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ABSTRACT 

 
 

Beazley, L., Kenchington, E., Murillo, F.J., Lirette, C., Guijarro, J., McMillan, A., and Knudby, 

A. 2016. Species Distribution Modelling of Corals and Sponges in the Maritimes Region for Use 

in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3172: vi + 

189p. 

 

Effective fisheries and habitat management processes require knowledge of the distribution of 

areas of high ecological or biological significance. On the Scotian Shelf and Slope, a number of 

benthic ecologically or biologically significant areas consisting of habitat-forming species such 

as sponges and deep-water corals have been identified. However, knowledge of their spatial 

distribution is largely based on targeted surveys that are limited in their spatial extent. We used a 

species distribution modelling approach called random forest (RF) to predict the probability of 

occurrence and biomass of sponges, sea pens, and large and small gorgonian corals across the 

entire spatial extent of Fisheries and Oceans Canada’s (DFO) Maritimes Region. We also 

modelled the rare sponge Vazella pourtalesi, which forms the largest known aggregation of its 

kind on the Scotian Shelf. We utilized a number of data sources including DFO multispecies 

trawl catch data and in situ benthic imagery observations. Most models had excellent predictive 

capacity with cross-validated Area Under the Receiver Operating Characteristic Curve (AUC) 

values ranging from 0.760 to 0.977. Areas of suitable habitat were identified for each taxon and 

were contrasted against their known distribution and when applicable, the location of closure 

areas designated for their protection. Generalized additive models (GAMs) were developed to 

predict the biomass distribution of each taxonomic group and serve as a comparison to the RF 

models. The RF and GAM models provided comparable results, although GAMs provided 

superior predictions of biomass along the continental slope for some taxonomic groups. In the 

absence of data observations, the results of this study could be used to identify the potential 

distribution of sensitive benthic taxa for use in fisheries and habitat management applications. 

These results could also be used to refine significant concentrations of these taxa as identified 

through the kernel density analyses.  
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RÉSUMÉ 
 

 

Beazley, L., Kenchington, E., Murillo, F.J., Lirette, C., Guijarro, J., McMillan, A., et Knudby, A. 

2016. Modélisation de la répartition des espèces de coraux et d'éponges dans la région des 

Maritimes aux fins d'utilisation dans la détermination des zones benthiques d'importance. Can. 

Tech. Rep. Fish. Aquat. 3172: vi + 189p.  

 

Pour être efficaces, les processus de gestion des pêches et de l'habitat exigent la connaissance de 

la répartition des zones de grande importance sur le plan écologique ou biologique. Sur le plateau 

et le talus néo-écossais, un certain nombre de zones benthiques d'importance écologique ou 

biologique composées d'espèces faisant office d'habitat, telles que les éponges et les coraux en 

eau profonde, ont été désignées. Toutefois, la connaissance de leur répartition spatiale se fonde 

en grande partie sur des relevés ciblés dont l'étendue spatiale est limitée. Nous nous sommes 

servis d'une approche de modélisation de la répartition des espèces appelée modèle de forêts 

aléatoires (RF) pour prévoir la probabilité de la présence et la biomasse des éponges, des 

pennatules et des grandes et petites gorgones dans l'ensemble de l'étendue spatiale de la Région 

des Maritimes de Pêches et Océans Canada (MPO). Nous avons aussi modélisé Vazella 

pourtalesi, une éponge rare qui forme la plus grande concentration connue du genre sur le 

plateau néo-écossais. Nous avons utilisé un certain nombre de sources de données, y compris les 

données sur les prises des relevés plurispécifiques au chalut du MPO et celles provenant des 

observations in situ par imagerie benthique. La plupart des modèles avaient une excellente 

efficacité de prévision selon des valeurs contre-validées de l'aire sous la courbe de la fonction 

d’efficacité du récepteur variant de 0,760 à 0,977. Les zones d'habitat propice ont été désignées 

pour chaque taxon et ont été comparées à l'aire de répartition de l'espèce et, le cas échéant, aux 

emplacements des zones de fermeture visant sa protection. Des modèles additifs généralisés ont 

été élaborés pour prédire la répartition de la biomasse de chaque groupe taxonomique et servent 

de points de comparaison aux modèles RF. Les résultats obtenus par les modèles RF et les 

modèles additifs généralisés étaient similaires, cependant les prévisions de la biomasse par les 

modèles additifs généralisés étaient meilleures pour certains groupes taxonomiques le long de la 

pente continentale. En l'absence de données d'observation, les résultats de la présente étude 

pourraient servir à déterminer l'aire de répartition potentielle des taxons benthiques vulnérables 

aux fins d'utilisation dans les applications de gestion des pêches et de l'habitat. Ces résultats 

pourraient aussi être utilisés pour mieux définir les concentrations importantes de ces taxons 

repérées dans le cadre des analyses de noyaux de densité.  
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INTRODUCTION 

 

The Scotian Shelf is a wide, submerged portion of the continental shelf situated off Nova 

Scotia. It reaches 700 km in length and is up to 230 km wide from the coast to the shelf edge. It 

is separated from the Gulf of Maine by the Northeast Channel in the southwest, and from the 

Newfoundland Shelf by the Laurentian Channel in the east. The Scotian Shelf is characterized by 

a number of valleys, ridges, shallow banks, and deep basins that support a rich diversity of 

habitats and species, including several commercially-important fishes and invertebrates 

(Drinkwater et al., 2002). The Scotian Slope and the deep canyons that indent it support a high 

diversity of sensitive benthic invertebrates such as corals and sponges (Mortensen et al., 2006; 

Gordon and Kenchington, 2007; Cogswell et al., 2009). In 2014, Fisheries and Oceans Canada 

(DFO) identified eighteen Ecologically or Biologically Significant Areas (EBSAs) in the 

offshore component of the Scotian Shelf Biogeographic Region (DFO, 2014). Seventeen of these 

EBSAs occurred on the Scotian Shelf or Slope, while one was identified in the deeper waters 

beyond the slope. A number of different ecological or biological data layers were considered to 

help evaluate and identify these EBSAs, including, areas of high biological productivity or 

biomass, high fish and invertebrate diversity, important habitats for fishes and invertebrates, 

coral and sponge occurrences, and critical habitat for species at risk. Although the delineation of 

an EBSA does not impart immediate conservation status, it does draw attention to an area that 

has particularly high ecological or biological significance, information that will be useful during 

broader oceans planning and management processes including marine protected area (MPA) 

network design (DFO, 2004; 2014). 

Kenchington (2014) compiled information on marine benthic species and habitats that are 

recognized in other jurisdictions as meeting EBSA or similar criteria. Fourteen structure-

forming, biogenic habitats such as kelp forests and sponge aggregations that are known or are 

likely to occur in the Maritimes Region were identified and ranked against DFO 2004 EBSA 

criteria and additional EBSA criteria from the Convention on Biological Diversity (CBD, 2009). 

Although some of these benthic EBSAs, such as large deep-water corals, have already received 

considerable attention in the Maritimes Region, knowledge of their spatial distribution is largely 

based on targeted surveys that are limited in their spatial extent.  

Statistical tools like species distribution modelling (SDM), that are used to predict the 

distribution of a species in unsampled areas based on its species-environment relationship in 

sampled areas, are becoming more widely considered in fisheries and habitat management 

processes. SDM has particular relevance to the identification of benthic EBSAs through its 

ability to extrapolate predictions of species’ occurrence to data-poor areas. Species distribution 

modelling of sensitive benthic fauna in Atlantic Canada has largely been limited to certain deep-

water taxa (see Bryan and Metaxas, 2007; Knudby et al., 2013), likely due to their high 

conservation status in the region. 
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Using kernel density estimation (KDE) on research vessel trawl catch data, significant 

concentrations of sponges, sea pens, and large and small gorgonian corals were identified in the 

Scotian Shelf Biogeographic Region in 2010 (Kenchington et al., 2010). A revision of these 

analyses is currently underway using the most recent trawl survey data (Kenchington et al., 

2016). In ecology, KDE is commonly used to identify abundance or biomass ‘hotspots’. In the 

northwest Atlantic, this tool has been used to identify Vulnerable Marine Ecosystems (VMEs), 

i.e. significant concentrations of benthic structure-forming VME indicator taxa, from their 

broader distribution (Knudby et al., 2013; Kenchington et al., 2014). KDE is based solely on the 

spatial relationship between data observations and is therefore unable to extrapolate to areas 

where sampling has not occurred. SDMs can be a complimentary tool to KDE when evaluating 

potential fishing impacts or considering other management actions. 

Here, we employed a specific species distribution modelling approach called random 

forest (RF), to predict the probability of occurrence and biomass of sponges, sea pens, and large 

and small gorgonian corals across DFO's Maritimes Region. Several different data sources were 

considered, including multispecies trawl survey catch data and in situ camera observations. We 

utilized an extensive suite of environmental predictor variables compiled specifically for the 

purposes of species distribution modelling in this region. With the exception of small gorgonian 

corals, these taxonomic groups are also considered benthic EBSA's as identified in Kenchington 

(2014), and all groups are considered VME indicators by the Northwest Atlantic Fisheries 

Organization (NAFO; NAFO, 2013). We also modelled the Russian Hat sponge Vazella 

pourtalesi, a rare VME indicator species that forms the largest known monospecific sponge 

ground of its kind in Emerald Basin on the Scotian Shelf. In 2013, two areas on the eastern 

Scotian Shelf were closed to bottom contact fishing to protect high concentrations of V. 

pourtalesi under DFO's Policy to Manage the Impacts of Fishing on Sensitive Benthic Areas. 

Having species distribution models for this species will give a greater picture of the extent to 

which these closed areas are effective. Aside from providing continuous prediction maps for the 

entire Maritimes Region that will be useful in ecosystem management decision-making 

processes, the results in this report could be used to refine the outer boundaries of the significant 

concentrations as identified by kernel density estimation and identify new areas that are were not 

sampled by the trawl surveys.  

 

 

 

 

 

 



3 

 

 

 

METHODOLOGY 

Study Area 

 

The Maritimes Region, one of DFO’s six administrative regions across Canada, was used 

as the boundary for species distribution modelling in this report (Figure 1). This study area 

encompasses the entire Scotian Shelf and Bay of Fundy and is delimited by the Canadian 

Maritime Boundary to the west in Gulf of Maine, the 200 nautical mile Exclusive Economic 

Zone (EEZ) in the south, the Placentia Bay-Grand Bank Large Ocean Management Area in the 

east, and the Gulf Region MPA Network Planning Boundary in the north. A 5-km buffer was 

placed around all land to avoid its inclusion in the models. The total area covered in the study 

extent is approximately 459,139 km
2
 based on a NAD 1983 UTM Zone 20N projection. 

Figure 1. Extent of the DFO Maritimes Region boundary used for species distribution 

modelling. Place names and location of the Gully MPA, St. Ann’s Bank Proposed Closure, and 

other areas closed to protect corals and sponges are indicated. 
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Environmental Data 

 

Sixty-six environmental variables derived from various sources and native spatial 

resolutions were used as predictor variables in the random forest models (Table 1). Variables 

were chosen based on their availability and assumed relevance to the distribution of benthic 

fauna. Bathymetry was derived from the Canadian Hydrographic Service (CHS) Atlantic 

Bathymetry Compilation (ABC). This data is the highest resolution bathymetry available for the 

entire study area, with a horizontal resolution of up to 64 m in some areas. In the Maritimes 

Region the data are resolved to 15 arc-seconds, which is equivalent to approximately 500 m. 

Slope in degrees was derived from the depth raster using the ‘Slope’ tool in ArcMap’s Spatial 

Analyst toolbox, ArcMap version 10.2.2 (ESRI, 2011). All other environmental variables were 

derived from long-term modelled oceanographic or remote-sensing data and were spatially 

interpolated across the study area using ordinary kriging in ArcMap. Specific details on data 

sources and methodology used for the spatial interpolation of these variables are documented in a 

separate technical report (Beazley et al., in prep, although see Beazley et al., 2016 for 

information on the same environmental data sources and variables for the Estuary and Gulf of St. 

Lawrence). Only variables that were spatially interpolated with reasonable confidence were used 

in this report, and as a result a number of available data layers (e.g. dissolved oxygen, silicate, 

etc.) were not considered. All predictor layers were displayed in raster format with geographic 

coordinates using the WGS 1984 datum and a ~0.012º cell size (approximately equal to 1 km in 

the Maritimes Region). 

 

 

Response Data 

 

Species composition of the five taxonomic groups modelled in this report is presented in 

Table 2. For each group, random forest models were generated on presence-absence records 

derived from catch data collected from DFO research vessel multispecies trawl surveys.  Trawl 

surveys in the Maritimes Region were conducted on the CCGS Alfred Needler, Wilfred 

Templeman, or Teleost and followed a stratified random design (Tremblay et al., 2007). All DFO 

invertebrate catch data were stored in the Maritimes Region Virtual Data Centre (VDC) 

(http://marvdc.bio.dfo.ca/pls/vdc/mwmfdweb.auth). Data from 1999 to March 2015 were 

extracted from the VDC for all taxonomic groups, coinciding with the year that selected 

invertebrates were recorded more systematically in the surveys (Tremblay et al., 2007). Tows 

were conducted primarily using Western IIA trawl gear, although other gear types (i.e. Campelen 

and US 4 seam bridle 3 trawls) were also used in the region. Absences records were created from 

null (zero) catches that occurred in the same surveys.  

http://marvdc.bio.dfo.ca/pls/vdc/mwmfdweb.auth
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Table 1. Summary of the 66 environmental variables used as predictor variables in random forest modelling. N/A = Not applicable. 

Variable Data source 
Temporal 

range 
Unit 

Native 

resolution 

Depth CHS-ABC N/A metres 15 arc-sec.  

Slope CHS-ABC N/A degrees 15 arc-sec.  

     

Bottom Salinity Mean GLORYS2V1 1993 - 2011 N/A ¼ º  

Bottom Salinity Average Minimum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Bottom Salinity Average Maximum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Bottom Salinity Average Range  GLORYS2V1 1993 - 2011 N/A ¼ º 

     

Bottom Temperature Mean GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Minimum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Maximum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Range  GLORYS2V1 1993 - 2011 ºC ¼ º 

     

Bottom Current Speed Mean GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Minimum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Maximum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Range GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

     

Bottom Shear Mean GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Minimum GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Maximum GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Range GLORYS2V1 1993 - 2011 Pa ¼ º 

     

Surface Salinity Mean GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Minimum  GLORYS2V1 1993 - 2011 N/A ¼ º 
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Surface Salinity Average Maximum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Range  GLORYS2V1 1993 - 2011 N/A ¼ º 

     

Surface Temperature Mean GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Minimum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Maximum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Range  GLORYS2V1 1993 - 2011 ºC ¼ º 

     

Surface Current Speed Mean GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Minimum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Maximum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Range  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

     

Maximum Average Mixed Layer Depth Fall  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Winter  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Spring  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Summer  GLORYS2V1 1993 - 2011 metres ¼ º 

     

Fall Chlorophyll a Mean MODIS Level I 2002 - 2012 mg m
-3

 2 km 

Fall Chlorophyll a Minimum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Fall Chlorophyll a Maximum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Fall Chlorophyll a Range MODIS Level I 2002 – 2012 mg m
-3

 2 km 

     

Spring Chlorophyll a Mean MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Spring Chlorophyll a Minimum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Spring Chlorophyll a Maximum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Spring Chlorophyll a Range MODIS Level I 2002 – 2012 mg m
-3

 2 km 

     

Summer Chlorophyll a Mean MODIS Level I 2002 – 2012 mg m
-3

 2 km 
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Summer Chlorophyll a Minimum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Summer Chlorophyll a Maximum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Summer Chlorophyll a Range MODIS Level I 2002 – 2012 mg m
-3

 2 km 

     

Annual Chlorophyll a Mean MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Annual Chlorophyll a Minimum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Annual Chlorophyll a Maximum MODIS Level I 2002 – 2012 mg m
-3

 2 km 

Annual Chlorophyll a Range MODIS Level I 2002 – 2012 mg m
-3

 2 km 

     

Fall Primary Production Mean SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Fall Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Fall Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Fall Primary Production Average Range SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

     

Spring Primary Production Mean SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Range SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

     

Summer Primary Production Mean SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 
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Summer Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Range SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

     

Annual Primary Production Mean SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Range SeaWiFS Level-3 with 
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 Certain areas in the Maritimes Region where hard bottom occurs are avoided during 

annual stock assessment surveys to prevent the loss of gear. Thus species distribution models 

based solely on data obtained from these surveys may be poor predictors of presence for certain 

benthic organisms, such as large branching corals that proliferate in areas where hard substrate 

occurs. For such taxonomic groups whose distribution we felt was not fully sampled by the 

multispecies stock assessment surveys, or when the number of trawl records for a group was 

insufficient for producing accurate predictions of distribution, we ran additional random forest 

models using trawl survey data augmented with data from other sources: 1) in situ benthic 

imagery observations from scientific surveys, 2) DFO scallop stock assessment surveys, and 3) 

commercial records from the Fisheries Observer Program (FOP). VDC multispecies trawl survey 

records using gear types other than Western IIA were also considered. Note that absence records 

were not generated for the benthic imagery observations or commercial trawl records. 

Combining data from different gear types introduces bias through differences in catchability and  

 

Table 2. Species composition in each of the five taxonomic groups modelled using random 

forest. Also shown are the VDC codes used for data entry into the VDC. 

Taxonomic Group Species/Taxon  
VDC Taxon 

Code 

Sponges (Porifera) 

Phylum Porifera 8600 

Geodia spp. 8364 

Polymastia sp. 8610 

Rhizaxinella sp. 8356 

Vazella pourtalesi 8601 

Vazella pourtalesi (Russian Hat 

sponge) 
Vazella pourtalesi 8601 

Sea Pens (Pennatulacea) 

Order Pennatulacea 8318 

Anthoptilum grandiflorum 8361 

Funiculina quadrangularis 8359 

Halipteris sp. 8363 

Pennatula borealis 8360 

Large Gorgonian Corals 

Acanthogorgia armata 8326 

Keratoisis ornata 8325 

Paragorgia arborea 8323 

Primnoa resedaeformis 8322 

Small Gorgonian Corals 

Acanella arbuscula 8329 

Chrysogorgia agassizii 8338 

Radicipes gracilis 8330 
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may affect model performance. However, for presence-absence models with data matching the 

above conditions, we felt that the use of mixed data collection methods was justified. We did not 

extend this to models of biomass (see below). 

Other data sources, such as local ecological knowledge records (see Gass (2002) and 

Breeze et al. (1997) for such reports for the region), the NOAA Deep-Sea Coral Data Portal, and 

those from other scientific missions were also considered for each taxonomic group and used for 

model validation in some cases. For sponge only, an additional 3933 observer records were 

obtained from Scotia-Fundy commercial surveys conducted between 1980 and 2001 using 

dredge, gillnets, lines, shrimp trawl, bottom otter trawl gear (S. Fuller, Ecology Action Centre, 

Halifax, NS; pers. comm.). Note that there may be overlap between some museum records from 

the NOAA Data Portal and those from the Breeze et al. (1997) report. Details on the data sources 

used for random forest modelling are provided separately for each taxonomic group in the 

Results section below. 

The presence-absence records used in each random forest model (see below) were filtered 

so that only one presence or absence occurred within a single environmental data raster cell (~1 

km). Presence records took precedence over an absence record when both occurred within the 

same raster cell.  

Biomass (kg) data associated with the DFO multispecies trawl survey records were also 

extracted from the VDC. To avoid introducing any bias related to differences in catchability 

between gear types, only biomass data obtained from a single gear type (Western IIA trawls) 

were used in the random forest models. For each taxonomic group, weights were averaged across 

multiple tows occurring within the same environmental raster cell. 

 

Random Forest Modelling 

 

Random forest (Breiman, 2001), is a non-parametric machine learning technique, where 

multiple regression or classification trees (usually > 500) are built using random subsets of the 

data (Figure 2). Each tree is fit to a bootstrap sample of the biological observations (i.e. the ‘in-

bag’ observations), and the best split at each node is selected based on a randomly-chosen subset 

of predictor variables. At each node a randomly-chosen predictor value splits the response data 

so that maximum homogeneity is achieved (for classification) or mean response with the least 

error (for regression). Regression trees are used for response variables consisting of continuous 

data, and classification trees for factor variables. RF is a robust statistical method requiring no 

distributional assumptions on covariate relation to the response in comparison to other classical 

statistical models such as generalized linear models (GLM) or generalized additive models 

(GAM). It can handle a large amount of input variables effectively without variable deletion 
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(Chen and Ishwaran, 2012) and can also account for correlation as well as interactions among 

variables.  

Random forest can be used to predict the probability of a species’ presence (for 

classification) or biomass (for regression) in non-sampled areas by identifying areas with similar 

environmental conditions to the training data. RF models were built in the statistical computing 

software package R  

 

Figure  2. An example of a regression model tree (adapted from Kuhn and Johnson, 2013). 

 

(R Core Team, 2015) using the ‘randomForest’ package (Liaw and Wiener, 2002). Default 

values were used for RF parameters, and 500 trees were constructed. 

