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Abstract …….. 
Neck pain is a growing concern among CH-146 Griffon aircrew. A simple, yet practical on-body 
elastomer balanced helmet system is provided as one of several feasible near-term solutions to 
alleviate the neck pain problem. 
Following a rapid work domain assessment of the operational environment of CH-146 Griffon 
aircrew and an ergonomic hazard screen, the research team identified that sustained static 
postures (pilots) and extreme awkward postures (flight engineer) were primary risks. Moreover, 
the level of risk increases considerably with the additional head-borne mass of the night vision 
goggles system (NVGs). The addition of the NVGs increases the total mass on the head, adding 
more compressive load on the neck and requiring more work from the neck muscles in order to 
control and stabilize the head.  Additionally, the NVGs alters the balance of forces acting about 
the head and neck joint (atlanto-occipital joint), requiring the small upper neck muscles to work 
even harder. The ideal solution entails a combination of redesigning the cockpit, cabin and helmet 
system. However, in the near-term the on-body elastomer-balanced helmet system provides an 
interim improvement. This counter measure provides a balancing force through the elastomer, 
off-loading the work from the neck muscles. In addition the total head-borne load is also reduced 
compared to the current weight based counter balancing method.  
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Résumé …..... 
Les douleurs au cou sont une préoccupation de plus en plus courante chez le personnel navigant 
des CH-146 Griffon. Un système de casque ergonomique équilibré avec un élastomère, simple 
mais pratique, est l’une des solutions réalisables à court terme qui sont proposées pour atténuer le 
problème des douleurs au cou. 
À la suite d’une évaluation rapide du domaine de travail portant sur l’environnement opérationnel 
de l’équipage du CH-146 Griffon et d’un examen initial des risques ergonomiques, l’équipe de 
recherche a établi que les positions statiques prolongées (pilotes) et les positions contraignantes 
extrêmes (mécaniciens de bord) constituent les principaux risques. De plus, le degré de risque 
augmente considérablement en raison du poids qu’ajoute au casque le système de lunettes de 
vision nocturne (NVG). L’ajout des NVG augmente la masse totale qui est supportée par la tête, 
ce qui accroît la charge de compression sur le cou et exige un effort supplémentaire de la part des 
muscles du cou pour contrôler et stabiliser la tête. Qui plus est, les NVG modifient l’équilibre des  
forces au niveau de l’articulation entre la tête et le cou (articulation occipitoatloïdienne), ce qui 
entraîne une sollicitation accrue des petits muscles du haut du cou. Idéalement, il faudrait revoir 
la conception du poste de pilotage, de la cabine et du système de casque. Cependant, à court 
terme, le système de casque ergonomique équilibré avec un élastomère offre une amélioration 
provisoire. Cette mesure crée une force compensatrice grâce à l’élastomère, réduisant ainsi le 
travail requis par les muscles cervicaux. En outre, la charge totale sur la tête est réduite par 
rapport à la méthode actuelle de contre-balancement par le poids. 
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Executive summary  

Near-Term Ideas to Address Aircrew Helmet Systems-Induced 
Neck Pain: Mitigating Neck Pain in Aircrew 

Steven L. Fischer; Joan M. Stevenson; Wayne J. Albert; Michael F. Harrison; 
Tim Bryant; Tyson A.C. Beach; Susan A. Reid; Brendan Coffey; DRDC Toronto 
CR 2013-039; Defence R & D Canada - TorontoToronto; March 2013. 

Introduction or background: Mitigating neck pain among aircrew has been identified as a 
priority within the military aerospace communities. Research and communications with aircrew 
personnel clearly indicate that neck pain impacts on the availability and readiness of aircrew 
worldwide and most indicators point to the night vision goggles system (NVGs) as a key 
contributor. A simple, yet practical on-body elastomer-balanced helmet system is described as 
one of several feasible near-term solutions to help alleviate this problem. This and other solutions 
were generated by a multi-disciplinary research team sub-contracted via the Canadian Institute for 
Military and Veteran Health Research, to complete the following objectives:  

- Conduct a rapid work domain assessment to understand the operational environment of 
the CH-146 Griffon helicopter; 

- Identify ergonomic and functional cockpit/cabin area deficiencies that may be 
contributing to musculoskeletal strain; 

- Identify opportunities for intervention and propose potentially effective solutions; 

- Prepare proposals to detail the tasks, resources and costs associated to further develop and 
test a selection of proposed solutions. 

Results: NVGs are critical to support night missions; however in the context of neck pain they 
seem to be the “straw that broke the camel’s back”. Through a series of site visits and a 
familiarization flight, the research team identified a number of ergonomic and functional 
deficiencies regarding the layout of the cockpit (i.e. the location of the MX-15 Vision System), 
the cargo area (i.e. the use of rag and tube seating) and the required job tasks (i.e. the flight 
engineer hanging out of the aircraft to survey “blind spots”). Independently, these risks pose a 
concern; however, the level of risk and concern increases with vibration of the aircraft, the 
additional mass of the helmet, which increases considerably with the addition of the NVGs. 
While aircrew have reported periodic episodes of neck pain for many years, likely due to 
underlying ergonomic hazards; the increased use of the NVGs to support night missions has 
increased this problem substantially – “the straw that broke the camel’s back”.   

The current design of the NVGs poses a number of problems for the musculature of the neck. 
Under normal conditions, neck muscles provide support to balance and stabilize the head. As 
more weight is added to the head, these muscles will work harder. Additionally, the further the 
added weight is from the head/neck joint (atlanto-occipital joint), the harder muscles will have to 
work to counter balance the added weight. A thorough review of literature included as Annex B 
substantiates this hypothesis.   
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In an ideal situation, the Canadian Forces would look to redesign the layout of the CH-146 
Griffon helicopter to reduce underlying ergonomic hazards, in addition to evaluating and 
procuring a lighter helmet and NVGs, with a more centralized distribution of weight, such as the 
TopOwl® (Thales – Aerospace Division, Valence, France) as an example.   

In the interim, an elastomer-balanced helmet system is proposed as one of several near-term 
solutions to alleviate the neck pain problem. The elastomer-balanced approach reduces the total 
weight of the NVGs systems (no counter weight, suggested removal of battery pack), and 
replaces the effective counter balancing force of this mass, and counter balancing forces required 
from the muscles by using a custom-designed dual stiffness elastomer system. This solution is 
expected to off-load the work performed by the neck muscles, reducing both the cumulative and 
average muscle activation.   

Significance: An elastomer-balanced helmet system could provide a practical, feasible near-term 
solution to alleviate neck pain among CH-146 Griffon helicopter aircrew. The positive benefits of 
this solution can be enhanced further by integrating additional recommended solutions including 
improved self-care / post flight cool down options, targeted exercise training regiments developed 
using a periodization model, updated work load assignment procedures, updated rotor track 
balance standards and incorporating simple ergonomics enhancements. 

Future plans: Pending review and consideration of solutions proposed here, the research team 
aims to further develop selected solutions and to support their implementation where required. 
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Sommaire ..... 

Idées à court terme en vue d’atténuer les douleurs au cou 
attribuables aux systèmes de casque chez le personnel 
navigant : Réduire les douleurs au cou chez le personnel 
navigant   

Steven L. Fischer; Joan M. Stevenson; Wayne J. Albert; Michael F. Harrison; 
Tim Bryant; Tyson A.C. Beach; Susan A. Reid; Brendan Coffey ; DRDC Toronto 
CR 2013-039; R & D pour la défense Canada – Toronto Toronto; mars 2013. 

Introduction: La réduction des douleurs au cou chez le personnel navigant fait partie des 
priorités cernées par la communauté de l’aérospatiale militaire. Les recherches et la consultation 
du personnel navigant révèlent clairement que les douleurs au cou ont une incidence sur la 
disponibilité et l’état de préparation des équipages du monde entier, et la plupart des données 
indiquent que le système de lunettes de vision nocturne (NVG) en serait un facteur important. 
Un système de casque ergonomique équilibré avec un élastomère, simple mais pratique, est décrit 
parmi d’autres solutions réalisables à court terme pour aider à atténuer ce problème. Ces solutions 
ont été mises au point par une équipe de recherche multidisciplinaire embauchée par contrat par 
l’Institut canadien de recherche sur la santé des militaires et des vétérans, afin de réaliser les 
tâches suivantes : 
- Réaliser une évaluation rapide du domaine de travail afin de comprendre l’environnement 
opérationnel de l’hélicoptère CH-146 Griffon; 

- Cerner les défauts ergonomiques et fonctionnels du poste de pilotage et de la cabine qui 
pourraient favoriser les contraintes musculo-squelettiques;  

- Déterminer les interventions possibles et proposer des solutions potentiellement efficaces; 

- Préparer des propositions dans lesquelles seront détaillées les tâches, les ressources et les coûts 
associés au développement et à la mise à l’essai d’un ensemble de solutions proposées. 
 
Résultats : Les NVG fournissent un appui essentiel aux missions de nuit; cependant, du point de 
vue des douleurs cervicales, elles semblent être « la goutte d’eau qui fait déborder le vase ». Par 
une série de visites sur place et un vol de familiarisation, l’équipe de recherche a repéré un certain 
nombre de défauts ergonomiques et fonctionnels dans la configuration du poste de pilotage (soit 
l’emplacement du système de vision MX-15), la soute (soit l’utilisation de sièges faits de tubes et 
de toile) et les tâches du personnel (le mécanicien de bord qui sort de l’aéronef pour vérifier les 
« angles morts »). Individuellement, ces risques sont préoccupants; cependant, le niveau de risque 
et de préoccupation augmente en raison des vibrations de l’aéronef et de la masse additionnelle du 
casque, qu’accroît considérablement l’ajout des NVG. Bien que le personnel navigant fait état 
d’épisodes de douleurs au cou depuis un grand nombre d’années, probablement en raison des 
risques ergonomiques inhérents, l’utilisation accrue des NVG au cours des missions de nuit a 
intensifié grandement ce problème – c’est « la goutte d’eau qui a fait déborder le vase ».  
 
La conception actuelle des NVG entraîne divers problèmes au niveau des muscles du cou. Dans 
des conditions normales, les muscles du cou contribuent à l’équilibre et à la stabilité de la tête. 
Plus le poids placé sur la tête est élevé, plus ces muscles seront sollicités. En outre, plus le poids 
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supplémentaire se situe au niveau de l’articulation entre la tête et le cou (articulation 
occipitoatloïdienne), plus les muscles doivent travailler fort pour contrebalancer ce poids. Une 
revue exhaustive de la littérature est incluse à l’annexe B pour étayer cette hypothèse.  
 
Idéalement, il faudrait que les Forces canadiennes envisagent de modifier l’aménagement de 
l’hélicoptère CH-146 Griffon, de façon à réduire les risques ergonomiques inhérents, en plus de 
procéder à l’évaluation et à l’acquisition de casques et de NVG plus légers, dont le poids serait 
réparti de façon plus centrale, comme le TopOwl® (Thales Division Aéronautique, Valence, 
France), par exemple.  
 
Entre-temps, un système de casque équilibré avec un élastomère compte parmi les solutions 
proposées à court terme pour atténuer le problème des douleurs au cou. Cette solution permet de 
réduire le poids total des systèmes de NVG (pas de contrepoids, retrait suggéré du bloc-piles), 
repositionne la force de contrepoids effective de cette masse, et réduit les forces de contrepoids 
requises par les muscles au moyen d’un système en élastomère fait sur mesure, à deux niveaux de 
rigidité. On prévoit que cette solution allégera le travail effectué par les muscles du cou, ce qui 
réduira l’activation musculaire cumulative et moyenne.  

Importance: Un système de casque équilibré avec un élastomère pourrait représenter une 
solution pratique et applicable à court terme afin d’atténuer les douleurs au cou chez le personnel 
navigant de l’hélicoptère CH-146 Griffon. L’effet positif de cette solution peut être bonifié si l’on 
y adjoint d’autres solutions recommandées, dont l’amélioration des autosoins/des options de 
récupération après le vol, des programmes d’exercices périodisés et ciblés, la mise à jour des 
procédures d’attribution de la charge de travail, la mise à niveau des normes d’équilibrage et 
d’alignement des pales et la réalisation d’améliorations ergonomiques simples. 

