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ABSTRACT 

 
 

Guijarro, J., Beazley, L., Lirette, C., Kenchington, E., Wareham, V., Gilkinson, K., Koen-

Alonso, M., and Murillo, F.J. 2016. Species Distribution Modelling of Corals and Sponges from 

Research Vessel Survey Data in the Newfoundland and Labrador Region for Use in the 

Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3171: vi + 126p. 

 

 

We used a species distribution modelling approach called random forest (RF) to predict the 

probability of occurrence and biomass of sponges, sea pens, and large and small gorgonian corals 

across the entire spatial extent of Fisheries and Oceans, Canada's (DFO) Newfoundland and 

Labrador Region. A suite of 66 environmental variables from different data sources were used. 

Models utilized catch records from the DFO multispecies trawl survey, DFO/industry northern 

shrimp surveys, and Spanish trawl surveys. Most models had excellent predictive capacity with 

cross-validated Area Under the Receiver Operating Characteristic Curve (AUC) values ranging 

from 0.786 to 0.926. Areas of suitable habitat were identified for each taxon and were contrasted 

against their known distribution. Generalized additive models (GAMs) were developed to predict 

the biomass distribution of each taxonomic group and serve as a comparison to the RF models. 

The RF and GAM models provided similar results, although GAMs provided superior 

predictions of biomass along the slopes of Newfoundland and Labrador for some taxonomic 

groups. Aside from providing continuous prediction maps of significant benthic taxa for the 

entire Newfoundland and Labrador Region that will be useful in ecosystem management 

decision-making processes, these results could be used to refine the outer boundaries of 

significant concentrations of these organisms identified by kernel density analyses and identify 

new suitable habitat not sampled by the trawl surveys. 
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RÉSUMÉ 
 

 

Guijarro, J., Beazley, L., Lirette, C., Kenchington, E., Wareham, V., Gilkinson, K., Koen-

Alonso, M., et Murillo, F.J. 2016. Modélisation de la répartition des espèces de coraux et 

d'éponges à partir des données des relevés par navire de recherche dans la région de Terre-

Neuve-et-Labrador aux fins d'utilisation dans la détermination des zones benthiques importantes. 

Can. Tech. Rep. Fish. Aquat. Sci. 3171: vi + 126p. 

 

 

Nous nous sommes servis d'une approche de modélisation de la répartition des espèces appelée 

le modèle de forêts aléatoires pour prévoir la probabilité de la présence et de la répartition de la 

biomasse des éponges, des pennatules et des bancs de grandes et petites gorgones dans 

l'ensemble de l'étendue spatiale de Pêches et Océans Canada (MPO), région de Terre-Neuve et 

du Labrador. Un ensemble de 66 variables environnementales de différentes sources de données 

a été utilisé. Les modèles utilisent des registres de pêches tirés des relevés plurispécifiques au 

chalut de Pêches et Océans Canada (MPO), des relevés sur la crevette nordique et sur le chalutier 

espagnol du MPO et de l'industrie. La plupart des modèles avaient une excellente efficacité de 

prévision selon des valeurs contre-validées de l'aire sous la courbe de la fonction d’efficacité du 

récepteur variant de 0,786 à 0,926. Les zones constituant un habitat convenable ont été 

déterminées pour chaque taxon et ont été mises en contraste par rapport à l'aire de répartition de 

l'espèce. Des modèles additifs généralisés ont été élaborés pour prédire la répartition de la 

biomasse de chaque groupe taxonomique et servent de points de comparaison aux modèles RF. 

Les résultats obtenus par les modèles RF et les modèles additifs généralisés étaient similaires, 

cependant les prévisions de la biomasse le long des talus de Terre-Neuve et du Labrador pour 

certains groupes taxonomiques par les modèles additifs généralisés étaient meilleures. En plus de 

fournir des cartes de prévision continue de taxons benthiques importantes pour l'ensemble de la 

région de Terre-Neuve et du Labrador qui seront utiles dans les processus décisionnels en 

matière de gestion de l'écosystème, ces résultats pourraient servir à préciser les limites 

extérieures des concentrations importantes de ces organismes déterminés par des analyses de 

noyaux de densité et à repérer d'autres habitats convenables qui n'avaient pas été échantillonnés 

par les relevés au chalut. 
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INTRODUCTION 
 

In 2006, the United Nations General Assembly (UNGA) Resolution 61/105 on sustainable 

fisheries drew attention to the state of deep-water ecosystems and called upon member States and 

Regional Fisheries Management Organizations (RFMOs) to identify and protect vulnerable 

marine ecosystems (VMEs) in the high seas. To assist States and RFMOs in the implementation 

of Resolution 61/105, the Food and Agriculture Organization (FAO) of the United Nations 

provided examples of species groups, communities, and habitats considered to epitomize VMEs 

in the high seas (FAO, 2009). Among these are deep-water corals, sponge aggregations, and seep 

and hydrothermal vent communities. Through initiatives of the Northwest Atlantic Fisheries 

Organization (NAFO), the RFMO responsible for fisheries management in the high seas of the 

northwest Atlantic, considerable effort has been made towards mapping the distribution of deep-

water coral and sponge VMEs in this area (e.g. Murillo et al., 2011; Barrio-Frojan et al., 2012; 

Murillo et al., 2012; Beazley et al., 2013; Beazley et al., 2015; Knudby et al., 2013a,b; NAFO, 

2013; Kenchington, 2014; Kenchington et al., 2014). As a result, NAFO has closed 13 areas 

within its fishing footprint for the protection of VMEs until their review in 2020 (NAFO, 2015). 

 

Canada is legally obligated to take action in response to UNGA Resolution 61/105 and other 

international agreements to identify and protect sensitive benthic marine species and habitats. In 

2009, Fisheries and Oceans Canada (DFO) developed the Policy for Managing the Impacts of 

Fishing on Sensitive Benthic Areas. Guided by the Oceans Act, Fisheries Act, and other 

legislation for the management of fisheries and habitat resources, the Policy for Managing the 

Impacts of Fishing on Sensitive Benthic Areas called for the development of an Ecological Risk 

Analysis Framework to analyze the impacts of commercial, recreational, and Aboriginal fisheries 

on sensitive benthic habitat and species both within and outside Canada's 200 nautical mile 

Exclusive Economic Zone (EEZ). The policy outlined a two-step process for identifying 

Sensitive Benthic Areas: 1) determination of ecological or biological significance of the area, 

and 2) determination of the sensitivity of the area to proposed or ongoing fishing activity. The 

policy specifically highlights the need for improved knowledge on the location and type of 

benthic species, particularly in frontier areas, i.e., areas where no current fishing activity takes 

place and little or no available information on the benthic habitat, communities, or species. Due 

to the high level of uncertainty, frontier areas receive a higher level of risk aversion in order to 

reduce the potential impacts of fishing activities. 

 

In 2013, DFO identified fifteen Ecologically or Biologically Significant Areas (EBSAs) in the 

Newfoundland and Labrador Shelves Bioregion (DFO, 2013), a Large Ocean Management Area 

(LOMA) that lies off the northeast coast of Newfoundland and the coast of Labrador. Three of 

these EBSAs are in coastal areas, seven in offshore areas on the outer banks and slope, four 

straddle both inshore and offshore regions, and one that is considered a transitory EBSA that 

follows the southern extent of pack ice. Additionally, eleven EBSAs were identified within the 

Placentia Bay-Grand Banks LOMA that lies south of the Newfoundland and Labrador Shelves 

Bioregion (Templeman, 2007). Several biological and oceanographic layers were considered to 

help evaluate and identify these EBSAs, however most were designated based on the aggregation 

of one or more important species (DFO, 2013). It was recognized that survey coverage in these 

areas was limited temporally and spatially and that the addition of new data could result in 

further EBSA designation and/or refinement to current EBSA boundaries, highlighting the need 
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for increased knowledge on the distribution of species for use in oceans planning and 

management processes. 

 

Kenchington (2014) compiled information on marine benthic species and habitats occurring on 

the Scotian Shelf that are recognized in other jurisdictions as meeting EBSA or similar criteria. 

Many of these areas have the same or similar species groups as are found in Newfoundland and 

Labrador.  Fourteen structure-forming, biogenic habitats were identified, including those formed 

by aggregations of sponges and deep-water corals. In the Newfoundland region, archiving of 

deep-water coral collections began in 2001 (Campbell and Simms, 2009). A core research 

program on deep-water corals led by DFO and Memorial University was significantly expanded 

in 2005 through funding from DFO’s International Governance Strategy (IGS) Program. As a 

result, several works (e.g. Edinger et al., 2007; Hamoutene et al., 2007; Wareham and Edinger, 

2007; Sherwood et al., 2008; Gilkinson and Edinger, 2009; Sherwood and Edinger, 2009; Hamel 

et al., 2010; Sun et al., 2010; Edinger et al., 2011; Mercier et al., 2011a,b; Sherwood et al., 2011; 

Baker et al., 2012a,b; Edinger and Sherwood, 2012) and a multi-disciplinary cruise that collected 

in situ, high-resolution remotely operated vehicle (ROV) camera and photo data along the 

continental slopes of Newfoundland in 2007 significantly improved our knowledge of the 

distribution of deep-water corals in the Newfoundland and Labrador Region. However, 

knowledge gaps still exist, particularly in the northern portion of the Newfoundland and 

Labrador Shelves Bioregion along the NAFO 2G-0B border (Wareham, 2009; Wareham et al., 

2010) and in deeper waters beyond the continental shelf and slope (DFO, 2013). 

 

Species distribution modelling (SDM) tools are becoming more widely considered in fisheries 

and habitat management processes for the identification of areas containing species and habitats 

of biological or ecological importance. SDMs can be used to predict the distribution of a species 

or group of species in unsampled areas based on their relationship with the environment in 

sampled areas. A number of different modelling approaches are currently available (see Guisan 

and Zimmerman (2000) for a review). Included in these are a series of non-parametric 

techniques, amongst which random forest (RF; Breiman, 2001) is considered one of the more 

superior methods (Cutler et al., 2007). SDMs using random forest have been recently applied in 

the northwest Atlantic to predict the distribution of sponge grounds as determined using a 

biomass threshold applied to research vessel trawl catch data (Knudby et al., 2013a). Unsampled 

areas along the Newfoundland and Labrador slopes were identified as having a moderate/high 

presence probability of sponge grounds. Random forest was also used to model black corals, 

large gorgonian corals, and sea pens within the NAFO Regulatory Area (see Knudby et al., 

2013b). To our knowledge, SDM techniques have not been applied previously to deep-water 

corals within Canadian waters off Newfoundland and Labrador. Such models would serve to fill 

gaps in the distribution of these organisms and to complement other tools for the identification of 

significant concentrations of corals and sponges. 

 

Here, we employed random forest models to predict the probability of occurrence and biomass of 

sponges, sea pens, and large and small gorgonian corals across the Newfoundland Marine 

Protected Area (MPA) Network Planning Area (herein referred to as the ‘Newfoundland and 

Labrador Region’), which combines the spatial extent of both the Placentia Bay-Grand Bank and 

Newfoundland and Labrador Shelves LOMAs. Data from DFO research vessel multispecies 

surveys, DFO/industry northern shrimp surveys, and Spanish groundfish surveys were used. We 



 

 

3 

 

utilized an extensive suite of environmental predictor variables that were compiled specifically 

for the purposes of SDM in this region. With the exception of small gorgonian corals, these 

taxonomic groups are also considered benthic EBSA's as identified in Kenchington (2014), and 

all groups are considered VME indicators by NAFO (NAFO, 2013). Aside from providing 

continuous prediction maps for the entire Newfoundland and Labrador Region that will be useful 

in ecosystem management decision-making processes, the results in this report could be used to 

refine the outer boundaries of the significant concentrations as identified by kernel density 

estimation (Kenchington et al., 2016) and identify new areas that are not sampled by the trawl 

surveys. 

 

 

MATERIAL AND METHODS 

 

Study Area 

 
The full spatial extent of DFO’s Newfoundland and Labrador LOMA (termed the 

‘Newfoundland and Labrador (NL) Region’ herein) was used as the boundary for species 

distribution modelling in this report (Figure 1). This extent is delimited by the 200 nautical mile 

EEZ in the east, and DFO’s Maritimes Region and Central and Arctic administrative boundaries 

in the southwest and north, respectively. A 20-km buffer was placed around all land to avoid its 

inclusion in the models. The total area covered in the study extent is approximately 1,012,900 

km
2
 based on a NAD 1983 UTM Zone 21N projection. 
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Figure 1. Extent of the boundary used for species distribution modelling (grey polygon) in the 

Newfoundland and Labrador Region. Place names are indicated on the map along with current 

closure areas within the Region. 

 

Environmental Data Layers 

 
Sixty-six environmental variables derived from various sources and native spatial resolutions 

were used as predictor variables in the random forest models (Table 1). Variables were chosen 

based on their availability and assumed relevance to the distribution of benthic fauna. 

Bathymetry was derived from the Canadian Hydrographic Service (CHS) Atlantic Bathymetry 

Compilation (ABC). This data is the highest resolution bathymetry available for the entire study 

area. In the Newfoundland and Labrador Region the data are resolved to 15 arc-seconds which is 

equivalent to approximately 500 m. Slope in degrees was derived from the depth raster using the 

‘Slope’ tool in ArcMap’s Spatial Analyst toolbox, ArcMap version 10.2.2 (ESRI, 2011). All 

other environmental variables were derived from long-term modelled oceanographic or remote-
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sensing data and were spatially interpolated across the study area using ordinary kriging in 

ArcMap. Specific details on the methods used for the spatial interpolation of these variables are 

documented in a separate technical report (in prep., although see Beazley et al., 2016b for 

information on the same environmental data sources and variables for the Gulf of St. Lawrence). 

Only variables that were spatially interpolated with reasonable confidence were used in this 

report, and a number of variables (e.g., dissolved oxygen, silicate) were not considered. All 

predictor layers were displayed in raster format with geographic coordinates using the WGS 

1984 datum and a ~0.015º cell size (approximately equal to 1 km horizontal resolution in the 

Newfoundland and Labrador Region). 

 

Response Data 

 
Species composition, as determined at sea, of the four taxonomic groups modelled in this report 

is presented in Table 2. These are presented for purposes of re-extracting the data and should not 

be considered as taxonomically certain. For each group, presence-absence records were derived 

from catch data from three different sources: 1) DFO research vessel multispecies trawl surveys 

conducted on the CCGS Needler, Templeman or Teleost, 2) DFO/industry Northern Shrimp 

Survey conducted on fishing vessels Cape Ballard, Aqviq, or Kinguk, and 3) Spanish research 

vessel groundfish trawl surveys conducted on the RV Vizconde de Eza. All tows were conducted 

following a stratified random design using Campelen trawl gear. DFO invertebrate catch data 

were provided by DFO’s Newfoundland and Labrador Region where they are archived and 

managed. Spanish groundfish catch data were provided by the Instituto Español de Oceanografía 

(IEO) based in Vigo, Spain. Data were available from 1995 to 2015 for the sponges, and from 

2003 to 2015 for all other taxonomic groups. Absence records were created from null (zero) 

catches that occurred in the same surveys.  
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Table 1. Summary of the 66 environmental variables used as predictor variables in random forest modelling. N/A = Not Applicable. 

Variable Data source 
Temporal 

range 
Unit 

Native 

resolution 

Depth CHS-ABC N/A metres 15 arc-sec 

(~500 m) 

Slope CHS-ABC N/A degrees 15 arc-sec 

(~500 m) 

     Bottom Salinity Mean GLORYS2V1 1993 - 2011 N/A ¼ º  

Bottom Salinity Average Minimum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Bottom Salinity Average Maximum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Bottom Salinity Average Range  GLORYS2V1 1993 - 2011 N/A ¼ º 

     Bottom Temperature Mean GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Minimum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Maximum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Range  GLORYS2V1 1993 - 2011 ºC ¼ º 

     Bottom Current Speed Mean GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Minimum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Maximum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Range GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

     Bottom Shear Mean GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Minimum GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Maximum GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Range GLORYS2V1 1993 - 2011 Pa ¼ º 

     Surface Salinity Mean GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Minimum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Maximum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Range  GLORYS2V1 1993 - 2011 N/A ¼ º 

     

Surface Temperature Mean GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Minimum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Maximum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Range  GLORYS2V1 1993 - 2011 ºC ¼ º 
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Surface Current Speed Mean GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Minimum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Maximum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Range  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

     Maximum Average Mixed Layer Depth Fall  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Winter  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Spring  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Summer  GLORYS2V1 1993 - 2011 metres ¼ º 

     Fall Chlorophyll a Mean SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Fall Chlorophyll a Minimum SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Fall Chlorophyll a Maximum SeaWiFS Level-3, NASA’s OceanColor  2001 - 2010 mg m
-3

 9 km 

Fall Chlorophyll a Range SeaWiFS Level-3, NASA’s OceanColor  2001 - 2010 mg m
-3

 9 km 

     Spring Chlorophyll a Mean SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Spring Chlorophyll a Minimum SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Spring Chlorophyll a Maximum SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Spring Chlorophyll a Range SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Summer Chlorophyll a Mean SeaWiFS Level-3, NASA’s OceanColor  2001 - 2010 mg m
-3

 9 km 

Summer Chlorophyll a Minimum SeaWiFS Level-3, NASA’s OceanColor  2001 - 2010 mg m
-3

 9 km 

Summer Chlorophyll a Maximum SeaWiFS Level-3, NASA’s OceanColor  2001 - 2010 mg m
-3

 9 km 

Summer Chlorophyll a Range SeaWiFS Level-3, NASA’s OceanColor  2001 - 2010 mg m
-3

 9 km 

     Annual Chlorophyll a Mean SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Annual Chlorophyll a Minimum SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Annual Chlorophyll a Maximum SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

Annual Chlorophyll a Range SeaWiFS Level-3, NASA’s OceanColor 2001 - 2010 mg m
-3

 9 km 

     Fall Primary Production Mean SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Fall Primary Production Average Minimum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Fall Primary Production Average Maximum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Fall Primary Production Average Range SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 
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Spring Primary Production Mean SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Minimum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

 

Spring Primary Production Average Maximum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Range SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1

 

 
9 km 

     Summer Primary Production Mean SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Minimum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Maximum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Range SeaWiFS Level-3 with other input 

parameters  

2006 - 2010 mg C m
-2

 day
-1 9 km 

     Annual Primary Production Mean SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Minimum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Maximum SeaWiFS Level-3 with other input 

parameters 

2006 - 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Range SeaWiFS Level-3 with other input 

parameters  

2006 - 2010 mg C m
-2

 day
-1 9 km 
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Table 2. Species composition in each of the four taxonomic groups modelled using random 

forest. Also shown are the species/taxon codes associated with data entry of the DFO 

multispecies and northern shrimp survey records. *Indicates taxon listed in Spanish surveys. 

