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Abstract

Autonomous Underwater Vehicles (AUVs) are planned to conduct Mine Countermeasure
missions in the future. With the help of high resolution imagery produced by the sonar
systems mounted on AUVs, mines and other objects of interest can be detected. In this
work, the existing approaches for Mine-Like Object (MLO) detection are first reviewed,
then, considering the limitation of the exiting works, a novel machine learning method is
designed for MLO detection. The experimental result on real side scan sonar images
show that the new learning method can provide reliable and fast MLOs detection.

Résumé

L’utilisation de véhicules sous-marins autonomes (VSA) est prévue pour de futures
missions de lutte contre les mines. En effet, des mines et d’autres objets présentant un
intérét peuvent étre détectés a 1’aide des images a haute résolution produites par les
systtmes de sonar installés sur des VSA. Dans le cadre des présents travaux, les
approches existantes en matiére de détection d’objets ressemblant a une mine sont
d’abord examinées, puis, en tenant compte des limites des travaux existants, une nouvelle
méthode d’apprentissage automatique est congue pour la détection de tels objets. Le
résultat expérimental sur de vraies images de sonar latéral démontre que la nouvelle
méthode d’apprentissage peut permettre une détection fiable et rapide des objets
ressemblant a une mine.
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Executive summary

Machine Learning Algorithms for Multiple Autonomous
Unmanned Vehicle Operations: A Fast Detection Algorithm

H. Shao; N. Japkowicz; DRDC CORA CR 2013-059; Defence R&D Canada —
CORA; April 2013.

Introduction: Autonomous Underwater Vehicles (AUVs) are powerful tools that perform
undersea tasks, for both commercial and military purposes. Requiring no operators, they
are ideally suited to perform dangerous tasks remotely. Mine countermeasure operations
is one such mission. Presently, AUVs are used to collect sonar images of the sea bottom,
which are then processed on the mother ship. Processing includes two stages: detection of
Mine-Like Objects (MLO) (Stage I) and classification of MLOs into several categories
(Stage II). Usually, the MLOs are expected to be detected in a single pass in Stage I and
the classification task in Stage II. One of the major challenges with the first stage is to
design fast algorithms that allow on-board processing of images. This work focuses on
MLOs detection (Stage I). The aim of this contractor report is to introduce a fast machine
learning algorithm for the MLOs detection.

Results: The novel learning algorithm developed in this work is able to support fast and
accurate MLOs detection. With the proposed algorithm, the efficiency of mine
countermeasure missions can be improved. More importantly, the risks to humans can be
reduced. The designed algorithms will improve the effectiveness of AUV search and lay
a solid foundation for the whole mine countermeasure mission.
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Machine Learning Algorithms for Multiple Autonomous
Unmanned Vehicle Operations: A Fast Detection Algorithm

H. Shao; N. Japkowicz ; DRDC CORA CR 2013-059 ; R & D pour la défense
Canada — CARO; avril 2013.

Introduction: Les VSA sont des outils puissants qui servent a accomplir des taches sous-
marines, a des fins commerciales et militaires. Ils ne nécessitent aucun opérateur et
conviennent parfaitement a la réalisation de missions dangereuses a distance, parmi
lesquelles on compte les opérations de lutte contre les mines. A I’heure actuelle, les VSA
servent a recueillir des images de sonar du fond de la mer, qui sont ensuite traitées sur le
navire-mere. Le traitement comprend deux étapes, soit la détection d’objets ressemblant a
une mine (étape I) et la classification de tels objets en diverses catégories (étape II).
Habituellement, on s’attend a ce que ce type d’objet soit détecté en un seul passage a
I’étape I et soit classifié¢ a I’étape II. L’un des principaux défis posés par la premicre étape
est la conception d’algorithmes rapides qui permettent un traitement des images a bord du
navire. Les présents travaux portent principalement sur la détection des objets
ressemblant a une mine (étape I). Le présent rapport d’entrepreneur porte sur un
algorithme d’apprentissage automatique visant la détection d’objets ressemblant a une
mine.