Perspectives: En attendant l’examen et la prise en considération des solutions proposées dans le 
présent document, l’équipe de recherche espère poursuivre le développement des solutions 
retenues et appuyer leur mise en œuvre, le cas échéant. 
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1  Rapid work domain assessment 

1.1 General operations - the role of the CH-146 Griffon 
helicopter in the Canadian Forces 

(Excerpted from http://www.rcaf-arc.forces.gc.ca/v2/equip/ch146/index-eng.asp): 

“In service with the Royal Canadian Air Force since 1995, the Griffon helicopter`s 
primary role is tactical transportation of troops and material.  It is also used at 
home and abroad for search and rescue (SAR) missions, surveillance and 
reconnaissance, casualty evacuation and counter-drug operations. The helicopter 
has also played a key role in many national and international humanitarian relief 
operations. 

When it joined Joint Task Force Afghanistan Air Wing, deployed on Operation 
Athena, the Griffon utility tactical transport helicopter helped reduce the risk of 
exposing personnel to ambushes, land mines and improvised explosive devices by 
providing increased protection to movement of troops by transport helicopter and 
road convoys. 

The Griffon is used at home to support Army training, and for a wide variety of other 
missions. The Griffon can be equipped with a hoist that enables it to extract people 
and a cargo hook that lets it transport cargo from almost any terrain. The Griffon 
can also be equipped with a Forward-Looking Infrared (FLIR) system, a Wescam 
MX-15 electro-optical imaging system, a powerful Nitesun searchlight, and 
armoured floors and crew seats, helping the crew to accomplish their various 
missions. A variety of self-defence weapons can also be fitted for deployed 
operations. 

The aircraft can carry up to 13 people (two pilots, a flight engineer and 10 
passengers) and has a maximum gross weight of nearly 5400 kilograms. The Griffon 
can reach speeds up to 260 kilometres per hour.” 

1.2 General operations - flight schedules 

Flight schedules vary considerably, especially between training and being in theatre.  In terms of 
training, the minimum requirements for certification are: 50 hours every six months with 8 hours 
in night flying of which 5 hours are NVG flying.  However, crew members normally fly 200-300 
hours per year with approximately 25% of those hours spent night flying (with NVGs).  Typical 
training flights were reported to last for 1.5 – 2.5 hours once or twice per week; however that 
schedule could vary if crews were preparing for an operation or trying to accumulate the 
necessary hours for continued certification.   During specific missions or in theatre, operations 
could result in a wide variety of schedules, where aircrew could fly multiple missions in a row or 
over a few days. Each flight could be a maximum of 3-3.5 hours before a refuel is required.    
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1.5 Equipment worn by crew 

Depending on the weather, crew will wear their flight suits and various levels of winter attire.  In 
addition, both pilots and flight engineers wear a Life Preserver Safety Vest (LPSV).  Pilots are 
strapped into their seats using a more conventional 4-point safety harness, whereas flight 
engineers must also wear a fall arrest harness with a long tether that anchors into the helicopter 
frame as they move about the cabin to conduct activities.  Flight crew members are required to 
wear a helmet (HGU/56P – Gentex) for crash protection and to provide a platform to support 
communications (Figure 5 – top pane).  Although no official technical specifications for the 
weight or distribution of weight of the helmet were available, Table 1 indicates the unofficial 
masses, as measured by hand-held scales 

Table 1– Unofficial mass of the helmet and component parts. 

Item  Mass (kg) Mass (lbs) 
HGU 56P helmet 1.4 3.0 
NVG with mount 0.9 2.0 
Counter weight and 
Battery 0.9 2.0 

Total Mass 3.2 7.0 

During daylight hours, the helmet is worn with its internal communications system and built in-
visors by all crew members.  Flight engineers may also wear the maxillofacial shield to protect 
against the wind and sun (Figure 5 – bottom right pane).   During dusk / dawn / and night flying, 
the flight crew will also wear night vision goggles (AN/AVS-9 – ITT Night Vision) (Figure 5 – 
bottom left pane). According to the technical specifications from ITT night vision, the NVG’s 
have a field of view of 40°, the binocular portion has a weight of 550 grams and the binocular 
mount has a weight of 330 grams. Aircrew may also choose to wear a lead counter weight on the 
back of the helmet which is inserted into a pocket between the NVG battery pack and helmet.  
There was considerable variety among crew members about the amount of counterweight used 
and where it was located on the back of the helmet.   
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2 Ergonomic hazards and functional deficiencies 

2.1 A summary of musculoskeletal concerns of Griffon crew 
members 

Many of the crew members reported musculoskeletal concerns with their necks and backs while 
describing their work to the research team during site visits.  They felt these issues arose because 
of: (i) the weight and moment of inertia of the helmet, especially with NVGs; (ii) postural 
requirements; and (iii) vibration of the aircraft.  They reported more intense symptoms when 
several missions occurred in rapid succession (i.e., in theatre or re-certification).  However, the 
causes of these concerns varied based on job requirements. For pilots, the concerns were related 
to: a) the additional effort required to scan the instrumentation panels while wearing the NVGs, b) 
the sustained effort required to support the head from drooping while wearing the NVGs and c) 
vibration that comes through the seat and occurs most frequently during take-offs and landings.  
For flight engineers, the main concerns were related to sitting on the “rag and tube” seats (R&T 
seats) and performing duties during landings.  The R&T seats forced extreme rounding of the 
back because of the location of the tube supports and stretch of the cloth seats.  In turn, this 
causes the helmet and NVGs to drop further forward, requiring additional effort to maintain an 
upright head position. In addition, the design of the R&T seats creates a high pressure zone on the 
back of the thigh when flight engineers are seated, producing point compression on the 
underlying tissues, potentially restricting blood flow to the lower limbs.   

The research team noted many similarities between the feedback received from aircrew during 
this project and the feedback reported previously by Capt. J. Adam (Technical Report - DRDC 
Toronto TR 2004-153). The 2004 report also identified a series of recommendations to help 
mitigate neck pain among rotary wing aircrew.  We recommend that DRDC review these 
previous recommendations (of which many are repeated in this report) for additional engineering, 
administrative and personal controls that could be implemented to mitigate neck pain in aircrew.    

2.2 Helmet, night vision goggles, counter weight 

2.2.1 Helmet 
Head-borne mass is not the only factor contributing to neck pain among aircrew, but it is likely a 
primary factor.  During design, the mass of the helmet was considered by the manufacturer 
(Gentex – as indicated on their marketing documentation online) to ensure it remains at an 
acceptable weight (although this weight threshold limit value is not reported).  Despite the fact 
that helmets are designed in consideration of this human factors / ergonomic criterion, the weight 
of the helmet on its own may increase the risk of developing neck pain. When helmet fit is not 
optimized to the individual, in combination with the vibration of the aircraft and prolonged static 
non-neutral postures, the risk of developing neck pain is likely to increase. However, it is not 
clear if the most recent design considered the moment of inertia of the helmet. The newer model 
(Figure 5 – top left) has a radius that is larger than the previous helmet.  This larger radius 
requires further muscular effort to start and stop the helmet during dynamic motions.  The 
additional mass and the locations of the NVGs, battery and counter weights only increases the 
moment of inertia, making it more difficult to rotate the head quickly. 
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2.2.2 Night vision goggles (NVGs) 

The addition of the night vision goggles (NVGs) to the helmet system increases the head-borne 
mass.  In addition, the NVG system shifts the centre-of-gravity (CoG) of the helmet and head 
system forward and superiorly, into the most problematic region (see Annex B – Literature 
Review – Section 5 – Helmets, Masses and Loads). Furthermore, use of the NVGs imposes a 
significant decrease in the visual field-of-view (effectively eliminating peripheral vision) 
requiring a considerable increase in head and neck movement to accommodate this restriction. In 
reviewing documentation from ITT Exelis, the manufacturer of the AN/AVS-9 NVGs, there was 
no indication that the design incorporated human factors / ergonomic guidelines to ensure aircrew 
safety or comfort while wearing the device.  Recognizing that their primary objective is to 
provide and enhance night vision capability; this capability may not be useful if aircrew cannot 
wear the device long enough to effectively benefit from this enhancement. The limited 
consideration of human factors in the combined design of the helmet and NVG system is a 
primary concern likely precipitating the neck pain problem developing among rotary wing 
aircrew. Unless the combined helmet and NVG systems can be designed with human factors in 
mind, reactive, cost-prohibitive retrofit solutions will continue to be required. 

2.2.3 Counter weight (CW) 

A simple counter weight (CW) has been introduced to help maintain a more central CoG, while 
wearing the NVGs. Based on feedback obtained during the site visits, and on data previously 
reported in the literature (see Annex B – Literature Review – Section 5 – Helmets, Masses and 
Loads), CW usage is based on personal preference, with some aircrew preferring to wear it and 
others not. Notwithstanding the mixed usage among aircrew, a CW is most effective during 
upright neutral head and neck postures, which pilots and particularly flight engineers rarely adopt.  
Although a CW approach is plausible to help reduce the forward and superior migration of the 
CoG while wearing the NVGs, it does so by adding considerable extra mass to be supported by 
the head and neck, and its’ effectiveness is chiefly dependent on the head and neck position 
relative to gravity.  This limits the range of positions for which a CW is a useful technique for 
mitigating neck pain. 

2.2.4 Biomechanics  

The development of neck pain among rotary-wing aircrew is likely multi-factorial, limiting any 
opportunity to pinpoint a specific cause. However, previous research (see Annex B – Literature 
Review) indicates that the addition of NVGs has had a considerable impact on pain and injury 
reporting, likely because of the effect it has in shifting the CoG forward and up from the normal 
CoG of the head (Figure 6). When wearing the helmet and NVGs, the CoG is shifted up from the 
normal CoG of the head by 16.7 mm and forward by 10.6 mm. However, if the NVGs, mounting 
and battery pack are removed, leaving only the head and helmet, the CoG is shifted 12.2 mm up 
and 0.9 mm backwards – more closely matching the heads’ natural CoG location. 
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2.2.5 Dynamic effects of helmet systems  
Adding equipment to the helmet has effects beyond simply adding weight that the neck must 
support in static postures, the effect of increasing the inertia of the head / helmet deserves some 
discussion.  A simple analysis using lumped spherical mass approximations for the NVGs, the 
CW/battery and the human head, and a spherical shell for the helmet, allows a rough comparison 
of the effect on the neck of the individual equipment masses and their positions.  The current 
system with NVGs, batteries and counter weight has almost 4x the resistance to motion in the 
flexion/extension plane (Table 2) and 6x the resistance in side to side rotation (Table 3) compared 
to the head.     

For the aircrew, the impact of this increase is felt at the starting and stopping points of motion, 
where the third derivative of motion (known as “jerk”) becomes extreme creating very high 
torque levels that can quickly become unsafe at moderate or high rates of motion.  

Table 2 –Flexion/Extension: Inertial effect of increasing helmet mass. 

Condition  I (kg.m2) Normalized
Head alone 0.13 1.0 
Head + Helmet 0.34 2.64 
Head + Helmet + NVG 0.46 3.62 
Head + Helmet + NVG + CW + Bat 0.49 3.85 
 

Table 3- Side to side head rotation: Inertial effect of increasing helmet mass. 

Condition I (kg.m2) Normalized
Head alone 0.02 1.00
Head + Helmet 0.04 1.77
Head + Helmet +NVG 0.07 3.58
Head + Helmet + NVG +CW + Bat 0.12 5.85

Figure 9 illustrates the effect of this increasing inertia on neck torque for a quick (1 second) 
fore/aft head rotation visual check by the flight engineer.   Solutions presented by the research 
team are expected to reduce the inertial effect to the level of Case 3: the Helmet + NVG only. 
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or other ranging capabilities, several small interventions could be introduced to help improve the 
ability of the flight engineer to brace and support themselves while carrying out these activities. 

Again, the research team has not provided a comprehensive evaluation of all the ergonomics 
hazards present within the cabin environment.  We understand that an ergonomic assessment of 
the flight engineer (within the cabin) was completed at CFB Gagetown in 2001 by Capt. B.T. 
Wierstra and again we recommend that DRDC consider the recommendations included in that 
report when considering solutions moving forward. 
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3 Opportunities for intervention and proposed 
solutions 

This section of the report describes a series of proposed solutions that could be implemented in 
the near-term to help reduce the prevalence of neck pain among aircrew.  Although beyond the 
scope of this work, it is highly recommended that overarching procurement processes be re-
visited to make sure that criteria exist to ensure manufacturers are required to innovate products 
that not only meet the capability requirements of the Canadian Forces, but also comply with 
human factors and ergonomic considerations. While documentation suggests that human factors 
are considered in the design of the helmet to some extent, it is unclear if and how human factors 
were considered in the design of the night vision goggles systems. A reference to an example of 
how human factors considerations could be incorporated in the design of NVG systems is 
provided below.  This referenced paper may provide an example of the type of criteria that the 
Canadian Forces could choose to impose when procuring equipment to provide night vision 
capability, while ensuring that military personnel can use this equipment without any undue 
injury risks: 

Parush, A., Gauthier, M.S., Arseneau, L., Tang, D. 2011. The Human Factors of 
Night Vision Goggles: Perceptual, cognitive, and physical factors. Reviews of 
Human Factors and Ergonomics, 7(1):238-279. DOI: 10.1177/1557234X11410392. 

