

M
S

G
Fu

V
Fu

P
Fu
20
B
Q
G

D
C
C
PW
C

Th
th

Multi-R
Software A

uillaume Mo
ujitsu Consu

incent Girou
ujitsu Consu

repared By:
ujitsu Consu
000 Bouleva
ureau 300

Québec (Qué
2K 0E8

efence and
ontractor's D
ontract Proje
WGSC Cont
SA: Étienne

he scientific or
e contents do n

D

Reason
Architectur

orin-Brassard
ulting (Canad

ux
ulting (Canad

ulting (Canad
ard Lebourgn

ébec)

Public Secu
Document N
ect Manager
tract Numbe

e Martineau,

technical valid
not necessarily

Defence

D

ner Infe
re Docum

d
da) Inc.

da) Inc.

da) Inc.
neuf

urity
umber: MRI
r: Gilles Clai

er: W7701-10
Defense Sc

ity of this Cont
y have the appr

e R&D
Co

DRDC Val
Ja

erence
ment

-242-0449
iroux, (514)
0-4064

cientist, 418-

tract Report is
roval or endors

 Canad
ontract Re
lcartier CR
anuary 20

e

393-8822 x

-844-4000 x

entirely the res
sement of Defe

da – V
eport
R 2012-00
012

318

4501

sponsibility of t
ence R&D Cana

alcarti

04

the Contractor
ada.

ier

Co

and

opy No:

Multi-Reasoner Inference
Software Architecture Document

Guillaume Morin-Brassard
Fujitsu Consulting (Canada) Inc.

Vincent Giroux
Fujitsu Consulting (Canada) Inc.

Prepared By:
Fujitsu Consulting (Canada) Inc.
2000 Boulevard Lebourgneuf
Bureau 300
Québec (Québec)
G2K 0E8

Defence and Public Security
Contractor's Document Number: MRI-242-0449
Contract Project Manager: Gilles Clairoux, (514) 393-8822 x 318
PWGSC Contract Number: W7701-10-4064
CSA: Étienne Martineau, Defense Scientist, 418-844-4000 x 4501

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do
not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Valcartier
Contract Report
DRDC Valcartier CR 2012-004
January 2012

This page intentionally left blank.

DRDC Valcartier CR 2012-004 i

Abstract ……..

To support its research activities in the intelligence domain, the Intelligence and Information
(I&I) Section at DRDC Valcartier is developing the Intelligence Science & Technology Platform
(ISTIP) as a major component of its R&D infrastructures. To improve the reasoning capabilities
of the platform, the mandate of this contract is to produce a Multi-Reasoner Inference (MRI)
capability based on the Multi-Intelligence Tool Suite (MITS) and the ISTIP software components
previously developed by the I&I Section. Five main different services have been developed
containing four individual reasoners and one multi-reasoner orchestrator. The reasoners that have
been created are a Case-Based Reasoner (CBR), a Rule-Based Reasoner (RBR), a Descriptive-
Logic Reasoner (DLR) and a KInematics and Geospatial Analysis Reasoner (KIGAR) which is
based on the KIGAM module of the Inference of Situational Facts through Automated Reasoning
(ISFAR) tool. Through the use of a common reasoning framework, these reasonners can now
leverage their reasoning capabilities by sharing their strength to other reasonners and achieve an
amazing synergy. This document describes the Software Architecture of the MRI.

Résumé ….....

Afin de supporter ces activités de recherche dans le domaine du renseignement, la Section du
Renseignement et Information de RDDC Valcartier développe la Plate-forme de Science et
Technologie du Renseignement (ISTIP) comme un composant majeur de ses infrastructures de
R&D. Afin d’améliorer les aptitudes de raisonnement de la plate-forme, le mandat de ce contrat
est de créer un outil d’inférence Multi-Raisonneur (MRI) basé sur la « Multi-Intelligence Tool
Suite » (MITS) et sur les composants logiciels déjà implémentés par la section I&I. Cinq
différents services ont été développés comprenant quatre raisonneurs individuels et un
orchestrateur multi-raisonneur. Les raisonneurs qui ont été créés sont un raisonneur par cas
(CBR), un raisonneur par règles (RBR), un raisonneur ontologique (DLR) et un raisonneur
d’analyse cinématique et géo-spatiale (KIGAR) basé sur le module KIGAM de l’outil d’Inférence
Automatisée de Faits Situationnels (ISFAR). Grâce à l'utilisation d'un cadre de raisonnement
commun, ces raisonneurs peuvent désormais exploiter leurs capacités de raisonnement en
partageant leurs forces à d'autres raisonneurs et parvenir à une synergie épatante. Ce document
décrit l’Architecture Logicielle du MRI.

ii DRDC Valcartier CR 2012-004

This page intentionally left blank.

DRDC Valcartier CR 2012-004 iii

Executive summary

Multi-Reasoner Inference: Software Architecture Document
Guillaume Morin-Brassard; Vincent Giroux; DRDC Valcartier CR 2012-004;
Defence R&D Canada – Valcartier; January 2012.

Introduction or background:

To support its research activities in the intelligence domain, the Intelligence and Information
(I&I) Section at DRDC Valcartier is developing the Intelligence Science & Technology Platform
(ISTIP) as a major component of its R&D infrastructures. To improve the reasoning capabilities
of the platform, the mandate of this contract is to produce a Multi-Reasoner Inference (MRI)
capability based on the Multi-Intelligence Tool Suite (MITS) and the ISTIP software components
previously developed by the I&I Section.

This document presents the Software Architecture Description (SAD) for the Multi-Reasoner
Inference service and related reasoners services, according to the IEEE 12207.

Its purpose is to:

 To define all of the important system components and the associations between them
from the viewpoint of the user.

 To establish the technical foundations of the system, to partition it into developer
subsystems and software components, and to show the associations with the user
requirements and technology infrastructure.

 To describe the users' critical requirements and design principles for the information
system.

 To define global quality criteria against which the users will measure the
information system.

 To identify and provide an initial definition for the manual and automated unit tasks.

Results:

Five main different services have been developed containing four individual reasoners and one
multi-reasoner orchestrator. The reasoners that have been created are a Case-Based Reasoner
(CBR), a Rule-Based Reasoner (RBR), a Descriptive-Logic Reasoner (DLR) and a KInematics
and Geospatial Analysis Reasoner (KIGAR) which is based on the KIGAM module of the
Inference of Situational Facts Through Automated Reasoning (ISFAR) tool.

iv DRDC Valcartier CR 2012-004

Sommaire

Multi-Reasoner Inference: Software Architecture Document
Guillaume Morin-Brassard; Vincent Giroux ; DRDC Valcartier CR 2012-004 ; R &
D pour la défense Canada – Valcartier; janvier 2012.

Introduction ou contexte :

Afin de supporter ces activités de recherche dans le domaine du renseignement, la Section du
Renseignement et Information de RDDC Valcartier développe la Plate-forme de Science et
Technologie du Renseignement (ISTIP) comme un composant majeur de ses infrastructures de
R&D. Afin d’améliorer les aptitudes de raisonnement de la plate-forme, le mandat de ce contrat
est de créer un outil d’inférence Multi-Raisonneur (MRI) basé sur la « Multi-Intelligence Tool
Suite » (MITS) et sur les composants logiciels déjà implémentés par la section I&I.

Ce document présente la Description de l’Architecture Logicielle du Raisonneur Multi-Inférence
et ses services, en respectant la norme IEEE 12207.

Son but est de:

 Définir tous les composants importants du système et leurs associations du point de
vu de l’utilisateur.

 Établir les fondations techniques du système, et les partitionner en tant que sous-
systèmes et composants pour les développeurs, puis démontrer leurs associations
avec les besoins client et l’infrastructure technologique.

 Décrire les besoins critiques de l’utilisateur et les principes de design pour le
système d’information.

 Définir les critères de qualité globaux avec lesquels l’utilisateur comparera le
système.

 Identifier et fournir une définition initiale des tâches manuelles et automatisées.

Résultats : Cinq différents services ont été développés comprenant quatre raisonneurs individuels
et un orchestrateur multi-raisonneur. Les raisonneurs qui ont été créés sont un raisonneur par cas
(CBR), un raisonneur par règles (RBR), un raisonneur ontologique (DLR) et un raisonneur
d’analyse cinématique et géo-spatiale (KIGAR) basé sur le module KIGAM de l’outil d’Inférence
Automatisée de Faits Situationnels (ISFAR).

