
 

A
P

 

M
E
M
 

P
LT
82
Q
G
 

C
C
PW
C

 

Th
th

Air Def
Profiling an

M.-A. Labrie 
. Rouleau 

M. Desmeule

repared By: 
TI software &
25 Boul. Leb

Québec, Can
2J 0B9 

ontractor's D
ontract Proje
WGSC Cont
SA: Jean-Fr

he scientific or 
e contents do n

D

fence S
nd Optimi

s 

& engineerin
bourgneuf, B
ada 

Document N
ect Manager
tract Numbe
rancois Lepa

technical valid
not necessarily

Defence

D

System
izing the K

ng 
Bureau 204

umber: LTI-
r: Marc-And

er: W7701-08
age, Defence

ity of this Cont
y have the appr

e R&D
Co

DRDC Val

m: 
KARMA IR

ADS-2012-1
ré Labrie 
83373-AT10
e Scientist 4

tract Report is 
roval or endors

 Canad
ontract Re
lcartier CR
July 2012

RSG Mod

1 

0 
418-844-400

entirely the res
sement of Defe

da – V
eport
R 2012-07
2

dule 

00 (4192) 

sponsibility of t
ence R&D Cana

alcarti

70

the Contractor 
ada. 

ier 

and 



  
 

 
 

 

Air Defence System   
Profiling and Optimizing the KARMA IRSG Module  

M.-A. Labrie 
E. Rouleau 
M. Desmeules  
 
Prepared By: 
LTI software & engineering 
825 Boul. Lebourgneuf, Bureau 204 
Québec, Canada 
G2J 0B9 
 
Contractor's Document Number:  LTI-ADS-2012-1 
Contract Project Manager: Marc-André Labrie 
PWGSC Contract Number:  W7701-083373-AT10 
CSA: Jean-Francois Lepage, Defence Scientist  
 

 
The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the 
contents do not necessarily have the approval or endorsement of Defence R&D Canada.  
 
 
 
 
 
 
 
  

Defence R&D Canada – Valcartier 
Contract Report 
DRDC Valcartier CR 2012-070  
July 2012  

 



 
 

 
 

 
 

 

 

 

 

 

   

  

 

  

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012 

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 
2012



 
 

  
 

 
 
 

Abstract …….. 

The main objectives of task AT-10, as part of contract W7701-083373, was to profile the 
performance of the infrared scene generator (IRSG) module of the KARMA simulation 
framework, pinpoint bottlenecks, optimize critical portions of code through basic corrective 
measures, and update the SMART (Suite for Multi-resolution Atmospheric Radiative 
Transmission) library to the latest version. The work has been carried out from January 2012 to 
March 2012. The profiling has been limited to a basic scenario using the IRSG and the wideband 
mode. The code optimizations allowed to double the frame rate for this scenario. Some 
optimization avenues were investigated and could be realized as a part of another task or contract. 

Résumé …..... 

Les objectifs de la tache AT-10, du contrat W7701-083373, étaient d’effectuer le profilage des 
performances du module de génération de scène infrarouge (IRSG) de l’environnement de 
simulation KARMA, d’identifier les éléments critiques, d’optimiser certaines portions critiques 
par des mesures correctives de base, et de mettre a jour la librairie de calculs atmosphérique 
SMART (Suite for Multi-resolution Atmospheric Radiative Transmission). Les travaux ont été 
effectués de janvier 2012 à mars 2012. Le profilage des performances a été limité à un scénario 
simple utilisant l’IRSG en mode large-bande. Les optimisations au code ont permis de doubler la 
cadence pour un tel scénario. Des avenues ont aussi été identifiées pour une éventuelle deuxième 
phase d’optimisation.  

 



 
 

 
 
 
 
 

This page intentionally left blank. 



 
 

  
 

 
 
 

Executive summary  

Air Defence System: Profiling and Optimizing the KARMA IRSG 
Module  

M.-A. Labrie; E. Rouleau; M. Desmeules; DRDC Valcartier CR 2012-070; 
Defence R&D Canada – Valcartier; July 2012. 

Introduction: The KARMA simulation framework is currently used at DRDC Valcartier to 
simulate engagement level scenarios involving air targets. Within the Virtual Proving Ground 
(VPG), the KARMA simulation framework and its Infrared Scene Generation (IRSG) module 
will also be used for main-in-the-loop and hardware-in-the-loop applications. To allow for these 
time critical simulations to be performed, it was necessary to increase the frame rate of the IRSG 
module. As a preliminary phase of this improvement, task AT-10 of contract W7701-083373 was 
intended to determine the potential for frame rate improvements with the infrared scene generator 
(IRSG) module of KARMA. 

Results: The work, carried out from January 2012 to March 2012, allowed to profile the 
performance of the IRSG module, pinpoint bottlenecks, optimize critical portions of code through 
basic corrective measures, and update the SMART (Suite for Multi-resolution Atmospheric 
Radiative Transmission) library to the latest version. The basic code optimizations performed 
within the task allowed to double the frame rate.  

Significance: The work has shown the potential of the IRSG module for frame rate 
improvements, and demonstrated that the IRSG module would be appropriate for the envisioned 
real-time applications with proper optimisations done. It also allowed to identify optimization 
avenues that could have an important impact on the performance of the IRSG module.  

Future plans: The next step will be to perform the second phase of optimisation as a function of 
the profiling resulting from this task. 



 
 

 
 
 
 
 

Sommaire ..... 

Air Defence System: Profiling and Optimizing the KARMA IRSG 
Module  

M.-A. Labrie; E. Rouleau; M. Desmeules; DRDC Valcartier CR 2012-070; R & D 
pour la défense Canada – Valcartier; juillet 2012. 

Introduction: L’environnement de simulation KARMA est actuellement utilisé par RDDC 
Valcartier pour simuler des scénarios de niveau engagement impliquant des cibles aériennes. 
Dans le cadre du polygone d’essai virtuel, l’environnement de simulation KARMA et son module 
de génération de scène infrarouge (IRSG) seront aussi utilisés pour des applications humain dans 
la boucle et matériel dans la boucle. Afin de permettre l’exécution de telles simulations, dont le 
temps d’exécution est critique, il était nécessaire d’améliorer la cadence d’affichage du module 
IRSG. En phase préliminaire, la tache AT-10 du contrat W7701-083373 visait à déterminer le 
potentiel d’amélioration des performances du module IRSG de KARMA 

Résultats: Les travaux, effectués de janvier 2012 à mars 2012, ont permis d’effectuer le profilage 
des performances du module IRSG, d’identifier les éléments critiques, d’optimiser certaines 
portions critiques par des mesures correctives de base, et de mettre à jour la librairie de calculs 
atmosphérique SMART (Suite for Multi-resolution Atmospheric Radiative Transmission). Les 
optimisations de base effectuées au au code lors de cette tache ont permis de doubler la cadence 
d’affichage. 

Importance: Les travaux ont démontré le potentiel d’amélioration des performances du module 
IRSG, et ont démontré que celui-ci pouvait être approprié pour les applications en temps réel 
envisagées, une fois certaines optimisations faites. Des avenues d’optimisation pouvant avoir un 
impact important sur les performances ont aussi été identifiées. 

Perspectives: La prochaine étape sera d’effectuer la seconde phase d’optimisation en fonction du 
profilage des performances résultant de cette tache. 

 

 
 
 
 
 
 



Mr.
W7
 
23 M

. Jean-Franc
7701-083373

March 2012

Ai
Prof
 
 
 
Marc-A
Eric Ro
Mathie
 

ois Lepage -
3-AT10 

 

r De
filing an

André Labrie
ouleau - LTI 
eu Desmeule

- DRDC-Valc

efen
nd Optim

e - LTI 

es - LTI 

artier 

nce S
mizing t

Syst
the KAR

tem 
RMA IRSSG Moddule 



 

This page intentionally left blank. 



 

           

Table of Contents 

Abstract ...................................................................................................................... ......................i 

Table of Contents ............................................................................................................. .............. ii 

List of Figures ............................................................................................................... ....................  

List of Tables ................................................................................................................ ....................  