 

Taxonomic 

Group 
Species/Taxon  Taxon Code 

Sponges  Porifera 1101 

Sea Pens 

(Pennatulacea) 
Anthoptilum* 5117 

Anthoptilum grandiflorum 8937 

Distichoptilum gracile 8932 

Funiculina quandrangularis 8938 

Halipteris finmarchica 8936 

Pennatula aculeata 8934 

Pennatula cf. aculeata 8934 

Pennatula grandis 8935 

Pennatula cf. grandis 8935 

Pennatula phosphorea 8933 

Pennatula cf. phosphorea 8933 

Pennatula sp. 8954 

Pennatulacea 8901 

Sea pen sp. 8901 

Umbellula sp. 8972 

Large 

Gorgonian 

Corals 

Acanthogorgia*  5073 

Acanthogorgia armata 8907 

Acanthogorgia cf. armata 8907 

Keratoisis* 5070 

Keratoisis grayi 8906 

Paragorgia arborea 8903 

Paragorgia cf. arborea 8903 

Paramuricea sp. 8912 

Paramuricea placomus* 8940/5114 

Paramuricea cf. placomus 8940 

Plexauridae       5054 

Parastenella atlantica 8944 

Primnoa resedaeformis 8902 

Small 

Gorgonian 

Corals 

 

Acanella arbuscula 8909 

Anthothela grandiflora 8915 

Chrysogorgia cf. agassizii 8924 

Chrysogorgia sp. 8965 

Radicipes gracilis 8910 

Swiftia sp. 8959 
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The presence–absence records used in each random forest model (see below) were filtered so 

that only one presence or absence occurred within a single environmental data raster cell (~1 

km). Presence records took precedence over an absence record when both occurred within the 

same raster cell.  

 

Biomass (kg) data associated with the DFO and Spanish survey records were also extracted for 

use in regression random forest models. For each taxonomic group, weights were averaged 

across multiple tows occurring within the same environmental raster cell. 

 

 

Random Forest Modelling 

Random forest (Breiman, 2001), is a non-parametric machine learning technique, where multiple 

regression or classification trees (usually > 500) are built using random subsets of the data 

(Figure 2). Each tree is fit to a bootstrap sample of the biological observations (i.e. the ‘in-bag’ 

observations), and the best split at each node is selected based on a randomly-chosen subset of 

predictor variables. Regression trees are used for response variables consisting of continuous 

data and classification trees for categorical variables. RF is a robust statistical method requiring 

no distributional assumptions on covariate relation to the response in comparison to other 

classical statistical models such as generalized linear models (GLM) or generalized additive 

models (GAM).  

 

For classification with presence–absence response data, random forest can be used to predict the 

probability of a species’ presence in non-sampled areas by identifying areas with similar 

environmental conditions. For regression with biomass response data, random forest can be used 

to predict the species’ biomass in non-sampled areas by identifying areas with similar 

environmental conditions. The models were built in the statistical computing software package R 

(R Core Team, 2015) using the ‘randomForest’ package (Liaw and Wiener, 2002). Default 

values were used for RF parameters, using 500 trees.  

 

The catch records for some taxonomic groups are characterized by a higher number of absences 

relative to presences (i.e., unbalanced species prevalence). The distribution of these two classes 

may be biased spatially and/or environmentally across the study area. Classification accuracy in 

random forest is prone to bias when the categorical response variable is highly imbalanced (Chen 

et al., 2004). This is due to over-representation of the majority class in the bootstrap sample 

leading to a higher frequency in which the majority class is drawn, therefore skewing predictions 

in that favour (Evans et al., 2011). Several different approaches have been used to address 

imbalanced data: 1) assign a high cost to misclassification of the minority class, 2) down-sample 

the majority class, and 3) up-sample the minority class (Evans et al., 2011). Although a number 

of studies suggest a balanced modelling prevalence of 0.5 (McPherson et al., 2004; Liu et al., 

2005), this approach may result in a loss of information particularly for rare species, and may not 

be necessary when the model training data is reliable and not biased spatially and/or 

environmentally (Jiménez-Valverde and Lobo, 2006). Another widely-used approach is to adjust 

the threshold used to divide the probabilistic predictions of occurrence into discrete predictions 

of presence or absence, to match modelling prevalence (Liu et al., 2005). The latter approach has 

shown to produce constant error rates and optimal model accuracy measures compared to 

balancing modeling prevalence (Liu et al., 2005; Hanberry and He, 2013).  
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Figure 2. An example of a regression model tree (adapted from Kuhn and Johnson, 2013). 

 

For each taxonomic group we assessed the number of presences and absences and their spatial 

distribution across the study area. We employed two different modelling methods. The first 

method was to model the response data with a balanced species prevalence and threshold of 0.5 

(Model 1). Here the absence records were randomly down-sampled to match the number of 

presences prior to modelling. In the second method we used all presence and absence records and 

used species prevalence as the threshold (Model 2). The appropriateness of each modelling 

approach on the response data was assessed based on the model accuracy measures (see 

explanation below of model accuracy measures) and the spatial pattern of the predictions of 

presence probability in relation to the response data.  

Model Evaluation 

Presence-Absence Response Data – Classification Model  

Accuracy measures were derived from validated data using 10-fold cross validation (10 

resamples over which performance estimates were obtained). In 10-fold cross validation the 

 

Condition 1b 

Split 4 

Condition 4a Condition 4b 

 Leaf 7  Leaf 8 

Condition 1a 

Split 1 

Condition 2b Condition 2a 

 Leaf 2  Leaf 5  Leaf 4 

Split 3 

Condition 3b Condition 3a 

Split 2 
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response data are randomly split into 10 equal-sized groups and the model is trained on a 

combination of 9, while validated on the remaining group.  

 

Three measures of accuracy were used to assess model performance: 1) sensitivity, 2) specificity, 

and 3) AUC, or Area Under the Receiver Operating Curve. In a classification model with two 

classes (e.g. presence and absence), there are four possible predicted outcomes: 1) true positive, 

where observed presences are predicted as presences, 2) false negative, where observed 

presences are predicted as absences, 3) true negative, where observed absences are predicted as 

absences, and 4) false positive, where observed absences are predicted as presences (Fawcett, 

2006). Sensitivity measures the proportion of observed presences correctly predicted as presence 

(i.e. the true positive rate) (McPherson et al., 2004; Fawcett, 2006). Low sensitivity indicates 

high omission error (i.e. false negative rate). Specificity measures the proportion of observed 

absences correctly predicted as absence (i.e. the true negative rate). Low specificity indicates 

high commission error (i.e. the false positive rate). Both sensitivity and specificity are derived 

from a two-by-two confusion matrix of the tabulated predicted outcomes.  

 

The AUC is a threshold-independent measure of model accuracy that is calculated from the 

combination of true positive rate (sensitivity) and false positive rate (1 – specificity), and equals 

the probability that the model will rank a randomly-chosen presence instance higher than a 

randomly-chosen absence instance (Fawcett, 2006). Its value ranges from 0 to 1, with values 

larger than 0.5 indicating performance better than random (Fawcett, 2006). It was calculated 

using 10-fold cross validation.  

 

For models generated using a balanced species prevalence and threshold of 0.5, 10 data subsets 

were created with same number of presence and absences (balanced data) and 10 models were 

run. AUC was determined by averaging AUC values between folds within each run. The model 

with the highest average AUC was considered the most accurate in predicting the validated data 

and was used as the final model in which predicted presence probabilities of the response data 

were generated. The predicted outcomes from the two-by-two confusion matrices were summed 

across all 10 folds to give a complete confusion matrix for each model from which sensitivity 

and specificity were calculated (resulting in 10 confusion matrices, one for each data subset). For 

models generated on unbalanced data but with a threshold equal to species prevalence, only one 

model was considered and the AUC was determined from each of the 10 validated datasets by 

averaging all the AUC values between folds. The predicted outcomes from the two-by-two 

confusion matrices were summed across all 10 model folds to give one confusion matrix from 

which sensitivity and specificity were calculated.  

Biomass Response Data – Regression Model 

Models were validated using 10-fold cross validation, whilst maintaining the range of biomass 

values in each split. Data were split using the createFolds function in R. This function performs 

stratified partitioning into k groups in order to evenly distributed the biomass within splits. 

Models were built using each calibrated and validated dataset and accuracy measures were 

calculated for each corresponding dataset. The accuracy measures used to validate the models 

included the goodness-of-fit statistic R
2
, the root-mean-square error (RMSE) value and the 

percentage of variance explained. RMSE was normalized to a percentage of the range of 

observed biomass values (ymax – ymin) for each specific response (NRMSE) to facilitate the 
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comparison between responses in the different models. Cross validation gives an average of the 

accuracy measures used, but can also be used to estimate the variability around the mean to 

evaluate the stability of the model fit, and to check for the arbitrary effects from subsampling 

data for calibrate and validate the model. 

Model Extrapolation 

The spatial extent of the Newfoundland and Labrador Region reaches far beyond the continental 

shelf and slope, down to ~4360 m depth. Our data observations are limited to depths above 

~1600 m. Extrapolation of model predictions to areas outside of the range of data observations 

may produce unreliable predictions in those areas (Elith et al., 2010). Random forest models 

average the decision across regression trees to predict piecewise constant functions, giving a 

constant value for inputs falling under each leaf. When extrapolating outside the domain of the 

training data, where different physical conditions from those used to train the model likely exist, 

random forest models predict the same value as they would for the closest value in the tree for 

which they had training data (Breiman et al., 1984). For each random forest model, we highlight 

those areas within the study extent where model predictions are extrapolated. We define areas of 

extrapolation as those areas where at least one environmental variable has values above or below 

its sampled range.  

Ecological Interpretation 

Ecological interpretation of the models was aided by predictor variable importance measures and 

partial dependence plots generated from the final model. In classification random forest, variable 

importance is measured as the mean decrease in Gini value, otherwise known as Gini impurity. 

When the response data are split into two child nodes based on a randomly-chosen variable, the 

data in the two descendent nodes are more homogeneous than that of the parent node. This 

difference in homogeneity between parent and child nodes is measured by the Gini index, where 

the increase in homogeneity equals a decrease in Gini value. The sum of all decreases in Gini 

index for each variable in each tree is averaged across all trees in the model ‘forest’ and then 

across all 10 repetitions of each model fold. The variable with the highest mean decrease in Gini 

value, or in other words, the variable that was used to split the data at the highest number of 

nodes, is considered the most important variable in the model.   

 

Variable importance in regression random forest is measured by the mean decrease in the 

residual sum of squares when the variable is included in a tree split. Partial dependence plots 

using the partialPlot function in R were generated for the 6 highest variable importance scores. 

Partial dependence plots show the relationship between a particular predictor variable and log-

transformed predicted probabilities of presence (for classification models) or the biomass 

regression function (for regression models),while the other predictor variables were held constant 

at their mean observed value and are useful in showing general trends in model accuracy’s 

dependence on the predictors (Herrick et al., 2013). For classification models, the y axis ranges 

from -∞ to ∞ and quantifies the log-odds of a positive classification for the total range of values 

in 𝓍. Log-odds are logarithmic transformations of the probabilities for values in 𝓍 (Hastie et al., 

2005). These values were transformed to the original presence probability scale using: 

 

p = exp(y) /(1 + exp(y))  
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where p = the probability of presence, and y is the log-odds of presence, the standard output from 

the partialPlot function. 

Alternative Prediction Models 

Generalized additive models (GAMs) were developed to predict the biomass distribution of each 

taxonomic group. GAMs were developed to compare to the random forest results and to 

determine whether predictions could be improved for the areas considered as extrapolated by 

random forest models. Methodology and results for the GAM models are presented in Appendix 

1. 

 

 

RESULTS 
 

Sponges (Porifera) 

Data Sources and Distribution 

Sponge catch data was collected over a span of 21 years from 1995 to 2015 (Table 3) and 

consisted of 3860 presence and 10,980 absence records. Absence records were distributed 

relatively evenly across the study extent, while presence records were highly concentrated on 

Hamilton Bank and the Northeast Newfoundland Shelf and along the slopes of Newfoundland 

and Labrador (Figure 3). Few presence records were distributed on Grand Bank and Saglek Bank 

off northern Labrador. The highest mean biomass records (up to 1226.29 kg) occurred east of 

Hamilton Bank. Several, smaller mean catches occurred on the Labrador Slope off Saglek Bank. 
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Table 3. Number of presence and absence records of sponge catch recorded from DFO 

multispecies surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland 

and Labrador Region between 1995 and 2015. 

Year 
Total number of 

presences 

Total number of 

absences 

1995 45 149 

1996 126 624 

1997 145 426 

1998 117 658 

1999 83 584 

2000 62 570 

2001 45 637 

2002 30 363 

2003 60 369 

2004 77 602 

2005 114 714 

2006 200 689 

2007 206 612 

2008 299 521 

2009 348 548 

2010 383 578 

2011 310 586 

2012 379 567 

2013 391 553 

2014 355 384 

2015 85 246 
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Figure 3. Mean biomass (kg) per grid cell of sponge data recorded from DFO multispecies 

surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland and 

Labrador Region between 1995 and 2015. Also shown are absence records from the same 

surveys. 

Model 1 – Balanced Species Prevalence 

Model accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model 

on balanced species prevalence (3860 presences and 3860 absences; Model 1) are presented in 

Table 4. The average AUC was 0.788, indicating fair model performance. The highest AUC of 

0.792 was associated with Model Run 10. The sensitivity and specificity measures were 0.735 
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and 0.704, respectively. The confusion matrix of this model is also presented in Table 4. Class 

errors for both the presence and absence classes were relatively moderate (0.266 and 0.296, 

respectively). 

 

Table 4. Accuracy measures for all 10 model repetitions of 10-fold across validation of a random 

forest model of presence and absence of sponges within the Newfoundland and Labrador Region. 

The confusion matrix is shown for the model with the highest AUC value (Model Run 10) which 

is considered the optimal model for predicting the presence probability of sponges. 

 

Model Run AUC Sensitivity Specificity 

1 0.791 0.740 0.704 

2 0.787 0.738 0.704 

3 0.788 0.734 0.704 

4 0.786 0.728 0.700 

5 0.787 0.731 0.700 

6 0.786 0.743 0.700 

7 0.787 0.726 0.702 

8 0.791 0.740 0.702 

9 0.790 0.730 0.708 

10 0.792 0.735 0.704 

Mean 0.788 0.734 0.703 

SD 0.002 0.006 0.003 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n 
Class 

error 

 Absence Presence   

Absence 2718 1142 3860 0.296 

Presence 1025 2835 3860 0.266 

 

 

 

The presence probability prediction surface of sponges is presented in Figure 4. The highest 

predictions of presence probability occurred along on the Labrador Slope off Hamilton Bank and 

the Northeast Newfoundland Shelf and on the slope off Saglek Bank. Hamilton Bank and the 

Northeast Newfoundland Shelf had a moderate to high predicted presence probability of 

sponges, while Saglek and Nain Banks, and The Grand Banks of Newfoundland had low 

predictions of presence probability. Areas of high presence probability corresponded well with 

the spatial distribution of the presence records (Figure 5). However, the model appears to greatly 

extrapolate areas of presence probability beyond the location of presence observations, 

particularly in deeper waters off the Labrador Slope. 