 

Model Evaluation 

Presence-Absence Response Data – Classification Model  

 

Condition 1b 

Split 4 

Condition 4a Condition 4b 

 Leaf 7  Leaf 8 

Condition 1a 

Split 1 

Condition 2b Condition 2a 

 Leaf 2  Leaf 5  Leaf 4 

Split 3 

Condition 3b Condition 3a 

Split 2 
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The catch records for some taxonomic groups are characterized by a higher number of 

absences relative to presences (i.e. unbalanced species prevalence, where prevalence is the 

proportion of presences in relation to the total dataset). The distribution of these two classes may 

be biased spatially and/or environmentally across the study area. Classification accuracy in 

random forest is prone to bias when the categorical response variable is highly imbalanced (Chen 

et al., 2004). This is due to over-representation of the majority class in the bootstrap sample 

leading to a higher frequency in which the majority class is drawn, therefore skewing predictions 

in that favour (Evans et al., 2011). Several different approaches have been used to address 

imbalanced data: 1) assign a high cost to misclassification of the minority class, 2) down-sample 

the majority class, and 3) up-sample the minority class (Evans et al., 2011). Although several 

studies suggest a balanced modelling prevalence (i.e. the proportion of presences in the dataset) 

of 0.5 (McPherson et al., 2004; Liu et al., 2005), this approach may result in a loss of 

information, particularly for rare species, and may not be necessary when the model training data 

is reliable and not biased spatially and/or environmentally (Jiménez-Valverde and Lobo, 2006). 

Another approach is to adjust the threshold used to divide the probabilistic predictions of 

occurrence into discrete predictions of presence or absence, to match modelling prevalence (Liu 

et al., 2005). The latter approach has shown to produce constant error rates and optimal model 

accuracy measures compared to balancing modeling prevalence (Liu et al., 2005; Hanberry and 

He, 2013).  

Given the numerically and/or spatially biased presence and absence data of most 

taxonomic groups in this study, we employed two different modelling approaches and evaluated 

their performance. The first approach was to model the response data with a balanced species 

prevalence (i.e. an equal number of presences and absences) and threshold of 0.5. Here the 

absence records were randomly down-sampled to match the number of presences prior to 

modelling. In the second approach we used all presence and absence records and set the 

threshold equal to species prevalence. The appropriateness of each modelling approach on the 

response data was assessed based on the model accuracy measures (see explanation below of 

model accuracy measures) and the spatial pattern of the predictions of presence probability in 

relation to the response data.  

Accuracy measures were derived from validated data using 10-fold cross validation (10 

resamples over which performance estimates were obtained). In 10-fold cross validation the 

response data are randomly split into 10 equal-sized groups and the model is trained on a 

combination of 9, while validated on the remaining group. Three measures of accuracy were 

used to assess model performance: 1) sensitivity, 2) specificity, and 3) AUC, or Area Under the 

Receiver Operating Characteristic Curve. In a classification model with two classes (e.g. 

presence and absence), there are four possible predicted outcomes: 1) true positive, where 

observed presences are predicted as presences, 2) false negative, where observed presences are 

predicted as absences, 3) true negative, where observed absences are predicted as absences, and 

4) false positive, where observed absences are predicted as presences (Fawcett, 2006). 
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Sensitivity measures the proportion of observed presences correctly predicted as presence (i.e. 

the true positive rate) (McPherson et al., 2004; Fawcett, 2006). Low sensitivity indicates high 

omission error (i.e. false negative rate). Specificity measures the proportion of observed absences 

correctly predicted as absence (i.e. the true negative rate). Low specificity indicates high 

commission error (i.e. the false positive rate). Both sensitivity and specificity are derived from a 

two-by-two confusion matrix of the tabulated predicted outcomes.  

The AUC is a threshold-independent measure of model accuracy that is calculated from 

the combination of true positive rate (sensitivity) and false positive rate (1 – specificity), and 

equals the probability that the model will rank a randomly-chosen presence instance higher than 

a randomly-chosen absence instance (Fawcett, 2006). Its value ranges from 0 to 1, with values 

larger than 0.5 indicating performance better than random (Fawcett, 2006).   

For models generated using a balanced species prevalence and threshold of 0.5, 10 data 

subsets were created with the same number of presence and absences (balanced data) and the 

AUC was determined by averaging the AUC values between folds within each run. The model 

with the highest average AUC was considered the most accurate in predicting the validated data 

and was used as the final model in which predicted presence probabilities of the response data 

were generated. The predicted outcomes from the two-by-two confusion matrices were summed 

across all 10 folds to give a complete confusion matrix for each model from which sensitivity 

and specificity were calculated. For models generated using all presence and absence data and a 

threshold equal to species prevalence, only one model was considered and the AUC was 

determined by averaging AUC values between folds. The predicted outcomes from the two-by-

two confusion matrices were summed across all 10 folds to give one confusion matrix from 

which sensitivity and specificity were calculated.  

Biomass Response Data – Regression Model 

Models were validated using 10-fold cross validation. Data were split using the 

createFolds function in R. This function performs stratified partitioning into k groups (=folds) to 

better evenly distribute the biomass values across splits. Models were built using each calibrated 

and validated dataset and accuracy measures were calculated for each corresponding dataset. The 

accuracy measures used to validate the models included the goodness-of-fit statistic R
2
, the Root-

Mean-Square Error (RMSE) and the percentage of variance explained. RMSE was normalized to 

a percentage of the range of observed biomass values (ymax – ymin) for each specific response 

(NRMSE) to facilitate the comparison between responses in the different models. Cross 

validation gives an average of the accuracy measures used, but can also be used to estimate the 

variability around the mean to evaluate the stability of the model fit, and to check for the 

arbitrary effects from subsampling data. 

 

 

Model Extrapolation 
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The spatial extent of the Maritimes Region reaches far beyond the Scotian Shelf and 

Slope, down to ~5100 m depth. Our data observations are limited to depths above ~2900 m 

(multispecies trawl observations are limited to depths of 1850 m and shallower). Extrapolation of 

model predictions to areas outside of the range of data observations may produce unreliable 

predictions in those areas (Elith et al., 2010). Random forest models average the decision across 

regression trees to predict piecewise constant functions, giving a constant value for inputs falling 

under each leaf. When extrapolating outside the domain of the training data, where different 

physical conditions from those used to train the model likely exist, random forest models predict 

the same value as they would for the closest value in the tree for which they had training data 

(Breiman et al., 1984). For each random forest model, we highlight those areas within the study 

extent where model predictions are extrapolated. We define areas of extrapolation as those areas 

where at least one environmental variable has values above or below its sampled range.  

 

Ecological Interpretation 

Ecological interpretation of the models was aided by predictor variable importance 

measures and partial dependence plots. In classification models, variable importance is measured 

as the mean decrease in Gini value, otherwise known as Gini impurity. When the response data 

are split into two child nodes based on a randomly-chosen variable, the data in the two 

descendent nodes are more homogeneous than that of the parent node. This difference in 

homogeneity between parent and child nodes is measured by the Gini index, where the increase 

in homogeneity equals a decrease in Gini value. The sum of all decreases in Gini index for each 

variable in each tree is averaged across all trees in the model ‘forest’ and then across all 10 

repetitions of each model fold. The variable with the highest mean decrease in Gini value is 

considered the most important variable in the model. Variable importance in regression random 

forest is measured by the mean decrease in the residual sum of squares when the variable is 

included in a tree split.  

Partial dependence plots using the partialPlot function in R were generated for the six 

most important variables. Partial dependence plots show the relationship between a particular 

predictor variable and the log-transformed predicted probabilities of presence for classification 

models or the biomass regression function for regression models. The other predictor variables 

are held constant at their mean observed value. Partial dependence plots are useful in showing 

general trends in model accuracy’s dependence on the predictors (Herrick et al., 2013). For 

classification models, the y axis ranges from -∞ to ∞ and quantifies the log-odds of a positive 

classification for the total range of values in 𝓍. Log-odds are logarithmic transformations of the 

probabilities for values in 𝓍 (Hastie et al., 2005). These values were transformed to the original 

presence probability scale using: 

 p = exp(y) /(1 + exp(y)),  
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where p = the probability of presence, and y is the log-odds of presence, the standard output from 

the partialPlot function.  

 

Alternative Prediction Models 

Generalized additive models (GAMs) were developed to predict the biomass distribution of each 

taxonomic group. GAMs were developed to compare a regression approach to the machine 

learning random forest results and to determine whether predictions could be improved for the 

areas considered as extrapolated by Random forest models. Methodology and results for the 

GAM models are presented in Appendix 1. 
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RESULTS 

Sponges (Porifera) 

Data Sources and Distribution 

Figure 3 shows the distribution of available sponge records in the Maritimes Region. 

Aside from scientific survey records, DFO multispecies trawl surveys using Western IIA gear 

(white circles) accounted for the majority of sponge records in the region. These trawl records 

were distributed relatively evenly across the Scotian Shelf and Slope down to 1850 m depth, but 

were less numerous in the Bay of Fundy region. As a result, the DFO multispecies trawl survey 

Western IIA data were augmented with catch records from DFO scallop stock assessment  

 

Figure 3. Available sponge presence data in the Maritimes Region from scientific survey 

missions, the NOAA Deep-Sea Coral Data Portal, DFO research vessel surveys, and commercial 

catches from the Fisheries Observer Program. 
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surveys conducted off Digby (Scallop Production Area (SPA) 4) and the Brier Island, Lurcher 

Shoal, and St. Mary’s Bay area (SPA 3). These surveys used modified Digby scallop drags 

(Kenchington et al., 2007). The DFO multispecies survey data consists of 1174 presence and 

1846 absence records collected in various years between 2001 and 2015 (Table 3; Figure 4). The 

scallop catch data consists of 136 presence and 6 absence records from 1997, and 107 presence 

and 2 absence records from 2007. The combined dataset used for modelling consists of 1417 

presence and 1854 absence records (Figure 4). The highest mean biomass value from the 

Western IIA records (85.54 kg) occurred in Emerald Basin (Figure 5), an area dominated by the 

Russian Hat sponge Vazella pourtalesi. Several large biomass records also occurred off 

southwestern Nova Scotia. The area inshore of Browns Bank (Figure 1) off southwestern Nova 

Scotia is not surveyed (Figures 4, 5).  

 

 

Table 3. Number of presence and absence records of sponge catch recorded from DFO 

multispecies trawl and scallop stock assessment surveys conducted between 1997 and 2015 in 

the Maritimes Region. 

 

Year 
Total number of 

presences 

Total number of 

absences 

1997 136 6 

2001 1 93 

2002 57 151 

2005 21 167 

2006 6 94 

2007 213 200 

2008 109 176 

2009 130 136 

2010 132 204 

2011 152 160 

2012 125 141 

2013 163 189 

2014 148 128 

2015 24 9 
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Figure 4. Presence and absence records of sponge catch recorded from DFO multispecies trawl 

and scallop stock assessment surveys from 1997 to 2015 within the Maritimes Region.  
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Figure 5. Mean biomass (kg) per grid cell of sponge catch recorded from DFO multispecies 

trawl surveys from 2001 to 2015 within the Maritimes Region. Also shown are absence records 

from both DFO multispecies trawl and scallop stock assessment surveys collected between 1997 

and 2015.  

 

 

Model 1 – Balanced Species Prevalence 

 Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model 

using a balanced species prevalence (1417 presences and 1417 absences; Model 1) are presented 

in Table 4. The highest mean AUC of 0.766 was associated with Model 1 and is therefore 

considered the optimal model for the prediction of the sponge response data. The sensitivity and 

specificity measures were 0.689 and 0.708, respectively. The confusion matrix of the optimal 

model is also presented in Table 2. Class error for both the presence and absence classes was 

somewhat moderate (0.311 and 0.292, respectively).  
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Table 4. Accuracy measures for all 10 model repetitions of 10-fold across validation of a random 

forest model of sponge presence-absence data collected within the Maritimes Region. The 

confusion matrix is shown for the model with the highest AUC value (Model Run 1) which is 

considered the optimal model for predicting the presence probability of sponge in the region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

The presence probability prediction surface of sponges is presented in Figure 6. Pockets 

of high presence probability were distributed across the study area, but several areas had notably 

high presence probability: Smokey and St. Ann’s Banks off northeastern Nova Scotia (Cape 

Breton), Misaine Bank, and the Bay of Fundy off Digby and Brier Island. The latter two areas 

corresponded to the location of the additional sponge records from the DFO scallop stock 

assessment surveys in SPA 3 and 4 (Figure 7). Other areas of high presence probability 

corresponded well with the occurrence of presence points at those locations. Interestingly, the 

unsampled area southwest of Nova Scotia has a moderate to high presence probability of 

sponges.  

Model Run AUC Sensitivity Specificity 

1 0.766 0.689 0.708 

2 0.757 0.691 0.697 

3 0.760 0.688 0.707 

4 0.759 0.694 0.705 

5 0.761 0.699 0.701 

6 0.763 0.693 0.706 

7 0.749 0.688 0.694 

8 0.764 0.696 0.716 

9 0.756 0.697 0.691 

10 0.762 0.680 0.698 

Mean 0.760 0.691 0.702 

SD 0.005 0.005 0.007 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 1003 414 1417 0.292 

Presence 441 976 1417 0.311 
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Figure 8 shows the actual data observations (1417 presences and 1417 absences) used in 

Model 1. There appears to be little to no spatial bias in the presence and absences records used in 

the model. Areas of extrapolation are also shown in Figure 8. Small pockets of extrapolated area 

are distributed across the Scotian Shelf, with larger areas occurring off southwestern Nova Scotia 

and off northeast Cape Breton. All deep water beyond the Scotian Shelf is considered 

extrapolated area. The extrapolated area off southwestern Nova Scotia is predicted to have a high 

presence probability of sponges.  

 

Figure 6. Predictions of presence probability (Pres. Prob.) from the optimal random forest model 

of sponge presence and absence data collected from DFO multispecies trawl and scallop stock 

assessment surveys in the Maritimes Region between 1997 and 2015. 
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Figure 7. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of the optimal random forest model of sponge presence and absence data recorded from 

DFO multispecies trawl and scallop stock assessment surveys in the Maritimes Region between 

1997 and 2015. 
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Figure 8. Map of the 2834 data observations (1417 presences and 1417 absences) of sponges 

used in the optimal random forest Model 1 on balanced species prevalence. Also shown is the 

predicted presence probability (Pres. Prob.) of sponges and the areas of model extrapolation. 

 

Of all 66 environmental predictor variables used in the model, Maximum Average 

Summer Mixed Layer Depth was the most important for the classification of the sponge presence 

and absence data (Figure 9). Prior to spatial interpolation, this variable displayed a right-skewed 

distribution (Beazley et al., in prep). Examination of the Q-Q plot revealed a strong spatial 

pattern in data points over- and under-predicted by a normal distribution, with over-predicted 

points located along the coast of Nova Scotia and in the deepest regions of the study extent, and 

under-predicted points located across the centre of the study extent. Maximum Average Summer 

Mixed Layer Depth was followed more distantly in terms of its Mean Decrease in Gini Value by 

Depth, Surface Temperature Average Maximum, and Spring Chlorophyll a Mean. 

Chlorophyll a variables ranked high in the model. Partial dependence plots for the top 6 predictor 

variables are shown in Figure 10. The highest predicted sponge presence probabilities were 

associated with Maximum Average Summer Mixed Layer Depth values between 11 and 13 
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m. Values in this range coincided with those data points along the coast that were over-predicted 

by a normal distribution. However, the fit between predicted and observed values for this 

variable was very good, with little deviation in data points from the 1:1 reference line. Any data 

points over-predicted by the kriging model were within 1 m of the true values, and were still 

within the range of high presence probability identified in the partial plot (Figure 10). Along the 

Depth gradient, presence probability was highest at the shallowest depths.  

 

Figure 9. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting sponge presence and absence data within 

the Maritimes Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 10. Partial dependence plots of the top six predictors from the optimal random forest 

model of sponge presence and absence data collected within the Maritimes Region, ordered left 

to right from the top. Presence probability is shown on the y-axis. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

Table 5 shows the accuracy measures for the random forest model using all sponge 

presence and absence data (1417 presences and 1854 absences; Model 2) and a threshold equal 

to species prevalence (0.43). The average AUC calculated from Model 2 was 0.766, higher than 

that of Model 1. Class error of the absence class was lower than Model 1, while class error for 

the presence class was the same between the two models.  

The surface of predicted presence probability of sponges generated from Model 2 is 

nearly identical to that of Model 1 (Figure 11). The area of high presence probability on St. 

Ann’s Bank is slightly reduced in this model. The model does not appear to predict areas of 

presence far beyond the location of presence records (Figure 12), likely due to the inclusion of 

all absence records in the model. Areas of extrapolation are shown in Figure 13, likely due to the 

even spatial distribution of the presence-absence data. The locations of extrapolated area in this 

model were nearly identical to that of Model 1. Figure 14 depicts the classification of sponge 

presence probability into presence and absence categories based on the prevalence threshold of 

0.43. In this map, all presence probability values generated from Model 2 that were greater than 

0.43 were classified as presence, while values less than 0.43 were classed as absence. The largest 

areas classified as sponge presence were located on St. Ann’s Bank and off southwestern Nova 

Scotia. Much of central and outer Scotian Shelf was classified as absence of sponges. 

 

Table 5. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of sponges within the Maritimes Region. Observ. = 

Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.765  Absence Presence     

2 0.757 Absence 1317 537 1854 0.290 0.709 0.710 

3 0.774 Presence 413 1004 1417 0.292   

4 0.802        

5 0.756       

6 0.779       

7 0.769       

8 0.745       

9 0.766       

10 0.745       

Mean 0.766       

SD 0.017       
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Figure 11. Predictions of presence probability (Pres. Prob.) of sponges based on a random forest 

model on unbalanced presence and absence sponge catch data collected from DFO multispecies 

trawl and scallop stock assessment surveys conducted in the Maritimes Region between 1997 

and 2015. 
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Figure 12. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of sponges based on a random forest model on unbalanced presence and absence sponge 

catch data collected from DFO multispecies trawl and scallop stock assessment surveys 

conducted in the Maritimes Region between 1997 and 2015. 
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Figure 13. Areas of extrapolation of the random forest model on unbalanced presence and 

absence sponge catch data collected within the Maritimes Region between 1997 and 2015. Also 

shown are the sponge presence and absence observations and predictions of presence probability 

(Pres. Prob.). 
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Figure 14. Predicted distribution (Pred. Dist.) of sponges in the Maritimes Region based on the 

prevalence threshold of 0.43 of sponge presence and absence data used in Model 2. Also shown 

are the areas of model extrapolation (grey polygon may appear red or blue). 

 

The order of importance of the top environmental predictor variables in Model 2 (Figure 

15) was nearly identical to that of Model 1, with Maximum Average Summer Mixed Layer 

Depth, Depth, and Surface Temperature Average Maximum holding the top three spots. The 

order of the remaining variables changed slightly from Model 1. The partial dependence of 

sponge presence and absence data on the top 6 predictor variables is shown in Figure 16. Sponge 

presence probability was highest at Maximum Average Summer Mixed Layer Depth values 

between ~11 and 12 m. Similar to Model 1, presence probability was highest at the shallowest 

depths along the Depth gradient. 
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Figure 15. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced sponge presence and absence data within the 

Maritimes Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 16. Partial dependence plots of the top six predictors from the random forest model of 

sponge unbalanced presence and absence data collected within the Maritimes Region study, 

ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model Selection 

The random forest model using a balanced species prevalence and threshold equal to 0.5 

(Model 1) was chosen as the best predictor of sponge distribution in the Maritimes Region. 

Although model accuracy measures were slightly better for Model 2, the presence probability 

surfaces were nearly identical between both models. The selection of Model 1 allows for the use 

of presence probability over presence or absence classification based on the prevalence 

threshold. 

 

Validation of Selected Model Using Independent Data 

Figure 17 shows the predicted presence probability of sponges generated from the 

selected model (Model 1) at the location of additional sponge records not used in the model from 

in situ benthic imagery observations and DFO multispecies trawl surveys using Campelen and 

US 4 seam 3 bridle trawl gear. There is relatively good congruence between the location of 

sponge records from the in situ benthic imagery observations and areas of high presence 

predicted by the model. Many of the camera observations were concentrated in the Northeast 

Channel and along the eastern slope and its canyons where there is a relatively high predicted 

presence probability of sponges (top map of Figure 17). No science survey records exist off Cape 

Breton or southwestern Nova Scotia where the highest predicted presence probabilities occurred. 

Several records occurred in deeper waters off the shelf in an area considered extrapolated by the 

model. 

The sponge records from DFO multispecies trawl surveys using Campelen and US 4 

seam 3 bridle trawl gear were distributed mainly in the western portion of the study area on 

Browns, Baccaro, and LaHave Banks, and in Bay of Fundy where there was a relatively high 

presence probability of sponges predicted by the model. There was also good congruence 

between the location of observer records from the Scotia Fundy survey and areas of high 

presence predicted by the model. A notable exception is a cluster of records on Banquereau Bank 

that were predicted with low probability. 
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Figure 17. Validation of sponge presence probability from Model 1 using independent data. 

Presence probability values were extracted to the location of sponge records from DFO 

multispecies trawl surveys using Campelen and US 4 seam 3 bridle trawl gear (top map), in situ 

benthic imagery observations from scientific surveys (bottom map), and Scotia Fundy observer 

records (see next page). 
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Figure 17. continued. 