1 Introduction ................................................................................................................. ............ 1 

2 General information .......................................................................................................... ...... 2 

2.1 SMART ..................................................................................................................... ........ 2 

2.2 Baseline scenario ......................................................................................................... .... 3 

2.3 Performance Profiler ...................................................................................................... . 5 

2.4 Computing device specifications ..................................................................................... 6 

2.5 KARMA version ............................................................................................................. ... 6 

3 Profiling and optimizing...................................................................................................... ..... 7 

3.1 Methods profiled .......................................................................................................... ... 7 

3.2 Initial overview .......................................................................................................... ...... 8 

3.3 Final results ............................................................................................................. ....... 11 

3.4 Improvements .............................................................................................................. . 14 

3.4.1 Radiance computation .......................................................................................... 14 

3.4.2 Specialized data type ............................................................................................. 15 

3.4.3 Radiance image on demand .................................................................................. 15 

3.4.4 Reduced OpenGL calls ........................................................................................... 16 

3.4.5 SMART spectral sensor .......................................................................................... 16 

3.4.6 Varia ................................................................................................................... .... 16 

4 Discussion ................................................................................................................... ........... 17 

4.1 Rendering ................................................................................................................. ..... 17 



 

           

4.2 Scene graph structure optimization .............................................................................. 18 

4.3 Level of detail ........................................................................................................... ..... 19 

4.4 Parallelism ............................................................................................................... ...... 19 

4.5 Replace SMART ............................................................................................................. . 20 

4.6 Asynchronous read pixels / Double buffering ............................................................... 20 

4.7 Dynamic memory allocation .......................................................................................... 21 

4.8 Graphics processing unit ............................................................................................... 21 

5 Conclusion ................................................................................................................... .......... 23 

References .................................................................................................................... ................. 24 

Appendix A .................................................................................................................... ................ 25 

Appendix B .................................................................................................................... ................ 29 

Appendix C .................................................................................................................... ................. 33 

Appendix D .................................................................................................................... ................ 35 

 

  



 

           

List of Figures 

Figure 1: 3D model used in the baseline scenario. ......................................................................... 4 
Figure 2: Initial engagement geometry. .......................................................................................... 4 
Figure 3: Initial missile’s seeker view. ............................................................................................. 5 
Figure 4: Overview of the relative time for the initial profiling. ................................................... 10 
Figure 5: Overview of the relative time for the final profiling. ..................................................... 13 
Figure 6: A screenshot of gDEBugger during a profiling session. .................................................. 18 
Figure 7: Relative times (with the optimizations) when the supersampling 4x is activated. ........ 27 
Figure 8: Relative times (with the optimizations) when the ZAA 512 is activated. ...................... 31 
 

  



 

           

List of Tables 

Table 1: SMART::update timings before SMART library update and SmartAdapter refactoring. ... 2 
Table 2: SMART::update timings after SMART library update and SmartAdapter refactoring. ...... 3 
Table 3: Main parameters of the baseline scenario. ....................................................................... 3 
Table 4: Profiled methods of the scene generation process. .......................................................... 7 
Table 5: Initial profiling results. ........................................................................................... ............ 9 
Table 6: Final profiling results. ............................................................................................. ......... 12 
Table 7: Summary of the frame rate. ............................................................................................ 14 
Table 8: Image conversion without vs. with the parallel_for algorithm. ...................................... 19 
Table 9: Profiling the base scenario with supersampling 4x (after the optimizations). ................ 26 
Table 10: Profiling the base scenario with zoom antialiasing (ZAA) 512 (after the optimizations).
 .............................................................................................................................. ......................... 30 
 

  



 

                                                   1 

1 Introduction 

The main objectives of task AT-10, as part of contract W7701-083373, was to 1) profile the 
performance of the infrared scene generator (IRSG) module of the KARMA simulation 
framework, 2) pinpoint bottlenecks, and 3) optimize the critical part of the code through basic 
corrective measures.  

Another objective was to update the SMART (Suite for Multi-resolution Atmospheric Radiative 
Transmission) library used by the KARMA framework to the newest version available. The work 
was carried out from January 2012 to March 2012.  

This report focuses on presenting the results of the performance profiling (before and after the 
implementation of the optimizations). The optimizations are summarized as well as some ideas 
regarding optimization avenues that could have an important impact on the performance of the 
IRSG module. 



 

                                                   2 

2 General information 

2.1 SMART 

SMART is a C++ library developed at DRDC-Valcartier [1]. The main purpose of SMART is to 
calculate atmospheric values such as transmitted solar irradiance, atmospheric fluxes, path and 
background radiances, and transmittance. This library can produce outputs in both spectral or 
wideband correlated-k (CK) format. 

This library takes an important place in the IRSG module, allowing obtaining precise atmospheric 
values. To take advantage of the various fixes and improvements done to the library since the 
last release, the choice was made to first update KARMA with the most recent version of 
SMART, before proceeding with the optimization phase. The last time this library was updated in 
KARMA was in June 2010 (revision 961). Therefore, the library was updated to revision 1088 at 
the beginning of this task. A final update was done prior the end of the task in March 2012 
(revision 1089). Consequently, the verification and validation (V&V) report of the signature 
management capability was updated to take into account the new version of the library on the 
results produced by the IRSG module. The results, for the cases depicted in the V&V, are almost 
the same (very small modifications to some values) as before the library update. 

KARMA uses the scene scattering mode (as opposed to sensor scattering mode) available with 
SMART. With this mode, the first call to SMART::update is very long but subsequent ones (made 
before each frame is generated) are very short. However, with the analysis of a first profiling 
session, all our calls to SMART::update were long. This was caused by an unusual utilization of 
SMART combined with the utilization of the SMART onlyWide mode. A refactoring of the 
SmartAdapter class (which allows using SMART within KARMA) associated with a modification in 
SMART has allowed to correct the encountered problem (see Table 1 and Table 2, produced 
with the scenario presented in section 2.2). 

Table 1: SMART::update timings before SMART library update and SmartAdapter refactoring.  

1st call to SMART::update 763 ms 
Average time for other calls to SMART::update 140 ms 

 



 

                                                   3 

 

Table 2: SMART::update timings after SMART library update and SmartAdapter refactoring. 

1st call to SMART::update 4168 ms 
Average time for other calls to SMART::update 0.017 ms 

 

The first call to SMART::update is very long but is done during the IRSG initialization phase, prior 
the simulation begins. 

2.2 Baseline scenario 

The performance profiling has been performed using a basic engagement scenario (a man-
portable air-defense system (ManPADS) missile against a CC130 platform), without complex 
rendering mechanisms and 3D models, in order to focus on optimizing the scene generation 
process rather than the overall simulation process. The major parameters are presented in 
Table 3. 

Table 3: Main parameters of the baseline scenario. 

Antialiasing None 

AtmosphereSmart model Base parameters except for the spectral 
band which is: 2.5 - 5.5 μm 

Background Uniform 
Calculation mode Wideband 
Duration 3.00 seconds 
Flares Without 
Frames generated 301 
Image size 512 x 512 pixels 
Platform CC130 generic (CC130_IR.flt) 
Platform 3D model 
characteristics 1206 polygons, no LODs 

Platform Database 
10 temperatures (IRColor) 
4 materials (IRMaterial) 
10 combinations temperature-material 

Sensor spectral response 3.0 - 5.0 μm 
Skybox None 
Terrain None 

 

The 3D model used for the CC130 platform is shown in Figure 1, in a scribed (solid and 
wireframe) appearance. 



 

 

The e
platfo
depic
Figure
the p
frame

 

 

engagement i
orm is tracked
ted in Figure
e 3. Notice th
urpose of the
e rate perform

Figu

is the followi
d by the missi
e 2 while the 
hat the platfo
e simulations 
mances. 

ure 1: 3D model 

ing: a basic t
ile throughou
initial image 
rm’s infrared
conducted d

Figure 2: Initia

       

used in the bas

threat is purs
ut the simulat

of the platfo
 signature is 
uring this tas

al engagement g

eline scenario.

suing a platfo
tion. The initi
orm by the m
a generic one

sk was only to

geometry. 

