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Abstract

The main objectives of task AT-10, as part of contract W7701-083373, was to profile the
performance of the infrared scene generator (IRSG) module of the KARMA simulation
framework, pinpoint bottlenecks, optimize critical portions of code through basic corrective
measures, and update the SMART (Suite for Multi-resolution Atmospheric Radiative
Transmission) library to the latest version. The work has been carried out from January 2012 to
March 2012. The profiling has been limited to a basic scenario using the IRSG and the wideband
mode. The code optimizations allowed to double the frame rate for this scenario. Some
optimization avenues were investigated and could be realized as a part of another task or contract.

Résumé

Les objectifs de la tache AT-10, du contrat W7701-083373, étaient d’effectuer le profilage des
performances du module de génération de scéne infrarouge (IRSG) de I’environnement de
simulation KARMA, d’identifier les éléments critiques, d’optimiser certaines portions critiques
par des mesures correctives de base, et de mettre a jour la librairie de calculs atmosphérique
SMART (Suite for Multi-resolution Atmospheric Radiative Transmission). Les travaux ont été
effectués de janvier 2012 a mars 2012. Le profilage des performances a été limité a un scénario
simple utilisant I’IRSG en mode large-bande. Les optimisations au code ont permis de doubler la
cadence pour un tel scénario. Des avenues ont aussi été identifiées pour une éventuelle deuxiéme
phase d’optimisation.
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Executive summary

Air Defence System: Profiling and Optimizing the KARMA IRSG
Module

M.-A. Labrie; E. Rouleau; M. Desmeules; DRDC Valcartier CR 2012-070;
Defence R&D Canada — Valcartier; July 2012.

Introduction: The KARMA simulation framework is currently used at DRDC Valcartier to
simulate engagement level scenarios involving air targets. Within the Virtual Proving Ground
(VPG), the KARMA simulation framework and its Infrared Scene Generation (IRSG) module
will also be used for main-in-the-loop and hardware-in-the-loop applications. To allow for these
time critical simulations to be performed, it was necessary to increase the frame rate of the IRSG
module. As a preliminary phase of this improvement, task AT-10 of contract W7701-083373 was
intended to determine the potential for frame rate improvements with the infrared scene generator
(IRSG) module of KARMA.

Results: The work, carried out from January 2012 to March 2012, allowed to profile the
performance of the IRSG module, pinpoint bottlenecks, optimize critical portions of code through
basic corrective measures, and update the SMART (Suite for Multi-resolution Atmospheric
Radiative Transmission) library to the latest version. The basic code optimizations performed
within the task allowed to double the frame rate.

Significance: The work has shown the potential of the IRSG module for frame rate
improvements, and demonstrated that the IRSG module would be appropriate for the envisioned
real-time applications with proper optimisations done. It also allowed to identify optimization
avenues that could have an important impact on the performance of the IRSG module.

Future plans: The next step will be to perform the second phase of optimisation as a function of
the profiling resulting from this task.
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Sommaire

Air Defence System: Profiling and Optimizing the KARMA IRSG
Module

M.-A. Labrie; E. Rouleau; M. Desmeules; DRDC Valcartier CR 2012-070; R & D
pour la défense Canada - Valcartier; juillet 2012.

Introduction: L’environnement de simulation KARMA est actuellement utilis¢ par RDDC
Valcartier pour simuler des scénarios de niveau engagement impliquant des cibles aériennes.
Dans le cadre du polygone d’essai virtuel, I’environnement de simulation KARMA et son module
de génération de sceéne infrarouge (IRSG) seront aussi utilisés pour des applications humain dans
la boucle et matériel dans la boucle. Afin de permettre 1’exécution de telles simulations, dont le
temps d’exécution est critique, il était nécessaire d’améliorer la cadence d’affichage du module
IRSG. En phase préliminaire, la tache AT-10 du contrat W7701-083373 visait a déterminer le
potentiel d’amélioration des performances du module IRSG de KARMA

Résultats: Les travaux, effectués de janvier 2012 a mars 2012, ont permis d’effectuer le profilage
des performances du module IRSG, d’identifier les éléments critiques, d’optimiser certaines
portions critiques par des mesures correctives de base, et de mettre a jour la librairie de calculs
atmosphérique SMART (Suite for Multi-resolution Atmospheric Radiative Transmission). Les

optimisations de base effectuées au au code lors de cette tache ont permis de doubler la cadence
d’affichage.