DRDC Valcartier CR 2012-004 v

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary ... iii
Sommaire iv
Table of contents .. v
List of figures ... vii
List of tables .. viii
1 Situation .. 1

1.1 Reasoners core working sets ... 1
2 General Solution ... 2

2.1 Common interface ... 2
2.2 Facts conversions... 2

2.2.1 Facts to system triplets ... 3
2.2.2 Facts to spatial features .. 4

2.3 The “Know How” .. 7
2.4 The parameters .. 7
2.5 Reasoner outputs ... 7

2.5.1 Facts ... 7
2.5.2 Facts Justifications ... 8

2.6 Reasoner request context ... 8
2.7 Unit/Functional Testing Strategy... 8

3 Software Architecture ... 10
3.1 Technologies ... 10
3.2 Standards ... 10

4 Reasoning services .. 11
4.1 Common .. 11

4.1.1 Description ... 11
4.1.2 Service data .. 11

4.1.2.1 Messages .. 11
4.1.2.2 Facts ... 11
4.1.2.3 Reasoning context .. 11

4.1.3 Service dynamics ... 11
4.1.3.1 General use case ... 11
4.1.3.2 Create reasoning context .. 13
4.1.3.3 Add facts to reasoning context ... 13
4.1.3.4 Execute reasoning context ... 14
4.1.3.5 Get context execution status .. 15

vi DRDC Valcartier CR 2012-004

4.1.3.6 Get reasoning results .. 16
4.1.3.7 Delete reasoning context .. 16

4.2 Kinematic and Geospatial Analysis Reasoner (KIGAR) ... 17
4.2.1 Description ... 17
4.2.2 Service data .. 17
4.2.3 Service dynamics ... 17

4.3 Rule-Based Reasoner (RBR) ... 19
4.3.1 Description ... 19
4.3.2 Service data .. 19
4.3.3 Service dynamics ... 20

4.4 Case-Based Reasoner (CBR) ... 21
4.4.1 Description ... 21
4.4.2 Service data .. 21

4.4.2.1 Situation templates ... 22
4.4.2.2 Global similarity measure + Local Similarity Measures 23
4.4.2.3 Typical cases .. 24
4.4.2.4 Solution generation rule ... 25

4.4.3 Service dynamics ... 25
4.5 Descriptive Logic Reasoner (DLR) ... 28

4.5.1 Description ... 28
4.5.2 Service data .. 29

4.5.2.1 URI Mappings .. 29
4.5.2.2 Ontology References .. 29

4.5.3 Service dynamics ... 29
4.6 Multi-Reasoners Orchestrator ... 34

4.6.1 Description ... 34
4.6.2 Service data .. 34

4.6.2.1 Reasoner configuration .. 34
4.6.3 Service dynamics ... 34

5 References 36
Annex A System Attributes ... 37
List of symbols/abbreviations/acronyms/initialisms .. 41

DRDC Valcartier CR 2012-004 vii

List of figures

Figure 1: Reasoners common interface ... 2

Figure 2:Triplet mappings ... 3

Figure 3: Triplet Mappings Results ... 4

Figure 4 - General use case ... 12

Figure 5 - Create a reasoning context activity diagram ... 13

Figure 6 - Add facts to context activity diagram ... 14

Figure 7 - Execute reasoning context activity diagram ... 15

Figure 8 - Get context execution status activity diagram .. 16

Figure 9 - Get reasoning results activity diagram .. 16

Figure 10 - Delete context activity diagram .. 17

Figure 11: KIGAR Workflow ... 18

Figure 12: Rule-Based Reasoner Workflow .. 20

Figure 13: Case-Based Reasoner Data .. 22

Figure 14: Case-Based Reasoner Join Constraint .. 23

Figure 15: Similarity Measures ... 24

Figure 16: Cases .. 24

Figure 17: Case-Based Reasoner Processing Workflow ... 25

Figure 18: Fact to Situations Templates .. 26

Figure 19: Situation and Cases Similarity Processing ... 27

Figure 20: Case-Based Reasoner Output ... 28

Figure 21: Descriptive Logic Reasoner Workflow .. 30

Figure 22: URI Mappings .. 31

Figure 23: Triplets Insertion .. 33

Figure 24: Pellet categorization ... 33

Figure 25: MRI Orchestrator Processing Workflow ... 35

viii DRDC Valcartier CR 2012-004

List of tables

Table 1 : System Attributes ... 37

DRDC Valcartier CR 2012-004 1

1 Situation

Currently, each reasoner core requires different inputs and generates outputs that are not
necessarily usable by the other reasoners. Moreover, the reasoners are actually all aggregated in a
single application and cannot be called separately without invoking the ISFAR main interface.

Since the ISTIP platforms aims at being an SOA platform, some work needs to be done to expose
each reasoners as separate services. Moreover, since we want to improve usability of these
services and be able to make them interoperable within the MRI service, more work has to be
done to make them work with a common set of inputs and outputs which here is the SFM fact
model.

1.1 Reasoners core working sets
The following section describes each reasoner core working set – which type of information is
required by each of them and the data format suited to each of them.

Rule-Based Reasoner (RBR) – JBoss Drools

 Facts (can natively use facts from SF fact model)

 Rules (DRL)
Descriptive Logic Reasoner (DLR) – Pellet OWL reasoner

 Axioms – Triplets

 Ontology
Case-Based Reasoner (CBR) – jCollibri

 Case base (which can be anything supported by the similarity measures);

 Similarity measures and decision thresholds;
KIGAR

 KIGAM tracks (which could easily be adapted to spatial features)

 Spatial features

 Analysis parameters and spatial features filters to apply specific parameters to
specific spatial features;

2 DRDC Valcartier CR 2012-004

2 General Solution

2.1 Common interface
To improve the usability of the system, a common interface has to be implemented by each
reasoner. This interface makes sure each reasoner implements a set of methods normalizing the
interaction with the reasoner.

Figure 1: Reasoners common interface

This interface exposes:

 methods to create a new inference context and have a reference to that context;

 methods to add facts to the context (facts are the common input and output of each
reasoner);

 methods to set the “Know How” of each reasoner context (The definition of what is
the “Know How” will be given below);

 methods to set the execution parameters of each reasoner context (The definition of
what are the parameters will be given below);

 methods to retrieve the status and other exploitation data of the reasoner for a given
context;

 methods to retrieve the reasoning results for a given context;
Moreover, the MRI orchestrator has the exact same interface than each individual reasoner and
internally dispatches facts, proper “Know How” and parameters to each reasoner underneath.

2.2 Facts conversions
The facts are the common input and output of each reasoner. Even if facts are passed from a
reasoner to another, it is not all reasoners that work directly with facts as shown in the previous
section. Some of the reasoners need to convert these facts in a form that is more suitable for them.
For example, the Domain Logic Reasoner does not know how to infer new knowledge from
complex facts, it is only able to work with triplets. The facts must then be converted to triples to
be usable by the DLR.

Here is a list of the required fact conversion for each reasoner:

 DLR: Facts System triplets Triplets with ontology specific attribute names

DRDC Valcartier CR 2012-004 3

 KIGAR: Facts System triplets SpatialFeatures

 RBR: Facts (No conversion required)

 CBR: Facts Situations (logically aggregated facts)

2.2.1 Facts to system triplets
A Fact to subject-attribute-value mapping has to be specified with each atom definition so that
facts can be expressed as subject-attribute-values triplets. A mapping is defined this way:

For a Fact “F” with arguments “A1, A2” like F(A1, A2) and V(An) being the value of the argument
An, a triplet could be specified as such:

 Subject V(A1)

 Attribute “attribute X” or V(Ax)

 Value “value Y“ or V(A2)
Where the value Y and attribute name X are any String.

Figure 2:Triplet mappings

This would allow to automatically and easily convert any facts into triplets, no matter how the
facts have been modeled.