                  

orm during 3
al engageme

missile’s seek
e, using fake 
o test the sce

                      4

 

3 seconds; th
nt geometry 
er is shown i
temperature

ene generatio

he 
is 
in 
s: 

on 



 

 

2.3

Perfo
frame
meth
granu
high-r
deter

At the
to pr
optim
optim
result

          
1 http:

 

3 Perf

rmance Prof
ework. It is b
od or block 

ularity) as it 
resolution tim
mine the dur

e beginning o
ofile all met

mization effor
mization is do
ts obtained w

                        
://www.softwa

forman

filer is a cu
based on an 

of code to 
is not limited

mer (based on
ration of a po

of the task, th
hods implied
t will be don
one. When P

were not accu

                       
areverify.com/

Figure 3: Initi

nce Pro

stom timing
intrusive tec
be profiled.
d to the exis
n QueryPerfor
rtion of code

he Performan
d in the scen
e. After that,
Performance 
urate and it w

   
/cpp-profiler.p

       

al missile’s seek

ofiler 

g profiler av
hnique wher
This approa

sting method
rmanceCount
. 

ce Validator1

ne generation
 only the cho
Validator w

was really long

hp 

ker view. 

ailable withi
re the user h
ch allows a 

ds. Performan
ter and Query

1 tool was als
n process to
osen method

was used to p
g to run a sce

                  

in the KARM
has to insert 

detailed pro
nce Profiler u
yPerformance

o tested. The
o find those 
s are profiled
profile every
enario. It was

                      5

 

MA simulatio
code into th

ofiling (smalle
uses Window
eFrequency) t

e first step wa
for which th

d each time a
y method, th
s then decide

on 
he 
er 

ws 
to 

as 
he 
an 
he 
ed 



 

                                                   6 

to use the KARMA tool to identify the longest methods. After this, since the profiling code was 
already in the KARMA code, the profiling sessions were also realized with the KARMA profiling 
tool. Switching to Performance Validator could have been done at this point i.e. the results 
seem to be accurate when profiling a relatively low (~15) number of methods. 

2.4 Computing device specifications 

The computer used during the performance profiling had the following specifications: 

• Intel Core 2 Extreme CPU Q6850 @ 3.00 GHz 

• 4.00 GB 

• Graphic Card: 

o NVidia 8800 GTX/PCI/SSE2 

o OpenGL 3.3.0 

• Windows 7 Professional 64 bits 

2.5 KARMA version 

The performance profiling and development phases for the optimizations were realized using 
the KARMA SVN revision 11,336. 



 

                                                   7 

3 Profiling and optimizing 

3.1 Methods profiled 

Table 4 presents the methods that were profiled to find out performance bottlenecks. 
Obviously, these are not all the methods implied in the scene generation process but those 
having a non-negligible duration. Notice that Figure 4 shows the hierarchy between these 
methods. 

Table 4: Profiled methods of the scene generation process. 

Method Description
KARMA::Environment:: 
GetCkBackgroundRadiance 

Returns the background radiance (computed by SMART) 
in the wideband CK format. 

KARMA::Environment:: GetCkTransmittance Returns the atmospheric transmittance (computed by 
SMART) in the wideband CK format. 

KARMA::Environment:: GetCkPathRadiance Returns the path radiance (computed by SMART) in the 
wideband CK format. 

KARMA::ImagingSensor::Run Generates an image of the scene (i.e. calls 
KARMA::SceneGenerator3D::GetSceneImage). 
 
The imaging sensor represents the imaging device (of 
the missile) capable of capturing a scene. Additional 
processing can be added (via other models/parts) to 
process its output and produce more representative 
detector data. The Run method is called at each period, 
for every model taking part into the simulation. 

KARMA::IRSG::GenerateScene Generates an image of the scene for a given point of 
view and using specific settings (spectral response, field 
of view, etc.). 

KARMA::IRSG::ReadFrameBufferObject Reads back the attached texture of the framebuffer 
object. 

KARMA::IRSG::UpdateColor Computes in-band components (LAtmApp, LSunRefApp, 
LUpRefApp, LDownRefApp, LThermApp, transparency, 
nFactor, etc.) using spectrum values gathered 
previously. 



 

                                                   8 

 
These values are the inputs of a fragment shader used 
to determine the radiance of each fragment of a 3D 
model. 

KARMA::SceneGenerator3D:: GetSceneImage Generates an image of the scene: prepares the scene in 
the IRSG, initialize the IRSG parameters (sensor, 
radiometric values, features of the IRSG (skybox, 
scattering, terrain)) then calls 
KARMA::IRSG::GenerateScene.  
 
This is the method that was monitored to determine 
the frames per second (FPS). 

glReadPixels OpenGL function which reads a block of pixels from the 
framebuffer. 
 
This function is called via the 
KARMA::IRSG::ReadFrameBufferObject to retrieve the 
generated image. 

osgViewer::ViewerBase::renderingTraversals OpenSceneGraph (OSG) method which generates an 
image into the framebuffer. This method is called to 
begin the rendering process. 

3.2 Initial overview 

Table 5 presents the results of the performance profiling session prior to any optimizations; 
while Figure 4 depicts an overview of the main methods (from left to right, the visualization 
shows a method and its child). The height of each block (i.e. method) is set according to the 
profiling results and represents the relative duration of the block compared to its parent.  

Notice that the Rendering block (see Figure 4) is not represented in Table 5: its value is a simple 
deduction, filling the gap between KARMA::IRSG::UpdateColor and its parent 
(osgViewer::ViewerBase::renderingTraversals). Every steps of the rendering phase could be 
profiled by inserting Performance Profiler code into OpenSceneGraph code. However, at this 
point, profiling KARMA was more important than studying the impact of third party libraries on 
the scene generation module. Notice that this could be the case in future tasks. 

 



 

9 
 

 
   

   
  

   
   

   
   

   
   

   
   

   
   

   
   

   
  

 

Ta
bl

e 
5:

 In
iti

al
 p

ro
fil

in
g 

re
su

lts
. 

M
et

ho
d 

N
um

be
r 

of
 c

al
ls 

To
ta

l t
im

e 
(m

s)
 

%
 T

ot
al

 
tim

e 
%

 IR
SG

 
Av

er
ag

e 
pe

r c
al

l 
(m

s)
 

Av
er

ag
e

pe
r f

ra
m

e 
(m

s)
 

Lo
ng

es
t 

ca
ll 

Lo
ng

es
t 

ca
ll 

(m
s)

 

Sh
or

te
st

 
ca

ll 

Sh
or

te
st

 
ca

ll 
 

(m
s)

 
gl

Re
ad

Pi
xe

ls 
30

1 
13

28
.0

1 
0.

60
 

6.
39

 
4.

41
20

 
4.

41
20

 
21

3 
21

.9
47

 
10

5 
3.

31
9 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kB
ac

kg
ro

un
dR

ad
ia

nc
e 

60
2 

22
80

.7
0 

1.
03

 
10

.9
8 

3.
78

85
 

7.
57

71
 

7 
5.

13
4 

53
8 

3.
10

5 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kP
at

hR
ad

ia
nc

e 
60

2 
22

23
.7

1 
1.

01
 

10
.7

1 
3.

69
39

 
7.

38
77

 
65

 
4.

71
5 

53
8 

3.
09

 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kT
ra

ns
m

itt
an

ce
 

60
2 

22
25

.6
1 

1.
01

 
10

.7
2 

3.
69

70
 

7.
39

41
 

66
 

4.
95

1 
59

4 
3.

09
5 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

30
1 

22
07

1.
76

 
10

.0
0 

  
73

.3
28

1 
  

1 
20

8.
23

4 
11

2 
66

.4
01

 

KA
RM

A:
:IR

SG
::G

en
er

at
eS

ce
ne

 
30

1 
13

94
6.

22
 

6.
32

 
67

.1
5 

46
.3

33
0 

46
.3

33
0 

1 
17

5.
53

1 
24

 
38

.9
45

 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t 
30

1 
48

57
.8

9 
2.

20
 

23
.3

9 
16

.1
39

2 
16

.1
39

2 
21

3 
36

.7
46

 
10

5 
13

.2
55

 

KA
RM

A:
:IR

SG
::U

pd
at

eC
ol

or
 

30
1 

71
27

.5
5 

3.
23

 
34

.3
2 

23
.6

79
6 

23
.6

79
6 

28
3 

29
.9

69
 

68
 

20
.5

63
 

KA
RM

A:
:S

ce
ne

Ge
ne

ra
to

r3
D:

: 
Ge

tS
ce

ne
Im

ag
e 

30
1 

20
76

7.
41

 
9.

41
 

10
0.

00
 

68
.9

94
7 

68
.9

94
7 

1 
20

3.
11

4 
10

7 
62

.7
99

 

m
ai

n 
1 

22
06

20
.7

3 
10

0.
00

 
  

  
  

 
  

 
  

os
gV

ie
w

er
::V

ie
w

er
Ba

se
:: 

re
nd

er
in

gT
ra

ve
rs

al
s 

30
1 

90
48

.3
9 

4.
10

 
43

.5
7 

30
.0

61
1 

30
.0

61
1 

1 
15

3.
66

 
58

 
25

.1
65

 

 



 

  

Figure 4: OOverview of the 

       

relative time foor the initial pro

                  

 

ofiling. 

                      100 



 

                                                   11 

3.3 Final results 

Table 6 presents the results of the performance profiling session after the development of the 
optimizations presented in Section 3.4, while Figure 5 depicts an overview of the main methods 
which were profiled. 