Résultats: Le nouvel algorithme d’apprentissage concu dans le cadre des travaux en
question peut appuyer une détection rapide et précise d’objets ressemblant a une mine.
Grace a I’algorithme proposé, I’efficacité des missions de lutte contre les mines peut €tre
améliorée, mais surtout, les risques pour les humains peuvent é&tre réduits. Les
algorithmes congus permettront d’améliorer 1’efficacité de la recherche effectuée au
moyen de VSA et d’établir des bases solides pour les missions de lutte contre les mines.
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1 Introduction

The first two steps of any Mine CounterMeasure (MCM) mission are to detect and
classify targets in specified areas of interest in order to reduce the risk for potential ships
passing through a region. In the future, Autonomous Underwater Vehicles (AUVs) are
envisioned to perform these tasks, thus, keeping operators away from exposure to
potential dangers.

The AUVs used in MCM are able to image and survey the seabed, with onboard high-
resolution side-looking systems, for instance, the Side Scan Sonars (SSS) [1] or Synthetic
Aperture Sonars (SAS) [2]. The underwater conditions can be studied by analyzing the
images produced by the sonar systems. In most cases, sonar images produced by SAS
will have higher resolution and better quality than those produced by SSS.

The first two steps involved in MCM are Mine-Like Objects (MLOs) detection and
classification. In the detection stage, the results are not necessarily real mines. Given the
large seabed area that has to be surveyed by the AUVs, usually MLOs have to be detected
by a single pass. In the classification stage, the MLOs detected may receive further
examination and discrimination. This research will focus on the MLOs detection only.

Currently, the sonar images produced by AUVs are processed by the operators on the
mother ship. The introduction of machine learning methods will increase the intelligence
and efficiency of the AUVs and free the operators from the tedious and time consuming
decision making tasks. Thus, it is of great practical interest to design and apply proper
machine learning algorithms to MLOs detection task.

As a military task, there normally exists a time limit for the MLOs detection. As
mentioned before, considering the large sea area that needed to be covered as well as the
limited computational capability of the CPUs equipped on the AUVs, the speed of the
detection algorithm becomes crucial. The applied machine learning method to be
developed must then be able to support fast MLOs detection.

DRDC CORA CR 2013-059 1



2 Existing Work

Many previous works have looked into the MLOs detection task. In some of the works,
the detection task is conducted by directly applying certain threshold function(s) on the
properties of the sonar images to discriminate between the MLOs and non-MLOs. There
is no intelligence or learning process inside such approaches, and in fact, they fall into
signal processing techniques [3,4].

An example of such method is the fast detection algorithm recently proposed by David P.
William. et. al. [5]. The algorithm can be divided into a three-stage cascade, which are
shadow detection, ripple detection and echo/side echo detection. This method is built on
the assumption that the shadow regions will have lower greyscale values (darker), while
the object regions will have larger greyscale values (brighter), than the surrounding
background.

This fast detection algorithm is built on high resolution SAS images where shadows and
ripples are detectable. However, for the low quality SSS data, the assumptions behind the
fast detection algorithm may not perfectly hold anymore. The shadow detection might be
infeasible since it can mix with the background.

In Tucker. et. al’s work [6], a method called Canonical Coordinate Analysis (CCA) is
used to process the data, then the following detection of Region of Interests (ROIs) is
performed by BP (Backpropagation) neural networks. In F. Langner, et. al’s work [7], the
objects are analyzed by looking at certain contour-based properties after identification of
the ROIs. Then the Probabilistic Neural Network (PNN) is applied to find the target of
interests. However, usually PNN has a large space complexity that requires large memory
and the classification process of PNN can be very slow, which would limit its application
to fast detection systems.

2 DRDC CORA CR 2013-059



3 Proposed Approach

In this research, a novel fast Multi-Layer Perceptron (MLP) based learning algorithm is
designed for the MLOs detection. The proposed approach views MLP learning from a
perspective that is much different than the traditional one, resulting in a learning model
that has its own advantages over other related learning methods for the MLOs detection
application.

3.1 Overview of Multi-Layer Perceptron Artificial Neural
Network

Multi-Layer Perceptron Artificial Neural Network (ANN) is a family of learning models
inspired by the real neural systems in the human brain. Similarly to biological neural
networks, ANN consists of many neurons. In some cases, the artificial neurons are
grouped into several layers that are interconnected. Such a network is called the MLP.
The neurons inside the network will be fired if certain conditions are satisfied. Many real
life problems have been well solved by this approach.

