The Effects and Fate of Chemically Dispersed Crude Oil in a Marine Ecosystem Enclosure — Data Report and Methods

F. A. Whitney, editor MEEE Group

Institute of Ocean Sciences Department of Fisheries and Oceans Sidney, B.C. V8L 4B2

1984

Canadian Data Report of Hydrography and Ocean Sciences No. 29

Fisheries Pêc and Oceans et C

Pêches et Ócéans

Canadian Data Report Of Hydrography and Ocean Sciences

These reports provide a medium for the documentation and dissemination of data in a form directly useable by the scientific and engineering communities.

Generally, the reports will contain raw and/or analyzed data but will not contain interpretations of the data. Such compilations will commonly have been prepared in support of work related to the programs and interests of the Ocean Science and Surveys (OSS) sector of the Department of Fisheries and Oceans.

Data Reports are produced regionally but are numbered and indexed nationally. Requests for individual reports will be fulfilled by the issuing establishment listed on the front cover and title page. Out of stock reports will be supplied for a fee by commercial agents.

Regional and headquarters establishments of Ocean Science and Surveys ceased publication of their various report series as of December 1981. A complete listing of these publications and the last number issued under each title are published in the *Canadian Journal of Fisheries and Aquatic Sciences*, Volume 38: Index to Publications 1981. The current series began with Report Number 1 in January 1982.

Rapport statistique canadien sur l'hydrographie et les sciences océaniques

Ces rapports servent de véhicule pour la compilation et la diffusion des données sous une forme directement utilisable par les scientifiques et les techniciens.

En général, les rapports contiennent des données brutes ou analysées mais ne fournissent pas d'interprétations des données. Ces compilations sont préparées le plus souvent à l'appui de travaux reliés aux programmes et intérêts du service des Sciences et Levés océaniques (SLO) du ministère des Pêchés et des Océans.

1.44

Les rapports statistiques sont produits à l'échelon régional mais sont numérotés et placés dans l'index à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page de titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Les établissements des Sciences et Levés océaniques dans les régions et à l'administration centrale ont cessé de publier leurs diverses séries de rapports depuis décembre 1981. Vous trouverez dans l'index des publications du volume 38 du *Journal canadien des sciences halieutiques et aquatiques*, la liste de ces publications ainsi que le dernier numéro paru dans chaque catégorie. La nouvelle série a commencé avec la publication du Rapport n° 1 en janvier 1982. Canadian Data Report of Hydrography and Ocean Sciences No. 29

1984

THE EFFECTS AND FATE OF CHEMICALLY DISPERSED CRUDE OIL IN A MARINE. ECOSYSTEM ENCLOSURE - DATA REPORT AND METHODS

Ъy

F.A. Whitney, editor MEEE Group

Institute of Ocean Sciences Department of Fisheries and Oceans Sidney, B.C. V8L 4B2 Copyright Minister of Supply and Services Canada - 1984 Cat. No. Fs 97 - 16/29E ISSN - 0711-6721

Correct citation for this publication:

Whitney, F.A. ed., MEEE Group. 1984. The effects and fate of chemically dispersed crude oil in a marine ecosystem enclosure - data report and methods. Can. Data. Rep. Ocean Sci: 29: 77 pp.

LIST OF PARTICIPANTS

Acreman, Judy Chan, Y.H. Chen Xiaolin Cochlan, William P. Cretney, Walter J. Dovey, Heather Fu Tianbao Harrison, Paul J. Lalli, Carol M. Lee, Kenneth Li Guanguo McLaughlin, Fiona Page, John Parsons, Timothy Thompson, Peter Whitney, Frank A. Wong, C.S. Wu Jinping Zhuang Dongfa

Participating Institutes

1. University of British Columbia, Vancouver, Canada

2. National Bureau of Oceanography, Xiamen, People's Republic of China

3. Institute of Ocean Sciences, Sidney, Canada

4. Shandong College, Qingdao, People's Republic of China

1

3

2

1

3

1

2

1

1

3

4

3

3

1

1

3

3

2

. •

цэ,

CONTE	NTS
-------	-----

		•
List o	f Participants	iii
Abstra	ct	v
Acknow	ledgements	vii
Introdu	uction	1
Method	s and Methods' Errors	2
Referen	nces • • • • • • • • • • • • • • • • • • •	24
Field I		27
Tables	and Figures	28
1.	• Nutrients a) NO ₃ & NO ₂ b) NH ₄ c) PO ₄ d) SiO ₄ · · · · · · · ·	28
2.		32
3.		33
4.		34
5.		
6.	$+ \frac{1}{2} \int dx dx$ of	37
7.		
8.		38
9.		39
10.	1,	40
	b) Sedimented	41
	c) Seawater CO_2	41
	d) Dissolved Organic C	42 42
•		42 42
11.	Dentioulate Organic Carbon and Mitting and	43
12.	15	44
13.		45
14.	Destorie Numbers and Cline Distriction	46
15.		40 49
16.		56
17.		60
18.		61
19.		62
		70

•

ABSTRACT

Whitney, F.A. ed., MEEE Group. 1984. The effects and fate of chemically dispersed crude oil in a Marine Ecosystem Enclosure - data report and methods. Can. Data Rep. Hydrogr. Ocean Sci.: 29: 77 pp.

This report summarizes the experimental data collected in a study of the chemical fate and biological effects of Prudhoe Bay crude oil dispersed with Corexit 9527 in plastic enclosures. On July 17, 1983, three plastic enclosures of 2.5 m diameter with 16 m depth, were filled with sea water in Patricia Bay in Saanich Inlet, B.C. near the Institute of Ocean Sciences. The experimental conditions in the three enclosures were: (1) control, with a nutrient addition only, (2) nutrients plus chemical dispersant, and (3) nutrients plus chemically dispersed crude oil. Over 25 days, sampling and analyses were carried out to observe the impact of dispersed oil on pelagic marine organims, and to study the removal rate and pathways of crude oil in the enclosed waters.

The study was funded under Phase I of the MEEE Project (Marine Ecosystem Enclosed Experiment) as a cooperative study between Canada (Department of Oceanography at the University of British Columbia and Ocean Chemistry Division of the Institute of Ocean Sciences) and Shandong College of Oceanology), supported by the International Development Research Center, Ottawa.

Keywords: Crude oil, dispersant, effects, fate, data, methods, enclosures.

RESUME

Whitney, F.A., ed., MEEE Group. 1984. The effects and fate of chemically dispersed crude oil in a marine ecosystem enclosure - data report and methods. Can. Rep. Hydrogr. Ocean Sci.: 29: 77 pp.

Le présent rapport résume les données expérimentales recueillies dans le cadre d'une étude du devenir chimique et de l'incidence biologique du pétrole brut de la baie Prudhoe, dissous avec du Corexit 9527 dans des réservoirs en plastique. Le 17 juillet 1983, trois réservoirs mesurant 2,5 m de diamètre et 16 m de profondeur ont été remplis d'eau de mer dans la baie Patricia de l'inlet Saanich (C.-B.), près de l'Institut des sciences océaniques. Les conditions expérimentales dans les trois réservoirs étaient les suivantes: (1) témoin: apport d'un bioélément seulement, (2) apport de bioelements et d'un agent de dispersion et (3) apport de bioéléments et de pétrole brut chimiquement dissous. Pendent 25 jours, on a effectué un échantillonnage et des analyses pour observer l'incidence du pétrole dissous sur les organismes marins pelagiques et pour etudier le taux d'élimination et le cheminement du pétrole brut dans les eaux expérimentales.

L'étude fait partie de la première phase du projet MEEE (Expériences en résrvoirs sur l'écosystème marin), financé par le Centre de recherche pour le développement international, a Ottawa. Cette étude est un effort cooperatif entre le Canada (Département d'Océanographie de l'Université de la Colombie-Britannique et Division de la chimie océanique de l'Institut des sciences oceaniques) et Shandong (Collège d'Océanologie).

Mots-clés: pétrole brut, agent de dispersion, incidence, devenir, données, méthodes, réservoirs

ACKNOWLEDGEMENTS

We thank Rachel Des Rosiers and the International Development Research Center for supporting Phase 1 of the Marine Ecosystem Enclosed Experiments (MEEE), a Canada/China cooperative project; Julie Poulin and Dee Duncan for typing; Julie Poulin for helping Chinese visitors settle in Sidney; R.W. Macdonald and Sharon Thomson for their comments on the report; many others for their assistance in launching the bags; and the staff at the University of Victoria for assistance with the scanning electron micrographs.

INTRODUCTION

To draw together information from laboratory (small scale) and open water (large scale) studies, various research groups have developed intermediate scale experimental enclosures (see Grice and Reeve, 1982). The size and shape of these enclosures, and their methods of use, depend on the specific interests of each research project. **Phytoplankton** dynamics are easily accommodated in enclosures containing 3 m of water, whereas larval fish studies require hundreds of tonnes of sea water to provide sufficient zooplankton for fish growth. The system in use extensively at the Institute of Ocean Sciences employs enclosures that isolate 66 m of sea water inside polyethylene bags. The bags are 2.5 m in diameter and are 16 m deep, and are open to the atmosphere. This size container permits a phytoplankton - herbivore-carnivore ecosystem to thrive under natural conditions. A typical study will involve three enclosures, one acting as a control the other two receiving various perturbations.

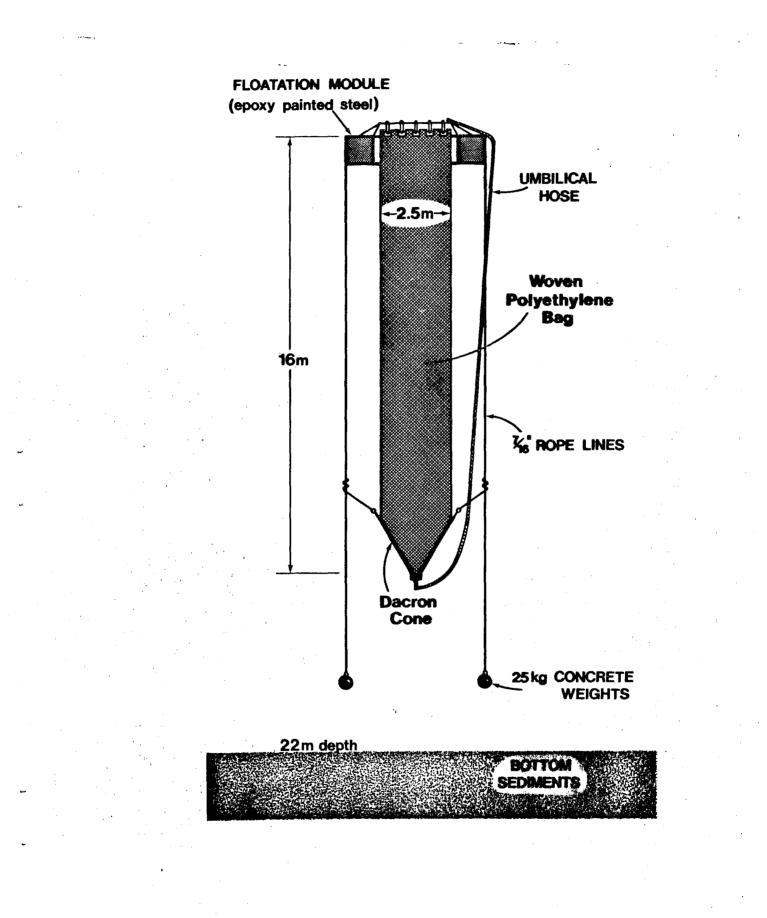
Oil spills are becoming a greater threat to Canadian shorelines as a result of increasing oil exploration and its marine transport. Where valuable coastal areas are threatened, the use of chemical oil dispersants is viewed as one of the methods of oil clean-up. The dispersant, when applied properly, has the ability to mix oils into sea water, hence diluting them to less hazardous concentrations. In this study, we wished to address questions of the toxicity and fate of chemically dispersed oil in shallow water ecosystems. Three CEEs (Controlled Experiment Ecosystems) were filled with sea water from the upper 20 m in Patricia Bay, near the Institute of Ocean Sciences, on July 17, 1983. The CEEs were treated as follows: #1 was a biological control to which no contaminants were added; #2 had 20 g Corexit 9527 (Exxon) added between 2 and 4 m; #3 had 200 g Prudhoe Bay crude oil (20 mg), 20 g Corexit 9527 (2 mg L) and 125 μ Ci n-(1- $^{-1}$ C) hexadecane (0.0125 μ Ci L) added in a layer between 2 and 4 m. **Over** the following 25 days, plankton counts, biomass measurements and hydrocarbon analyses allowed us to observe the effects and fate of the dispersed cruse oil in a shallow water marine ecosystem.

METHODS

Design of Marine Enclosures

Since 1973, experimental work has been conducted in marine enclosures that were designed and constructed under the Controlled Ecosystem Pollution Experiments (CEPEX) project (Menzel and Case, 1977). When funding ended for CEPEX in 1978, the Ocean Chemistry Division at the Institute of Ocean Sciences, continued using the enclosures, focussing our research on the fate and effects of pollutants in surface marine waters (eg. Iseki <u>et al.</u> 1981; Whitney <u>et al.</u> 1981). A brief description of the enclosure system is given here, but more extensive coverage is given by Menzel and Case (1977), and Grice and Reeve (1982).

Three flotation modules are anchored in Patricia Bay, 1 km from the dock at the Institute of Ocean Sciences. The water depth at this site varies between 20 and 23 m, depending on the tide height. When an experiment is planned using the CEPEX system, polyethylene bags are filled with sea water and are attached to the modules (figure 1). A bag is filled by a team of SCUBA divers who sink the bag to 20 m, hold its mouth horizontal and open, and swim it to the surface. Typically from 70 to $3 \\ 100\%$ of the bag volume (66 m) is captured as a stratified water column by this procedure. The balance of the water in this study was surface water added by polyethylene bucket to the enclosures.


The bag dimensions are as follows:

Diameter

Length, cylindrical portion conical portion overall 13.6 + 0.2 m in water 2.0 + 0.1 m 16 m, including above water 5.0 cm 3.2 cm I.D. 20 m long 66 + 2 m

2.40 + 0.04 m

Opening at bottom Umbilical hose Volume of enclosure, calculated

Sampling Procedures

Each sampling day, a field team proceeded by boat to the enclosures. Between 0830 and 1000 h local time, sea water samples and sedimented materials were pumped from bags 1, 2 and 3 using a Little Giant tubing pump (Cole Parmer, Co., Chicago, Ill.) and 30 m of 12.7; mm I.D.(1/8" wall) PVC tubing. By 1015 h, all <u>in situ</u> incubations were innoculated and were suspended either inside or outside the bags. Bottles were hung at the mid-point of each sampling interval. Subsequently, oil fluorescence 14 profiles, C tracer samples and zooplankton samples were taken, with sampling ending by 1130 h.

Water samples were pumped at a rate of <u>ca</u> 6 L min from intervals of 0-5 m, 5-10 m and 10-13 m by slowly lowering the PVC tubing through the water column at a constant rate, which varied between 15 and 45 sec m depending on the volume of water required. A 10 to 20 L water sample was collected in a polyethylene cubitainer, and this water was subsampled for all measurements except those described immediately below.

Discrete depths were sampled for temperature and salinity by pump, 14 and for C tracer measurements by 1.7 L Niskin sampler. Settled material was pumped from the bottom of each bag through the PVC umbilical hose and then through 12.7 mm PVC tubing as it passed through the pump head. An oil fluorescence profile was taken each sampling day in bag 3 by pumping water at \underline{ca} 5 L min through 11 mm Teflon tubing and into a Turner fluorometer. While the tubing was being retrieved, samples for total oil were taken from 6 and 3 m.

Following the water sampling, zooplankton tows were made with a 20 cm diameter, 200 μ m nylon mesh net, vertically from 13 to 0 m at a rate of $\frac{ca}{-1}$ 30 m min $\frac{1}{-1}$.