The hatched part in KARMA::ImagingSensor::Run represents the conversion from the 
DataTypes::Image to a DataTypes::Matrix. The latter being the current image format used by 
the models of the KARMA simulation framework. This conversion is performed to preserve 
backward compatibility and will not be necessary as soon as the newly created 
DataTypes::Image is used by all models. 

The hatched part in KARMA::IRSG::ReadFrameBufferObject represents the multiplication of the 
generated image (radiance) by the omega factor to create the image in irradiance. This could 
eventually be done directly by the various shaders used by the IRSG. 

Notice that the first frame (generated at t = 0.00 s.) is longer to generate than the subsequent 
ones (based on the Longest Call column). The time required to produce this image could be 
removed from the frame rate calculation because it is considered as an “initialization phase”, 
done prior the simulation begins. 

Since the fragment shader could not be profiled, the time spent in this shader to determine the 
radiance of each fragment of a 3D model has been deduced by removing code and comparing 
the duration of osgViewer::ViewerBase::renderingTraversals. It appears that the shader requires 
less than 1 ms per frame to execute and the processing is as follows: LAtmApp (0%), LSunRefApp 
(35%), LUpRefApp (15%), LDownRefApp (15%) and LThermApp (35%). 

For documentation purpose, Appendix A and Appendix B present the results of the performance 
profiling sessions for the baseline scenario with the antialiasing mechanism (supersampling 4x 
and ZAA 512) activated. 



  
 

   
   

  
   

   
   

   
   

   
   

   
   

   
   

   
 

 
12

   
    

Ta
bl

e 
6:

 F
in

al
 p

ro
fil

in
g 

re
su

lts
. 

M
et

ho
d 

N
um

be
r 

of
 c

al
ls 

To
ta

l t
im

e 
(m

s)
 

%
 T

ot
al

 
tim

e 
%

 IR
SG

 
Av

er
ag

e 
pe

r c
al

l 
(m

s)
 

Av
er

ag
e

pe
r f

ra
m

e 
(m

s)
 

Lo
ng

es
t 

ca
ll 

Lo
ng

es
t 

ca
ll 

(m
s)

 

Sh
or

te
st

 
ca

ll 

Sh
or

te
st

 
ca

ll 
(m

s)
 

gl
Re

ad
Pi

xe
ls 

30
1 

10
75

.8
9 

0.
55

 
11

.5
8 

3.
57

44
 

3.
57

44
 

26
4 

15
.4

3 
16

9 
3.

10
9 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kB
ac

kg
ro

un
dR

ad
ia

nc
e 

60
2 

22
44

.2
2 

1.
14

 
24

.1
5 

3.
72

79
 

7.
45

59
 

60
 

4.
81

2 
54

8 
3.

09
4 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kP
at

hR
ad

ia
nc

e 
60

2 
21

77
.7

2 
1.

11
 

23
.4

3 
3.

61
75

 
7.

23
49

 
24

 
4.

66
2 

57
8 

3.
08

7 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kT
ra

ns
m

itt
an

ce
 

60
2 

21
80

.5
0 

1.
11

 
23

.4
6 

3.
62

21
 

7.
24

42
 

59
 

4.
71

 
56

8 
3.

09
 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

30
1 

10
64

4.
77

 
5.

42
 

  
35

.3
64

7 
1 

92
.7

13
 

27
9 

31
.8

85
 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

 
[c

on
ve

rt
 Im

ag
e 

to
 M

at
rix

] 
30

1 
13

25
.8

9 
0.

68
 

  
4.

40
49

 
  

12
 

6.
57

6 
46

 
4.

06
5 

KA
RM

A:
:IR

SG
::G

en
er

at
eS

ce
ne

 
30

1 
25

92
.2

7 
1.

32
 

27
.8

9 
8.

61
22

 
8.

61
22

 
1 

60
.4

69
 

35
 

7.
54

 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t 
30

1 
12

08
.0

3 
0.

62
 

13
.0

0 
4.

01
34

 
4.

01
34

 
26

4 
16

.0
54

 
21

2 
3.

51
2 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t  
[*

 o
m

eg
a]

 
30

1 
12

5.
16

 
0.

06
 

1.
35

 
0.

41
58

 
0.

41
58

 
25

1 
1.

17
1 

16
5 

0.
21

6 

KA
RM

A:
:IR

SG
::U

pd
at

eC
ol

or
 

30
1 

22
6.

19
 

0.
12

 
2.

43
 

0.
75

14
 

0.
75

14
 

1 
2.

18
1 

23
 

0.
65

2 

KA
RM

A:
:S

ce
ne

Ge
ne

ra
to

r3
D:

: 
Ge

tS
ce

ne
Im

ag
e 

30
1 

92
94

.1
1 

4.
73

 
10

0.
00

 
30

.8
77

4 
30

.8
77

4 
1 

87
.9

37
 

27
2 

27
.6

26
 

m
ai

n 
1 

19
64

09
.3

2 
10

0.
00

 
  

  
  

  
  

  
  

os
gV

ie
w

er
::V

ie
w

er
Ba

se
:: 

re
nd

er
in

gT
ra

ve
rs

al
s 

30
1 

13
19

.2
7 

0.
67

 
14

.1
9 

4.
38

29
 

4.
38

29
 

1 
54

.8
42

 
51

 
3.

66
2 

  



 

  

Figure 5: OOverview of the

       

e relative time foor the final prof

                  

 

filing. 

                      133 



 

                                                   14 

Table 7 shows a summary of the frame rate, in frames per second (FPS), obtained before and 
after the optimizations. 

Table 7: Summary of the frame rate. 

 Frame rate 
(FPS) 

Prior to optimizations  14.5 
After optimizations 32.4 
After optimizations without 1st frame 32.6 

 

3.4 Improvements 

This section describes the improvements to the KARMA framework and IRSG module to improve 
the scene generation process. Notice that the choice was made to focus on the wideband mode 
(not the spectral mode) during the optimization phase. The wideband mode is assumed to be 
the most commonly used in the KARMA simulations. 

3.4.1 Radiance computation 

The method responsible for the radiance computation has been refactored to relocate some 
processing and remove useless computations. This method, IRSG::UpdateColor, computes in-
band components for each facet of a 3D model that could be seen by the camera (i.e. facets that 
have not been culled) using input spectrums of the IRSG. These components are used by a 
fragment shader during the rendering process to determine the radiance (or color) of each 
fragment of a 3D model. 

First of all, the validation of temperature (IRColor) and material (IRMaterial) indices has been 
relocated at initialization phase. These indices are associated to each facet of a 3D model and 
are used to compute in-band components: thermal apparent radiance, reflected sun apparent 
radiance, reflected upward/downward flux apparent radiance, and facet transparency. As soon 
as a 3D model is added to the IRSG, the IRSG::GroupVisitor class is used to validate that these 
indices are available as user-defined properties for each osg::Geode of the 3D model. 
Additionally, the combinations of the temperature and material indices are computed and 
stored as a CombinedIndex property for further reference in the IRSG::UpdateColor method. 

In order to reduce the processing load, pre-computations have been extended in the 
IRSG::UpdateColor method. Firstly, as for the thermal apparent radiance, the other in-band 
components are now computed once and stored in a lookup table (LUT) for each entity. These 
values are related to the temperature and/or material indices and are retrieved from the LUT 
when a facet having the same properties has been already processed for a specific entity. This 
improvement allows reducing computations substantially since entities (or 3D models) 



 

                                                   15 

commonly have multiple facets sharing the same properties. Secondly, spectral operations that 
are independent from the temperature and/or material indices are now pre-computed for each 
entity. Note that this optimization is limited to the wideband mode since the spectral mode is 
likely to introduce result disparities if in-band components are present, due to a change in the 
order of the spectrum operations. Therefore, the following operations are pre-computed (for 
thermal and solar components of the wideband mode) and used the first time an in-band 
component is computed: reflected sun apparent radiance, reflected upward/downward flux 
apparent radiance, and atmosphere apparent radiance. 

Finally, the properties used by the fragment shader to compute the radiance are sent sparingly. 
These properties were set at the lowest level of the scene graph (osg::Drawable) using uniforms. 
However, it appears during performance profiling that uniforms are time consuming. As some of 
these properties are the same for all facets of an entity, uniforms have been relocated. Some 
uniforms are now set at the entity level (atmosphere apparent radiance, sun azimuth/elevation, 
sun position and zenith direction) while others are still set at the facet level (thermal apparent 
radiance, facet transparency, NAngle factor and reflections). Additionally, some uniforms have 
been gathered as osg::Uniform::FLOAT_VEC3 to limit the uniforms sent to the fragment shader: 
reflection contributions (sun apparent radiance, upward and downward flux apparent radiance) 
and facet values (thermal apparent radiance, facet transparency and NAngle factor). 

