to 5 and ages 6+) for Model 2Ca (A, upper panel; common trend among populations) and Model 2Cb (B, middle and lower panels; independent trends between populations with North $=N$, Middle $=M$, and South $=S$ ).


Figure 17. Estimated catchability $(q)$ at age ( $q_{a}$ 'in equation 2 ) to the gillnet fishery for variants of Model 2 that treat fall spawning herring as three populations (North - upper row; Middle - middle row; South - lower row). $q_{a}{ }^{\prime}$ takes into account changes in mesh size and length at age, as well as non-stationarity in fully recruited $q$ in the case of Models 2Ba and 2Bb. Fully recruited $q$ is constant in Model $2 A$ (left column), varies in common among populations in 2Ba (middle column), and varies independently between populations in 2Bb (right column).


Figure 18. Catchability at age to the experimental nets by population (North, Middle, South) for variants of Model 2.


Figure 19. Estimated spawning stock biomass (SSB; left column) and average $F$ for ages 5-10 years (right column) for variants of Model 2 that treat fall spawners as three separate populations (North, Middle and South). The thin orange line in the right column panels shows SSB estimated by Model 1 in the 2014 assessment. Model 2A (upper row) assumes constant fully-recruited q (prior to adjustments for changes in mesh size and fish length). Model 2Ba (middle row) allows q to vary in common among populations over time. Model 2Bb (lower row) allows q to vary independently between populations over time. Total (thick solid black line in the right column) is the SSB for the southern Gulf of St. Lawrence.


Figure 20. Estimated abundance of recruits at age-2 by population (North in upper row; Middle in second row; South in third row) and the total for the southern Gulf of St. Lawrence (bottom row) summed over populations. Circles in the panels of the bottom row are the recruit abundances estimated by single-population models (Model 2A is compared with Model 1A, and Models 2Ba and 2Bb with Model 1B.)


Figure 21. Retrospective patterns in fully-recruited catchability to the gillnet fishery from variants of Model 2 (Model 2Ba left column; Model 2Bb right column) for the North (upper row), Middle (middle row) and South (bottom row) populations of fall spawing Atlantic herring of the southern Gulf of St. Lawrence.


Figure 22. Retrospective patterns in spawning stock biomass (SSB) of fall spawning Atlantic herring from variants of Model 2 for the three populations (North, Middle, South) and for the entire southern Gulf of St. Lawrence. Lines are interpreted as per legend in Figure 21.


Figure 23. Retrospective patterns in the instantaneous rate of fishing mortality (F) averaged over ages 5 to 10 years of fall spawning Atlantic herring from variants of Model 2 for the three populations (North, Middle, South) of the southern Gulf of St. Lawrence. Lines are interpreted as per legend in Figure 21.


Figure 24. Comparison between the revised and original fishery catch-at-age (CAA) data of fall spawning Atlantic herring for the three populations of the southern Gulf of St. Lawrence. Circle size is proportional to the difference (new data - old data). The left panels show the absolute difference. The right panels show the difference as a proportion of the new values. Filled circles indicate negative values (old data > new data).


Figure 25. Comparison between the revised and original fishery CPUE indices of fall spawning Atlantic herring for the three populations of the southern Gulf of St. Lawrence. Circle size is proportional to the difference (new data - old data). The left panels show the absolute difference. The right panels show the difference as a proportion of the new values. Filled circles indicate negative values (old data > new data).


Figure 26. Comparison between the revised and original relative selectivity matrices for mesh sizes $25 / 8$ inches (top row) and $2^{3} / 4$ inches (bottom row). Circle size is proportional to the difference (new data - old data). The left panels show the absolute difference. The right panels show the difference as a proportion of the new values. Filled circles indicate negative values (old data > new data).


Figure 27. Estimates of fully-recruited catchability to the gillnet fishery from Model 2Bb for the three populations based on the original and updated data.


Figure 28. Estimates of SSB from Model 2Bb for the three populations (North, Middle, South) and overall for the southern Gulf of St. Lawrence, based on the original and updated catch-at-age data.


Figure 29. Estimates of the instantaneous rate of fishing mortality F for ages 5-10 from Model 2Bb for the three populations based on the original and updated data.