 

 

Prediction of Sponge Biomass Using Random Forest 

 The accuracy measures of the regression random forest model of mean sponge biomass 

per grid cell from DFO multispecies trawl surveys are presented in Table 6. The highest R
2
 was 

0.4588 with a mean of 0.130 ± 0.138 SD. The average Normalized Root-Mean-Square Error 

(NRMSE) was 0.030 ± 0.013 SD. The highest percentage variance explained was 8.51%, 

however, half of the model folds had a negative variance explained indicating poor predictive 

performance of the model. 

Figures 18 and 19 show the surface of sponge biomass (kg) predictions per grid cell 

generated from the random forest model. The majority of the spatial extent was predicted to have 

low sponge biomass. However, the few areas of high biomass predicted by the model coincide 

well with the locations of high biomass records in Emerald Basin (Figure 19).  
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Table 6. Accuracy measures from 10-fold cross validation of a random forest model of average 

sponge biomass (kg) per grid cell recorded from DFO multispecies trawl surveys in the 

Maritimes Region. RMSE = Root-Mean-Square Error; NRMSE = Normalized Root-Mean-

Square Error. 

 

 

 

 

 

 

 

 

  

 

 

 

Model Fold R
2 

RMSE NRMSE 
Percent (%) 

variance explained 

1 0.114 1.834 0.021 -0.73 

2 0.028 1.543 0.018 1.84 

3 0.459 3.317 0.039 -3.03 

4 0.032 1.990 0.023 0.63 

5 0.016 4.919 0.058 8.51 

6 0.110 2.757 0.032 -0.76 

7 0.275 2.258 0.026 -4.64 

8 0.052 3.397 0.040 1.01 

9 0.142 2.876 0.034 0.14 

10 0.071 1.083 0.013 -0.85 

Mean 0.130 2.597 0.030 0.21 

SD 0.138 1.112 0.013 3.49 
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Figure 18. Predictions of biomass (kg) per grid cell of sponges from catch data recorded in DFO 

multispecies trawl surveys conducted in the Maritimes Region between 2001 and 2015. 
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Figure 19. Predictions of biomass (kg) per grid cell of sponges from catch data recorded in DFO 

multispecies trawl surveys conducted in the Maritimes Region between 2001 and 2015. Also 

shown are the mean biomass values per grid cell. 

 

The top 15 most important environmental variables for predicting sponge biomass are 

shown in Figure 20. Summer Primary Production Mean was the most important variable in the 

model. Prior to spatial interpolation, this variable displayed a slightly bimodal distribution 

(Beazley et al., in prep). Examination of the Q-Q plot revealed a spatial pattern to data points 

over- and under-predicted by a normal distribution, with over-predicted points located off the 

coast of Cape Breton and southwestern Nova Scotia and in the deepest regions of the study 

extent, and under-predicted points located in the centre of the study extent and in Emerald Basin. 

Summer Primary Production Mean was followed more distantly by Bottom Temperature 

Average Minimum and the other variables in the model. The partial dependence of sponge 

biomass on the top 6 most important variables is shown in Figure 21. Predicted biomass was 

highest at primary production values greater than 1100 mg C m
-2

 day
-1

. Values in this range 

coincided with those data points under-predicted by a normal distribution off southwestern Nova 

Scotia. However, the fit between predicted and observed values for this variable was relatively 
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good, however, some points could be predicted lower than their true values and slightly outside 

the range of highest predicted biomass identified in the partial plot. 

 

 

Figure 20. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the random forest model predicting sponge biomass (kg) within the 

Maritimes Region. The higher the Mean Decrease in Residual Sum of Squares the more 

important the variable is for predicting the response data. 
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Figure 21. Partial dependence plots of the top six predictors from the optimal random forest 

model of sponge biomass collected within the Maritimes Region, ordered left to right from the 

top. Predicted biomass (kg) is shown on the y-axis. 
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Vazella pourtalesi (Russian Hat sponge) 

Data Sources and Distribution 

 Figure 22 shows the distribution of available Vazella pourtalesi records in the Maritimes 

Region. Presence records of V. pourtalesi had an uneven spatial distribution across the study 

area, with the majority occurring in Emerald and LaHave Basins on central Scotian Shelf, and in 

deeper water between Emerald and LaHave Banks near the edge of the Scotian Shelf. There was 

a high degree of overlap in the spatial distribution of records originating from the different data 

sources. Records from multispecies and scientific surveys occurred in the Northeast Channel, 

while V. pourtalesi records from all three data sources occurred in the eastern Gulf of Maine. 

 

Figure 22. Available Vazella pourtalesi presence data in the Maritimes Region from scientific 

survey missions, DFO research vessel surveys, and commercial catches from the Fisheries 

Observer Program.   
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Initial random forest models of Vazella pourtalesi were run using only catch data 

originating from DFO multispecies trawl surveys (Western IIA gear). These records were 

collected over a period of 9 years from 2007 to 2015 (Table 7) and consisted of 60 presence and 

1884 absences (Figure 23). Absence records were distributed relatively evenly across the Scotian 

Shelf and Bay of Fundy. The highest mean biomass record (84.54 kg) was recorded from 

Emerald Basin. 

 

Table 7. Number of presence and absence, and total biomass of Vazella pourtalesi catch 

recorded from DFO multispecies trawl surveys between 2007 and 2015 conducted within the 

Maritimes Region. 

 

 

 

 

 

 

Year 
Total number of 

presences 

Total number of 

absences 

2007 4 173 

2008 8 158 

2009 1 198 

2010 4 301 

2011 8 251 

2012 6 212 

2013 10 296 

2014 17 264 

2015 2 31 
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Figure 23. Biomass (kg) of V. pourtalesi catch recorded from DFO multispecies  trawl surveys 

from 2007 to 2015 within the Maritimes Region. 

 

Model 1 – Balanced Species Prevalence 

 Accuracy measures (mean AUC, sensitivity and specificity) for the random forest model 

on balanced species prevalence (60 presences and 60 absences; Model 1) are presented in Table 

8. The highest AUC was 0.981 (Model Run 3). This model also had among the highest 

sensitivity and specificity measures of all 10 runs. The confusion matrix of this model is also 

presented in Table 8. Class error for both the presence and absence classes was low (0.050 and 

0.100, respectively). 

 The presence probability prediction surface of V. pourtalesi from Model 1 is presented in 

Figure 24. The highest predictions of presence probability occurred in Emerald Basin, LaHave 

Basin, and the area between LaHave Bank and Emerald Bank near the shelf break. The Northeast 

Channel and eastern Gulf of Maine also had a high probability of presence of V. pourtalesi. 

These areas of high presence probability corresponded well with the spatial distribution of 
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presence records (see Figure 25). Presence probability of V. pourtalesi was moderate to high 

along the shelf break despite the absence of presence records there. 

 

 

Table 8. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a random 

forest model of presence and absence of V. pourtalesi within the Maritimes Region. The 

confusion matrix is shown for the model with the highest AUC value (Model Run 3) which is 

considered the optimal model for predicting the presence probability of V. pourtalesi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Run AUC Sensitivity Specificity 

1 0.940 0.867 0.833 

2 0.932 0.883 0.817 

3 0.981 0.933 0.883 

4 0.962 0.933 0.867 

5 0.954 0.933 0.900 

6 0.962 0.917 0.833 

7 0.917 0.833 0.783 

8 0.946 0.917 0.883 

9 0.927 0.917 0.817 

10 0.952 0.900 0.850 

Mean 0.947 0.903 0.847 

SD 0.019 0.033 0.037 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 54 6 60 0.100 

Presence 3 57 60 0.050 
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Figure 24. Predictions of presence probability (Pres. Prob.) from the optimal random forest 

model of Vazella pourtalesi presence and absence data collected from DFO multispecies trawl 

surveys conducted within the Maritimes Region between 2007 and 2015. 
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Figure 25. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of the optimal random forest model of Vazella pourtalesi presence and absence data 

recorded from DFO multispecies trawl surveys conducted within the Maritimes Region between 

2007 and 2015. 

 

 The actual presence and absence data observations used in the final model run of Model 1 

(60 presences and 60 absences; Figure 26) showed extreme spatial bias across the study area. 

Despite their being absence records in Emerald Basin, LaHave Basin, and Northeast Channel, 

only a few absence records were selected from these areas during the random down-sampling of 

the data prior to modelling. This likely caused the over-extension of high predicted probabilities 

in these areas beyond where presence data occurred. Areas of extrapolation of Model 1 are also 

shown in Figure 26. Several small pockets of extrapolated area overlap with areas of high 

predicted presence probability of V. pourtalesi in Emerald Basin, the Northeast Channel, and 

eastern Gulf of Maine. 
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Figure 26. Map of the 120 data observations (60 presences and 60 absences) of V. pourtalesi 

used in the optimal random forest Model 1. Also shown is the predicted presence probability 

(Pres. Prob.) of V. pourtalesi generated from Model 1 and areas of model extrapolation. 

  

Of all 66 environmental predictor variables used in the model, Bottom Salinity Average 

Minimum was the most important for the classification of V. pourtalesi response data (Figure 

27). Prior to spatial interpolation, this variable displayed a left-skewed distribution (Beazley et 

al., in prep). Examination of the Q-Q plot revealed a relatively weak spatial pattern to data points 

over- and under-predicted by a normal distribution, with over-predicted points located in the 

Laurentian Channel, Gulf of Maine, central Scotian Shelf, and in the deepest regions of the study 

extent, and under-predicted points located around the coast and near the edge of the shelf. This 

variable was followed closely in terms of its Mean Decrease in Gini Value by Bottom Salinity 

Average Maximum and Bottom Salinity Mean. Depth was the 6
th

 most important variable in the 

model. Partial dependence plots for the top 6 predictor variables are shown in Figure 28. In 

general, presence probability of V. pourtalesi was highest at salinity values greater than 34. 

Values in this range coincided with both over-predicted data points in Emerald Basin and under-

predicted data points in the Northeast Channel. The fit between predicted and observed values 
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for this variable was fair, with some deviation in data points from the 1:1 reference line with 

slight under-prediction of salinity values 34 and greater. However, these values were still within 

the range of high presence probability identified in the partial plot (Figure 28). Along the Depth 

gradient, presence probability of V. pourtalesi showed a sharp increase at approximately ~150 m 

depth.  

 

 

Figure 27. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting Vazella pourtalesi presence and absence 

data within the Maritimes Region. The higher the Mean Gini value the more important the 

variable is for predicting the response data. 
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Figure 28. Partial dependence plots of the top six predictors from the optimal random forest 

model of Vazella pourtalesi presence and absence data collected within the Maritimes Region, 

ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

 Table 9 shows accuracy measures for the random forest model on all V. pourtalesi 

presence and absence records and a threshold equal to species prevalence (0.03). The average 

AUC computed from 10-fold cross validation was 0.930, slightly lower than the average AUC 

from Model 1. Class error for the presence class was comparable to Model 1, whereas error for 

the absence class was slightly higher than Model 1. Sensitivity and specificity measures were 

similar between both models. 

 Predicted probabilities of presence of V. pourtalesi generated from Model 2 were much 

more conservative than that of Model 1 (Figure 29). Presence probability was high in small, 

isolated areas in Emerald Basin, along the shelf break between LaHave and Emerald Banks, and 

in the Northeast Channel. The majority of the eastern Scotian Shelf and Bay of Fundy where 

only absence records occur were predicted to have zero presence of V. pourtalesi (Figure 30). 

Areas of extrapolation are shown in Figure 31.  

 

 

Table 9. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of V. pourtalesi within the Maritimes Region. Observ. = 

Observations; Sensit. = Sensitivity, Specif. = Specificity. 

 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.966  Absence Presence     

2 0.987 Absence 1606 278 1884 0.148 0.917 0.852 

3 0.985 Presence 5 55 60 0.083   

4 0.935        

5 0.857       

6 0.993       

7 0.941       

8 0.946       

9 0.981       

10 0.711       

Mean 0.930       

SD 0.087       
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Figure 29. Predictions of presence probability (Pres. Prob.) of Vazella pourtalesi based on a 

random forest model on unbalanced presence and absence V. pourtalesi catch data collected from 

DFO multispecies trawl surveys conducted within the Maritimes Region between 2007 and 

2015. 
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Figure 30. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of Vazella pourtalesi based on a random forest model on unbalanced presence and 

absence V. pourtalesi catch data collected from DFO multispecies trawl surveys conducted 

within the Maritimes Region between 2007 and 2015. 
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Figure 31. Areas of extrapolation of a random forest model on unbalanced presence and absence 

V. pourtalesi catch data collected within the Maritimes Region between 2007 and 2015. Also 

shown are the presence and absence observations and predictions of presence probability (Pres. 

Prob.). 

 

 

 The order of importance of the environmental predictor variables in Model 2 (Figure 32) 

was slightly different than that of Model 1. Bottom Salinity Average Maximum was the most 

important variable in Model 2 compared to Bottom Salinity Average Minimum in Model 1. 

Bottom Salinity Average Maximum displayed a left-skewed distribution prior to spatial 

interpolation (Beazley et al., in prep). Examination of the Q-Q plot revealed a spatial pattern to 

data points over- and under-predicted by a normal distribution, with over-predicted points 

located in Emerald Basin, northern Laurentian Channel, and in the deepest regions of the study 

extent, and under-predicted points also located in Emerald Basin and over much of central 

Scotian Shelf. This variable was followed more distantly by Bottom Salinity Mean and Bottom 

Temperature Average Minimum. Partial dependence plots for the top 6 predictor variables are 
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shown in Figure 33. In general, presence probability of V. pourtalesi was highest at Bottom 

Salinity Average Maximum values greater than 35. Values in this range coincided with under-

predicted data points in Emerald Basin and along central Scotian Shelf. The fit between 

predicted and observed values for this variable was fair, with some deviation in data points from 

the 1:1 reference line with slight under-prediction of salinity values 35 and greater. However, 

these values were still within the range of high presence probability identified in the partial plot 

(Figure 33).  

 

 

Figure 32. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced Vazella pourtalesi presence and absence data 

within the Maritimes Region. The higher the Mean Gini value the more important the variable is 

for predicting the response data. 
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Figure 33. Partial dependence plots of the top six predictors from the random forest model of 

Vazella pourtalesi unbalanced presence and absence data collected within the Maritimes Region, 

ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model 3 – Addition of Commercial Records and In Situ Benthic Imagery Observations 

Given the low number of presence records of this unique population of V. pourtalesi, the 

DFO multispecies trawl survey data were augmented with presence records from all available 

data sources (see Figure 22 and Table 10). The combined dataset, consisting of 166 presences 

and 1983 absences, was remodelled (termed Model 3) using an unbalanced design and a 

threshold equal to species prevalence (0.08).  

Accuracy measures for Model 3 are shown in Table 11. The average AUC computed 

from 10-fold cross validation was 0.977, the highest of all three models. Class error for the 

presence and absence classes is comparable to Model 1. Sensitivity and specificity measures 

were both high. 

The additional presence records expanded the area of high presence probability in 

Emerald and LaHave Basins compared to Model 2 (Figure 34). Similarly, parts of the Northeast 

Channel also have a higher probability of presence of V. pourtalesi. The majority of the eastern 

Scotian Shelf and Bay of Fundy where only absence records occurred were predicted to have 

zero presence of V. pourtalesi (Figure 35). Areas of extrapolation were similar to that of Model 2 

(Figure 36). Figure 37 depicts the classification of V. pourtalesi presence probability into 

presence and absence categories based on the prevalence threshold of 0.08. Part of the Gulf of 

Maine, Northeast Channel, Emerald and LaHave Basins, and the Laurentian Channel were 

classified as presence of V. pourtalesi. 

 

Table 10. Additional presence records of Vazella pourtalesi from in situ benthic surveys, the 

Fisheries Observer Program, and DFO multispecies trawls using US 4 seam 3 bridle gear 

collected within the Maritimes region between 1997 and 2015. FOP = Fisheries Observer 

Program. 

 

Mission Year Gear 
Total number of 

presences 

HUD2005-186 2005 Campod 3 

HUD2011-014 2011 Campod 23 

2001ROPOS 2001 ROPOS 3 

FOP 1997 to 

2007, and 

2011-2015 

Commercial trawl gear 75 

NED2013 2013 US 4 seam 3 bridle trawl 1 

NED2014 2014 US 4 seam 3 bridle trawl 1 
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Table 11. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of V. pourtalesi from DFO multispecies trawl surveys, the 

Fisheries Observer Program, and in situ benthic imagery observations collected within the 

Maritimes Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.978  Absence Presence     

2 0.990 Absence 1811 172 1983 0.087 0.952 0.913 

3 0.948 Presence 8 158 166 0.048   

4 0.980        

5 0.978       

6 0.983       

7 0.963       

8 0.978       

9 0.980       

10 0.993       

Mean 0.977       

SD 0.013       
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Figure 34. Predictions of presence probability (Pres. Prob.) of Vazella pourtalesi based on a 

random forest model on unbalanced presence and absence V. pourtalesi data collected from DFO 

multispecies trawl surveys, the Fisheries Observer Program, and scientific surveys conducted 

within the Maritimes Region between 1997 and 2015. 
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Figure 35. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of Vazella pourtalesi based on a random forest model on unbalanced presence and 

absence V. pourtalesi data collected from DFO multispecies trawl surveys, the Fisheries 

Observer Program, and scientific surveys conducted within the Maritimes Region between 1997 

and 2015. 
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Figure 36. Areas of extrapolation of Model 3 on unbalanced presence and absence V. pourtalesi 

data collected from DFO multispecies trawl surveys, the Fisheries Observer Program, and 

scientific surveys conducted within the Maritimes Region between 1997 and 2015. Also shown 

are the presence and absence observations and predictions of presence probability (Pres. Prob.). 
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Figure 37. Predicted distribution (Pred. Dist.) of Vazella pourtalesi in the Maritimes Region 

based on the prevalence threshold of 0.08 of V. pourtalesi presence and absence data used in 

Model 3. Also shown are the areas of model extrapolation (grey polygon may appear red or 

blue). 

 

 The order of importance of environmental predictor variables in this model (Figure 38) 

was similar to that of Model 2. As in Model 2, Bottom Salinity Average Maximum was the most 

important variable, followed by Bottom Salinity Mean, and more distantly by Bottom 

Temperature Average Minimum. Like Model 2, several primary production variables held higher 

positions in terms importance in the model compared to Model 1. Partial dependence plots are 

shown in Figure 39. Similar to Models 1 and 2, presence probability of V. pourtalesi was highest 

at the highest salinity and temperature values. 
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Figure 38. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced Vazella pourtalesi presence and absence data 

collected from DFO multispecies trawl surveys, the Fisheries Observer Program, and scientific 

surveys conducted within the Maritimes Region between 1997 and 2015. The higher the Mean 

Gini value the more important the variable is for predicting the response data. 
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Figure 39. Partial dependence plots of the top six predictors from the random forest model of 

Vazella pourtalesi unbalanced presence and absence data collected from DFO multispecies trawl 

surveys, the Fisheries Observer Program, and scientific surveys conducted within the Maritimes 

Region between 1997 and 2015, ordered left to right from the top. Presence probability is shown 

on the y-axis. 
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Model Selection 

 The random forest model using all available V. pourtalesi records and unbalanced species 

prevalence (Model 3) was selected as the best predictor of the distribution of this species in the 

Maritimes Region. Model 1 (balanced species prevalence) was considered a poor predictor of 

presence probability of V. pourtalesi due to its exaggerated high presence probability beyond the 

location of presence data in Emerald and LaHave Basins. This phenomenon was likely due to 

random down-sampling of the absence data. Model 2, which was generated using the same 

presence-absence dataset but using all absence data, produced a much more realistic presence 

probability surface with less exaggeration beyond the location of presence points. The additional 

presence records added to Model 3 produced the highest AUC and sensitivity and specificity 

measures of all three models. Although the presence probability surface was similar to that of 

Model 2, areas of high presence probability were expanded in Emerald and LaHave basins due to 

the additional presence records, providing a more accurate depiction of the distribution of this 

species in that area. Note that there were no additional records of V. pourtalesi for use in model 

validation. All available records of this species were used in Model 3. 

Figure 40 depicts the predictions of presence probability of V. pourtalesi from Model 3 in 

Emerald Basin in relation to DFO’s Emerald Bank and Sambro Bank Vazella Closures. Although  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Predictions of presence probability of Vazella pourtalesi in Emerald Basin in relation 

to the location of DFO’s Emerald Bank and Sambro Bank Vazella Closures. 
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the Emerald Bank Closure encompasses much of the area with the highest predicted probability 

of occurrence of V. pourtalesi (99 to 100% occurrence; green area in Figure 40), much of the 

area in Emerald Basin outside the two closures was predicted to have a relatively high 

probability of occurrence of V. pourtalesi. When considering species prevalence (see Figure 37), 

all of Emerald Basin is considered suitable habitat for this species. 

 

Prediction of Vazella pourtalesi Biomass using Random Forest  

The accuracy measures of the regression random forest model on mean V. pourtalesi 

biomass per grid cell from DFO multispecies trawl surveys are presented in Table 12. The 

highest R
2
 was 0.207, while the average was 0.087 ± 0.079 SD. The average Normalized Root-

Mean-Square Error (NRMSE) was 0.024 ± 0.021 SD. The high standard deviation values for 

both of these metrics indicate high variability between model folds. The highest percent variance 

explained was 1.16%. The majority of the model folds had a negative variance explained, 

indicating poor predictive performance of the model. 