3.4.2 Specialized data type 

A new KARMA data type has been created to avoid useless conversion or memory copy. The 
rendering process creates an image of the scene into the framebuffer object and the OpenGL 
function glReadPixels is used to read these values into an array of float values. A specialized 
object (DataTypes::Image) is now used to store an image instead of using a local array and 
copying (and converting to double) the data in a DataTypes::Matrix, element by element. The 
image (DataTypes::Image) is simply initialized to allocate sufficient memory (float values) and 
this memory is used by the glReadPixels function (i.e. there is no memory copied after the 
execution of glReadPixels). 

3.4.3 Radiance image on demand 

An irradiance image is calculated instead of calculating the radiance and irradiance images each 
time an image is generated. The models in a KARMA simulation mainly use irradiance images 
while the radiance image is mainly used for debugging purpose (when images are saved on 
disk). As it is costly to maintain both radiance and irradiance images (image copy and 
conversion), the choice was made to generate a radiance image on demand. Thus, the radiance 
image is only converted from the irradiance image when a model, or a component, requests this 
format to the IRSG. 



 

                                                   16 

3.4.4 Reduced OpenGL calls 

The combined effect of removing unnecessary OpenGL calls related to materials (by calling 
removeAttribute(osg::StateAttribute::MATERIAL) on the statesets of osg::Geode and 
osg::Drawable) and optimizing the uniforms (see Section 3.4.1) has reduced the number of 
OpenGL calls from 3,947,025 to 932,845. The statistics related to OpenGL calls before the 
optimizations are presented in Appendix C; while those generated after the optimization phase 
are presented in Appendix D. 

3.4.5 SMART spectral sensor 

The use of SMART (KARMA::SmartAdapter) has been revisited to allow using this library at its 
full potential in wideband mode. Previously, a SMART sensor was always created to receive 
spectral requests (i.e. the spectral mode) from the KARMA::Environment. Thus, in a simulation 
involving only a sensor using the wideband mode, two SMART sensors (1 wideband and 1 
spectral) were created. In such a case, even if only the wideband one was used, having a 
spectral sensor in the KARMA::SmartAdapter increased the duration of the SMART::Update 
method which is called for each generated frame. Therefore, SMART sensors are now created 
when it is relevant to the current state of the simulation (i.e. the generic SMART spectral sensor 
will only be created if necessary). 

3.4.6 Varia 

Some parts of the IRSG that are not presented in this report were also reviewed. A major 
refactoring of the IRSG is still necessary (to increase encapsulation and modularity) but some 
improvements were done like: 

• remove useless and duplicate code; 

• fix memory leaks; and 

• remove useless memory copy (e.g. methods inside the IRSG return a pointer on the 
generated image instead of always recopying the image. In fact, the image shall just be 
copied when a model wish to modify and process the image). 

Before the end of the task, a review of the zoom antialiasing (ZAA) mechanism was started. The 
shader used by the ZAA to downsample a texture was generalized (for various downsampling 
factors) and simplified. However, on an ATI graphics card, the shader produced inaccurate 
results. Given the remaining time for the task, the shader was reverted to the preceding version.  



 

                                                   17 

4 Discussion 

4.1 Rendering 

Some useful tools can be used to profile the rendering part. OpenGL debuggers such as 
GLIntercept2 and gDEBugger3 were used during this task. 

The GLIntercept tool is simple to use. A modified version of OpenGL32.dll needs to be copied in 
the folder where the application to be debugged is located. The user can also set some logging 
preferences in a configuration file. After this, the software to be profiled just has to be started 
normally and some logs will be created during its execution. GLIntercept allows logging all 
OpenGL calls during the execution of a program and gathering statistics such as those depicted 
in Appendix C and Appendix D. 

gDEBugger is a GUI tool that can also be helpful during the debugging phase. It allows having a 
list of all OpenGL functions called during the execution of a program, set breakpoints, pause the 
execution, see the content of framebuffers, etc. One particular interesting feature is that 
gDEBugger can track redundant OpenGL state changes occurring during the simulation. For 
instance, there are still approximately 25% of the OpenGL calls made during the execution of 
the base scenario that consist in redundant state changes. Different solutions could be 
considered to reduce this phenomenon. OSG is responsible of doing the OpenGL calls. As a high 
level rendering library, OSG is producing redundant state changes in order to be flexible. A study 
of OSG code may allow identifying parameters that can be set to reduce the number of 
unnecessary calls. Replacing OSG with direct OpenGL calls shall also be investigated. Figure 6 
shows a screenshot of gDEBugger during a debugging session. 

                                                            
2 http://code.google.com/p/glintercept/ 
3 http://www.gremedy.com/ 



 

 

4.2

Durin
not o
osg::G
regro
under
traver
be se
3.4.1)
at init

 

2 Scen

g this task, it
optimal. Each
Geode. Thus, 
up facets ha
r the same ge
rsal faster; 2)
nt to the sha
). A tool could
tialization wh

Figure 6: A

ne grap

t appears tha
h osg::Drawa

there are as
aving the sam
eode. It woul
) values comp
ader at the G
d be develop
en a 3D mod

A screenshot of g

ph stru

t the structu
able, i.e. fac
s many geod
me temperat
d have 2 mai
puted for a p

Geode level in
ed to optimiz
el is added to

       

gDEBugger durin

cture o

re of the und
et, of the 3

des as drawa
ture (IRColor
n benefits: 1

particular tem
nstead of doin
ze automatica
o the IRSG. 

ng a profiling se

optimi

derlying scen
3D model is 
bles. A good
r) – material
) the scene g

mperature – m
ng it at the D
ally the scene

                  

ession. 

zation

e graph of th
associated t

 optimization
l (IRMaterial

graph will be s
material com
Drawable leve
e graph or it 

                      18

 

he 3D model 
to a differen
n would be t
) combinatio
smaller and it
bination cou
el (see Sectio
could be don

8 

 

is 
nt 
to 
on 
ts 
ld 

on 
ne 



 

                                                   19 

4.3 Level of detail 

The more IRColor and IRMaterial combinations a model has, the more complex computations 
are required to deduce the apparent radiance of each fragment of an entity (see Section 3.4.1). 
Therefore, the level of detail of the signature (i.e. database) could be reduced, by cutting down 
the total number of combinations, to gain extra frames per second. Similarly, the level of detail 
of the 3D models could be reduced by cutting down the number of polygons since the IRSG 
processes every facet. 

Finally, the size of the image could also be reduced: the time required to read the framebuffer 
and process an image is directly related to the size of the image. A quick test showed that 
reducing the image from 512x512 pixels to 401x401 pixels, using the baseline scenario 
presented in Section 2.2, increases the performance of the IRSG by 5%. Obviously, this is a 
tradeoff between precision and execution speed. 

4.4 Parallelism 

An important upgrade would consist in using the central processing unit (CPU) at its maximal 
capacity. At this moment, the IRSG is very sequential: every step of the rendering process is 
conducted one after the other. The performance of the IRSG would increase if some of these 
computations were done in parallel, in separate threads. 

Some tests were conducted using the Parallel Patterns Library4 (PPL) that is included in Visual 
Studio 2010 (development environment). This library simplifies the implementation of parallel 
processing and offers three algorithms:  

• parallel_for; 
• parallel_for_each; and 
• parallel_invoke. 

Firstly, the parallel_for algorithm has been tested for the DataTypes::Image to 
DataTypes::Matrix conversion (inside Image::ToMatrix method) for the baseline scenario. This 
conversion occurs each time a frame is generated (i.e. 301 times). Table 8 presents the average 
duration for two image sizes. In both cases, the use of the parallel_for algorithm speeds up the 
conversion process by more than a factor 2.  

Table 8: Image conversion without vs. with the parallel_for algorithm. 

Image size  
(pixels) 

Average duration (ms) 
Without parallel_for With parallel_for 

512x512 5.56 2.21 
1024x1024 23.89 10.03 

                                                            
4 http://msdn.microsoft.com/en-us/library/dd492418.aspx 



 

                                                   20 

Notice that the performances of such a parallelism are tightly related to the implementation. 
Indeed, there is an overhead in the management of the threads, so the load processing of each 
thread must be substantial in order to achieve a significant performance gain. 