 

Figure 6 shows the actual presence and absence data observations (3860 presences and 3860 

absences) used in the optimal run of Model 1. There appeared to be no additional spatial bias in 

the presence and absence records caused by random down-sampling of the absence data. Areas 
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of extrapolation are also shown in this figure. All deep water beyond the slope was considered 

extrapolated area. The area of high predicted presence probability of sponges off the Labrador 

Slope was considered extrapolated area. 
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Figure 4. Predictions of presence probability from the optimal random forest model of sponge 

presence and absence data collected from DFO multispecies surveys and DFO/industry northern 

shrimp surveys conducted in the Newfoundland and Labrador Region between 1995 and 2015. 
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Figure 5. Presence and absence observations and predictions of presence probability of the 

optimal random forest model of sponge presence and absence data recorded from DFO 

multispecies surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland 

and Labrador Region between 1995 and 2015. 
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Figure 6. Map of the 7720 data observations (3860 presences and 3860 absences) of sponges 

used in the optimal random forest Model 1 on balanced species prevalence. Also shown is the 

predicted presence probability (pres. prob.) of sponges generated from Model 1 and areas of 

model extrapolation. 

 

 

 

Of all 66 environmental predictor variables used in the model, Fall Primary Production Average 

Maximum was the most important for the classification of the sponge presence and absence data 

(Figure 7). The distribution of this variable was relatively normal prior to spatial interpolation 
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(Guijarro et al., in prep). Examination of the Q-Q plot revealed no strong spatial pattern to the 

points over- and under-predicted by a normal distribution. Fall Primary Production Average 

Maximum was followed closely by Surface Temperature Average Maximum and Depth. Bottom 

salinity and temperature variables ranked high in the model. Partial dependence plots for the top 

6 predictor variables are shown in Figure 8. The highest presence probability of sponges along 

the gradient in Fall Primary Production Average Maximum occurred between 300 and 600 mg C 

m
-2

 day 
-1

. Values in this range coincided with both over- and under-predicted values on the 

Labrador Shelf and Slope. These values are not of concern however, as there was a near-perfect 

fit between predicted and observed values in the kriging model, with only slight over-prediction 

of values between ~ 300 and 500 mg C m
-2

 day 
-1

. These over-predicted data points were still 

well within the range of high presence probability identified in the partial plot (Figure 8). 

 

 

Figure 7. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting sponge presence and absence data within 

the Newfoundland and Labrador Region. The higher the Mean Decrease in Gini Value the more 

important the variable is for predicting the response data. 
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Figure 8. Partial dependence plots of the top 6 predictors from the optimal random forest model 

of sponge presence and absence data collected within the Newfoundland and Labrador Region, 

ordered left to right from the top. Predicted presence probabilities are shown on the y-axis of 

each graph. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

Table 5 shows the accuracy measures for the random forest model using all sponge presence and 

absence data (3860 presences 10,980 absences; Model 2) and a threshold equal to species 

prevalence (0.26). The average AUC calculated from this model was slightly lower than that of 

Model 1 (0.786 compared to 0.788 of Model 1). Sensitivity and specificity measures of Model 2 

were also slightly lower than Model 1, and class error of the presence and absence classes was 

comparable to Model 1. 

 

The predicted sponge presence probability surface generated from Model 2 is shown in Figure 9. 

The areas of high predicted presence probability from Model 1 are greatly reduced in this model. 

The highest sponge presence probabilities still occurred off the Labrador Slope and slope off 

Saglek Bank. However, the model does not appear to extrapolate high probabilities far beyond 

the location of presence observations (Figure 10), likely due to the inclusion of all absence 

records in the model. Figure 11 depicts the classification of sponge presence probability into 

presence and absence categories based on the prevalence threshold of 0.26. In this map, all 

presence probability values generated from Model 2 greater than 0.26 were classified as 

presence, while values less than 0.26 were classed as absence. With the exception of Nain and 

Saglek Banks, most of the shelf and slopes off Labrador were classified as sponge presence, 

while most of The Grand Banks of Newfoundland was classified as sponge absence. 

 

Table 5. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model presence and absence of sponges within the Newfoundland and Labrador Region. 

Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity. 

 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.773  Absence Presence     

2 0.782 Absence 7728 3252 10980 0.296 0.729 0.704 

3 0.792 Presence 1045 2815 3860 0.271   

4 0.787        

5 0.791       

6 0.776       

7 0.788       

8 0.803       

9 0.776       

10 0.797       

Mean 0.786       

SD 0.010       
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Figure 9. Predictions of presence probability from the unbalanced random forest model of 

sponge presence and absence data collected from DFO multispecies surveys and DFO/industry 

northern shrimp surveys conducted in the Newfoundland and Labrador Region between 1995 

and 2015. 

 

 

 

 

 



 

 

26 

 

Figure 10. Presence and absence observations and predictions of presence probability of the 

unbalanced random forest model of sponge presence and absence data recorded from DFO 

multispecies surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland 

and Labrador Region between 1995 and 2015. 
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Figure 11. Predicted distribution (Pred. Dist.) of sponges in the Newfoundland and Labrador 

Region based on the prevalence threshold of 0.26 of sponge presence and absence data used in 

Model 2. Also shown are the areas of model extrapolation. Grey polygon may appear dark red or 

blue when overlain on the presence-absence surface. 

 

Like Model 1, Fall Primary Production Average Maximum and Depth were the top two 

predictors of the sponge presence and absence data in Model 2 (Figure 12). Depth was followed 

by Fall Primary Production Average Minimum and Surface Temperature Average Maximum. 

Partial dependence plots for the top 6 predictor variables are shown in Figure 13. Along the Fall 
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Primary Production Average Maximum gradient the highest sponge presence probabilities 

occurred between 300 and 600 mg C m
-2

 day 
-1

. Along the Depth gradient, presence probability 

was highest between 1000 and 1500 m. 

 

 

Figure 12. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

Value of the unbalanced random forest model of sponge presence and absence data within the 

Newfoundland and Labrador Region. The higher the Mean Decrease in Gini Value the more 

important the variable is for predicting the response data. 
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Figure 13. Partial dependence plots of the top 6 predictors from the random forest model of 

sponge presence and absence data collected within the Newfoundland and Labrador Region, 

ordered left to right from the top. Presence probability is shown on the y-axis.
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Model Selection 

The model using an unbalanced species prevalence and threshold equal to 0.26 (Model 2) was 

chosen as the best predictor of sponge distribution in the Newfoundland and Labrador Region. 

Although model accuracy measures were comparable between both models, Model 1 (balanced 

species prevalence) was considered a poor predictor of sponge presence probability due to its 

excessive extrapolation of high presence probabilities beyond the location of presence data.  

Prediction of Sponge Biomass Using Random Forest 

The accuracy measures of the regression random forest model on mean sponge biomass per grid 

cell are presented in Table 6. The highest R
2 

value was 0.510, while the average was 0.360 ± 

0.108 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.026 ± 0.006 SD. 

This model explained a high percentage of variance in the biomass data (average = 31.29% ± 

1.92 SD). 

 

Table 6. Accuracy measures from 10-fold cross validation of random forest model of average of 

sponge biomass (kg) per grid cell recorded from DFO multispecies surveys and DFO/industry 

northern shrimp surveys conducted in the Newfoundland and Labrador Region between 1995 

and 2015. RMSE = Root-Mean-Square Error; NRMSE = Normalized Root-Mean-Square Error. 

 

 

 

 

 

 

 

Model Fold R
2
 RMSE NRMSE 

Percent (%) 

variance explained 

1 0.425 28.072 0.023 29.59 

2 0.455 27.952 0.023 30.73 

3 0.455 25.400 0.021 29.97 

4 0.380 26.382 0.022 28.27 

5 0.280 35.440 0.029 32.44 

6 0.354 41.509 0.034 32.30 

7 0.154 33.758 0.028 32.86 

8 0.510 27.364 0.022 29.55 

9 0.313 44.809 0.037 34.08 

10 0.272 26.819 0.022 33.15 

Mean 0.360 31.756 0.026 31.29 

SD 0.108 6.864 0.006 1.92 
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Figure 14. Predictions of biomass (kg) of sponges from catch recorded in DFO multispecies 

surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland and 

Labrador Region between 1995 and 2015. 

 

Figures 14 and 15 show the predicted biomass surface of sponges. The entire shelf was predicted 

to have low (> 0 – 12.03 kg) sponge biomass. The slope off Saglek Bank had the highest 

predicted sponge biomass, reaching up to 763.92 kg. This area of high biomass was associated 

with a cluster of high mean catches (Figure 15). Interestingly, the slope off Hamilton Bank 

where a large cluster of high mean biomass catches occurred (Figure 15) appeared to be under-

predicted by the model. 
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Figure 15. Predictions of biomass (kg) of sponges from catch recorded in DFO multispecies 

surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland and 

Labrador Region between 1995 and 2015. Also shown are the mean biomass values per grid cell 

and areas of model extrapolation. 

 

Of the 66 environmental variables used in the model, Summer Primary Production Average 

Minimum was the most important (Figure 16). This variable displayed a near-normal distribution 

prior to spatial interpolation (Guijarro et al., in prep.). Examination of the Q-Q plot revealed a 

spatial pattern to those data points over- and under-predicted by a normal distribution, with over-
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predicted points located mainly in the northern portion of the study extent on Nain and Saglek 

Banks, and under-predicted points located on The Grand Banks of Newfoundland and the 

Northeast Newfoundland Shelf. Summer Primary Production Average Minimum was followed 

more distantly by Spring Primary Production Average Maximum, Bottom Salinity Average 

Range, and the remaining variables in the model. The partial dependence of sponge biomass on 

the top 6 most important variables is shown in Figure 17. Predicted biomass was highest at the 

lowest Summer Primary Production Average Minimum values (< 500 mg C m
-2

 day 
-1

). Values 

in this range coincided with those data points under-predicted by a normal distribution. The fit 

between predicted and observed values in the kriging model was good, with slight over-

prediction of data points in that range. Some points could therefore be predicted higher than their 

true values and slightly outside the range of highest predicted biomass identified in the partial 

plot (Figure 17). 

 

Figure 16. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on sponge mean biomass data 

averaged per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the more 

important the variable is for predicting the response data. 
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Figure 17. Partial dependence plots of the top six predictors from the random forest model of 

sponge biomass data collected within the Newfoundland and Labrador Region between 1995 and 

2015, ordered left to right from the top. Predicted biomass is shown on the y-axis of each graph. 
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Sea Pens (Pennatulacea) 

Data Sources and Distribution 

 
Sea pen catch data was collected over a span of 13 years from 2003 to 2015 and consisted of 946 

presence and 4773 absence records (Table 7). Absence records were distributed relatively evenly 

across the study extent (Figure 18). However, presence records had a highly uneven distribution 

and were concentrated on the slopes off Newfoundland and off Nain and Saglek Banks in 

northern Labrador. The highest mean biomass records (up to 40 kg) were located in the 

Laurentian Channel. A single large catch also occurred on Nain Bank off Labrador. 

 

Table 7. Number of presence and absence records of sea pens catch recorded from DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 

 

Year 
Total of number 

of presences 

Total of number of 

absences 

2003 1 81 

2004 9 225 

2005 17 275 

2006 54 442 

2007 113 430 

2008 100 406 

2009 115 411 

2010 101 593 

2011 94 478 

2012 95 451 

2013 101 478 

2014 85 361 

2015 61 142 
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Figure 18. Mean biomass (kg) per grid cell of sea pen catch data recorded from DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Model 1 – Balanced Species Prevalence 

Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model on 

balanced species prevalence (946 presences and 946 absences; Model 1) are presented in Table 

8. The average AUC was 0.928, indicating excellent model performance. The highest mean AUC 

of 0.935 was associated with Model run 10 and is therefore considered the optimal model for the 

prediction of the sea pen response data. The sensitivity and specificity measures of this model 

were 0.865 and 0.850, respectively. The confusion matrix of the optimal model is also presented 

in Table 8. Class error for both the presence and absence classes was low (0.135 and 0.150, 

respectively). 

 

Table 8. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a random 

forest model of presence and absence of sea pens within the Newfoundland and Labrador 

Region. The confusion matrix is shown for the model with the highest AUC value (Model Run 

10) which is considered the optimal model for predicting the presence probability of sea pens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence probability prediction surface of sea pens is presented in Figure 19. The highest 

predictions of presence probability occurred in the Laurentian Channel and along the southwest 

and northeast slopes of the Grand Banks of Newfoundland. The slope off Nain was also 

predicted to have moderate to high presence probability of sea pens. In general the shelf was 

predicted to have low presence probability of sea pens. Areas of high presence probability 

corresponded well with the spatial distribution of presence records (Figure 20), with little 

extrapolation beyond the location of these data points. 

Model Run AUC Sensitivity Specificity 

1 0.932 0.867 0.848 

2 0.927 0.864 0.852 

3 0.927 0.868 0.853 

4 0.930 0.854 0.856 

5 0.927 0.856 0.844 

6 0.921 0.845 0.832 

7 0.927 0.851 0.840 

8 0.925 0.862 0.836 

9 0.930 0.856 0.851 

10 0.935 0.865 0.850 

Mean 0.928 0.859 0.846 

SD 0.004 0.008 0.008 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n 
Class 

error 

 Absence Presence   

Absence 804 142 946 0.150 

Presence 128 818 946 0.135 
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The actual presence and absence data observations (946 presences and 946 absences) used in the 

optimal run of Model 1 showed some slight spatial bias across the study area (Figure 21).  Also 

shown in this figure are the areas of model extrapolation. All deep water beyond the continental 

slope was considered extrapolated, with a few small pockets distributed across the shelf. 
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Figure 19. Predictions of presence probability from the optimal random forest model of sea pen 

presence and absence data collected from DFO multispecies surveys, DFO/industry northern 

shrimp surveys, and Spanish groundfish trawl surveys conducted in the Newfoundland and 

Labrador Region between 2003 and 2015. 
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Figure 20. Presence and absence observations and predictions of presence probability of the 

optimal random forest model of sea pen presence and absence data collected from DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 21. Map of the 1892 data observations (946 presences and 946 absences) of sea pens 

used in the optimal random forest Model 1. Also shown is the predicted presence probability 

(pres. prob.) of sea pens generated from Model 1 and areas of model extrapolation. 

 

Of all 66 environmental predictor variables used in the model, Bottom Temperature Average 

Minimum was the most important for the classification of the sea pen presence and absence data 

(Figure 22). Prior to spatial interpolation, this variable displayed a bimodal distribution (Guijarro 

et al., in prep.). Examination of the Q-Q plot revealed a spatial pattern to the data points over- 

and under-predicted by a normal distribution, with over-predicted points located mainly on The 
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Northeast Newfoundland Shelf and in the deep waters off the Labrador Slope, and under-

predicted points located along the coast, on Grand Bank, and along a narrow band over the 

slopes of Newfoundland and Labrador. Bottom Temperature Average Minimum was followed by 

Bottom Salinity Average Maximum, Bottom Salinity Average Minimum, and Depth. Partial 

dependence plots for the top 6 predictor variables are shown in Figure 23. Presence probability 

of sea pens was highest between 3 and 6ºC along the gradient in Bottom Temperature Average 

Minimum. Values in this range coincided with under-predicted points located along a narrow 

band over the slopes of Newfoundland and Labrador. The fit between predicted and observed 

values in the kriging model was fair, with under-prediction of values between 3 and 6ºC. Some 

points could therefore be predicted lower than their true values and slightly outside the range of 

the highest predicted presence probability identified in the partial plot (Figure 23). 

 

Figure 22. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting sea pen presence and absence data within 

the Newfoundland and Labrador Region. The higher the Mean Decrease in Gini value the more 

important the variable is for predicting the response data. 
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Figure 23. Partial dependence plots of the top 6 predictors from the optimal random forest model 

of sea pen presence and absence data collected within the Newfoundland and Labrador Region, 

ordered left to right from the top. Predicted presence probabilities are shown on the y-axis of 

each graph. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

Table 9 shows the accuracy measures for the random forest model using all sea pen presence and 

absence data (946 presences and 4773 absences; Model 2) and a threshold equal to species 

prevalence (0.17). The average AUC calculated from this model was slightly lower than that of 

Model 1 (0.926 compared to 0.928 of Model 1). Sensitivity and specificity were also slightly 

lower than Model 1. 

 

The surface of predicted presence probability of sea pens generated from Model 2 is presented in 

Figure 24. The areas of high predicted presence probability identified in Model 1 were much 

reduced in Model 2, particularly along the slope off Nain Bank. There was good spatial 

congruence between areas of high presence probability and presence observations, with little 

extrapolation beyond these data points (Figure 25). Figure 26 depicts the classification of sea pen 

presence probability into presence and absence categories based on the prevalence threshold of 

0.17. In this map, all presence probability values generated from Model 2 that were greater than 

0.17 were classified as presence, while values less than 0.17 were classed as absence. Much of 

the continental shelf was classified as absence of sea pens. The Laurentian Channel and much of 

the slopes were classified as presence of sea pens. 

 

Table 9. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model presence and absence of sea pens within the Newfoundland and Labrador Region 

between 2003 and 2015. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity. 