3.1 Helmet, night vision goggles, counter weight 
The addition of the NVGs and its subcomponents causes the CoG of the head / helmet system to 
shift forward, increasing the activation of neck extensor muscles to maintain equilibrium of the 
head and helmet system. Currently, the combined mass of a battery pack and lead weights 
mounted on the back surface of the helmet create a gravity induced counter moment.  This 
immediately increases the mass and the inertia of the head borne load.  Additionally, when the 
orientation of the head is no longer orthogonal to gravity, the utility of the counterweight drops to 
the point where it becomes an additional liability to the user.    
 
The following engineering solutions aim to achieve the following: reduce neck extensor muscle 
force requirements; reduce the total mass on the head, and reduce the moment of inertia of the 
head / helmet from the current configuration. Generally, these concepts propose methods of 
supplying a counterbalancing force without additional mass on the head and with no increase to 
the helmet inertia.  
 
In addition to efforts to develop a retrofit product that could be introduced quickly to help 
mitigate neck strain arising from the existing helmet system, the research team advocates that 
DRDC consider conducting testing on other available helmet systems, such as the TopOwl®.  
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3.1.2 Environmental / policy / procedural interventions / simple ergonomic 
aids 

3.1.2.1 Procure a new helmet / NVG system 

Rationale:   The current design of the combined helmet and NVG system is problematic. The 
mass of the NVGs and particularly the distribution of mass, relative to the CoG of the head and 
helmet alone pose primary concerns. While much of this report is focussed on retrofit solutions 
that can be applied to offset the muscular demands required to support this mass, a new helmet 
system design could eliminate the problem.    

Solution:   The TopOwl® (Thales – Aerospace Division, Valence, France) helmet system 
solution addresses the mass and distribution of mass concerns.  The TopOwl® is reportedly 
designed by pilots, for pilots, as a comfortable solution to provide helmet-mounted sight/display 
capability for helicopter pilots.  The research team did not conduct a thorough analysis of its 
potential; however, based on the datasheet provided by the manufacturer 
(http://www.thalesgroup.com/Countries/United_Kingdom/FIA_2012/Documents/TopOwl_Datsh
eet/), the total head-borne weight is only 2.2 kg (4.85 lbs) in full configuration, and the design 
allows the mass to be located more centrally, rather than extended out in front of the pilot. The 
research team highly recommends that this option be considered further.   

3.1.2.2 Improve the capacity of the neck system to withstand the head-borne 
mass 

Rationale:   Exercise is recognized by the Bone and Joint Decade Task Force on Neck Pain as 
one of the few solutions that has a positive effect on reducing neck pain among the general 
population, though it is acknowledged that mechanical demands imposed on the necks of aircraft 
crew exceed those of the general population. Aircrew identified that the squadron was allotted 
two physical training sessions per week to exercise, while conducting an additional training 
session or two, on their own time.  While it is clear that in general aircrew are physically fit based 
on conventional standards, the current exercise regimen is not well structured to progressively 
improve specific capacities with respect to their work demands. Improving the capacity of the 
neck system to withstand the rigors of flying while supporting a considerable head-borne mass 
cannot be addressed by “strengthening” exercises alone; however, several studies have indicated 
successful exercise prescriptions to address this need (see Annex B - B6 - Benefits of Physical 
Fitness and Training on Aircrew Work Capacity). 

Solution:   This solution is two-fold. First, it is recommended that the CF implement the targeted 
exercise prescriptions as indicated in past research with CF personnel (see reference 75-77 listed 
in the reference section of Annex B), perhaps together with the self-care strategies proposed 
subsequently. Second, it is recommended that the location of, and equipment available within 
exercise spaces be evaluated to ensure that it remains easily accessible and useable. If small 
exercise areas can be created and equipped within the hangar area (similar to CFB Borden) and 
clear individualized exercise prescriptions are available (including periodization considerations, 
modalities, and other key consideration that would be included when developing a targeted 
program for an “occupational athlete”), then it is likely that aircrew would be more willing to 
participate in this form of capacity-building solution. 
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3.1.2.3 Conservative maintenance standards for rotor track balance 

Rationale:   Following maintenance routines, pilots fly the aircraft and monitor the balance of the 
rotor track to ensure it complies with the 0.5 inches per second standard. However, pilots 
indicated that the vibration of the aircraft was reduced if the rotor could be balanced within a 
tighter range (0.3-0.4 inches per second).  While it may not be feasible to achieve a 0.3 inch 
standard for all helicopters, procedures should require maintenance personnel to achieve the 
tightest range possible (within reason). Reducing the vibration of the aircraft will directly reduce 
the vibration transmitted to the pilot, which in turn will reduce the neck muscle activation 
required to support and stabilize the head (with or without the additional mass of the NVGs). 

Solution:   Introduce a green-yellow-red graded standard (i.e. 0.3-0.4 inches/sec is ideal, 0.4 -0.5 
inches/sec is tolerable, >0.5 inches/sec is not tolerable), for maintenance personnel to adhere to 
when balancing the rotor. 

3.1.2.4 Revised process for workload distribution  

Rationale: Not all flights are equal in terms of exposures to ergonomic hazards that may increase 
the risk of neck troubles. Further, longer duration missions or concentrated periods of frequent 
missions can dramatically increase the risk of injury, particularly when NVGs are worn. 
Consistent with the recommendations provided in the Technical Report - DRDC Toronto TR 
2004-153 document, it is recommended that procedures be introduced to ensure the workload is 
balanced in order to limit periods of prolonged, frequent, or intense (with NVGs) exposures. 

Solution:   The TR 2004-153 document outlines a number of solutions that are reiterated and 
supplemented here including: restricting NVG flights to less than 2 hours when permissible; 
increasing the number of instructors to help prevent overexposure to current instructors; revisiting 
certification policies to limit aircrew in accumulating the majority of their hours in the weeks 
immediately preceding the deadline; educating aircrew on early symptoms of neck pain, and 
provide a mechanism to include them in the work load distribution to limit overexposure 
(respecting individual differences in the ability to withstand and/or recover from the physical 
demands); consider NVGs usage in work load scheduling (i.e. try to balance several non-NVGs 
flights with period NVGs flights as permissible); improve the scheduling of training flights to 
ensure aircrew are consistently exposed to the rigors of flying, opposed to clustering training 
activities in between long periods of limited flying time. 

3.1.2.5 Standardized process individually optimize helmet systems fit  

Rationale:   The fit of the helmet is an important consideration to ensure the contact between the 
head and helmet is optimized. A loose helmet or a helmet with “hot spots” of higher pressure can 
be uncomfortable, and in concert with motion, vibration and the addition of the night vision 
goggles, can require additional muscle activity to control the head and wobbling helmet mass. 
Research has demonstrated that an individualized customized fit can reduce reported symptoms 
of neck pain (Annex B – B5 Helmets, Masses, and Loads).   

Solution:   Manufacturer guidelines exist to help customize the fit of the helmet.  During site 
visits, aircrew noted that additional steps are taken to ensure a good fit.  However, current 
research has suggested a more refined process that should be considered to ensure a proper, 
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customized fit (see reference 89-90 listed in the reference section of Annex B). A refined process 
should continue to ensure that the size and inner liner type is correct; however, aircrew should 
conduct helmet fitting procedures with the NVG system on, where the fit is judged and evaluated 
during an active real or simulated flight, rather than evaluated based on a limited range of motion 
check while on firm ground.  While we did not have permission to reproduce the diagram 
provided in the paper by Van den Oord and colleagues (reference 89 listed in the reference 
section of Annex B) it is recommended that DRDC review this diagram if they choose to develop 
a standardized process to customize the fit of the helmet (and NVGs) for aircrew. 

3.1.2.6 Improved options / opportunities for self-care   

Rationale:  Many professional and occupational athletes incorporate “active rest” activities (i.e. 
ice-baths, massage, etc.) and “unloading” phases into periodized training programs. It is believed 
that such efforts facilitate regenerative and recovery processes in addition to eliciting “super-
compensatory” responses to training.  Given the considerable demand imposed on the neck 
region, particularly when supporting the additional mass of the NVGs, it is recommended that 
self-care opportunities be provided to help improve recovery, immediately post-flight (akin to a 
“debrief” for the body) and be included along with a targeted exercise program to improve the 
capacity of the neck system to withstand the head-borne mass. 

Solution:   The literature is limited regarding the specific modalities that could be introduced to 
help aircrew recover from extended duration flights or NVGs flights. However, the lack of 
research in this area should not prohibit the military from experimenting with solutions used by 
athletes and American military service members (personal communication), including massage, 
icing, “trigger point” or myofascial release techniques, etc.  Many of these activities could be 
performed with or without a training partner and at low-cost (e.g., with a massage stick [neck and 
shoulder muscles] or foam roll [thoracic spine mobilization]). Moreover, efforts to coordinate 
variations in current training loads, intensities, durations, and modalities with time spent wearing 
helmets could attenuate cumulative mechanical exposures imposed on the neck region. While this 
solution would require more investigation prior to implementation (i.e., it would ideally be 
coordinated with existing exercise and flying schedules), similar methods are very common and 
are believed by athletes and their coaches to expedite recovery and enhance training adaptations. 
For example, akin to an athlete’s training schedule, aircrew could be exposed to higher exercise 
based training loads, intensities and durations, during non-combat time; however, exercise and 
training would be tapered down to a minimum during combat time (as NVGs usage and flight 
time are increased). 

3.1.2.7 Neck brace support system 

Rationale:  During site visits, flight engineers noted that they often leaned their head to the side 
where it could be supported by the underlying vest structure.  Rather than leaning to the side, a 
simple neck support could be provided, for use by flight engineers during the portion of the flight 
where they remain seated in the cabin. 

Solution:   A flexible, adaptable low-profile neck brace can be purchased to provide added 
support for flight engineers.  Indicated in Figure 16, a simple neck brace could be used by flight 
engineers while they are stationary during flight. This device could then be quickly removed 
when the flight engineer is required to begin moving about the cabin to carry out their activities. 
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further development, through this iterative process we would aim to develop physical prototypes 
and models to investigate the biomechanics and ensure that solutions are providing assistance to 
reduce muscular demands, and then move to conduct focus groups and field trials to investigate 
the feasibility, comfort and wear-ability of the innovation as indicated below. 

4.3 Technology development roadmap (proposal) 

The roadmap shown in Figure 24 identifies our proposed activities to discover, develop and 
evaluate several design concepts through to the point of proof-of-concept prototype.  This process 
considers all aspects of the product development process including a more detailed survey of 
commercially available solutions (either stand-alone, or ones which could be part of an integrated 
solution), development of product and engineering specifications, initial cost and manufacturing 
evaluation and field testing.  Following successfully passing Gate 2, would be Production 
Development and Production phases.
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The starting point for this work is for the development team to work closely with all key 
stakeholders to understand the operational and any other implementation constraints and 
requirements.  For example, flight-safety, mobility and airworthiness considerations will have to 
be understood as they pertain to the designs. The outcome will be product and engineering design 
specifications that will enable objective evaluations of the designs. Subsequently, the various 
concepts will be engineered, prototyped and tested in a variety of situations to ensure they will 
provide the necessary benefits to off-load neck muscle demands.  Flight crew testing under actual 
flight conditions would be the ideal outcome. 

4.3.1 Cost model 

The cost to develop the three design based proposals are summarized in Table 4.  

Table 4- Proposed budget to develop and test proposed solutions. 