Secondly, the parallel_invoke algorithm has been tested to parallelize the use of SMART (inside 
KARMA::SceneGenerator3D::GetSceneImage method) since the SMART library is supposed to be 
multi-thread ready. The computation of the path radiance, sun irradiance and 
upward/downward fluxes has been parallelized while preserving results integrity. Once again, 
the performances were compared using the baseline scenario. The use of parallel_invoke 
allowed to speed up the computation of these values by almost a factor 2, from 5.60 ms to 
3.42 ms. These calls to SMART have been parallelized easily but the code must be refactored in 
order to parallelize other atmospheric components at the entity level (i.e. atmospheric 
transmission and scattering). As the computation of the atmospheric components for each 
entity represents nearly the half duration of a frame rendering, parallelization could increase 
the frame rate by 25%. 

The use of the PPL library will help reaching higher frame rates. The major bottlenecks during 
rendering process could also benefit from parallelism. 

4.5 Replace SMART 

For time critical execution, SMART shall be replaced as it is too long to get radiometric values 
from it. A mechanism based on pre-defined LUT could be developed where values are gathered 
in these tables and a method responsible for the interpolation between these values is defined.  

Another reason to use LUT is connected to the fact that a scenario can contain multiple entities. 
In this case, the portion of the scene generation process related to acquiring values from SMART 
will be multiplied compared to what is depicted in Table 6 and Figure 5. 

4.6 Asynchronous read pixels / Double 
buffering 

Reading pixels from the framebuffer (glReadPixels) takes almost as much time as doing the 
rendering (see Figure 5). It is possible to read pixels asynchronously and avoid blocking the CPU 
while waiting for direct memory access (DMA) transfer on glReadPixels calls. One of the easiest 
way to achieve this is to take advantage of using multiple pixel buffer objects (PBO) to 
asynchronously download pixels from the framebuffer into a mapped PBO while the CPU 
process pixels from an earlier PBO. This is an important optimization that requires to consider 
memory vs. performance tradeoff since PBO needs a lot of memory.  



 

                                                   21 

There are multiple ways to implements PBOs, but if the IRSG is refactored to use parallelism (see 
4.4), it could be perfectly timed with the rendering pipeline and thus, avoid rendering while 
downloading pixels (which cause a locking problem called OpenGL pipeline stall). 

4.7 Dynamic memory allocation 

This optimization targets the KARMA simulation framework globally but could also have 
important impact on the IRSG. Dynamic memory allocation (heap) can create fragmentation and 
is much slower than stack memory allocation (heap allocation calls are usually forwarded up to 
the operating system and depending of the platform, it can be 100x slower).  

Using specialized memory allocator (ex: Nedmalloc5, ptmalloc6 and Hoard7), it is possible to 
prevent fragmentation and improve memory allocation to get huge performance improvement 
(especially when using multiple threads (see 4.4)).  

Finally, it is possible to get comparable performance to stack allocation out of heap allocation by 
using memory pool to allocate a large memory block at the beginning of the application. It can 
be somewhat complicated to implement without causing fragmentation and other problems, 
but several open source implementations exists (such as Boost memory pool8).  

4.8 Graphics processing unit 

Exploiting the graphics processing units (GPU) for additional operations shall also be 
investigated. As an example, the supersampling mechanism could use the GPU to avoid costly 
memory transfers from the GPU to the CPU. Indeed, it is possible to downsample directly via the 
GPU instead of downsampling via a custom method which accesses elements of the array to find 
the appropriate samples. Also, reading back the image in the CPU, via the glReadPixels function, 
would be faster since the size of the image is already at the final dimension (i.e. downsampled). 

One of the improvements done (see Section 3.4.3) consists in only keeping the irradiance image 
and converting it in radiance on demand. If it comes to the point where the two formats are 
always necessary, the shaders already in place in the IRSG could manage the conversion. For 
example, the radiance of a fragment could be placed in the red channel while the results of the 
radiance multiplied by the conversion factor (radiance to irradiance) could be placed in the blue 
channel. 

                                                            
5 http://www.nedprod.com/programs/portable/nedmalloc/ 
6 http://www.malloc.de/en/ 
7 http://www.hoard.org/ 
8 http://www.boost.org/doc/libs/release/libs/pool/ 



 

                                                   22 

Finally, instead of transferring the image from the GPU to the CPU, models processing this image 
could be modified to process data directly in the GPU. However, this approach would tighten 
dependencies between models and the IRSG. 



 

                                                   23 

5 Conclusion 

During this task, the IRSG was profiled to grasp a better understanding of the underlying 
mechanisms as well as where the time is spent during the scene generation process. According 
to the available time for the whole task AT-10, many optimizations were done. The 
improvements were tested using a baseline scenario, and the results indicate that the frame 
rate has been increased from 14.5 FPS to 32.4 FPS, with SMART still in the loop. Replacing 
SMART with various LUT should allow obtaining 100 FPS in a similar scenario as the one used 
during the performance profiling session. 

There are still many possible optimizations, like those discussed in this document, which would 
increase the frame rate of the IRSG. The rendering part shall be investigated in order to try 
reducing the number of OpenGL calls. An OpenGL debugger tool used with the profiled scenario 
indicated that 25% of the rendering calls are related to redundant OpenGL state changes. As 
discussed previously, some solutions could be considered to reduce the effect of this expensive 
mechanism. Additionally, it would be interesting to conduct performance profiling sessions 
using scenarios involving multiple targets (platforms and flares), antialiasing mechanisms and 
complex backgrounds (skybox and terrain). This would allow determining different bottlenecks 
and possible optimizations for standard simulations. 



 

                                                   24 

References 

[1] Ross, V. and Dion, D., "SMART and SMARTI: visible and IR atmospheric radiative 
transfer libraries optimized for wide-band applications", Proc. SPIE 8014, 80140S 
(2011). 

  



 

                                                   25 

Appendix A 

Profiling results (after optimization phase) with 
supersampling 4x activated. 

 



  
 

   
   

  
   

   
   

   
   

   
 

26
 

   
   

   
   

   
   

   
   

 

Ta
bl

e 
9:

 P
ro

fil
in

g 
th

e 
ba

se
 sc

en
ar

io
 w

ith
 su

pe
rs

am
pl

in
g 

4x
 (a

ft
er

 th
e 

op
tim

iza
tio

ns
). 

M
et

ho
d 

N
um

be
r 

of
 c

al
ls 

To
ta

l t
im

e 
(m

s)
 

%
To

ta
l 

tim
e 

%
 IR

SG
 

Av
er

ag
e 

pe
r c

al
l 

(m
s)

 

Av
er

ag
e 

pe
r f

ra
m

e 
(m

s)
 

Lo
ng

es
t 

ca
ll 

Lo
ng

es
t 

ca
ll 

 
(m

s)
 

Sh
or

te
st

 
ca

ll 

Sh
or

te
st

 
ca

ll 
 

(m
s)

 
gl

Re
ad

Pi
xe

ls 
30

1 
18

81
6.

35
 

7.
66

 
33

.9
2 

62
.5

12
8 

62
.5

12
8 

14
4 

87
.6

05
 

68
 

57
.0

24
 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kB
ac

kg
ro

un
dR

ad
ia

nc
e 

60
2 

22
47

.1
2 

0.
91

 
4.

05
 

3.
73

28
 

7.
46

55
 

35
 

5.
65

7 
55

0 
3.

09
2 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kP
at

hR
ad

ia
nc

e 
60

2 
21

79
.4

8 
0.

89
 

3.
93

 
3.

62
04

 
7.

24
08

 
8 

4.
85

 
53

2 
3.

08
6 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kT
ra

ns
m

itt
an

ce
 

60
2 

21
82

.8
8 

0.
89

 
3.

93
 

3.
62

60
 

7.
25

21
 

35
 

5.
07

6 
59

4 
3.

08
3 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

30
1 

57
05

5.
93

 
23

.2
3 

18
9.

55
46

 
1 

24
5.

04
1 

25
3 

18
0.

23
1 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

 
[c

on
ve

rt
 Im

ag
e 

to
 M

at
rix

] 
30

1 
15

50
.5

0 
0.

63
 

 
5.

15
12

 
 

15
3 

10
.3

35
 

22
0 

4.
56

5 

KA
RM

A:
:IR

SG
::G

en
er

at
eS

ce
ne

 
30

1 
48

77
2.

81
 

19
.8

5 
87

.9
1 

16
2.

03
59

 
16

2.
03

59
 

1 
21

1.
10

9 
25

3 
15

5.
55

6 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t 
30

1 
47

09
3.

91
 

19
.1

7 
84

.8
9 

15
6.

45
82

 
15

6.
45

82
 

20
8 

18
5.

84
5 

25
3 

15
0.