All PVC tubing and cubitainers were rinsed with 10% HCI after each sampling period. Before samples were taken the next day, they were rinsed well with water from their respective bags. (FAW)

Uptake Rates

Primary productivity

125 ml Pyrex glass bottles (1 clear and 1 black) were filled and innoculated with NaH CO₃. In situ incubations at 2.5, 7.5 and 11.5 m in each bag lasted 4 h. The procedure is described in Parsons <u>et</u> <u>al.</u> (1984).

Relative heterotrophic uptake

C labelled glucose was added to water samples and incubated as described in Parsons <u>et al.</u> (1984).

Heterotrophic bacterioplankton production

The rates of heterotrophic production were quantified by the method described in Fuhrman and Azam (1982). In this study, triplcate subsamples of 20 mL each were incubated in glass tubes <u>in situ</u>, with 5.0 nM of high specific activity (50-80 Ci/mmol) thymidine (methyl- H). Following 20 minutes of incubation, the samples were immersed in an ice bath prior to cold trichloroacetic acid extraction of soluble cellular pools. Adsorption blanks, poisoned with 0.2 mL formalin per 100 mL sea water prior to isotope addition, were treated identically. The conversion of thymidine incorporation to bacterial numbers was carried out using the factor derived by Fuhrman and Azam (1982). Nitrate and ammonium uptake

To duplicate 0.5 L water samples, either NH Cl (99 atom %) 15 or Na NO (99 atom %) was added to bring the final tracer addition to 0.1 uM. After 4 h in situ incubations, samples were vacuum filtered onto precombusted (500 C, 4 h) Whatman GF/C filters and were frozen in a dessicator. Particulate nitrogen was converted to N gas by the micro-Dumas dry combustion technique (La Roche, 1983) and analyzed 15 for N in a Jasco Model NIA-1 emission spectrometer (Fiedler and Proksch, 1975; Cochlan, 1982). Uptake rates are reported as specific uptake, with units of reciprocal time (Dugdale and Goering, 1967) and can be converted to absolute uptake (μ M time) by multiplying the specific uptake times the particulate nitrogen concentration of the sample. (WPC)

Plankton Counts

Bacterioplankton d Samples collected for bacterial enumeration were immediately fixed with 2 mL filtered (0.2 µm) formalin in 100 mL sea water and were stored at 2 °C in the dark. Fixed samples were vacuum filtered on 0.2 um, 25 mm diameter, Irgalan black stained Nuclepore filters. Direct counts of bacteria numbers were obtained using acridine orange staining, coupled with epi-fluorescence illumination, as described in Hobbie <u>et al.</u> (1977). The volume of the sample filtered (2 to 5 mL) was adjusted to give between 20 and 50 bacteria per field. A minimum of 20 fields were counted for each sample. (KL)

Phytoplankton

Either 10 or 50 mL of Lugol's preserved sample were settled for from 18 to 48 h. Cells were counted in an area equivalent to 89 microscopic fields. Microflagellates were counted at 625 x magnification and all other organisms at 250 x magnification. A minimum of 400 cells were counted per sample (Lund <u>et al.</u> 1958) using an inverted microscope. (TRP) Zooplankton

Organisms were preserved by adding 4 mL formalin per 100 mL sea water into the samples. A Folsom splitter was used to subsample the zooplankton before counts were made. Routinely, 1/2 to 1/4 of the sample was counted. Plankton counting is discussed in Parsons <u>et al.</u> (1984). (CML) Chemical Analyses

<u>Carbohydrates</u> Mono and poly-saccharides were analysed by the colorimetric procedures described in Strickland and Parsons (1972) using the modification of Geesey <u>et al.</u> (1978) for analysis of particulates. (WJC)

Chlorophyll a

Analysed by the fluorometric procedure from Strickland and Parsons (1972), using a Turner Designs fluorometer. (PJH)

Dry Weight

Aliquots of sedimented material were taken by pumping the bulk material (19 to 58 L collected each sampling day) through the tubing pump and drawing subsamples into acid cleaned (10% HC1) polyethylene bottle (1 L).

From the 1 L bottle, 10 to 100 mL samples were filtered onto 1.0 μ m Nuclepore filters, rinsed with distilled water, dried at 60 C for 24 h and weighed. Filter blanks were rinsed with distilled water, dried and weighed with the samples. (FAW)

Nutrients

Fresh samples were filtered through Whatman GF/C filters and were analysed within 4 h for PO by the method of Murphy and Riley (1962) as automated by Hager et al. (1968), for NO and NO and dissolved Si by the method of Armstrong et al. (1967), and for NH by the method of Koreleff (1970) as automated by Slawyk and MacIsaac (1972). (PJH) Oil concentrations: fluorescence profiles

A profile was taken as the Teflon tubing (11 mm I.D.) was lowered at 30 sec m between 0 and 13 m. Water was pumped through a continuous flow cell on a Turner Model III fluorometer. The fluorometer was outfitted with a 110 811 (7-60) excitation filter, a 110 81b (2A) emission filter, a 10% neutral density filter on the emission side and a 110 855 (T-5 envelope) ultra violet lamp. Each day, the zero reading on the fluorometer was set by pumping surface sea water from outside the bags, through the flow cell. (WJC)

Extraction of oil from filterable particulates

The grade of solvents used in the extraction was "redistilled in glass". Extractions were carried out in batches of 6 including a blank consisting of a filter paper wet with hydrocarbon-free water (distilled from a solution of potassium permanganate (10 g) and potassium hydroxide (4 pellets) distilled-in-glass water (3-4 L)). Each filter paper was rolled up, placed in a threaded culture tube (2 mm x 150 mm) and covered with an ethanolic potassium hydroxide solution (6 ml of 46.7 g/L). A sheet (2 mil) of FEP Teflon much larger than the diameter of the tube was placed over the opening and secured tightly in place to provide a vapour seal. The contents of the tube were heated at 70 °C for 1 h in a hot water, and heated at 70 °C for a further 30 min. The hot liquid was then transferred by pipette into a separatory funnel (125 mL) and the

filter paper and culture tube's interior were rinsed with ethanol (1 mL). The rinsings were transferred to the separatory funnel. The contents of the culture tube were then serially extracted with occasional swirling for 15 min each with dichloromethane/ethanol (8:1, 9 mL) and dichloromethane (8 mL). Each extract in turn was transferred from the culture tube into the separatory funnel and used to extract the latter's contents at room temperature. The extract solutions were combined, washed with hydrocarbon-free distilled water (3 x 4 mL) and dried over anhydrous sodium sulphate. Using a hydrogen-free nitrogen stream, the dried solutions were evaporated to 1 or 2 mL depending on oil content estimated from the colour.

Recovery of oil from oil-spiked filter papers

To each of three pre-weighed glass fibre filter papers (47 mm, Whatman GF/F), an aliquot (15 μ L) of Prudhoe Bay crude oil was added and weighed immediately. To each of another two glass fibre filters, an aliquot (15 μ L) of Prudhoe Bay crude oil/dichloromethane (1:10 by vol.) was added. To a third filter, a 30 μ l aliquot of the same solution was added. An initial weight was recorded after the dichloromethane appeared to have evaporated as judged by a considerable drop in the rate of weight change.

The filter papers were allowed to stand at room temperature in the air for three days. After the standing period, the weight of oil remaining on the filter papers was determined and the loss of weight by evaporation calculated. The residual oil on the filters was then extracted using the procedure described above for filterable particulates from the oiled enclosure and the percentage of oil recovered by the procedure was calculated.

Extraction of oil from polyethylene enclosure material

A subsample (2.5 cm x 102 cm) was cut from each of the three suspended strips of polyethylene enclosure material. Each strip was then extracted in a beaker by immersion and agitation in dichloromethane (90 mL) for 5 min. Three subsamples of material (8 cm x 20 cm) from the sample of the enclosure wall were also extracted as above. A blank

determination using three pieces (15 cm x 20 cm) of unused enclosure wall material was also carried out. Following drying over anhydrous Na SO and concentrating where necessary aliquots were transferred $\begin{array}{c} 2 \\ 4 \\ to \end{array}$ and aluminum foil weighing boat and weighed after evaporation of the solvent.

Extraction of oil in filtrates and slick samples

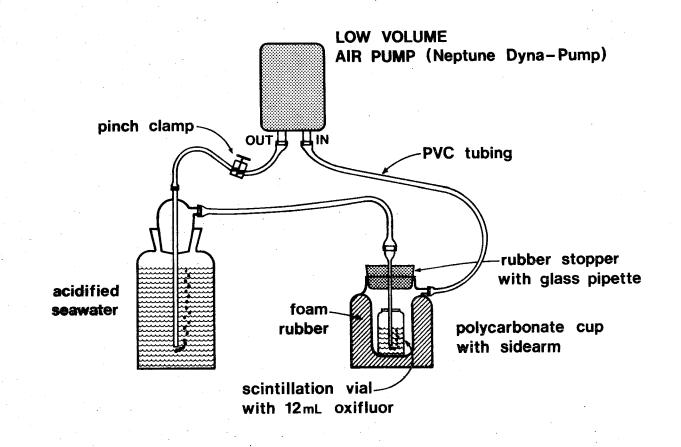
Filtrates from discrete depth, sediment and vertically integrated samples were extracted with redistilled-in-glass grade dichloromethane to recover oil, although the methods differed somewhat because of differences in the volumes filtered. In the case of discrete depth samples, the filtrate from 400 mL of sea water was serially extracted in a separatory funnel (1 L) with vigorous shaking for a minimum of 5 min using two portions (20 mL and 10 mL) of dichloromethane.

In the case of vertically integrated samples, the filtrate from 3.5 L of sea water was extracted serially in a glass jug using a Red Devil paint shaker (model 5100) with a 7.62 cm (3 in) pulley on the drive shaft. Two portions (140 mL and 70 mL) of dichloromethane were used with 15 min shaking for each extraction. A FEP Teflon sheet provided a seal under the jug's cap. The dichloromethane extracts were pipetted from the jug. After 8 months storage at $\stackrel{0}{4}$ C over 140 mL of dichloromethane, a duplicate set of filtered water samples obtained from the 0-5 m depth interval on July 20, 24, 26, and 29 were also extracted for comparison.

Filtrates from well homogenized samples of sedimented material were extracted according to the procedure described above for the discrete depth samples, although only 100 mL of sample was filtered. Proportions of dichloromethane used and the size of separatory funnel were scaled down accordingly.

The surface slick samples were extracted without filtration using the same proportions of dichloromethane to water as described for the filtrate samples. All the extracts were dried over anhydrous Na SO prior 24 to concentration for analysis. In the case of the discrete depth water samples only, the extracts of the filter paper and filtrate from a given sample were combined prior to analysis. For each extract, concentration

to 1 mL was performed by evaporation under a hydrocarbon-free nitrogen stream following, if necessary, rotary evaporation. The duplicate filtrate samples were concentrated to 5 mL and then divided into 2 equal portions; one for eventual GC /MS/DS analysis and the other for 14 C counting.


Gravimetric analysis of extracts

An aliquot (100 µl or less) of a concentrated extract (in dichloromethane or hexane) was allowed to evaporate to dryness at room temperature on a preweighed aluminum foil boat. The residue was weighed using a Mettler M3 balance. The weights of the following extracts were determined: integrated water was filter paper extracts, bag wall extracts, filterable sediment extracts, discrete depth combined extracts, surface slick extracts; and 3 sediment filtrate extracts (July 27, Aug 1 and Aug 4). (WJC)

Particulate organic carbon and nitrogen

2.1 L of sea water and between 10 and 100 mL of sedimented material were filtered onto precombusted 47 mm Whatman GF/C filters (combusted at 500°C for 4 h). Filters were rinsed three times with an aqueous 3% NaCl solution. Samples were stored in aluminum foil and frozen until they were dehydrated in an oven at 60°C for 18 h. Dried samples were held in a dessicator until analyzed. Filter blanks were handled likewise. For analysis, filters were combusted at 750°C in a Perkin-Elmer Model 240 Elemental Analyser. Each day, a minimum of three standards were combusted (Acetanilide, BDH Organic Analytical Standard) to check the performance of the instrument. Gas blanks were run every 3 to 5 samples. Variations in standards from day to day were small enough that all standards were pooled and used in the calculations. (FAW) C tracer measurements

a) 17 CO - samples were drawn from 1.7 L Niskin samplers into 500 2 mL glass stoppered bottles. In the lab, 20 mL of water was withdrawn and the sample was placed in a closed air circulating loop. Concentrated H SO (1 mL) was added to the sample then air was bubbled through 2 4 it to purge the CO₂. A trap with 12 mL of Oxifluor (New England

Nuclear) adsorbed the CO over a 10 min period (see figure). Bubbling rate was set by eye, so that bubbling did not cause the water to "boil" but still created steady mixing in the sample. (WJ & FAW)

b) filter passing extractable C - 500 mL of filtrate collectedafter the water was vacuum filtered through a 47 mm Millipore HA filter (0.45 µm pore size), was extracted by shaking the sample in a 1 L separatory funnel with first 20 mL then with 10 mL dichloromethane, each extraction lasting 5 min. The two extracts were drawn off into a graduated test tube and the dichloromethane was evaporated at room temperature by bubbling N gas through it. The final volume of extract was 3 ± 1 mL, of which 2.0 mL were added to 10 mL Aquasol. (NEN) (WJ, FAW)

c) filter retained 14 C - 500 to 600 mL samples were vacuum filtered onto either Millipore HA filters or Nuclepore 3 and 8 μ m filters (all filters were 47 mm diameter). The filters were placed in 10 mL Aquasol. (WJC)

d) sediments - while the 1 L sediment subsample was being swirled and mixed by hand, a 1 mL aliquot was withdrawn by pipette and added to 10 mL of Aquasol. (FAW)

e) chemical fractionation of particles - the time and pattern of n-(1-C)-hexadecane incorporation into biological material was monitored by the cellular fractionation procedure of Li et al. (1980), with a modification to enhance the recovery of n-hexadecane (by adding 0.5 mL n-hexadecane to help retain the C labelled material during solvent evaporation). Particulates were collected from 400 to 500 mL samples by vacuum filtering onto Whatman GF/C filters which were then frozen with 1.2 mL of distilled water and stored for subsequent analysis. When the filters were thawed, 1.5 mL chloroform and 3.0 mL methanol were added. The suspension was vortex mixed vigorously for 1 min, incubated at 4 C for 15 min, filtered through a Whatman GF/C filter, and then washed with 1.5 mL of chloroform. Distilled water (1.2 mL) was added to the filtrate, then it was vortex mixed for 1 min and centrifuged at 700-100 x g for 10 min. Into a scintillation vial was pipetted 2.0 mL of the lower chloroform layer and 0.5 mL n-hexadecane, then the chloroform

was evaporated at room temperature under N gas. To the residue and to a separate 1.0 mL aliquot of the water-methanol layer was added 10 mL Aquasol. The filter was resuspended in 4.0 mL of 5% trichloroacetic acid (w/v in distilled water) and was heated at 95° C for 30 min. The suspension was filtered through another GF/C filter, followed by a 4.0 mL wash with 5% TCA (trichloroacetic acid). A 2.0 mL aliquot of the filtrate was added to a scintillation vial, was dried under N gas and was redissolved in 1.0 mL water. The dried TCA-insoluble material on the filter was also added to a vial, and to both these samples was added 10 mL Aquasol. Four components are obtained in this procedure, chloroform soluble (lipids and free C labelled hydrocarbons), methanol/water soluble (low molecular weight metabolites), and hot TCA-insoluble (protein) and hot TCA-soluble (polysaccharide and nucleic acids) compounds. All C samples were counted in a Beckman LS 3133 Liquid Scintillation counter, using the external standards-channel ratio method to correct for quenching. (KL) Other Measurements

Temperature

A precision-grade thermometer (Western Scientific) marked in 0.1 C gradations was held in the outlet of the pumped water until a constant temperature reading was obtained (usually <u>ca</u> 1 min). (FAW) Salinities

Water samples were drawn into 260 mL glass bottles which had been rinsed three times with sea water. Samples were capped and stored no more than two days before being analysed on a Guildline Model 8400 Autosal salinometer which was standardized daily against I.A.P.S.O. Standard Sea Water (batch 27/7, 1974). (FAW)

Coulter counts

Determined on a Model TA II Coulter Counter following the procedure described in Parsons <u>et al.</u> (1984). (TRP) <u>Sinking rates</u>

Determined using Bienfang's SETCOL method as described in Parsons et al. (1984). (TRP)

Light profiles

Light extinction was measured at discrete depths using a LI-85 Sensor (Lambda Instruments, Nebraska, U.S.A.). (TRP) Scanning Electron Microscopy

Estimates of bacterial biomass (as biovolume) were obtained from cell size measurements collected by scanning electron microscopy (SEM). Following sampling, 20 mL sea water were filtered onto 0.2 µm pore size Nuclepore filters at less than 0.1 atm vacuum. Immediately after filtration, the filters were loosely enclosed in aluminum foil and submerged in a solution of 2 mL glutaraldehyde in 100 mL filtered (0.2 μ m) sea water which was buffered to pH 7.0 with 0.1 M sodium cacodylate. Following fixation, the samples were desalted and dehydrated by transfers through 75, 50, 25 and 0% filtered sea water and then 10, 25, 50, 75, 90 and 100% ethyl alcohol (distilled water) solutions. The specimens were critical-point dried with liquid CO and were mounted directly on SEM sample stubs with double sided adhesive cellulose tape. In order to reduce charging during subsequent viewing, the perimeter of the sample was grounded to the sample stub by application of conductive silver paint. The samples were coated, under vacuum, with gold and viewed with a Joel JSM-35 scanning electrom microscope at the University of Victoria. (KL) Direct Observation of Oil Droplets

Phase contrast and epi-fluorescence microscopy were utilized for direct observation of Corexit dispersed oil droplets in the particulate fraction. For epi-fluorescent observation, samples were filtered onto 0.2 µum Nuclepore filters pre-stained with Irgalan Black. Oil droplets fluoresce yellow to red, at an intensity distinctly different from chloroplast autofluorescence, against a black background, under these experimental conditions. This phenomena was observed using a Zeiss Standard microscope fitted with an IV FL epi-fluorescence condensor, a HBO 50 mercury lamp, a BP 450-490 band-pass filter, a FT 510 beam splitter and a LP 520 barrier filter. Photomicrographs were obtained on Kodak Tri-X and Ektachrome films, using a Zeiss camera system.