 

time 
(w ks) cost

time 
(w ks) cost

time 
(w ks) cost

Concepts Review and Selection
Program Engineering spec development, prog mgmt, 

design documentation, admin
3 11,400$      3 11,400$      3 11,400$      

Product Design Engineering 4 15,200$      5 19,000$      5 19,000$      
Prototype Physical part fabrication (qty 2) 2 10,100$      2 14,500$      2 15,100$      
Lab Testing critical attributes 6 22,800$      6 22,800$      6 22,800$      
Field Testing crew  testing, simulator test, f light-

safety review  (?)
6 22,800$      6 22,800$      6 22,800$      

In-direct costs standard 65% rate set by 
Queen's

53,495.00$ 58,825.00$ 59,215.00$ 

Total 135,795$ 149,325$ 150,315$ 

Concept 1
Elastomer based 
helmet system 

support (on-body)

Concept 2

Seat mounted cable 
(off-body)

Concept 3
Shoulder girdle 

based solution (on-
body)



 
 

 
  
 

 
 

5 Concluding remarks 
Through this work two things are clear: aircrew suffer from neck pain and the problem is both 
complex and multifactorial. In consideration of the multitude of factors that can influence 
whether or not an individual aircrew member may develop neck pain, this report outlines a range 
of possible interventions ranging from quite simple (knee pads embedded into flight suits) to 
more long term (enhanced vision systems to monitor helicopter “blind spots”). However, the 
elephant in the room continues to be the night vision goggles system.  The current model used by 
CH-146 Griffon aircrew provides the night vision capability required, but at a significant cost to 
the neck health of aircrew. The research team strongly recommends that military aerospace 
communities unite and then engage with NVG manufactures to require that they innovate new 
designs that are both lighter and maintain the total head/helmet/NVG systems CoG at the mid-
point of the ear canals.  

In the interim, this report provides near-term innovations that can be developed to help alleviate 
the problem rising from the use of NVGs. A simple elastomer balanced helmet system shows 
promise as a practical, viable near term fix. The benefit could be even greater if this innovation is 
developed and implemented along with other recommendations aimed at helping aircrew improve 
their bodies in order to withstand and recover from the demands of flying while wearing NVGs, 
and procedural modifications to improve the distribution of NVG flying time, or maintenance 
standards regarding rotor balance. 

Lastly, it was clear that this problem has not arisen overnight and several reports, both peer-
reviewed research and in internal reports, describe a range of solutions to help alleviate the neck 
pain problem. Based on our on-site interviews and discussions it seems as though these and other 
solutions have yet to be implemented.  While it is unlikely, that any one solution will completely 
eliminate the problem, a combination of two, three or more may have a considerable positive 
impact.  However, it is 100% clear that implementing no changes will result in no improvement. 
As such, the research team strongly recommend feasible near-term solutions be identified and 
implemented as soon as possible, even if the net benefit from an implemented solution is modest.  
By applying this Kaizen type approach of continuously improving the neck pain problem, the 
Canadian Forces can expect to yield a considerable gain. 
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Annex A Individual debriefing notes from site visits to 
CFB Borden 

A.1 Notes on design features of Griffon helicopters that may 
affect solutions 

A.1.1 Some design features 
1. Griffons used for many tasks, including search and rescue, training and in theatre.  
2. Most Griffons has access to power (centre back) that was used for medical equipment.  

Nowadays, this power source is not accessed very often. 
3. Power supplies are 28 V, 26.5 V and 115 V with standard 3-prong plug. 
4. Pilots’ seats are form-fitted and reasonably-well designed with no arm rests.  
5. Pilots’ seats have no shock absorbing capability (neither a floor mount nor a vibration damping 

cushion seat). 
6. Flight Engineers’ seat is a removable ‘tube and rag’ seat that is in 3 parts but extends 1.32 m 

(52”) across the back of the cargo area.  
7. Flight Engineer has same “tube and rag’ seat on side (gun) areas. 
8. Cargo area has many attachment points with yellow paint indicating secure attachment points. 
9. Cargo area has very few hand holds devices. 
10. Doors can open a long way unless held: there are no intermediate stops. 
11. Doors sometimes have high frictional resistance.   

A.1.2 Design features that may facilitate potential solutions 
1. Pilots’ seat frames have excellent possibility for attaching framework for an off-body helmet 

support device. 
2. Pilots’ area directly overhead has some potential for an off-body helmet support device.   
3. Pilots’ area door frame area has some potential for an off-body helmet support device.   
4. Pilots’ head clearance from top of helicopter very small.  Need adjustable support system. 
5. FE’s Rag and Tube (R&T) seat ergonomically unacceptable: however, replacement seat(s) must 

be safely secured, easily removed, and more comfortable.  Good if FE’s seat was interchangeable 
at sides (for gun mount use) 

6. Through conversations with aircrew it was noted that other helicopters may have seating designs 
that could be improvements over the existing R&T seating (i.e., UH1Y has a seat that slides from 
door to door on rails; Cormorant helicopters have seats that are  on rails and swivel) 

7. It is possible to access the power source in the cargo area for FE solutions.  This could be used 
for a mounted radar-based digital altimeter to assist FE. 

8. The attachment points excellent for more detachable hand holds to help stabilize FE during flight 
and access the cargo area when loaded or FE wearing full gear. 

A.2 Notes on Griffon helicopter personnel 

A.2.1 Background information 
1. At CFB Gagetown, 4 flight engineers train at one time for 2.5 days which includes 5 training 

flights. 
2. Typical training flights are ~2 hours duration with a minimum of 25 minutes preparation/flight 
3. FEs interviewed noted back pain, neck pain and shoulder pain. This was mainly attributed to the 

T&R seat which caused other postural problems.  



 
 

 
  
 

 
 

4. Currently there is no post-flight “cool down” protocol as would be in place for any athlete 
exposed to high demands (i.e. the way a pitcher ices their arm, or a basketball player ices their 
knee, or the way a golfer receives a massage). 

5. The squadron has two allotted “physical training” session per week and some participate in 
additional training.   Although there is no clear exercise prescription, most pilots and FEs work 
out as least twice a week with strengthening and aerobic exercises.  Many train using mixed 
martial arts techniques. 

A.2.2 Possible solutions 
1. A policy change could be made to implement exercise routines that are better suited to 

strengthening the appropriate muscles. 
2. A policy change could be made to implement an athlete-type cool-down period to allow the 

muscles to recover better. 

A.3 Notes on in-flight operations in the Griffon helicopter  

A.3.1 Background information 
1. Flight altitudes vary between 50’ to 3000’ above ground level (a.g.l). 
2. Banked turns normally ~ 1.1G to 1.3G at 30° with maximum banked turn at 50°. 
3. FEs prepare for landing by opening door ~ ½ mile away when speed is ~60 knot and/or about 

300’ above the ground. 
4. FE’s start calling out distances when helicopter is 15-20 ft above ground level (a.g.l.). 
5. During theatre conditions, crews wear ~50-60 lbs of kit with majority on the torso.  (i.e., helmet, 

NVG, safety harness, life preserver safety vest, survival kit, pistol and mags, ~10 lbs weighs 50-
60 lbs.). 

6. During training, the cargo space is normally empty.  During missions, cargo space may be full.  
FE may have to sit on cargo or milk carton. 

7. If NVGs are required, pilots’ and FE’s typically  calibrate them but do not put them on until they 
are in the craft and powering up the engines. 

8. The configuration of the aircraft can be different in theatre versus in training as helicopter is 
armoured (less comfortable) and weapons monitoring screens are added. 

9. Most of the work during a typical flight is during take-off, landing and while performing various 
tactics.  Pilots will use the autopilot function during continuous, uninterrupted flight (i.e. 
consistent airspeed and altitude). 

10. When moving through the “transitional zone” transferring from upwards to forwards, there is a 
considerable vibration through the aircraft as the aerodynamics of the airflow through the blades 
is altered. 

11. There is no “set” policy that states that the left seat is the “pilot” and the right seat is the co-pilot” 
or vice-versa. 

A.4 Notes on basic information about pilots and their tasks 

A.4.1 Background information 
1. Pilots will move through a considerable range of neck postures to view the environment around 

them, including looking up, particularly when banking through turns. Movement of the torso is 
restricted by the harness system. 

2. Pilots interviewed noted some neck pain and some back pain. They attributed the pain to a 
combination of vibration and the NVGs. 



 
 

 
 

3. During night flights, pilots wear a monocle-based Heads-Up-Display system that provides 
information about the altitude and airspeed of the aircraft.  Warning signals about the engine also 
pop up when necessary.  However, details about the engine (causes for the warning) are not 
provided and the pilot must deliberately view those gauges.  

4. The monocle can be placed over the right or left lens of the NVG.  Typically pilots will place it 
over the NON-dominant eye to avoid too much eye strain on the dominant eye. 

5. Pilots also have a monocle for daytime flights; however it must be worn only over the right eye. 
6. NOTE: The pilot we spoke with mentioned that he will often lift his head up and look under the 

NVGs to the actual gauges rather than take information from the HUD monocle.  His reasoning 
was that he could never remember the purpose of all numbers on the HUD. 

7. On occasion, they will even open the door to view outside of the aircraft to check clearances. 
8. Pilots DO NOT spend a lot of time entering in coordinates or way points in the computer, as they 

are usually pre-programmed and inserted via a hard disk. 
9. The computer system in the Griffon for navigation is very old and built around a 486 computer. 
10. Flight data entry is often made with the non-dominant hand so that the dominant hand could 

continue to control the aircraft “almost unconsciously”. 
11. Pilots can spend considerable time monitoring a screen (in theatre) for weapon positioning 

purposes.   
12. Some of the more challenging tactics included: slow hovering (less than 40 knots) and NOE 

(Nape Of the Earth) flying (very low altitude flying).   
13. In theatre and combat training, pilots wear up to 60 lbs of kit with the majority on the torso.  They 

do have hand-holds to help lift themselves and their gear into the cockpit. 
14. During combat, pilots could be flying up to 7-8 hours in "viscous aggressive flying style" 

designed to intimidate.  Then, the cool-down, debriefing and eating food could be 3 hours with 6 
hours of sleep before repeating.  This type of routine results in fatigue that exacerbates neck 
strain, lumbar and thoracic strain and general muscular fatigue.   

15. In theatre, pilots start flights at variable times to avoid being targeted.  Hence flights start 
sometimes days, sometimes nights, and even at 3 am.  Pilot fatigue and disrupted circadian 
rhythm occur. 

16. Given the considerable inter-pilot variability in pain, various anthropometry, and personal “style” 
when conducting tactics, it is clear that there is no single solution to mitigate this problem.   

17. Pilots report that this helicopter is considered to have poor “human factors” within the aircraft. 

A.4.2 Main problems 
1. Pilots would consider the helmet with NVGs the main problem followed by vibration. 
2. Maintaining static postures for long periods of time caused muscular fatigue. 
3. Postures needed to input navigation coordinates  is problematic, especially with NVGs. 

A.4.3 Possible solutions 
1. Reduce the weight of the helmet through counterbalances or off-body support system.  Off-body 

support system would be accepted by pilots unless they were guaranteed they could exit it easily 
and immediately. 

2. Develop a mechanism to control length/tension of helmet impulse tether.  This could be designed 
so that the pilot could set the forward flexion range of motion to the necessary distance thus 
allowing the neck extensor muscles to relax in this forward leaning position. 

3. Reduce the vibration by inserting damping materials under the seat attachment or new seat 
cushions.  This is being evaluated by DTAES with additional consultants.   

4. More conservative standards for maintenance, particularly with respect to the clearance for the 
rotor tracks.  While Griffon helicopters are notorious for vibration, the test pilots (pilots that test 
the aircraft after maintenance) at CFB Borden are adamant that the maintenance crew ensure that 
the rotor is balanced to about 0.2 - 0.3 inches per second, while the Military Standard is a more 



 
 

 
  
 

 
 

liberal 0.5 inches. He noted that not all helicopters can be maintained to the more conservative 
standard, the pilots at CFB Borden championed the push to seek a more conservative balance 
whenever possible.  

5. Develop a regime of specific neck strengthening exercises.  Results from Salmon et al. (2010) 
suggest that neck and core strengthening exercises strongly mitigate neck pain in aircrew 
population.  

6. Addition of detachable armrests to reduce shoulder fatigue during long flights.  This would allow 
the pilots to reduce shoulder fatigue by resting elbows on arm rest to alleviate stress. 

7. Reduce the mass worn on the head. 
a. Given that the helmets are for crash protection and communications, there are alternate 

designs using lighter materials that could maintain the overarching objectives while 
reducing the mass worn on the head. 

b. Determine why the binocular portion of the NVGs must be so heavy (> 1 lb) or why that 
mass needs to be so far away from the head. 

8. Can the Griffon navigation system be upgraded from the old 486 computer so data entry is easier 
and the controls are in a better location? 

A.5 Notes on basic information about flight engineers and 
their tasks  

A.5.1 Background information  
1. Flight engineers emerge from the pool of maintenance staff.  As such, they are tasked with 

performing all pre-flight inspections (30-60 minutes in length) and often assist in helicopter 
maintenance operations to remain current.  Remaining time is spent doing paper work and 
completing tests to maintain credentials.  