Here is an example:

The following triplet mapping could be attached to the atom definition Vessel(VesselId,
VesselName, CargoType, Flag, Owner):

 V(VesselId) – “name” – V(VesselName)

 V(VesselId) – “hasCargoType” – V(CargoType)

 V(VesselId) – “hasFlag” – V(Flag)

 V(VesselId) – “hasOwner” – V(Owner)
Afterward, any fact based on this atom definition could be automatically translated into triplets:

 Vessel(“MMSI123411”, “Great Catch”, “FSH”, “CAN”, “Bob”)

 Generated triplets:

 “MMSI123411” – “name” – “Great Catch”

 “MMSI123411” – “hasCargoType” – “FSH”

 “MMSI123411” – “hasFlag” – “CAN”

4 DRDC Valcartier CR 2012-004

 “MMSI123411” – “hasOwner” – “Bob”

 Vessel(“MMSI999862”, “Big Bertha”, “OIL”, “USA”, “Oil co.”)

 Generated triplets:

 “MMSI999862” – “name” – “Big Bertha”

 “MMSI999862” – “hasCargoType” – “OIL”

 “MMSI999862” – “hasFlag” – “USA”

 “MMSI999862” – “hasOwner” – “Oil co.”

Figure 3: Triplet Mappings Results

Note: Please note that the example above was exclusively using text argument types for
simplification purpose. However, since fact arguments are strongly typed (their values are of a
specific type that is defined in the atom definition – Ex: text, numerical, ontology entity
reference, etc.), the generated triplets subjects and values will be strongly typed as well since their
value are based on fact argument values.

2.2.2 Facts to spatial features
Spatial features can be regenerated from facts since every spatial feature is ultimately referring to
a subject (an ontology instance extending the subject class of the subject ontology) having
geospatial attributes attached to it. However, a fact does not explicitly define which argument is
the subject and since we need this information to rebuild the spatial features and attach correctly
its attributes back together, we need another formalism better aligned to a subject-attribute-value
formalism. Therefore, the facts are first converted into system triplets to ease that reconstruction.
This also allows modeling the spatial feature data into any fact structure as long as the triplet

DRDC Valcartier CR 2012-004 5

mapping defines the proper attributes required for spatial feature conversion. This process is
explained in the previous section (Facts to system triplets).

Afterward, based on the subject referred in the facts, the corresponding spatial features could be
converted automatically based on system attributes such as:

 hasMotionTrajectory (http://ca.gc.rddc/ontology/attributes.owl#hasMotionTrajectory)

 hasContact (http://ca.gc.rddc/ontology/attributes.owl#hasContact)

 hasGeometry (http://ca.gc.rddc/ontology/attributes.owl#hasGeometry)

 IsA (http://ca.gc.rddc/ontology/attributes.owl#isA)

 has Altitude (http://ca.gc.rddc/ontology/attributes.owl#hasAltitude)

 hasLatitude (http://ca.gc.rddc/ontology/attributes.owl#hasLatitude)

 hasLongitude (http://ca.gc.rddc/ontology/attributes.owl#hasLongitude)

 hasSpeed (http://ca.gc.rddc/ontology/attributes.owl#hasSpeed)

 hasOrientation (http://ca.gc.rddc/ontology/attributes.owl#hasOrientation)

 hasTimestamp (http://ca.gc.rddc/ontology/attributes.owl#hasTimestamp)

 hasDestination (http://ca.gc.rddc/ontology/attributes.owl#hasDestination)

 hasEstimatedTimeOfArrival (http://ca.gc.rddc/ontology/attributes.owl#hasEstimatedTimeOfArrival)

 hasWidth (http://ca.gc.rddc/ontology/attributes.owl#hasWidth)

 hasMinimumSpeed (http://ca.gc.rddc/ontology/attributes.owl#hasMinimumSpeed)

 hasMaximumSpeed (http://ca.gc.rddc/ontology/attributes.owl#hasMaximumSpeed)
More precisely, the triplets to spatial feature converter perform the following steps to build a
spatial feature:

1. An empty spatial feature is created based on the subject URI to convert (the
subject URIs to convert are extracted by extracting all subjects from triplets
with an IS-A attribute (http://ca.gc.rddc/ontology/attributes.owl#isA) where the value is
equal to http://rddc.gc.ca/ISTIP/ontologies/Subjects.owl#SpatialFeature;

2. If a subject’s triplet containing the hasGeometry attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasGeometry) is found, its value is set as the
spatial feature geometry;

3. If a subject’s triplet containing the hasMinimumSpeed attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasMinimumSpeed) is found, its value is set as
the spatial feature minimal speed;

4. If a subject’s triplet containing the hasMaximumSpeed attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasMaximumSpeed) is found, its value is set as
the spatial feature maximal speed;

5. If a subject’s triplet containing the hasWidth attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasWidth) is found, its value is set as the
spatial feature width;

6. If a subject’s triplet containing the hasMotionTrajectory attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasMotionTrajectory) is found, it means that the
spatial feature is a spatiotemporal feature since it has motion trajectories.
Therefore, the triplet value is considered as a motion trajectory and the motion

6 DRDC Valcartier CR 2012-004

trajectory is then converted using the following sub-steps and added then to the
spatiotemporal feature. Please note that the triplet subject for these sub-steps is
the motion trajectory identifier found in the triplet value :

a. If a subject’s triplet containing the hasGeometry attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasGeometry) is found, its value is set
as the motion trajectory moving anchor;

b. If a subject’s triplet containing the hasEstimatedTimeOfArrival attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasEstimatedTimeOfArrival) is found, its
value is set as the motion trajectory estimated time of arrival;

c. If a subject’s triplet containing the hasWidth attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasWidth) is found, its value is set as
a motion trajectory custom attribute – This will be used in the case of a
Corridor spatial feature where the corridor is defined by a series of
points with a width;

d. If a subject’s triplet containing the hasDestination attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasDestination) is found, its value is
set as the motion trajectory destination;

e. If a subject’s triplet containing the hasContact attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasContact) is found, it means that the
triplet value is actually a motion trajectory contact. Therefore, the
contact is then converted using the following sub-steps and then added
to the motion trajectory. Please note that the triplet subject for these
sub-steps is the contact identifier found in the triplet value:

i. If a subject’s triplet containing the hasGeometry attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasGeometry) is found, its
value is set as the contact geometry;

1. If this attribute is not found, the service will try to find
triplet values for the attributes hasLongitude
(http://ca.gc.rddc/ontology/attributes.owl#hasLongitude),
hasLatitude
(http://ca.gc.rddc/ontology/attributes.owl#hasLatitude) and
optionally hasAltitude
(http://ca.gc.rddc/ontology/attributes.owl#hasAltitude). If these
values are found, a geospatial Point is created from
these values and added to the contact as the contact
geometry;

ii. If a subject’s triplet containing the hasSpeed attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasSpeed) is found, its value
is set as the contact reported speed;

iii. If a subject’s triplet containing the hasOrientation attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasOrientation) is found, its
value is set as the contact orientation;

iv. If a subject’s triplet containing the hasTimestamp attribute
(http://ca.gc.rddc/ontology/attributes.owl#hasTimestamp) is found, its
value is set as the contact report time;

v. Finally, if the contact is still missing its geometry or report
time, the contact is discarded since it will not be usable;

DRDC Valcartier CR 2012-004 7

7. All IS-A attributes (http://ca.gc.rddc/ontology/attributes.owl#isA) in the subject’s triplets
are added as spatial feature custom attributes. The rest of the attributes are not
added to the spatial feature since they will not be used by KIGAR analyses.

Therefore, atom definitions for input facts must define triplet mappings using the attributes above
in order to convert these facts into spatial features.

2.3 The “Know How”
The “Know How” is the apriori domain expert knowledge required by a reasoner to be able to
work properly. It basically indicates specifically to each reasoner how to handle facts received in
input to deduce new facts. Here is a list of the “Know How” required by each reasoner:

 DLR: Ontologies

 KIGAR: None required since the knowhow is static

 RBR: Rules

 CBR: Cases (Templates + corresponding solutions) and similarity measures

2.4 The parameters
The parameters allow the “fine-tuning” of each reasoner behavior. Here is a list of high level
parameters required by each reasoner:

 DLR: None

 KIGAR: A list of parameters defining which analyses will be run, which subjects
and objects will be processed and the variable values used within the analyses (ex:
proximity thresholds, time extrapolation factor, etc.)