Importance: Les travaux ont démontré le potentiel d’amélioration des performances du module
IRSG, et ont démontré que celui-ci pouvait étre approprié pour les applications en temps réel
envisagées, une fois certaines optimisations faites. Des avenues d’optimisation pouvant avoir un
impact important sur les performances ont aussi été identifices.

Perspectives: La prochaine étape sera d’effectuer la seconde phase d’optimisation en fonction du
profilage des performances résultant de cette tache.
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1 Introduction

The main objectives of task AT-10, as part of contract W7701-083373, was to 1) profile the
performance of the infrared scene generator (IRSG) module of the KARMA simulation
framework, 2) pinpoint bottlenecks, and 3) optimize the critical part of the code through basic
corrective measures.

Another objective was to update the SMART (Suite for Multi-resolution Atmospheric Radiative
Transmission) library used by the KARMA framework to the newest version available. The work
was carried out from January 2012 to March 2012.

This report focuses on presenting the results of the performance profiling (before and after the
implementation of the optimizations). The optimizations are summarized as well as some ideas
regarding optimization avenues that could have an important impact on the performance of the
IRSG module.



2 General information

2.1 SMART

SMART is a C++ library developed at DRDC-Valcartier [1]. The main purpose of SMART is to
calculate atmospheric values such as transmitted solar irradiance, atmospheric fluxes, path and
background radiances, and transmittance. This library can produce outputs in both spectral or
wideband correlated-k (CK) format.

This library takes an important place in the IRSG module, allowing obtaining precise atmospheric
values. To take advantage of the various fixes and improvements done to the library since the
last release, the choice was made to first update KARMA with the most recent version of
SMART, before proceeding with the optimization phase. The last time this library was updated in
KARMA was in June 2010 (revision 961). Therefore, the library was updated to revision 1088 at
the beginning of this task. A final update was done prior the end of the task in March 2012
(revision 1089). Consequently, the verification and validation (V&V) report of the signature
management capability was updated to take into account the new version of the library on the
results produced by the IRSG module. The results, for the cases depicted in the V&V, are almost
the same (very small modifications to some values) as before the library update.

KARMA uses the scene scattering mode (as opposed to sensor scattering mode) available with
SMART. With this mode, the first call to SMART::update is very long but subsequent ones (made
before each frame is generated) are very short. However, with the analysis of a first profiling
session, all our calls to SMART::update were long. This was caused by an unusual utilization of
SMART combined with the utilization of the SMART onlyWide mode. A refactoring of the
SmartAdapter class (which allows using SMART within KARMA) associated with a modification in
SMART has allowed to correct the encountered problem (see Table 1 and Table 2, produced
with the scenario presented in section 2.2).

Table 1: SMART::update timings before SMART library update and SmartAdapter refactoring.

1* call to SMART::update 763 ms
Average time for other calls to SMART::update 140 ms




Table 2: SMART::update timings after SMART library update and SmartAdapter refactoring.

1* call to SMART::update 4168 ms
Average time for other calls to SMART::update 0.017 ms

The first call to SMART::update is very long but is done during the IRSG initialization phase, prior
the simulation begins.

2.2 Baseline scenario

The performance profiling has been performed using a basic engagement scenario (a man-
portable air-defense system (ManPADS) missile against a CC130 platform), without complex
rendering mechanisms and 3D models, in order to focus on optimizing the scene generation
process rather than the overall simulation process. The major parameters are presented in
Table 3.

Table 3: Main parameters of the baseline scenario.