 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.937  Absence Presence     

2 0.921 Absence 4030 743 4773 0.156 0.847 0.844 

3 0.927 Presence 145 801 946 0.153   

4 0.925        

5 0.925       

6 0.914       

7 0.932       

8 0.940       

9 0.927       

10 0.913       

Mean 0.926       

SD 0.009       
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Figure 24. Predictions of presence probability from the unbalanced random forest model of sea 

pen presence and absence data collected from DFO multispecies surveys, DFO/industry northern 

shrimp surveys, and Spanish groundfish trawl surveys conducted in the Newfoundland and 

Labrador Region between 2003 and 2015. 
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Figure 25. Presence and absence observations and predictions of presence probability from the 

unbalanced random forest model of sea pens presence and absence data collected from DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 26. Predicted distribution (Pred. Dist.) of sea pens in the Newfoundland and Labrador 

Region based on the prevalence threshold of 0.17 of sea pen presence and absence data used in 

Model 2. Also shown are the areas of model extrapolation. Grey polygon may appear dark red or 

blue when overlain on the presence-absence surface. 

 

The importance of the environmental predictor variables for predicting the presence probability 

of sea pens catch data is presented in Figure 27. Depth (a non-interpolated variable) was the most 

important variable for the classification of the sea pen presence and absence data. This variable 

was followed by Bottom Temperature Average Minimum, Bottom Salinity Average Minimum, 
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and Bottom Salinity Average Maximum. Partial dependence of the sea pen presence and absence 

data on the top 6 predictor variables is shown in Figure 28. Sea pen presence probability was 

highest between 500 m to 1500 m along the depth gradient. Along the gradient in Bottom 

Temperature Average Minimum, presence probability rapidly increased at ~3°C and remained 

high. 
 

 

Figure 27. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

Value of the unbalanced random forest model of sea pen presence and absence data within the 

Newfoundland and Labrador Region. The higher the Mean Decrease in Gini Value the more 

important the variable is for predicting the response data. 
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Figure 28. Partial dependence plots of the top 6 predictors from the unbalanced random forest 

model of sea pen presence and absence data collected within the Newfoundland and Labrador 

Region, ordered left to right from the top. Predicted presence probabilities are shown on the y-

axis of each graph. 
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Model Selection 

The random forest model using all available sea pen records and an unbalanced species 

prevalence and threshold equal to 0.17 (Model 2) was chosen as the best predictor of sea pen 

distribution in the Newfoundland and Labrador Region. Model 1 (balanced species prevalence) 

was considered a poor predictor of presence probability of sea pens due to its exaggeration of 

high presence probability beyond the location of presence data, particularly in the Laurentian 

Channel and slope off the Northeast Newfoundland Shelf. This phenomenon was likely due to 

random down-sampling of absence data.  

 

Prediction of Sea Pen Biomass Using Random Forest 

The accuracy measures of the regression random forest model on mean sea pen biomass per grid 

cell are presented in Table 10. The highest R
2
 value was 0.642, while the average was 0.376 ± 

0.202 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.018 ± 0.010 SD. 

This model explained a moderate percentage of variance in the biomass data (average = 28.74% 

± 3.25 SD). 

 

 

Table 10. Accuracy measures from 10-fold cross validation of random forest model of average 

of sea pen biomass (kg) per grid cell recorded from DFO multispecies surveys, DFO/industry 

northern shrimp surveys, and Spanish groundfish trawl surveys conducted in the Newfoundland 

and Labrador Region between 2003 and 2015. RMSE = Root-Mean-Square Error; NRMSE = 

Normalized Root-Mean-Square Error. 

 

Model Fold R
2
 RMSE NRMSE 

Percent (%) 

variance explained 

1 0.642 0.494 0.012 24.73 

2 0.475 1.479 0.037 25.58 

3 0.210 0.466 0.012 28.45 

4 0.099 0.466 0.012 31.28 

5 0.391 0.440 0.011 29.70 

6 0.405 0.490 0.012 31.15 

7 0.438 1.049 0.026 26.81 

8 0.048 1.251 0.031 35.40 

9 0.410 0.447 0.011 28.27 

10 0.640 0.503 0.013 25.99 

Mean 0.376 0.708 0.018 28.74 

SD 0.202 0.394 0.010 3.25 

 

 

 

Figures 29 and 30 show the predicted biomass surface of sea pens. The majority of the study 

extent was predicted to have low (> 0 – 0.1 kg) sea pen biomass. The highest predicted biomass 
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(up to 24.27 kg) occurred in a small area in the Laurentian Channel. This area of high biomass 

was associated with the cluster of high biomass values in that area (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Predictions of biomass (kg) of sea pens from catch recorded in DFO multispecies 

surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl surveys conducted 

in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 30. Predictions of biomass (kg) of sea pens from catch recorded in DFO multispecies 

surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl surveys conducted 

in the Newfoundland and Labrador Region between 2003 and 2015. Also shown are the mean 

biomass values per grid cell and areas of model extrapolation. 

 

The top 15 most important environmental variables for predicting sea pen biomass are shown in 

Figure 31. Maximum Average Winter Mixed Layer Depth was the most important variable in the 

model. Prior to spatial interpolation, this variable displayed a highly right-skewed distribution 

(Guijarro et al., in prep.). Examination of the Q-Q plot revealed a strong spatial pattern to those 
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data points over- and under-predicted by a normal distribution, with over-predicted points 

located along the coast and in deep waters off Nain and Saglek Banks, and under-predicted 

points located on Saglek Bank, in deep waters off Hamilton Bank and the Northeast 

Newfoundland Shelf, and along the slopes of Labrador. Maximum Average Winter Mixed Layer 

Depth was followed more distantly by Fall Primary Production Average Range and Surface 

Temperature Average Range. The partial dependence of sea pen biomass on the top 6 most 

important variables is shown in Figure 32. Predicted biomass was highest at the lowest 

Maximum Average Winter Mixed Layer Depth values (< 30 m), and then sharply decreased 

between ~ 30 and 50 m and then rapidly increased and plateaued at ~50 m. Values less than 30 m 

coincided with those over-predicted points along the Labrador coast, while data greater than 50 

m corresponded to both over- and under-predicted points in the deep water off the Labrador 

shelf. These values are not of particular concern however, as the fit between predicted and 

observed values in the kriging model was excellent, with only slight over-prediction at low 

values. 

 

Figure 31. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on sea pen mean biomass data 

averaged per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the more 

important the variable is for predicting the response data. 
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Figure 32. Partial dependence plots of the top six predictors from the random forest model of sea 

pen biomass data collected within the Newfoundland and Labrador Region between 2003 and 

2015, ordered left to right from the top. Predicted biomass is shown on the y-axis of each graph. 
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Large Gorgonian Corals 

Data Sources and Distribution 

Large gorgonian coral catch data was collected over a span of 13 years from 2003 to 2015 and 

consisted of 514 presence and 5651 absence records (Table 11). Absence records were 

distributed relatively evenly across the study extent (Figure 33). However, presence records had 

a highly uneven distribution and were concentrated mainly along the slopes of Newfoundland 

and Labrador, although some large gorgonian records were scattered across the shelf. The 

highest mean biomass records (up to 288.97 kg) were located on the slope off Saglek Bank off 

northern Labrador.  

 

Table 11. Number of presence and absence records of large gorgonian coral catch recorded from 

DFO multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 

 

Year 
Total of number 

of presences 

Total of number of 

absences 

2003 8 74 

2004 17 151 

2005 24 284 

2006 50 556 

2007 47 501 

2008 53 380 

2009 58 594 

2010 59 674 

2011 49 563 

2012 65 586 

2013 40 522 

2014 40 642 

2015 4 124 
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Figure 33. Mean biomass (kg) per grid cell of large gorgonian coral catch data recorded from 

DFO multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Model 1 – Balanced Species Prevalence 

Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model on 

balanced species prevalence (514 presences and 514 absences; Model 1) are presented in Table 

12. The average AUC was 0.8110, indicating good model performance. The highest mean AUC 

of 0.826 was associated with Model run 9 and is therefore considered the optimal model for the 

prediction of the large gorgonian coral response data. The sensitivity and specificity measures of 

this model were 0.722 and 0.790, respectively. The confusion matrix of the optimal model is also 

presented in Table 12. Class error for both the presence and absence classes was somewhat 

moderate (0.385 and 0.210, respectively). 

 

Table 12. Accuracy measures for all 10 model repetitions of 10 fold cross validation of a random 

forest model of presence and absence of large gorgonian corals within the Newfoundland and 

Labrador Region. The confusion matrix is shown for the model with the highest AUC value 

(Model Run 9) which is considered the optimal model for predicting the presence probability of 

large gorgonian corals. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence probability prediction surface of large gorgonian corals from Model 1 is presented 

in Figure 34. The highest predictions of presence probability occurred along of the northeast 

slope of Newfoundland and the Labrador Slope. Northern Saglek Bank had a high predicted 

presence probability of large gorgonian corals. These areas of high presence probability 

corresponded well with the spatial distribution of presence records (see Figure 35) although 

some extrapolation of high presence probabilities occurred beyond the location of presence data. 

Model Run AUC Sensitivity Specificity 

1 0.798 0.677 0.761 

2 0.825 0.720 0.767 

3 0.777 0.691 0.732 

4 0.826 0.728 0.784 

5 0.819 0.706 0.790 

6 0.801 0.687 0.749 

7 0.791 0.693 0.737 

8 0.826 0.737 0.776 

9 0.826 0.722 0.790 

10 0.821 0.712 0.772 

Mean 0.811 0.707 0.769 

SD 0.018 0.020 0.021 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n 
Class 

error 

 Absence Presence   

Absence 406 108 514 0.210 

Presence 143 371 514 0.385 
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The actual presence and absence data observations (514 presences and 514 absences) used in the 

optimal run of Model 1 showed some slight spatial bias across the study area, particularly along 

the slope (Figure 36). Also shown in this figure are the areas of model extrapolation. Deep water 

beyond the slope was considered extrapolated area. Smaller pockets of extrapolated area are 

distributed across the shelf and in coastal areas. 
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Figure 34. Predictions of presence probability from the optimal random forest model of large 

gorgonian coral presence and absence data collected from DFO multispecies surveys, 

DFO/industry northern shrimp surveys, and Spanish groundfish trawl surveys conducted in the 

Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 35. Presence and absence observations and predictions of presence probability of the 

optimal random forest model of large gorgonian coral presence and absence data collected from 

DFO multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 36. Map of the 1028 data observations (514 presences and 514 absences) of large 

gorgonian corals used in the optimal random forest Model 1 on balanced species prevalence. 

Also shown is the predicted presence probability (Pres. Prob.) of large gorgonian corals 

generated from Model 1 and areas of model extrapolation. 

 

Of all 66 environmental predictor variables used in the model, Bottom Salinity Average Range 

was the most important for the classification of the large gorgonian coral presence and absence 

data (Figure 37). Prior to spatial interpolation, this variable displayed a right-skewed distribution 

(Guijarro et al., in prep.). Examination of the Q-Q plot revealed a strong spatial pattern to those 
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data points over- and under-predicted by a normal distribution, with over-predicted points 

located mainly in the deep waters beyond the Labrador Shelf, and under-predicted points located 

along the Newfoundland and Labrador Slopes. Bottom Salinity Average Range was followed 

closely by Depth, Bottom Temperature Average Range, Bottom Salinity Average Minimum and 

Slope. Partial dependence plots for the top 6 predictor variables are shown in Figure 38. Along 

the Bottom Salinity Average Range gradient, the highest predicted presence probabilities 

occurred between 0 and 0.2. Values in this range coincided with both over- and under-predicted 

values near the shelf break and in the deep waters beyond. Most of this area is considered 

extrapolated by the model. The fit between predicted and observed values in the kriging model 

was relatively good, with only slight over-prediction of values between 0 and 0.2. Some points 

could therefore be predicted higher than their true values and slightly outside the range of highest 

presence probability identified in the partial plot (Figure 38). Along the Depth gradient, presence 

probability increased gradually beginning at ~ 400 m and then decreased slightly prior to 1500 

m. 

 

Figure 37. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting large gorgonian coral presence and absence 

data within the Newfoundland and Labrador Region. The higher the Mean Decrease in Gini 

value the more important the variable is for predicting the response data. 
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Figure 38. Partial dependence plots of the top 6 predictors from the optimal random forest model 

of large gorgonian coral presence and absence data collected within the Newfoundland and 

Labrador Region, ordered left to right from the top. Predicted presence probabilities are shown 

on the y-axis of each graph. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

Table 13 shows the accuracy measures for the random forest model on all large gorgonian coral 

presence absence data (514 presences 5651 absences; Model 2) and a threshold equal to species 

prevalence (0.08). The average AUC calculated from this model was slightly lower than that of 

Model 1 (0.806 compared to 0.811 of Model 1). Sensitivity and specificity were also slightly 

lower than Model 1. 

 

The surface of predicted presence probability of large gorgonian corals generated from Model 2 

is presented in Figure 39. The areas of high presence probability along the slopes were much 

reduced in this model. The highest predicted presence probability of large gorgonian corals 

occurred on the northeast slope off Saglek Bank where there was a large concentration of 

presence observations (Figure 40). Figure 41 depicts the classification of small gorgonian 

presence probability into presence and absence categories based on the prevalence threshold of 

0.08. In this map, all presence probability values generated from Model 2 that were greater than 

0.08 were classified as presence, while values less than 0.08 were classed as absence. The slopes 

of Newfoundland and Labrador are predicted as presence of large gorgonian corals. A number of 

small pockets of coral presence were scattered across the continental shelf.  

 

Table 13. Accuracy measures and confusion matrix from 10-fold cross validation from random 

forest model of presence and absence of large gorgonian corals collected within the 

Newfoundland and Labrador Region between 2003 and 2015. Observ. = Observations; Sensit. = 

Sensitivity, Specif. = Specificity. 

 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.852  Absence Presence     

2 0.794 Absence 4330 1321 5651 0.234 0.726 0.766 

3 0.784 Presence 141 373 514 0.274   

4 0.859        

5 0.818       

6 0.761       

7 0.748       

8 0.784       

9 0.854       

10 0.808       

Mean 0.806       

SD 0.039       
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Figure 39. Predictions of presence probability from the unbalanced random forest model of large 

gorgonian coral presence and absence data collected from DFO multispecies surveys, 

DFO/industry northern shrimp surveys, and Spanish groundfish trawl surveys conducted in the 

Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 40. Presence and absence observations and predictions of presence probability from the 

unbalanced random forest model of large gorgonian coral presence and absence data collected 

from DFO multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish 

trawl surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 41. Predicted distribution (Pred. Dist.) of large gorgonian corals in the Newfoundland 

and Labrador Region based on the prevalence threshold of 0.08 of large gorgonian presence and 

absence data used in Model 2. Also shown are the areas of model extrapolation. Grey polygon 

may appear dark red or blue when overlain on the presence-absence surface. 

 

 

The importance of the environmental predictor variables for predicting the presence probability 

of the large gorgonian coral catch data is presented in Figure 42. In this model, Depth (a non-

interpolated variable) was the most important variable for the classification of the large 
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gorgonian coral presence and absence data. This variable was followed by Bottom Temperature 

Average Range, Bottom Salinity Average Range, Bottom Salinity Average Minimum Average 

and Slope. Partial dependence of the large gorgonian coral presence and absence data on the top 

6 predictor variables is shown in Figure 43. Along the Depth gradient, presence probability of 

large gorgonian corals increased rapidly at ~ 500 m and plateaued at ~1000 m. Along the 

gradient in Bottom Temperature Average Range, the highest presence probability occurred at ~ 

0.5 °C. 

 

Figure 42. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

Value of the unbalanced random forest model of large gorgonian coral presence and absence data 

within the Newfoundland and Labrador Region. The higher the Mean Decrease in Gini Value the 

more important the variable is for predicting the response data. 
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Figure 43. Partial dependence plots of the top 6 predictors from the unbalanced random forest 

model of large gorgonian coral presence and absence data collected within the Newfoundland 

and Labrador Region, ordered left to right from the top. Predicted presence probabilities are 

shown on the y-axis of each graph. 
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Model Selection 

The random forest model using all available large gorgonian records and an unbalanced species 

prevalence and threshold equal to 0.08 (Model 2) was chosen as the best predictor of large 

gorgonian coral distribution in the Newfoundland and Labrador Region. Model 1 (balanced 

species prevalence) was considered a poor predictor of presence probability of large gorgonians 

due to its exaggeration of high presence probability beyond the location of presence data, 

particularly slopes off Labrador and the Northeast Newfoundland Shelf. This phenomenon is 

likely due to random down-sampling of the absence data.  

Prediction of Large Gorgonian Coral Biomass Using Random Forest 

The accuracy measures of the regression random forest model on mean large gorgonian coral 

biomass per grid cell are presented in Table 14. The highest R
2
 value was 0.690, while the 

average was 0.203 ± 0.218 SD. The average Normalized Root-Mean-Square Error (NRMSE) 

was 0.017 ± 0.012 SD. This model explained a low percentage of variance in the biomass data 

(average = 5.70% ± 3.34 SD). 

 

Table 14. Accuracy measures from 10-fold cross validation of random forest model of mean 

large gorgonian coral biomass (kg) per grid cell recorded from DFO multispecies surveys, 

DFO/industry northern shrimp surveys, and Spanish groundfish trawl surveys conducted in the 

Newfoundland and Labrador Region between 2003 and 2015. RMSE = Root-Mean-Square 

Error; NRMSE = Normalized Root-Mean-Square Error. 