 RBR: None

 CBR: Similarity thresholds

2.5 Reasoner outputs

2.5.1 Facts
Each reasoner outputs the facts it inferred but some of the reasoner will output predefined fact
types. Here is a list of the types of facts generated by each reasoner:

 DLR: For the scope of this project, the DLR output facts of type “SubjectType
(IsA)” which defines the ontological hierarchy of “subjects” mentioned in facts. It
also generates fact of type “Has Property” which defines an object property between
to individuals that has been inferred by the DLR.

 KIGAR: Generates predefined types of facts associated to each analysis. For
example, the proximity analysis will generate InProximity(A1, A2) facts.

 RBR: Generates facts defined by the knowhow rules’ conclusions.

 CBR: Generates facts as defined is cases’ solutions

8 DRDC Valcartier CR 2012-004

Since some facts generated are predefined, we can consider the definition of these facts as being
system atom definitions. Defining these definitions as system definitions makes it possible to
reuse their result in our rules and in the other reasoners.

2.5.2 Facts Justifications
Facts outputted by each of the reasoners have a justification attached to them. These justifications
are:

 The fact pedigree: it specifies which reasoner and/or analysis inferred that fact

 The fact dependencies: the fact dependencies specifies which facts have been used to
deduce the inferred fact (if it was possible to extract that information)

 Reasoners specific attributes found in the fact attributes:

 RBR:

 adds a “ruleId” fact attribute which specifies the id of the rule which
generated the fact.

 CBR:

 adds a “templateId” fact attribute which specifies the id of the template
which generated the fact.

 adds a “similarCaseWithSimilarityValue” fact attribute which specifies
the id of the similar cases followed by their similarity factor value.

 DLR:

 adds a “DLR justification” fact attribute which contains the Pellet
reasoner justifications that trigger the fact (only when the DLR parameter
“justifications” is activated).

2.6 Reasoner request context
Similarly to ISFAR, the client invoking either a specific reasoner or the MRI orchestration will
create a reasoning context and will receive a context identifier. This identifier will be used for
subsequent requests to modify the context, retrieve the current status of the process and also
retrieve inferred facts. This mechanism allows managing multiple inference contexts
simultaneously without interfering with each other. Indeed, this context can be seen as a specific
sandbox for each inference session.

2.7 Unit/Functional Testing Strategy
For each reasoner and for the orchestrator, a set of unit tests have been developed which runs on
the continuous integration periodically to ensure that the code is working properly and that there
is no regression occurring. Unit tests should be added each time:

 a new bug is found

 new functionalities are implemented

DRDC Valcartier CR 2012-004 9

 etc.
Moreover, for each reasoner and the orchestrator, a set of functional SoapUI tests have been
implemented to ensure that the code is working properly and to ensure that clients can use the
system without any issues. It also makes sure the interconnections between the systems
components are done correctly. These tests are also run on the continuous integration server
periodically to make sure there is no regression.

10 DRDC Valcartier CR 2012-004

3 Software Architecture

3.1 Technologies
The MRI services are based on the following technologies:

 JBoss AS 5.1: The application server hosting the web services and handling requests
and responses to and from the MRI web services

 EJB 3.0: The EJB technology is used to provide a simple framework for exposing
the reasoning services in a standard manner both through stateless beans (remote and
local) and also through SOAP web services. Moreover, each reasoner execution
queue is exploited through an EJB 3 message driven bean, which automatically
manage the simultaneous process execution by de-queuing messages from the
execution queue.

 EHCache: This library is used to cache many data used through the reasoning
lifecycle. Some of this information can be resource consuming, so a subset of this
data is kept in a memory cache to reuse it whenever possible. EHCache automatically
handle garbage collection to keep the cache size within a reasonable size.

 Kryo: This library is used to persist the reasoning context as serialized objects on the
file system. This library has been chosen for its high throughput performance.

Moreover, each reasoner is based on an open source reasoning engine:

 degree API: used for geospatial calculation within KIGAR

 JBoss Drools: used as the core rule-based reasoning engine within the RBR

 jColibri: used as the core case-based reasoning engine within the CBR

 Pellet: Used as the core ontological reasoning engine within the DLR
The MRI services are deployed on a Microsoft Windows Server 2003 virtual machine with 4
CPUs and 10 gigs of RAM allocated.

3.2 Standards
The MRI services are exposed through the following standard endpoints:

 SOAP Web service

 Java Stateless session bean exposed remotely through RMI

DRDC Valcartier CR 2012-004 11

4 Reasoning services

4.1 Common

4.1.1 Description
This section describes the general workflow and objects used within each individual reasoner.

4.1.2 Service data
Since all reasoner services implements the same interface, base service data objects are provided
in a common project.

4.1.2.1 Messages
Messages allow logging feedback messages about the execution of the reasoner. This mainly
allows the user to understand what happened during the processing and which errors occurred if
any.

4.1.2.2 Facts
Fact objects from the SFM services are used within the different reasoners.

4.1.2.3 Reasoning context
A base reasoning context is provided as the basis working memory for each reasoner. It mainly
contains the following aspects:

 The input facts

 Corresponding atom definitions for input facts

 The messages

 The reasoner parameters

 The reasoner knowhow

 The inferred facts
Specific reasoners may extend this base context as needed to add any objects required to keep a
consistent state between invocations.

4.1.3 Service dynamics

4.1.3.1 General use case
The following diagram depicts the general use case for a MRI reasoner service:

12 DRDC Valcartier CR 2012-004

 uc Activ ity Model

MRI

Client invoker

Create a reasoning
context

Add facts to context

Get context execution
status

Execute reasoning
context

Get reasoning results

Delete context

Figure 4 - General use case

At first, the client invoker (which could be an external application, another web service or even a
user using any web service client software) must create a reasoning context. This context can be
seen as the client sandbox. It contains all specific parameters, know how, facts and so on required
by the reasoner to work properly with the domain data. This way, the client can work with its data
concurrently with other clients without affecting them (or being affected by others).

Once the reasoning context has been created, the client will receive a context handle. This handle
will be used afterward to perform any action on the context, such as adding new facts to the
context or executing the context – the execution must be explicitly invoked to avoid executing the
context before the context fully ready.

Since the reasoning process may take a while, when a reasoning context is executed, the reasoned
will simply queue the request and immediately respond to the client. The client can then invoke
the reasoner to get the latest execution status. When the context is completed, the client can then

DRDC Valcartier CR 2012-004 13

invoke the reasoned to retrieve the reasoning results, containing basically the inferred facts and
optionally feedback messages.

The reasoning context will be available at any moment until the delete context operation is
invoked. This operation allows deleting everything associated with the context. Thus, it is
mandatory to invoke this method once the context is not needed anymore to avoid keeping old
contexts.

In the future, an automatic cleaning mechanism may be implemented to automatically delete old
reasoning context that have not been modified since a long time.

4.1.3.2 Create reasoning context
The following diagram depicts the main workflow involved when creating a new reasoning
context:

 act Create a reasoning context

Create a reasoning context

C
om

m
on

 re
as

on
in

g
se

rv
ic

e
la

ye
r

Build new context object
based on the prov ided
facts, atom definitions,

"know how" and
parameters

Serialize context
and sav e it

Return context
id

Validate the
context

Fail

S
pe

ci
fic

 re
as

on
er

 im
pl

em
en

ta
tio

n

Filter input
facts

Invalid context

[valid context]

Figure 5 - Create a reasoning context activity diagram

For the creation of a reasoning context, the input facts are first filtered out to keep only facts that
are relevant for the reasoner. The filtered facts, atom definitions, knowhow and parameters are
first assembled into a working context object. The resulting object is then validated. If the
validation succeed, the context is serialized, persisted and the context identifier is then returned.

4.1.3.3 Add facts to reasoning context
The following diagram depicts the main workflow involved when adding facts to an existing
reasoning context:

14 DRDC Valcartier CR 2012-004

 act Add facts to context

Add facts to context

C
om

m
on

 r
ea

so
ni

ng
 s

er
vi

ce
 la

ye
r

Load context Add facts to
context

Merge new atom
definitions with context

atom definitions

Set context status
to NEW

S
pe

ci
fic

 r
ea

so
ne

r i
m

pl
em

en
ta

tio
n

Filter newly added
input facts

[context not executing]

[Context currently executing]

Figure 6 - Add facts to context activity diagram

When adding new facts to a context, the reasoned first loads the context and unserialize it. Then,
the facts are filtered and added to the context and identified as new facts to make sure only the
facts that have not been processed yet will be added to the specific reasoner engine. Then, if atom
definitions have been provided with the new facts, they are added to the existing atom definitions
in the context.