Antialiasing None

Base parameters except for the spectral
band which is: 2.5 - 5.5 um

AtmosphereSmart model

Background Uniform

Calculation mode Wideband

Duration 3.00 seconds

Flares Without

Frames generated 301

Image size 512 x 512 pixels

Platform CC130 generic (CC130_IR.flt)

Platform 3D model

12 LOD
characteristics L5 elfEens, o Leles

10 temperatures (IRColor)

Platform Database 4 materials (IRMaterial)
10 combinations temperature-material
Sensor spectral response 3.0-5.0 um
Skybox None
Terrain None

The 3D model used for the CC130 platform is shown in Figure 1, in a scribed (solid and
wireframe) appearance.



Figure 1: 3D model used in the baseline scenario.

The engagement is the following: a basic threat is pursuing a platform during 3 seconds; the
platform is tracked by the missile throughout the simulation. The initial engagement geometry is
depicted in Figure 2 while the initial image of the platform by the missile’s seeker is shown in
Figure 3. Notice that the platform’s infrared signature is a generic one, using fake temperatures:
the purpose of the simulations conducted during this task was only to test the scene generation

N

500 meters

frame rate performances.

ecccencncscsncnennad

....
.o
.=
.o
Pr iy

/ 2000 meters

Figure 2: Initial engagement geometry.




Figure 3: Initial missile’s seeker view.

2.3 Performance Profiler

Performance Profiler is a custom timing profiler available within the KARMA simulation
framework. It is based on an intrusive technique where the user has to insert code into the
method or block of code to be profiled. This approach allows a detailed profiling (smaller
granularity) as it is not limited to the existing methods. Performance Profiler uses Windows
high-resolution timer (based on QueryPerformanceCounter and QueryPerformanceFrequency) to
determine the duration of a portion of code.

At the beginning of the task, the Performance Validator® tool was also tested. The first step was
to profile all methods implied in the scene generation process to find those for which the
optimization effort will be done. After that, only the chosen methods are profiled each time an
optimization is done. When Performance Validator was used to profile every method, the
results obtained were not accurate and it was really long to run a scenario. It was then decided

! http://www.softwareverify.com/cpp-profiler.php




to use the KARMA tool to identify the longest methods. After this, since the profiling code was
already in the KARMA code, the profiling sessions were also realized with the KARMA profiling
tool. Switching to Performance Validator could have been done at this point i.e. the results
seem to be accurate when profiling a relatively low (~15) number of methods.

2.4 Computing device specifications

The computer used during the performance profiling had the following specifications:
e Intel Core 2 Extreme CPU Q6850 @ 3.00 GHz
e 4.00GB
e Graphic Card:
o NVidia 8800 GTX/PCI/SSE2
o OpenGL3.3.0

e Windows 7 Professional 64 bits

2.5 KARMA version

The performance profiling and development phases for the optimizations were realized using
the KARMA SVN revision 11,336.



3 Profiling and optimizing

3.1 Methods profiled

Table 4 presents the methods that were profiled to find out performance bottlenecks.
Obviously, these are not all the methods implied in the scene generation process but those
having a non-negligible duration. Notice that Figure 4 shows the hierarchy between these
methods.

Table 4: Profiled methods of the scene generation process.

Method Description

KARMA::Environment:: Returns the background radiance (computed by SMART)

GetCkBackgroundRadiance in the wideband CK format.

KARMA::Environment:: GetCkTransmittance Returns the atmospheric transmittance (computed by
SMART) in the wideband CK format.

KARMA::Environment:: GetCkPathRadiance Returns the path radiance (computed by SMART) in the
wideband CK format.

KARMA::ImagingSensor::Run Generates an image of the scene (i.e. calls

KARMA::SceneGenerator3D::GetScenelmage).

The imaging sensor represents the imaging device (of
the missile) capable of capturing a scene. Additional
processing can be added (via other models/parts) to
process its output and produce more representative
detector data. The Run method is called at each period,
for every model taking part into the simulation.

KARMA::IRSG::GenerateScene Generates an image of the scene for a given point of
view and using specific settings (spectral response, field
of view, etc.).

KARMA::IRSG::ReadFrameBufferObject Reads back the attached texture of the framebuffer
object.
KARMA::IRSG::UpdateColor Computes in-band components (LAtmApp, LSunRefApp,

LUpRefApp, LDownRefApp, LThermApp, transparency,
nFactor, etc.) using spectrum values gathered
previously.