 

 

 

 

 

 

 

Model Fold R
2
 RMSE NRMSE 

Percent (%) variance 

explained 

1 0.250 3.793 0.013 5.63 

2 0.195 6.593 0.023 5.79 

3 8.210 x 10
-5

 3.979 0.014 6.03 

4 0.022 4.499 0.016 1.59 

5 0.213 13.348 0.046 9.90 

6 0.049 6.406 0.022 7.65 

7 0.690 0.837 0.003 2.77 

8 0.448 3.004 0.010 0.48 

9 0.096 4.616 0.016 10.74 

10 0.065 0.850 0.003 6.39 

Mean 0.203 4.792 0.017 5.70 

SD 0.218 3.578 0.012 3.34 



 

 

71 

 

Figures 44 and 45 show the predicted biomass surface of large gorgonian corals. The majority of 

the spatial extent was predicted to have low (> 0 – 0.69 kg) large gorgonian biomass, even in 

areas where (> 0 – 25.09 kg) large gorgonian corals catch were recorded. The highest biomass 

prediction (reaching up to 175.14 kg) occurred on the slope off Saglek Bank. This area of high 

biomass was associated with a cluster of large biomass values (Figure 45). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Predictions of biomass (kg) of large gorgonian corals from catch recorded in DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 45. Predictions of biomass (kg) of large gorgonian corals from catch data recorded in 

DFO multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. Also 

shown are the mean biomass values per grid cell and areas of model extrapolation. 

 

The top 15 most important environmental variables for predicting large gorgonian coral biomass 

are shown in Figure 46. Summer Primary Production Average Minimum was the most important 

variable in the model. This variable displayed a near-normal distribution prior to spatial 

interpolation (Guijarro et al., in prep.). Examination of the Q-Q plot revealed a spatial pattern to 
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those data points over- and under-predicted by a normal distribution, with over-predicted points 

located mainly in the northern portion of the study extent on Nain and Saglek Banks, and under- 

predicted points located on the Grand Banks and the Northeast Newfoundland Shelf. Summer 

Primary Production Average Minimum was followed very distantly by Fall Chlorophyll a 

Minimum and the remaining variables in the model. The partial dependence of large gorgonian 

coral biomass on the top 6 most important variables is shown in Figure 47. Predicted biomass 

was the highest at the lowest Summer Primary Production Average Minimum values (< 500 mg 

C m
-2

 day
-1

). Values in this range coincided with those data points under-predicted by a normal 

distribution. The fit between predicted and observed values in the kriging model was good, with 

slight over- prediction of data points in that range. Some points could therefore be predicted 

higher than their true values and slightly outside the range of highest predicted biomass 

identified in the partial plot. 

 

Figure 46. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on mean large gorgonian coral 

biomass per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the more 

important the variable is for predicting the response data. 
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Figure 47. Partial dependence plots of the top six predictors from the random forest model of 

large gorgonian biomass data collected within the Newfoundland and Labrador Region between 

2003 and 2015, ordered left to right from the top. Predicted biomass is shown on the y-axis of 

each graph. 
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Small Gorgonian Corals 

Data Sources and Distribution 

Small gorgonian coral catch data was collected over a span of 13 years from 2003 to 2015 and 

consisted of 370 presence and 4967 absence records after the data were grouped to 1 record per 

cell (Table 15). Note that although Spanish records of small gorgonians exist, they were not 

selected for use in presence-absence models when the data were randomly grouped to 1 record 

per cell (but were used in the calculation of mean biomass per grid cell for biomass random 

forest models below). Absence records were distributed relatively evenly across the study extent 

(Figure 48). However, presence records had a highly uneven distribution and were concentrated 

mainly along the slopes of Newfoundland and Labrador, although some records occurred on the 

shelf and banks. The highest mean biomass records (up to 2.80 kg) were located on the slope 

southwest of Grand Bank in the NAFO 3O closure area. 

 

Table 15. Number of presence and absence records of small gorgonian coral catch recorded from 

DFO multispecies surveys, DFO/industry northern shrimp surveys conducted in the 

Newfoundland and Labrador Region between 2003 and 2015. 

 

Year 
Total of number of 

presences 

Total of number of 

absences 

2003 8 74 

2004 24 251 

2005 22 362 

2006 40 395 

2007 46 376 

2008 51 402 

2009 33 483 

2010 44 605 

2011 19 515 

2012 26 563 

2013 34 389 

2014 19 428 

2015 4 124 
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Figure 48. Mean biomass (kg) per grid cell of small gorgonian corals recorded from DFO 

multispecies surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland 

and Labrador Region between 2003 and 2015. 
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Model 1 – Balanced Species Prevalence 

Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model on 

balanced species prevalence (370 presences and 370 absences; Model 1) are presented in Table 

16. The average AUC was 0.864, indicating very good model performance. The highest mean 

AUC of 0.884 was associated with Model Run 8 and is therefore considered the optimal model 

for the prediction of the small gorgonian corals response data. The sensitivity and specificity 

measures of this model were 0.835 and 0.832, respectively. The confusion matrix of the optimal 

model is also presented in Table 16. Class error for both the presence and absence classes were 

relatively low (0.165 and 0.168, respectively). 

 

Table 16. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a 

random forest model of presence and absence of small gorgonian corals within the 

Newfoundland and Labrador Region. The confusion matrix is shown for the model with the 

highest AUC value (Model Run 8) which is considered the optimal model for predicting the 

presence probability of small gorgonian corals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence probability prediction surface of the small gorgonian corals is presented in Figure 

49. The highest predictions of presence probability occurred along the slopes of Newfoundland 

and Labrador. These areas corresponded well with the spatial distribution of presence records 

(see Figure 50). However, the model appears to moderately extrapolate areas of presence 

probability beyond the location of presence observations. 

Model Run AUC Sensitivity Specificity 

1 0.876 0.808 0.800 

2 0.861 0.822 0.816 

3 0.873 0.835 0.803 

4 0.880 0.830 0.838 

5 0.846 0.808 0.765 

6 0.850 0.819 0.778 

7 0.868 0.805 0.822 

8 0.884 0.835 0.832 

9 0.851 0.814 0.762 

10 0.855 0.816 0.805 

Mean 0.864 0.818 0.802 

SD 0.014 0.011 0.027 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 308 62 370 0.168 

Presence 61 309 370 0.165 
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The actual presence and absence data observations (370 presences and 370 absences) used in the 

optimal run of Model 1 showed some slight spatial bias across the study area (Figure 51). Few 

absence points were selected from the slopes. Also shown in this figure are the areas of model 

extrapolation. Deep water beyond the slope was considered extrapolated area. Smaller pockets of 

extrapolated area were distributed across the shelf, particularly along the coast of Labrador. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Predictions of presence probability (Pres. Prob.) from the optimal random forest 

model of small gorgonian coral presence and absence data collected from DFO multispecies 

surveys and DFO/industry northern shrimp surveys conducted in the Newfoundland and 

Labrador Region between 2003 and 2015. 
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Figure 50. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of the optimal random forest model of small gorgonian corals presence and absence data 

collected from DFO multispecies surveys and DFO/industry northern shrimp surveys conducted 

in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 51. Map of the 740 data observations (370 presences and 370 absences) of small 

gorgonian corals used in the optimal random forest Model 1 on balanced species prevalence. 

Also shown is the predicted presence probability (Pres. Prob.) of small gorgonian corals 

generated from Model 1. 

 

Of all 66 environmental predictor variables used in the model, Slope (non-interpolated variable) 

was the most important for the classification of the small gorgonian coral presence and absence 

data (Figure 52). This variable was followed closed by Bottom Temperature Average Minimum, 

Depth, and Bottom Salinity Average Minimum. Partial dependence plots for the top 6 predictor 
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variables are shown in Figure 53. Presence probability of small gorgonians rapidly increased at 

2º along the Slope gradient, and at 3°C along the gradient in Bottom Temperature Average 

Minimum. 

 

Figure 52. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting small gorgonian coral presence and absence 

data within the Newfoundland and Labrador Region. The higher the Mean Decrease in Gini 

value the more important the variable is for predicting the response data. 
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Figure 53. Partial dependence plots of the top 6 predictors from the optimal random forest model 

of small gorgonian coral presence and absence data collected within the Newfoundland and 

Labrador Region, ordered left to right from the top. Predicted presence probabilities are shown 

on the y-axis of each graph. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

Table 17 shows the accuracy measures for the random forest model on all small gorgonian coral 

presence and absence data (370 presences and 4967 absences; Model 2) and a threshold equal to 

species prevalence (0.07). The average AUC calculated from this model was slightly lower than 

that of Model 1 (0.859 compared to 0.864 of Model 1). Sensitivity and specificity measures of 

Model 2 were also lower than that of Model 1.  

 

The surface of predicted presence probability of small gorgonian corals generated from Model 2 

is presented in Figure 55. The areas of high presence probability of small gorgonians from Model 

1 are much reduced in this model. The slope southwest of Grand Bank had the highest presence 

probability of small gorgonians. These areas of high presence probability corresponded well with 

the spatial distribution of presence records (Figure 55). Figure 56 depicts the classification of 

small gorgonian presence probability into presence and absence categories based on the 

prevalence threshold of 0.07. In this map, all presence probability values generated from Model 

2 that were greater than 0.07 were classified as presence, while values less than 0.07 were 

classed as absence. The slopes and small pockets across the shelf were predicted as presence of 

small gorgonians. 

 

Table 17. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model presence and absence of small gorgonian corals within the Newfoundland and 

Labrador Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity. 

 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.842  Absence Presence     

2 0.881 Absence 3975 992 4967 0.200 0.800 0.800 

3 0.814 Presence 74 296 370 0.200   

4 0.801        

5 0.887       

6 0.887       

7 0.918       

8 0.840       

9 0.900       

10 0.818       

Mean 0.859       

SD 0.041       
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Figure 54. Predictions of presence probability from the unbalanced random forest model of 

small gorgonian corals presence and absence data collected from DFO multispecies surveys and 

DFO/industry northern shrimp surveys conducted in the Newfoundland and Labrador Region 

between 2003 and 2015. 
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Figure 55. Presence and absence observations and predictions of presence probability from the 

unbalanced random forest model of small gorgonian coral presence and absence data collected 

from DFO multispecies surveys and DFO/industry northern shrimp surveys conducted in the 

Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 56. Predicted distribution (Pred. Dist.) of small gorgonian corals in the Newfoundland 

and Labrador Region based on the prevalence threshold of 0.07 of small gorgonian presence and 

absence data used in Model 2. Also shown are the areas of model extrapolation. Grey polygon 

may appear dark red or blue when overlain on the presence-absence surface. 

 

Of the 66 environmental variables used in the model, Depth (non-interpolated variable) was the 

most important for the classification of the small gorgonian coral presence and absence data 

(Figure 57). This variable was followed importance by Bottom Salinity Average Minimum, 

Slope, and Bottom Salinity Average Range. Partial dependence of the small gorgonian coral 
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presence and absence data on the top 6 predictor variables is shown in Figure 58. The probability 

of small gorgonians rapidly increased at ~500 m depth and at Bottom Salinity Average Minimum 

value of ~34.5. 

 

Figure 57. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

Value of the unbalanced random forest model of small gorgonian coral presence and absence 

data within the Newfoundland and Labrador Region. The higher the Mean Decrease in Gini 

Value the more important the variable is for predicting the response data. 
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Figure 58. Partial dependence plots of the top 6 predictors from the unbalanced random forest 

model of small gorgonian coral presence and absence data collected within the Newfoundland 

and Labrador Region, ordered left to right from the top. Predicted presence probabilities are 

shown on the y-axis of each graph. 

 



 

 

89 

 

Model Selection 

The random forest model using all available small gorgonian coral records and an unbalanced 

species prevalence and threshold equal to 0.07 (Model 2) was chosen as the best predictor of 

small gorgonian coral distribution in the Newfoundland and Labrador Region. Model 1 

(balanced species prevalence) was considered a poor predictor of presence probability of small 

gorgonians due to its exaggeration of high presence probability beyond the location of presence 

data, particularly along the slopes. This phenomenon is likely due to random down-sampling of 

the absence data.  

 

Prediction of Small Gorgonian Coral Biomass Using Random Forest 

The accuracy measures of the regression random forest model on mean small gorgonian coral 

biomass per grid cell are presented in Table 18. The highest R
2
 value was 0.267, while the 

average was 0.108 ± 0.080 SD. The average Normalized Root-Mean-Square Error (NRMSE) 

was 0.021 ± 0.013 SD. The percent variance explained for most of the folds was negative, 

indicating that the model had no predictive power. 

 

Figures 59 and 60 show the prediction surface of small gorgonian coral biomass per grid cell. 

The majority of the spatial extent was predicted to have low (> 0 – 0.01 kg) small gorgonian 

biomass. The highest predicted biomass (up to 1.48 kg) occurred on the slope southwest of 

Grand Bank. 

 

Table 18. Accuracy measures from 10-fold cross validation of random forest model of average 

of small gorgonian coral biomass (kg) per grid cell recorded from DFO multispecies surveys, 

DFO/industry northern shrimp surveys, and Spanish groundfish trawl surveys conducted in the 

Newfoundland and Labrador Region between 2003 and 2015. RMSE = Root-Mean-Square 

Error; NRMSE = Normalized Root-Mean-Square Error. 

 

Model Fold R
2
 RMSE NRMSE 

Percent (%) 

variance explained 

1 0.046 0.090 0.032 -1.51 

2 0.050 0.086 0.031 -0.89 

3 0.053 0.040 0.014 0.68 

4 0.135 0.042 0.015 0.32 

5 0.267 0.054 0.019 -7.07 

6 0.219 0.038 0.014 -0.85 

7 0.075 0.025 0.009 -0.84 

8 0.132 0.024 0.009 -1.90 

9 0.064 0.049 0.018 -2.45 

10 0.039 0.136 0.049 2.20 

Mean 0.108 0.058 0.021 -1.23 

SD 0.080 0.035 0.013 2.46 
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Figure 59. Predictions of biomass (kg) of small gorgonian corals from catch recorded in DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. 
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Figure 60. Predicted biomass (kg) of small gorgonian corals from catch recorded in DFO 

multispecies surveys, DFO/industry northern shrimp surveys, and Spanish groundfish trawl 

surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. Also 

shown are the mean biomass values per grid cell and areas of model extrapolation. 

 

The top 15 most important environmental variables for predicting small gorgonian coral biomass 

are shown in Figure 61. Fall Chlorophyll a Range was the most important variable in the model. 

Prior to spatial interpolation, this variable displayed a severely right-skewed distribution with 

outlying data in the upper range (Guijarro et al., in prep.). Examination of the Q-Q plot revealed 
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a weak spatial pattern in data points over- and under-predicted by a normal distribution, with 

under-predicted points taking precedence on the banks of Labrador. Fall Chlorophyll a Range 

was followed by Surface Temperature Average Minimum, Surface Temperature Average Range 

and Slope. The partial dependence of small gorgonian coral biomass on the top 6 most important 

variables is shown in Figure 62. Predicted biomass was the highest between 2 and 12 mg m
-3 

along the gradient in Fall Chlorophyll a Range. Values in this range were scattered across the 

study extent with no real spatial pattern. The fit between predicted and observed values in the 

kriging model was relatively poor, with under-predictions of values between 2 and 12 mg m
-3

. 

Some points could therefore be predicted lower than their true values and slightly outside the 

range of highest predicted biomass as identified in the partial plot (Figure 62).  

 

Figure 61. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on small gorgonian coral mean 

biomass data per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the more 

important the variable is for predicting the response data. 
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Figure 62. Partial dependence plots of the top six predictors from the random forest model of 

small gorgonian coral biomass collected within the Newfoundland and Labrador Region between 

2003 and 2015, ordered left to right from the top. Predicted biomass is shown on the y-axis of 

each graph. 
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DISCUSSION 

 
The species distribution models in this report were made possible through data collected over the 

years from numerous biogeographic/taxonomic surveys of corals and sponges in the 

Newfoundland and Labrador region. In this study, the sampling time series varied by taxonomic 

group, i.e., sponges (1995 - 2015) and corals (2003 - 2015). Standardized sampling and 

processing protocols employed on DFO multispecies survey and Observer Program vessels has 

produced georeferenced sample data throughout the region (Wareham et al., 2007, Wareham, 

2009, Gilkinson and Edinger, 2009, inter alia). While taxonomic advances for coral taxa exceeds 

that for sponges, significant advancement is being made in deep-water sponge taxonomy, thus 

improving future predictive distribution modeling for this important benthic taxon. 

 

This study is the first to use random forest modelling to predict the distribution of several 

sensitive deep-sea benthic invertebrate groups in the Newfoundland and Labrador Region. Table 

19 shows a summary of the accuracy measures for the selected presence-absence and biomass 

random forest models of each taxonomic group. Presence-absence models for most groups 

performed well, with cross-validated AUC values ranging from 0.786 to 0.926. Similar 

performance of random forest models on the same taxonomic groups in the Maritimes Region 

was found by Beazley et al. (2016a), with models on sponges producing the lowest accuracy 

measures. This was attributed to the low taxonomic resolution of this group (phylum level) and 

the inclusion of both shelf and deep-water sponge species with preference for different habitats. 

In this report, performance of models on large gorgonians was comparable to that of sponges, 

suggesting that other factors may also be contributing. 