Finally, if the context is currently being executed, the status is changed to NEW to identify that
there are new facts that needs to be processed afterward.

4.1.3.4 Execute reasoning context
The following diagram depicts the main workflow involved when executing a reasoning context:

DRDC Valcartier CR 2012-004 15

 act Execute reasoning context

Execute reasoning context

Co
m

m
on

 re
as

on
in

g
se

rv
ic

e
la

ye
r

M
es

sa
ge

 d
ri

ve
n

ex
ec

ut
or

«datastore»
Execution Queue

Publish a JMS
message with the

context ID

Receiv e JMS
mesage

asynchronously
and extract the

context ID

Sp
ec

ifi
c

re
as

on
er

 im
pl

em
en

ta
tio

n
Load reasoning

context

Update context
status to
RUNNING

Execute reasoning
based on prov ided

context

Update context status
to ERROR and add

error message

Update context status
to COMPLETED and

sav e context w ith new
inferred facts

[An exception occurred]

[No exception occurred][New facts to process]

[No new facts to process]

Figure 7 - Execute reasoning context activity diagram

Since the reasoning execution can be pretty resource consuming, an asynchronous execution is
implemented to limit the number of simultaneous process execution through a JMS queue. This
also allows continuing serving execution requests by clients even if the limit is reached.

Therefore, when the execute method of the service is invoked, only a JMS message is published
and the client request ends right there.

Asynchronously, messages published in the JMS execution queue are then de-queued. At this
time, the context is loaded based on the context id provided in the JMS message. The context
status is set to RUNNING and the specific reasoner implementation is invoked. Please refer to the
next sections for more information about the specific workflow.

Finally, if an exception occurred, the context status is set to ERROR and an error message is
added to the context. Otherwise, the context status is set to COMPLETED and is saved with the
new inferred facts.

4.1.3.5 Get context execution status
The following diagram depicts the main workflow involved when retrieving the context execution
status:

16 DRDC Valcartier CR 2012-004

 act Get context execution status

Get context execution status

C
om

m
on

 r
ea

so
ni

ng
 s

er
vi

ce
 la

ye
r

Load context Return context
status

Figure 8 - Get context execution status activity diagram

This action simply loads the context based on the provided context id and return the context status
saved within the context.

4.1.3.6 Get reasoning results
The following diagram depicts the main workflow involved when retrieving the reasoning results:

 act Get reasoning results

Get reasoning results

C
om

m
on

 r
ea

so
ni

ng
 s

er
vi

ce
 la

ye
r

Load context Return inferred
facts and
messages

Figure 9 - Get reasoning results activity diagram

This action simply loads the context based on the provided context id and returns the inferred
facts that have been added by the specific reasoner implementation and the messages saved
within the context.

4.1.3.7 Delete reasoning context
The following diagram depicts the main workflow involved when deleting a reasoning context:

DRDC Valcartier CR 2012-004 17

 act Delete context

Delete context

C
om

m
on

 re
as

on
in

g
se

rv
ic

e
la

ye
r

Delete context
file

Remove context
from cache if

av ailable

Figure 10 - Delete context activity diagram

This action simply deletes the serialized context file. It also removes the context from the
memory cache if available to make sure the context is not available anymore and to free memory
occupied by this context.

4.2 Kinematic and Geospatial Analysis Reasoner (KIGAR)

4.2.1 Description
The Kinematic and Geospatial Analysis Reasoner is a module containing 30 geospatial analyses
(or geospatial functions) that can be grouped in two main categories: location and motion
analyses.

Please refer to the document Kinematic and Geospatial Analysis Module (KIGAM) Analysis Fact
Sheets for more information on each analysis.

4.2.2 Service data
The required data for KIGAR is quite simple. It basically requires facts that will be used to build
corresponding spatial (or spatio-temporal) features internally and parameters to determine which
analysis to execute with which features and also to override default analysis parameter values.

4.2.3 Service dynamics
The general service dynamic of the KIGAR service is common to other reasoners. Please refer to
the common Service dynamics section for more information. Only the internal execution
mechanism differs from other reasoners.

The following diagram depicts the main workflow of the Kinematic and Geospatial Analysis
Reasoner specific execution:

18 DRDC Valcartier CR 2012-004

Figure 11: KIGAR Workflow

1. The new facts are first converted into system triplets, which are added to the
previously transformed triplets. This intermediate transformation allows easing
facts to spatial features transformation by providing a low level set of
information with known attributes and more importantly identified subjects.
Information modeled in any atom definition form will end up in the same
triplet representation. Therefore, any atom definitions defined by knowledge
engineers using known system attributes1 in their triplet mappings will be
usable in KIGAR.

Please refer to the Facts to system triplets section for more information about
how triplet mappings and how facts are converted into triplets using this
mapping.

2. Once the triplets have been converted, the provided analyses parameters are then
used to extract KIGAR working sets. A working set is basically a list of
subjects (or subjects/objects pairs), an analysis type to execute and the
parameter values to apply for these subjects. At the same time, the list of
subjects that have been added or updated by new input facts is also populated.
This list determines afterward which combination to reprocess within working
sets to reprocess only subjects (or objects) that have been updated/added.

a. Since KIGAR analyze spatial/spatiotemporal features that must be of
specific kinds2 while triplets’ subjects can be of any kind, triplets’
subjects must first be analyzed to determine if they are of a compatible

1 See Appendix A for more details concerning the known system attributes
2 Refer to KIGAR Analyses appendix in Multi-Reasoner Inference SIDD document for the detailed list of
subjects/objects types required for each KIGAR analysis.

DRDC Valcartier CR 2012-004 19

kind. To do so, the service loops through the subject’s triplets to find a
triplet having the system attribute IS-A
(“http://ca.gc.rddc/ontology/attributes.owl#isA”) and the required
ontology class reference as the triplet value3. Therefore, the triplets
must explicitly contain such attribute values to be usable within
KIGAR.

b. Since the new (or updated) subjects coming from the newly added facts
triplets may need to be compared with subjects that have been
processed before (at context creation for example), the analysis
working sets (all pairs of subject/objects to analyze for a given
analysis) are generated using all subjects available in the reasoning
context. Once the working sets are generated, only subject/object pairs
containing a new (or updated) subject are executed.

3. The updated spatial features are removed from the cache to make sure they will
be generated with the new data.

4. Afterward, new and updated spatial features are generated based on the system
triplets. Please refer to the Facts to spatial features section for more
information on how this conversion is achieved.

5. Finally, each subject (or subject/object pair) is executed on the selected analysis
for each working set, potentially generating new inferred facts4, which would
then be added to the context.

4.3 Rule-Based Reasoner (RBR)

4.3.1 Description
The Rule-Based Reasoner will be based on the MITS model and inference engine. To integrate
these into the MRI-RBR, the following steps will be required:

1. Extract the “MITS inference Rules to Drools Rules Converter”

2. Implement an RBR knowhow based on the MITS inference rules model

3. Adapt the converter to the SFM model and the RBR knowhow

4. Wrap the converter and the Drools engine in a Reasoner respecting the common
reasoning interface

4.3.2 Service data
The required data for the Rule-Based Reasoner is quite simple. It simply requires inference rules
(based on the MITS model) and input facts. The rules specify exactly which facts and arguments
value are required to create a new fact and also defines the signature and content of the fact that

3 Here, the class reference can either be of type Ontology entity reference or as a literal text corresponding
to the class URI.
4 Refer to KIGAR Analyses appendix in Multi-Reasoner Inference SIDD document for the detailed list of
possible inferred facts that each KIGAR analysis can generate.

20 DRDC Valcartier CR 2012-004

will be generated at the output. There is no system atom definitions used by the RBR; all facts
generated are specified by the client through the reasoner knowhow.

4.3.3 Service dynamics
The general service dynamic of the RBR service is common to other reasoners. Please refer to the
common Service dynamics section for more information. Only the internal execution mechanism
differs from other reasoners.

The Rule-Based Reasoner will execute the following workflow to infer new facts:

Figure 12: Rule-Based Reasoner Workflow

1. At first, if the inference context is new, inference rules specified in the knowhow
are sent to the “Rules to Drools format Converter”. Otherwise, the Drools
stateful session will simply be restored and the workflow will continue to the
step 5.