METHOD S' ERRORS

This section attempts to assess the precision, accuracy and limit of detection (LOD) of each of the procedures used in this study. Precision is stated in one of three ways; as s, the standard deviation, as V, the coefficient of variation ($V = \frac{S}{X}$ 100, where \overline{x} is the mean of replicates), or as CI, the 95% confidence interval (approximately equal to 2s for n> 20). LOD is assessed as three times the standard deviation of the blanks, or it is quoted from reference sources. Accuracy assessments are attempted by comparing recoveries with standard reference materials or by less direct arguments which may show that there is corroborative evidence that supports the validity of the data. Sampling Methods

Pumped water from depth intervals - each day, the time required for water to travel from the tubing intake to its outlet was measured using rhodamine dye. Tolerance given to these measurements was + 2 sec. As tubing was lowered by hand, its descent rate was checked at each meter marking, so that the same amount of water was pumped from each 1 m interval (+ 2 sec). A typical descent rate of 30 sec m through an interval might bias water collection by oversampling one end of an interval by + 4 sec and by missampling any 1 m interval by + 4 sec (2 sec at each end). Sampling error will depend on the concentration gradients of the parameters being measured and will equal no more than + 5% of that gradient. This does not address the problem of patchiness within the enclosures. To obtain a more realistic estimate of reproducibility in sampling, a set of 4 replicates was taken during a MEEE study in 1984. The 5-10 m interval in one CEE was resampled immediately after its usual sampling and chlorophyll a and nutrient samples were taken to estimate the replicability obtainable for both particulate and dissolved materials. The four nutrient analyses gave a range of V = +2.4% to 5.4% (n=8, as 4 sets of duplicates for each nutrient). Chlorophyll a showed only a slightly higher V = +5.9% (n=8). These analyses are expected to have V of approximately 1 to 5% for nutrients and 5% for chlorophyll a according to Strickland and Parsons (1972). Sampling and analysis in this study have a combined error of 2 to 6%. Therefore, sampling error decreases the precision by about 2%.

Pumped water from discrete depths - the meter markings on the PVC hose were held within 5 cm of the surface for all samples. In the maximum T/S gradients observed in the experiment, this could only account for errors of ± 0.0025 /oo salt and of ± 0.04 C.

Niskin sampling - the hand held line for the 1.7 L Niskin sampler had meter markings that were consistently with 5 cm of the surface when samples were taken. The order in which samples were drawn from the Niskin bottle were always the same (CO first, then water for dissolved and 14 2 particulate C), therefore, sampling precision would equal \pm 5% of 14 the C gradient. There is a phenomenon in CEEs that will displace water upward or downward depending on the density of the surrounding water. Steele et al. (1977) observed as much as 1 m horizontal shift in a dye layer in a CEE during the advection of a different density water mass into the bay surrounding the CEEs. This phenomenon happens more dramatically when bags are underfull nearer the end of an experiment.

Fluorometric profiles - this analysis was used as a graphic representation of oil dispersion and mixing in the CEE. The fluorescence scale was not calibrated and the zero level was not rigorously checked. However, the diffusion and advection of salt and fluorescent oils in CEE 3 follow each other very well (see Wong et al., 1984).

Net tows - the sieving efficiency of the net was not assessed, however, it is expected that for short tows, the filtering efficiency will be near 1. Occasionally, the net was fouled with diatom chains, possibly reducing filtering efficiency.

Analyses

NO & NO - at 10 μ M, CI = \pm 0.2 μ M; LOD = 0.1 μ M. Although not assessed in this study, accuracy of standards is typically \pm 2% of Sagami standards.

NH - at 1.0 μ M, CI = \pm 0.07 μ M; LOD = 0.05 μ M. Although not assessed in this study, standards typically agree with Sagami standards to + 5%.

PO₁ - at 1.0 μ M, CI = \pm 0.1 μ M; LOD = 0.05 μ M. Accuracy of

standards is typically + 1% of Sagami standards.

Dissolved Si - at 10 μ M, CI = \pm 0.2 μ M; LOD = 0.1 μ M. Accuracy of standards is typically \pm 1% of Sagami standards. -3

Chlorophyll <u>a</u> - at 1.0 mg m , $CI = \pm 0.1$ mg m ; LOD = -3 0.05 mg m . The fluorometer was not calibrated before this experiment, however, a comparison of the chlorophyll:POC ratios from this study and from a later experiment in which the fluorometer had been recently calibrated by the method in Strickland and Parsons (1972) indicated that the chlorophyll values reported in this data compilation are low by about 25%.

Primary productivity - at a carbon fixation rate of 30 mg -3 -1m h , where n=2, LOD = 0.05 mg m h . Accuracy is largely an assessment of what is being measured, a lively topic of debate in current literature.

Note: the above estimates of precision come either from Strickland and Parsons (1972) or Parsons et al. (1984).

Bacterial productivity - pooled $s = \pm 3.9 \times 10^{4}$ cells L -1 h (n=65). From a single sample of 1.5 x 10 cells 1 h , V = $\pm 6\%$ (n=10). Accuracy is not assessable. During a short period of high growth rates without apparent grazing in CEE 3, bacterial counts and growth rates agreed with each other within $\pm 5\%$.

Salinity - replicate conductivity readings were not accepted unless they were within 0.00005 units. The precision of the salinities at this level is ± 0.002 /oo, usually better. The accuracy of the values is disputable. As Guildline (1981) suggests, the formula of Lewis (1980) is used to convert conductivity to salinity. An earlier formula suggested by Guildline (1975 manual) resulted in salinities that are 0.03 o/oo lower at 29 /oo than those now obtained. This discrepancy approaches 0 as we approach the conductivity of the I.A.P.S.O. standard sea water.

Temperature - the readability of the thermometer is better than 0.1 C, however, the main error will arise from warming or cooling of waters in the tubing before reaching the outlet. This error was estimated as being a maximum of \pm 0.2 C by taking surface water readings at the same time that pumped temperature readings were being taken from 0 m.

Dry weight - duplicate subsamples were drawn from the sediment pumped from the bags on site, on four occasions. Duplicate sets of analyses were run on both subsamples, with the result that a precision for both field and lab sample handling was assessed as $V = \pm 14\%$ (n=16). Blanks were well below the significant level of weights recorded for the samples. Accuracy was not assessed.

Particulate organic carbon and nitrogen - this procedure has been previously tested for precision for sea water particulates with the following results: V = + 6% (n=18), V = + 6% (n=20 using duplicates; LOD = 5 µgC L , 2 µgN L (n=10). Precision of sediment subsampling and analysis was conducted as for dry weights, with the result that V = + 8.2% and V = + 11% (n=14). Accuracy is apparently good, as two samples of Prudhoe Bay crude oil were weighed and found to contain 85 $\pm 1\%$ C, 13 $\pm 2\%$ H and 0.6 \pm 0.1% N, for a total recovery of 99 $\pm 3\%$. A previous test of combustion temperatures (750 vs 950 °C) yielded 100 $\pm 5\%$ C and 93 $\pm 9\%$ N at the lower temperature (n=4 at each temperature).

C tracer measurements: a) suspended particulates precision is inferred from data collected on Aug. 4, when the crude oil dispersion was evenly distributed throughout the bag. In this case, V = +2.8% for the 7 samples collected that day. LOD = 12 dpm L and accuracy is inferred from the observation that 104% of the C was found in the particulate phase (by integrating results from discrete depths over the upper 13 m of the water column) and none in any other pool 14the day after the tracer addition. C sedimentation - at 100 dpm b) mL, V = +10% (n=3), LOD = 6 dpm mL (n=4). Quenching in these samples may cause under-evaluation of the role of sedimentation in removing C from the water column. No definitive assessment of this could be made, although alternate approaches to assessing 'C in sedimented material did show the danger of this error. c) CO recovery of standard additions of NaH⁻¹⁰⁰ were equal to 104 +11%</sup>

from sea water (n=6). LOD = 24 dpm L⁻¹ (n=4). Daily changes in the procedure may account for some of the observed fluctuations in the data, as the ruggedness of the procedure was not tested. Precision from the 7 samples on any given day should be better than $\pm 10\%$, the coefficient of variation for the sample set from August 1 (n=7). d) extractable 14 dissolved organic carbon - recovery of standard additions of C labelled n-hexadecane = $102 \pm 6\%$ (n=2). LOD = 12 dpm L (n=3). The accuracy of this technique is dependent on an understanding of what is being recovered by dichloromethane extraction. Polar hydrocarbons which are water soluble will not be extracted, for example. e) chemical fractionation - between days 3 and 12, greater than 92% of the activity was recovered from the four fractions, in comparison to the particulate 14 C analyses (n=5). The accuracy of the separations was not tested. LOD = 2 dpm L (n=3).

¹⁵ N uptake rates - $V_{NH4} = 8\%$ (n=84), $V = \pm 20\%$ (n=80), LOD = 0.01 x 10 h^{-1} . Underestimates of specific uptake rates result if detrital N is a significant component of the sample. However, absolute uptake rates (PON x specific uptake) are independent of detritus.

Bacteria numbers - at 10 cells mL , $s = \pm 0.1 \times 10^{-1}$ cells mL (n=22), with 22 fields counted per sample). LOD = 10 cells mL and depends on the volume of water filtered. Accuracy is not readily assessable, however, bacterial production and increase in bacterial numbers agree within about 5% for a short period in CEE 3 when there was apparently no grazing or sedimentation of bacteria.

Bacteria size distribution - fixation by glutaraldehyde or formalin and critical point drying may cause shrinkage of particulate matter, thus affecting the estimates of size and volume.

Phytoplankton and zooplankton counts - assuming a Poisson distribution, then examples of counting error are as follows:

35 organisms, the range = 24 to 49

100 organisms, the range = 82 to 120

This is discussed further in Parsons et al. (1984). Some organisms will

not survive fixation especially in formalin, and therefore will not be observed. The ctenophore Bolinopsis sp. is an example.

Relative heterotrophis uptake - at 0.05 ug glucose L -1 1/2 -1 -1h, CI = 0.006/n ug glucose L h, where n=1 for this study. LOD = 0.01 ug glucose L . No blanks were run with this data set. Accuracy is not readily accessable.

Vertical light extinction – Sp = $\pm 20 \ \mu\text{E}$ m h for 12 pairs of surface irradiation measurements ranging from 200 to 1000 μE m h . Accuracy was not assessed.

Size distribution of particles - from the manufacturer, Coulter Electronics; at 2000 counts $s = \pm 65$ counts, 200 counts $s = \pm 12$, 70 counts $s = \pm 11$ and 30 counts $s = \pm 8$. Coincident counts exceed 10% at 10,000 particles mL .

Sinking rates of particles - at 1.8 m d , CI = \pm 1/2 -1 0.13/n m d , where n=1 for this study. Range = 0.5 to 50 m d (see Parsons <u>et al.</u>, 1984).

Photographs and electron micrographs - see bacteria size distribution.

 N_{00} - Filterable oil concentrations, gravimetric analyses:

Limit of detection (LOD):

LOD (IUPAC, k=3) = 0.019 mg (n=7); $V = \frac{s_B}{\overline{x}} \times 100\% = 24\%$ (n=7). Each of the 7 procedural blanks consisted of a filter paper wetted with hydrocarbon-free distilled water. Each blank was treated as an actual sample in a batch containing 6 samples. For integrated water samples of a filtered volume of 3.5 L, the LOD for oil on the filter paper was calculated to correspond to a water concentration of 5.4 µg/L and for discrete water samples of 0.5 L, a concentration of 38 µg/L. Bias:

Caustic digestion is the current method of choice for recovering oil from organic matrices and is generally considered to approach 100%. For this study, an estimate of bias arising from inefficient recovery of oil was made using 2 groups of 3 oil-spiked filter papers and therefore does not reflect on the efficiency of extraction of the oil from the

organic matrix. Nominal amounts of about 1.5 mg and 15 mg of unweathered Prudhoe Bay crude oil for the first and second group, respectively, were used to assess the importance of the amount of oil on recovery.

Evaporative loss through weathering over 2 days at room temperature for the first group was $41.4 \pm 3.7\%$ (n=3) and for the second group, $27.5 \pm 2.8\%$ (n=3). Since the particulate oil obtained from the experiment was already extensively weathered prior to collection, additional loss on storage through evaporation was considered to be unlikely, particularly considering that the filter papers were preserved in the frozen state in an aluminum foil package.

Loss of oil through the caustic treatment and work-up of the pre-weathered oil was determined for each oiled filter paper that was previously used in the evaporative loss experiment. The mean difference d in the case of the first group was -0.033 mg having a standard deviation s of 0.081 mg. The decrease was not significant at the 95% d confidence level, not even at the 50% confidence level for that matter. For the second group, the mean difference, $d \pm s (n=3) = -0.26 \pm 0.63(n=3)$, was also not significant. Although a statistically significant mean loss could probably be demonstrated by doing a large number of replicates, from a practical standpoint the loss was not of significant magnitude to be of analytical importance. In terms of extraction efficiency, $95 \pm 8\%$ (n=3) of the oil was recovered from the first group of oiled filter papers and $97 \pm 6\%$ (n=3), from the second.

Because the amount of residual oil remaining on the filter papers following weathering differed slightly in each group, the method standard deviation cannot be calculated in the usual manner. Thus, s is used as an estimate of s. (Note that s = s for equal initial amounts and d s should be insensitive to small differences in initial amounts.)

The coefficients of variation of the method from $V = \frac{d}{\overline{x}} \times 100\%$ were 8.1% and 6.6%, respectively, for the first and second groups of oil-spiked papers. The apparent constancy of V for amounts differing by an order of magnitude suggested that the errors were not independent of the amount of

oil present, but increased linearly as a function of the mean.

The precision of a method is best determined by performing replicate analyses at several concentrations of amounts that span the range to be analysed. The standard error of the estimate may then be determined through regression and the requirement for having replicates of differing amounts or concentrations is relaxed. For the present data, which are admittedly sparse, the coefficient of variation seems to be constant so that regression on the log transformed variables is indicated to be appropriate.