 

Table 19. Summary of the mean accuracy measures for selected presence-absence models and 

biomass models for each of the four taxonomic groups. NRMSE = Normalized Root-Mean-

Square-Error. 

 

 Presence-absence Biomass 

Taxon AUC Sensitivity Specificity R
2
 NRMSE 

Sponges (Porifera) 0.786 0.729 0.704 0.386 0.026 

Sea Pens (Pennatulacea) 0.926 0.847 0.844 0.376 0.018 

Large Gorgonian Corals 0.806 0.726 0.766 0.203 0.017 

Small Gorgonian Corals 0.859 0.800 0.800 0.108 0.021 

 

We have found that classification random forest models generated using all presence and 

absence data (i.e., unbalanced species prevalence) and a threshold equal to species prevalence 

produced the most realistic presence probability prediction surfaces These results are consistent 

with observations from RF models performed on sponge and coral groups in the DFO Maritimes 

Region, where there was highly unbalanced input data (see Beazley et al. 2016a). Random down-

sampling of the absence data in such cases often resulted in gross extrapolation of high presence 

probability beyond the locations of presence observations. Beazley et al. (2016a) noted that this 

was particularly true in instances when the response data were imbalanced with a much greater 

number of absences than presences and down-sampling of the absence data was biased across the 

study area. In these instances, stratifying the down-sampling by spatial or sampling-effort strata 

may help reduce exaggerated predictions of presence probability and improve model 
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performance (but see Freeman et al., 2012). Nonetheless, our results may help guide future 

applications of random forest modelling by providing insight into which methods are appropriate 

based on the properties of the training data. 

 

The random forest models worked well at interpolating predictions between data observations 

and extrapolating within the shallower (< 2000 m depth) portion of the study extent. However, 

the Newfoundland and Labrador Region extends out to the Canadian EEZ to approximately 4360 

m depth, far outside the depth distribution of the training data. These deeper areas are also likely 

to have different physical environmental conditions, such as temperature and salinity, from those 

used to train the model. Random forest models give a constant value for inputs falling under each 

tree leaf, but when extrapolating outside of their training domain, they use the predicted outcome 

from the nearest point at which there is training data (Breiman et al., 1984). For true 

extrapolation, the random forest algorithm would need to learn the functional relationship 

between the response and environmental conditions at those locations. Therefore, we are not 

confident of the model extrapolations to depths beyond the limit of the training data. Sponges, 

sea pens, and gorgonian corals can be found at such depths and so the model may be helpful in 

guiding research surveys to perform such validation. Validation of models within the shallow 

portion of the study extent (see Appendix 2) showed good spatial congruence between presence 

probability and the distribution of observer records for most taxonomic groups. However, som 

older observer records (1985 to 2001) of sponges on Grand Bank were predicted as absence by 

the model (see Figure A2.2). 

 

Table 20 summarizes the top predictor variable for each of the coral and sponge taxa for the 

random forest Model 2 (unbalanced) presence-absence and biomass models. For the presence-

absence models depth was a key predictor variable for all taxa, including the sponges where it 

was the second highest ranking predictor after Fall Primary Production Average Maximum. In 

contrast, biomass was best predicted by variables related to food supply, which is consistent with 

the results for the Gulf of St. Lawrence (Murillo et al., 2016a).  

 

 

Table 20. Summary of the top predictor variables for the best fit presence-absence models and 

biomass models for each of the four taxonomic groups.  

 

Taxon Top Predictor Pres-Abs Top Predictor Biomass 

Sponges (Porifera) Fall Primary Production 

Average Maximum 

Summer Primary Production 

Average Minimum 

Sea Pens (Pennatulacea) Depth Maximum Average Winter 

Mixed Layer Depth 

Large Gorgonian Corals Depth Summer Primary Production 

Average Minimum 

Small Gorgonian Corals Depth Fall Chlorophyll a Range 

 

 

The random forest and generalized additive models (GAMs) predicted similar areas of high 

biomass of the coral and sponge groups (see Appendix 1). For some groups (e.g. small gorgonian 

corals, see Figures A1.8 and A1.9), GAMs provided better predictions of biomass along the 
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slopes of Newfoundland and Labrador compared to those of random forest. However, the GAMs 

did not serve to resolve predictions in the deeper waters beyond the slope that are considered 

extrapolated by the random forest models. An exception was the sea pen GAM model, which 

predicted a localized area of high biomass on the slope southwest of Grand Bank, which was 

predicted to have only low to medium biomass over a broader area by the random forest model. 

  

Knudby et al. (2013a) used random forest to predict the distribution of several sponge species 

and sponge grounds in the northwest Atlantic including the DFO Newfoundland and Labrador 

Region. This model predicted sponge grounds to occur with moderate probability along the 

slopes of Newfoundland and Labrador (Figure 63), with little to no presence probability on the 

continental shelf. These models were run on catches above a biomass threshold (200 kg) which 

served to distinguish habitat dominated by large structure-forming Geodia sponges which 

congregate along the continental slopes, from smaller sponge species that dominate the shelf 

(Knudby et al., 2013a). In order to directly compare our results with Knudby et al. (2013a) we 

first had to rerun our sponge (Porifera) Model 2 using only trawl catchers greater or equal to 200 

kg over a similar spatial extent to that of the NL subarea. The two models performed similarly 

(AUC= 0.946 in Knudby et al., 2013a; AUC= 0.991 herein) despite our model using primary 

production variables that were not available to Knudby et al. (2013a) and that ranked high in the 

models, and having additional response data records. However the results were not identical and 

our model showed higher probability of sponge grounds predicted to occur along the slopes off 

Labrador and the Northeast Newfoundland Shelf. Both models showed little to no occurrence on 

the continental  

 

Figure 63. Spatial concordance between A) the predicted presence probability of sponge 

grounds from the NL subarea of Knudby et al. (2013a) clipped to the 20-km land buffer used in 

our study, and B) our model results using an unbalanced presence-absence RF model fit to 

sponge catches greater than 200 kg over the same spatial extent.  
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shelf (Figure 63). The area of highest sponge ground presence probability from Knudby et al. 

(2013a) was located on the slope off Saglek Bank in northern Labrador and on the slope off 

Labrador/Northeast Newfoundland Shelf. Our model also predicted high probability of 

occurrence of sponges in those areas. 

 

The validity of any SDM is partially driven by choice/availability of predictor environmental 

variables. In this study, a total of 66 environmental predictor variables were considered based on 

suspected/known importance for explaining the distribution (i.e. presence-absence) of benthos 

including deep-water corals and sponges. It is noted that the order of importance of predictor 

variables differed between sponge/coral groups including presence-absence and biomass data 

within a given group. This may highlight the complexity of interacting environmental factors 

controlling the distribution, in space and time, of these taxa. It is also noted that our 

understanding of biogeographic patterns within each of these larger species groups will only 

improve with increased sampling effort (preferentially non-destructive) and knowledge of how 

the species respond to the key environmental variables. Edinger et al. (2011) recommended in a 

qualitative study, that predictive models of coral distribution should consider Quaternary and 

surficial geology. While currently this information is not available throughout the region there 

has been expansion of multibeam coverage in the NL region, and in future, such habitat variables 

could be included in predictive models. Sediment grain size in the NAFO Regulatory Area has 

been used to produce interpolated and interpreted surficial geological maps, however the 

interpolation surfaces based on a large number of samples did not elucidate the fine-scale 

patchiness that can be found on the seafloor and the results were only suitable for post-hoc 

characterization (Murillo et al., 2016b). Interpolations of such data performed well on the 

Sackville Spur (see Beazley et al., 2015), a relatively small-scale area compared to the spatial 

extent used in this report, with relatively homogenous surficial characteristics. Additional 

information such as bathymetry, slope, and multibeam backscatter used as covariates in spatial 

interpolation models may help improve interpolation of grain size data (Leecaster, 2003; Jerosch, 

2013). Nonetheless, surficial characteristics at the resolution of the SDM maps (1 km
2
) can be 

heterogenous (cf. Cuff et al., 2015; Rincón and Kenchington, 2016) and although fine-scale 

seafloor mapping could be useful to resolve fine-scale models (Beazley et al., 2013), at regional 

scales applicable to management issues, such information is not likely to be informative.  We 

note that variables such as shear, slope, depth and bottom currents will be correlated with many 

aspects of surficial geology (Li et al., 2016), which is why the models perform well despite not 

having direct information on substrate type. 

 

SDMs identify potential species distribution and can indicate areas for future restoration 

initiatives towards the implementation of the Policy for Managing the Impact of Fishing on 

Sensitive Benthic Areas. This policy was developed by DFO in 2009 to ensure Canadian 

fisheries are conducted in a manner that supports marine conservation and sustainable resource 

use within and outside Canada's 200 nautical mile EEZ. These models provide continuous 

surfaces of presence and biomass that can fill in gaps in survey coverage and extrapolate to a 

certain degree to areas outside of the surveys. Combined with kernel density analysis 

(Kenchington et al., 2016) SDM can be used to refine significant benthic area polygons produced 

by the former by clipping boundaries to more probabilistic borders.  

 

 



 

 

98 

 

ACKNOWLEDGMENTS 
 

This project was funded in part by a one year project under DFO’s Strategic Program for 

Ecosystem-Based Research and Advice (SPERA) to EK and through financial support by DFO’s 

Oceans Management Program, Newfoundland and Labrador Region. We thank Annette Power 

for the latter contribution and guidance in the preparation of this report. We thank C. Rooper 

(NMFS - RACE Division, Washington, USA) and K. Tanaka (U of Maine, Maine, USA) for 

their constructive comments on SDM and GAMs. 

 

REFERENCES 
 

Baker, K.D., Haedrich, R.L., Snelgrove P.V.R., Wareham, V.E., Edinger, E.N., and Gilkinson, 

K.D. 2012a. Small-scale patterns of deep-sea fish distributions and assemblages of the 

Grand Banks, Newfoundland continental slope. Deep-Sea Res. I 65: 171–188. 

Baker, K.D., Wareham, V.E., Snelgrove, P.V.R., Haedrich, R.L., Fifield, D.A., Edinger, E.N., 

and Gilkinson, K.D. 2012b. Distributional patterns of deep-sea coral assemblages in three 

submarine canyons off Newfoundland, Canada. Mar. Ecol. Prog. Ser. 445: 235–249. 

Barrio-Froján, C.R.S., MacIsaac, K.G., McMillan, A.K., Del Mar Sacau Cuadrado, M., Large, 

P., Kenny, A.J., Kenchington, E. and De Cárdenas González, E. 2012. An evaluation of 

benthic community structure in and around the Sackville Spur closed area (Northwest 

Atlantic) in relation to the protection of vulnerable marine ecosystems. ICES J. Mar. Sci. 

69: 213–222. 

Beazley, L.I., and Kenchington, E.L. 2015. Epibenthic Megafauna of the Flemish Pass and 

Sackville Spur (Northwest Atlantic) Identified from In Situ Benthic Image Transects. Can. 

Tech. Rep. Fish. Aquat. Sci. 3127: v + 496p. 

Beazley, L.I., Kenchington, E., Murillo, F.J., and Sacau, M. 2013. Deep-sea sponge grounds 

enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES 

J. Mar. Sci. 70: 1471–1490. 

Beazley, L., Kenchington, E., Yashayaev, I., and Murillo, F.J. 2015. Drivers of epibenthic 

megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. 

Deep-Sea Res. I 98: 102–114. 

Beazley, L., Kenchington, E., Murillo, J., Lirette, C., Guijarro, J., McMillan, A., and Knudby, A. 

2016a. Species Distribution Modelling of Corals and Sponges in the Maritimes Region for 

Use in the Identification of Sensitive Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 

3172: vi + 189p. 

Beazley, L., Lirette, C., Sabaniel, J., Wang, Z., Knudby, A., and Kenchington, E. 2016b. 

Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in 

the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3154: viii + 357p.  

Breiman, L. 2001. Random Forests. Mach. Learn. 45: 5–32. 

Breiman, L., Friedman, J.H., Olshen, R., and Stone, C.J. 1984. Classification and Regression 

Trees. Wadsworth & Brooks/Cole Advanced Books & Software, California. 

Campbell, J.S., and Simms, J.M. 2009. Status Report on Coral and Sponge Conservation in 

Canada. Fisheries and Oceans Canada: vii + 87 p.  

Chen, C., Liaw, A., and Breiman, L. 2004. Using Random Forest to learn imbalanced data. 

University of California, Berkeley. 12 p.  



 

 

99 

 

Cuff, A., Anderson, J.T., and Devillers, R. Comparing surficial sediments maps interpreted by 

experts with dual-frequency acoustic backscatter on the Scotian shelf, Canada. 

Cont. Shelf Res. 110: 149–161.  

Cutler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., and Lawler, J.J. 

Random Forest for classification in ecology. Ecology 88: 2783–2792.  

DFO. 2013. Identification of Additional Ecologically and Biologically Significant Areas 

(EBSAs) within the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. 

Sec. Sci. Advis. Rep. 2013/048. 
Dunn, P. K., and Smyth, G. K. 1996. Randomized quantile residuals. Journal of Computational 

and Graphical Statistics, 5: 236–244. 

Edinger, E.N., and Sherwood, O.A. 2012. Applied taphonomy of gorgonian and antipatharian 

corals in Atlantic Canada: experimental decay rates, field observations, and implications 

for assessing fisheries damage to deep-sea coral habitats. N. Jb. Geol. Paläont. Abh. 265/2, 

199–218. 
Edinger, E.N., Wareham, V.E., and Haedrich, R.L. 2007. Patterns of groundfish diversity and 

abundance in relation to deep-sea coral distributions in Newfoundland and Labrador waters. 

Bull. Mar. Sci. 81, Suppl. 1: 101–122. 

Edinger, E.N., Sherwood, O.A., Piper, D.J.W., Wareham, V.E., Baker, K.D., Gilkinson, K.D., 

and Scott, D.B. 2011. Geological features supporting deep-sea coral habitat in Atlantic 

Canada. Cont. Shelf Res 31: S69–S84. 

Elith, J., Kearney, M., and Phillips, S. 2010. The art of modelling range-shifting species. 

Methods Ecol. Evol. 1: 330–342. 

ESRI. 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research 

Institute. 

Evans J.S., Murphy, M.A., Holden, Z.A., and Cushman, S.A. 2011. Modeling Species 

Distribution and change Using Random Forests. In Predictive Species and Habitat 

Modeling in Landscape Ecology: Concepts and Applications. Edited by C.A Drew, Y.F. 

Wiersma, and F. Huettmann. Springer, New York. pp. 139–159.  

FAO. 2009. International Guidelines for the Management of Deep-sea Fisheries in the High 

Seas. FAO, Rome. 73 p. 

Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recog. Lett. 27: 861–874. 

Freeman, E.A., Moisen, G.G., and Frescino, T.S. 2012. Evaluating effectiveness of down-

sampling for stratified designs and unbalanced prevalence in Random Forest models of 

tree species distributions in Nevada. Ecol. Model. 233: 1–10. 
Gilkinson, K., and Edinger, E. (Eds.) 2009. The ecology of deep-sea corals of Newfoundland and 

Labrador waters: biogeography, life history, biogeochemistry, and relation to fishes. Can. 

Tech. Rep. Fish. Aquat. Sci. 2830: vi + 136 p. 
Guijarro, J., Beazley, L., Lirette, C., Wang, Z., and Kenchington, E. In Prep. Characteristics of 

Environmental Data Layers for Use in Species Distribution Modelling in the 

Newfoundland and Labrador Region. Can. Tech. Rep. Fish. Aquat. Sci.  

Guisan, A., and Zimmerman, N.E. 2000. Predictive habitat distribution models in ecology. Ecol. 

 Model. 135: 147–186. 

Hamel, J.F., Sun, Z., and Mercier, A. 2010. Influence of size and seasonal factors on the growth 

of the deep-sea coral Flabellum alabastrum in mesocosm. Coral Reefs 29: 521–525. 



 

 

100 

 

Hamoutene, D., Puestow, T., Miller-Banoub, J., and Wareham, V. 2007. Main lipid classes in 

some species of deep-sea corals in the Newfoundland and Labrador region (Northwest 

Atlantic Ocean). Coral Reefs DOI 10.1007/s00338-007-0318-7. 

Hanberry, B.B. and He, H.S. 2013. Prevalence, statistical thresholds, and accuracy assessment 

for species distribution models. Web Ecol. 13: 13–19. 

Hastie, T., and Tibshirani, R. 1986. Generalized additive models. Stat. Sci. 1: 297-318. 

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. 2005. The Elements of Statistical 

Learning: Data Mining, Inference and Prediction. Second Edition. Springer+Verlag. 

Herrick, K.K., Huettmann, F., and Lindgren, M.A. 2013. A global model of avian influenza 

prediction in wild birds: the importance of northern region. Vet. Res. 44:42. 

Jerosch, K. Geostatistical mapping and spatial variability of surficial sediment types on the 

Beaufort Shelf based on grain size data. J. Mar. Syst. 127: 5–13. 

Jiménez-Valverde, A., and Lobo, J. M. 2006. The ghost of unbalanced species distribution data 

in geographical model predictions. Divers. Distrib. 12: 521–524. 

Kenchington, E. 2014. A General Overview of Benthic Ecological or Biological Significant 

Areas (EBSAs) in Maritimes Region. Can. Tech. Rep. Fish. Aquat. Sci. 3072: iv + 45 p.  