Figure 30. Residuals from the CPUE index for the gillnet fishery at different assumed levels for the $\sigma$ (sd) of process error in fishery $q$, by population (North in upper row; Middle in middle row; South in lower row). Circle radius is proportional to residual magnitude. Closed circles indicate negative residuals (i.e., observed < predicted).


Figure 31. Effect of the value assumed for the $\sigma$ of process error in fishery $q$ on estimated trends in $q$ by population (North, Middle, South).


Figure 32. Estimated trends in fully recruited catchability to the gillnet fishery of fall spawning herring by population (North, Middle, South) in the southern Gulf of St. Lawrence based on Model 2Bb fit to the updated data with $\sigma=0.1$. Lines show the MLEs and shading the $95 \%$ confidence bands based on MCMC sampling.


Figure 33. Effect of the value assumed for the $\sigma$ of the process error in fishery $q$ on estimated SSB of fall spawning herring by population (North, Middle, South) and overall for the southern Gulf of St. Lawrence.


Figure 34. Effect of the value assumed for the $\sigma$ of the process error in fishery $q$ on estimated $F$ averaged over ages 5-10 years of fall spawning herring by population (North, Middle, South) of the southern Gulf of St. Lawrence.


Figure 35. Estimated spawning stock biomass (SSB) of fall-spawning herring in the southern Gulf of St. Lawrence, by putative population (North, Middle, South) and summed over populations (Total). Line shows the MLE and shading the $95 \%$ confidence intervals based on MCMC sampling. In the lower right panel, the gold line is the upper stock reference (USR) and the red line the limit reference point (LRP).


Figure 36. Estimated abundance of fall-spawning herring 4 years and older in the southern Gulf of St. Lawrence, by putative population (North, Middle, South) and summer over populations (Total).


Figure 37. Estimated abundance-weighted average $F$ for ages 5-10 years for fall-spawning herring in the southern Gulf of St. Lawrence, by putative population (North, Middle, South) and averaged over populations (Total, weighting by abundance). Line shows the MLE and shading the 95\% confidence intervals based on MCMC sampling. The black horizontal line in the lower right panel is the target F of 0.32 .


Figure 38. Estimated abundance of recruits at age 2 of fall spawning Atlantic herring in each putative population (North, Middle, South) and summed over populations (Total) of the southern Gulf of St. Lawrence. Vertical lines show 95\% confidence intervals.


Figure 39. Estimated spawning stock biomass (SSB) of the fall-spawning component of southern Gulf of St. Lawrence herring projected forward from 2014 to the beginning of 2015. Results are shown by putative population (North, Middle, South) and summed over populations (Total). Lines show the MLEs and shading the $95 \%$ confidence intervals based on MCMC sampling. In the lower right panel, the gold line is the upper stock reference (USR) and the red line the limit reference point (LRP).


Figure 40. Estimated SSB projected forward to the start of 2016 assuming a catch of 29,000 $t$ in 2015. See the caption to Figure 39 for further details.


Figure 41. Estimated fully recruited $F$ at ages 5 to $10\left(F_{5-10}\right)$ of fall spawning Atlantic herring by population (North, Middle, South) and for the southern Gulf of St. Lawrence (Total) projected forward to 2015 assuming a total catch of 30,000 t in the southern Gulf of St. Lawrence in 2015. The $F_{5-10}$ for the aggregate of the three populations (Total) is an abundance-weighted average. Lines show the MLE and shading the $95 \%$ confidence interval. In the lower right panel, the solid black horizontal line is $F=0.32$, the target upper limit for $F_{5-10}$.


Figure 42. Estimated probability that the abundance-weighted $F_{5-10}$ averaged over all three putative populations will exceed the estimated $F_{0.1}$ level of 0.32 in 2015 at total catch levels of 10,000 to 50,000 t, assuming that the catch is distributed among populations in the recently observed proportions.


Figure 43. Estimated probability that SSB summed over the three putative populations of fall-spawning herring in the southern Gulf will fall below the USR of 172,000 t at the start of 2016 given various catch levels in 2015.


Figure 44. Estimated recruitment rates (at age 2) of fall-spawning herring by putative population (North, Middle, South) in the southern Gulf of St. Lawrence. The line shows the mean and the shading the 95\% confidence intervals based on the MCMC samples. The circles and light shading indicate the mean and central 95\% of the values used in the projections.