2. The rules are then converted to a format known by the Drools engine (DRL)

3. The rules are compiled by the rules compiler

4. Then, a Drools stateful session is created based on the compiled rules

5. The new input facts are converted into a light fact representation to ease their
usability in the rules within Drools.

6. These converted “light facts” are then added to the Drools stateful session.

DRDC Valcartier CR 2012-004 21

7. At this moment, the Drools session is now ready and executed to infer new facts
as rules premises are matched.

8. Finally, inferred light facts are converted back into inferred facts based on the
SFM model.

4.4 Case-Based Reasoner (CBR)

4.4.1 Description
The case-based reasoner service mainly based on jColibri library and also inspired on the CBR
proof of concept done in a previous contract by OODA technologies. The previous CBR was
using predefined similarity measures and situation models which were linked together through
existing cases. These measures and models were implemented as hard-coded classes extending a
generic interface. Therefore, these classes had to be programmed for each domain that the system
had to work with. Since the new reasoning modules need to be fully domain agnostic, a generic
and configurable class model must be implemented.

Some modifications have been required to be able to integrate it with the current reasoning
common interface, such as:

 Create a generic (configurable) similarity measure mechanism

 Change legacy CBR situation model to a fact based situation model

 Create a fact to situations aggregator (explained below) to create situations that can
be compared with the case base

 Create a fact based situation model to a flat description model converter since the
latest version of jColibri available only supports flat description classes (no support
for lists, maps and other collection based fields).

4.4.2 Service data
The first step required to exploit the CBR service is to define its knowhow. The knowhow for the
CBR is the case base. The case base is composed of:

 A set of situation templates

 Global similarity measure + Local Similarity Measures

 Typical cases

22 DRDC Valcartier CR 2012-004

Figure 13: Case-Based Reasoner Data

The CBR will also require input facts as an input and parameters to define the similarity measures
thresholds. These thresholds will be passed as parameters to the CBR.

4.4.2.1 Situation templates
A Situation template defines how the data must be aggregated to represent a situation. In the
proof of concept CBR, this data was defined by a domain class and its members. Now, in the new
CBR, since we are processing facts, a situation is represented by a list of atom definitions which
are regrouped together with the help of situation join constraints. Situation join constraints define
which argument of a fact must be equal to another fact argument so that two facts can be grouped
together in single situation. For example:

DRDC Valcartier CR 2012-004 23

Figure 14: Case-Based Reasoner Join Constraint

The join constraints are defined by an atom definition index and an argument index.

4.4.2.2 Global similarity measure + Local Similarity Measures
The similarity measures define how a situation (facts) will be compared to the cases from the case
base. There are two types of similarity measures:

1. Local similarity measures

Local similarity measures goal is to locally compare arguments of a situation. In
the case of the MRI-CBR, the local similarity measure compares an argument of
a situation with an argument of a case specifically. A local similarity measure
should always return a value between 0 and 1 where 0 is the least similar and 1
the most similar. The different local similarity measures currently implemented
in the system are:

a. Equal
b. EqualsStringIgnoreCase
c. InrecaLessIsBetter
d. InrecaMoreIsBetter
e. Interval
f. MaxString
g. Threshold
h. ContextEqual
i. ContextLessIsBetter
j. ContextMoreIsBetter
k. ContextInterval

For more details about these local similarity measures, please consult the MRI
SIDD document.

2. Global similarity measures

Global similarity measures goal is to calculate the global similarity measure of
a situation compared to a case. In fact, it defines how local similarity measures
must be compiled. For example, the “Average” global similarity measure adds
all local similarity measure and divides their total by the number of local
similarity measures which gives an average of the local similarity measures

24 DRDC Valcartier CR 2012-004

values. The global similarity measures currently implemented in the system
are:

a. Average
b. Euclidean
c. Frequency

Here is an example of similarity measures definitions:

Figure 15: Similarity Measures

 As specified, the global similarity measure used is “Average”, and we defined some local
similarity measures for each argument. Some arguments are not compared (Those with the “-“
sign), some use the “Equal” local similarity measure and the last one use the “Interval” similarity
measure. These measures will be used to compare the previously defined situations with the
typical cases attached to the template.

4.4.2.3 Typical cases
The typical cases are the cases that have already occurred and for which we already associated a
solution for. In the new CBR, cases are represented as a list of facts which respects the template.

Figure 16: Cases

DRDC Valcartier CR 2012-004 25

4.4.2.4 Solution generation rule
Cases of a case-based reasoner generally define a solution for each case description. However,
due to the nature of the facts, this could hardly be achieved automatically without involving
human intervention. In order to be able to automatically generate the conclusion for descriptions
similar to the provided cases, a list of facts and mapping similar to RBR rule conclusions is rather
used. This mapping is used to fill the solution fact(s) arguments with predefined values and/or
with values taken from the situation description. Also, in order to generate conclusion
automatically, the system receives a similarity threshold as an input and each time a situation
similarity to a case is higher than this threshold, a conclusion will be generated from the similar
situation.

4.4.3 Service dynamics
This section explains the workflow accomplished during the CBR specific processing:

Figure 17: Case-Based Reasoner Processing Workflow

1. Input facts and situation templates are passed to the “Facts to Situations
Aggregator”

2. The “Facts to Situations Aggregator” takes each templates and loops through the
facts to create a new situation each time a set of facts matches a template. This

26 DRDC Valcartier CR 2012-004

allows splitting input facts into as many situations as possible to be able to
compare them “individually” to each situation description of the case base.
When atom definitions and join conditions are respected, we match the facts
together into a situation (Situation 1). When some facts respects the atom
definition condition but does not have all join conditions matched, we match
facts matching the join condition and leave blank the atom definitions where no
matching facts could be found (Situation 2&3).

Figure 18: Fact to Situations Templates

DRDC Valcartier CR 2012-004 27

3. Moreover, due to the jColibri implementation limitations (the core reasoner
doesn’t support collections in situation descriptions), the list of facts
constituting a situation has to be “flattened” into a single description object
containing as many fields as required to store each fact argument value.
Therefore, the “Facts to Situations Aggregator” also perform this conversion
prior to sending the situations to the “Situations Comparator”.

4. The created situations are passed to the “Situations Comparator”

5. The “Situations Comparator” uses the similarity measures associated to the
templates that generated each situation to evaluate the similarity between these
situations and the typical cases of the case base and assigns a similarity
measure value to these comparisons.

Figure 19: Situation and Cases Similarity Processing

6. Based on the similarity threshold values and the conclusion mappings specified
in the parameters, the “Solutions generator” will create new facts following
these steps:

a. The local similarity measures are computed, and then the global
similarity measure outputs a similarity measure value.

b. Then the situation vs. case similarity measure is compared to the
similarity threshold.

c. For each similar situation/case with a similarity higher than the threshold,
a conclusion is generated.

28 DRDC Valcartier CR 2012-004

d. The conclusions are generated based on the argument references values
specified (Note that arguments of the conclusion can also be
literals/hard-coded-values). The conclusion values are extracted from
the situation (not the case) and copied to the conclusion.

Figure 20: Case-Based Reasoner Output

7. The conclusions are returned to the caller! CBR reasoning is done!

4.5 Descriptive Logic Reasoner (DLR)

4.5.1 Description
In the scope of this project, the descriptive logic reasoner goal is able to do generalization of the
knowledge domain concepts based on an ontology representation of the domain and to infer new
relations between individuals.

Based on the properties of an individual, it can infer new relations between this individual and
other classes of the ontology. These relations can then be extracted as facts and be used to deduce
new things. To do so, the DLR uses the Pellet engine to which it passes an ontology describing
the domain. It then inserts new individual with their properties and based on their properties, the
Pellet engine can then classify these individuals within the ontology and deduce new
generalization relations.

DRDC Valcartier CR 2012-004 29

4.5.2 Service data
To work properly, the Descriptive Logic Reasoner requires:

1. An ontology representing the knowledge domain

2. (Optionally) Triplet URI mappings: The triplet URI mapping can be used to
“translate” system triplet URIs references into a domain specific URIs

3. Input facts

4.5.2.1 URI Mappings
The URI mappings defines the mapping between a system source URI and a domain specific
URI. These mapping are used in the system to domain specific triplet conversion which occurs
right before the owl inference round.