 

Table 12. Accuracy measures from 10-fold cross validation of a random forest model of Vazella 

pourtalesi biomass (kg) per grid cell recorded from DFO multispecies trawl surveys in the 

Maritimes Region. RMSE = Root-Mean-Square Error; NRMSE = Normalized Root-Mean-

Square Error. 

 

 

 

 

 

 

 

 

 

 

 

 

Model Fold R
2 

RMSE NRMSE 
Percent (%) 

variance explained 

1 0.192 6.913 0.081 -7.07 

2 0.099 0.703 0.008 -2.26 

3 0.129 2.175 0.025 -6.54 

4 0.032 2.461 0.029 1.16 

5 0.155 1.960 0.023 -4.41 

6 2.860 x 10
-4 

1.962 0.023 0.72 

7 0.028 0.838 0.010 -1.96 

8 0.207 2.218 0.026 -1.05 

9 0.028 1.105 0.013 -1.84 

10 0.004 0.563 0.007 -4.47 

Mean 0.087 2.090 0.024 -2.77 

SD 0.079 1.833 0.021 2.80 
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Figures 41 and 42 show the predicted biomass surface of V. pourtalesi. The regression 

random forest model predicted zero to low (> 0 - 2.31 kg) biomass of this species across the 

much of the region. Predicted biomass was highest (up to 48.99 kg) in Emerald and LaHave 

Basins, coinciding with the location of the highest mean biomass values from the multispecies 

trawl surveys. Unlike the classification random forest model on presence-absence data, there was 

little to no extrapolation of predicted biomass beyond this area, and biomass was predicted to be 

low (> 0 to 4.03 kg) even in areas where medium-range catches (up to 15.10 kg) occurred. 

 

Figure 41. Predictions of biomass (kg) per grid cell of Vazella pourtalesi from catch data 

recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2007 

and 2015. 
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Figure 42. Predicted biomass (kg) of Vazella pourtalesi from the random forest model on catch 

data recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 

2007 and 2015. Also shown are the mean biomass records per grid cell of V. pourtalesi from 

DFO multispecies trawl surveys and areas of model extrapolation. 

 

 Figure 43 shows the top 15 most important variables for predicting the V. pourtalesi 

biomass data. Bottom Temperature Average Minimum was the most important variable in this 

model. Prior to spatial interpolation, this variable displayed a slightly bimodal distribution 

(Beazley et al., in prep). Examination of the Q-Q plot revealed a spatial pattern to data points 

over- and under-predicted by a normal distribution, with over-predicted points located in the 

Gulf of Maine, Emerald Basin, and on Banquereau and Misaine Banks, and in the deepest 

regions of the study extent, and under-predicted points located in Bay of Fundy, off southwestern 

Nova Scotia, the Laurentian Channel, and just beyond the shelf break. Bottom Temperature 

Average Minimum was followed very distantly in terms of its Mean Decrease in Gini Value by 

Bottom Salinity Average Maximum and Bottom Salinity Mean. Partial dependence of V. 

pourtalesi biomass on the top 6 environmental variables is shown in Figure 44. Predicted 
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biomass was highest at Bottom Temperature Average Minimum values greater than 8ºC. Values 

in this range coincided with those data points over- and under-predicted by a normal distribution 

in Emerald Basin and in the Northeast Channel. The fit between predicted and observed values 

was poor, with severe under-prediction of temperature values greater than 8˚C. Some points 

could therefore be predicted lower than their true values and slightly outside the range of highest 

predicted biomass identified in the partial plot. 

 

Figure 43. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on Vazella pourtalesi biomass 

per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the more important the 

variable is for predicting the response data. 
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Figure 44. Partial dependence plots of the top six predictors from the random forest model of 

Vazella pourtalesi biomass data collected within the Maritimes Region, ordered left to right from 

the top. Predicted biomass (kg) is shown on the y-axis. 
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Sea Pens (Pennatulacea) 

Data Sources and Distribution 

 Figure 45 shows the distribution of available sea pen records in the Maritimes Region. 

There was little overlap in the spatial distribution of records originating from the different data 

sources. DFO multispecies trawl survey records were concentrated in the central and eastern 

portions of the study area. Relatively few multispecies trawl records occurred along the slopes 

where the scientific survey and NOAA data were concentrated. 

 Initial random forest models of sea pens were run using only catch data originating from 

DFO multispecies trawl surveys (Western IIA gear). This data was collected over a period of  

 

Figure 45. Available sea pen presence data in the Maritimes Region from scientific survey 

missions, the NOAA Deep-Sea Coral Data Portal, and DFO multispecies trawl surveys. 
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13 years from 2002 to 2014 (Table 13). This dataset consisted of 199 presence and 2710 absence 

records (Figure 46). Absence records were distributed relatively evenly across the study area. 

The highest mean biomass records (up to 30.62 kg) occurred in the Laurentian Channel. Smaller 

catches were distributed on central Scotian Shelf and in the Gulf of Maine. 

 

Table 13. Number of presence and absence records of sea pen catch recorded from DFO 

multispecies trawl surveys conducted between 2002 and 2014 in the Maritimes Region. 

 

Year 
Total number of 

presences 

Total number of 

absences 

2002 2 110 

2003 3 213 

2004 1 80 

2005 7 101 

2006 10 282 

2007 16 242 

2008 15 270 

2009 22 175 

2010 36 263 

2011 25 230 

2012 24 239 

2013 24 273 

2014 14 232 
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Figure 46. Mean biomass (kg) per grid cell of sea pen catch recorded from DFO multispecies 

trawl surveys from 2002 to 2014 within the Maritimes Region. Also shown are absence records 

from the same surveys. 

 

 

Model 1 – Balanced Species Prevalence 

 Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model 

on balanced species prevalence (199 presences and 199 absences; Model 1) are presented in 

Table 14. The highest mean AUC of 0.894 was associated with Model Run 5 and is therefore 

considered the optimal model for the prediction of the sea pen response data. The sensitivity and 

specificity measures of this model run were 0.774 and 0.794, respectively. The confusion matrix 

of the optimal model is also presented in Table 2. Class error for both the presence and absence 

classes was somewhat moderate (0.226 and 0.206, respectively). 
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Table 14. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a 

random forest model of presence and absence of sea pens within the Maritimes Region. The 

confusion matrix is shown for the model with the highest AUC value (Model Run 5) which is 

considered the optimal model for predicting the presence probability of sea pens in the region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The presence probability prediction surface of sea pens is presented in Figure 47. The 

highest predictions of presence probability occurred on eastern Scotian Shelf and in Laurentian 

Channel. LaHave and Emerald Basins also had a high predicted presence probability of sea pens. 

Moderate to high sea pen presence probability occurred along the slopes and in eastern Gulf of 

Maine. These areas corresponded well with the spatial distribution of presence records (see 

Figure 48). Most of Bay of Fundy was predicted to have zero or low presence probability of sea 

pens. 

 

 

Model Run AUC Sensitivity Specificity 

1 0.868 0.784 0.799 

2 0.825 0.719 0.779 

3 0.857 0.749 0.794 

4 0.871 0.779 0.814 

5 0.894 0.774 0.794 

6 0.874 0.754 0.794 

7 0.819 0.683 0.714 

8 0.889 0.774 0.774 

9 0.853 0.744 0.779 

10 0.827 0.729 0.789 

Mean 0.858 0.749 0.783 

SD 0.026 0.032 0.027 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 158 41 199 0.206 

Presence 45 154 199 0.226 
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Figure 47. Predictions of presence probability (Pres. Prob.) from the optimal random forest 

model of sea pen presence and absence data collected from DFO multispecies trawl surveys in 

the Maritimes Region between 2002 and 2014. 
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Figure 48. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of the optimal random forest model of sea pen presence and absence data recorded from 

DFO multispecies trawl surveys in the Maritimes Region between 2002 and 2014. 

 

 

The actual presence and absence data observations used in the optimal model run of 

Model 1 (199 presences and 199 absences; Figure 49) showed some spatial bias across the study 

area. Despite their being absence records in the eastern Gulf of Maine and in LaHave and 

Emerald Basins, very few were selected from these areas during the random down-sampling of 

the data prior to modelling. This likely caused an over-extension of high predicted probabilities 

in these areas. Areas of model extrapolation (i.e. areas where at least one environmental variable 

has values beyond its sampled range) are also shown in Figure 49. All deep water beyond the 

Scotian Shelf is considered extrapolated area, as well as smaller areas off southwestern Nova 

Scotia, central Scotian Shelf, and the northeastern tip of Cape Breton. The large extrapolated 

area off the northeast tip of Cape Breton has a high predicted presence probability of sea pens. 
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Figure 49. The 398 data observations (199 presences and 199 absences) of sea pens used in the 

optimal random forest Model 1 on balanced species prevalence. Also shown is the predicted 

presence probability (Pres. Prob.) of sea pens generated from Model 1. 

 

 

Of all 66 environmental predictor variables used in the model, Surface Temperature 

Average Minimum was the most important for the classification of the sea pen presence and 

absence data (Figure 50). Prior to spatial interpolation, this variable displayed a right-skewed 

distribution (Beazley et al., in prep). Examination of the Q-Q plot revealed a very strong spatial 

pattern to data points over- and under-predicted by a normal distribution, with over-predicted 

points located along the central and eastern coast of Nova Scotia and in the deepest regions of 

the study extent, and under-predicted points located in the centre of the study extent and in Bay 

of Fundy and Gulf of Maine. Surface Temperature Average Minimum was followed in terms of 

its Mean Decrease in Gini Value by Bottom Temperature Average Range and Depth.  Surface 

and bottom current and salinity variables ranked high in the model. Partial dependence plots for 

the top 6 predictor variables are shown in Figure 51. The highest predicted sea pen presence 
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probabilities are associated with Surface Temperature Average Minimum values between -1 and 

1ºC. Values in this range coincided with those over-predicted values along the central and 

eastern coast of Nova Scotia and in Laurentian Channel. These are not of concern however, as 

there was a near-perfect fit between predicted and observed values in the interpolation with only 

slight over-prediction of temperature values between -1 and 1ºC. A steep decrease in sea pen 

presence probability occurred at 4ºC along the Bottom Temperature Average Range variable. 

Along the Depth gradient, sea pen presence probability sharply increased at ~200 m depth.  

 

Figure 50. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting sea pen presence and absence data within 

the Maritimes Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 51. Partial dependence plots of the top six predictors from the optimal random forest 

model of sea pen presence and absence data collected within the Maritimes Region, ordered left 

to right from the top. Presence probability is shown on the y-axis. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

 

Table 15 shows the accuracy measures for the random forest model on all sea pen 

presence and absence data (199 presences and 2710 absences) and a threshold equal to species 

prevalence (0.07). The average AUC calculated from 10-fold cross validation was 0.857, nearly 

identical to the average AUC from Model 1. Class error for the absence class was similar to that 

of Model 1 (0.200 compared to 0.206 from Model 1), however class error for the presence class 

was slightly higher (0.261 compared to 0.226 from Model 1). Sensitivity and specificity 

measures were comparable to those of Model 1. 

The surface of predicted presence probability of sea pens generated from Model 2 is 

much more conservative than that of Model 1 (Figure 52). Similar to Model 1, the highest 

presence probability of sea pens in Model 2 occurred in the Laurentian Channel. The high 

presence probability St. Ann’s Banks, and Misaine and Banquereau Banks in Model 1 were 

much reduced in this model. After the Laurentian Channel, Emerald Basin had the highest 

predicted probability of presence of sea pens. Much of the Bay of Fundy, Browns Bank, and 

Sable Island Bank were predicted to have zero presence of sea pens. On the Scotian Shelf, areas 

of higher sea pen presence probability did not extend far beyond the location of the presence 

records (see Figure 53). 

 

Table 15. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of sea pens within the Maritimes Region. Observ. = 

Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.879  Absence Presence     

2 0.946 Absence 2171 539 2710 0.200 0.739 0.801 

3 0.774 Presence 52 147 199 0.261   

4 0.884        

5 0.828       

6 0.896       

7 0.853       

8 0.899       

9 0.796       

10 0.821       

Mean 0.857       

SD 0.053       
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Figure 52. Predictions of presence probability (Pres. Prob.) of sea pens based on a random forest 

model on unbalanced presence and absence sea pen catch data collected from DFO multispecies 

trawl surveys conducted within the Maritimes Region between 2002 and 2014. 
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Figure 53. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of sea pens based on a random forest model on unbalanced presence and absence sea pen 

catch data collected from DFO multispecies trawl surveys conducted within the Maritimes 

Region between 2002 and 2014. 

 

Areas of extrapolation of the unbalanced random forest model on sea pens is presented in 

Figure 54. Areas of extrapolation, particularly the large area off the northeast tip of Cape Breton, 

were not associated with high predicted presence probabilities.  
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Figure 54. Areas of extrapolation of the random forest model on unbalanced presence and 

absence sea pen catch data collected within the Maritimes Region between 2002 and 2014. Also 

shown are the sea pen presence and absence observations and predictions of presence probability 

(Pres. Prob.). 

 

 

 The order of importance of the environmental predictor variables in Model 2 is slightly 

different from that of Model 1 (Figure 55). Surface Temperature Mean was the most important 

variable in Model 2, compared to Surface Temperature Average Minimum in Model 1. Prior to 

spatial interpolation, the Surface Temperature Mean variable displayed a right-skewed 

distribution (Beazley et al., in prep). Examination of the Q-Q plot revealed a strong spatial 

pattern to data points over- and under-predicted by a normal distribution, with over-predicted 

points located along the central and eastern coast of Nova Scotia and in the deep regions of the 

study extent, and under-predicted points located in the centre of the study extent and in Bay of 

Fundy. Temperature Average Minimum was followed closely in terms of its Mean Decrease in 

Gini Value by Depth. Similar to Model 1, surface current and temperature variables, and bottom 
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salinity variables had higher Gini values than the chlorophyll a and primary production variables 

in the model. Partial dependence plots of the top 6 environmental predictor variables are shown 

in Figure 56. The highest predicted sea pen presence probabilities were associated with the 

lowest (< 8°C) and highest (> 11°) Surface Temperature Mean values. Values in this range 

coincided with those over-predicted values along the central and eastern coast of Nova Scotia 

and in Laurentian Channel, and in the deeper regions of the study extent. These are not of 

concern however, as there was a near-perfect fit between predicted and observed values in the 

interpolation with only slight over-prediction of temperature values in these ranges. Along the 

Depth gradient, sea pen presence probability steadily increased beginning at ~200 m and 

continued to increase in a step-like fashion.  

 

 

 

Figure 55. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced sea pen presence and absence data within the 

Maritimes Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 56. Partial dependence plots of the top six predictors from the random forest model of sea 

pen unbalanced presence and absence data collected within the Maritimes Region, ordered left to 

right from the top. Presence probability is shown on the y-axis. 
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Model 3 – Addition of In Situ Benthic Imagery Observations 

Given the relatively low number of sea pen records in the Maritimes Region, the DFO 

multispecies trawl survey data were augmented with additional in situ benthic imagery records 

from scientific surveys conducted in the Maritimes Region between 1965 and 2011 (see Figure 

45). These data were collected on scientific missions led by DFO, NRCan, or Dalhousie 

University. A total of 149 additional presence records (Table 16) were added to the dataset after 

filtering the data so that only one presence record occurred per environmental grid cell. The 

combined dataset consisting of 348 presences and 2708 absences was remodelled (termed Model 

3) using an unbalanced design and a threshold equal to species prevalence (0.11). The accuracy 

measures for random forest Model 3 are shown in Table 17. The average AUC computed from 

10-fold cross validation was 0.901 ± 0.031 SD, the highest of all three models. Class error for the 

presence and absence classes was the lowest of all three models, while sensitivity and specificity 

were high. 

 

 

Table 16. Number of in situ benthic imagery observations of sea pens collected from various 

surveys conducted within the Maritimes Region 1965 and 2014 in the Maritimes Region. 

 

Year Gear 
Total number of 

presences 

1965 NRCan Drop Camera 2 

1967 NRCan Drop Camera 1 

2000 NRCan Drop Camera 7 

2001 ROPOS 6 

2005 Campod 10 

2006 ROPOS 16 

2006 DSIS 3 

2007 ROPOS 37 

2008 NRCan Drop Camera 5 

2008 Campod 53 

2011 Campod 5 

2014 Towed Camera 4 
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Table 17. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of sea pens from DFO multispecies trawl survey records 

and in situ benthic imagery observations collected within the Maritimes Region. Observ. = 

Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.910  Absence Presence     

2 0.868 Absence 2219 489 2708 0.181 0.813 0.819 

3 0.920 Presence 65 283 348 0.187   

4 0.914        

5 0.945       

6 0.873       

7 0.876       

8 0.940       

9 0.911       

10 0.857       

Mean 0.901       

SD 0.031       

 

 

The additional presence records expanded the area of high sea pen presence probability 

along the eastern slope and in the deep-water canyons (Figure 57). The Gully submarine canyon 

east of Sable Island, and the Northeast Channel on the western Scotian Shelf showed much 

higher presence probability of sea pens compared to Models 1 and 2. These areas of higher 

presence probability along the slope corresponded well with the location of the additional in situ 

imagery records added to the model (Figure 58). The area of extrapolation along the slope off 

eastern Scotian Shelf is reduced with the addition of science survey presence records there 

(Figure 59). Figure 60 depicts the predicted distribution of sea pens based on a prevalence 

threshold of 0.11. In this map, all presence probability values generated from Model 3 that were 

greater than 0.11 were classified as presence, while values less than 0.11 were classed as 

absence. The majority of the slope and deep-water channels was classified as presence of sea 

pens. A large area off southwest Cape Breton is also classified as presence. 
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Figure 57. Predictions of presence probability (Pres. Prob.) of sea pens based on a random forest 

model on unbalanced presence and absence sea pen catch data from DFO multispecies trawl 

surveys and in situ benthic imagery observations of sea pens collected from various surveys 

conducted between 1965 and 2014 in the Maritimes Region. 
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Figure 58. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of sea pens based on a random forest model on unbalanced presence and absence sea pen 

catch data from DFO multispecies trawl surveys and in situ benthic imagery observations of sea 

pens collected from various surveys conducted within the Maritimes Region 1965 and 2014. 
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Figure 59. Areas of extrapolation of a random forest model on unbalanced presence and absence 

sea pen catch data from DFO multispecies trawl surveys and in situ benthic imagery observations 

of sea pens collected from various surveys conducted within the Maritimes Region 1965 and 

2014. Also shown are the presence and absence observations and predictions of presence 

probability (Pres. Prob.). 
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Figure 60. Predicted distribution (Pred. Dist.) of sea pens in the Maritimes Region based on the 

prevalence threshold of 0.11 of sea pen presence and absence data used in Model 3. Also shown 

are the areas of model extrapolation (grey polygon may appear red or blue). 

 

In contrast to Model 1 and Model 2, Depth and Slope, two non-interpolated variables, 

were the top two predictors of sea pen presence in Model 3 (Figure 61). These variables were 

followed distantly by Bottom Temperature Average Range and the remaining variables in the 

model. Bottom salinity and surface current variables ranked high in this model. Partial 

dependence plots of the top 6 environmental variables are shown in Figure 62. Presence 

probability increased rapidly at the shallowest depths up to ~500 m, where it then plateaued. 

Probability of presence of sea pens increased rapidly along the Slope gradient and reached a 

plateau at ~10º. 
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Figure 61. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced sea pen presence and absence data from DFO 

multispecies trawl surveys and in situ benthic imagery observations collected from various 

surveys conducted within the Maritimes Region between 1965 and 2014. The higher the Mean 

Gini value the more important the variable is for predicting the response data. 
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Figure 62. Partial dependence plots of the top six predictors from the random forest model of sea 

pen unbalanced presence and absence data from DFO multispecies trawl surveys and in situ 

benthic imagery observations collected from various surveys conducted within the Maritimes 

Region between 1965 and 2014, ordered left to right from the top. Presence probability is shown 

on the y-axis. 
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Model Selection 

 The random forest model using all available sea pen records and an unbalanced species 

prevalence (Model 3) was selected as the best predictor of sea pen distribution in the Maritimes 

Region. Model 1 (balanced species prevalence) was considered a poor predictor of sea pen 

presence probability due to its exaggeration of high presence probability in Emerald and LaHave 

Basins, and in the Laurentian Channel where there were no presence records to support it. This 

phenomenon was likely due to random down-sampling of the absence data. Model 2, which was 

generated using the same presence-absence dataset but using all absence data, produced a much 

more realistic presence probability surface with less exaggeration beyond the location of 

presence points. The additional presence records added to Model 3 produced the highest AUC 

and sensitivity and specificity measures of all three models. Although the presence probability 

surface was similar to that of Model 2, this model predicted higher sea pen presence probability 

along the eastern Scotian Shelf slope and in its canyons, providing a more accurate depiction of 

the distribution of sea pens in the region based on the available data. 

 

Validation of Selected Model Using Independent Data 

Figure 63 shows the predicted presence probabilities of sea pens generated from Model 3 

at the location of sea pen records from the NOAA Deep-Sea Coral Data Portal. Many of the 

NOAA records were concentrated in the various canyons along the Scotian Slope where the 

model predicted a high probability of occurrence of sea pens. Of the 98 sea pen records from this 

data source, 17% were predicted as absences based on the prevalence threshold of 0.11 (yellow 

symbols in Figure 63). The majority of these were located off southwestern Nova Scotia and in 

the eastern Gulf of Maine. No NOAA records occurred in the Laurentian Channel where the 

model predicted a highest presence probability of sea pens. Several records occurred in deeper 

waters off the shelf in an area considered as extrapolated by the model. 
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Figure 63. Validation of sea pen presence probability from Model 3 using independent data. 