2. The flight engineer was primarily responsible for most aircraft check clearances during pre-flight 
and during flights for “12-6” O’clock take-off and landing clearances as well as various other tasks 
within the aircraft related to mission objectives. 

3. Tactics that were perceived as being demanding included: landing in a confined space 
(particularly, monitoring the skids and the tail rotor); slinging (additionally monitoring a sling 
being loaded or unloaded from the aircraft while it hovers); “hot refueling” (fueling the aircraft 
without shutting it off); and slopes (landing on a slope where possible); and, performing cargo 
checks underneath aircraft before take-off. 

4. During toughest tasks, the Flight Engineer felt that his time was spent crouching (25%), kneeling 
(30%), lying prone (15%) and being ready to move (30%). 

5. Flight Engineers normally view landings and take-off from the right side of the helicopter.   
6. Flight Engineers moved through a wide range of postures acting as a “camera” to monitor the 

position of the aircraft relative to the ground and surrounding environment.   
7. Many of the FEs reported pain or discomfort mainly due to the R&T seats. Flight engineers at 

CFB Borden had a tendency to have more pain in the lower back compared to neck. 
8. FEs reported working out at least twice a week with strengthening and aerobic exercises.  

However, there were no specific neck and back strengthening exercises. 
9. There is no pre-flight or post-flight routine to warm-up or cool down from flights. 

A.5.2 Concern #1: Rag and tube seating 
1. Seat design causes back to be rounded and thus no lumbar support. 
2. Seat-back tube bar located at upper back thus causing back to be rounded.  
3. Seat tube bar places pressure on back of thighs thus applying pressure onto nerves and blood 

vessels. 



 
 

 
 

4. Rounded back posture forces FE to hyper-extension neck to look straight ahead. 
5. Rounded back posture forces FE to rotate in horizontal posture to look sideways.  
6. Helmet (with and without NVGs slides) forward because of posture, helmet weight distribution 

and other clothing. 
7. Rag seat stretches over time or when wet.  Very uncomfortable. 
8. No vibration dampening. 
9. Poor distribution of forces. 

A.5.3 Possible solutions 
1. There was a simple seat extender manufactured and pilot tested on a project called GAU 21 

project. It was never implemented.   
2. There are better seats in other helicopters (i.e., (a) UH1Y has a  good seat that slides from door 

to door on rails; and (b) Cormorant helicopters which  are  on rails and swivel). 
3. The FE is exposed to a wide range of awkward postures, simply because he/she must monitor 

clearances.  Given all the recent technologies added to cars and trucks to meet this objective, it is 
possible to develop similar systems to retrofit the helicopter to reduce the current need to 
manually monitor all landing and take-off clearances. 

A.5.4 Concern #2 :  Helmet and night vision goggles (NVG) 
1. Landing checks cause the following problems when the wind catches the helmet (with NVGs) 

a. High resistive force when wind catches NVG/helmet.  
b. Current style ear cups catch wind and cause buffeting.  This causes vibration of helmet with 

respect to head. This is more of a problem with the new helmets because they are more 
"square" and allow air pockets in ear wells which causes the helmet to rattle. 

c. Neck muscles must support the full weight of helmet and NVG when clearing under 
helicopter.  Hence adding counter weights only adds to the total neck muscle force 
requirements. 

d. Head posture is fully flexed and positioned as much as 270  from vertical to check opposite 
skid, to accomplish this task, the engineer’s body can be  to ½ out of helicopter. 

e. Head posture is fully rotated to see aft (tail rotor) and fore (landscape).  
2. Helmet catches Rescue Vest on:  

a. On both ear flaps and add resistance to rotation at neck. 
b. At back of head and adds resistance to extension at neck. 

3. Helmet and NVG  have off-balance forces because of: 
a. Nature of heavy NVG at front of head. 
b. Rounded back causes clothing to push the helmet forward. 
c. Neck muscles get tired moving helmet with NVG because of high moment of inertia. 

4. Vibration and G forces with head in awkward postures: 
a. No dampening in seat cushion. 
b. FEs often do not know when pilots will bank and create other high G forces.  This creates a 

sudden necessity to contract neck muscles when FE is not in a good stable posture.   

A.5.5 Possible solutions 
a. Find ways to prevent helmet from tipping forward when seated.  This could be an on-

body or off-body system. 
b. Find alternate ways to avoid the need to assume all/some landing check postures (some 

possibilities are: camera system, telescope system, add radar-based digital altimeter 
system in cargo area for easier viewing.  

c. Improved night vision goggles in terms of profile and weight. 



 
 

 
  
 

 
 

A.5.6 Concern #3:  Back doors  
1. Doors sticks and are hard to open (i.e., rain, rubber gasket, rollers).  Creates difficulty for the 

shoulders as heavy and/or hard to reach. 
2. Must maintain control of door opening at all times.  Difficult when wind catches it as it will 

open all of the way. 

A.5.7 Possible solutions 
1.  Apply friction-resistant bead (Teflon, etc.) between upper gasket and door. 
2.  Place better frictionless rollers in two centre support locations. 
3.  Possibly improve frictional factors on lower guide rail as well.  
4.  Add door stops at logical places so that flight engineers are not required to constantly hold 

the door. 
 

A.5.8 Concern #4:  Need for visual display screen(s) in the cargo area 
1. Sometimes difficult to see outside due to seated posture, executing tasks or IFR flying.  FEs 

feel some instruments duplicated in the cargo area would help solve problem, especially a 
radar altimeter such as the ones used by the pilots in the cockpit. 

A.5.9 Possible solutions 
1. Investigate the addition of the radar altimeter in the cargo area to assist FEs with landing 

preparedness.   Since there is power in the cargo area, this could be used to charge it. 

A.5.10 Concern #5:  Difficulty in moving safely around cargo area 
1. FEs sometimes trip over cargo or floor grommets because: 

a. They feel stiff and uncomfortable particularly after long periods of inactivity or long 
flights. 

b. They cannot brace themselves from sudden changes in helicopter directions or flight 
weather conditions. 

2. Additional gear (helmet, NVG, harness, on-flight bag, water, LPSV, ballistic vest) can weigh 
up to 100lbs.  Flight Engineers must pull themselves into the helicopter (~80cm elevation).  
Although this is an infrequent movement it may cause a strain to the upper extremity. 

A.5.11 Possible solutions 
1. Add more detachable hand-holds to various locations on the walls and in the ceiling of the 

helicopter 
 “Loop” handles attached to the ceiling of helicopter interior and/or above door 

to assist flight engineer in getting in/out of the helicopter and rising from the 
kneeling/prone positions. 

 

A.5.12 Concern #6.  Manning the gun  
1. Manning a gun was also a great challenge for FE because they are very exposed to awkward, non-

neutral postures (as well as increased stress - which may manifest itself in tightening of neck 
musculature. 



 
 

 
 

2. Body anthropometric plays a significant factor.  The FE with the greatest complaints was also the 
largest framed individual.  They are cramped in the confined quarters of the helicopter, especially 
in the gun locations and when the helicopter is loaded.  

A.5.13 Possible solutions 
1. A seat extender or a swivel seat would be best for this location.  The short R&T seating does not 

allow FEs to get into proper shooting position.   

A.5.14 Concern #7:  Increase the capacity of the aircrew 
1. There is no warm-up or cool-down period for Flight Engineers. They immediately perform their 

helicopter checks and shut downs.  
2. All appeared to be in good physical condition, but may not be incorporating proper strengthening 

of the neck or proper post mission exercises to rehab tired muscles. 

A.5.15 Possible solutions 
1. If athletes can achieve better performance and sustain less severe injuries, less often when enrolled 

in carefully designed exercise programs, than why not try the same with pilots.  A cleverly 
designed program could be developed to improve their overall fitness, including neck strength to 
help them become more robust to handle the added weight of the helmet and to be more adept at 
managing all the subtle perturbations that occur during flight. 

2. Institute a recovery program to help restore capacity more quickly following extended exposures.  
It seems that much of the pain could be considered “cumulative” in nature so a post-flight program 
to help restore capacity quicker could help intervene on any vicious cycling that may occur with 
repeated exposures. 
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B.1 Introduction 

The flight helmet is a vital component of the protective gear used by Canadian Forces (CF) 
aircrew. The primary design goal is to protect the head from impact during a hard landing or other 
flight hazards (Butler & Alem, 1997; Brozoski et al., 1998) but it is also being more frequently 
used as a “mounting platform for numerous combat-essential devices” (Brozoski et al., 1998).  
With advances in modern technology, the attachment of additional information devices, such as 
night vision goggles (NVG) or heads-up display (HUD), are becoming frequent to allow pilots to 
maintain their vision during flights without having to look down or away from the horizon in 
order to obtain information from their instruments. Additional devices, however, come at the cost 
of the increased mass and the altered centre of gravity of the helmet (Knight & Barbar, 1994).      

NVG–induced neck strain is a concern amongst the helicopter aircrew of many national 
militaries, including the United Kingdom (Wickes et al., 2005), Sweden (Ang et al., 2005; 
Thuresson, 2005; Ang and Harsm-Ringdahl, 2006; Ang, 2007), Holland (van den Oord, 2010a, 
van den Oord et al., 2010b), the United States (Butler, 1992; Fraser et al., 2006; Walters et al., 
2012), and Canada (Adam, 2004; Forde, 2009; Harrison, 2009; Salmon, 2009). The rates of injury 
vary from nation to nation but Canadian investigations demonstrate lifetime rates of injury that 
approach 90% among experienced aircrew in the CF’s CH-146 Griffon aircrew (Adam, 2004). 
Most concerning, research has repeatedly suggested that prior injury is an excellent predictor of 
future injury when it comes to the spinal column of helicopter aircrew (Thomae et al., 1998; Ang 
& Harms-Ringdahl, 2006). 

The estimated point prevalence in the civilian population ranges from 10-20% (Holmstrom, 
Lindell, & Moritz, 1992) with more recent investigations using adults from Canada and the 
United States confirming this rate, more precisely, at 15% and 14%, respectively (Côté et al., 
2004; Deyo et al., 2006). Côté et al. (1997, 2004) further suggest the lifetime prevalence of neck 
pain among adult Canadians to be approximately 67%. The prevalence of neck pain amongst 
helicopter aircrew is consistently described as higher than the general population (Adam, 2004; 
Ang & Harms-Ringdahl, 2006) but the rates vary amongst militaries from which data are 
available in the published literature. In Australia, the overall prevalence rate is reported as 29% 
(Thomae et al., 1998). In Sweden, the 3-month prevalence of reported neck pain is 57%. In the 
United Kingdom, the prevalence ranges by squadron from 38% to 81% amongst helicopter pilots 
and airload masters (Wickes et al., 2005) while a recent report from the United States Army 
reveals 58% of helicopter aircrew report neck pain related to flying (Walters et al., 2012). The 
lifetime prevalence of neck pain in CF helicopter pilots and flight engineers operating the CH-146 
Griffon helicopter is reported in the range of 81-84% and exceeds 90% amongst a subset of the 
population that have logged more than 150hrs of NVG-flight hours during their career (Adam, 
2004). 

While the issue of cervical pain may be a more recent concern and the primary focus of this 
review, the issue of spinal column injuries and discomfort in helicopter aircrew should not be 
omitted from this document. Lower back pain (LBP) is among the most common occupational 
health problems (Waddell & Burton, 2001) and prevalence of LBP in the Canadian and American 
adult population is 18% (Cassidy et al., 2005) and 26%, respectively (Deyo et al., 2006). LBP is a 
well-documented issue in helicopter pilots with a lifetime prevalence of 61-80% worldwide 
(Thomae et al., 1998; Bridger et al., 2002; Sargent & Bachmann, 2006; Grossman et al., 2012). 
Findings from an epidemiological review of occupational LBP report helicopter pilots have the 
highest rates of LBP among occupations requiring a seated position for more than half of the 
workday (Lis et al., 2007).  Survey data from United States Navy helicopter pilots by Phillips 
(2011) indicate that 88% of pilots report experiencing LPB during at least half of their flights and 
34% of these pilots admit that their LBP negatively affects their situational awareness. LBP 



 
 

 
  
 

 
 

continues to be more prevalent than neck pain amongst helicopter aircrew (Walters et al., 2012) 
but logic and this review will suggest these injuries are more likely related rather than exclusive. 