The standard error of the estimate from linear regression of the log transformed variables is 0.073. The standard errors corresponding to nominal amounts of 1 mg and 10 mg are 0.042 and 0.043, respectively. Given that the errors are lognormally distributed so that for the above nominal amounts the coefficients of variation of the untransformed variables would be nearly equal to the standard deviation of the log transformed variables, the standard error of the estimate, 7.3%, should approximate V. It is indeed comparable to the estimates of V above. Oil fluorescence profiles

The oil fluorescence profiles are only semi-quantitative. They provide a continuous record of oil concentration with depth during sampling periods and a record of the change in oil distribution with depth from sampling period to sampling period. Since fluorescence arises from oil components that are in the solution as well as those in particles and since the former are generally also the components that are relatively volatile, the fluorescent response would be expected to diminish in time with transfer of volatiles to the atmosphere. Measurement of the fluorescent response/unit weight for oil recovered from the enclosures in the particulate phase indicates that as the experiment progressed and volatile oil was lost to the atmosphere, the fluorescence observed could have resulted in an underestimate by about 1/2 of the concentration of oil present. Biological oxidation and photooxidation of aromatic constituents, furthermore, could lead either to an additional loss of fluorescence or to a gain in fluorescence depending on the nature of

products and their rate of formation and removal. Carbohydrate:

Duplicate analyses were carried out in batches with each batch including a duplicate blank. All members of a batch were analysed within a working day. Batches for dissolved total carbohydrate (monosaccharide + polysaccharide) and batches for dissolved monosaccharide for a given set of samples were analysed simultaneously.

Limit of detection and precision:

- particulate polysaccharide: LOD (IUPAC, k=3) = 0.15 mg L⁻¹ (based on pooled variances for 3 duplicate determinations); precision: s = 0.11mg L⁻¹ (based on pooled variances for 27 duplicate determinations) - dissolved monosaccharide: LOD (IUPAC, k=3) = 0.28 mg L⁻¹ (based on pooled variances for 7 duplicate determinations); precision: s = 0.077 mg L⁻¹ (based on pooled variances for 30 duplicate determinations - total dissolved carbohydrate (monosaccharide + polysaccharide): LOD (IUPAC, k=3) = 0.19 mg L⁻¹ (based on pooled variances for 31 duplicate determinations)

- dissolved polysaccharide: LOD=0.34 mg L (LOD = LOD poly = LOD poly+mono + LOD mono); precision: s = 0.13 mg L (s poly = s poly+mono * mono).

Bias:

Glucose was the cabohydrate standard used and therefore all carbohydrate concentrations are given in glucose equivalents. Actual concentrations are not likely to differ by more than a factor of two. The composition of carbohydrate may have changed throughout the period of the experiment. Once again, however, at the very worst a bias factor of greater than 2 from the determined concentrations and greater than 4 between any two concentrations is expected to be highly unlikely.

REFERENCES

- Armstrong, F.A.J., C.R. Stearns and J.D.H. Strickland, 1967. The measurements of upwelling and subsequent biological processes by means of the Technicon AutoAnalyzer™ and associated equipment. Deep Sea Res. 14: 381-389.
- Cochlan, W.P., 1982. Uptake and regeneration of nitrogen on the Scotian Shelf. M. Sc. Thesis, Dept. of Oceanogr. Dalhousie Univ., Halifax, N.S. 111 pp.
- Dugdale, R.C. and J.J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196-206.
- Fiedler, R. and G. Proksch, 1975. The determination of nitrogen-15 by emission and mass spectrometry in biochemical analysis: a review. Anal. Chim. Acta. 78: 1-62.
- Fuhrman, J.A. and F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66: 109-120.
- Garrett, W.D., 1965. Collection of slick forming materials from the sea surface. Limnol. Oceanogr. 10: 602-605.
- Geesey, G.G., R. Mutch and J.W. Costerton, 1978. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Oceanogr. 23: 1214-1223.
- Grice, G.D. and M.R. Reeve, 1982. Introduction and description of experimental ecosystems. <u>In Marine Mesocosms</u>. (Grice, G.D. and M.R. Reeve, Eds.). Springer-Verlag, 1-10.

Hager, S.W., L.I. Gordon and P.K. Park, 1968. A practical manual

for the use of the Technicon AutoAnalyser in seawater nutrient analyses. <u>Tech. Rept.</u>, 68-33, Dept. of Oceanogr. Oregon State University, Corvallis, 31 pp.

- Hobbie, J.E., R.J. Daley and S. Jasper, 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol., 33: 1225-1228.
- Iseki, K., M. Takahashi, E. Bauerfeind and C.S. Wong, 1981. Effects of polychlorinated biphenyls (PCBs) on a marine plankton population and sedimentation in controlled ecosystem enclosure. <u>Mar. Ecol. Prog. Ser.</u> 5, 207-214.
- Koroleff, F., 1970. Information, techniques and methods for seawater analysis. Interlab. Rept., No. 3, 19-22.
- La Roche, J., 1983. Ammonium regeneration: its contribution to phytoplankton nitrogen requirements in a eutrophic environment. Mar. Biol., 75: 231-240.
- Lewis, E.L., 1980. The practical salinity scale 1978 and its antecendents. IEEE Journal of Oceanic Engineering OE-5(1).
- Li, W.K.W., H.E. Glover, and I. Morris, 1980. Physiology of carbon photoassimilation by <u>Oscillatoria thiebautii</u> in the Caribean Sea. Limnol. Oceanogr. 25: 447-456.
- Lund, J.W.G., C. Kipling and E.D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. <u>Hydrologia</u>, 11: 142-170.
- Menzel, D.W. and J. Case, 1977. Concept and design: controlled ecosystem pollution experiment. Bull. Mar. Sci., 27: 1-7.
- Murphy, J. and J.P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27: 31-36.
- Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual for biological and chemical methods for sea water analysis. Pergamon Press (Oxford, England).

- Parsons, T.R., P.J. Harrison, J.C. Acreman, H.M. Dovey, P.A. Thompson, P.M. Lalli, K. Lee, Li Guanguo and Chen Xiaolin, (in press). An experimental marine ecosystem response to crude oil and corexit 9527. Part II: Biological effects. <u>Mar. Environ.</u> Res., 13.
- Slawyk, G. and J.J. MacIsaac, 1972. The comparison of two automated ammonium methods in a region of coastal upwelling. Deep Sea Res. 19, 521-524.
- Steele, J.H., D.M. Farmer and E.W. Henderson, 1977. Circulation
 and temperature structure in large marine enclosures.
 J. Fish. Res. Board Can. 34, 1095-1104.
- Strickland, J.D.H. and T.R. Parsons, 1972. A practical handbook of sea water analysis. Fish. Res. Board Can. Bull., 167.
- Whitney, F.A., K. Perry, C. Philpott, A. Ramey, and C.S. Wong, 1981. Pentachlorophenol in a pelagic marine ecosystem: effects on the ecosystem. Pac. Mar. Sci. Rept., 81-83.
- Wong, C.S., F.A. Whitney, W.J. Cretney, K. Lee, F. MacLaughlin, Jinping Wu, Tianbo Fu and Dongfa Zhuang, (in press). An experimental ecosystem response to crude oil and Corexit 9527: Part I - fate of chemically dispersed crude oil. Mar. Environ. Res., 13.

FIELD LOG

Seafluxes 83-SF-01

Prudhoe Bay crude oil and dispersant

17 July	0600	Divers and topside personnel loaded boats and
		proceeded to the experimental site in Pat Bay.
1997 - C. 1997 -	0700	3 bags were lowered into the water, then raised to
· · · ·		the surface by SCUBA diver teams. Each bag appeared
		70 to 80% full.
	1300-	Bags were filled by bucketting surface water
	1500	into them.
	1700	The enclosed sea water was enriched with nutrients
		between 0 and 13 m in each CEE (10:10:1 µmol L
		of NO 3:SIO 3: PO7).
18 July	0845	Sampled CEEs 1, 2 and 3 by pumping water from $0-5$,
		5-10 and $10-13$ m intervals.
	1000	5-10 and 10-13 m intervals. Started incubations of NAH ¹⁴ CO ₃ , ¹⁵ N-NO ₃ and NH ₄ ,
	1000	¹⁴ C-glucose and ³ H-thymidine spiked samples.
•	1100	Salinities and temperatures taken by pumping water
	TTOO	water from fixed depths. Settled materials were
		pumped from the bottom of each CEE and zooplankton
		tows were taken between 13 and 0 m.
10 1.1.	1500	
19 July	1300	Added 20 g Corexit to CEE 2 between 2 and 4 m.
		CEE 3 received 200 g Prudhoe Bay crude oil mixed
		with 20 g Corexit and 125 µCi ¹⁴ C labelled
		n-hexadecane, dispersed between 2 and 4 m.
		A light oil slick appeared on the surface of the CEE
00 7 1-	0000	shortly after the oil addition was made.
20 July	0830	Sampling as on July 18. Fluorometric profiles were
		taken in bag 3, as were samples for 14 C tracer
	•	analyses. A tear in the hose used to remove settled
	•	material from CEE 2 resulted in the loss of sediment
		and about 25% of this bag's water.
21 July	1500	Replaced the broken hose on CEE 2. Sampled the oil
	·	slick on CEE 3 with a wire mesh screen.
22,24,26,29 July		Continued sampling as on July 20.
and 1,4 Au	gust	
10 August		Less detailed sampling of the CEEs.
25 August		Removed sediment from CEE 3 and took a section of the
		bag wall for hydrocarbon analysis.

TABLE 1 a: NO₃ & NO₂ μ M

					DATE					
	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	
BAG#1 DEPTH					<i>.</i>					
0-5 5-10 10-13	22. 26. 25.	7	17.0 29.3 29.8	.330 15.0 23.9	.210 .110 14.4	.200 .350 .880	.190 0 1.18	.360 .150 .840	、0 •100 •350	
AVE: 0-13	24.	7	24.7	11.4	3.45	.415	.345	.390	.119	
BAG#2 DEPTH			•	•	9 - A					
0-5	22.	2	16.6	.330	.080	.200	.090	.060	0	
5-10	23.	1	24.8	8.83	.890	.260	.090	.060	. 0	
10-13 AVE:	22.	1	25.5	16.8	7.02	•320	.160	.060	0	
0-13	22.	5	21.8	7.40	1.99	.251	.106	.060	0	
BAG#3 DEPTH	5 1									
0-5	26.0	0	24.1	19.4	15.7	11.3	4.86	0	0	
5-10	20.	В	23.5	20.7	18.4	14.8	13.5	3.05	2.87	
10-13	22.0		23.7	22.1	21.5	17.9	15.1	11.8	7.86	
AVE:									•	
0-13	23.	1	23.8	20.5	18.1	14.2	10.5	3.90	2.92	
						C			. •	

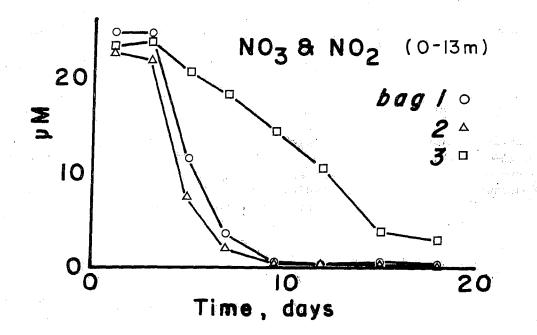
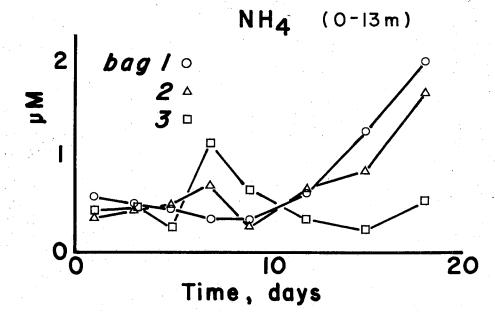
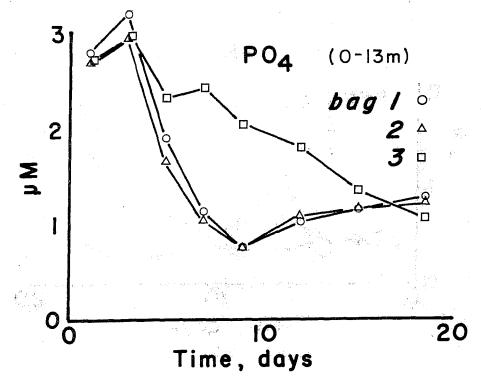




TABLE 1 b: $NH_4 \mu M$

	н н				DATE				
	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
BAG#1									
DEPTH									
0-5		.600	•520	.350	.370	•290	•550	1.30	. 850
5-10		.550	•520	.520	.250	.310	.650	.870	1.86
10-13		.560	•430	•420	.410	.450	.640	1.83	4.21
AVE:									
0-13		.572	•499	.432	.333	.335	.609	1.26	2.01
BAG#2									
DEPTH		260	460	610	200	250	600	760	620
0-5		.360	•460	.410	.280	.250	.690	.760	.620
5-10		.360	.450	•530	.950	.270	.620	.770	1.59
10-13		.360	•450	•480	•940	.270	. 600	1.18	3.58
AVE:		260		470	(00	0.00	(1)	0.61	1 (0
0-13		.360	•454	•472	.690	.262	.642	.861	1.68
BAG#3								· ·	
DEPTH									
0-5		.410	. 450	.260	. 970	.770	.230	.210	.290
5-10		.350	•450	•240 [·]	1.47	.560	.260	.210	.530
10-13		.540	.510	.280	.840	.570	.670	.290	•9 40
AVE:									
0-13	•	.417	•464	.257	1.13	.643	.343	.228	.532
1.1.1	•				····· • • • • • • •				

					DATE				
	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
BAG#1 DEPTH	Ŧ	•							
0-5		2.71	2.76	1.09	.620	.480	.820	.960	.950
5-10		2.92	3.48	2.16	. 950	.610	1.04	1.14	1.34
10-13		2.81	3.49	2.76	2.23	1.46	1.38	1.52	1.72
AVE :									
0-13		2.81	3.21	1.89	1.12	. 756	1.03	1.16	1.28
BAG#2 DEPTH									· .
0-5		2.83	2.75	1.21	.590	.610	1.09	1.12	.910
5-10	• .	2.65	3.07	1.79	1.02	.730	1.03	1.10	1.27
10-13		2.55	3.08	2.28	1.93	1.10	1.17	1.33	1.59
AVE:		· .							
0-13		2.70	2.95	1.68	1.06	•769	1.09	1.16	1.21
BAG#3 DEPTH					'	•			
0-5		3.10	3.17	2.35	2.31	1.87	. 1.27	.550	.610
5-10		2.41	2.83	2.37	2.52	2.09		2.14	1.13
10-13 AVE:		2.54	2.82	2.24	2.46	2.30	2.27	1.39	1.63
0-13		2.71	2.96	2.33	2.43	2.05	1.80	1.36	1.05

TABLE 1 d: SiO₄ µM

					DATE				
	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
BAG#1									
DEPTH									
0-5	46	•0	31.3	8.30	1.61	1.76	1.89	1.70	1.55
5-10	54	•3	40.6	29.8	6.59	3.53	2.49	2.55	2.89
10-13	54	•5	41.1	37.7	30.8	7,06	3.98	3.77	4.23
AVE:									
0-13	51	•2	37.1	23.4	10.3	3.66	2.60	2.50	2.68
									•
BAG#2									
DEPTH			:			2 			
0-5	45		30.7	10.0	1.61	1.59	1.39	3.79	1.29
5-10	51		37.9	24.5	5.39	2.82	2.14	4.35	2.41
10-13	49	•4	38.7	31.6	23.5	5.18	2.52	5.20	3.43
AVE:	•								
0-13	48	<u>.</u> 5	35.3	20.6	8.12	2.89	1.94	4.33	2.21
			• .						
BAG#3									
DEPTH									
0-5	45	• •	34.0	34.2	36.9	33.9	21.0	16.1	18.6
5-10	49		39.1	36.7	38.9	36.8	29.5	24.1	22.8
10-13	.53	•2	40.2	38.5	41.0	38.8	30.9	30.2	26.5
AVE:					.		~ ~ ~		
0-13	48	•9	37.4	36.2	38.6	36.1	26.6	22.4	22.0
Second Strategy of					•		· · · · ·		a sin an a