Tnput layer Hidden layer Output layer

Xy

Xg

X
Figure 1: Example of the MLP

Figure 1 shows an example of MLP with one hidden layer, which is also called a Single
hidden Layer Feedforward Network (SLFN). In theory, this kind of network is able to
perform universal approximation [8], which means that it has the ability to approximate
any continuous function within any given error. Therefore, any continuous classification
boundary can also be modeled by this approach. In this example, the output layer is
composed of only one neuron.

DRDC CORA CR 2013-059 3



The neurons in the human brain either fire or do not fire. The two states can be
represented by a step function, which is

Lx>0
g(x)={ (D

0, otherwise

Unfortunately, the step function is not smooth or differentiable at the origin. Instead, the
S shaped sigmoid is usually used as the activation function. Given the input vector x and
the input connections (weights) a, the sigmoid function can be written as

1

1+exp[—(a'x +b)]

gla,x)= )

In many cases, we may not require the sigmoid function to always pass through the
origin, so a bias term b can be introduced to enable possible shift.

Sigmoid with different bias

sigmoid(x)

Figure 2: Sigmoid with different bias b

3.2 Fast MLP based Learning Model

Traditionally, the MLP is trained to approximate the given training data according to
gradient or gradient related information [9]. Such methods focus on how to reach the
(local) minimum of the error surface. Much time is consumed to force the network
approximating the training data by tediously adjusting weights, while ignoring the
property of the weights during this slow learning process. Such an approach is very likely
to overfit the data, which means the network tends to memorize the data rather than
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learning knowledge from the data. Generally there are two problems the traditional
methods suffer from, overfitting and slow learning speed.

Based on the knowledge learned from the training dataset, we are more interested in the
network’s ability to predict on other general, new and unseen examples, rather than its
ability to memorize (overfit) those it has seen in the past. Such generalization ability is
closely related to the norm of the weights.

Considering the sigmoid neurons and a linear output layer, the nonlinearity of the
network comes from the hidden layer. For the same training data, if the norm of the input
weights is small, the sigmoid will work in the nearly linear region, resulting in an output
function close to linear in the input space. On the contrary, if the norm of the input
weights is large, the output function will gain more complexity and non-linearity. If the
weights keep growing, the sigmoid function will be saturated, and it will produce an
output either too close to 0 or 1. In such a case, any variation or noise in the input data
will be magnified by the weights and lead to a great variation in the network output. In
this case, any training error will be heavily magnified, and such networks are very likely
to memorize. Unfortunately traditional methods focusing on minimizing training error are
very likely to end up with such a network.

The solution of the MLP is, in nature, a set of weights. As we have seen, the norm of
input weights is important to the performance of the MLP. Therefore, in the proposed
approach, to deal with the overfitting problem, we will not only focus on the training
error, but also on the norm of the network weights.

To improve the learning speed, we propose to use the feature mapping idea from kernel
learning [10] to construct SLFN. In this way, the hidden layer acts as feature projector
and time is saved from optimizing the hidden layer parameters (input weights). In kernel
machines, the original non-linear problem can be transferred to a linear problem into
another higher dimensional feature space, which becomes much easier to solve. However,
different from kernel machines that resort to implicit feature projection where the feature
space is invisible. The proposed approach is able to explicitly map the data from the input
space to another visible feature space so that the coefficients related to the decision
boundary can be directly and explicitly solved.

The proposed approach is a maximum margin classifier in the feature space, which means

that it will result in a classifier that maximizes the separating space between the positive
data points and negative data points. The margin is shown by the space between the blue

DRDC CORA CR 2013-059 5



line and red line in Figure 2. The positive points are assumed to lie above the blue line
while the negative ones are supposed to lie below the red line. However, most datasets in
real applications have a certain amount of noise, so sometimes we may allow some data
points to fall into the margin or even on the wrong side of the margin.

Given N training instances (x;, ), X;E RY 1€ (-1, 1), (=1,2,...,N), where x; are the
attributes, ¢; is the class label and M is the number of features, when using a linear output
neuron, the output y of a SLFN with L hidden neurons can be written as

L
yj:zwig(ai’xj)’jzlaza“"N (3)
i=1

where g(a, x) is the hidden layer activation function, which is set to be sigmoid in this
study, a; are the input weights (the hidden bias can be included in the input weights) and
w; are the output weights.