Kenchington, E., Murillo, F.J., Lirette, C., Sacau, M., Koen-Alonso, M., Kenny, A., Ollerhead, 

N., Wareham, V., and Beazley, L. 2014. Kernel density surface modelling as a means to 

identify significant concentrations of vulnerable marine ecosystem indicators. PLoS ONE 

10(1): e0117752. doi:10.1371/journal.pone.0117752 

Kenchington, E., Lirette, C., Murillo, F.J., Beazley, L., Guijarro, J., Wareham, V., Gilkinson, K., 

Koen Alonso, M., Benoît, H., Bourdages, H., Sainte-Marie, B., Treble, M., and Siferd, T. 

2016. Kernel Density Analyses of Coral and Sponge Catches from Research Vessel Survey 

Data for Use in Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. 

Sci. 3167: viii + 207p. 

Knudby, A., Kenchington, E., and Murillo, F.J. 2013a. Modelling the distribution of Geodia 

sponges and sponge grounds in the Northwest Atlantic. PLoS One 8, e82306. 

http://dx.doi.org/10.1371/journal.pone.0082306. 

Knudby, A., Lirette, C., Kenchington, E., and Murillo, F.J. 2013b. Species distribution models of 

black corals, large gorgonian corals, and sea pens in the NAFO Regulatory Area. NAFO 

SCR Doc 13/78, Ser. No N6276. 17 p. 

Kuhn, M. and Johnson, K. 2013. Applied Predictive Modeling. New York: Springer Science + 

Business Media.  

Leecaster, M. 2003. Spatial analysis of grain size in Santa Monica Bay. Mar. Environ. Res. 56: 

67–78. 

Li, J., Tran, M., and Siwabessy, J. 2016. Selecting optimal Random Forest predictive models: a 

case study on predicting the spatial distribution of seabed hardness. PloS One 11(2): 

e0149089. doi:10.1371/journal.pone.0149089. 

Liaw, A., and Wiener, M. 2002. Classification and regression by randomForest. R News, 2: 18–

22. 

Liu, C., Berry, P.M., Dawson, T.P., and Pearson, R.G. 2005. Selecting thresholds of occurrence 

in the prediction of species distributions. Ecography 28: 385–393. 

McPherson, J.M., Jetz, W., and Rogers, D.J. 2004. The effects of species’ range sizes on the 

accuracy of distribution models: ecological phenomenon or statistical artifact? J. Appl. 

Ecol. 41: 811–823. 

http://dx.doi.org/10.1371/journal.pone.0082306


 

 

101 

 

Matthiopoulos, J. 2011. How to be a Quantitative Ecologist: The ‘A to R’ of Green Mathematics 

and Statistics. Wiley, Chichester, West Sussex. 

Mercier, A., Sun, Z., and Hamel, J.F. 2011a. Reproductive periodicity, spawning and 

development of the deep-sea scleractinian coral Flabellum angulare. Mar. Biol. 158: 371–

380. 

Mercier, A., Sun, Z., Baillon, S.B., and Hamel, J.F. 2011b. Lunar rhythms in the deep sea: 

evidence from the reproductive periodicity of several marine invertebrates. J. Biol. 

Rhythms. 26(1): 82–6. doi: 10.1177/0748730410391948. 

Miller, D.L., Rexstad, E., Burt, L., Bravington, M.V., and Hedley, S. 2015. Package ‘dsm’. 26 p. 

Murillo, F.J., Durán Muñoz, P., Altuna, A., and Serrano, A. 2011. Distribution of deep-water 

corals of the Flemish Cap, Flemish Pass, and the Grand Banks of Newfoundland 

(Northwest Atlantic Ocean): interaction with fishing activities. ICES J. Mar. Sci. 68: 319–

332. 

Murillo, F.J., Durán Muñoz, P., Cristobo, F.J., Ríos, P., González, C., Kenchington, E., and 

Serrano, A. 2012. Deep-sea Sponge Grounds of the Flemish Cap, Flemish Pass and the 

Grand Banks of Newfoundland (Northwest Atlantic Ocean): distribution and species 

composition. Mar. Biol. Res. 8: 842–854. 

Murillo, F.J., E. Kenchington, L. Beazley, C. Lirette, A. Knudby, J. Guijarro, H. Benoît, H. 

Bourdage, and B. Sainte-Marie. 2016a. Distribution Modelling of Sea Pens, Sponges, 

Stalked Tunicates and Soft Corals from Research Vessel Survey Data in the Gulf of St. 

Lawrence for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. 

Aquat. Sci. 3170: vi + 132p. 

Murillo, F.J., Serrano, A., Kenchington E., and Mora, J. 2016b. Epibenthic assemblages of the 

Tail of the Grand Bank and Flemish Cap (northwest Atlantic) in relation to environmental 

parameters and trawling intensity. Deep Sea Res. I 109: 99–122. 

NAFO. 2013. Report of the 6
th

 meeting of the NAFO Scientific Council Working Group on 

Ecosystem Science and Assessment (WGESA). NAFO SCS, Doc. 13/24, Serial No. 

N6277. 208 p. 

NAFO. 2015. Conservation and enforcement measures. NAFO/FC, Doc. 15/01, Serial No. 

N6409. 134 p. 

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/. 

Rincón, B, and Kenchington, E. 2016. Spatial and temporal variation of benthic macrofauna on 

the eastern Scotian Shelf: association with juvenile Haddock (Melanogrammus aeglefinus) 

spatial structure and environmental drivers. Under Review. 

Sherwood, O.A., and Edinger, E.N. 2009. Ages and growth rates of some deep-sea gorgonian 

and antipatharian corals of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci. 66: 142–

15. 

Sherwood, O.A., Jamieson, R.E., Edinger, E.N., and Wareham, V.E. 2008. Stable C and N 

isotopic composition of cold-water corals from the Newfoundland and Labrador 

continental slope: Examination of tropic, depth and spatial effects. Deep-Sea Res. I 55: 

1392–1402. 

Sherwood, O., Lehmann, M., Schubert, C., Scott, D. and McCarthy, M. 2011. Nutrient regime 

shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea 

gorgonian corals, Proc. Natl. Acad. Sci. U. S. A., 108, 1011–1015. 



 

 

102 

 

Shono, H. 2008. Application of the Tweedie distribution of zero-catch data in CPUE analysis. 

Fish. Res. 93: 154–162. 

Sun, Z., Hamel, J.F. and Mercier, A. 2010. Planulation periodicity, settlement preferences and 

growth of two deep-sea octocorals from the northwest Atlantic. Mar. Ecol. Prog. Ser.  410: 

71–87. 

Templeman, ND. 2007. Placentia Bay-Grand Banks Large Ocean Management Area 

Ecologically and Biologically Significant Areas. Can. Sci. Advis. Sec. Res. Doc. 2007/052: 

iii + 15 p. 

Tweedie, M.C.K. 1984. An index which distinguishes between some important exponential 

families. In: Ghosh, J.K., Roy, J. (Eds.), Statistics: Applications and New Directions. 

Proceedings of the Indian Statistical Institute Golden Jubilee International Conference. 

Indian Statistical Institute, Calcutta, pp. 579–604. 

Wareham, V. E. 2009. Update on deep-sea coral distributions in the Newfoundland Labrador and 

Arctic regions, Northwest Atlantic. In The ecology of deep-sea corals of Newfoundland 

and Labrador waters: biogeography, life history, biogeochemistry, and relation to fishes. 

Edited by K. Gilkinson, and E. Edinger pp. 4-22. Can. Tech. Rep. Fish. Aquat. Sci. 2830: 

vi + 136p. 
Wareham, V.E., and Edinger, E.N. 2007. Distributions of deep-sea corals in the Newfoundland and 

Labrador region, Northwest Atlantic Ocean. Bull. Mar. Sci. 81: 289-312. 
Wareham, V.E., Ollerhead, N.E., and Gilkinson, K.D. 2010. Spatial Analysis of Coral and 

Sponge Densities with Associated Fishing Effort in Proximity to Hatton Basin (NAFO 

Divisions 2G-0B). DFO Can. Sci. Advis. Sec. Res. Doc. 2010/058, 46 pp. 

Wood, S.N. 2006. Generalized additive models: an introduction with R. Chapman & Hall/CRC 

Press, Boca Raton, FL. 

  



 

 

103 

 

APPENDIX 1 
 

Alternative Prediction Models- Generalized Additive Models for Predicting 

Coral and Sponge Biomass in the Newfoundland and Labrador Region  
 

Given the fair to poor prediction of biomass by the random forest models, particularly in deep 

water, generalized additive models (GAMs; Hastie and Tibshirani, 1986) were developed to 

compare to the random forest results and to determine whether predictions could be improved for 

the areas considered as extrapolated by random forest models. A generalized additive model 

(Hastie and Tibshirani, 1986; 1990) is a generalized linear model with a linear predictor 

involving a sum of smooth functions of covariates. GAM models follow this general structure: 

 

g(μi) = Xi*θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . .  

 

where μi ≡ E(Yi) and Yi ~ some exponential family distribution. Yi is a response variable, Xi* is 

a row of the model matrix for any strictly parametric model components, θ is the corresponding 

parameter vector, and the fj are smooth functions of the covariates, xk (Wood, 2006). The model 

allows for somewhat flexible specification of the dependence of the response on the covariates. 

This flexibility provides potential for a better fit to the data than purely parametric models. 

 

Two different approaches were used to select the predictor variables. In the first approach, highly 

correlated variables were identified and eliminated in order to increase interpretability of the 

models and to reduce the effects of collinear variables. This was done following the variable 

elimination procedure outlined in Knudby et al. (2013a). The Spearman’s rank correlation 

coefficients between all predictor variables in the study area were calculated from all raster cells 

in the study area, and the two predictors with the highest correlation were then considered and 

one of them eliminated. This process was repeated until there were no variables remaining that 

were correlated higher than 0.7. Models generated using the variables selected with this approach 

are termed ‘GAM 0.7 Variables’ herein. The second approach involved selecting the top 

predictor variables identified in the random forest biomass models. This was done independently 

for each taxonomic group. Those variables with a higher influence in the RF models were 

identified by examining the importance plots and identifying those variables that fell above a 

natural break in the Mean Decrease in Residual Sum of Squares. Models generated with 

variables selected using this approach are termed ‘GAM RF Variables’ herein. 

 

The Tweedie distribution (Tweedie, 1984) was utilized for each model. The Tweedie model is an 

expansion of a compound Poisson model derived from the stochastic process where the weight of 

the counted objects has a gamma distribution. This model has the advantage of handling the 

zero-catch data in a unified way and has shown to outperform the two-stage Delta lognormal 

model (Shono, 2008). The ‘mgcv’ package in R (Wood, 2006) was used to construct the GAMs. 

 

Shrinkage smoothers were applied to each covariate in the form of a penalized cubic regression 

spline (s(variable, bs=’cs’)). Shrinkage smoothers allow the ‘wiggliness’ of each covariate to go 

to zero as required by the data (Matthiopoulos, 2011). Shrinkage smoothers are useful for 

variable selection, as such covariates remain in the model but have no effect on model 

predictions. For each model, autocorrelation in the residuals was determined by examining ACF 



 

 

104 

 

plots. When autocorrelation appeared substantial, latitude and longitude were included in the 

model as a tensor product (i.e. te(lat, long)).  

 

Model performance was evaluated by assessing the goodness-of-fit statistic R
2
, the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), and the percent (%) 

deviance explained. Accuracy measures and model performance were compared between models 

generated using each set of predictor variables.  

 

Residual plots to evaluate the fitness of the model were generated using the ‘gam.check’ function 

of the ‘mgcv’ package. However, an artifact of the link function shows exact zeros as a band 

along the residuals vs. linear predictor plot, making it difficult to see whether residuals show 

heteroskedasticity. In order to avoid this issue, randomized quantile residuals (Dunn and Smyth, 

1996) were generated using the ‘rqgam.check’ function of the ‘dsm’ package (Miller et al., 

2015). Randomized quantile residuals transform the residuals to be exactly normally distributed, 

therefore removing artifacts generated by the link function and making the residuals vs. linear 

predictor plot easier to interpret. 

 

 

Sponges (Porifera) 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables models 

predicting mean sponge biomass are presented in Table A1. The R
2 

was fair for both models, and 

slightly higher for the GAM model using the RF-selected variables than for the model using 

variables correlated at less than 0.7. The deviance explained was higher for the GAM 0.7 

Variable model. The AIC/BIC was comparable between the two models.
 

The variable 

significance for the GAM RF Variable and GAM 0.7 Variables models are shown in Tables A1.2 

and A1.3, respectively.  
 

Figure A1.1 shows graphical diagnostics for both models. Both models showed fairly normal 

residuals and only small patterns in the residuals vs. linear predictor plots. However, the 

response vs. fitted values plots showed a poor fit between the predicted and actual values for 

both models. When predicted to the entire extent of the study area, the models showed 

erroneously high predicted biomass values. High predictions of biomass were not alleviated with 

the inclusion of latitude and longitude in the model. The predicted surfaces therefore are not 

presented in this report.  

 

Table A1.1. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of sponges in the Newfoundland and Labrador 

Region. 

 

 

 GAM RF Variables GAM 0.7 Variables 

R2 0.250 0.199 

Deviance explained 54.10% 58.90% 

AIC 35936.654 35366.241 

BIC 36478.898 36454.867 
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Table A1.2. Results of the GAM RF Variables model built to predict the biomass of sponges in 

the Newfoundland and Labrador Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 
 

 

 

Table A1.3. Results of the GAM 0.7 Variables model built to predict the biomass of sponges in 

the Newfoundland and Labrador Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Summer Primary Production Average Minimum 8.257 24.480 < 2 x 10
-16* 

Spring Primary Production Average Minimum 7.465 15.910 < 2 x 10
-16* 

Bottom Salinity Average Range 7.517 17.730 < 2 x 10
-16* 

Summer Chlorophyll a Mean 8.241 40.620 < 2 x 10
-16* 

Fall Chlorophyll a Minimum 7.227 19.230 < 2 x 10
-16* 

Bottom Temperature Average Range 7.520 18.800 < 2 x 10
-16* 

Depth 8.517 40.800 < 2 x 10
-16* 

Surface Salinity Average Range 8.472 16.740 < 2 x 10
-16* 

Variable edf F p-value 

Bottom Current Average Maximum 2.239 10.215 2.130 x 10-6* 

Bottom Temperature Average Maximum 8.433 18.203 < 2 x 10-16* 

Annual Chlorophyll a Mean 3.117 8.042 4.450 x 10-6* 

Fall Chlorophyll a Maximum 2.863 9.598 7.320 x 10-7* 

Fall Chlorophyll a Mean 7.986 12.158 < 2 x 10-16* 

Fall Chlorophyll a Minimum 7.771 14.304 < 2 x 10-16* 

Spring Chlorophyll a Maximum 7.059 22.702 < 2 x 10-16* 

Spring Chlorophyll a Minimum 6.105 11.098 3.800 x 10-14* 

Depth 7.401 43.520 < 2 x 10-16* 

Maximum Spring Mixed Layer Depth 8.041 28.962 < 2 x 10-16* 

Annual Primary Production Average Minimum 3.179 9.912 5.170 x 10-8* 

Fall Primary Production Average Maximum 7.908 4.455 1.340 x 10-5* 

Fall Primary Production Average Range 4.475 5.964 8.830 x 10-6* 

Spring Primary Production Average Maximum 70.83 13.805 < 2 x 10-16* 

Spring Primary Production Average Minimum 3.716 10.823 1.810 x 10-9* 

Spring Primary Production Average Range 7.234 22.490 < 2 x 10-16* 

Summer Primary Production Average 

Maximum 

7.794 10.369 3.750 x 10-15* 

Summer Primary Production Average Range 4.235 3.436 3.680 x 10-3* 

Surface Current Average Maximum 7.423 7.016 2.330 x 10-9* 

Surface Salinity Average Range 8.618 22.175 < 2 x 10-16* 

Slope 2.219 28.746 4.480 x 10-16* 
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Figure A1.1. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

biomass of sponges in the Newfoundland and Labrador Region. 
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Sea Pens (Pennatulacea) 
 

 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables models 

predicting mean sea pen biomass are presented in Table A1.4. The R
2
 and deviance explained 

were much higher for the model using the variables correlated at less than 0.7 than the model 

using the RF-selected variables, indicating a good model fit. The AIC/BIC was also lower for the 

GAM 0.7 Variables model. The variable significance for the GAM RF Variable and GAM 0.7 

Variable models are shown in Tables A1.5 and A1.6, respectively. 
 

Figure A1.2 shows the graphical diagnostics for both models. Both models showed fairly normal 

residuals. The residuals vs. linear predictor plot for the GAM 0.7 Variables model showed 

patterns indicative of heteroskedasticity. The response vs. fitted values plots showed a poor fit 

between the predicted and actual values for both models. 

 

The GAM RF Variables model predicted erroneously-high biomass values when applied to the 

Newfoundland and Labrador study extent, therefore the predicted surface is not presented here. 