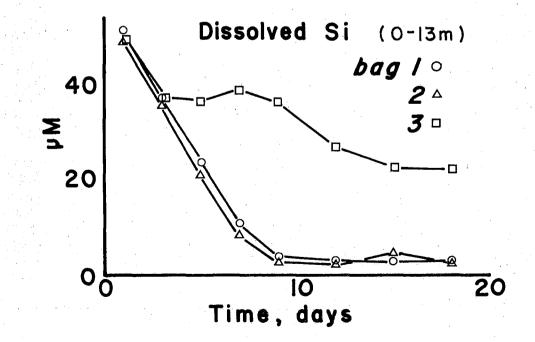


TABLE 2: Chlorophyll <u>a</u> mg m⁻³

							+	•	
					DATE				
	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
BAG#1 DEPTH									
0-5	1	2.50	7.40	16.2	3.00	3.80	.450	.620	.97 0
5-10	-	3.10	2.30	15.5	19.1	15.9	.460	.480	.420
10-13		.820	1.10	6.60	34.1	32.1	•620	.450	.780
AVE: 0-13	2	2.34	3.98	13.7	16.4	15.0	.493	.527	.715
BAG#2 DEPTH		r							
0-5]	L .9 0	9.10	19.2	7.40	10.4	1.11	.720	1.50
5-10		.730	3.30	19.1	13.0	14.7	.560	.610	.810
10-13		. 540	1.70	12.1	30.9	22.6	.710	.390	.390
AVE: 0 - 13	1	. 14	5.16	17.5	15.0	14.9	.806	.602	.978
0.10	ب	• * 7	J •10	1/•J	19.0	1407	.000	•002	• 770
				•					
BAG#3									
DEPTH		-	7 00	1					
0-5		.70	7.30	4.20	4.60	6.20	5.70	4.80	2.90
5-10		.550	2.60	5.80	5.70	5.90	5.60	11.6	4.80
10-13 AVE:		.540	1.20	2.90	5.10	5.40	5.90	9.00	4.00
AVE: 0-13	•	.990	4.08	4.52	5.14	5.90	5.71	8.38	3.88
0 10		• > > 0		7824	1 • 1 4	J.J.	. Jeir	0.00	0.00

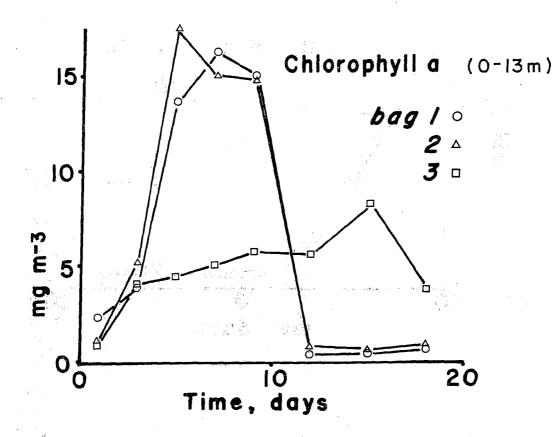
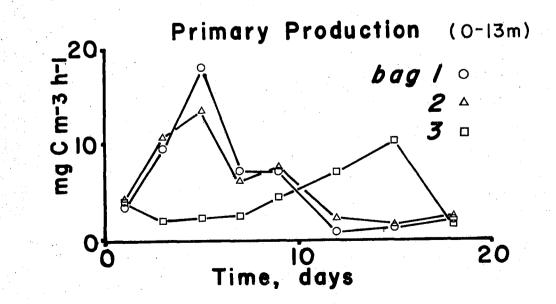



TABLE 3:

DATE JUL JUL AUG AUG JUL JUL JUL JUL MO: 29 1 4 22 24 26 DY: 20 18 BAG#1 DEPTH 3.11 36.5 .180 6.42 1.30 4.62 0-5 7.56 23.2 17.0 11.0 .570 .300 .780 1.58 9.74 1.17 5-10 .890 .550 .590 3.05 1.86 10-13 .290 .740 .570 AVE: 3.42 7.31 7.11 .925 1.44 2.21 9.69 17.9 0-13 BAG#2 DEPTH 24.6 9.01 8.83 4.94 3.46 5.80 10.4 25.1 0-5 .500 .670 .440 8.29 6.30 9.75 .750 2.69 5-10 .240 .130 .590 .490 3.84 1.40 1.81 .160 10-13 AVE: 6.21 7.56 1.62 2.44 0-13 4.41 10.8 13.5 2.15 BAG#3 DEPTH 8.41 11.2 17.7 1.00 0-5 8.79 3.76 1.98 3.36 1.45 1.62 2.61 2.46 5.52 8.29 2.72 1.10 5-10 4.09 1.09 1.16 2.75 1.08 1.30 .820 .610 10-13 AVE: 2.33 2.55 4.45 7.05 10.3 1.73 0-13 4.13 2.01

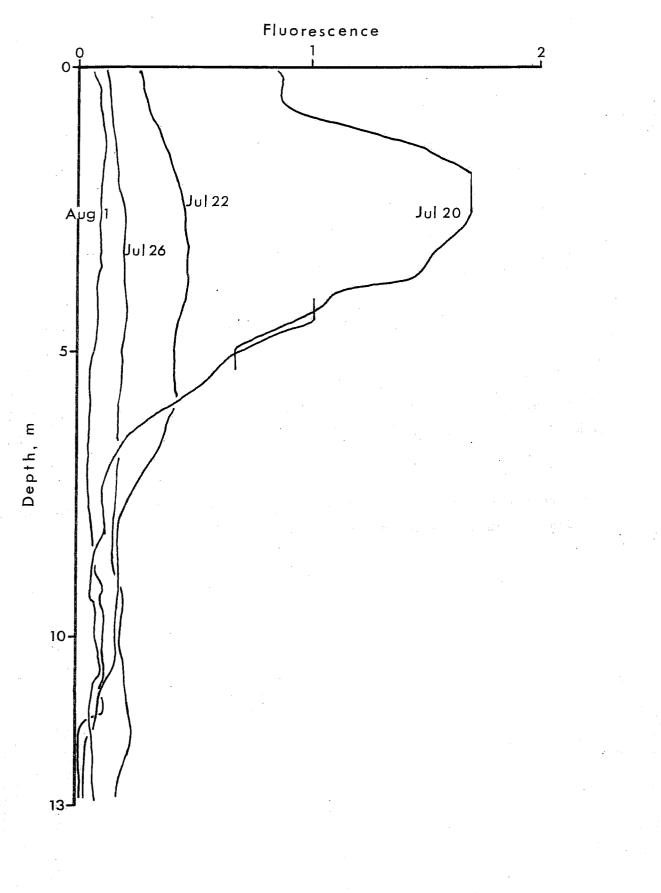
33

Primary Production mg C m $^{-3}$ h $^{-1}$

TABLE 4: Bacterial Productivity cells $L^{-1} h^{-1} (x10^6)$

					D.	ATE					
	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10	
BAG#1 DEPTH											
0-5	31.		24.7	30.0	58.7	38.2	12.4	2.98	71.1	34.8	
5-10		47	3.62	9.09	43.6	56.4	8.31	16.1	28.0	14.9	
10-13	4.	99	4.32	4.36	32.4	55.8	10.4	16.8	46.0	26.3	
AVE:									•		
0-13	15.	6	11.9	16.0	46.8	49.3	10.4	11.2	48.7	25.2	
BAG#2 DEPTH										÷	
0-5	35.	6 L	5.2	63.5	56.4	82.3	15.1	11.9	32.3	21 /	
5-10	8.		6.96	18.6	45.4	80.3	9.68	13.4	32.3 9.47	31.4 22.5	
10-13	5.		4.38	13.2	28.0	64 . 5	15.7	15.4	9.47 11.7	31.5	
AVE:				13.2	20.0	04.0	I J •7 、	10.0	TT • 1	1.°TC	
0-13	18.	1 2	1.1	34.6	45.6	77.4	13.2	13.3	18.8	28.0	
BAG#3 DEPTH	•										
0-5	29.3	34	2.3	45.0	72.5	48.1	31.7	23.4	20.1	72.9	
5-10	7.9	96	7.92	20.4	46.7	30.9	12.7	11.6	10.4	56.6	
10-13	5.9	8	8.30	12.9	21.0	16.5	16.9	10.6	9.32	74.8	
AVE:											
0-13	15.7	2	1.2	28.1	50.7	34.2	21.0	15.9	13.9	67.1	
	75			_	Â	Bact	erial	Pro	duct	ivity	Ì.

(0-13m) bagl o x 106 cells [-1 h-1 50 52 52 52 2 Δ 3 01 iO Time, days 20


TABLE 5

Oil Concentrations in Bag # 3

Date, MO: DY:		JUL 22	JUL 24	JUL 26	JUL 29	AUG	AUG 4	AUG 10	AUG 25
Particulate C) il :	mg L ⁻¹						•	
0-5 m	4.23	2.77	2.15	1.32	0.18	0.12	0.08	0.05	
5-10 m	0.13	1.17	1.25	1.07	0.34	0.16	0.10	0.09	
10-13 m	0.01	0.32	0.43	0.58	0.45	0.27	0.08	0.09	
Total Non- Volatile Oil	mg L	-1	· ·	•					
3 m	4.53	2.83	2.00	1.43	0.38	0.55	0.20	· -	
бт	1.58	1.98	1.74	1.03	0.50	0.38	0.40	_	
Sedimented Oi	1			•	•				. *
Rate, mg d ^{-1}	6.5	30	125	864	5975	4721	1207	526	124
Sum, g	.013	.073	. 322	2.05	20.0	34.1	37.8	40.9	42.8
	•••			•					

Oil associated with slick on bag wall, 10 cm above to 10cm below the water line, on Aug. $25 = 4.1 \pm 0.8$ g (n=3).

OIL PROFILES

TABLE 6	Vertical	Extinction of	Light µE m	-2 _s -1
19 July, 1983 Depth(m) 0 3 5 7 10 13	Bag # 1 210-200 35 21 9.5 4.6 2.5	Bag # 2 215-210 39 19.5 12.0 5.5 2.6	Bag # 3 215-215 45 21.7 12.5 5.7 2.7	
21 July, 1983 0 1 2 3 5 7	1000–985 470 140 50 24 15	860-900 450 90 50 - 28	800-960 260 56 18 11 -	
26 July, 1983 0 1 2 5 7 10	650-680 420-480 170 62 31 10	750-720 510-490 180 45 29 10	640-620 200-180 68 14 9.7 5.7	
28 July, 1983 0 1 2 5 7 10	550-450 180 120 53 34 20	320-320 120 52 27 19 10	280-300 90 37 13 9.5 5.0	

Measurements are of Photosynthetically Active Radiation (PAR)

TABLE 7: Salinity ⁰/00

				DATE					
	MO: JUL DY: 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	
BAG#1 DEPTH									
0	28.854	28.900	28.930	28.961	28.993	28.948	29.023	29.075	
5	29.064	29.062	29.004	28.990	28.994	29.015	29.016	29.034	
10	29.113	29.103	29.086	29.083	29.060	29.045	29.038	29.036	
13	29.124	29.106	29.100	29.085	29.083	29.050	29.050	29.038	
BAG#2 DEPTH								- -	
U	28.839	28.879	28.912	28.951	28.971	28.923	28.989	29.052	
-5	29.020	28,990	28.944	28.948	28.971	28.940	28.978	28,985	
10	29.055	29.046	29.002	28.996	28.982	28.981	28.976	28.978	
13	2 9 .066	29.051	29.027	29.012	29.000	28.978	28.980	28.977	
BAG#3 DEPTH									
0	28.856	28.898	28.966	28.997	2 9. 021	28.990	29.047	29.078	
1	28.854	28,909	28.964	28.993	29.022	28.996	29.046	29.079	
3 5	28.907	28.940	28.970	28.991	29.022	29. 000	29.038	29. 050	
5	29.005	29.015	28.998	29.002	29.022	29.023	29.023	29.033	
7	29.034	29.065	29.026	29.016	29.023	29.027	29.026	29.029	
10	29.045	29.078	29.061	29.051	29.040	29.037	29.030	29.031	
13	29.116	29.096	29.076	29.062	29.054	29.033	29.033	29.029	

38

ጉለጥ፹

				, 0,						
	TABLE	8:	Tempera	ture ([°] C)					
						DATE				
		MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
	BAG#1 DEPTH									
	0		15.2	15.3	15.1	15.7	16.3	15.8	16.7	17.4
	5 10		13.5 12.4	14.6 13.8	14.3 13.5	14.7 13.5	16.2 14.2	14.1 13.3	14.9 13.4	14.9 13.4
	13		12.4	13.3	13.3	13.4	14.2	13.3	13.0	13.4
				1010	1010	1307	1,5 • 5	1001	13.0	10.1
	BAG#2									
	DEPTH									
	0		15.3	15.3	15.2	15.7	16.3	15.8	16.7	17.5
	5		13.6	14.6	14.3	15.1	16.2	14.1	15.4	14.9
	10 13		12.4	13.8	13.6	13.5	14.2	13.3	13.5	13.3
	13		12.2	13.3	13.4	13.3	13.5	13.0	13.0	13.1
	BAG#3 DEPTH					•	· .			
	0		15.5	15.4	15.6	15.9	16.3	16.1	16.9	17.8
	1 3		15.2	15.0	15.3	15.7	16.3	15.8	16.8	17.6
	3	•	14.7	14.8	14.8	15.4	16.3	15.1	16.3	16.4
•	5 - 5	· · • • •	13.7	14.5	14.3	14.8	16.2	14.1	15.0	14.8
	7		13.1	14.2	14.0	14.1	15.7	13.6	14.1	14.0
	10		12.5	13.8	13.6	13.5	14.1	13.3	13.4	13.4
	13		12.2	13.2	13.3	13.4	13.5	13.1	13.0	13.1
	·			· · ·						

TABLE 9			Sedir	nentatio	on Rates	5			
Date, MC DY		JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10	
Dry Weight	g d	-1							
Bag #									
1	1.20	1.63	5.95	22.9	17.8	15.9	21.9		
2 3	lost		5.70	15.5	13.7	13.9	19.1		
<u>،</u>	0.89	1.04	1,58	2.41	19.5	23.6	10.5	4.21	
						-1			
Particulate	Organic	Carbon	and Ni	trogen	g d	Ţ			
Bag #									
1 C	.166	.276	1.55	4.41	2.60	3.33	3.07	0.853	
N	0185			.725	.370		.607	.132	
2 C	lost "	.101	1.99	3.67	2.76		4.03 .607	.755	
N 3 C	.140	.0163 .186	.309 .402	.610 1.18		.442 14.0*		.122 .958	
N	.0177		.0368	.0775		.743	.373	.090	
		10200			formalir				.11
		-1							• _• • •
Chlorophyll	a m	$g d^{-1}$							
Bag #									4
1	.415	1.40	19.5	77.5	33.4	37.0	73.7	5.57	
2	lost		25.5	54.5	62.7	56.7	61.3	8.57	
3	.289	0.85	2.66	4.65	52.7	61.3	45.3	15.0	4 · · · ·
									•
Total Sedime	ntation								
Bac #								· ·	•
Bag # 1 D.Wt. (g)	2.39	5.65	17.6	63.4	117	164	230	248	
C (g)			3.97	12.8	20.6	30.6	42.8	47.9	•
N (g)	.0369	.117		2.05	3.16	4.51	6.33	7.12	
Chl a (mg)		3.63	42.5	198	300	410	631	663	
2 D.Wt. (g)	lost		12.0	42.9	84.0	126	183	195	
C (g)	11	.169	4.14	11.5	19.8	29.5	41.6		
N (g)	11 11	.0272 1.44	.645 52.3	1.87 161	3.01 349	4.34 519	6.16 703	6.89 729	·
Chl <u>a</u> (mg) 3 D.Wt. (g)		1.44 3.86	52.5 7.01	11.8	549 70.3	141	173	198	•
C (g)	.280	.653	1.46		37.4	79.3	91.0	96.8	
N (g)	.0353	.0828	.156	.311	1.83	4.06	5.18	5.72	
Chl <u>a</u> (mg)		2.28	7.59	16.9	175	359	495	540	