Ty
+ +  data point

O Support Vector

Figure 2. Separating margin of the proposed approach

As previously mentioned, some points may fall inside the margin or on the wrong side of
the margin. In such cases, an additional cost will be assigned for allowing such points. To
deal with such points, a non-negative slackness variable can be introduced [11],

(y(x)>1-E,E20,i=12,...,N (4)

It is observed that the proposed approach only penalizes points that lie inside the margin
(0<¢; <1) and those on the wrong side of the decision function (&; >1).

6 DRDC CORA CR 2013-059



In order to control the norm of the weights, a weight constraint can be applied, so the
objective function is to minimize the training error as well as the norm of weights. The
objective function can be written as

min Loss(w,a) = %[iE(é‘iH lliwf +4, ‘

P i

Za?] +const.

’ )

L M
=1

Jj=

subjectto t,y(x;)=1-&,i=12,..,N

where w=[w, wz,...,wL]T are the output weights and a;; are the input weights, M is the
number of input neurons, and 4; and 4, are the tradeoff parameters. In our specific case,
considering the large noise and poor quality of the side scan sonar images, the error
function is chosen to be a robust Huber-like function [12], which is defined as

u.f—O.Suz,gg >u

E(&)=1058% 0<é&<u 6)
0 ,E<0

Furthermore, we define the matrix H

¢(aax1)T —| gla,x) gla,,x) —I

(7)

H(a,,...,a,,x,,....Xy) =

¢(a,xN)TJ g(alva)"'g(aL’xN)JNxL

@(a,x)in (7) is the hidden layer feature mapping. Let y=[yi,..., yv]', therefore, Equation

(3) can be compactly written as
y=Hw 8)

The details of how to train the proposed method is given in Annex A.
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4 Experiment

In this section, the performance of the proposed approach is verified and compared to
several related learning algorithms. The sonar data used in this study is provided by the
Ocean Systems Laboratory, Heriot-Watt University, Edinburgh, UK. The sonar images
were collected by an AUV fitted with side scan sonar from a trail on Loch Earn
(Scotland) on November 10th and November 11th, 2010. The sonar images gathered on
November 10th are used as the training set and the data gathered on November 11th are
used as the testing set. The resolution of each sonar image is 500x1024.

41 Data Pre-processing

Raw sonar images have to be properly pre-processed before machine learning algorithms
are applied. We are only interested in the foreground objects. Therefore, the large amount
of background (seabed) data has to be filtered out.

It is reasonable to assume that the foreground objects have a more complex texture than
the seabed. Thus, the foreground object areas are obtained by using local range and
standard deviation filters [13].

The objective of the image processing procedures at this point is data reduction rather
than MLOs detection. Thus, a relatively high false alarm rate is acceptable. Figure 3
shows an example of image processing result. In this example, the blue object is a real
mine, while the green is not.

8 DRDC CORA CR 2013-059



Figure 3: Example of image pre-processing results (blue and green objects are MLOs)

For the object detection task, an object should be detected through a single view, no
matter where and how it lies on the seabed. Therefore, the feature used should be robust
to the location and orientation of the object. The grayscale histogram, a simple but
informative statistical feature, is considered. In many image recognition systems, many
complex features are used, but such features will inevitably increase the computational
complexity, impeding the detection speed. The histogram is easy to calculate and robust
to rotation, moreover, the distribution of the grayscale value can be well described by this
feature.

In our experiment, the grayscale value (0-255) is divided into 16 bins with width 16. The

grayscale histogram is normalized to the frequency that a pixel value falls into each bin.
The dataset information is listed in Table 1.

Table 1: Side Scan Sonar Dataset information

Training Set Testing Set
# positive instances 18 17
# negative instances 2202 1130
# pos./ # neg. 0.0082 0.0150
Instances in total 2220 1147
# features 16 16

DRDC CORA CR 2013-059 9



4.2 Experimental Set-up

For the proposed method, the number of hidden neurons L is fixed at 200 and 4, is fixed
at 0.5. The initial input weights are randomly generated from the input hyper-plane such

16

that for each hidden neuron i,Zal.j =1. For other models, the parameters are all
=

optimized.