Although performance measures (R
2
 and percent deviance explained) were slightly improved, 

erroneous biomass values were still predicted to occur by a model including latitude and 

longitude, therefore these results are not considered here. Figure A1.3 shows the predicted 

biomass surface of sea pens from the GAM 0.7 Variables model. The majority of the study 

extent was predicted to have low (> 0 – 0.09 kg) sea pen biomass. Higher sea pen biomass was 

predicted to occur in the Laurentian Channel, and is consistent with the distribution of high sea 

pen catches (Figure A1.3, right panel). This area was also predicted to have a high biomass by 

the random forest model (see Figures 29 and 30). The slope south of Grand Banks was also 

predicted to have a high biomass of sea pens, and is not supported by data observations. The 

random forest model predicted low-medium biomass in this area. 

 

 

 

Table A1.4. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of sea pens in the Newfoundland and Labrador 

Region. 

 

 

 

 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R2 0.031 0.308 

Deviance explained 45.10% 75.10% 

AIC 

BIC 

5089.875 

5352.713 

3912.414 

4654.459 
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Table A1.5. Results of the GAM RF Variables model built to predict the biomass of sea pens in 

the Newfoundland and Labrador Region.The estimated degrees of freedom (edf), F value, and p-

value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

 

 

 

Table A1.6. Results of the GAM 0.7 Variables model built to predict the biomass of sea pens in 

the Newfoundland and Labrador Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Maximum Average Winter Mixed Layer Depth 7.282 22.733 < 2 x 10
-16* 

Fall Primary Production Average Range 3.922 6.238 1.270 x 10
-5* 

Surface Temperature Average Range 8.936 80.918 < 2 x 10
-16* 

Summer Chlorophyll a Range 5.260 8.701 2.520 x 10-09* 

Summer Primary Production Average Maximum 8.143 20.152 < 2 x 10-16* 

Variable edf F p-value 

Bottom Current Average Maximum 1.431 5.634 4.822 x 10-3* 

Bottom Temperature Average Maximum 7.710 23.985 < 2 x 10-16* 

Annual Chlorophyll a Mean 3.627 13.810 5.780 x 10-12* 

Fall Chlorophyll a Maximum 1.614 10.373 2.660 x 10-5* 

Fall Chlorophyll a Mean 6.290 11.023 3.090 x 10-14* 

Fall Chlorophyll a Minimum 5.325 3.231 3.163 x 10-3* 

Spring Chlorophyll a Maximum 2.073 23.137 7.550 x 10-13* 

Spring Chlorophyll a Minimum 3.611 4.850 3.740 x 10-4* 

Depth 6.519 64.791 < 2 x 10-16* 

Maximum Spring Mixed Layer Depth 4.504 x 10-3 0.254 0.963 

Annual Primary Production Average Minimum 6.649 7.957 3.320 x 10-10* 

Fall Primary Production Average Maximum 3.206 4.045 2.690 x 10-3* 

Fall Primary Production Average Range 1.244 6.058 5.857 x 10-3* 

Spring Primary Production Average Maximum 3.361 6.057 3.940 x 10-5* 

Spring Primary Production Average Minimum 5.284 7.474 1.160 x 10-8* 

Spring Primary Production Average Range 7.275 7.375 5.850 x 10-10* 

Summer Primary Production Average Maximum 6.377 3.439 8.370 x 10-4* 

Summer Primary Production Average Range 5.416 6.032 1.530 x 10-6* 

Surface Current Average Maximum 5.804 4.805 3.260 x 10-5* 

Surface Salinity Average Range 7.454 7.778 1.310 x 10-10* 

Slope 1.395 5.051 8.598 x 10-3* 
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Figure A1.2. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

distribution of sea pen biomass in the Newfoundland and Labrador Region.
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Figure A1.3. Prediction of sea pen biomass (kg) from the GAM 0.7 Variables model in the Newfoundland and Labrador Region. 

Right map shows the sea pen mean biomass observations overlain.
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Large Gorgonian Corals 
 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables models 

predicting mean large gorgonian coral biomass are presented in Table A1.7. Both models 

performed poorly, with R
2
 values of 0.040 and -0.154 for the GAM RF Variable and GAM 0.7 

Variable models, respectively. Deviance explained was higher for the GAM 0.7 Variable model. 

The variable significance for the GAM RF Variable and GAM 0.7 Variable models are shown in 

Tables A1.8 and A1.9, respectively. 
 

Figure A1.4 shows the graphical diagnostics for both models. Both models showed fairly normal 

residuals and only small patterns in the residuals vs. linear predictor plots. However, the 

response vs. fitted values plots showed a poor fit between the predicted and actual values for 

both models. 

 

Figures A1.5 and A1.6 show the predicted biomass surface of large gorgonian corals generated 

from the GAM RF Variables and GAM 0.7 Variables models, respectively. For the GAM RF 

Variables model, the majority of the study extent was predicted to have low (> 0 – 0.42 kg) large 

gorgonian biomass. The highest predicted biomass (up to 106.8 kg) occurred on the slope off 

Saglek Bank. This area of high biomass was associated with a cluster of large biomass values, 

and is consistent with the random forest results (see Figures 44 and 45). The GAM 0.7 Variables 

model predicted high biomass of large gorgonian corals in the same area (Figure A1.6). The 

highest predicted biomass value in this model was 276.78 kg, which is consistent with the 

maximum mean biomass catch in the raw data (288.97 kg). However, this model poorly 

predicted the smaller catches that are distributed along the slopes of Labrador and 

Newfoundland. 

 

 

Table A1.7. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of large gorgonian corals in the Newfoundland 

and Labrador Region. 

 

 

 

 

 

 

 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R
2
 0.040 -0.154 

Deviance explained 53% 66.40% 

AIC 

BIC 

6405.672 

6618.710 

6184.489 

6681.857 
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Table A1.8. Results of the GAM RF Variables model built to predict the biomass of large 

gorgonian corals in the Newfoundland and Labrador Region. The estimated degrees of freedom 

(edf), F value, and p-value are shown for each variable. Significance was tested at the α= 0.05 

level. Significant variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Summer Primary Production Average Minimum 5.560 5.780 2.260 x10-6* 

Fall Chlorophyll a Minimum 4.778 9.065 2.660 x10-9* 

Spring Primary Production Average Maximum 7.645 17.455 < 2 x 10-16* 

Bottom Temperature Average Range 7.192 33.587 < 2 x 10-16* 

 

 

 

 

Table A1.9. Results of the GAM 0.7 Variables model built to predict the biomass of large 

gorgonian corals in the Newfoundland and Labrador Region. The estimated degrees of freedom 

(edf), F value, and p-value are shown for each variable. Significance was tested at the α= 0.05 

level. Significant variables are indicated with an asterisk (*). 

 

 

 

 

 

Variable edf F p-value 

Bottom Current Average Maximum 6.906 6.262 7.170 x 10-18* 

Bottom Temperature Average Maximum 6.539 2.762 6.204 x 10-3* 

Annual Chlorophyll a Mean 2.509 3.692 0.011* 

Fall Chlorophyll a Maximum 0.980 3.155 0.065 

Fall Chlorophyll a Mean 3.212 x 10
-4

 0.102 0.994 

Fall Chlorophyll a Minimum 1.728 1.973 0.133 

Spring Chlorophyll a Maximum 3.874 x 10
-4

 0.038 0.996 

Spring Chlorophyll a Minimum 1.631 8.897 1.310 x 10-4* 

Depth 5.030 17.942 < 2 x 10-16* 

Maximum Spring Mixed Layer Depth 6.022 5.372 5.590 x 10-6* 

Annual Primary Production Average Minimum 4.229 1.852 0.097 

Fall Primary Production Average Maximum 1.380 2.752 0.067 

Fall Primary Production Average Range 0.815 1.846 0.169 

Spring Primary Production Average Maximum 5.729 6.614 1.630 x 10-7* 

Spring Primary Production Average Minimum 2.279 8.071 2.720 x 10-5* 

Spring Primary Production Average Range 4.086 6.014 1.210 x 10-5* 

Summer Primary Production Average Maximum 0.114 0.434 0.765 

Summer Primary Production Average Range 2.217 3.274 0.023* 

Surface Current Average Maximum 0.696 1.168 0.279 

Surface Salinity Average Range 4.560 3.392 0.004* 

Slope 1.491 7.590 6.860 x 10-4* 
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Figure A1.4. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

distribution of large gorgonian coral biomass in the Newfoundland and Labrador Region.
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Figure A1.5. Prediction of large gorgonian coral biomass (kg) from the GAM RF Variables model in the Newfoundland and Labrador 

Region. Right map shows the large gorgonian coral mean biomass observations overlain.
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Figure A1.6. Prediction of large gorgonian coral biomass (kg) from the GAM 0.7 Variables model in the Newfoundland and Labrador 

Region. Right map shows the large gorgonian coral mean biomass observations overlain.
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Small Gorgonian Corals 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables models 

predicting mean small gorgonian coral biomass are presented in Table A1.10. Both models 

performed poorly, with R
2
 values of 0.124 and 0.170 for the GAM RF Variable and GAM 0.7 

Variable models, respectively. Deviance explained was higher for the GAM 0.7 Variable model. 

The variable significance for the GAM RF Variable and GAM 0.7 Variable models are shown in 

Tables A1.11 and A1.12, respectively. 
 

Figure A1.7 shows the graphical diagnostics for both models. Both models showed normal 

residuals. The residuals vs. linear predictor plot for the GAM 0.7 Variable model showed 

patterns in the residuals vs. linear predictor plot indicative of heteroskedasticity. The response vs. 

fitted values plots showed a poor fit between the predicted and actual values for both models. 

 

Figures A1.8 and A1.9 show the biomass surface of small gorgonian corals generated from the 

GAM RF Variables and GAM 0.7 Variables models, respectively. For the GAM RF Variables 

model, the majority of the study extent was predicted to have low (> 0 – 0.42 kg) small 

gorgonian coral biomass. Higher biomass of small gorgonians was predicted to occur along the 

slopes of Labrador and Newfoundland. These areas of higher biomass are consistent with the 

distribution of small gorgonian catches from the RV surveys (Figure A1.8, right panel). The 

highest biomass of small gorgonians was predicted to occur on the slope southwest of Grand 

Bank, and is consistent with the results of the random forest model (see Figures 59 and 60). The 

GAM 0.7 Variables model predicted similar results, however the area of high biomass on the 

slope southwest of Grand Bank was less intense than that predicted by the GAM RF Variables 

model. 

 

 

 

Table A1.10. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of small gorgonian corals in the Newfoundland 

and Labrador Region. 

 

 

 

 

 

 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R
2
 0.124 0.170 

Deviance explained 57% 56.7% 

AIC 

BIC 

3610.156 

3852.414 

3613.739 

3873.916 
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Table A1.11. Results of the GAM RF Variables model built to predict the biomass of small 

gorgonian corals in the Newfoundland and Labrador Region. The estimated degrees of freedom 

(edf), F value, and p-value are shown for each variable. Significance was tested at the α= 0.05 

level. Significant variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Fall Chlorophyll a Range 3.509 x 10-5 0.037 0.999 

Surface Temperature Average Minimum 1.978 7.444 2.270 x 10-4* 

Surface Temperature Average Range 8.517 10.861 < 2 x 10-16* 

Slope 2.967 16.422 3.960 x 10-11* 

Bottom Salinity Average Minimum 2.716 10.622 1.500 x 10-7* 

Depth 4.954 13.840 1.610 x 10-14* 

Fall Chlorophyll a Maximum 3.043 x 10-5 0.004 0.999 

Surface Salinity Average Minimum 4.426 4.433 3.690 x 10-4* 

Fall Primary Production Average Maximum 8.827 x 10-1 1.480 0.217 

Fall Primary Production Average Range 2.608 2.847 0.032* 

Surface Temperature Average Maximum 1.372 x 10-3 0.140 0.986 

 

 

Table A1.12. Results of the GAM 0.7 Variables model built to predict the biomass of small 

gorgonian corals in the Newfoundland and Labrador Region. The estimated degrees of freedom 

(edf), F value, and p-value are shown for each variable. Significance was tested at the α= 0.05 

level. Significant variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Bottom Current Average Maximum 1.870 1.563 0.201 

Bottom Temperature Average Maximum 6.794 x 10-4 0.293 0.984 

Annual Chlorophyll a Mean 1.665 10.623 1.580 x 10-5* 

Fall Chlorophyll a Maximum 3.526 3.300 9.170 x 10-3* 

Fall Chlorophyll a Mean 2.297 x 10-5 0.000 1.000 

Fall Chlorophyll a Minimum 1.423 6.834 1.840 x 10-3* 

Spring Chlorophyll a Maximum 9.520 x 10-5 0.063 0.997 

Spring Chlorophyll a Minimum 9.313 x 10-1 3.143 0.068 

Depth 3.931 18.118 7.090 x 10-16* 

Maximum Spring Mixed Layer Depth 1.159 2.071 0.132 

Annual Primary Production Average Minimum 2.040 8.549 4.940 x 10-5* 

Fall Primary Production Average Maximum 1.946 x 10-5 0.007 0.999 

Fall Primary Production Average Range 3.966 x 10-4 0.076 0.994 

Spring Primary Production Average Maximum 1.434 3.686 0.026* 

Spring Primary Production Average Minimum 1.664 4.418 0.010* 

Spring Primary Production Average Range 7.551 x 10-5 0.047 0.998 

Summer Primary Production Average Maximum 8.881 x 10-4 0.053 0.992 

Summer Primary Production Average Range 3.324 x 10-5 0.268 0.996 

Surface Current Average Maximum 2.714 x 10-5 0.090 0.998 

Surface Salinity Average Range 7.743 17.521 < 2 x 10-16* 

Slope 3.091 18.002 1.800 x 10-12* 
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Figure A1.7. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

distribution of small gorgonian coral biomass in the Newfoundland and Labrador Region.
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Figure A1.8. Prediction of small gorgonian coral biomass (kg) from the GAM RF Variables model in the Newfoundland and 

Labrador Region. Right map shows the small gorgonian coral mean biomass observations overlain. 
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Figure A1.9. Prediction of small gorgonian coral biomass (kg) from the GAM 0.7 Variables model in the Newfoundland and 

Labrador Region. Right map shows the small gorgonian coral mean biomass observations overlain. 
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APPENDIX 2 

 

Congruence between Fisheries Observer Data and Species Presence 

Probability 

 

Fisheries Observer Program Data (FOP) (for more details contact V. Wareham, DFO, NWAFC, 

St. John’s, NL; pers. comm.) from the period of 1996 to 2015 were used to validate the presence 

probability maps where available. This dataset consisted of 6500 sponge, 1105 sea pen, 592 large 

gorgonian coral, and 471 small gorgonian coral records. An additional 2406 sponge observer 

records were obtained from commercial surveys conducted between 1985 and 2001 using shrimp 

trawl gear, bottom otter trawl gear, longlines, and mid-water trawl gear (S. Fuller, Ecology 

Action Centre, Halifax, NS; pers. comm.). The overlay of observer data in Newfoundland and 

Labrador had showed good congruence with the presence probability of sponges (Figures A2.1 

and A2.2), sea pens (Figure A2.3), large (Figure A2.4) and small (Figure A2.5) gorgonian corals. 

For sponges, several FOP records occurred in deep water off the Labrador Slope in an area 

considered extrapolated and may help to validate the presence probability there. Also, several 

FOP sponge records from 1985 to 2001 occurring on the Grand Banks of Newfoundland were 

predicted as absence by the model (Figure A2.2). FOP records for sea pens, and large and small 

gorgonians were concentrated along the slopes of Newfoundland and Labrador, particularly on 

the slope off southwest Grand Bank in the 3O Coral Protection Zone. Several large gorgonian 

coral records were located on the shelf in areas not consistent with prevalence. Sea Pen FOP 

records were also concentrated on the slope northeast of Newfoundland. This area was in the RF 

model results and the high presence probability predicted in this area.  
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Figure A2.1. Location of the start positions of commercial tows with sponge catches from the 

Fisheries Observer Program (1996 - 2015) in the Newfoundland and Labrador Region overlain 

on the sponge RF presence probability map. Also shown are the grey areas of model 

extrapolation. n = 6500. 
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Figure A2.2. Location of the start positions of commercial tows with sponge catches from 1985 

- 2001 in the Newfoundland and Labrador Region overlain on the sponge RF presence 

probability map. Also shown are the grey areas of model extrapolation. n = 2406. 
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Figure A2.3. Location of the start positions of commercial tows with sea pen catches from the 

Fisheries Observer Program (2004 - 2013) in the Newfoundland and Labrador Region overlain 

on the sea pen RF presence probability map. Also shown are the grey areas of model 

extrapolation. n = 1105. 
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Figure A2.4. Location of the start positions of commercial tows with large gorgonian coral 

catches from the Fisheries Observer Program (2004 - 2013) in the Newfoundland and Labrador 

Region overlain on the large gorgonian coral RF presence probability map. Also shown are the 

grey areas of model extrapolation, which appear dark red or blue when overlain on the presence 

probability surface. n = 592. 
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Figure A2.5. Location of the start positions of commercial tows with small gorgonian coral 

catches from the Fisheries Observer Program (2004 - 2013) in the Newfoundland and Labrador 

Region overlain on the small gorgonian coral RF presence probability map. Also shown are the 

grey areas of model extrapolation. n = 471. 