TABLE 10a: Particulate ¹⁴C dpm/L

Suspended

			DA	ΓE			
MO: JUL DY: 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10
DEPTH (m)							
0 9770 1 10,400 3 10,200 5 7510	5840 6530 6430 5450	5090 4410 3630 4140	1550 1760 1710 1670	624 612 566 515	378 383 - 310	213 195 206 201	141 209 125 137
7 2460 10 260 13 0	4160 1810 941	3290 2170 975	1410 1080 998	494 506 507	384 334 318	200 201 200	133 127 132
Sed	imented	$(x \ 10^6 =$	dpm/enc.	losure)			
Pumped Sediment 0.06	0.16	0.54	1.28	11.9	11.0	3.43	2.69
Volume Pumped (L) 19	19	19	19	38	38	38	19
		· ·				•	
TABLE 10b: Size (All da	Fraction ata from .	ation of 3 m samp	Particu les)	late ¹⁴ C	dpm/L		
			DATE				
MO: JUL DY: 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10
).45 m 10,200 mu 45 m 1	6430 3	3630 11	1710 4	566 18	346 40	206 3	125 -
>3.0 بيس 2500 <3.0 سير -	2050 2920	2510 805	620 450	138 195	106 83	66 13	24 -

muز 0.8< mu (8.0

TABLE	10c:	¹⁴ co ₂	in Sea	Water d _j	pm/L				
					DATE				·
									24
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	DY:	20	22	24	26	29	1		
								1 -	
		13	15	431	2380	2120	1700	1470	
					•		1590		
3					1950				
5								1 C C	
13		0	U	21	525	110	1000	1000	2007
				1/1					e <u>e</u> transferration de la constante de la con
TABLE	10d:	Disso	lved Orga	anic ¹⁴	C dpm/L				
		-	0	11		18	40	. 2	
									n an
2									
5						-		0	· · ·
7						7	5	-	
10								-	
13		0	0	6	0	5	2	, 0	
			-			, Gu ⁿⁿ	21 S		
בייד בד בד ב	10	(h ami	- T Fraat	ionatio	n of Par	ticulate	s dom/L		
TABLE	IUe:	Спешт	al fiaci (all sam	ples fr	m 0 - 5 m	in Bag	3)		
				.ртоо — —					
Date		free h	ydrocarbo						protein
	-					ounds			57
				45. ¹¹				an a	2/
		. 2							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
	H.,	* 1 ::-					32		
$\begin{array}{c ccccccccccc} \text{DATE} & & & & & & & & & & & & & & & & & & &$									
Aug 10		A Na		5	9	4. j. j.			
			3		1		24		51.

œ

TABLE 11a	Pa	rticulate	Organic	Carbon	gى ر	L ⁻¹	
Date, MO: DY:	JUL JUL 18 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
Bag # 1 0-5 m 5-10 m 10-13 m	206 447 91.9 140 84.8 112	808 569 238	489 895 1460	414 648 1330	189 157 255	230 151 140	263 126 127
Bag # 2 0-5 m 5-10 m 10-13 m	223 599 102 174 70.7 111	985 691 448	749 875 1640	695 764 1240	296 186 224	315 153 140	364 113 128
Bag # 3 0-5 m 5-10 m 10-13 m	214 ≫1500 119 245 82.9 123	3000 1340 ▶250	2680 1780 705	1850 1520 1040	588 750 632	712 845 616	493 584 497
				• •			
TABLE 11b		Particula	te Nitro	ogen	μg	L	
Date, MO: DY:	JUL JUL 18 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4
Bag # 1 0-5 m 5-10 m 10-13 m	43.3 92.4 18.6 27.2 16.3 18.5	130 106 44.8	60.5 127 244	61.4 101 184	37.6 31.5 53.3	45.1 29.7 27.7	50.5 23.5 23.5

×1., Bag # 2 0-5 m 5-10 m 10-13 m 61.6 29.8 28.0 68.2 21.9 25.7 79.5 34.8 165 129 90.8 102 117 61.2 38.0 46.5 19.4 13.6 104 18.1 81.9 261 197 44.7 Bag # 3 0-5 m 5-10 m 452 33.5 22.5 42.1 133 83.8 105 108 83.8 76.7 85.2 23.8 94.6 90.4 62.6 71.9 124 94.6

42.9

71.4

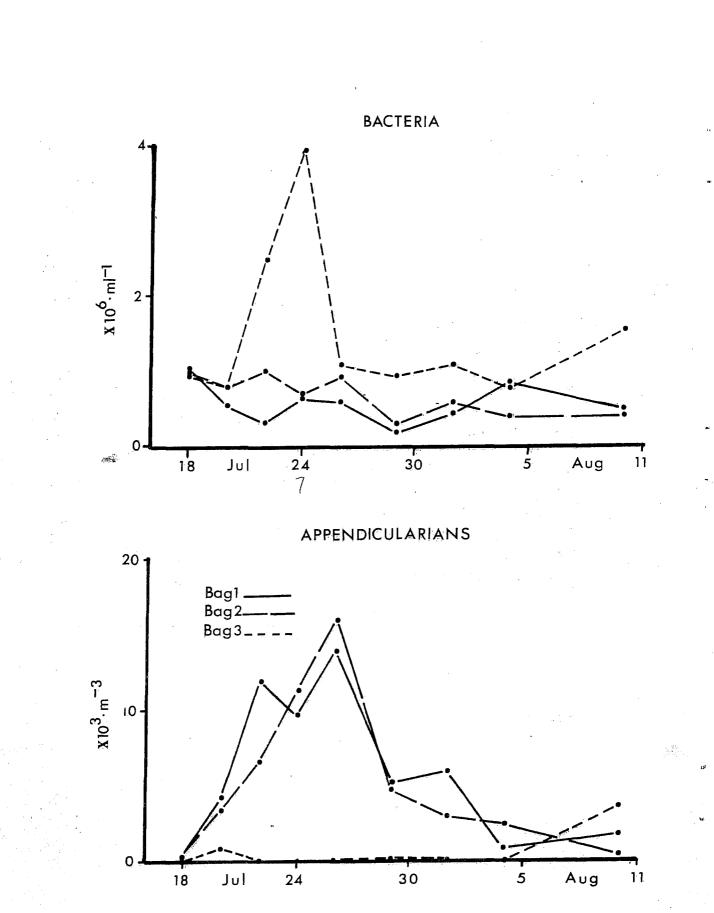
84.3

71.4

140

10-13 m

19.9


TABLE 12 a	.:	Specific Nitz	rate Uptake	×10 ⁻²	h ⁻¹
			DATE		
MO: DY:	JUL 18	JUL 20	JUL , 22	JUL 29	AUG 1
BAG #1 0-5 m 5-10 m 10-13 m	1.742 3.523* 1.213	1.129 2.413 1.242	0.648 5.525 2.668	.0675 .0200 .5643	.0985 .0189 .0276
BAG #2 0-5 m 5-10 m 10-13 m	5.508 0.913* 3.498*	4.268 7.615 3.501	0.761 0.664 6.838	.0575 .0230 .1345	.0436 .0195 .0274
BAG #3 0-5 m 5-10 m 10-13 m	0.477 5.181 0.583	15.479 3.256* 2.886*	24.317 40.280 53.824	3.798 3.375 5.832	•230 2•287 4•002

TAI	BLE 12 b:	:	Specific A	mnon:	ium Uptake	×10 ⁻²	h^{-1}
	: .			I	DATE		
	MO: DY:	JUL 18	JUL 20		JUL 22	JUL 29	AUG 1
0-5 5-1	#1 m 0 m 13 m	2.265 1.115 0.465	1.102 1.366 0.836*		0.795 1.315 1.040	0.568 0.776 0.517	1.187 0.405 0.287*
BAG 0-5 5-1 10-	m	1.403 1.035 0.666	0.997 1.400 1.037		0.684 1.029 1.344	0.671 0.659 0.498	0.999 0.612 0.295
BAG 0-5 5-10 10-	m Om	1.945 1.240 0.959	1.107 1.016 0.931		0.040 0.070 0.0412	0.722 0.936 0.577	0.713 0.658 0.692

indicates single analysis, all others are averages of duplicates.

*

	TABLE 13				Ca	ırbohydr	ates		mg	L ⁻¹		
	Date: MO DY BAG#	20	JUL 22 3	JUL 24 3	JUL 26 3	JUL 29 3	AUG 1 3	AUG 4 3	AUG 4 1	AUG 4 2	AUG 10 ,3	
				D	issolve	d monos	acchari	de	mg	L^{-1}		
	Depth		:		•							
•	0-5 m	0.37	0.30	0.35	0.49	0.33	0.54	0.46	0.89	0.43	0.36	
	5-10 m	0.27	0.19	0.12	0.32	0.35	0.38	0.36	0.60	0.63	0.35	
•	10-13 m	0.29	0.12	0.11	0.40	0.26	0.33	0.30	0.52	0.40	0.34	
		· · · · · · · · · · · · · · · · · · ·		Dis	solved	polysa	ccharid	2	mg	L ⁻¹	. · · ·	
	Depth	•	а	•		1 2						
	0-5 m	0.27	0.37	0.22	0.03	0.13	0.04	0.04	0.27	0.64	0.15	
	5-10 m	0.46	0.39	0.62	0.03	0.63	0.03	0.02	0.23	0.12	0.15	
	10-13 m	0.28	0.26	0.25	0.01	0.05	0.03	0.18	0.13	0.08	0.13	
ر ب ب		i e set		Par	ticula	te polys	acchar:	ide	, mg	L^{-1}		
	Depth		•			1. A.			2 -			
	0-5 m	0.21	2.18	0.12	0.12	0.31	0.38	0.25		· ·	0.11	
	5-10 m	0.04	0.10	0.18	0.12	0.08	0.28	0.12			0.06	
	10-13 m	0.05	0.03	7.77	0.06	1.20	0.11	0.06			0.02	
				in the state								

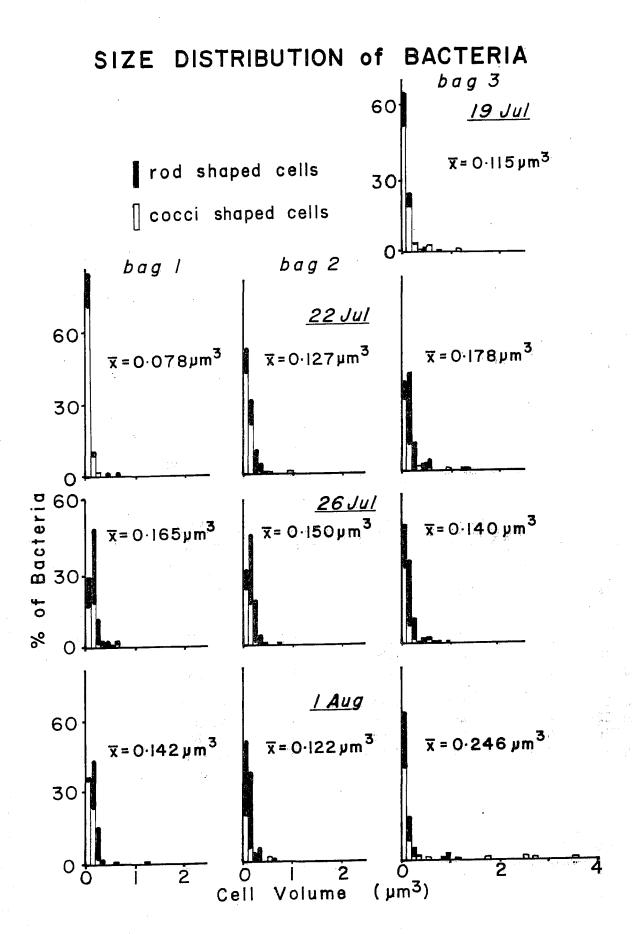


TABLE 14			Bact	erial N	lumbers		x10 ⁵ c	ells ml	
•	MO: JUL DY: 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10
Bag # 1 0-5 m 5-10 m 10-13 m	13.2 10.2 8.61	7.08 5.51 4.96	4.76 2.82 1.71	6.88 6.15 6.77	5.79 5.97 6.82	1.78 1.57 2.21	3.49 4.08 6.13	7.81 9.68 8.41	7.15 2.83 4.83
Bag # 2 0-5 m 5-10 m 10-13 m	12.8 8.51 7.37	10.7 6.57 5.48	13.6 9.31 6.33		7.81 10.5 9.80	3.52 2.79 2.96	4.62 6.05 7.98	4.17 4.50 3.34	4.33 3.96 4.02
Bag # 3 0-5 m 5-10 m 10-13 m	12.1 9.1 6.5	8.94 8.45 6.67	31.6 25.7 12.6	54.9 38.5 14.9	11.8 10.7 9.95	12.6 7.34 8.38	15.4 7.99 8.61	9.04 7.41 6.28	20.9 10.5 13.8

Bacterial Size Distribution

. No			cocci shap	ed cells	bacilli sh	aped cells	mean cell
Da	te	Bag#	# measured	x volume	# measured	x volume	volume (µm ³)
Ju	122 126 ജ ദ1	1 1 1	47 25 60	0.059 0.128 0.090	10 41 36	0.166 0.188 0.228	0.078 0.165 0.142
Ju Ju	g 1 1 22 1 26 g 1	2 2 2	71 44 31	0.102 0.090 0.113	36 67 76	0.177 0.190 0.125	0.127 0.150 0.122
Ju Ju Ju	5 1 1 19 1 22 1 26 g 1	3 3 3 3 3	86 46 51 77	0.109 0.108 0.082 0.294	25 58 74 57	0.138 0.233 0.180 0.181	0.115 0.178 0.140 0.246

η.

Bag #	$\frac{1}{2}$ and $\frac{1}{2}$	Date,	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 01	AUG 04
			21.	10	20			20			0.
TAXA		· · ·			-	•					
Bacil	Lariophyceae										
	ENTRALES	· .			•						
· .	Chaetoceros affinis					200	103	31			
	C. concavicornis			3	•	17	154	14			
	C. convolutus			3		-	43				
	C. constrictus					450	115	28			
	C. debilis				450	4083	1235	1353	1		
	C. decipiens					.33	8				
	C. didymus				20	25		· ·			
	C. gracilis					33	9	8			
	C. laciniosus	•	•		· .	183	137	83			
	C. similis					42					
	C. socialis					50	4	69	· .		
	Chaetoceros spp.			17	186	166	274	133			
	Coscinodiscus spp.					8	30	8	1		
	Ditylum brightwelli	i			4			6			
÷ +	Eucampia zoodiacus	-				17		11			
	Hemiaulus sp.				•		13				
	Rhizosolenia delica	tula			·	33	26	6			
	R. fragilissima					25		17			
	R. stolterfothii		I	` .			4				
	Rhizosolenia spp.						34	36	1		
	Skeletonema costatu	m		6	30	983	667	189			
	Thalassiosira spp.A	 		- 3	24	58	43	75	1		
	Unidentified centri			:	4	25	· 4				

	TABLE	15 (cont.)		Phyto	oplankto	n Spec:	ies and	Protozo	a		Cells	mL	
	Bag #	<u>1</u>	Date,	MQ: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL Ž9	AUG 01	AUG 04	
,	TAXA								•				
	וכד	ENNALES				·							
•		Asterionella glacialis					42	124	111	1			
		Cylindrotheca closteri			6	28	58	81	14	4	44	106	
		Navicula spp.				8		56	14			1	
		Nitzschia delicatissim	а		3	36	208	132	89	2			
		N. pungens				24	583 _B	124	128				
		Nitzschia spp.				14	192 ¹¹	128	42			1	
		Thalassionema nitzscho	ides				233	51	36				
		Amphiprora sp.											
		Unidentified Pennates				20		9					
		TOTAL Pennate Diatoms			9	130	1316	705	434	7	44	108	
		Dinophyceae			18	36	83	17	22	1			
		Cryptophyceae			65	174	167	4					
		Chrysophyceae		*		.6							
		Prasinophyseae			10								
		Haptophyceae			2	6	133				1		
		Microflagellates, 1-5			544	578	2817	3338	1548	981	538	306	
		5-1	• •		25	56	233	213	336	34	31	69	
		10-2	Oum		×6	-8	17	125	68	25	13	13	
		momer 246 61 11			FJF	(10		2676	1050	10/0	F00	200	
		TOTAL Microflagellate	S		575	642	3067	3676	1952	1040	582	388	
		TOTAL PHYTOPLANKTON			711	1712	11197	7305	4475	1052	627	497	
						×1 × 4		1000		1056		127	
	11 1 1	Zooflagellates			161	?	1000	125	116	144	113	175	
		Ciliates			33	33	76	13	19	30	26	31	
													•

A - includes <u>Thalassoisira aestivalis</u> and T. gravida B - epiphytic on <u>Chaetoceros</u> spp.