Presence probability values were extracted to the location of sea pen records from the NOAA 

Deep-Sea Coral Data Portal. 
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Prediction of Sea Pen Biomass Using Random Forest 

The accuracy measures of the regression random forest model on mean sea pen biomass 

per grid cell from DFO multispecies trawl surveys are presented in Table 18. The highest R
2
 

value was 0.814, while the average was 0.518 ± 0.301 SD. The average Normalized Root-Mean-

Square Error (NRMSE) was 0.018 ± 0.018 SD. This model explained a relatively high 

percentage of variance in the biomass data (average = 18.41% ± 2.48 SD). 

 Figures 64 and 65 show the predicted biomass surface of sea pens. The majority of the 

spatial extent was predicted to have low (0 – 1.21 kg) sea pen biomass. The Laurentian Channel 

has the highest predicted biomass of sea pens (up to 18.14 kg), coinciding with the location of 

the highest mean biomass values from the multispecies trawl surveys (Figure 65). Similar to the 

presence-absence models, much of the Laurentian Channel is predicted to have a moderate 

biomass of sea pens, despite there being no data records from there. The northeast portion of the 

Laurentian Channel is considered an area of extrapolation. 

 

Table 18. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a 

random forest model of average sea pen biomass (kg) per grid cell recorded from DFO 

multispecies trawl surveys in the Maritimes Region. RMSE = Root-Mean-Square Error; NRMSE 

= Normalized Root-Mean-Square Error. 

 

 

 

 

 

 

  

 

 

 

 

Model Fold R
2 

RMSE NRMSE 
Percent (%) 

variance explained 

1 0.641 0.177 0.006 18.19 

2 0.253 0.545 0.018 22.32 

3 0.781 0.491 0.016 19.86 

4 0.509 0.475 0.016 20.19 

5 0.814 0.142 0.005 18.26 

6 0.694 2.014 0.066 19.00 

7 0.673 0.290 0.009 15.62 

8 0.745 0.180 0.006 13.42 

9 8.478 x 10
-5 

0.392 0.013 19.54 

10 0.071 0.738 0.024 17.72 

Mean 0.518 0.544 0.018 18.41 

SD 0.301 0.550 0.018 2.48 
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Figure 64. Predictions of biomass (kg) per grid cell of sea pens from catch data recorded in DFO 

multispecies trawl surveys conducted in the Maritimes Region between 2002 and 2014.  
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Figure 65. Predictions of biomass (kg) per grid cell of sea pens from catch data recorded in DFO 

multispecies trawl surveys conducted in the Maritimes Region between 2002 and 2014. Also 

shown are the mean biomass values per grid cell and areas of model extrapolation. 

 

 The top 15 most important environmental variables for predicting sea pen biomass are 

shown in Figure 66. Bottom Salinity Average Range was the most important variable in the 

model. Prior to spatial interpolation, this variable displayed a right-skewed distribution with 

outlying data in the upper range (Beazley et al., in prep). Examination of the Q-Q plot revealed a 

strong spatial pattern to data points over- and under-predicted by a normal distribution, with 

over-predicted points located mainly off the central and western coast of Nova Scotia and in the 

deepest regions of the study extent, and under-predicted points located in the centre of the study 

extent just beyond the shelf break and in the Laurentian Channel. Bottom Salinity Average 

Range was followed closely by Bottom Shear Average Range and Surface Temperature Average 

Maximum. The partial dependence of sea pen biomass on the top 6 most important variables is 

shown in Figure 67. Predicted biomass was highest at Bottom Salinity Average Range values 

less than 0.5. These values coincided with both over- and under-predicted data points in the 

Laurentian Channel and in deep waters beyond the shelf. The fit between predicted and observed 
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values for this variable was fair, with slight over-prediction of Bottom Salinity Average Range 

values < 0.5. Some points could therefore be predicted higher than their true values and slightly 

outside the range of highest predicted biomass identified in the partial plot. 

 

Figure 66. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on sea pen mean biomass data 

averaged per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the more 

important the variable is for predicting the response data. 
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Figure 67. Partial dependence plots of the top six predictors from the random forest model of sea 

pen biomass data collected within the Maritimes Region, ordered left to right from the top. 

Predicted biomass (kg) is shown on the y-axis.  
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Large Gorgonian Corals 

Data Sources and Distribution 

 Figure 68 shows the distribution of available large gorgonian records in the Maritimes 

Region. There was relatively good congruence in the spatial distribution of records originating 

from the different data sources. DFO multispecies trawl survey records were concentrated on the 

banks of the eastern Scotian Shelf and along the slope. Notably, several records occurred on the 

shallow banks around Cape Breton where large gorgonian occurrences from the Gass (2002) and 

Breeze (1997) were reported. The scientific survey and NOAA records were concentrated along 

the slopes and in the Northeast Channel and eastern Gulf of Maine.  

 

Figure 68. Available large gorgonian coral presence data in the Maritimes Region from Gass 

(2002) and Breeze et al. (1997), scientific missions, the NOAA Deep-Sea Coral Data Portal, and 

DFO multispecies research vessel surveys.  
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Initial random forest models of large gorgonians were run using only catch data 

originating from DFO multispecies trawl surveys (Western IIA gear). This data was collected 

over a period of 13 years from 2002 to 2015 (Table 19). This dataset consisted of 72 presence 

and 2313 absence records (Figure 69). Absence records were distributed relatively evenly across 

the Scotian Shelf and Bay of Fundy. The highest mean biomass record (up to 54.20 kg) occurred 

on the slopes between Haldimand Canyon and the Lophelia Coral Conservation Area in the 

Stone Fence. The second highest mean biomass record (27.11 kg) occurred in the Northeast 

Channel. 

 

 

Table 19. Number of presence and absence records of large gorgonian coral catch recorded from 

DFO multispecies trawl surveys conducted between 2002 and 2015 in the Maritimes Region. 

 

Year 
Total number of 

presences 

Total number of 

absences 

2002 1 96 

2003 7 177 

2005 8 260 

2006 3 175 

2007 2 173 

2008 1 62 

2009 8 191 

2010 5 297 

2011 8 250 

2012 10 205 

2013 11 205 

2014 3 194 

2015 5 28 
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Figure 69. Mean biomass (kg) per grid cell of large gorgonian coral catch recorded from DFO 

multispecies trawl surveys from 2002 to 2015 within the Maritimes Region. Also shown are 

absence records from the same surveys. 

 

 

Model 1 – Balanced Species Prevalence 

Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model 

on balanced species prevalence (199 presences and 199 absences; Model 1) are presented in 

Table 20. The highest mean AUC of 0.861 was associated with Model Run 1 and is therefore 

considered the optimal model for the prediction of the large gorgonian coral response data. The 

sensitivity and specificity measures of this model run were 0.750 and 0.806, respectively. The 

confusion matrix of the optimal model is also presented in Table 2. Class error for both the 

presence and absence classes was somewhat moderate (0.194 and 0.250, respectively), and was 

slightly higher for the presence class. 
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The presence probability prediction surface of large gorgonian corals is presented in 

Figure 70. The highest predictions of presence probability occurred on the eastern Scotian Slope 

and Scotian Shelf on Banquereau and Misaine Banks. High presence probability of large 

gorgonian corals was also predicted to occur off the coast of Cape Breton. The Northeast 

Channel area had a moderate to high presence probability of large gorgonians. These areas 

corresponded well with the spatial distribution of presence records (see Figure 71) and areas of 

high presence probability do not appear to be grossly extrapolated beyond presence locations. 

 

 

Table 20. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a 

random forest model of presence and absence of large gorgonian corals within the Maritimes 

Region. The confusion matrix is shown for the model with the highest AUC value (Model Run 

1) which is considered the optimal model for predicting the presence probability of large 

gorgonians in the region. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Model Run AUC Sensitivity Specificity 

1 0.861 0.750 0.806 

2 0.730 0.653 0.694 

3 0.787 0.722 0.653 

4 0.849 0.750 0.750 

5 0.859 0.833 0.778 

6 0.814 0.694 0.708 

7 0.783 0.708 0.708 

8 0.821 0.750 0.764 

9 0.814 0.722 0.736 

10 0.834 0.750 0.736 

Mean 0.815 0.733 0.733 

SD 0.040 0.047 0.044 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 58 14 72 0.194 

Presence 18 54 72 0.250 
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Figure 70. Predictions of presence probability (Pres. Prob.) from the optimal random forest 

model of large gorgonian coral presence and absence data collected from DFO multispecies 

trawl surveys in the Maritimes Region between 2002 and 2015. 
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Figure 71. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of the optimal random forest model of large gorgonian coral presence and absence data 

recorded from DFO multispecies trawl surveys in the Maritimes Region between 2002 and 2015. 

 

The actual presence and absence data observations used in the optimal model run of 

Model 1 (72 presences and 72 absences; Figure 72) showed some slight spatial bias across the 

study area. Despite there being absence records on the eastern Scotian Shelf on Misaine and 

Banquereau Banks, very few were selected from these areas during the random down-sampling 

of the data prior to modelling. This likely caused a slight over-extension of high predicted 

probabilities in these areas. Areas of extrapolation of the balanced prevalence random forest 

model on large gorgonian corals are also shown in Figure 72. All deep water beyond the Scotian 

Shelf is considered extrapolated area. Large pockets of extrapolated area occurred off 

southwestern Nova Scotia and northeast tip of Cape Breton. Smaller pockets of extrapolated area 

occurred across the Scotian Shelf. Areas of extrapolation do not appear to greatly overlap with 

areas of high predicted presence probability in the shallow portion of the study area except for 

along the east coast of Cape Breton.  
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Figure 72. Map of the 144 data observations (72 presences and 72 absences) of large gorgonian 

corals used in the optimal random forest Model 1 on balanced species prevalence. Also shown is 

the predicted presence probability (Pres. Prob.) of large gorgonians and the areas of model 

extrapolation (i.e. areas where at least one environmental predictor variable is outside of the 

sampled range. 

 

Of all 66 environmental predictor variables used in the model, Surface Current Mean was 

the most important for the classification of the large gorgonian presence and absence data 

(Figure 73). Prior to spatial interpolation, this variable displayed a slightly right-skewed 

distribution (Beazley et al., in prep). Examination of the Q-Q plot revealed a spatial pattern to 

data points over- and under-predicted by a normal distribution, with over-predicted points 

located in the centre of the study extent and off the central and western coast of Nova Scotia, and 

under-predicted points located mainly in Bay of Fundy and in the deepest regions of the study 

extent. This variable was followed more distantly in terms of its Mean Decrease in Gini Value by 

Maximum Average Spring Mixed Layer Depth (m). Surface current and mixed layer depth 

variables ranked high in the model. Partial dependence plots for the top 6 predictor variables are 

shown in Figure 74. Presence probability of large gorgonians was highest at Surface Current 
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Mean values greater than 0.10 m s
-1

. Values in this range coincided with both over- and under-

predicted data points located off Cape Breton and in the deepest portion of the study extent. 

These values are not of concern however, as the fit between predicted and observed values was 

excellent with only slight over-prediction of Surface Current Mean values of 0.10 m s
-1 

and 

greater. Presence probability was greatest at the highest values along the other surface current, 

temperature, and mixed layer depth variables. 

 

Figure 73. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting large gorgonian coral presence and absence 

data within the Maritimes Region. The higher the Mean Gini value the more important the 

variable is for predicting the response data. 
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Figure 74. Partial dependence plots of the top six predictors from the optimal random forest 

model of large gorgonian coral presence and absence data collected within the Maritimes 

Region, ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model 2 - Unbalanced Data and Threshold Equal to Species Prevalence  

 

Table 21 shows the accuracy measures for the random forest model on all large 

gorgonian coral presence and absence data (72 presences and 2313 absences; Model 2) and a 

threshold equal to species prevalence (0.03). The average AUC calculated from Model 2 was 

0.797, lower than that of Model 1. Class error of the absence class was similar to that of Model 1 

(0.215 compared to 0.194 from Model 1), however class error for the presence class was slightly 

higher (0.292 compared to 0.250 from Model 1). Sensitivity and specificity measures of Model 2 

were lower than that of Model 1. 

The surface of predicted presence probability of large gorgonian corals generated from 

Model 2 is shown in Figure 75. Only the slope area between Haldimand Canyon and the Stone 

Fence was predicted to have moderate to high presence probability of large gorgonians. Much of 

central Scotian Shelf and Bay of Fundy was predicted to have zero or low presence probability of 

large gorgonians. The model does not appear to predict areas of presence far beyond the location 

of presence records (Figure 76), likely due to the inclusion of absences records in the model 

where presence records also occurred. Areas of extrapolation of Model 2 are presented in Figure 

77. Areas of extrapolation do not overlap with areas of high presence probability in the shallow 

portion of the study area. 

 

Table 21. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of large gorgonian corals within the Maritimes Region. 

Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.715  Absence Presence     

2 0.924 Absence 1815 498 2313 0.215 0.708 0.785 

3 0.891 Presence 21 51 72 0.292   

4 0.589        

5 0.763       

6 0.851       

7 0.795       

8 0.869       

9 0.714       

10 0.854       

Mean 0.797       

SD 0.102       
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Figure 75. Predictions of presence probability (Pres. Prob.) of large gorgonian corals based on a 

random forest model on unbalanced presence and absence large gorgonian catch data collected 

from DFO multispecies trawl surveys conducted within the Maritimes Region between 2002 and 

2015. 
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Figure 76. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of large gorgonian corals based on a random forest model on unbalanced presence and 

absence large gorgonian catch data collected from DFO multispecies trawl surveys conducted 

within the Maritimes Region between 2002 and 2015. 
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Figure 77. Areas of extrapolation of the random forest model on unbalanced presence and 

absence large gorgonian catch data collected from the Maritimes Region between 2002 and 

2015. Also shown are the large gorgonian presence and absence observations and predictions of 

presence probability (Pres. Prob.). 

 

The order of importance of the environmental predictor variables in Model 2 was slightly 

different from that of Model 1 (Figure 78). Slope was the most important variable in Model 2 

compared to Surface Current Mean in Model 1. Slope was not among the top 15 most important 

variables in Model 1. Partial dependence of large gorgonian presence and absence data on the top 

6 predictor variables is shown in Figure 79. Slope was followed very distantly by Surface 

Current Mean and the remaining variables. A small peak in presence probability at 3° occurred 

along the Slope gradient. Presence probability then rapidly increased at 5° and plateaued. Similar 

to Model 1, large gorgonian presence probability was highest at higher surface current values. 
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Figure 78. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced large gorgonian coral presence and absence data 

within the Maritimes Region. The higher the Mean Gini value the more important the variable is 

for predicting the response data. 
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Figure 79. Partial dependence plots of the top six predictors from the random forest model of 

large gorgonian coral unbalanced presence and absence data collected within the Maritimes 

Region, ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model 3 – Addition of In Situ Benthic Imagery Observations 

Given the low number of large gorgonian presence records in the Maritimes Region, the 

DFO multispecies trawl survey data were augmented with additional in situ benthic imagery 

records collected in the Maritimes Region between 1967 and 2011. A total of 155 additional 

presence records (Table 22) were added to the dataset after filtering the data so that only one 

presence record occurred per environmental grid cell. The combined dataset consisting of 227 

presences and 2313 absences was remodelled (termed Model 3) using an unbalanced design and 

a threshold equal to species prevalence (0.09). The accuracy measures for random forest Model 3 

are shown in Table 23. The average AUC computed from 10-fold cross validation was 0.928 ± 

0.033 SD, the highest of all three models. Class error for the presence and absence classes was 

the lowest of all three models, while sensitivity and specificity were the highest. 

 

Table 22. Number of in situ benthic imagery observations of large gorgonians collected from 

scientific surveys conducted between 1967 and 2011 in the Maritimes Region. 

 

Year Gear 
Total number of 

presences 

1967 NRCan Drop Camera 1 

1997 Campod 1 

1999 Campod 1 

2000 NRCan Drop Camera 1 

2000 Campod 11 

2001 Campod 24 

2001 ROPOS 3 

2001 ROPOS (Martha Black) 1 

2002 Campod 8 

2003 Campod 10 

2005 Campod 15 

2006 ROPOS 21 

2006 DSIS ROV 2 

2007 ROPOS 28 

2008 NRCan Drop Camera 1 

2008 Campod 23 

2011 Campod 4 
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The additional presence records expanded the area of high presence probability along the 

eastern Scotian Slope (Figure 80). The Gully MPA and area directly south of it showed a much 

higher presence probability compared to Models 1 and 2. Shortland and Haldimand canyons off 

Banquereau Bank and the slope in between also had an increased probability of occurrence of 

large gorgonian corals, as well as the Northeast Channel on the western Scotian Shelf. These 

areas of higher presence probability along the slope corresponded well with the location of 

presence records from the DFO and NRCan scientific surveys (Figure 81). The area of 

extrapolation along the slope off eastern Scotian Shelf is reduced with the addition of science 

survey records there (see Figure 82). Figure 83 depicts the classification of large gorgonian 

presence probability into presence and absence categories based on the prevalence threshold of 

0.09. In this map, all presence probability values generated from Model 3 that were greater than 

0.09 were classified as presence, while values less than 0.09 were classed as absence. The 

majority of the slope and deep-water channels were classified as presence of large gorgonians. 

The large area southwest of Nova Scotia avoided by trawl surveys due to hard bottom is also 

classified as presence for large gorgonians.  

 

Table 23. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of large gorgonian corals from DFO multispecies trawl 

survey records and scientific surveys conducted within the Maritimes Region. Observ. = 

Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.934  Absence Presence     

2 0.882 Absence 2063 250 2313 0.108 0.833 0.892 

3 0.910 Presence 38 189 227 0.167   

4 0.905        

5 0.935       

6 0.911       

7 0.956       

8 0.971       

9 0.981       

10 0.895       

Mean 0.928       

SD 0.033       
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Figure 80. Predictions of presence probability (Pres. Prob.) of large gorgonian corals based on a 

random forest model on unbalanced presence and absence gorgonian catch data collected from 

DFO multispecies trawl surveys, and DFO and NRCan scientific surveys conducted within the 

Maritimes Region between 1967 and 2015. 
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Figure 81. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of large gorgonian corals based on a random forest model on unbalanced presence and 

absence gorgonian catch data collected from DFO multispecies trawl surveys, and DFO and 

NRCan scientific surveys conducted within the Maritimes Region between 1967 and 2015. 
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Figure 82. Areas of extrapolation of the random forest model on unbalanced presence and 

absence large gorgonian coral catch data from DFO multispecies trawl surveys, and DFO and 

NRCan scientific surveys conducted within the Maritimes Region between 1967 and 2015. Also 

shown are the presence and absence observations and predictions of presence probability (Pres. 

Prob.). 
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Figure 83. Predicted distribution (Pred. Dist.) of large gorgonian corals in the Maritimes Region 

based on the prevalence threshold of 0.09 of large gorgonian coral presence and absence data 

used in Model 3. Also shown are the areas of model extrapolation (grey polygon may appear red 

or blue). 

 

Like in Model 2, the most important environmental predictor variable for the 

classification of the large gorgonian coral presence and absence data was Slope (Figure 84). This 

was followed closely by Depth, then more distantly by Surface Salinity Mean and the remaining 

variables in the model. Bottom and surface salinity, and surface current variables ranked high in 

this model. Partial dependence plots of the top 6 environmental variables are shown in Figure 85. 

Probability of presence of large gorgonians increased steadily along the Slope gradient and 

reached a plateau at ~7º. A similar pattern was shown along the Depth gradient, where 

probability of presence rapidly increased at ~250 m depth and plateaued at ~500 m. The bottom 

and surface salinity variables all showed the same pattern of high presence probability at the 

highest salinity levels. 
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Figure 84. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced large gorgonian coral presence and absence data 

collected from DFO multispecies trawl surveys, and DFO and NRCan scientific surveys 

conducted within the Maritimes Region between 1967 and 2015. The higher the Mean Gini value 

the more important the variable is for predicting the response data. 
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Figure 85. Partial dependence plots of the top six predictors from the random forest model of 

large gorgonian unbalanced presence and absence data collected from DFO multispecies trawl 

surveys, and DFO and NRCan scientific surveys conducted within the Maritimes Region 

between 1967 and 2015, ordered left to right from the top. Presence probability is shown on the 

y-axis. 
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Model Selection 

 The random forest model using all available large gorgonian coral records and an 

unbalanced species prevalence (Model 3) was selected as the best predictor of large gorgonian 

coral distribution in the Maritimes Region (Figure 80). Model 1 (balanced species prevalence) 

was considered a poor predictor of presence probability of large gorgonians due to its 

exaggeration of high presence probability on the banks of the eastern Scotian Shelf. This 

phenomenon is likely due to random down-sampling of the absence data. Model 2, which was 

generated using the same presence-absence dataset but using all absence data, produced a much 

more realistic presence probability surface with less exaggeration beyond the location of 

presence points. The additional presence records added to Model 3 produced the highest AUC 

and sensitivity and specificity measures of all three models. Although the presence probability 

surface was similar to that of Model 2, this model predicted higher large gorgonian presence 

probability along the eastern Scotian Shelf slope and in its canyons, providing a more accurate 

depiction of the distribution of large gorgonians in the region based known locations. 