It is found the dataset is highly imbalanced. When training on highly imbalanced data,
many learning methods are likely to focus on learning the majority class, while ignoring
the minority. In our experiment, to exclude such impact, the positive and negative
instances are weighted differently according to their ratio in the training set for all
methods. For a fair comparison, all models are implemented in Matlab, including the QP
optimizer for SVMs [14]. The experiment is carried out on the same computer with a
2.00GHz CPU.

4.3 Results

In this study, the AUC (Area Under ROC Curve), is used to quantified the learning
results [15]. AUC does not consider the distribution of the positive and negative
instances, so it is robust to class imbalance. The TP (True Positive) rate and FP (False
Positive) rate are also given for reference. Table 2 shows the comparison of testing results
(LR is short for Logistic Regression). Table 3 shows the model parameters used as well
as the training and classification time.

From the result tables we can see that the proposed approach is able to beat all other
neural network based models in prediction performance. The proposed approach can
produce a prediction result close to or even better than the result obtained by kernel
methods. In terms of training and classification time, the performance of the proposed
method largely outperformed all kernel methods.

Moreover, for kernel machines, the classification speed is directly related to the number
of support vectors and the kernel function. When trained on large datasets, the
classification speed of kernel machines will tend to be slow. In LS-SVMs and Kernel LR,
every data point will be used to build the final decision boundary, so every data point will
become a support vector. For SVMs, when using the same hyper parameter, in our case
(C, y), a large dataset is more likely to result in more support vectors. In addition, when

10 DRDC CORA CR 2013-059



the dataset becomes very large, kernel methods could be practically infeasible due to the
large kernel matrix inside.

However, similarly to other SLFN methods, the classification speed of the proposed
approach is only related to the parameter L, independent of the size of the training set .
Therefore, the classification speed can be controlled by properly setting the value of L
when we first build the network.

Table 2: Comparison of performance on Side Scan Sonar Data

Method Function TP rate FP rate AUC
SVMs Gaussian 0.8824 0.0442 0.9865
LS-SVMs Gaussian 0.9412 0.0540 0.9885
Kernel LR Gaussian 0.9412 0.0416 0.9858

BP Sigmoid 0.9353 0.3145 0.9231
ELM Sigmoid 0.9059 0.0686 0.9747
PNN Gaussian 1 0.1693 0.9792
LR \ 0.4117 0.1876 0.7989
Proposed Approach Sigmoid 0.9177 0.0443 0.9871

Table 3:Model parameters and comparison of time on Side Scan Sonar Data

Method Pameters Sparsity(%s) Training Classification
time(s) time(s)

SVMs C=2", =2 27.8 94.17 0.9063
LS-SVMs C=2%, =22 100 13.07 2.1719
Kernel LR C=2"° y=2° 100 33.37 22031

BP L=20 / 9.173 0.0313

ELM L=40 / 0.090 <0.01

PNN y=2* 100 / 2.1563
LR c=2" / 2.093 <0.01
Proposed Approach 21=2" =27 48.6 1.123 0.0391

Ideally, an optimal classifier is expected to produce the largest AUC value with the
shortest time. However, from our result, none of the classifiers, including the proposed
one, is able to dominate in both time and accuracy. How to properly balance the time and
accuracy (AUC here) depends largely on the real time situation in the Mine
Countermeasure Mission application.

DRDC CORA CR 2013-059 11
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Figure 4: AUC-Time plane

From another perspective, the performance of the each classifier can be projected on the
AUC-Time plane shown above. Each point on this plane corresponds to a classifier. The
ideal classifier is expected to be located on the top left region of the plane which has the
largest AUC value and the fastest detection speed.