These values are the inputs of a fragment shader used
to determine the radiance of each fragment of a 3D
model.

KARMA::SceneGenerator3D:: GetScenelmage Generates an image of the scene: prepares the scene in
the IRSG, initialize the IRSG parameters (sensor,
radiometric values, features of the IRSG (skybox,
scattering, terrain)) then calls
KARMA::IRSG::GenerateScene.

This is the method that was monitored to determine
the frames per second (FPS).

glReadPixels OpenGL function which reads a block of pixels from the
framebuffer.

This function is called via the
KARMA::IRSG::ReadFrameBufferObject to retrieve the
generated image.

osgViewer::ViewerBase::renderingTraversals OpenSceneGraph (OSG) method which generates an
image into the framebuffer. This method is called to
begin the rendering process.

3.2 Initial overview

Table 5 presents the results of the performance profiling session prior to any optimizations;
while Figure 4 depicts an overview of the main methods (from left to right, the visualization
shows a method and its child). The height of each block (i.e. method) is set according to the
profiling results and represents the relative duration of the block compared to its parent.

Notice that the Rendering block (see Figure 4) is not represented in Table 5: its value is a simple
deduction, filling the gap between KARMA::IRSG::UpdateColor and its parent
(osgViewer::ViewerBase::renderingTraversals). Every steps of the rendering phase could be
profiled by inserting Performance Profiler code into OpenSceneGraph code. However, at this
point, profiling KARMA was more important than studying the impact of third party libraries on
the scene generation module. Notice that this could be the case in future tasks.
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Figure 4: Overview of the relative time for the initial profiling.
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3.3 Final results

Table 6 presents the results of the performance profiling session after the development of the
optimizations presented in Section 3.4, while Figure 5 depicts an overview of the main methods
which were profiled.

The hatched part in KARMA::ImagingSensor::Run represents the conversion from the
DataTypes::Image to a DataTypes::Matrix. The latter being the current image format used by
the models of the KARMA simulation framework. This conversion is performed to preserve
backward compatibility and will not be necessary as soon as the newly created
DataTypes::Image is used by all models.

The hatched part in KARMA::IRSG::ReadFrameBufferObject represents the multiplication of the
generated image (radiance) by the omega factor to create the image in irradiance. This could
eventually be done directly by the various shaders used by the IRSG.

Notice that the first frame (generated at t = 0.00 s.) is longer to generate than the subsequent
ones (based on the Longest Call column). The time required to produce this image could be
removed from the frame rate calculation because it is considered as an “initialization phase”,
done prior the simulation begins.

Since the fragment shader could not be profiled, the time spent in this shader to determine the
radiance of each fragment of a 3D model has been deduced by removing code and comparing
the duration of osgViewer::ViewerBase::renderingTraversals. It appears that the shader requires
less than 1 ms per frame to execute and the processing is as follows: LAtmApp (0%), LSunRefApp
(35%), LUpRefApp (15%), LDownRefApp (15%) and LThermApp (35%).

For documentation purpose, Appendix A and Appendix B present the results of the performance
profiling sessions for the baseline scenario with the antialiasing mechanism (supersampling 4x
and ZAA 512) activated.

11
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Table 7 shows a summary of the frame rate, in frames per second (FPS), obtained before and
after the optimizations.

Table 7: Summary of the frame rate.

Frame rate
(s

Prior to optimizations 14.5
After optimizations 324
After optimizations without 1* frame 32.6

3.4 Improvements

This section describes the improvements to the KARMA framework and IRSG module to improve
the scene generation process. Notice that the choice was made to focus on the wideband mode
(not the spectral mode) during the optimization phase. The wideband mode is assumed to be
the most commonly used in the KARMA simulations.

3.4.1 Radiance computation

The method responsible for the radiance computation has been refactored to relocate some
processing and remove useless computations. This method, /IRSG::UpdateColor, computes in-
band components for each facet of a 3D model that could be seen by the camera (i.e. facets that
have not been culled) using input spectrums of the IRSG. These components are used by a
fragment shader during the rendering process to determine the radiance (or color) of each
fragment of a 3D model.