  

 

 

Validation of Selected Model Using Independent Data 

Figure 86 shows the predicted presence probabilities of large gorgonians generated from 

Model 3 at the location of large gorgonian records from two independent data sources. There is 

relatively good congruence between the location of large gorgonian records from these 

independent data sources and areas of presence predicted by the model. Many of the NOAA 

records were concentrated in the Northeast Channel and along the eastern slope where there is a 

high predicted presence probability of large gorgonians (top map in Figure 86). Of the 168 large 

gorgonian records 27% were predicted as absence based on the prevalence threshold of 0.09 

(yellow symbols in figure). These were located mainly in the eastern Gulf of Maine and Bay of 

Fundy area. Several records occurred in deeper waters off the shelf in an area considered as 

extrapolated by the model. 

A similar pattern is seen in the large gorgonian records from the Gass (2002) and Breeze 

et al. (1997) reports, with many records concentrated in areas of high predicted presence 

probability from the model. However, about 40% of the large gorgonian records from this source 

were predicted as absence based on the prevalence threshold. These records were located mainly 

in the shallow waters east and southeast of Cape Breton, on Misaine and Banquereau Banks, and 

in Emerald Basin. 
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Figure 86. Validation of large gorgonian coral presence probability from Model 3 using 

independent data. Presence probability values were extracted to the location of large gorgonian 

coral records from the NOAA Deep-Sea Coral Data Portal (top figure) and from the Gass (2002) 

and Breeze et al. (1997) reports. 
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Prediction of Large Gorgonian Coral Biomass Using Random Forest 

 The accuracy measures of the regression random forest model on mean large gorgonian 

coral biomass per grid cell from DFO multispecies trawl surveys are presented in Table 24. The 

highest R
2
 value was 0.975, while the average was 0.285 ± 0.410 SD. The average Normalized 

Root-Mean-Square Error (NRMSE) was 0.016 ± 0.016 SD (Table 24). The standard deviation 

was as high as the mean indicating high variability between model folds. This model explained a 

relatively high percentage of variance in the biomass data (average = 24.53% ± 7.08 SD). 

 Figures 87 and 88 show the predicted biomass surface of large gorgonians. The majority 

of the spatial extent was predicted to have low (0 – 2.19 kg) large gorgonian biomass. The slope 

between Haldimand Canyon and Stone Fence had the highest predicted biomass up to 34.72 kg. 

This area of high biomass was associated with a cluster of large biomass values (Figure 88). 

Several canyons that intersect the eastern Scotian Slope, such as The Gully and Shortland 

Canyon, and the Northeast Channel on the western Scotian Slope, were predicted to have a 

moderate to high biomass.  

 

Table 24. Accuracy measures from 10-fold cross validation of a random forest model of average 

large gorgonian coral biomass (kg) per grid cell recorded from DFO multispecies trawl surveys 

in the Maritimes Region. RMSE = Root-Mean-Square Error; NRMSE = Normalized Root-Mean-

Square Error. 

 

 

 

 

 

 

 

 

  

Model Fold R
2 

RMSE NRMSE 
Percent (%) 

variance explained 

1 0.764 0.375 0.007 27.53 

2 0.005 0.802 0.015 30.86 

3 9.702 x 10
-5 

0.150 0.003 24.62 

4 0.002 1.752 0.032 37.40 

5 0.001 0.127 0.002 24.18 

6 0.251 1.461 0.027 19.98 

7 8.836 x 10
-5 

0.152 0.003 23.16 

8 0.975 2.597 0.048 12.11 

9 0.856 1.196 0.022 17.57 

10 1.540 x 10
-6 

0.102 0.002 27.90 

Mean 0.285 0.872 0.016 24.53 

SD 0.410 0.859 0.016 7.08 
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Figure 87. Predictions of biomass (kg) per grid cell of large gorgonian corals from catch data 

recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2002 

and 2015. 
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Figure 88. Predictions of biomass (kg) per grid cell of large gorgonian corals from catch data 

recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2002 

and 2015. Also shown are the mean biomass values per grid cell and areas of model 

extrapolation. 

 

 The top 15 most important environmental variables for predicting large gorgonian coral 

biomass are shown in Figure 89. Like the presence-absence models, Slope was the most 

important variable for predicting the biomass of large gorgonian corals, followed very distantly 

by Bottom Salinity Mean and the other variables in the model. The partial dependence of large 

gorgonian biomass on the top 6 most important variables is shown in Figure 90. Predicted 

biomass was highest at slopes greater than 11° and bottom salinity values greater than 35. 
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Figure 89. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on large gorgonian coral mean 

biomass averaged per grid cell. The higher the Mean Decrease in Residual Sum of Squares, the 

more important the variable is for predicting the response data. 
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Figure 90. Partial dependence plots of the top six predictors from the random forest model of 

large gorgonian coral biomass data collected within the Maritimes Region, ordered left to right 

from the top. Predicted biomass (kg) is shown on the y-axis. 
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Small Gorgonian Corals 

Data Sources and Distribution 

Figure 91 shows the distribution of available small gorgonian records in the Maritimes 

Region. There was relatively good congruence in the spatial distribution of records originating 

from the different data sources. DFO multispecies trawl survey records were concentrated on 

several shallow banks on the eastern Scotian Shelf and slope, and in the Laurentian Channel. The 

scientific survey and NOAA were concentrated along the slopes, and in the Northeast Channel 

and the deeper waters beyond. 

 

Figure 91. Available small gorgonian coral presence data in the Maritimes Region from Gass 

(2002), scientific missions, the NOAA Deep-Sea Coral Data Portal, and DFO multispecies 

research vessel surveys. 
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Initial random forest models of small gorgonians were run using only catch data 

originating from DFO multispecies trawl surveys (Western IIA gear). This data was collected 

over a period of 8 years from 2002 to 2014 (Table 25). This dataset was highly imbalanced, 

consisting of 36 presence and 1817 absence records (Figure 92). Absence records were 

distributed relatively evenly across the Scotian Shelf and Bay of Fundy. The highest mean 

biomass record (up to 0.34 kg) occurred on the slope between Emerald and LaHave Banks, while 

a cluster of mid-range biomass values occurred in the southern Laurentian Channel. A single 

catch of small gorgonian corals was recorded in the Bay of Fundy south of New Brunswick. 

 

 

Table 25. Number of presence and absence records of small gorgonian catch recorded from DFO 

multispecies trawl surveys conducted between 2002 and 2014 in the Maritimes Region. 

 

Year 
Total number of 

presences 

Total number of 

absences 

2002 6 324 

2003 5 319 

2005 6 206 

2006 3 248 

2007 7 75 

2009 6 191 

2011 2 257 

2014 1 197 
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Figure 92. Mean biomass (kg) per grid cell of small gorgonian coral catch recorded from DFO 

multispecies trawl surveys from 2002 to 2014 within the Maritimes Region. Also shown are 

absence records from the same surveys. 

 

Model 1 – Balanced Species Prevalence 

Accuracy measures (mean AUC, sensitivity, and specificity) for the random forest model 

on balanced species prevalence (36 presences and 36 absences; Model 1) are presented in Table 

26. The highest mean AUC of 0.922 was associated with Model Run 6 and is therefore 

considered the optimal model for the prediction of the small gorgonian coral response data. The 

sensitivity and specificity measures of this model run were 0.722 and 0.806, respectively. The 

confusion matrix of the optimal model is also presented in Table 2. Class error for the presence 

class was somewhat moderate (0.278). 
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Table 26. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a 

random forest model of presence and absence of small gorgonian corals within the Maritimes 

Region. The confusion matrix is shown for the model with the highest AUC value (Model Run 

6) which is considered the optimal model for predicting the presence probability of small 

gorgonian corals in the region. 

 

Model Run AUC Sensitivity Specificity 

1 0.848 0.722 0.750 

2 0.822 0.778 0.722 

3 0.855 0.667 0.667 

4 0.846 0.639 0.667 

5 0.883 0.667 0.778 

6 0.922 0.722 0.806 

7 0.773 0.611 0.722 

8 0.788 0.722 0.722 

9 0.810 0.667 0.750 

10 0.905 0.750 0.806 

Mean 0.845 0.694 0.739 

SD 0.049 0.052 0.049 

    

Confusion matrix of model with highest AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 29 7 36 0.194 

Presence 10 26 36 0.278 

 

 

The presence probability prediction surface of small gorgonian corals is presented in 

Figure 93. The highest predictions of presence probability occurred in southwestern Laurentian 

Channel off Cape Breton. Areas of higher presence probability corresponded well with the 

spatial distribution of presence records (see Figure 94), however, the model appears to greatly 

extrapolate high areas of presence probability beyond these locations. 
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Figure 93. Predictions of presence probability (Pres. Prob.) from the optimal random forest 

model of small gorgonian coral presence and absence data collected from DFO multispecies 

trawl surveys in the Maritimes Region between 2002 and 2014. 
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Figure 94. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of the optimal random forest model of small gorgonian presence and absence data 

recorded from DFO multispecies trawl surveys in the Maritimes Region between 2002 and 2014. 

 

 The actual presence and absence data observations (36 presences and 36 absences) used 

in the optimal run of Model 1 showed some slight spatial bias across the study area (Figure 95). 

Despite the occurrence of absence records off Cape Breton, none were selected from this area 

during the random down-sampling of the data prior to modelling, likely causing the moderate to 

high predictions of presence probability there. Also shown in this figure are the areas of model 

extrapolation. Deep water beyond the Scotian Shelf is considered extrapolated area, as well as 

smaller areas off southwestern Nova Scotia and northeast tip of Cape Breton. Much of the 

western and central portion of the study area is considered extrapolated area, as well as a large 

area off the coast of Cape Breton and in the northern Laurentian Channel where there were 

pockets of high presence probability of small gorgonians. 
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Figure 95. Map of the 72 data observations (36 presences and 36 absences) of small gorgonian 

corals used in the optimal random forest Model 1 on balanced species prevalence. Also shown is 

the predicted presence probability (Pres. Prob.) of small gorgonian corals generated from Model 

1 and areas of model extrapolation. 

 

Of all 66 environmental predictor variables used in the model, Maximum Average Spring 

Mixed Layer Depth was the most important for the classification of the small gorgonian presence 

and absence data (Figure 96). Prior to spatial interpolation, this variable displayed a right-skewed 

distribution (Beazley et al., in prep). Examination of the Q-Q plot revealed a spatial pattern to 

data points over- and under-predicted by a normal distribution, with over-predicted points 

located along the coast of Nova Scotia and in the deepest regions of the study extent, and under-

predicted points located across the centre of the study extent and off southwestern Nova Scotia. 

This variable was followed more distantly in terms of its Mean Decrease in Gini Value by Depth 

and Bottom Salinity Average Range. Surface current and bottom temperature variables had high 

importance in this model. The partial dependence plots for the top 6 most important predictors 

are shown in Figure 97. Presence probability of small gorgonians was highest at Maximum 
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Average Spring Mixed Layer Depth values of 20 m and greater. Values in this range coincided 

with both over- and under-predicted data points mainly in the deeper portion of the study extent 

but also in Gulf of Maine and the southern Laurentian Channel. The fit between observed and 

predicted values in the kriging model was fair, with slight over-prediction of Maximum Average 

Spring Mixed Layer Depth values at 20 m and greater, which would still coincide with the range 

of high presence probabilities indicated in the partial plot. Along the Depth gradient, presence 

probability of small gorgonian corals increased and remained high at 200 m. 

 

Figure 96. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model predicting small gorgonian coral presence and absence 

data within the Maritimes Region. The higher the Mean Gini value the more important the 

variable is for predicting the response data. 
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Figure 97. Partial dependence plots of the top six predictors from the optimal random forest 

model of small gorgonian presence and absence data collected within the Maritimes Region, 

ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model 2 – Unbalanced Data and Threshold Equal to Species Prevalence 

Table 27 shows the accuracy measures for the random forest model on all small 

gorgonian coral presence and absence data (36 presences and 1817 absences; Model 2) and a 

threshold equal to species prevalence (0.02). The average AUC calculated from Model 2 was 

0.797, lower than that of Model 1. Class error of the absence class was similar to that of Model 1 

(0.183 compared to 0.194 from Model 1), however class error for the presence class was slightly 

higher (0.389 compared to 0.278 from Model 1). Sensitivity was relatively low for Model 2 

(0.611) but similar to the average sensitivity from Model 1 (0.694). Specificity of Model 2 was 

higher than that of Model 1 (0.817 versus 0.739). 

The predicted presence probability surface of small gorgonian corals generated from 

Model 2 is shown in Figure 98. The southwestern Laurentian Channel is the only area predicted 

to have a relatively high presence probability of small gorgonian corals, likely due to the 

concentrations of presence records that reside there (Figure 99). The remainder of the Laurentian 

Channel was predicted to have low to moderate probability of presence of small gorgonian 

corals. Much of central Scotian Shelf and Bay of Fundy is predicted to have zero or low presence 

probability of small gorgonians.  

 

Table 27. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of small gorgonians within the Maritimes Region. Observ. 

= Observations; Sensit. = Sensitivity, Specif. = Specificity. 

 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.930  Absence Presence     

2 0.554 Absence 1484 333 1817 0.183 0.611 0.817 

3 0.626 Presence 14 22 36 0.389   

4 1.000        

5 0.788       

6 0.924       

7 0.515       

8 0.995       

9 0.996       

10 0.640       

Mean 0.797       

SD 0.196       



140 

 

 

 

Figure 98. Predictions of presence probability (Pres. Prob.) of small gorgonian corals based on a 

random forest model on unbalanced presence and absence small gorgonian coral catch data 

collected from DFO multispecies trawl surveys conducted within the Maritimes Region between 

2002 and 2014. 
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Figure 99. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of small gorgonian corals based on a random forest model on unbalanced presence and 

absence small gorgonian coral catch data collected from DFO multispecies trawl surveys 

conducted within the Maritimes Region between 2002 and 2014. 

 

  

The order of importance of the environmental predictor variables in Model 2 was slightly 

different from that of Model 1 (Figure 100). Depth was the most important variable in Model 2 

compared to Maximum Average Spring Mixed Layer Depth in Model 1. Maximum Average 

Spring Mixed Layer Depth was the 4
th

 most important variable in Model 2. Depth was followed 

in importance by Bottom Salinity Average Range and Bottom Salinity Average Minimum. 

Several primary production variables were ranked high in this model. Partial dependence of 

small gorgonian presence and absence data on the top 6 predictor variables is shown in Figure 

101. Presence probability of small gorgonians increased beginning at ~300 m depth and 

plateaued at ~600 m. Presence probability was highest at low Bottom Salinity Average Range 

and high Bottom Salinity Average Minimum values. 
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Figure 100. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced small gorgonian coral presence and absence 

data within the Maritimes Region. The higher the Mean Gini value the more important the 

variable is for predicting the response data. 
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Figure 101. Partial dependence plots of the top six predictors from the random forest model of 

small gorgonian coral unbalanced presence and absence data collected within the Maritimes 

Region, ordered left to right from the top. Presence probability is shown on the y-axis. 
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Model 3 – Addition of In Situ Benthic Imagery Observations 

Given the low number of small gorgonian coral presence records in the Maritimes 

Region, the DFO multispecies trawl survey data were augmented with additional presence 

records from scientific surveys conducted in the Maritimes Region by DFO and Natural 

Resources of Canada (NRCan). A total of 85 additional presence records (see Table 28) were 

added to the DFO multispecies trawl survey dataset after filtering the data so that only one 

presence record occurred per environmental grid cell. The combined dataset consisting of 121 

presence and 1815 absence records was remodelled (termed Model 3) using an unbalanced 

design and a threshold equal to species prevalence (0.06).  

The accuracy measures for random forest Model 3 are shown in Table 29. The average 

AUC computed from 10-fold cross validation was 0.949 ± 0.033 SD, the highest of all three 

models. Class error for the presence and absence classes was the lowest of all three models, 

while sensitivity and specificity were the highest. 

The additional presence records expanded the area of high presence probability along the 

eastern Scotian Slope (Figure 102). The Gully submarine canyon, and the southern Laurentian 

Channel showed a much greater probability of occurrence of small gorgonian corals compared to 

Models 1 and 2. The deep waters outside of the Northeast Channel also showed a higher 

presence probability of small gorgonians compared to the previous models. These areas of higher 

presence probability corresponded well with the location of the additional presence records from  

 

Table 28. Number of presence and absence records of small gorgonian catch recorded from in 

situ benthic imagery surveys conducted between 1997 and 2014 in the Maritimes Region. 

 

Year Gear 
Total number of 

presences 

1997 Campod 1 

2000 NRCan Drop Camera 6 

2001 Campod 6 

2002 Campod 6 

2006 ROPOS 6 

2007 ROPOS 29 

2008 NRCan Drop Camera 4 

2008 Campod 22 

2011 Campod 3 

2014 Towed Camera 2 
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Table 29. Accuracy measures and confusion matrix from 10-fold cross validation of a random 

forest model of presence and absence of small gorgonian corals from DFO multispecies trawl 

survey records and scientific surveys conducted within the Maritimes Region. Observ. = 

Observations; Sensit. = Sensitivity, Specif. = Specificity. 

Model 

Fold 

AUC Observ. Predictions Total n Class 

error 

Sensit. Specif. 

1 0.912  Absence Presence     

2 0.905 Absence 1662 153 1815 0.084 0.876 0.916 

3 0.998 Presence 15 106 121 0.124   

4 0.946        

5 0.949       

6 0.936       

7 0.988       

8 0.909       

9 0.974       

10 0.971       

Mean 0.949       

SD 0.033       

 

 

DFO and NRCan in situ benthic imagery data (Figure 103). The area of extrapolation along the 

slopes of the Scotian Shelf is reduced with the additional of science survey presence records 

there (see Figure 104). Figure 105 depicts the classification of small gorgonian presence 

probability into presence and absence categories based on the prevalence threshold of 0.06. In 

this map, all presence probability values generated from Model 3 that were greater than 0.06 

were classified as presence, while values less than 0.06 were classed as absence. The majority of 

the Scotian Slope, part of Georges Bank, and the Laurentian Channel were predicted as presence 

of small gorgonians.  
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Figure 102. Predictions of presence probability (Pres. Prob.) of small gorgonian corals based on 

a random forest model on unbalanced presence and absence small gorgonian catch data collected 

from DFO multispecies trawl surveys, and DFO and NRCan scientific surveys conducted within 

the Maritimes Region between 1997 and 2014. 
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Figure 103. Presence and absence observations and predictions of presence probability (Pres. 

Prob.) of small gorgonian corals based on a random forest model on unbalanced presence and 

absence gorgonian catch data collected from DFO multispecies trawl surveys, and DFO and 

NRCan scientific surveys conducted within the Maritimes Region between 1997 and 2014. 
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Figure 104. Areas of extrapolation of the random forest model on unbalanced presence and 

absence small gorgonian coral catch data from DFO multispecies trawl surveys, and DFO and 

NRCan scientific surveys conducted within the Maritimes Region between 1997 and 2014. Also 

shown are the presence and absence observations and predictions of presence probability (Pres. 

Prob.). 
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Figure 105. Predicted distribution (Pred. Dist.) of small gorgonian corals in the Maritimes 

Region based on the prevalence threshold of 0.06 of small gorgonian coral presence and absence 

data used in Model 3. Also shown are the areas of model extrapolation (grey polygon may 

appear red or blue). 

 

Like in Model 2, the most important environmental predictor variable for the 

classification of the small gorgonian coral presence and absence data was Depth (Figure 106). 

This was followed more distantly by Slope, Bottom Salinity Average Range, and the remaining 

variables in the model. Bottom and surface salinity variables ranked high in this model. Partial 

dependence plots of the top 6 environmental variables are shown in Figure 107. Probability of 

presence of small gorgonians rapidly increased at ~300 m along the Depth gradient, and reached 

a plateau at ~500 m. A similar pattern was shown along the Slope gradient, where presence 

probability increased rapidly beginning at ~5º and plateaued at ~10 º. Presence probability was 

highest at the lowest Bottom Salinity Average Range and Bottom Temperature Average Range 

values, and highest at the highest Bottom Salinity Average Minimum and Bottom Salinity Mean 

values. 
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Figure 106. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the random forest model on unbalanced small gorgonian coral presence and absence 

data collected from DFO multispecies trawl surveys, and DFO and NRCan scientific surveys 

conducted within the Maritimes Region between 1997 and 2014. The higher the Mean Gini value 

the more important the variable is for predicting the response data. 
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Figure 107. Partial dependence plots of the top six predictors from the random forest model of 

small gorgonian coral unbalanced presence and absence data collected from DFO multispecies 

trawl surveys, and DFO and NRCan scientific surveys conducted within the Maritimes Region 

between 1997 and 2014, ordered left to right from the top. Presence probability is shown on the 

y-axis. 
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Model Selection 

 

 The random forest model using all available small gorgonian coral records and an 

unbalanced species prevalence (Model 3) was selected as the best predictor of small gorgonian 

coral distribution in the Maritimes Region (Figure 102). Model 1 (balanced species prevalence) 

was considered a poor predictor of presence probability of this group due to its exaggeration of 

high presence probability on the banks of the eastern Scotian Shelf and in Laurentian Channel. 