35
2 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t 
[d

ow
nS

am
pl

e]
 

30
1 

28
14

5.
56

 
11

.4
6 

50
.7

3 
93

.5
06

8 
93

.5
06

8 
20

8 
98

.3
26

 
19

6 
92

.6
09

 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t 
 [*

 o
m

eg
a]

 
30

1 
11

8.
64

 
0.

05
 

0.
21

 
0.

39
42

 
0.

39
42

 
16

6 
0.

91
6 

13
4 

0.
31

8 

KA
RM

A:
:IR

SG
::U

pd
at

eC
ol

or
 

30
1 

28
2.

66
 

0.
12

 
0.

51
 

0.
93

91
 

0.
93

91
 

1 
3.

29
6 

26
4 

0.
86

8 

KA
RM

A:
:S

ce
ne

Ge
ne

ra
to

r3
D:

: 
Ge

tS
ce

ne
Im

ag
e 

30
1 

55
47

9.
19

 
22

.5
8 

10
0.

00
 

18
4.

31
62

 
18

4.
31

62
 

1 
23

9.
51

2 
25

3 
17

5.
3 

m
ai

n 
1 

24
56

65
.2

9 
10

0.
00

 

os
gV

ie
w

er
::V

ie
w

er
Ba

se
:: 

re
nd

er
in

gT
ra

ve
rs

al
s 

30
1 

16
11

.4
7 

0.
66

 
2.

90
 

5.
35

37
 

5.
35

37
 

1 
49

.2
 

38
 

4.
89

5 

 



 

  

Figure 7:: Relative times (with the optim

       

mizations) when the supersamp

                  

 

pling 4x is activat

                      27

ted. 

7 



 

                                                   28 

This page intentionally left blank. 

 



 

                                                   29 

Appendix B 

Profiling results (after optimization phase) with ZAA 512 
activated. 

  



  
 

   
   

  
   

   
   

   
   

   
   

   
   

   
   

   
30

 
   

     

Ta
bl

e 
10

: P
ro

fil
in

g 
th

e 
ba

se
 sc

en
ar

io
 w

ith
 zo

om
 a

nt
ia

lia
si

ng
 (Z

AA
) 5

12
 (a

ft
er

 th
e 

op
tim

iz
at

io
ns

). 

M
et

ho
d 

N
um

be
r 

of
 c

al
ls 

To
ta

l t
im

e 
(m

s)
 

%
To

ta
l 

tim
e 

%
 IR

SG
 

Av
er

ag
e 

pe
r c

al
l 

(m
s)

 

Av
er

ag
e 

pe
r f

ra
m

e 
(m

s)
 

Lo
ng

es
t 

ca
ll 

Lo
ng

es
t 

ca
ll 

 
(m

s)
 

Sh
or

te
st

 
ca

ll 

Sh
or

te
st

 
ca

ll 
 

(m
s)

 
gl

Re
ad

Pi
xe

ls 
30

1 
18

09
.7

2 
0.

90
 

14
.0

4 
6.

01
23

 
6.

01
23

 
12

2 
21

.5
16

 
18

 
4.

93
1 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kB
ac

kg
ro

un
dR

ad
ia

nc
e 

60
2 

22
67

.1
6 

1.
12

 
17

.5
9 

3.
76

61
 

7.
53

21
 

16
1 

5.
15

9 
53

6 
3.

1 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kP
at

hR
ad

ia
nc

e 
60

2 
21

99
.9

6 
1.

09
 

17
.0

7 
3.

65
44

 
7.

30
88

 
16

8 
5.

05
3 

53
7 

3.
09

3 

KA
RM

A:
:E

nv
iro

nm
en

t::
 

Ge
tC

kT
ra

ns
m

itt
an

ce
 

60
2 

22
01

.6
7 

1.
09

 
17

.0
8 

3.
65

73
 

7.
31

45
 

3 
4.

90
2 

55
4 

3.
09

3 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

30
1 

14
35

5.
69

 
7.

11
 

  
47

.6
93

3 
  

1 
12

5.
69

8 
16

2 
42

.5
75

 

KA
RM

A:
:Im

ag
in

gS
en

so
r::

Ru
n 

 
[c

on
ve

rt
 Im

ag
e 

to
 M

at
rix

] 
30

1 
14

39
.4

6 
0.

71
 

  
4.

78
23

 
  

83
 

10
.4

 
27

4 
4.

08
4 

KA
RM

A:
:IR

SG
::G

en
er

at
eS

ce
ne

 
30

1 
61

22
.4

9 
3.

03
 

47
.5

0 
20

.3
40

5 
20

.3
40

5 
1 

91
.8

38
 

37
 

16
.4

11
 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t 
30

1 
19

50
.6

5 
0.

97
 

15
.1

3 
6.

48
06

 
6.

48
06

 
12

2 
21

.9
78

 
37

 
5.

33
8 

KA
RM

A:
:IR

SG
::R

ea
dF

ra
m

eb
uf

fe
rO

bj
ec

t  
[*

 o
m

eg
a]

 
30

1 
13

3.
42

 
0.

07
 

1.
04

 
0.

44
33

 
0.

44
33

 
13

9 
0.

86
5 

27
9 

0.
21

5 

KA
RM

A:
:IR

SG
::U

pd
at

eC
ol

or
 

30
1 

29
2.

59
 

0.
15

 
2.

27
 

0.
97

21
 

0.
97

21
 

1 
3.

46
1 

20
3 

0.
86

3 

KA
RM

A:
:S

ce
ne

Ge
ne

ra
to

r3
D:

:G
et

Sc
en

eI
m

ag
e 

30
1 

12
89

0.
60

 
6.

39
 

10
0.

00
 

42
.8

25
9 

42
.8

25
9 

1 
12

0.
52

7 
16

2 
38

.2
44

 

m
ai

n 
1 

20
17

76
.4

4 
10

0.
00

 
  

  
  

  
  

  
  

os
gV

ie
w

er
::V

ie
w

er
Ba

se
::r

en
de

rin
gT

ra
ve

rs
al

s 
30

1 
40

04
.0

4 
1.

98
 

31
.0

6 
13

.3
02

5 
13

.3
02

5 
1 

84
.4

62
 

45
 

10
.2

47
 



 

  
Figuure 8: Relative tiimes (with the o

       
optimizations) wwhen the ZAA 51

                  

 

12 is activated. 
                      311 



 

                                                   32 

This page intentionally left blank. 

 



 

                                                   33 

Appendix C 

OpenGL function calls before the optimization phase. 

======= OpenGL function call statistics ========== 
 Total GL calls: 3947025 
 
======= OpenGL function calls by call count ========== 
glUniform1fv ................................. 1508241 
glMaterialfv ................................. 864862 
glUniform3fv ................................. 430926 
glDisable .................................... 222176 
glColor4fv ................................... 217873 
glMaterialf .................................. 216366 
glCallList ................................... 215764 
glCullFace ................................... 208330 
glEnable ..................................... 6412 
glLightf ..................................... 4515 
glLightfv .................................... 4515 
glMatrixMode ................................. 3913 
glUseProgram ................................. 3615 
glLoadIdentity ............................... 3612 
glLightModeli ................................ 3612 
glBindFramebufferEXT ......................... 2110 
glColorMask .................................. 2107 
glGetError ................................... 1809 
glViewport ................................... 1806 
glNewList .................................... 1507 
glEndList .................................... 1507 
glVertexPointer .............................. 1507 
glDeleteLists ................................ 1507 
glGenLists ................................... 1507 
glBlendFunc .................................. 1505 
glDrawBuffers ................................ 1207 
glNormalPointer .............................. 1206 
glDrawArrays ................................. 1206 
glAlphaFunc .................................. 1204 
glLoadMatrixd ................................ 1204 
glLightModelfv ............................... 1204 
glTexEnvi .................................... 1204 
glClear ...................................... 903 



 