When the spinal column is considered as a whole, helicopter aircrew are at increased risk for 
chronic injuries of the spinal column related to the specifics of their working environment. This 
review of literature will focus on these specifics as they pertain to neck injuries but will discuss 
the related elements of the back pain epidemic that is well documented in this population. The 
reasoning for this is multi-fold:  

1) The spinal column acts in concert to support the weight of the head in a caudal direction; 
mass on the head is supported by the cervical spine, which is in turn supported by the thoracic 
spine, which is further supported by the lumbar and sacral spine as the load is ultimately 
supported by the pelvic girdle. 

2) The posture required to perform occupational duties is one of the most commonly 
discussed factors in investigations of back and neck injuries in this population. 

3) The vibration associated with the working environment, also commonly cited as a 
stressor, is transmitted and augmented in a rostral direction as found by multiple teams of 
researchers. 

This review will briefly discuss the anatomy of the spinal column, specific hypotheses related to 
neck injuries, the differences between flying in the day and night environment from an ergonomic 
perspective, specifics related to the helmet loads and masses currently employed by helicopter 
aircrew, and the benefits offered by physical training to optimize fitness and increase the 
physiologic work capacity.  

B.2 Spinal anatomy 

The spinal column consists of 26 bones that articulate in more than 30 joints to form a curved and 
flexible structure that is supported and moved by more than 20 pairs of muscles (Marieb, 1998; 
Coakwell et al., 2004; Ang et al., 2005). This structure serves multiple purposes including 
protection for the spinal cord, support for the axial skeleton, the transfer of the load of the trunk to 
the lower limbs, articulation sites for the ribs, attachments for muscles of the rib cage, the back 
and the shoulders, and, perhaps most importantly, support for the skull.  The head support allows 
the body’s command and control center, the brain, to observe its environment and the use of NVG 
enhances this functional requirement under low-light conditions.  

The cervical spine is composed of seven bones, the smallest and most delicate of the spinal 
column, providing attachment sites for the muscles of the lower jaw and the neck (Marieb, 1998). 
The structure of the bones of the cervical spine and the locations of the muscles associated with 
the cervical spine allow for the significant amount of head movement of which the human body is 
capable – flexion, extension, rotation, and combinations of flexion or extension with rotation. 
However, it is this delicacy in the design that makes the cervical spine a fragile region when large 
forces are applied instantaneously (i.e. as a result of sudden impact in a motor vehicle accident or 
contact sports) or over an extended period of time (i.e. cumulative loading as seen in normal 
NVG flight over an aircrew member’s career).  



 
 

 
 

Studies have evaluated objective image findings of degenerative symptoms caused by repeated 
cervical and lumbar spine loading amongst pilots.  Radiological evaluations report increased 
osteophytic spurring and arthrosis deformans in the cervical spine of helicopter pilots 
(Hendriksen & Holewijn, 1999). Aydog et al.(2004) report helicopter pilots to be the most likely 
to have cervical spondylarthritic or spondylitic changes on radiographs, suggestive of 
osteoarthritis, as compared to their fixed wing colleagues who fly either transport or fast-jet. In 
the same study, no differences were observed between aircraft type and prevalence of 
degenerative changes in the lumbar spine. Landau et al.(2006) used magnetic resonance imaging 
(MRI) to assess the prevalence of lumbar and cervical degenerative changes in three sub-
populations of pilots (fighter pilots, transport pilots, and helicopter pilots) who did not have a 
history of significant neck or back trauma. Cervical disc degeneration was found in 50% of the 
helicopter pilots, most commonly in the C5-C6 and C6-C7 joints. As compared to the sample of 
transport pilots, the helicopter pilot sample had a greater degree of spinal column disease despite 
being, on average, 8 years younger (Landau et al., 2006). Alternatively, flight trainees were found 
to have increased bone mineral density of the cervical spine as compared to age-matched civilians 
(Naumann et al., 2004). Caution should be used when interpreting these results as MRI findings 
are poorly associated with severity of back and neck pain symptoms in the general population 
(Videman et al., 2003) and, for the purpose of this review, that caveat will shift the focus back to 
neuromuscular causes and solutions of neck pain amongst the helicopter community. 

Estimates suggest the maximum tolerance for single exposure to compressive forces without risk 
of injury is 2414 N for individuals 20 to 40 years of age and 1738 N for individuals over the age 
of 40 (Hidalgo et al., 1992). While normal military helicopter flight will not exceed those values, 
the same study estimates that prolonged loads should not exceed 1% of an individual’s maximal 
voluntary contraction (MVC). However, simply the helmet alone in neutral posture can result in 
an 18-28% increase in muscular activity in the neck as assessed with EMG prior to the addition of 
NVG or exposure to +Gz forces (Sovelius et al., 2008). The difficulty with interpreting these 
values as they relate to helicopter aircrew is the complexity of the job and the mobility it 
demands. Helicopter aircrew do not maintain a static neutral position while in flight and, as 
demonstrated mathematically by Hidalgo et al.(1992), small changes in cervical posture can result 
in large increases in the forces placed upon the ligaments, bone, intervertebral discs, and muscles. 
Forde et al.(2011) demonstrate the increased cumulative load to be more pronounced over the 
duration of a simulated mission when the neck must support an NVG-equipped flight helmet as 
compared to the helmet alone.  

B.3 Neck pain definitions & injury hypotheses 

A common definition of neck pain is difficult to locate in the scientific literature. When the pain 
is muscular in nature, the term neck myalgia is often used. Further to this, neck myalgia is a 
component of the category of injuries referred to as upper extremity muscle disorders (UEMD) 
(Lupajärvi et al., 1979; Viikari-Juntura, 1983). Visser and Dieën’s (2006) definition UEMD as 
“disorders of muscle tissue proper, excluding tendon disorders and disorders of the tendinous 
insertions”  with injuries characterized by subjective symptoms such as sensation of constant 
muscle fatigue, muscle stiffness, and radiating pain may be too limiting due to its exclusion of 
tendinous injuries. Further difficulties in defining neck pain consistently relates to the mechanism 
of injury; the forces and duration of application of these forces can vary greatly between injuries 
and high impulse load injuries (e.g. what is often seen in fast-jet aircrew exposed to >+4 Gz) are 
difficult to compare to cumulative loading injuries (e.g. helicopter aircrew exposed to low +Gz 
and helmets with increased mass).  



 
 

 
  
 

 
 

Most neck pain research indicates that pain and dysfunction are multifactorial. External 
psychosocial factors, physical loading factors, and the psychological and biological 
characteristics of the individual are important (Bronfort et al., 2001; Oldervoll et al., 2001; Ylinen 
et al., 2003; Nikander et al., 2006; Ylinen et al., 2006) in addition to other factors such as muscle 
degeneration and/or impaired neuromuscular function resulting from chronic overuse (Conley et 
al., 1997a; Conley et al., 2007b). Posture, low +Gz forces while using NVG, vibration while 
using NVG, and the overall weight and weight distribution of the helmet are reported as 
perceived causes of neck pain amongst aircrew (Wickes et al., 2005; van den Oord et al., 2010b; 
van den Oord et al., 2012a).  Two studies have suggested a link between sex and neck pain, with a 
decreased tolerance of certain helmet mounted loads, particularly aft-loaded helmets such as the 
case would be with the use of NVG with a counterweight (NVGcw), amongst female aircrew 
(Barazanji & Alem, 2000), and an increased incidence of neck pain as compared to their male 
colleagues (van den Oord et al., 2010b). Other studies have not supported this finding but cannot 
refute them due to a male predominance amongst research participants (Harrison et al., 2011).  

With a poor correlation between radiographic findings and neck pain, applicable theories should 
focus on the soft tissue of the cervical region. Panjabi (2006) presents a clear and logical 
multifactorial hypothesis for neck and back pain that incorporates the soft tissue structures. The 
proposed mechanism is cumulative microtrauma to the ligamentous structures of the cervical 
spine as a result of an extended period of submaximal loading. The microtrauma results in minor 
injuries and ruptures of the ligaments of the cervical spine that results in impaired muscle 
function, including “muscle coordination and individual muscle force characteristics, i.e. onset, 
magnitude, and shut-off” (Panjabi, 2006).  Other proposed mechanisms for injury in the literature 
include the “Cinderella hypothesis” (Hagg, 1991; Sjoogaard et al., 2000; Knardahl, 2002; Thorn, 
2005) or the “nitric oxide/oxygen ratio” hypothesis (Eriksen, 2004). These similar hypotheses 
propose that sustained submaximal muscular contractions, particularly in the trapezius muscles, 
result in occlusion of capillaries and arterioles within the muscle. The occlusion severity is more 
pronounced as a result of physiological vasoconstriction in the setting of stress (including 
sustained periods of mental alertness) or as a result of head-forward posture (Eriksen, 2004; 
Thorn, 2005). As will be presented in a later section, decreased muscular perfusion and 
oxygenation also occurs as a result of whole body vibration (WBV) (Maikala and Bhambhani, 
2004). Oxygen delivery and aerobic respiration at the cellular level is not possible in the 
heterogeneously occluded regions of the muscle. Such an occurrence is measurable through a 
shift in the red-ox state of cytochrome-c oxidase (CtOx), the final enzyme in the electron 
transport chain. Eriksen (2004) states, with respect to the ischemic factors that can contribute to 
neck pain, that the “most effective non-pharmocological measure may be to reduce exposure to 
prolonged head-down neck flexions and psychosocial stress at work”.  

Specific to CF helicopter aircrew, individual articles stemming from recent dissertation 
documents strongly suggest a significant muscular component to the cervical injuries associated 
with NVG-use (Forde, 2009; Harrison, 2009; Salmon, 2009). Using near infrared spectroscopy 
(NIRS), muscle perfusion to the trapezius muscles increased during simulated NVG missions as 
compared to day missions (Harrison et al., 2007a) that occurred regardless of cockpit seat side 
(Harrison et al., 2007c). While this may seem to contradict the “nitric oxide/oxygen ratio” 
hypothesis, Eriksen (2004) states that even small regions of occlusion, perhaps not appreciable by 
NIRS evaluation, may be sufficient to cause frequent exacerbations of neck pain. In support of the 
hypotheses identifying heterogeneous occlusion and hypoxia as a cause of myalgia, an acute 
decrease in the concentration of CtOx was observed during simulated NVG missions while an 
increase was observed to occur during day missions. Forde et al.(2011) found an increase in time 



 
 

 
 

spent in a flexion or head-down posture during simulated NVG missions as compared to day 
missions. To further support the muscular component of neck strain, Salmon et al.(2011a) 
reported increased cervical muscle strength and endurance as a result of a 12-week training 
program with decreased self-reports of pain. The benefits offered by physical training will be 
discussed in greater detail in a later section. 

B.4 Day and night working environments 

The working environment of helicopter aircrew has been the subject of much scrutiny due to the 
long-documented issue of LBP amongst this population (Froom et al., 1986; Froom et al., 1987; 
Thomae et al., 1998; Hansen and Wagstaff, 2001; Orsello et al., 2013). Posture, pilot height and 
vibration are the most often cited concerns for increased risk of low back pain. A helicopter 
pilot’s posture has been linked to physiological findings of increased spinal muscle activity or 
fatigue during simulated flight (Pope et al., 1986) and during flight (Lopez-Lopez et al., 2001). 
The in-flight spinal posture of helicopter pilots has been described as being hunched and twisted 
due to the location of particular flight controls (Lopez-Lopez et al., 2001; de Oliviera and Nadal, 
2004; Pelham et al., 2005). Specifically, this posture allows the pilot to operate the collective 
control, responsible for the pitch of the rotor blades, which is located to the left and below the 
pilot’s seat. 

For military aircrew, flight-related neck pain is multi-faceted in the causal factors specifically 
related to their job performance. Previous studies have identified increased G-force exposure, 
accumulated flying hours, head position, vibration, body posture, airframe and cockpit 
ergonomics, and head supported device use as the most common causative factors while overall 
physical fitness is described as protective (Adam, 2004; Wickes et al., 2005; Pelham et al., 2005; 
Ang & Harms-Ringdahl, 2006; van den Oord et al., 2010b). Perhaps most concerning given a 
large proportion of pilots and aircrew report neck pain at some point during their careers, prior 
episodes of neck pain are cited as a risk factor for and predictor of subsequent neck pain (Ang & 
Harms-Ringdahl, 2006). All of these factors are similar to the factors associated with low back 
pain amongst helicopter pilots (Thomae et al., 1998).  