This phenomenon was likely due to random down-sampling of the absence data. Model 2, which 

was generated using the same presence-absence dataset but using all absence data, produced a 

much more realistic presence probability surface with less exaggeration beyond the location of 

presence points. The additional presence records added to Model 3 produced the highest AUC 

and sensitivity and specificity measures of all three models. Although the presence probability 

surface was similar to that of Model 2, this model predicted higher small gorgonian presence 

probability along the eastern Scotian Shelf slope and in its canyons, and is a more accurate 

depiction of the spatial distribution of small gorgonians based on their known distribution in the 

region. 

 

 

Validation of Selected Model Using Independent Data 

Figure 108 shows the predicted presence probabilities of small gorgonians generated 

from Model 3 at the location of small gorgonian records from the NOAA Deep-Sea Coral Data 

Portal. Many of the NOAA records were concentrated along the Scotian Slope and in deep-water 

canyons, and in the eastern Gulf of Maine in shallow water. Of the 60 small gorgonian records 

from the NOAA data portal, 15% were predicted as absence based on the prevalence threshold of 

0.06 (yellow symbols in Figure 108). The majority of these were located in shallow water in the 

eastern Gulf of Maine and on the Scotian Shelf. No NOAA records exist in the area of high small 

gorgonian presence probability in the Laurentian Channel. Several records occurred in deeper 

waters off the shelf in an area considered as extrapolated by the model. 
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Figure 108. Validation of small gorgonian coral presence probability from Model 3 using 

independent data. Presence probability values were extracted to the location of small gorgonian 

records from the NOAA Deep-Sea Coral Data Portal. 
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Prediction of Small Gorgonian Biomass Using Random Forest 

 The accuracy measures of the regression random forest model on mean small gorgonian 

coral biomass per grid cell from DFO multispecies trawl surveys are presented in Table 30. The 

highest R
2
 value was 0.423, while the average was 0.135 ± 0.155 SD. The average Normalized 

Root-Mean-Square Error (NRMSE) was 0.027 ± 0.0.019 SD. An R
2
 value was not generated for 

several model folds. The percent variance explained for each fold was negative, indicating that 

the model had little to no predictive power. 

Figures 109 and 110 show the predicted biomass surface of small gorgonians. The 

majority of the spatial extent was predicted to have low (0 – 0.009 kg) small gorgonian biomass. 

The area between Emerald and LaHave Banks had the highest predicted biomass (up to 0.15 kg). 

The majority of the Laurentian Channel was predicted to have low to moderate biomass of small 

gorgonian corals, with moderate values occurring in the southwest portion (Figure 110). 

 

Table 30. Accuracy measures from 10-fold cross validation of a random forest model of average 

small gorgonian coral biomass (kg) per grid cell recorded from DFO multispecies trawl surveys 

in the Maritimes Region. RMSE = Root-Mean-Square Error; NRMSE = Normalized Root-Mean-

Square Error. 

 

 

 

Model Fold R
2 

RMSE NRMSE 
Percent (%) 

variance explained 

1 3.568 x 10
-5 

0.011 0.034 -11.65 

2 0.212 0.007 0.022 -18.97 

3 0.268 0.005 0.015 -14.21 

4 N/A 0.002 0.006 -11.41 

5 0.020 0.009 0.027 -14.21 

6 0.030 0.025 0.073 -6.67 

7 N/A 0.002 0.007 -13.21 

8 0.423 0.013 0.038 -13.56 

9 0.129 0.007 0.022 -15.11 

10 9.692 x 10
-6 

0.009 0.027 -15.86 

Mean 0.135 0.009 0.027 -13.49 

SD 0.155 0.006 0.019 3.23 
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Figure 109. Predictions of biomass (kg) per grid cell of small gorgonian corals from catch data 

recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2002 

and 2014. 
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Figure 110. Predictions of biomass (kg) per grid cell of small gorgonians from catch data 

recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2002 

and 2014. Also shown are the mean biomass values per grid cell and areas of model 

extrapolation.  

 

 

The top 15 most important environmental variables for predicting small gorgonian 

biomass are shown in Figure 111. Bottom Current Average Minimum was the most important 

variable in the model. Prior to spatial interpolation, this variable displayed a right-skewed 

distribution (Beazley et al., in prep). Examination of the Q-Q plot revealed no spatial pattern to 

data points over- and under-predicted by a normal distribution. Bottom Current Average 

Minimum was followed closely by Bottom Shear Average Minimum and Summer Chlorophyll a 

Mean. The partial dependence of small gorgonian coral biomass on the top 6 most important 

variables is shown in Figure 112. Predicted biomass was highest at Bottom Current Average 

Minimum values of 0.007 m s
-1

 and greater. Values in this range coincided with both over- and 

under-predicted values located across the Scotian Shelf and in the deeper portion of the study 
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area. The fit between predicted and observed values in the kriging model was relatively poor, 

with under-prediction of Bottom Current Average Minimum values of 0.007 m s
-1

 and greater. 

Some points could therefore be predicted lower than their true values and slightly outside the 

range of highest predicted biomass identified in the partial plot. 

 

Figure 111. Importance of the top 15 predictor variables measured as the Mean Decrease in 

Residual Sum of Squares of the regression random forest model on small gorgonian coral mean 

biomass data averaged per grid cell. The higher the Mean Decrease in Residual Sum of Squares, 

the more important the variable is for predicting the response data. 
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Figure 112. Partial dependence plots of the top six predictors from the random forest model of 

small gorgonian coral biomass data collected within the Maritimes Region, ordered left to right 

from the top. Predicted biomass (kg) is shown on the y-axis. 
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DISCUSSION 

 

This study is the first to use random forest modelling to predict the distribution of several 

sensitive deep-sea benthic invertebrate groups in the DFO Maritimes Region. Table 31 shows a 

summary of the accuracy measures for the selected presence-absence and biomass random forest 

models of each taxonomic group. Presence-absence models for most groups performed very 

well, with cross-validated AUC values ranging from 0.760 to 0.977. The poorer performance of 

the sponge model compared to the others is likely due to the coarse taxonomic resolution of this 

group (phylum level), and the inclusion of a number of different sponge species with a 

preference for different environmental conditions (e.g. shelf and slope species). Species with 

restricted niches and higher habitat specificity are commonly modelled with higher accuracy than 

generalist species (McPherson and Jetz, 2007; Tsoar et al. 2007). This was also found in our 

study, as the highest performing model was of a single species, Vazella pourtalesi, which had a 

narrow spatial distribution and a high affinity for areas with high (>34) bottom salinity. Previous 

RF models were performed on Porifera using a biomass threshold which served to distinguish the 

Geodia-dominated habitats on the continental slopes from the smaller shelf species (Knudby et 

al., 2013). Those models performed well but were aided by the presence of the large massive 

sponges and their associated sponge fauna which allowed a habitat (rather than just Porifera) to 

be modelled. On the Scotian Shelf, V. pourtalesi is one of the larger sponges present and it is not 

strongly associated with other sponge species. The relatively good performance of the sea pens, 

and large and small gorgonian coral models, despite the inclusion of multiple species in these 

groups, could be attributed to a narrow range tolerance and preference for similar environmental 

conditions between species (Bryan and Metaxas, 2007), and to their lower position in the 

taxonomic hierarchy with fewer species included in each taxon. Good predictive performance of 

species distribution models on coral species aggregated at higher taxonomic levels was also 

noted by Lagasse et al. (2015). In general, corals are predicted to occur in areas with complex 

topography and strong currents (Bryan and Metaxas, 2007). However, Bryan and Metaxas 

(2007) noted that despite a similar overall preference for certain environmental conditions, 

different families of coral (Paragorgiidae and Primnoidae) preferred slightly different 

combinations of environmental variables from one another, suggesting the importance of 

modelling individual species as opposed to aggregated taxonomic groups. In this study, 

modelling some species individually was not feasible due to the low number of occurrences from 

validated sources over the spatial extent. Nonetheless, these results highlight the need for 

increased data collection and improved taxonomic identification, particularly of sponge 

invertebrate catch onboard both commercial and research vessels. 

Unlike the classification models on presence-absence data, performance of the regression 

random forest models on biomass did not appear to follow any trends relating to the taxonomic 

resolution of the response data, with poor performance of all models except those on sea pens  
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Table 31. Summary of the mean accuracy measures for selected presence-absence models and 

biomass models for each of the five taxonomic groups. NRMSE = Normalized Root-Mean-

Square-Error. 

 Presence-absence Biomass 

 AUC Sensitivity Specificity R
2
 NRMSE 

Sponges (Porifera) 0.760 0.691 0.702 0.130 0.030 

Vazella pourtalesi 0.977 0.952 0.913 0.087 0.024 

Sea Pens (Pennatulacea) 0.901 0.813 0.819 0.518 0.018 

Large Gorgonian Corals 0.928 0.833 0.892 0.285 0.016 

Small Gorgonian Corals 0.949 0.876 0.916 0.135 0.027 

 

 

and large gorgonian corals (see Table 31). There was little extrapolation of high biomass 

predictions beyond the location of the highest catches in the raw data, and predicted biomass was 

overall much lower than the empirical maximum for each taxonomic group. The random forest 

and generalized additive models (GAMs) predicted similar areas of high biomass of the coral and 

sponge groups (see Appendix 1). For some groups (e.g. small gorgonian corals, see Figures A1.8 

and A1.9), GAMs provided better predictions of biomass along the slope and in Laurentian 

Channel compared to the random forest model. The poor performance of the models for sponges 

and V. pourtalesi may reflect an effect of previous fishing. Biomass data are more sensitive to 

the effects of fishing than presence-absence data both in terms of catchability and in the 

inaccurate reflection of virgin biomass presented on fished shelves. Comparison of the fishing 

history of the area with the distributions of each taxon may help to explain these results. In a 

recent application of random forest to VME indicator taxa biomass in the NAFO Regulatory 

Area (see Downie et al., 2016), fishing intensity was used as a covariate, which helped to explain 

some of the observed patterns. This is something that could be done in the future with our 

models to explore the effect of fishing history on biomass. Sea pens are less vulnerable to fishing 

disturbance than some other taxa modelled in this report, and the areas with large gorgonian 

corals are often avoided as they prefer rocky substrates (Kenchington et al., 2011). Alternatively, 

poor model performance for the sponges and the small gorgonian corals also may have resulted 

from a highly imbalanced design and large number of zero catches (absences) included in the 

models, and/or high variability in the positive catches (Li and Heap, 2008). This is particularly 

likely for the small gorgonian corals. High variability and low data density of the response has 

shown to negatively affect regression random forest model performance estimates (Bučas et al., 

2013). However, Newbold et al. (2009) suggest that robust sampling across the full range of 

environmental gradients over sampling density alone is the most important determinant of model 

accuracy, highlighting the importance of equal and unbiased samples for species distribution 

modelling.  

The models based on presence-absence data worked well at interpolating predictions 

between data observations and extrapolating within the shallow (< 2000 m depth) portion of the 
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study extent. However, the Maritimes Region extends out to the Canadian EEZ to approximately 

5100 m water depth. We are not confident of the model extrapolations to those depths as we have 

no means of validation. Sponges, sea pens and gorgonian corals can be found at such depths and 

so the model may be helpful in guiding research surveys to perform such validation.  For 

biomass, the GAMs did not serve to resolve predictions in these extrapolated areas. An exception 

was the sponge GAM model, which predicted a localized area of high biomass on the Scotian 

Rise.  

We have found that classification random forest models generated using all presence and 

absence data (i.e. unbalanced species prevalence) and a threshold equal to species prevalence 

produced the most realistic presence probability prediction surfaces and highest model accuracy 

in instances when the input data were highly imbalanced and spatially biased across the study 

area. Random down-sampling of the absence data often resulted in gross extrapolation of high 

presence probability beyond the location of presence observations. This was likely exacerbated 

when down-sampling to match a low number of presence observations, as in our V. pourtalesi, 

sea pen, and gorgonian coral models. Our sponge model however, produced nearly identical 

presence probability surfaces and model accuracy measures between balanced and unbalanced 

runs, likely due to the high and relatively even number of presence and absence observations 

across the study extent. These results may help guide future applications of random forest 

modelling by providing insight into which methods are appropriate based on the properties of the 

training data. 

The use of records from different data sources (e.g. multispecies trawl surveys and in situ 

camera observations) in random forest modelling may introduce bias and cause poor model 

performance, particularly if there are notable differences in catchability (i.e., the ability to detect 

a presence) between gear types. Catchability for corals and sponges is unknown for research 

vessel trawl gear but is assumed to be low for some species. In the NAFO Regulatory Area gear 

efficiency of Campelen and Lofoten trawl gear for large-sized sponges was estimated at 2%, 

although others reported up to 70% (see review in Kenchington et al., 2011). In contrast, there is 

high detectability from in situ photos and video footage, although a smaller width of seabed is 

surveyed compared to trawl gear. Many of DFO’s scientific missions involving benthic imagery 

collection were designed to target the continental slope and canyons where deep-water corals are 

known to congregate. These areas are typically not surveyed in the multispecies stock assessment 

surveys as they are either outside of the survey depth limit or are too rough to deploy bottom-

tending gear. The addition of in situ camera observations and other sources significantly 

improved the predictive performance of the presence-absence models, and its inclusion in the 

models is warranted given the spatial bias in the DFO multispecies trawl surveys. Naturally, the 

addition of the in situ camera observations increased the probability of occurrence of the three 

coral groups along the Scotian Slope and in several deep canyons. This increase was most 

noticeable for sea pens and small gorgonians, where high predictions of presence probability 

were nearly extended across the width of the continental slope. For large gorgonians there was 
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little extrapolation of high presence probability beyond the deepest canyons (the Northeast 

Channel and The Gully) where the camera observations were concentrated. Nonetheless, 

predictions in areas dominated by in situ camera observations should be interpreted with caution, 

as no absence data accompanied those records. 

Although our goal was not to identify the specific niche requirements of each coral and 

sponge group, ecological interpretation of the random forest models is necessary for determining 

the validity of the predictions and whether they are consistent with known information on 

distribution and biology. Corals were predicted to have the highest presence probability along the 

slope and in deep-water canyons, results that are consistent with the known distribution of these 

organisms (Breeze et al., 1997; Gordon and Kenchington, 2007; Cogswell et al., 2009). Depth 

and Slope were the top two predictors of the sea pen, and large and small gorgonian presence-

absence data. Sea pens and small gorgonians had similar presence probability surfaces and were 

predicted to occur over a broader range than large gorgonian corals. All sea pens and the 

majority of small gorgonians anchor in soft substrate, whereas large gorgonians are restricted to 

areas containing cobble, boulder, or large rocky outcrops. Substrate, which is considered a major 

limiting factor for the distribution of deep-water corals (Bryan and Metaxas, 2007) was not 

included in the models. There is currently no high-resolution substrate layer available for the 

Maritimes Region. Point-source sediment grain size data are readily available for the region 

through Natural Resources of Canada’s (NRCan) public domain 

(http://ed.gdr.nrcan.gc.ca/index_e.php), however, spatial interpolation of this data for the 

creation of a continuous layer requires a high density of observations in order to accurately 

capture differences in sediment characteristics that occur on the micro-scale. Further, habitat 

heterogeneity over much of the modelling domain would occur over scales smaller than the 

resolution of our environmental data (< 1 km; cf. Cuff et al., 2015; Rincón and Kenchington, 

2016). In the absence of substrate, other variables included in our models such as slope and 

bottom shear may be considered as proxies for substrate. Partial dependence plots showed that 

large and small gorgonians were restricted to areas with a greater slope than sea pens (10º and 

greater for large and small gorgonians versus 5º and greater for sea pens). Nonetheless, the full 

environmental range of these species has not been sampled, as indicated by partial dependence 

plots that do not reach zero presence probability at both extremes along each environmental 

gradient (Knudby et al., 2013). Future sampling conducted over a greater geographic and depth 

range would provide more information from which more accurate physiological tolerance limits 

could be ascertained. 

In summary, the excellent predictive capacity of most presence-absence models show that 

the spatial distribution of these taxonomic groups supports the use of random forest species 

distribution models for the prediction of significant benthic invertebrate habitat in the Maritimes 

Region. However, we have found that properties of the response data can greatly affect model 

performance. In our study, a single-species model performed better than those on aggregated 

species, particularly the sponges that were aggregated at the phylum level. 

http://ed.gdr.nrcan.gc.ca/index_e.php
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 In the absence of data observations, the results of this study could be used to identify the 

potential distribution of benthic EBSA/VME indicator taxa for use in fisheries management and 

conservation applications. For instance, we have shown that the potential habitat of the Russian 

Hat sponge Vazella pourtalesi far exceeds the boundaries of two areas closed for the protection 

of this species from bottom-tending gear in Emerald Basin.  

The SDMs generated in this report identify potential species distribution and can indicate 

areas for future restoration initiatives towards the implementation of the Policy for Managing the 

Impact of Fishing on Sensitive Benthic Areas. This policy was developed by DFO in 2009 to 

ensure Canadian fisheries are conducted in a manner that supports marine conservation and 

sustainable resource use within and outside Canada's 200 nautical mile EEZ. These models 

provide continuous surfaces of presence and biomass that can fill in gaps in survey coverage and 

extrapolate to a certain degree to areas outside of the surveys. Combined with kernel density 

analysis (Kenchington et al., 2016), SDM can be used to refine significant benthic area polygons 

produced by the former by clipping boundaries to more probabilistic borders.  
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APPENDIX 1 

 

 Alternative Prediction Models- Generalized Additive Models for Predicting 

Coral and Sponge Biomass in the Maritimes Region 

 

Given the fair to poor prediction of biomass by the random forest models, particularly in 

deep water, generalized additive models (GAMs; Hastie and Tibshirani, 1986) were developed to 

compare to the random forest results and to determine whether predictions could be improved for 

the areas considered as extrapolated by random forest models. A generalized additive model 

(Hastie and Tibshirani, 1986; 1990) is a generalized linear model with a linear predictor 

involving a sum of smooth functions of covariates. GAM models follow this general structure: 

g(μi) = Xi*θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . .  

where μi ≡ E(Yi) and Yi ~ some exponential family distribution. Yi is a response variable, Xi* is 

a row of the model matrix for any strictly parametric model components, θ is the corresponding 

parameter vector, and the fj are smooth functions of the covariates, xk (Wood, 2006). The model 

allows for somewhat flexible specification of the dependence of the response on the covariates. 

This flexibility provides potential for a better fit to the data than purely parametric models. 

Two different approaches were used to select the predictor variables. In the first 

approach, highly correlated variables were identified and eliminated in order to increase 

interpretability of the models and to reduce the effects of collinear variables. This was done 

following the variable elimination procedure outlined in Knudby et al. (2013a). The Spearman’s 

rank correlation coefficients between all predictor variables in the study area were calculated 

from all raster cells in the study area, and the two predictors with the highest correlation were 

then considered and one of them eliminated. This process was repeated until there were no 

variables remaining that were correlated higher than 0.7. Models generated using the variables 

selected with this approach are termed ‘GAM 0.7 Variables’ herein. The second approach 

involved selecting the top predictor variables identified in the random forest biomass models. 

This was done independently for each taxonomic group. Those variables with a higher influence 

in the RF models were identified by examining the importance plots and identifying those 

variables that fell above a natural break in the Mean Decrease in Residual Sum of Squares. 

Models generated with variables selected using this approach are termed ‘GAM RF Variables’ 

herein. 

The Tweedie distribution (Tweedie, 1984) was utilized for each model. The Tweedie 

model is an expansion of a compound Poisson model derived from the stochastic process where 

the weight of the counted objects has a gamma distribution. This model has the advantage of 

handling the zero-catch data in a unified way and has shown to outperform the two-stage Delta 
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lognormal model (Shono, 2008). The ‘mgcv’ package in R (Wood, 2006) was used to construct 

the GAMs. 

Shrinkage smoothers were applied to each covariate in the form of a penalized cubic 

regression spline (s(variable, bs=’cs’)). Shrinkage smoothers allow the ‘wiggliness’ of each 

covariate to go to zero as required by the data (Matthiopoulos, 2011). Shrinkage smoothers are 

useful for variable selection, as such covariates remain in the model but have no effect on model 

predictions. For each model, autocorrelation in the residuals was determined by examining ACF 

plots. When autocorrelation appeared substantial, latitude and longitude were included in the 

model as a tensor product (i.e. te(lat, long)).  

Model performance was evaluated by assessing the goodness-of-fit statistic R
2
, the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), and the percent 

(%) deviance explained. Accuracy measures and model performance were compared between 

models generated using each set of predictor variables.  

Residual plots to evaluate the fitness of the model were generated using the ‘gam.check’ 

function of the mgcv package. However, an artifact of the link function shows exact zeros as a 

band along the residuals vs. linear predictor plot, making it difficult to see whether residuals 

show heteroskedasticity. In order to avoid this issue, randomized quantile residuals (Dunn and 

Smyth, 1996) were generated using the ‘rqgam.check’ function of the ‘dsm’ package (Miller et 

al., 2015). Randomized quantile residuals transform the residuals to be exactly normally 

distributed, therefore removing artifacts generated by the link function and making the residuals 

vs. linear predictor plot easier to interpret. 