First of all, the validation of temperature (IRColor) and material (IRMaterial) indices has been
relocated at initialization phase. These indices are associated to each facet of a 3D model and
are used to compute in-band components: thermal apparent radiance, reflected sun apparent
radiance, reflected upward/downward flux apparent radiance, and facet transparency. As soon
as a 3D model is added to the IRSG, the IRSG::GroupVisitor class is used to validate that these
indices are available as user-defined properties for each osg::Geode of the 3D model.
Additionally, the combinations of the temperature and material indices are computed and
stored as a CombinedIndex property for further reference in the IRSG::UpdateColor method.

In order to reduce the processing load, pre-computations have been extended in the
IRSG::UpdateColor method. Firstly, as for the thermal apparent radiance, the other in-band
components are now computed once and stored in a lookup table (LUT) for each entity. These
values are related to the temperature and/or material indices and are retrieved from the LUT
when a facet having the same properties has been already processed for a specific entity. This
improvement allows reducing computations substantially since entities (or 3D models)
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commonly have multiple facets sharing the same properties. Secondly, spectral operations that
are independent from the temperature and/or material indices are now pre-computed for each
entity. Note that this optimization is limited to the wideband mode since the spectral mode is
likely to introduce result disparities if in-band components are present, due to a change in the
order of the spectrum operations. Therefore, the following operations are pre-computed (for
thermal and solar components of the wideband mode) and used the first time an in-band
component is computed: reflected sun apparent radiance, reflected upward/downward flux
apparent radiance, and atmosphere apparent radiance.

Finally, the properties used by the fragment shader to compute the radiance are sent sparingly.
These properties were set at the lowest level of the scene graph (osg::Drawable) using uniforms.
However, it appears during performance profiling that uniforms are time consuming. As some of
these properties are the same for all facets of an entity, uniforms have been relocated. Some
uniforms are now set at the entity level (atmosphere apparent radiance, sun azimuth/elevation,
sun position and zenith direction) while others are still set at the facet level (thermal apparent
radiance, facet transparency, NAngle factor and reflections). Additionally, some uniforms have
been gathered as o0sg::Uniform::FLOAT _VEC3 to limit the uniforms sent to the fragment shader:
reflection contributions (sun apparent radiance, upward and downward flux apparent radiance)
and facet values (thermal apparent radiance, facet transparency and NAngle factor).

3.4.2 Specialized data type

A new KARMA data type has been created to avoid useless conversion or memory copy. The
rendering process creates an image of the scene into the framebuffer object and the OpenGL
function glReadPixels is used to read these values into an array of float values. A specialized
object (DataTypes::Image) is now used to store an image instead of using a local array and
copying (and converting to double) the data in a DataTypes::Matrix, element by element. The
image (DataTypes::Image) is simply initialized to allocate sufficient memory (float values) and
this memory is used by the glReadPixels function (i.e. there is no memory copied after the
execution of g/lReadPixels).

3.4.3 Radiance image on demand

An irradiance image is calculated instead of calculating the radiance and irradiance images each
time an image is generated. The models in a KARMA simulation mainly use irradiance images
while the radiance image is mainly used for debugging purpose (when images are saved on
disk). As it is costly to maintain both radiance and irradiance images (image copy and
conversion), the choice was made to generate a radiance image on demand. Thus, the radiance
image is only converted from the irradiance image when a model, or a component, requests this
format to the IRSG.
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3.4.4 Reduced OpenGL calls

The combined effect of removing unnecessary OpenGL calls related to materials (by calling
removeAttribute(osg::StateAttribute::MATERIAL) on the statesets of o0sg::Geode and
0sg::Drawable) and optimizing the uniforms (see Section 3.4.1) has reduced the number of
OpenGL calls from 3,947,025 to 932,845. The statistics related to OpenGL calls before the
optimizations are presented in Appendix C; while those generated after the optimization phase
are presented in Appendix D.