The majority of the available literature related to neck pain has focused primarily on fast-jet 
aircrew (Hamalainen & Vanaranta, 1992; Hamalainen, 1993; Hamalainen et al., 1994; Oksa et al., 
1996) with a more recent shift towards the inclusion of helicopter aircrew (Thuresson, 2005; 
Forde, 2009; Harrison, 2009; Salmon, 2009). Substantial differences exist between the working 
environments of fast-jet and helicopter aircrew and these differences influence both the 
mechanism of injury and the subsequent methods of mitigation. Fast-jet operations may expose 
aircrew to forces between +4.0Gz and +7.0Gz while helicopter aircrew rarely exceed +2.0Gz 
(Hamalainen & Vanaranta, 1992; Oksa et al., 1996; Weirstra, 2001). The helmets of fast-jet 
aircrew range in mass from 1.31kg – 2.15kg (Hamalainen, 1993; Hamalainen et al., 1994) while a 
CF helicopter flight helmet, when equipped with NVGcw, may have a mass of 3.7kg (Weirstra, 
2001).  In fast-jet aircrew, the mean muscular strain, as indicated by percentage of a maximal 
voluntary contraction (MVC), has been reported to fall between 5-20% MVC during most 
missions (Oksa et al., 1996).   Under high +Gz exposure, the muscular strain of cervical neck 
flexors reportedly ranges from 40-80% of MVC, with the highest recorded value of in-flight 
MVC being 257% (Green & Brown, 2004; Oksa et al., 1996).  Hamalaien (1993) suggests the 
mass of the helmet alone accounts for a load that is comparable to 15% MVC during high +Gz 
maneuvers. In helicopter pilots, the weight of the helmet alone can cause an 18% and 28% 
increase in muscular activity in the sternocleidomastoid and cervical erector spinae muscles, 
respectively, as compared to resting conditions; with NVG, this increase becomes 29% and 34% 
for the sternocleidomastoid and cervical  erector spinae, respectively (Sovelius et al., 2008). Fast-



 
 

 
  
 

 
 

jet aircrew can often identify the moment at which their injury occurred. For helicopter aircrew, 
the injury is often more insidious as a result of chronic exposure to forces countered by 
submaximal muscular contractions.  

Experienced helicopter aircrew report posture, low +Gz forces while using NVG, vibration while 
using NVG, and the overall weight and weight distribution of the helmet as their perceived causes 
of neck pain (Wickes et al., 2005; Van den Oord et al., 2012a). Specific to the CF, only 2 
variables are required to accurately predict risk of neck pain – the height of the crewmember and 
the length in hours of their longest NVG mission (Harrison et al., 2012). This is consistent with a 
recent U.S. Army study in which aircrew members at anthropometric extremes for body mass, 
neck circumference, leg length and height were at an increased risk of both back and neck pain 
(Walters et al., 2012). To further support the argument that a link exists between low back and 
neck pain in this population, height was recently identified as the most important predictor of 
back pain among United States Navy helicopter aircrew (Orsello et al., 2013). 

Research using CF helicopter pilots in a flight simulator documented the effects of additional 
mass in the form of NVG on the metabolic activity, assessed by NIRS, in the trapezius muscles 
(Harrison et al., 2007a) as compared to non-NVG training missions. The increased metabolic 
activity continued to increase for the duration of the simulated mission without an obvious 
plateau (Harrison et al., 2007a) and was observed to be independent of cockpit seat, (i.e. left seat 
vs right seat) (Harrison et al., 2007c). While NVGcw did provide metabolic relief to the trapezius 
muscles (Harrison et al., 2007b), more recent work suggests the smaller neck muscles, such as the 
sternocleidomastoid and splenius capitis, may experience increased muscular activity, as assessed 
by electromyography (EMG), in a laboratory setting with dynamic postures designed to simulate 
in-flight tasks with NVG and NVGcw (Harrison et al., In Press (a)). 

In addition to the increased muscular activity as a result of the increased helmet mass, NVG do 
have another limitation. While they do provide optical clarity during low-light conditions that the 
naked eye cannot, they do so through a much smaller field of view. Normally, the human eyes 
provide a field of view of approximately 2000 horizontally and 1350 vertically (Werner, 1991). 
NVG can reduce that field of view significantly to approximately 400 both horizontally and 
vertically (Craig et al., 1997; Geiselman and Craig, 1999). As a result, the aircrew member cannot 
rely on peripheral vision at night the same as they can during the day. They must move their head 
and neck more in order to bring objects of interest directly into this limited field of view. For 
pilots assuming neck flexion, extension, and rotational postures, the C7/T1 joint serves as the 
point of rotation for moment calculation using the head’s center of gravity. The additional 
anterior mass of the NVG shifts the centre of gravity forward and up, thus increasing the distance 
of the perpendicular moment arm while also requiring an increased muscular force to compensate 
for its weight (Sovelius et al., 2008). Forde et al.(2011) demonstrated that this resulted in 
increased mobility and changes in posture that, when combined with the increased mass of the 
helmet with NVG or NVGcw, resulted in increased moments, peak loads, cumulative loads, and 
shear forces as compared to simulated day missions.   

Another constant in the environment of helicopter aircrew is vibration, with one source describing 
helicopters as “thousands of parts vibrating in close formation” (Young, 1982). In the case of 
helicopter flight, the vibration is a result of the main rotors and while it can be increased 
operationally (flight speed, in-flight maneuvers, environmental conditions, and altitude), it can 
only be decreased by careful aircraft and seat design (Hart, 1988).  Whole body vibration (WBV) 
is vibration transmitted throughout the entire body, often experienced through the seat of moving 



 
 

 
 

vehicles (Maikala & Bhambhani, 2004) and is linked to performance decrements such as fatigue, 
and to medical problems such as chronic pain, degenerative disease in the spinal column (Hart, 
1988). A critical survey of WBV literature using a large population of subjects indicate WBV is 
linked to increased health risk of the spine and the peripheral nervous system (Seidel & Heide, 
1986). Similar to the previous presented hypotheses linking low-level muscular contractions of 
the trapezius during head-forward posture and decreased muscle perfusion (Eriksen, 2004; Thorn, 
2005), Maikala & Bhambhani (2004) report WBV can cause acute changes in blood volume, 
perfusion, and oxygenation in a working muscle; the same authors also report that 4.5 – 5.5Hz is 
the frequency range at which the maximum WBV energy transfer to the human spine occurs.  

Currently, the unmodified helicopter cockpit seat only suppresses 6 -15% of vibration 
transmission (Hiemenz et al., 2008). Recent work in a helicopter and seat identical to what is 
employed by the CF’s tactical helicopter squadrons indicates this range to be one of the principal 
harmonics of the aircraft’s vibration spectrum (Chen et al., 2007; Chen et al., 2009). As a result, 
the magnitude of vibration experienced by pilots at the head and neck is roughly double that of 
the magnitude of vibration experienced at the lower back (Chen et al., 2007; Chen et al., 2009). 
This correlates with earlier findings that posture and helmet load positively influences seat-to-
head vibration transmissibility and muscle activity (Thuresson, 2005a).  

Therefore it would seem reasonable to hypothesize the vibration profile of the CH-146 in the 
setting of an unbalanced helmet load such as with NVG could be synergistic in their contribution 
to the rates of neck pain reported by the CF’s helicopter aircrew. Indeed, Salmon et al.(2011b) did 
suggest that propagation of vibration along the spine is a significant factor related to neck 
dysfunction. Efforts to reduce WBV may offer benefit in reducing and preventing lumbar and 
cervical pain.  Chen et al.(2009) report an adaptive seat cushion prototype effectively suppressed 
vibration in the range of approximately 5Hz while the use of magneto-rheological seat suspension 
system suppressed vertical vibration transmission by 76% on a 50th percentile male helicopter 
pilot (Hiemenz et al., 2008).  

B.5 Helmets, masses, and loads 

Typical flight helmets weigh approximately 1.5kg (Butler, 1992). More specifically, a CF 
helicopter flight helmet has a mass of 1.4kg while a CF helmet equipped with NVGcw has a mass 
of approximately 3.7kg (Weirstra, 2001). Of that mass, NVGcw represents an additional mass of 
0.05-0.4kg as compared to NVG (Weirstra, 2001; Van den Oord et al., 2012b). The weight of the 
NVG helmet alone, prior to loading as a result of vibration or exposure to G-forces, is significant 
enough to increase the muscular activity of the neck musculature (Sovelius et al., 2008). The 
additional mass associated with the use of an NVG-equipped helmet during simulated flight 
conditions significantly increases the metabolic activity of the shoulder and neck musculature 
(Harrison et al., 2007a; Harrison et al., 2007b; Harrison et al., 2007c). Beyond simply the mass of 
the additional equipment, the location of its center of gravity is a significant contributor to stress 
on the musculature. Improved helmet fit and balance alone are enough to decrease the subjective 
discomfort reported by helicopter aircrew (Van den Oord et al., 2012b). 

The center of mass of a flight helmet typically resides forward and superior to the natural pivot 
point of the neck (Butler, 1992; Harms-Ringdahl et al., 1996; Sovelius et al., 2008; Forde et al., 
2011). The result is constant moment acting on the muscles of the neck, in particular the extensor 
groups, to counterbalance the moment generated by the forward and superiorly positioned helmet 
system. When the head is in a neutral position, Butler and Alem (1997) suggested an upper limit 
of 90 N•cm during long duration helicopter flight (>4hrs) in male subjects to limit the 
biomechanical stress on the cervical structures; Barazanji and Alem (2000) confirmed this upper 
limit for female subjects during static laboratory testing with different helmet configurations. 
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More recent work does not fully support the inclusion of a lateral imbalance favoring increased 
loading on the right side. Isometric testing has demonstrated a decreased strength and endurance 
capacity of the right–sided cervical muscles as compared to the left in the CF helicopter aircrew 
population (Harrison et al., 2009; Harrison et al., 2011). Further, when monitoring muscle 
metabolism with NIRS during simulated missions results indicated increased muscle metabolism 
in the musculature on the right side of the cervical spine (Harrison et al., 2007a) regardless of 
cockpit seat side (Harrison et al., 2007c).  Additional work in the lumbar region has noted 
increased EMG activity in the musculature on the right side of the lumbar spinal column (Lopez-
Lopez et al., 2001) and multiple sources hypothesize that the left-leaning in-flight posture 
demanded by the operation of the collective and cyclic controls contributes to this phenomenon 
(Pope et al., 1986; Pelham et al., 2005). Regardless, despite the use of NVGcw in an effort to 
move the center of mass towards a more natural location, it remains forward and high as 
compared to the natural anatomy (Forde et al., 2011). Using static biomechanical analysis, 
Thuresson et al.(2005b) found the moment-reducing effect from NVGcw decreased in the neutral 
position as compared to NVG. But, in the flexed non-neutral posture, the moment reducing effect 
of NVGcw is not apparent.  This supported previous research reporting an inverse relationship 
between neck flexion and NVGcw based relief; where the NVGcw provided less relief as the 
neck was increasingly flexed (Harms-Ringdahl et al., 1996). This leads to the conclusion that, 
with increased neck flexion, NVGcw may actually add to the loading moment on the neck. 

The addition of mass to a flight helmet does not automatically result in a balanced load. Gallagher 
et al.(2007), in a laboratory setting with 4kg and 6kg helmets, reported that aircrew preferred to 
wear a heavier but balanced helmet for a prolonged period of time as compared to a lighter helmet 
with centers of gravity similar to the current CF model. Most recently, Van de Oord et al.(2012a, 
2012b) suggested and demonstrated that optimizing the fit of the helmet with a novel method for 
fitting the helmet that is customized to the individual crewmember can reduce neck pain and 
discomfort despite the current imbalance in the operational load. These results suggest that helmet 
balance and helmet fit contribute significantly to the development or prevention of neck pain 
amongst aircrew members. Research with United States Army aircrew reported helmet size did 
not correlate with head circumference (Walters et al., 2012). This strongly suggests there is room 
for improvement in optimizing helmet fit to enhance balance and decrease neck strain. Currently, 
the most commonly used method to enhance balance is the NVGcw. 