ç

. 0

TABLE 15 (cont.)	hytoplankt	on Spec	ies and	i Protoz	oa	-	Cells	mL-1
Bag # <u>2</u> Date, M		JUL	JUL	JUL	JUL	JUL	AUG	AUG
D.	Y: 18	20	22	24	26	29	01	04
and a second								
TAXA				•				
Bacillariophyceae								
CENTRALES								
Chaetoceros affinis			188	51	42			
C. concavicornis	.	. '	12	12	. 6			
C. convolutus		4		20	103			
C. constrictus			. 35	25	19			
C. debilis	33	870	4200	482	1789			
C. decipiens			104		32			
C. didymus			•	22	22			
C. gracilis		15	12	10	25			
C. laciniosus			47	63	225			
C. septentrionalis					3			
C. similis			35					
C. simples ?	8					· ·		
C. socialis		300	129	29	106			
Chaetoceros spp.	5	145	.71	136 ⁻	131			
Coscinodiscus spp.		5	6	6	28	1		
Ditylum brightwellii		· · · · ·	• .		3			
Eucampia zoodiacus		25		6	8	• •		
Leptocylindus minimus	- 5							
Rhizosolenia delicatula			24	4	36			
<u>R.</u> fragilissima	-		41	1	58	1		
<u>R.</u> setigera	2		6					
<u>R.</u> stolterfothii		10	29					
Rhizosolenia spp.				9	47	•	÷.,	
Skeletonema costatum	10	90	382	110	106			
Thalassiosira spp.A		25	59	9	22			
Unidentified centrics		45	47					
TOTAL Centric Diatoms	63	1530	5427	995	2801	3	0	(
								,

2.

۴,

TABLE 15 (cont.)	Phytoplankton Species and Protozoa Cells mL								
Bag # <u>2</u> Date,	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 01	AUG 04
TAXA		л. -							
PENNALES		• • •					•		
Asterionella glacialis			90	141	32	81			
Cylindrotheca closterium		13	155_	135	38	47	11	20	136
Navicula spp.		8	110^{B}	18	48	106		1	1
Nitzschia delicatissima			95	353	392	331			
N. pungens		8	155	699	114	200	1		
Nitzschia spp.			15	47	23	47	3	1	
Thalassionema nitzschoides			10	88					
Amphiprora sp.		,							
TOTAL Pennate Diatoms		34	630	1481	647	812	15	22	137
Dinophyceae		30	130	101	?	31	0	0	0
Cryptophyceae		149	205	100					
Chrysophyceae		8:	100	94					
Prasinophyseae			10	12					
Haptophyceae			60	53					
Euglenophyceae			5						
Other			10			6		1	
Microflagellates, 1-5µm		1238	2200	3371	1400	1382	1567	1250	469
5-10µm		132	300	145	273	482	58	156	56
10-20µm		2	15	16	107	273	38	56	25
TOTAL Microflagellates		1372	2515	3532	1780	2137	1663	1462	550
TOTAL PHYTOPLANKTON	-	1651	5195	10800	3422	5787	1681	1485	687
Zooflagellates		?	?	1096	133	1109	300	206	106
Choanoflagellates Ciliates		5 38	5 50	48 96	4	17	37	28	45

A - includes Thalassoisira aestivalis and T. gravida
B - epiphytic on <u>Chaetoceros</u> spp.

ნ 2

TABLE 15	(cont.)	:	Phyto	oplankto	n Spec	ies and	Protoz	oa	-	Cells	mL ⁻¹
Bag # <u>3</u>		Date,	MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 01	AUG 04
			-	•		· · · ·			• • • •		
TAXA								· ·			
Bacilla	riophyceae							• •			
	TRALES		•	ан. 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -							
		4	÷					0	10	F	
	naetoceros affinis			•		2	28	9	12	5	
	concavicornis			3		3	6	11			
	<u>convolutus</u>					07	8	6 15	5		
	constrictus			0	100	27	10		103	41	
· · · · · · · · · · · · · · · · · · ·	. debilis			8	198	159	180	196	105	20	
	• didymus				~		6	1	0	20	
	gracilis		•		6	1	2 13	24	2 2		
	<u>laciniosus</u>				0.1	4	15	24	Z		
	simplex				21			-	1		
	 socialis 				543		07	5	1	0	
	haetoceros spp.			19	21	15	27	24	13	9	
	oscinodiscus spp.									2	6
	itylum brightwellii									_	
E	ucampia zoodiacus			5					_	5	-
R	hizosolenia delicat	ula		2		. 4	1	5	3	16	6
R	• fragilissima						3	6	9	14	11
R	stolterfothii										•
S	keletonema costatum			13	69	11		20			28
R	hizosolenia spp.	-			6	6	2	3	2		8
	halassiosira spp.A					7	3	8			
	nidentified centric	S			21		4				
Т	OTAL Centric Diatom	S		45	885	264	274	336	145	107	59

a ta

T 2

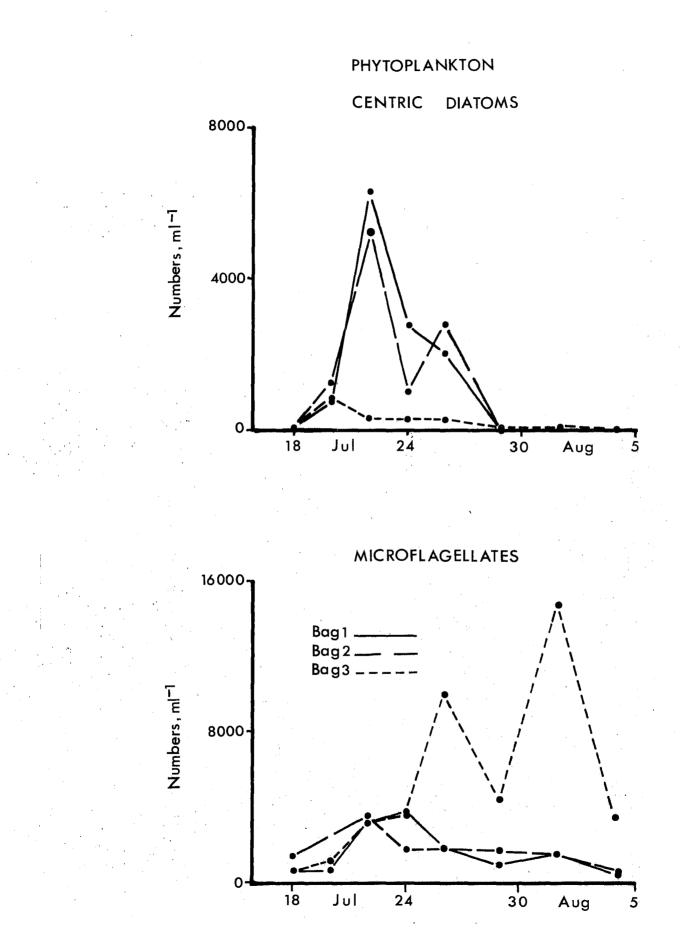

ŋ.

TABLE 15 (cont.)	Phytoplankton Species and Protozoa							Cells mL ⁻¹	
Bag # <u>3</u> Date,	MO: JUL DY: 18		JUL 22	JUL 24	JUL 26	JUL 29	AUG 01	AUG 04	
TAXA	:								
PENNALES <u>Asterionella glacialis</u> <u>Cylindrotheca closterium</u> <u>Navicula spp.</u> <u>Nitzschia delicatissima</u> <u>N. pungens</u> <u>Nitzschia spp.</u> <u>Thalassionema nitzschoides</u> <u>Amphiprora sp.</u>	8 3 24 3	21 63 54	32 1 74 67 1 7	2 19 3 84 9 23 16	9 78 7 143 14 29 11	215 5 93 16 64 32	177 9 575 7 64 27 41	72 14 594 11 14 33	
Unidentified Pennates TOTAL Pennate Diatoms	38		5 182	3 161	19 291	43 444	943	738	
Dinophyceae Cryptophyceae Chrysophyceae Prasinophyseae			4	1 25	53	72	259	247	
Other	1		4		. 1		9		
Microflagellates, 1-5µm 5-10µm 10-20µm	35 62		310	3025 329 152	8867 1733 400	3238 763 350	12900 1133 633	27 57 529 214	
TOTAL Microflagellates	42	6 1056	4739	3506	10000	4351	14666	3500	
TOTAL PHYTOPLANKTON	91	9 2385	5191	3967	10681	5012	15984	4544	
Zooflagellates Choanoflagellates Ciliates		618 6 21 25		152 2	833	613 3	1433 30	1343 31	

τ

A - includes Thalassoisira aestivalis and T. gravida
B - epiphytic on Chaetoceros spp.

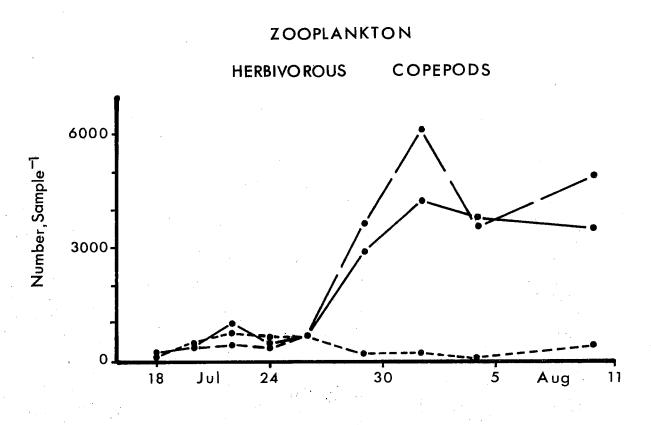
e

TABLE 16		Zooplankton Species				number/sample*			
Bag # <u>1</u> Date, MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG	AUG 4	AUG 10
Species list								-	
<u>Oithona similis</u>	120	108	512	256	528	288	144	0	2
Paracalanus parvus	88	168	240	48	16		4064	3808	3482
Unidentified copepodites	28	64	224	144	128	320	32	0	4
and nauplii	0.0.4		076	110	670	ooci	1010	0000	0/00
TOTAL Herbivorous copepods	236	340	976	448	672	2864	4240	3808	3488
Corycaeus sp.	26	20					48	80	430
Centropages abdominalis					16	16	224	56	2
TOTAL Carnivorous copepods	26	20	0	0	16	16	272	136	432
TOTAL CALIFICOTORS COPEPOUS	20	. 20	Ŭ			10		100	154
Oikopleura dioica	60	976	2704	3536	5120	800	592	296	724
Fritillaria borealis	36	756	2080	352	464	1280	1808	48	0
TOTAL Appendicularians	96	1732	4784	3888	5584	2080	2400	344	724
Tottm uppendiodialiand									
Meroplanktonic larvae	60	148	160	112	80	496	528	360 ~	50
Pleurobrachia sp.					16	present	32	104	94
Beroe sp.					10	Probene	52	8	21
Medusae								Ŭ	68
Siphonophores								24	16
<u>Sagitta</u> sp.							16	- ·	
Cladocera (Podon sp.)				:		48	288	168	
Gastropoda (Limacina helicina)	·					.0	200	100	12
Ostracoda (Cypridina sp.)					. •		•		
Protozoa (Noctiluca sp.)									460
									700

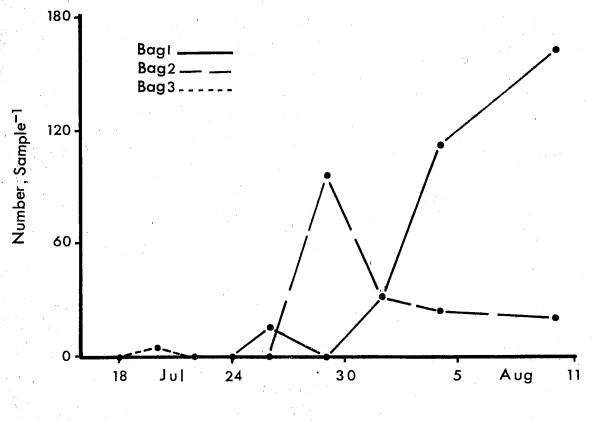
* Volume sampled appr. 0.40 m³
- 20 cm net, 200 um mesh, towed from 13 to 0 m.

TABLE 16	Zooplankton Species					number/sample*				
		200115	uikton a	opecies		numb	er/samp.	Le*		
Bag # _2 Date, MO: DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10	
Species list								·		
Oithona similis	126	176	208	144	384	176	224	96	16	
Paracalanus parvus	34	120	144	64	176	3216	5792	3480	4842	
Unidentified copepodites and nauplii	12	32	80	80	16	192	80	24	2	
TOTAL Herbivorous copepods	172	328	432	288	576	3584	6096	3600	4860	
Corycaeus sp.	24		•			-	32	56	70	
<u>Centropages</u> <u>abdominalis</u>					16	32	144	52	14	
TOTAL Carnivorous copepods					16	32	176	108	84	
<u>Oikopleura dioica</u>	52	796	2640	4544	6400	1888	1136	992	166	
Fritillaria borealis	74	548	16		32		64	8		
TOTAL Appendicularians	126	1344	2656	4544	6432	1888	1200	1000	166	
Meroplanktonic larvae	84	160	240	80	16	608	528	172	40	
<u>Pleurobrachia</u> sp.						96	32	4	14	
Beroe sp.			· · · ·					12		
Medusae								8	6	
Siphonophores										
Sagitta sp.	2									
Cladocera (Podon sp.)				•			112	96	4	
Gastropoda (Limacina helicina)									8	
Ostracoda (Cypridina sp.)									16	
Protozoa (<u>Noctiluca</u> sp.)									38	

* Volume sampled appr. 0.40 m³
- 20 cm net, 200 um mesh, towed from 13 to 0 m.


TABLE 16	Zooplankton Species					number/sample*			
Bag # <u>3</u> Date, MO: Species list DY:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	AUG 10
<u>Oithona similis</u> <u>Paracalanus parvus</u> Unidentified copepodites and nauplii	10 18 28	264 126 72	612 52 80	552 48 32	484 60 56	84 88 16	60 126 4	12 74 0	- 8 360 1
TOTAL Herbivorous copepods	56	464	744	632	600	188	190	86	369
<u>Corycaeus</u> sp. <u>Centropages</u> abdominalis	4		4	4	8				
TOTAL Carnivorous copepods	4	•	4	4	8				
<u>Oikopleura dioica</u> <u>Fritillaria borealis</u> TOTAL Appendicularians	6 2 8	104 208 312	·		4 4	34 · 34	10 10	4 10 14	1451 1451
Meroplanktonic larvae	12	68	12	8	. 8	4	12		3
<u>Pleurobrachia</u> sp. <u>Beroe</u> sp. Medusae Siphonophores		4							
<u>Sagitta</u> sp. Cladocera (<u>Podon</u> sp.) Gastropoda (<u>Limacina helicina</u>) Ostracoda (<u>Cypridina</u> sp.) Protozoa (<u>Noctiluca</u> sp.)					4			2	

£


Ę

* Volume sampled appr. 0.40 m³
- 20 cm net, 200 um mesh, towed from 13 to 0 m.