Assuming that the AUV can choose from different classifiers in the Mine
Countermeasure Mission, any combinations of the existing algorithm can result in a point
on or below the red curve on Figure 4. However, the proposed approach can lift the
curve, shown by the black dash line, and enable more space on the AUC-Time plane.
From this point of view, introducing the proposed approach can improve the efficiency of
the MLOs detection.
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5 Conclusion

In this work, a novel fast learning method is proposed and applied to the MLOs detection
task. The proposed approach borrows the feature mapping idea from kernel methods, but
it is implemented via the building of a MLP. In this way, the decision-making space
becomes visible and accessible. Together with the inherent sparse representation result
from the Huber-like loss, both the learning and prediction processes are largely sped up
compared to most traditional methods. Thus, the fast detection requirement in the Mine
Countermeasure application can be met. Moreover, unlike the kernel machines, the
detection speed of the proposed approach is independent of the size of the dataset, and it
can be directly controlled by properly setting the value of L when we first build the
network. The experimental result shows that the proposed approach can produce a large
AUC value with a fast detection speed.
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Annex A Optimization Algorithm

The optimization process of the proposed approach can be divided into two steps. The
output weights w can be calculated given the input weights a;;, then the input weights can
be updated based on the value of output weights. Such a process can be iteratively
performed up to a desired convergence. In our experiment, one iteration is performed as it
generates satisfying results.

For the input weights, the gradient descent is used to conduct the optimization We can
use the chain rule to propagate Loss(w,a), defined by (5), back to the input layer. Taking
the derivative of Loss(a,w) with respect to a;;, we have

2
OLoss(a,w) _ OE ) ollw]|
oa, oa, oa,

i g g

+ A0, (A.1)

: L : . O|w]}
While optimizing a based on the current output weights, we consider ollwlt =0. Now

8al.j

in (A.1) the only unknown term 1sa—. Let net" be the input of hidden neuron i (the

Oa

value before passing the sigmoid activation function). Since there is no activation
function in the output layer, so the output neuron will copy its input net’ as the final
network output y(x), we have

net! = Zal.jxj =a'x, net’ = y(x)=w'@(x). (A.2)
J

Using the chain rule, we have

OE  OE _ Onet!

= X
Gaij ﬁnetih aa[j
- (A.3)
XX,

onet!

where x; is the jth attribute value of the input data. Furthermore,
OF OE  Onet/

= 1% J .

anetih Jj€ output layer anetju anetih

(A4)
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Since only one output neuron will be used in binary classification, equation (A.4) can be
written as

OE onet’
=-0"x . A.S
onet,” onet,” (&.5)
) 0 OFE .
where the delta term for the output neuron is defined as 0° = — ot @(x) is the output
ne
of hidden neuron i, equation (A.5) can be written as
oE o, Onet’
Onet! anetj,’
__gox Onet” aé(x,) (A.6)
O@(x) Onet;

==0"xw,x@(x)[1-¢(x)]

It is worth mentioning that for the first order derivative of sigmoid function,

_Gga (x) = g(x)[1—g(x)].This property is used in the above equation. Furthermore, define
X
5h=— 5Eh = 5% xw, x ()1 - B (x)]. (A.7)
Onet,

1

Since E(¢) is a Huber-like function, we have

0’ = (l—tl.y(xl.))xVV,.

1ELE
ulee > (A.8)
W =31 ,0<¢& <u
0 ,&<0
Considering (A.3), (A.7) and (A.8), equation (A.1) becomes
OLoss(a,w) _ OE +Aa,
oa, da, (A9)

_ h
==0; X; + La;

As mentioned above, the input weights are optimized according to gradient descent, so a;
is updated according to the gradient direction. Therefore, the learning rule for the input
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weights is

OLoss(a,
—n%‘_’"’) =11(5}x, = Aa;) (4.10)

g

a; < ay +Aa Aal.j =

ij’

where 7 is a constant.

Unlike the input weights that have to go through a sigmoid hidden layer, the output
weights can be solved in closed form. With proper reformulation, Equation (5) can be
rewritten as

Loss(w.a) =%n| W(Hw=T) | +4 || +4, || a|P"] (A1)

where W is a diagonal matrix whose diagonal elements are W; defined by (A.8).

For simplicity, consider|| a ||* is fixed and set the derivative of Loss(w,a) with respect to w

to zero:

OLoSS(@. W) _ _ grw(T — How) + Ayw
s (A.12)

=H " WHw+Aw—-H" " WT=0
The output weights w can be solved by Iterative Reweighted Least Square (IRLS)

w = (H"WH+ A1) "H"W'T. (A.13)
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