When predicting to the entire study extent of the Maritimes Region, the GAM models 

often produced erroneously-high biomass values. In these cases, additional models were tried 

that included latitude and longitude, and modifications to the k value (k=4). These models were 

evaluated against one another using the above criteria. 

 

Sponges (Porifera) 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables 

models predicting mean sponge biomass are presented in Table A1.1. Both models performed 

poorly, with R
2
 values less than 0.04. Accuracy measures were comparable between both 

models, but the AIC and BIC values were slightly better for the GAM 0.7 Variables model. The 

significant of each predictor variable for both the GAM RF Variables and GAM 0.7 Variables 

models are shown in Tables A1.2 and A1.3, respectively.  
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Figure A1.1 shows the graphical diagnostics for both models. Both showed fairly normal 

residuals. The residuals vs. linear predictor plots showed patterns indicative of 

heteroskedasticity, while the response vs. fitted values plots showed a poor fit between the 

predicted and actual values for both models. 

 

The GAM 0.7 Variables model predicted erroneously-high biomass values when applied 

to the Maritimes Region study extent, therefore the predicted surface is not presented here.  

Additional models were generated with latitude and longitude and with k=4 for each predictor 

variable. Although performance measures were slightly higher for these models, erroneous 

predicted values still occurred and therefore these model results are not presented here.  

 

Figure A1.2 shows the predicted biomass surface of sponges from the GAM RF 

Variables model. The majority of the study area was predicted to have zero biomass of sponge. 

Areas of high biomass (up to 171.57 kg) occurred along a band in deeper waters off the central 

Scotian Slope. This area of high biomass was not supported by the presence of data observations 

(Figure A1.2). The model predicted low biomass to occur in Emerald Basin where the highest 

sponge catches were recorded, corroborating the poor model performance indicated in the 

performance measures (Table A1.1) and diagnostic plots (Figure A1.1). 

 

 

Table A1.1. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of sponges in the Maritimes Region. 

 

 

 

 

 

 

 

 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R2 0.043 0.035 

Deviance explained 20.30% 25.20% 

AIC 5689.606 5574.534 

BIC 6005.015 5983.860 



171 

 

 

 

Table A1.2. Results of the GAM RF Variables model built to predict the biomass of sponges in 

the Maritimes Region. The estimated degrees of freedom (edf), F value, and p-value are shown 

for each variable. Significance was tested at the α= 0.05 level. Significant variables are indicated 

with an asterisk (*). 

 

 

 

Table A1.3. Results of the GAM 0.7 Variables model built to predict the biomass of sponges in 

the Maritimes Region. The estimated degrees of freedom (edf), F value, and p-value are shown 

for each variable. Significance was tested at the α= 0.05 level. Significant variables are indicated 

with an asterisk (*). 

Variable edf F p-value 

Bottom Temperature Mean 7.204 4.513 1.610 x 10
-5* 

Bottom Temperature Average Minimum 4.545 5.329 3.140 x 10
-5* 

Fall Chlorophyll a Minimum  4.530 4.692 2.980 x 10
-4* 

Fall Primary Production Average Range 3.816 13.329 5.140 x10
-12* 

Summer Primary Production Average Maximum 4.318 3.819 0.001* 

Summer Primary Production Mean 7.815 8.525 5.920 x 10
-12* 

Summer Primary Production Average Range 6.620 12.424 7.210 x 10
-16* 

Surface Current Average Range 3.534 9.589 6.220 x 10
-8* 

Variable edf F p-value 

Bottom Current Average Minimum 1.713 16.429 5.510 x 10-8* 

Bottom Salinity Average Minimum 6.276 14.154 < 2 x 10-16* 

Bottom Temperature Average Minimum 4.224 9.412 4.500 x 10-9* 

Annual Chlorophyll a Range 2.523 2.262 0.103 

Spring Chlorophyll a Maximum 4.654 8.758 1.260 x 10-18* 

Depth 3.916 31.827 < 2 x 10-16* 

Annual Primary Production Mean 5.976 7.996 1.210 x 10-9* 

Annual Primary Production Average Minimum 3.468 4.934 4.770 x 10-4* 

Fall Primary Production Average Maximum 6.147 8.827 6.000 x 10-11* 

Fall Primary Production Average Minimum 1.520 4.826 0.008* 

Spring Primary Production Average Maximum 0.001 0.007 0.996 

Spring Primary Production Average Minimum 5.821 17.832 < 2 x 10-16* 

Surface Salinity Average Range 6.195 4.576 4.840 x 10-5* 

Slope 2.393 14.770 5.360 x 10-9* 
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Figure A1.1. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

biomass of sponges in the Maritimes Region. 
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Figure A1.2. Prediction of sponge biomass (kg) from the GAM RF Variables model in the 

Maritimes Region. Bottom map shows the sponge mean biomass observations overlain.
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Vazella pourtalesi (Russian Hat sponge) 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables 

models predicting the biomass distribution of the glass sponge Vazella pourtalesi are presented 

in Table A1.4. The GAM 0.7 Variables model performed better than the GAM RF Variables 

model, as indicated by the higher R
2
, deviance explained, and AIC. The variable significance for 

the GAM RF Variable and GAM 0.7 Variable models are shown in Tables A1.5 and A1.6, 

respectively. 

Figure A1.3 shows the graphical diagnostics for both models. Both showed fairly normal 

residuals. The residuals vs. linear predictor plot for the GAM 0.7 Variables model showed 

patterns indicative of heteroskedasticity. The response vs. fitted values plots showed a poor fit 

between the predicted and actual values for both models, particularly for higher catch values. 

 

Figures A1.4 and A1.5 show the predicted biomass surface of Vazella pourtalesi 

generated from the GAM RF Variables and GAM 0.7 Variables models, respectively. For the 

GAM RF Variables model, the majority of the study extent was predicted to have low (> 0 – 

0.67 kg) V. pourtalesi biomass. The highest predicted biomass value in this model was 85.06 kg, 

which is consistent with than the maximum observed catch (85.54 kg). High biomass was 

predicted to occur in Emerald Basin which is consistent with the random forest model on the 

same data (see Figures 41 and 42). The highest predicted biomass was located slightly northeast 

of the location of the highest mean catch of sponges. The GAM 0.7 Variables model predicted 

similar results (Figure A1.5), although the areas of high biomass were not as intense as the 

former model. The highest predicted biomass value in this model was 166.85 kg, which is higher 

than the maximum observed catch.  

 

Table A1.4. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of Vazella pourtalesi in the Maritimes Region. 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R2 0.168 0.711 

Deviance explained 80.00% 90.50% 

AIC 2114.934 2097.098 

BIC 2229.202 2343.160 
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Table A1.5. Results of the GAM RF Variables model built to predict the biomass of Vazella 

pourtalesi in the Maritimes Region. The estimated degrees of freedom (edf), F value, and p-

value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

 

 

Table A1.6. Results of the GAM 0.7 Variables model built to predict the biomass of Vazella 

pourtalesi in the Maritimes Region. The estimated degrees of freedom (edf), F value, and p-

value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

 

Variable edf F p-value 

Bottom Salinity Average Maximum 1.169 1.726 0.098 

Bottom Temperature Mean 1.931 6.544 4.270 x 10
-4* 

Bottom Temperature Average Minimum 4.707 5.960 1.110 x 10
-5* 

Fall Chlorophyll a Minimum 1.561 17.441 8.440 x 10
-7* 

Fall Primary Production Average Range 2.986 x 10
-4 

0.077 0.994 

Summer Primary Production Mean 8.808 x 10
-5 

0.029 0.998 

Summer Primary Production Average Range  3.546 6.892 9.000 x 10
-6* 

Surface Salinity Average Maximum 1.249 8.949 4.180 x 10
-4* 

Variable edf F p-value 

Bottom Current Average Minimum 4.501 3.684 0.002* 

Bottom Salinity Average Minimum 7.121 x 10
-5 

0.082 0.997 

Bottom Temperature Average Minimum 4.864 6.418 2.440 x 10-6* 

Annual Chlorophyll a Range 5.192 5.175 2.030 x 10-5* 

Spring Chlorophyll a Maximum 6.564 x 10
-1 

1.709 0.215 

Depth 2.810 4.449 0.002* 

Annual Primary Production Mean 2.111 5.377 0.001* 

Annual Primary Production Average Minimum 3.186 3.499 0.007* 

Fall Primary Production Average Maximum 1.133 3.739 0.035* 

Fall Primary Production Average Minimum 5.584 x 10
-1 

0.942  0.375 

Spring Primary Production Average Maximum 1.732 13.055 1.160 x 10-6* 

Spring Primary Production Average Minimum 3.729 5.148 1.710 x 10-4* 

Surface Salinity Average Range 2.992 1.196 0.190 

Slope 1.711 x 10
-3 

0.208 0.979 
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Figure A1.3. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

biomass of Vazella pourtalesi in the Maritimes Region. 
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Figure A1.4. Prediction of Vazella pourtalesi biomass (kg) from the GAM RF Variables model 

in the Maritimes Region. Bottom map shows the V. pourtalesi mean biomass observations 

overlain.



178 

 

 

 

 
Figure A1.5. Prediction of Vazella pourtalesi biomass (kg) from the GAM 0.7 Variables model 

in the Maritimes Region. Bottom map shows the V. pourtalesi mean biomass observations 

overlain.
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Sea Pens (Pennatulacea) 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables 

models predicting mean sea pen biomass are presented in Table A1.7. Both models performed 

fairly, with R
2
 values of 0.268 and 0.247 for the GAM RF Variables and GAM 0.7 Variables 

models, respectively. The GAM RF Variables model performed better in terms of deviance 

explained and AIC and BIC. The variable significance for the GAM RF Variable and GAM 0.7 

Variable models are shown in Tables A1.8 and A1.9, respectively. 

Figure A1.6 shows the graphical diagnostics for both models. Both showed fairly normal 

residuals. The residuals vs. linear predictor plot for the GAM RF Variables model showed 

patterns indicative of heteroskedasticity. The response vs. fitted values plots showed a poor fit 

between the predicted and actual values for both models, particularly for higher catches. 

 

When predicted to the entire extent of the study area, the models showed erroneously 

high predicted biomass values. High predictions of biomass were not alleviated with the 

inclusion of latitude and longitude or with modifications to the k value for each predictor. 

Predicted surfaces are therefore not presented for this taxonomic group. 

 

Table A1.7. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of sea pens in the Maritimes Region. 

 

 

 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R2 0.268 0.247 

Deviance explained 79.60% 73.80% 

AIC 2273.103 2336.098 

BIC 2615.161 2624.398 
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Table A1.8. Results of the GAM RF Variables model built to predict the biomass of sea pens in 

the Maritimes Region. The estimated degrees of freedom (edf), F value, and p-value are shown 

for each variable. Significance was tested at the α= 0.05 level. Significant variables are indicated 

with an asterisk (*). 

 

 

Table A1.9. Results of the GAM 0.7 Variables model built to predict the biomass of sea pens in 

the Maritimes Region. The estimated degrees of freedom (edf), F value, and p-value are shown 

for each variable. Significance was tested at the α= 0.05 level. Significant variables are indicated 

with an asterisk (*). 

 

 

 

Variable edf F p-value 

Bottom Current Average Range 5.261 2.995  1.360 x 10-7* 

Bottom Salinity Average Maximum 7.362 7.978 5.540 x 10-16* 

Bottom Salinity Mean 7.697 7.311 2.190 x 10-14* 

Bottom Salinity Average Range 3.870 2.373 9.160 x 10-6* 

Bottom Shear Average Maximum 1.843 1.145 1.860 x 10
-4

* 

Bottom Shear Average Range 3.173 1.955 4.080 x 10-7* 

Bottom Temperature Average Range 5.922 5.437 3.160 x 10-11* 

Fall Chlorophyll a Mean 1.773 1.224 7.910 x 10
-4

* 

Depth 5.086 3.334 2.150 x 10-6* 

Surface Temperature Average Maximum 3.783 3.954 4.360 x 10-9* 

Variable edf F p-value 

Bottom Current Average Minimum 1.370 17.367 6.670 x 10
-7* 

Bottom Salinity Average Minimum 2.521 11.739 6.400 x 10
-7* 

Bottom Temperature Average Minimum 3.483 8.043 9.710 x 10
-7* 

Annual Chlorophyll a Range 0.425 0.865 0.441 

Spring Chlorophyll a Maximum 3.087 2.135 0.055 

Depth 1.586 5.609 0.002* 

Annual Primary Production Mean 5.867 6.676 1.060 x 10
-7* 

Annual Primary Production Average Minimum 3.713 8.418 4.120 x 10
-7* 

Fall Primary Production Average Maximum 5.694 6.277 3.840 x 10
-7* 

Fall Primary Production Average Minimum 4.217 5.417 5.160 x 10
-5* 

Spring Primary Production Average Maximum 1.059 2.856 0.072 

Spring Primary Production Average Minimum 0.599 1.240 0.302 

Surface Salinity Average Range 1.940 9.920 2.220 x 10
-5* 

Slope 1.325 4.573 0.017* 
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Figure A1.6. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

biomass of sea pens in the Maritimes Region. 
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Large Gorgonian Corals 

 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables 

models predicting mean large gorgonian coral biomass are presented in Table A1.10. Both 

models performed well, with R
2
 values of 0.430 and 0.432 for the GAM RF Variable and GAM 

0.7 Variable models, respectively. Deviance explained was higher for the GAM RF Variable 

model, and the AIC/BIC values were lower. The variable significance for the GAM RF Variable 

and GAM 0.7 Variable models are shown in Tables A1.11 and A1.12, respectively. 

Figure A1.7 shows the graphical diagnostics for both models. Both models showed fairly 

normal residuals and only small patterns in the residuals vs. linear predictor plots. The response 

vs. fitted values plots showed a poor fit between the predicted and actual values, particularly for 

smaller catches. 

When predicted to the entire extent of the study area, the models showed erroneously 

high predicted biomass values. High predictions of biomass were not alleviated with the 

inclusion of latitude and longitude or with modifications to the k value for each predictor. 

Predicted surfaces are therefore not presented for this taxonomic group. 

 

Table A1.10. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of large gorgonian corals in the Maritimes 

Region. 

 

 

 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R
2
 0.430 0.432 

Deviance explained 81.30% 71.80% 

AIC 

BIC 

2207.499 2249.884 

2351.450 2373.409 
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Table A1.11. Results of the GAM RF Variables model built to predict the biomass of large 

gorgonian corals in the Maritimes Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

Variable edf F p-value 

Bottom Salinity Average Maximum 1.920 x 10
--3 

0.236 0.977 

Bottom Salinity Mean 6.841 10.201 7.580 x10-14* 

Bottom Temperature Average Minimum 2.703 3.838 0.007* 

Depth 4.018 x 10
-1 

0.214 0.705 

Spring Mixed Layer Depth Average Maximum 2.155 22.722 1.170 x 10
-11* 

Fall Primary Production Average Minimum 9.668 x 10
-1 

3.670 0.053 

Surface Current Average Maximum 9.717 x 10
-5 

0.094 0.996 

Surface Current Mean 3.061 x 10
-5 

0.009 0.999 

Surface Current Average Range 2.789 10.267 2.770 x 10
-7 

Slope 2.576 16.833 1.360 x 10
-10 

 

 

Table A1.12. Results of the GAM 0.7 Variables model built to predict the biomass of large 

gorgonian corals in the Maritimes Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Bottom Current Average Minimum 1.222 8.376 0.003* 

Bottom Salinity Average Minimum 1.257
 

10.444 3.430 x 10
-4* 

Bottom Temperature Average Minimum 3.224 5.787 1.170 x 10-4* 

Annual Chlorophyll a Range 1.715 6.490 0.001* 

Spring Chlorophyll a Maximum 5.656 x 10
-6 

0.001 0.999 

Depth 5.398 x 10
-5 

0.093 0.997 

Annual Primary Production Mean 1.972 x 10
-4 

0.068 0.996 

Annual Primary Production Average Minimum 2.218 9.647 1.080 x 10
-5 

Fall Primary Production Average Maximum 1.250 5.599 0.012* 

Fall Primary Production Average Minimum 2.340 x 10
-4 

0.009  0.998 

Spring Primary Production Average Maximum 3.804 x 10
-1 

0.701 0.514 

Spring Primary Production Average Minimum 2.453 x 10
-5 

0.088 0.998 

Surface Salinity Average Range 8.899 x 10
-1 

2.022 0.158 

Slope 2.586
 

21.298 2.820 x 10
-13* 
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Figure A1.7. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

biomass of large gorgonian corals in the Maritimes Region. 
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Small Gorgonian Corals 

 

The performance measures for both the GAM RF Variables and GAM 0.7 Variables 

models predicting mean small gorgonian coral biomass are presented in Table A1.13. Both 

models performed fairly, with R
2
 values of 0.144 and 0.174 for the GAM RF Variable and GAM 

0.7 Variable models, respectively. Deviance explained was higher for the GAM 0.7 Variable 

model. The variable significance for the GAM RF Variable and GAM 0.7 Variable models are 

shown in Tables A1.14 and A1.15, respectively. 

Figure A1.8 shows the graphical diagnostics for both models. The residuals vs. linear 

predictor plots showed patterns indicative of heteroskedasticity, while the response vs. fitted 

values plots showed a poor fit between the predicted and actual values for both models. 

Figures A1.8 and A1.9 show the predicted biomass surface of small gorgonian corals 

generated from the GAM RF Variables and GAM 0.7 Variables models, respectively. For the 

GAM RF Variables model, the majority of the study extent was predicted to have low (> 0 – 

0.004 kg) small gorgonian biomass. Biomass was predicted to be high in the Laurentian Channel 

and along a narrow band on the Scotian Slope. The area of high biomass along the Scotian slope 

was associated with a cluster of large biomass values, and is consistent with the random forest 

model results (see Figures 109 and 110). The GAM 0.7 Variables model predicted high biomass 

of small gorgonian corals in the same area (Figure A1.9). The highest predicted biomass value in 

this model was 0.46 kg, which is only slightly higher than the maximum mean biomass catch in 

the raw data (0.34 kg).  

 

Table A1.13. Comparison of the accuracy measures between the GAM RF Variables and GAM 

0.7 Variables models built to predict the biomass of small gorgonian corals in the Maritimes 

Region. 

 

 

 

 

 GAM RF Variables GAM 0.7 Variables 

R
2
 0.144 0.174 

Deviance explained 53.40% 71.50% 

AIC 

BIC 

1633.629 1638.405 

1696.464 1772.240 
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Table A1.14. Results of the GAM RF Variables model built to predict the biomass of small 

gorgonian corals in the Maritimes Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

Variable edf F p-value 

Bottom Current Average Minimum 3.397 x 10
-1 

0.817 0.501 

Bottom Salinity Average Minimum 6.149 x 10
-1 

0.922 0.355 

Bottom Salinity Average Range 1.396 7.038 0.001* 

Bottom Shear Average Minimum 3.351 x 10
-5 

0.500 0.995 

Summer Chlorophyll a Mean 1.465 8.081 4.00 x 10
-4* 

Summer Chlorophyll a Minimum 3.494 x 10
-6 

0.171 0.999 

Depth 2.894 6.354 2.300 x 10
-4* 

Spring Primary Production Average Maximum 6.195 0.272 0.995 

Surface Temperature Average Maximum 1.478 x 10
-5 

0.179 0.998 

Surface Temperature Mean 1.346 x 10
-5 

0.136 0.999 

 

 

Table A1.15. Results of the GAM 0.7 Variables model built to predict the biomass of small 

gorgonian corals in the Maritimes Region. The estimated degrees of freedom (edf), F value, and 

p-value are shown for each variable. Significance was tested at the α= 0.05 level. Significant 

variables are indicated with an asterisk (*). 

 

Variable edf F p-value 

Bottom Current Average Minimum 4.007 x 10
-6 

0.028 1.000 

Bottom Salinity Average Minimum 5.431 3.656 0.001* 

Bottom Temperature Average Minimum 1.922 6.852 3.930 x 10-4* 

Annual Chlorophyll a Range 5.148 x 10
-1 

0.788 0.421 

Spring Chlorophyll a Maximum 2.581 x 10
-5 

0.007 1.000 

Depth 2.682 5.679 7.470 x 10
-4* 

Annual Primary Production Mean 1.528 x 10
-6 

0.005 1.000 

Annual Primary Production Average Minimum 2.572 1.527 0.209 

Fall Primary Production Average Maximum 1.410 x 10
-1 

0.552 0.708 

Fall Primary Production Average Minimum 1.211 4.830  0.011* 

Spring Primary Production Average Maximum 4.884 x 10
-6 

0.031 1.000 

Spring Primary Production Average Minimum 2.684 7.295 4.940 x 10-5* 

Surface Salinity Average Range 9.713 x 10
-7 

0.002 1.000 

Slope 1.680 x 10
-5 

0.013 0.999 
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Figure A1.8. Model diagnostics for the GAM RF Variables model (left) and the GAM 0.7 Variables model (right) built to predict the 

biomass of small gorgonian corals in the Maritimes Region. 
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Figure A1.9. Prediction of small gorgonian coral biomass (kg) from the GAM RF Variables 

model in the Maritimes Region. Bottom map shows the small gorgonian coral mean biomass 

observations overlain.
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Figure A1.10. Prediction of small gorgonian coral biomass (kg) from the GAM 0.7 Variables 

model in the Maritimes Region. Bottom map shows the small gorgonian coral mean biomass 

observations overlain. 