The choice to use the NVGcw remains an individual preference and has not been clearly 
supported or refuted in the literature at present. Early work suggested counterbalancing the front-
mounted load resulted in increased muscular activity, as assessed with EMG, with variations in 
head postures that were similar to in-flight requirements (Knight & Baber, 2004). Harrison et 
al.(2007b), using NIRS during simulated missions in a full-motion flight simulator, suggested 
NVGcw mitigated the metabolic demand experienced by the trapezius muscles during NVG 
flights. More recent work pending publication suggests that NVGcw does increase the work of 
the neck musculature, particularly when the field of vision requires the crewmember to look 
below the horizon (Harrison et al., In Press (a)). The difference is most likely due to the muscles 
in question. The projects demonstrating a deleterious effect as a result of NVGcw investigated the 
smaller muscles of the cervical spine using EMG (Knight and Baber, 2004; Harrison et al., In 
Press (a)) whereas the work supporting the use of NVGcw only investigated a single larger 
muscle group, the trapezius, using NIRS (Harrison et al., 2007). As will be discussed in a 
subsequent section in greater detail, isometric testing to volitional fatigue in this same population 
suggests that it is the smaller muscles and muscle groups that are most prone to fatigue, and 
potentially, subsequent injury (Harrison et al., 2009; Harrison et al., 2011). Coupled with other 
recent results that report decreased neck pain with an optimized and individualized helmet fitting 
process to enhance stability (van de Oord et al., 2012a; van den Oord et al., 2012b), it would seem 



 
 

 
  
 

 
 

prudent and cost effective for future work to prioritize the development of a more balanced 
helmet with customizable fit rather than focusing solely on a lighter helmet and NVG system. 

B.6 Benefits of physical fitness and training on aircrew work 
capacity 

In the general population with chronic neck pain, the addition of exercise to the treatment 
regimen is beneficial in both the short- and the long-term (Bronfort et al., 2001; Chiu et al., 2005; 
Haldeman et al., 2008). In flight-related neck pain, a recent shift towards physical fitness and 
training has occurred to provide “better muscle conditioning..., enhanced muscle coordination, 
and head support strategies…to prevent neck injuries stemming from the extra mass of the 
helmet” (Sovelius et al., 2008). Research to evaluate the associated factors of flight-related neck 
pain in the British aircrew suggest aerobic exercise, weight training, and neck strength training 
were all preventative in their relationship with neck pain (Wickes & Greeves, 2006). Van den 
Oord et al. (2010) measured differences in neck muscle strength and cervical range of motion 
between aircrew with and without neck pain.  Their results indicate those without pain tend to 
have trend, though not statistically significant, towards greater strength and cervical range of 
motion as compared to their symptomatic colleagues. 

In fast-jet aircrew, increased neck muscle strength is suggested to protect and stabilize the head 
and neck muscles during brief episodes of increased loading as a result of  +Gz (Ang et al., 2005) 
while other studies suggest it is the cumulative +Gz loading rather than the peak +Gz load that is 
a better predictor of neck pain among fixed-wing aircrew (Kang et al., 2011).  The ideology 
behind the link in strength and injury is functionally stronger neck muscles will be able to 
maintain the head in a neutral position to overcome the gravitational accelerations. However, in 
helicopter aircrew, the link between decreased neck strength in terms of a maximal voluntary 
contraction and injury is not supported by the literature (Ang et al., 2005; Harrison et al., 2009; 
van den Oord et al., 2010b; Harrison et al., 2011); one study reports increased “physical fatigue” 
at the end of NVG flight duties among aircrew with neck pain as compared to their pain-free 
colleagues (van den Oord et al., 2010b). This is supported by work with EMG in which 
differences were observed between the normalized median frequency of neck muscles in either 
flexion (Ang et al., 2005) or extension (Harrison et al., In Press (b)) in helicopter aircrew with and 
without pain; those with pain tended to have a blunted EMG signal as compared to their healthy 
colleagues. Furthermore, Ang et al. (2009) provide evidence that specific training of the neck 
musculature can improve the work capacity of those muscles as assessed by EMG and decrease 
reports of pain amongst helicopter aircrew. Thus, the hypothesis specific to helicopter aircrew 
suggests training programs focus on muscular endurance and general fitness to limit the effects of 
cumulative exposure to the multiple factors that contribute to neck pain as opposed to programs 
intending to increase strength (Wickes et al., 2005; Harrison et al., 2009; Salmon et al., 2011a; 
Salmon et al., 2011b).  

After Wickes et al.(2005) suggested a protective link between regular physical exercise, in this 
case aerobic fitness in the form of participation in a self-selected activity (e.g. jogging, soccer, 
racquet sports), researchers have tested either the relationship between neck muscle function or 
the efficacy of neck strengthening programs on reported pain. Harrison et al.(2009) report the 
smaller muscles of the neck (i.e sternocleidomastoid and splenius capitis) are more prone to 
fatigue during submaximal endurance testing as compared to the larger muscle groups (i.e. the 
mid and lower trapezius) while seated in a cockpit chair. Similarly, Sovelius et al.(2008) note it is 



 
 

 
 

the sternocleidomastoid that demonstrated increased EMG activity in order to maintain a neutral 
posture in response to the additional load of either a flight helmet or a flight helmet with NVG. 
Ang et al.(2009) found that a supervised exercise regimen, specifically focused on neck and 
shoulder exercises, significantly reduced rates of neck injury in a 1-year follow-up. Additionally, 
this benefit is possible with as little as 1 hour per week for 6 weeks dedicated to performing the 
specific exercises. With respect to addressing the neuromuscular component of training 
specificity, Sovelius et al. (2008) suggest a benefit from the use of head loading and trampoline 
training. While simulating changes in +Gz loading (approximately 0-4 +Gz), the trampoline also 
provides a means by which to introduce low-level repetitive loading to an aircrew training 
program. 

Specific to the CF, Salmon et al. (2011a) randomly distributed a group of CF helicopter pilots and 
flight engineers for a 12-week intervention as participants in either an endurance-training 
program (ETP) or a coordination-training program (CTP).  The ETP group performed dynamic 
movements with resistance designed to equal 30% of each participant’s baseline MVC while the 
CTP participants performed low load isometric exercises focused on the deep cervical stabilizer 
muscles. Compared to control subjects, both ETP and CTP groups resulted in significantly 
reduced subjective neck pain, and additionally, increased MVC and muscular endurance. These 
results further suggest that neck-specific exercise programs can reduce neck pain in an efficient 
and inexpensive manner. 

B.7 Recommendations 

The factors that contribute to the occurrence of neck pain among CF helicopter aircrew are 
multifactorial. Helmet mass, the distribution and balance of the helmet mass, the number of flight 
hours logged with NVG, the use of NVGcw, the height of the crewmember, the vibration of the 
helicopter, the in-flight posture required to perform essential duties, the overall fitness of the 
crewmember, and the neck/shoulder specific fitness of the crewmember are just some of the 
examples of factors identified in the literature as being contributory. The question now is what 
can be done about these factors? 

The focus of future research should address all of these issues as it is highly unlikely that any one 
of them, alone, will be sufficient to prevent neck pain amongst helicopter aircrew. Ergonomists 
and industry should make a conscious effort to design equipment that has a lower center of 
gravity as suggested by research, the earliest of which is 30 years old (Philips and Petrofsky, 
1983; Sovelius et al., 2008).  As has already started, industry and research should continue to 
design new seats that meet the safety requirements for military flight while reducing vibration 
transmission to the crewmember (Hiemenz et al., 2008; Chen et al., 2009).  

Future ergonomic and biomechanical work should quantify the duration of time, in flight, that 
each crewmember spends in specific postures and make certain each crewmember has a 
customized helmet fit performed. Head forward flexion is linked to reports of neck pain and 
discomfort in the general population (Eriksen, 2004; Thorn, 2005) but other than what is reported 
by Weirstra (2001) and Forde et al. (2011), little is known about the in-flight tasks and postures of 
helicopter crewmembers, particularly flight engineers. Obtaining this information would likely 
dictate changes to the unregulated manner in which aircrew choose to use NVGcw based on 
personal preference. Better fitting helmets, will also likely help to decrease neck pain and 
irritation during night flights (van den Oord et al., 2012b). Beyond the optimized fit, perhaps not 
every crewmember has an in-flight posture and loading profile that warrants the use of NVGcw. 

Lastly, fitness is an obvious solution that often appears to be overlooked. In the helicopter 
community, encouragement of a structured fitness program that regularly includes either aerobic 



 
 

 
  
 

 
 

fitness (Wickes et al., 2005) or neck-specific exercises to address muscular endurance and posture 
(Ang et al., 2009; Salmon et al., 2011a) is the most likely to provide nearly immediate 
improvements in the current neck pain situation in the CF helicopter community (Adam, 2004).  

B.8 Conclusions 

The issue of neck pain as a result of military helicopter operations persists. Numerous research 
projects are publishing results that consistently highlight the same areas of concerns (Thuresson, 
2005; Wickes et al., 2005; Ang & Harms-Ringdahl, 2006; Forde et al., 2009; Harrison, 2009) as 
have been highlighted by this review. The underlying commonality amongst the factors is the 
need for a kinesiological approach that incorporates both a human-factors engineering perspective 
as well as a focus on the neuromuscular and hemodynamic physiology in order to fully address 
the issues.  
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6 List of symbols/abbreviations/acronyms/initialisms  
 

CF Canadian Forces 

CoG Centre of Gravity 

CtOx Cytochrome-c-oxidase 

CTP Coordination training program 

DND Department of National Defence 

DRDC Defence Research & Development Canada 

DRDKIM Director Research and Development Knowledge and Information 
Management 

EMG Electromyography 

ETP Endurance training program 

FLIR Forward Looking Infrared 

HUD Heads-Up Display 

LBP Low back pain 

LiDAR Light Detection And Ranging  

LPSV Life Preserver Safety Vest 

MRI Magnetic resonance imaging 

MVC Maximum voluntary contraction 

NIRS Near infrared spectroscopy   

NOE Nape of the Earth 

NVG 

NVGcw 

Night vision goggles 

Night vision goggles with counter weight 

NVGs Night Vision Goggles System 

R&D Research & Development 

R&T Rag and Tube 

SAR Search and Rescue 

UEMD Upper extremity muscle disorders 

WBV Whole body vibration 
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Neck pain is a growing concern among CH-146 Griffon aircrew. A simple, yet practical
on-body elastomer-balanced helmet system is provided as one of several feasible
near-term solutions to alleviate the neck pain problem.
Following a rapid work domain assessment of the operational environment of CH-146
Griffon aircrew and an ergonomic hazard screen, the research team identified that
sustained static postures (pilots) and extreme awkward postures (flight engineer) were
primary risks. Moreover, the level of risk increases considerably with the additional
head-borne mass of the night vision goggles system (NVGs). The addition of the NVGs
increases the total mass on the head, adding more compressive load on the neck and
requiring more work from the neck muscles in order to control and stabilize the head.
Additionally, the NVGs alters the balance of forces acting about the head and neck joint
(atlanto-occipital joint), requiring the small upper neck muscles to work even harder. The
ideal solution entails a combination of redesigning the cockpit, cabin and helmet system.
However, in the near-term the on-body elastomer-balanced helmet system provides an
interim improvement. This counter measure provides a balancing force through the
elastomer, off-loading the work from the neck muscles. In addition the total head-borne
load is also reduced compared to the current weight based counter balancing method.
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Les douleurs au cou sont une préoccupation de plus en plus courante chez le personnel
navigant des CH 146 Griffon. Un système de casque ergonomique équilibré avec un
élastomère, simple mais pratique, est l une des solutions réalisables à court terme qui
sont proposées pour atténuer le problème des douleurs au cou.
À la suite d une évaluation rapide du domaine de travail portant sur l environnement
opérationnel de l équipage du CH-146 Griffon et d un examen initial des risques
ergonomiques, l équipe de recherche a établi que les positions statiques prolongées
(pilotes) et les positions contraignantes extrêmes (mécaniciens de bord) constituent les
principaux risques. De plus, le degré de risque augmente considérablement en raison du
poids qu ajoute au casque le système de lunettes de vision nocturne (NVG). L ajout des
NVG augmente la masse totale qui est supportée par la tête, ce qui accroît la charge de
compression sur le cou et exige un effort supplémentaire de la part des muscles du cou
pour contrôler et stabiliser la tête. Qui plus est, les NVG modifient l équilibre des forces
au niveau de l articulation entre la tête et le cou (articulation occipitoatloïdienne), ce qui
entraîne une sollicitation accrue des petits muscles du haut du cou. Idéalement, il faudrait
revoir la conception du poste de pilotage, de la cabine et du système de casque.
Cependant, à court terme, le système de casque ergonomique équilibré avec un
élastomère offre une amélioration provisoire. Cette mesure crée une force compensatrice
grâce à l élastomère, réduisant ainsi le travail requis par les muscles cervicaux. En outre,
la charge totale sur la tête est réduite par rapport à la méthode actuelle de
contre-balancement par le poids.
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