3.4.5 SMART spectral sensor

The use of SMART (KARMA::SmartAdapter) has been revisited to allow using this library at its
full potential in wideband mode. Previously, a SMART sensor was always created to receive
spectral requests (i.e. the spectral mode) from the KARMA::Environment. Thus, in a simulation
involving only a sensor using the wideband mode, two SMART sensors (1 wideband and 1
spectral) were created. In such a case, even if only the wideband one was used, having a
spectral sensor in the KARMA::SmartAdapter increased the duration of the SMART::Update
method which is called for each generated frame. Therefore, SMART sensors are now created
when it is relevant to the current state of the simulation (i.e. the generic SMART spectral sensor
will only be created if necessary).

3.4.6 Varia

Some parts of the IRSG that are not presented in this report were also reviewed. A major
refactoring of the IRSG is still necessary (to increase encapsulation and modularity) but some
improvements were done like:

e remove useless and duplicate code;
e fix memory leaks; and

e remove useless memory copy (e.g. methods inside the IRSG return a pointer on the
generated image instead of always recopying the image. In fact, the image shall just be
copied when a model wish to modify and process the image).

Before the end of the task, a review of the zoom antialiasing (ZAA) mechanism was started. The
shader used by the ZAA to downsample a texture was generalized (for various downsampling
factors) and simplified. However, on an ATI graphics card, the shader produced inaccurate
results. Given the remaining time for the task, the shader was reverted to the preceding version.
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4 Discussion

4.1 Rendering

Some useful tools can be used to profile the rendering part. OpenGL debuggers such as
GLIntercept® and gDEBugger® were used during this task.

The GLIntercept tool is simple to use. A modified version of OpenGL32.dll needs to be copied in
the folder where the application to be debugged is located. The user can also set some logging
preferences in a configuration file. After this, the software to be profiled just has to be started
normally and some logs will be created during its execution. GLIntercept allows logging all
OpenGL calls during the execution of a program and gathering statistics such as those depicted
in Appendix C and Appendix D.

gDEBugger is a GUI tool that can also be helpful during the debugging phase. It allows having a
list of all OpenGL functions called during the execution of a program, set breakpoints, pause the
execution, see the content of framebuffers, etc. One particular interesting feature is that
gDEBugger can track redundant OpenGL state changes occurring during the simulation. For
instance, there are still approximately 25% of the OpenGL calls made during the execution of
the base scenario that consist in redundant state changes. Different solutions could be
considered to reduce this phenomenon. OSG is responsible of doing the OpenGL calls. As a high
level rendering library, OSG is producing redundant state changes in order to be flexible. A study
of OSG code may allow identifying parameters that can be set to reduce the number of
unnecessary calls. Replacing OSG with direct OpenGL calls shall also be investigated. Figure 6
shows a screenshot of gDEBugger during a debugging session.

2 http://code.google.com/p/glintercept/
* http://www.gremedy.com/
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Figure 6: A screenshot of gDEBugger during a profiling session.

4.2 Scene graph structure optimization

During this task, it appears that the structure of the underlying scene graph of the 3D model is
not optimal. Each osg::Drawable, i.e. facet, of the 3D model is associated to a different
0sg::Geode. Thus, there are as many geodes as drawables. A good optimization would be to
regroup facets having the same temperature (/IRColor) — material (IRMaterial) combination
under the same geode. It would have 2 main benefits: 1) the scene graph will be smaller and its
traversal faster; 2) values computed for a particular temperature — material combination could
be sent to the shader at the Geode level instead of doing it at the Drawable level (see Section
3.4.1). A tool could be developed to optimize automatically the scene graph or it could be done
at initialization when a 3D model is added to the IRSG.
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4.3 Level of detail

The more IRColor and IRMaterial combinations a model has, the more complex computations
are required to deduce the apparent radiance of each fragment of an entity (see Section 3.4.1).
Therefore, the level of detail of the signature (i.e. database) could be reduced, by cutting down
the total number of combinations, to gain extra frames per second. Similarly, the level of detail
of the 3D models could be reduced by cutting down the number of polygons since the IRSG
processes every facet.