At that moment, any URI specified in a triplet (in the object, attribute or value field) that matches
a source URI specified in a mapping is converted to the matching target URI.

They can also be used after the inference round if the user configured the service to convert
domain specific URIs back to system URIs as specified in the DLR service parameters.

4.5.2.2 Ontology References
To improve the system flexibility and usability, the ontology passed to the Descriptive Logic
Reasoner can be referenced under three (3) different formats. The ontology content can be:

• Passed directly as a byte array

• Streamed from an URL

• Fetched from the Situational Ontology Management service by passing the
ontology URI

4.5.3 Service dynamics
The general service dynamic of the DLR service is common to other reasoners. Please refer to the
common Service dynamics section for more information. Only the internal execution mechanism
differs from other reasoners.

The Descriptive Logic Reasoner specific execution follows the following workflow:

30 DRDC Valcartier CR 2012-004

Figure 21: Descriptive Logic Reasoner Workflow

1. The facts are converted into system triplets as defined by the triplet mapping
attached to their atom definition. Please refer to the Facts to system triplets
section for more information on how triplet mappings are defined and how
facts are then converted into triplets.

2. The system triplets can then optionally be converted to domain specific triplets as
specified in the knowhow

DRDC Valcartier CR 2012-004 31

Figure 22: URI Mappings

• This step allows using predefined system triplets and “contextualizing”
them to the ontology of interest without having to modify it.

• To do so we iterate through the triplets and compare the subjects,
attributes and values to see if they match one of the URI mapping. If
they do, the matching fields are converted to the new URI.

• For the subject, attribute and value fields, the value can be a String or an
OntologyEntity which contains an ontologyUri field defining the entity
or object property URI. If the value is a String it is directly converted,
if it is an OntologyEntity only the ontologyUri field is converted.

• Please note that any triplet component (subject, attribute or value) that is
not matching an URI mapping will be left “as-is”. Therefore, if the
ontology exactly matches the system triplets, there is no need to
provide mapping for them.

3. The ontology is then passed to the Pellet engine and the converted triplets are
added to the ontology by performing the following steps for each triplet:

• If the triplet subject is not typed as an ontology entity reference, the
triplet is discarded.

• If the subject is defined as a class, the corresponding class is searched in
the ontology. If the ontology doesn’t contain a class having the same
URI, a new class will be created and added at the root of the ontology.
Therefore, its only parent class will be owl:Thing.

i. If the triplet attribute is IS-A
(http://ca.gc.rddc/ontology/attributes.owl#isA) and the triplet value is

32 DRDC Valcartier CR 2012-004

of type ontology entity reference, the value is loaded as
another subject (like the current triplet subject). If it turns out
to be a class (either existing or new one), the sub-class relation
is created between our initial subject class and the latter class.

ii. Otherwise (the triplet attribute is not IS-A), the triplet attribute
is simply discarded.

• If the subject is defined as an individual reference, the corresponding
individual is searched in the ontology. If the ontology doesn’t contain
an individual having the same URI, a new individual is created for this
URI and added to the root of the ontology. Therefore, the individual
will only be of type owl:Thing for the moment.

i. If the triplet value is of type ontology class reference and the
triplet attribute is IS-A (http://ca.gc.rddc/ontology/attributes.owl#isA),
the value is loaded as another subject (like the current triplet
subject). Then, an assertion is added to the ontology to set our
subject individual as a direct child of the triplet value.

ii. If the triplet value is of type ontology class reference, we try to
find an object property having the same URI than the triplet
attribute.

1. If a matching object property definition is found, a new
object property is created between the subject
individual and the value individual;

2. Otherwise, we don’t create a new object property
definition since it will not help realizing the individual.
The triplet is simply discarded.

iii. Otherwise, we try to find a datatype property having the same
URI than the triplet attribute.

1. If a matching datatype property definition is found, a
new datatype property is created between the subject
individual and the triplet literal value;

2. Otherwise, we don’t create a new datatype property
definition since it will not help realizing the individual.
The triplet is simply discarded.

4. The Pellet engine generalizes the ontology related instances and classes and
infers the instance generalizations depending on their properties.

DRDC Valcartier CR 2012-004 33

Figure 23: Triplets Insertion

• At first, the new entities have been added directly under OWL:Thing and
existing ones have been reused to create initial object properties,
datatype properties and sub-class relations that are already known as
mentioned in the previous step;

Figure 24: Pellet categorization

• Then, based on these properties and class definitions, Pellet will realize
individuals automatically. However, in order to do so, the ontology
classes must be defined using property restrictions to maximize
individual realization.

5. The inferred generalizations and new properties (datatype or object) are then
converted to facts.

6. Facts URIs can optionally be converted back to system URIs.

34 DRDC Valcartier CR 2012-004

4.6 Multi-Reasoners Orchestrator

4.6.1 Description
The Multi-Reasoner orchestrator is a wrapper over the different reasoners of the MRI system. In
facts, its goal is to route the “KnowHows”, parameters and facts it receives in input to the right
reasoners and invoke these reasoners. Then, it collects the facts inferred by those reasoners and
passes them to the other reasoners to achieve a multi-reasoner inference capability. All facts
inferred by the reasoners are kept within the MRI context. Once the reasoners are not inferring
any more facts, the MRI status is set to “Completed” and the results can then be fetched by the
caller.

4.6.2 Service data
To work properly, the MRI Orchestrator requires:

1. A list of reasoner configurations (A pair of KnowHow and Parameters)

2. Input facts

4.6.2.1 Reasoner configuration
The list of reasoner configuration required by the orchestrator is in fact a list of what is required
by each reasoner separately, i.e. the “Know How” of a reasoner and its parameters.

Consult each reasoner section to see what is required to call reasoners from the MRI.

4.6.3 Service dynamics
The general service dynamic of the MRI orchestrator service is common to other individual
reasoners. Please refer to the common Service dynamics section for more information. Only the
internal execution mechanism differs from other reasoners.

The MRI Orchestrator specific execution follows the following workflow:

DRDC Valcartier CR 2012-004 35

Figure 25: MRI Orchestrator Processing Workflow

1. The client calls the MRI Orchestrator and passes a list of “KnowHows” and “Parameters”
of the reasoners he wants to infer with.

2. The orchestrator then invokes each reasoners separately based on the received
“KnowHows”.

3. Once a reasoner has finished inferring, it sends the results back to the Orchestrator.

4. The orchestrator then forwards these new facts to the other reasoners to see if they can
deduce new facts from these inferred facts.

5. The steps 2 to 4 are repeated until each reasoner cannot infer new facts.

6. Then the results can be fetched by the client from the orchestrator which holds a copy of
all inferred facts.

36 DRDC Valcartier CR 2012-004

5 References

[1] Martineau, Étienne. Iterative sub-setting. Québec : DRDC Valcartier, 2010.

[2] Dorion, Éric; Bergeron Guyard, Alexandre. Measures of Similarity for Command and
Control Situation Analysis.Québec: DRDC Valcartier, 2011.

[3] Roy, Jean. Automated Reasoning Services – High-Level Concepts. Québec: DRDC
Valcartier, 2011

[4] Roy, Jean. Kinematics and Geospatial Analysis Reasoning (KIGAR) – High-Level Concepts.
Québec: DRDC Valcartier, 2011

[5] Allard, Yannick. Kinematic and Geospatial Analysis Module (KIGAM) Analysis Fact
Sheets. Montréal: OODA Technologies Inc. (for DRDC Valcartier), 2011.

DRDC Valcartier CR 2012-004 37

Annex A System Attributes

The following table lists the different system attributes available to use in the triplets mapping
attributes and which will be used in the facts to spatial feature conversion.