Ŧ

MEDUSAE & CTENOPHORES

TABLE 17	Relative			eterotro	phic Upt	mg Glucose m ⁻³ h^{-1}			
Date MO: D¥:	JUL 18	JUL 20	JUL 22	JUL 24	JUL 26	JUL 29	AUG 1	AUG 4	:
Bag ∦ 1									
0-5 m	0.58	1.04	1.64	1.40	1.57	1.17	0.36	0.35	
5 -1 0 m	0.26	0.68	0.44	1.39	2.57	0.81	0.54	0.28	
10-13 m	0.36	0.41	0.35	1.28	2.05	1.87	1.50	1.23	
Bag ∦ 2						· .	х. 		
0-5 m	0.86	2.00	2.66	2.50	2.89	1.71	0.63	0.31	
5 -1 0 m	0.44	0.80	1.09	2.66	4.57	1.08	1.67	0.20	
10 -1 3 m	0.42	0.66	0.71	1.93	5.76	2.08	2.51	0.54	
ı									
Bag # 3									
0-5 m	1.24	1.41	3.41	5.04	1.62	2.87	0.44	0.71	
5-10 m	0.54	0.93	1.98	4.96	1.58	1.93	0.63	0.48	
	0.42	1.14	1.22	1.65	1.24	1.65	0.31	0.32	

No blank correction at t=0 were applied to these data.

TABLE 10	STIRTING	in G	
Date	Bag # 1	Bag # 2	Bag # 3
18 Jul	0.39	0.45	0.37
20 Jul	0.12	0.14	0.013
22 Jul	8.8	5.9	0.37
24 Jul	8.0	8.1	0.57
26 Jul	3.4	5.7	2.6
29 Jul	0.9	2.6	1.0
1 Aug	4.5	6.6	7.3
4 Aug	0.8	1.4	5.1

Measurements on 0-5 m samples using total particle count, 3-80 µm.

Sinking Rates of Particles

 $m d^{-1}$

Size Distribution of Particles

. 0

11.5m

Bag # 3 7.5m

	Date	July	18, 1983					
Particle Diameter	•	0 7	Bag # 1			Bag # 2		
(mu)		2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	2.5m
3,2		11420	698 3	7415	13326	6289	8193	13320
4.0		7295	3660	3064	8530	3864	3816	8005
5.0		3043	1202	1286	3541	1297	1455	3242
6.4		1459	. 641	678	2029	774	715	1534
8.0		674	281	271	1109	353	220	209
10.1		193	166	86	409	166	78	251
12.7		134	43	41	210	106	34	144
16	•	96	25	24	105	41	13	110
20.2	. .	48	18	19	34	23	9	65
25.4		18	11	30	80	33	8	22
32		11	12	14	6	15	10	12
40.4		8	14	13	. 1	19	6	7

TABLE 19

50.8

>80.6

Total

Size Distribution of Particles

number of particles/2 mL water

11.5m

8Ò

Bag # 3 7.5m

428

		-						
Particle Diameter		Bag # 1	н н т		Bag # 2	• •		
(µm)	2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	2.5m	
3.2	18280	9053	6632	18230	7974	8274	29472	
4.0	11252	4076	3493	13712	4770	3176	31484	
5.0	5378	1805	1544	6660	1974	1518	22770	
6.4	3842	. 1101	879	4156	1316	916	10551	
8.0	2851	521	384	3102	715	451	4324	
10.1	1073	222	208	1185	270	176	1751	
12.7	513	142	101	532	128	104	566	
16 .	250	85	55	246	69	36	286	
20.2	188	52	20	185	37	22	111	

_

14721 101479

July 20

TABLE 19

25.4

40,4

50.8

>80.6

Total

Date

TABLE 19

Size Distribution of Particles

number of particles/2 mL water

	Date	July	22			•				•
2								-		· .
Particle Diameter		. •	Bag # 1		. •	Bag # 2			Bag # 3	•
(µm)		2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	2.5m	7.5m	11.5m
3.2	2	20928	15044 .	10152	17570	15716	4631	35045	34285	19847
4.0		9005	6994	4585	7687	6951	2216	30951	20358	9150
5.0		4733	3624	2443	4193	3656	1356	19184	9816	4463
6.4		4261	2593	1699	3856	2996	421	8082	3884	1711
8.0		2785	1665	659	2755	2189	178	2722	1498	802
10.1		1231	695	334	1379	986	70	1119	572	305
12.7		686	374	148	728	520	33	415	258	122
16	•	716	365	112	696	433	28	212	124	86
20.2		786	371	101	708	366	25	80	62	49
25.4		606	342	88	550	272	20	64	32	38
32		405	274	72	396	228	12	39	35	24
40.4		140	61	32	120	76	5	11	10	10
50.8		32	33	18	49	27	5	6	8	· 8
64	•	16	13	9.	21	11	3	1	3	
>80.6		14	4	2	8 [:]	4	2	1	2	1
Total		46354	32452	20462	40718	34440	9009	97839	70981	36618

Size Distribution of Particles

TABLE 19

number of particles/2 mL water

Da	te July	24							
			•			·* ·			
Particle		Bag # 1	. +	•	Bag # 2	•		Bag # 3	
Diameter (µm)	2.5m	7.5m	11.5m	2.5m	7.5m	5m $11.5m$ $2.5m$ $7.5m$ $11.5m$ 3 20269 38396 35953 28976 4 10010 30206 23323 13200 4 6115 17295 12155 5906 8 4080 7533 5458 2612 2 2569 3003 2658 1390 2 1464 1202 1154 581 9 1131 553 414 216 2 1299 278 258 136 6 1002 81 109 65 6 803 44 76 45 9 100 1 7 8 4 43 0 3 0 6 8 0 1 1			
3.2	15271	33005	20716	17324	20023	20269	38396	35953	28976
4.0	5869	15343	10156	7132	8314	10010	30206	23323	13200
5.0	3042	5664	5380	3376	3804	6115	17295	12155	5906
6.4	1809	. 2399	3275	2093	2038	4080	7533	5458	2612
8.0	1064	1261	1994	1376	1292	2569	3003	2658	1390
10.1	560	801	1069	744	762	1464	1202	1154	581
12.7	422	536	771	525	549	1131	553	414	216
16 •	485	586	906	605	622	1299	278	258	136
20.2	613	898	1077	752	762	1236	132	164	83
25.4	331	686	954	464	516	1002	81	109	65
32	153	482	854	243	353	803	44	76	45
40.4	42	159	283	75	104	236	8	18	9
50.8	. 11	30	65	17	32	100	1	7	8
64	8	13	46	13	4	43	~0	3	· 0
>80.6	2	7	10	0	6	8	0	1	1
Total	29680	61873	47562	34744	39181	50381	98732	81753	53240

TABLE 19			9	Size	e Distrib	ution of P	articles	num	ber of par	ticles/2	nL water
D	ate	July	26				. <u>.</u>		• •		•
	· · .	•				· ·					
Particle Diameter			Bag # 1	1		Bag # 2	. •		Bag # 3		. ·
(µm)	2.	5m	7.5m	11.5m	2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	
3.2	1138	39	10845	15581	9707	15416	17359	26396	27000	21722	
4.0	38	8	4539	5961	3890	6529	7224	17563	18574	12410	·
5.0	17:	31	2024	2696	1849	2921	3566	10451	10302 -	6915	
6.4	12	L5	1321	1729	1411	1715	2456	7658	7171	5043	
8.0	7.	51	872	1161	879	1109	1682	4976	4701	2938	
10.1	5	34	646	847	671	826	1309	2392	2321	1399	
12.7	4	51	640	853	613	778	1172	880	875	566	
16	. 4	08	663	921	645	722	1179	415	372	284	
20.2	- 4	31	634	909	621	639	990	<u>`207</u>	208	168	
25.4	2	20	501	771	374	426	813	133	125	95	
32	1	36	420	703	219	309	566	54	75	58	
40.4		57	110	232	63	89	153	6	16	21	
50.8		20	25	59	36	. 53	47	1	11	8	
64		12	9	15	8	24	2.3	1	4	ĺ	
>80.6		12	3	10	14	8	11	1	3	1	
Total	212	50	23459	32448	21003	31564	38556	71141	71765	51628	

Date		July 29				- - -					
				 -							
Particle Diameter (µm)		Bag # 1			Bag # 2		Bag # 3				
		2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	
3.2		6134	6934	8448	6335	6556	6640	18444	17172	15208	
4.0		5851	7321	7524	3686	4062	3829	14734	10394	7594	
5.0		1535	1980	2722	960	1093	1038	9036	5214 -	4242	
6.4		191	235	351	218	171	245	5761	3459	3010	
8.0		90	89	125	83	73	136	2261	1640	1571	
10.1		94	91	100	68	62	· 115	776	690	825	
12.7		70	48	76	76	44	93	479	374	512	
16	•	38	30	46	61	28	80	212	207	249	
20.2		27	26	29	42	22	45	72	124	141	
25.4		23	24	34	34	28	44	41	56	66	
32		15	.5	26	25	12	19	11	21	38	
40.4		15	19	20	9	12	15	1	14	13	
50.8		4	11	9	6	11	11	0	. 9	4	
64		4	9	7	3	5	8	0	6	1	
>80.6		4	0	3	3	2	1	0,	0	1	
Total		14095	16822	19520	11612	12184	12318	51834	39390	33473	

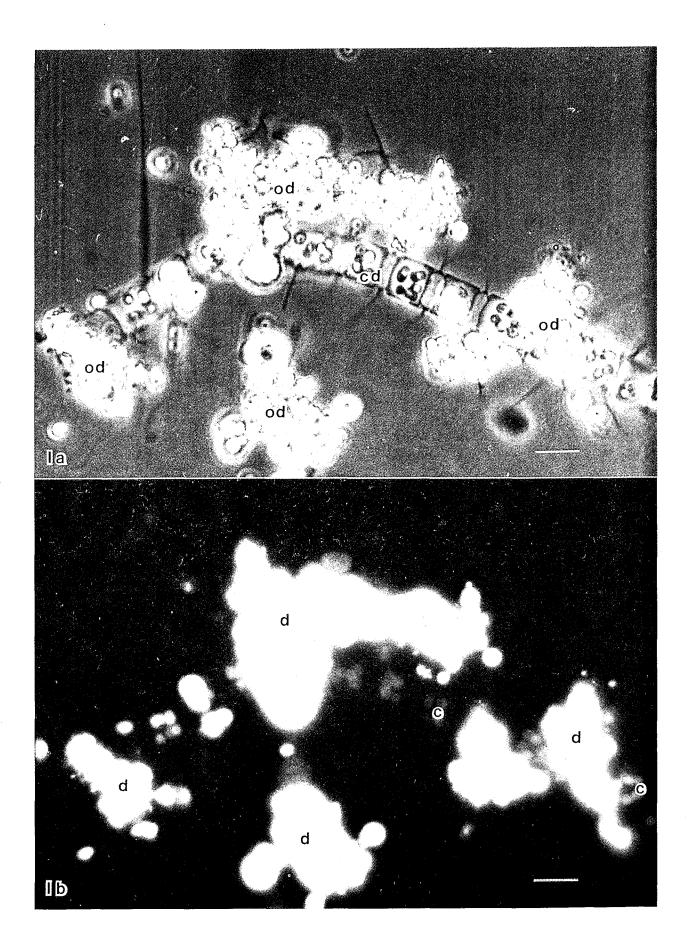
TABLE 19

Size Distribution of Particles

number of particles/2 mL water

TABLE 19

Size Distribution of Particles

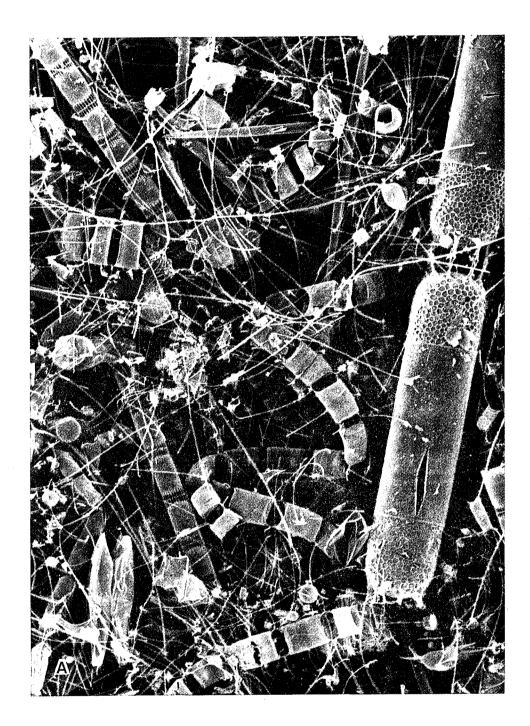

	Date <u>Aug</u>	ust 1				•			·	
Particle					•	и .	· .		, ·	
Diameter		Bag # 1	·	۰.	Bag # 2	×		Bag # 3		
(mu)	2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	2.5m	7.5m	11.5m	
3.2	4381	3566	4321	4769	5160	9102	21874	24018	19051	
4.0	1626	1878	1931	2117	1594	1818	17403	19758	13333	
5.0	611	498	392	700	454	439	11455	11373	7015	
6.4	211	121	128	222	118	138	8196	7720		
8.0	113	95	59	68	41	86	3314	3996	4916	
10.1	63	78	43	40	40	56	1669	1601	2420	•
12.7	63	52	36	61	71	33	1224	918	1141	
16	• 46	26	25	45	56	26	301		595	
20.2	26	19	21	51	22	15	66	389	346	
25,4	45	36	28	43	33	18		153	189	
32	10	18	16	20	28	5	45	107	64	
40,4	7	20	13	24	16	ć ĝ	30 10	40	30	
50.8	10	12	1	15	13	6		12	14	
64	4	5	5	15			6	13	6	
>80.6	4	0	2	19 5	9 5	. 6	0	7	3	
		Ŭ	ک	ر	.	0	0	2	0	
Total	7233	6423	. 7027	8194	7660	11755	65602	70111	49123	

THIS PAGE IS BLANK

Phase contrast microscopy: centric diatoms (cd); oil droplets (od). Bar = 10 um.

Epifluorescence microscopy of the identical sample 1Ъ. above. Chloroplast auto-fluorescence (c); fluorescent oil droplet (d). Bar = 10 um.

Plate la.



SCANNING ELECTRON MICROGRAPHS

Plate A. Centric and pennate diatoms from a 3 m sample in bag 1 on day 5. Magnification: 750X.

{}

d.

C

Plate B. Centric and pennate diatoms from a 3 m sample in bag 2 on day 5. Magnification: 750X.

a

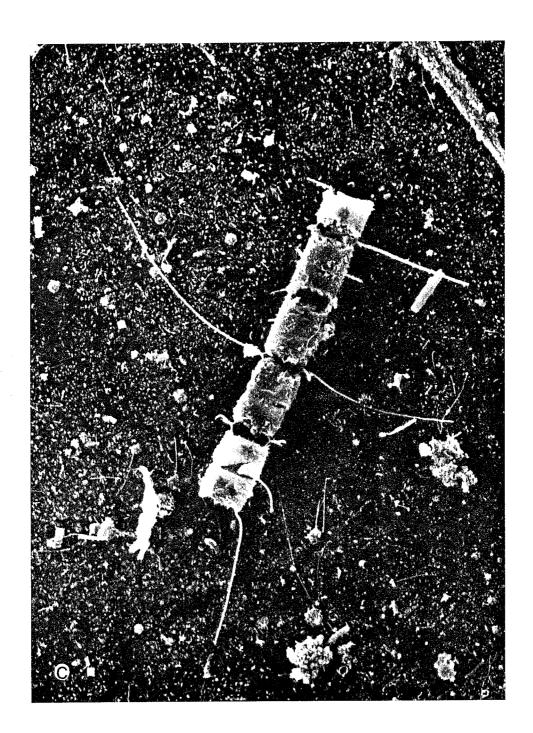


Plate C. Centric diatom chain from a 3 m sample in bag 3 on day 5. Magnification: 750X. -1

ų,

¢?

ł.

0

:5