                                                   34 

glClearDepth ................................. 903 
glScissor .................................... 903 
glDepthMask .................................. 903 
glTexCoordPointer ............................ 808 
wglGetCurrentContext ......................... 303 
wglGetCurrentDC .............................. 303 
glReadPixels ................................. 301 
glClearColor ................................. 301 
glPixelStoref ................................ 301 
glColorMaterial .............................. 301 
glDrawElements ............................... 301 
wglGetProcAddress ............................ 239 
glGetString .................................. 48 
glGetActiveUniform ........................... 13 
glGetUniformLocation ......................... 13 
glGetProgramiv ............................... 12 
glDisableClientState ......................... 11 
wglMakeCurrent ............................... 10 
glEnableClientState .......................... 8 
glGetShaderiv ................................ 8 
glProgramParameteri .......................... 6 
glGetIntegerv ................................ 5 
glCreateShader ............................... 4 
wglCreateContext ............................. 4 
wglDeleteContext ............................. 4 
glTexParameteri .............................. 4 
wglSetPixelFormat ............................ 4 
glCompileShader .............................. 4 
glAttachShader ............................... 4 
glDeleteShader ............................... 4 
glGetActiveAttrib ............................ 4 
glGetAttribLocation .......................... 4 
glShaderSource ............................... 4 
glBindRenderbufferEXT ........................ 3 
glGenRenderbuffersEXT ........................ 3 
glRenderbufferStorageEXT ..................... 3 
glGenFramebuffersEXT ......................... 3 
glFramebufferTexture2DEXT .................... 3 
glCheckFramebufferStatusEXT .................. 3 
glFramebufferRenderbufferEXT ................. 3 
wglChoosePixelFormatARB ...................... 2 
glCreateProgram .............................. 2 
wglChoosePixelFormat ......................... 2 
glDeleteProgram .............................. 2 
glLinkProgram ................................ 2 
wglGetExtensionsStringARB .................... 2 
glTexImage2D ................................. 2 
glGetTexLevelParameteriv ..................... 1 
glGenTextures ................................ 1 
glBindTexture ................................ 1 

 

  



 

                                                   35 

Appendix D 

OpenGL function calls after the optimization phase. 

======= OpenGL function call statistics ========== 
 Total GL calls: 932845 
 
======= OpenGL function calls by call count ========== 
glUniform3fv ................................. 431522 
glCallList ................................... 215761 
glCullFace ................................... 208198 
glDisable .................................... 6584 
glEnable ..................................... 6584 
glLightfv .................................... 4515 
glLightf ..................................... 4515 
glMatrixMode ................................. 3913 
glUseProgram ................................. 3615 
glLightModeli ................................ 3612 
glMaterialfv ................................. 3612 
glLoadIdentity ............................... 3612 
glColor4fv ................................... 2711 
glBindFramebufferEXT ......................... 2110 
glColorMask .................................. 2107 
glGetError ................................... 1809 
glViewport ................................... 1806 
glNewList .................................... 1507 
glEndList .................................... 1507 
glVertexPointer .............................. 1507 
glDeleteLists ................................ 1507 
glGenLists ................................... 1507 
glBlendFunc .................................. 1505 
glDrawBuffers ................................ 1207 
glNormalPointer .............................. 1206 
glDrawArrays ................................. 1206 
glMaterialf .................................. 1204 
glAlphaFunc .................................. 1204 
glLoadMatrixd ................................ 1204 
glLightModelfv ............................... 1204 
glTexEnvi .................................... 1204 
glClear ...................................... 903 
glClearDepth ................................. 903 



 

                                                   36 

glDepthMask .................................. 903 
glScissor .................................... 903 
glTexCoordPointer ............................ 808 
glColorMaterial .............................. 602 
wglGetCurrentContext ......................... 303 
wglGetCurrentDC .............................. 303 
glReadPixels ................................. 301 
glClearColor ................................. 301 
glPixelStoref ................................ 301 
glDrawElements ............................... 301 
glUniform1fv ................................. 301 
wglGetProcAddress ............................ 239 
glGetString .................................. 48 
glGetProgramiv ............................... 12 
glDisableClientState ......................... 11 
wglMakeCurrent ............................... 10 
glGetActiveUniform ........................... 9 
glGetUniformLocation ......................... 9 
glEnableClientState .......................... 8 
glGetShaderiv ................................ 8 
glProgramParameteri .......................... 6 
glGetIntegerv ................................ 5 
glCreateShader ............................... 4 
wglCreateContext ............................. 4 
wglDeleteContext ............................. 4 
glTexParameteri .............................. 4 
wglSetPixelFormat ............................ 4 
glCompileShader .............................. 4 
glAttachShader ............................... 4 
glDeleteShader ............................... 4 
glGetActiveAttrib ............................ 4 
glGetAttribLocation .......................... 4 
glShaderSource ............................... 4 
glBindRenderbufferEXT ........................ 3 
glGenRenderbuffersEXT ........................ 3 
glRenderbufferStorageEXT ..................... 3 
glGenFramebuffersEXT ......................... 3 
glFramebufferTexture2DEXT .................... 3 
glCheckFramebufferStatusEXT .................. 3 
glFramebufferRenderbufferEXT ................. 3 
wglChoosePixelFormatARB ...................... 2 
glCreateProgram .............................. 2 
wglChoosePixelFormat ......................... 2 
glDeleteProgram .............................. 2 
glLinkProgram ................................ 2 
wglGetExtensionsStringARB .................... 2 
glTexImage2D ................................. 2 
glGetTexLevelParameteriv ..................... 1 
glGenTextures ................................ 1 
glBindTexture ................................ 1 



 
 

 
 

 

DOCUMENT CONTROL DATA 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified) 

 1. ORIGINATOR (The name and address of the organization preparing the document. 
Organizations for whom the document was prepared, e.g. Centre sponsoring a  
contractor's report, or tasking agency, are entered in section 8.) 
 
LTI software & engineering 
825 Boul. Lebourgneuf, Bureau 204 
Québec, Canada 
G2J 0B9 
 
  

 2.  SECURITY CLASSIFICATION  
(Overall security classification of the document 
including special warning terms if applicable.) 

 
UNCLASSIFIED 
(NON-CONTROLLED GOODS) 
DMC A 
REVIEW: GCEC JUNE 2010 
 

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)  
in parentheses after the title.) 
 
Air Defence System: Profiling and Optimizing the KARMA IRSG Module   

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used) 
 
Labrie, M.-A., Rouleau, E., Desmeules, M. 

 5. DATE OF PUBLICATION  
(Month and year of publication of document.) 
 
 
July 2012 

 6a. NO. OF PAGES   
(Total containing information, 
including Annexes, Appendices, 
etc.) 

50 

 6b. NO. OF REFS   
(Total cited in document.) 
 
 

1 
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, 

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.) 
 
Contract Report 

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.) 
 
Defence R&D Canada – Valcartier 
2459 Pie-XI Blvd North 
Quebec (Quebec) 
G3J 1X5 Canada 
  

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research 
and development project or grant number under which the document  
was written. Please specify whether project or grant.) 

  

 Project 13nb 

 9b. CONTRACT NO. (If appropriate, the applicable number under  
which the document was written.) 
 

  
 W7701-083373-AT10 

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document 
number by which the document is identified by the originating  
activity. This number must be unique to this document.) 
 
LTI-ADS-2012-1  

 10b.  OTHER DOCUMENT NO(s). (Any other numbers which may be 
assigned this document either by the originator or by the sponsor.) 
 
 
DRDC Valcartier CR 2012-070 

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.) 
  

Unlimited 

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the 
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement  
audience may be selected.)) 
 
Unlimited    

  



 
 

 
  
 

 
 

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable  
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification  
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include  
here abstracts in both official languages unless the text is bilingual.)  
 

The main objectives of task AT-10, as part of contract W7701-083373, was to profile the 
performance of the infrared scene generator (IRSG) module of the KARMA simulation 
framework, pinpoint bottlenecks, optimize critical portions of code through basic corrective 
measures, and update the SMART (Suite for Multi-resolution Atmospheric Radiative 
Transmission) library to the latest version. The work has been carried out from January 2012 to 
March 2012. The profiling has been limited to a basic scenario using the IRSG and the 
wideband mode. The code optimizations allowed to double the frame rate for this scenario. 
Some optimization avenues were investigated and could be realized as a part of another task or 
contract. 

 
Les objectifs de la tache AT-10, du contrat W7701-083373, étaient d’effectuer le profilage des 
performances du module de génération de scène infrarouge (IRSG) de l’environnement de 
simulation KARMA, d’identifier les éléments critiques, d’optimiser certaines portions critiques 
par des mesures correctives de base, et de mettre a jour la librairie de calculs atmosphérique 
SMART (Suite for Multi-resolution Atmospheric Radiative Transmission). Les travaux ont été 
effectués de janvier 2012 à mars 2012. Le profilage des performances a été limité à un scénario 
simple utilisant l’IRSG en mode large-bande. Les optimisations au code ont permis de doubler 
la cadence pour un tel scénario. Des avenues ont aussi été identifiées pour une éventuelle 
deuxième phase d’optimisation. 
 

 
 

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be  
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model 
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a  
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select  
indexing terms which are Unclassified, the classification of each should be indicated as with the title.) 
 

IR Scene Generation; Code Optimisation; Graphics Processing Units  

 

 



www.ddrdc rddc.ggc.ca