Table 1 : System Attributes

Attribute5 Unique Identifier

HAS_MOTION_TRAJECTORY
Used to attach a motion trajectory to
a subject.

http://ca.gc.rddc/ontology/attributes.owl#hasMotionTrajectory

HAS_CONTACT
Used to attach a contact to a motion
trajectory.

http://ca.gc.rddc/ontology/attributes.owl#hasContact

HAS_GEOMETRY
Used to attach a geometry to a
subject, a motion trajectory or a
contact.

http://ca.gc.rddc/ontology/attributes.owl#hasGeometry

HAS_ALTITUDE
Used to specify altitude of a contact. http://ca.gc.rddc/ontology/attributes.owl#hasAltitude

HAS_LATITUDE
Used to specify latitude of a contact. http://ca.gc.rddc/ontology/attributes.owl#hasLatitude

HAS_LONGITUDE
Used to specify longitude of a
contact.

http://ca.gc.rddc/ontology/attributes.owl#hasLongitude

HAS_SPEED
Used to specify speed of a contact. http://ca.gc.rddc/ontology/attributes.owl#hasSpeed

HAS_ORIENTATION
Used to specify orientation of a
contact.

http://ca.gc.rddc/ontology/attributes.owl#hasOrientation

HAS_TIMESTAMP
Used to specify timestamp of a
contact.

http://ca.gc.rddc/ontology/attributes.owl#hasTimestamp

HAS_DESTINATION
Used to specify destination of a
motion trajectory.

http://ca.gc.rddc/ontology/attributes.owl#hasDestination

HAS_ETA
Used to specify estimated time of
arrival of a motion trajectory.

http://ca.gc.rddc/ontology/attributes.owl#hasEstimatedTimeOfArrival

HAS_WIDTH
Used to specify width of a motion
trajectory.

http://ca.gc.rddc/ontology/attributes.owl#hasWidth

HAS_MINIMUM_SPEED
Used to specify minimum speed of a
zone.

http://ca.gc.rddc/ontology/attributes.owl#hasMinimumSpeed

HAS_MAXIMUM_SPEED
Used to specify maximum speed of a
zone

http://ca.gc.rddc/ontology/attributes.owl#hasMaximumSpeed

5 As defined in the enum class “ca.gc.rddc.istip.sfm.data.enums.SystemAttribute”

38 DRDC Valcartier CR 2012-004

The following table lists the signatures that must have triplet mapping using the known system
attributes.

Attribute Subject Attribute Value

IS_A
Used to specify that a subject is a
subclass of an ontology class.

The subject id
(Any ontology
instance URI)

http://ca.gc.rddc/ontology/attributes.o
wl#isA

The subject type uri (URI of a class in
any ontology)

HAS_MOTION_TRAJECTORY
Used to attach a motion trajectory to
a subject.

The subject id
(Any ontology
instance URI)

http://ca.gc.rddc/ontology/attributes.o
wl#hasMotionTrajectory The motion trajectory id (Long)

HAS_CONTACT
Used to attach a contact to a motion
trajectory.

The motion
trajectory id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasContact The contact id (Long)

HAS_GEOMETRY
Used to attach a geometry to a
subject, a motion trajectory or a
contact.

The subject id
(Any ontology
instance URI)
or
Motion
Trajectory Id
(Long)
or
 Contact Id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasGeometry

The geometry

(WKT String or a Geometry Object
like a JTS geometry or ISTIP
geometry))

HAS_ALTITUDE
Used to specify altitude of a contact.

The contact id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasAltitude The altitude (Double)

HAS_LATITUDE
Used to specify latitude of a contact.

The contact id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasLatitude The latitude (Double)

HAS_LONGITUDE
Used to specify longitude of a
contact.

The contact id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasLongitude The longitude (Double)

HAS_SPEED
Used to specify speed of a contact.

The contact id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasSpeed The speed (Double)

HAS_ORIENTATION
Used to specify orientation of a
contact.

The contact id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasOrientation The orientation (Double)

HAS_TIMESTAMP
Used to specify timestamp of a
contact.

The contact id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasTimestamp The timestamp (Date)

HAS_DESTINATION
Used to specify destination of a
motion trajectory.

The Motion
Trajectory Id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasDestination The destination (String)

HAS_ETA
Used to specify estimated time of
arrival of a motion trajectory.

The Motion
Trajectory Id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasEstimatedTimeOfArrival

The estimated time of arrival
(Long, Date or String)

HAS_WIDTH
Used to specify width of a motion
trajectory.

The subject id
(Any ontology
instance URI)
or
The Motion
Trajectory Id
(Long)

http://ca.gc.rddc/ontology/attributes.o
wl#hasWidth

The width of the subject or motion
trajectory
(Double)

HAS_MINIMUM_SPEED
Used to specify minimum speed of a
subject (zone).

The subject id
(Any ontology
instance URI)

http://ca.gc.rddc/ontology/attributes.o
wl#hasMinimumSpeed The minimum speed (Double)

DRDC Valcartier CR 2012-004 39

HAS_MAXIMUM_SPEED
Used to specify maximum speed of a
subject (zone)

The subject id
(Any ontology
instance URI)

http://ca.gc.rddc/ontology/attributes.o
wl#hasMaximumSpeed The maximum speed (Double)

40 DRDC Valcartier CR 2012-004

This page intentionally left blank.

DRDC Valcartier CR 2012-004 41

List of symbols/abbreviations/acronyms/initialisms

CBR Case-Based Reasoner

DLR Descriptive Logic Reasoner

ISTIP Intelligence Science & Technology Integration Platform

KIGAR KInematic and Geospatial Analysis Reasoner

MITS Multi-Intelligence Tools Suite

MRI Multi-Reasoners Inference

RBR Rule-Based Reasoner

SFM Situational Facts Management

SSO Single Signed-On

VOiiLA Visionary Overarching Interaction Interface Layer for the Analyst

42 DRDC Valcartier CR 2012-004

This page intentionally left blank.

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Fujitsu Consulting (Canada) Inc.
2000 Boulevard Lebourgneuf
Bureau 300
Québec (Québec)
G2K 0E8

 2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED
(NON-CONTROLLED GOODS)
DMC A
REVIEW: JUNE 2010

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Multi-Reasoner Inference: Software Architecture Document

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Morin-Brassard G.; Giroux V.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

January 2012

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

54

 6b. NO. OF REFS
(Total cited in document.)

5
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 w7701-10-4064

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

MRI-242-0449

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

DRDC Valcartier CR 2012-004

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

To support its research activities in the intelligence domain, the Intelligence and Information
(I&I) Section at DRDC Valcartier is developing the Intelligence Science & Technology
Platform (ISTIP) as a major component of its R&D infrastructures. To improve the reasoning
capabilities of the platform, the mandate of this contract is to produce a Multi-Reasoner
Inference (MRI) capability based on the Multi-Intelligence Tool Suite (MITS) and the ISTIP
software components previously developed by the I&I Section. Five main different services
have been developed containing four individual reasoners and one multi-reasoner orchestrator.
The reasoners that have been created are a Case-Based Reasoner (CBR), a Rule-Based Reasoner
(RBR), a Descriptive-Logic Reasoner (DLR) and a KInematics and Geospatial Analysis
Reasoner (KIGAR) which is based on the KIGAM module of the Inference of Situational Facts
through Automated Reasoning (ISFAR) tool. Through the use of a common reasoning
framework, these reasonners can now leverage their reasoning capabilities by sharing their
strength to other reasonners and achieve an amazing synergy. This document describes the
Software Architecture of the MRI.

Afin de supporter ces activités de recherche dans le domaine du renseignement, la Section du
Renseignement et Information de RDDC Valcartier développe la Plate-forme de Science et
Technologie du Renseignement (ISTIP) comme un composant majeur de ses infrastructures de
R&D. Afin d’améliorer les aptitudes de raisonnement de la plate-forme, le mandat de ce contrat
est de créer un outil d’inférence Multi-Raisonneur (MRI) basé sur la « Multi-Intelligence Tool
Suite » (MITS) et sur les composants logiciels déjà implémentés par la section I&I. Cinq
différents services ont été développés comprenant quatre raisonneurs individuels et un
orchestrateur multi-raisonneur. Les raisonneurs qui ont été créés sont un raisonneur par cas
(CBR), un raisonneur par règles (RBR), un raisonneur ontologique (DLR) et un raisonneur
d’analyse cinématique et géo-spatiale (KIGAR) basé sur le module KIGAM de l’outil
d’Inférence Automatisée de Faits Situationnels (ISFAR). Grâce à l'utilisation d'un cadre de
raisonnement commun, ces raisonneurs peuvent désormais exploiter leurs capacités de
raisonnement en partageant leurs forces à d'autres raisonneurs et parvenir à une synergie
épatante. Ce document décrit l’Architecture Logicielle du MRI.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Reasoner, Inference

www.ddrdc rddc.ggc.ca