Finally, the size of the image could also be reduced: the time required to read the framebuffer
and process an image is directly related to the size of the image. A quick test showed that
reducing the image from 512x512 pixels to 401x401 pixels, using the baseline scenario
presented in Section 2.2, increases the performance of the IRSG by 5%. Obviously, this is a
tradeoff between precision and execution speed.

4.4 Parallelism

An important upgrade would consist in using the central processing unit (CPU) at its maximal
capacity. At this moment, the IRSG is very sequential: every step of the rendering process is
conducted one after the other. The performance of the IRSG would increase if some of these
computations were done in parallel, in separate threads.

Some tests were conducted using the Parallel Patterns Library® (PPL) that is included in Visual
Studio 2010 (development environment). This library simplifies the implementation of parallel
processing and offers three algorithms:

e parallel_for;
e parallel_for_each; and
e parallel_invoke.

Firstly, the parallel for algorithm has been tested for the DataTypes::Image to
DataTypes::Matrix conversion (inside Image::ToMatrix method) for the baseline scenario. This
conversion occurs each time a frame is generated (i.e. 301 times). Table 8 presents the average
duration for two image sizes. In both cases, the use of the parallel for algorithm speeds up the
conversion process by more than a factor 2.

Table 8: Image conversion without vs. with the parallel_for algorithm.

Image size Average duration (ms)

(pixels) Without parallel_for With parallel_for
512x512 5.56 2.21
1024x1024 23.89 10.03

* http://msdn.microsoft.com/en-us/library/dd492418.aspx
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Notice that the performances of such a parallelism are tightly related to the implementation.
Indeed, there is an overhead in the management of the threads, so the load processing of each
thread must be substantial in order to achieve a significant performance gain.

Secondly, the parallel_invoke algorithm has been tested to parallelize the use of SMART (inside
KARMA::SceneGenerator3D::GetScenelmage method) since the SMART library is supposed to be
multi-thread ready. The computation of the path radiance, sun irradiance and
upward/downward fluxes has been parallelized while preserving results integrity. Once again,
the performances were compared using the baseline scenario. The use of parallel_invoke
allowed to speed up the computation of these values by almost a factor 2, from 5.60 ms to
3.42 ms. These calls to SMART have been parallelized easily but the code must be refactored in
order to parallelize other atmospheric components at the entity level (i.e. atmospheric
transmission and scattering). As the computation of the atmospheric components for each
entity represents nearly the half duration of a frame rendering, parallelization could increase
the frame rate by 25%.

The use of the PPL library will help reaching higher frame rates. The major bottlenecks during
rendering process could also benefit from parallelism.

4.5 Replace SMART

For time critical execution, SMART shall be replaced as it is too long to get radiometric values
from it. A mechanism based on pre-defined LUT could be developed where values are gathered
in these tables and a method responsible for the interpolation between these values is defined.

Another reason to use LUT is connected to the fact that a scenario can contain multiple entities.
In this case, the portion of the scene generation process related to acquiring values from SMART
will be multiplied compared to what is depicted in Table 6 and Figure 5.

4.6 Asynchronous read pixels / Double
buffering

Reading pixels from the framebuffer (g/ReadPixels) takes almost as much time as doing the
rendering (see Figure 5). It is possible to read pixels asynchronously and avoid blocking the CPU
while waiting for direct memory access (DMA) transfer on glReadPixels calls. One of the easiest
way to achieve this is to take advantage of using multiple pixel buffer objects (PBO) to
asynchronously download pixels from the framebuffer into a mapped PBO while the CPU
process pixels from an earlier PBO. This is an important optimization that requires to consider
memory vs. performance tradeoff since PBO needs a lot of memory.

20



There are multiple ways to implements PBOs, but if the IRSG is refactored to use parallelism (see
4.4), it could be perfectly timed with the rendering pipeline and thus, avoid rendering while
downloading pixels (which cause a locking problem called OpenGL pipeline stall).

4.7 Dynamic memory allocation

This optimization targets the KARMA simulation framework globally but could also have
important impact on the IRSG. Dynamic memory allocation (heap) can create fragmentation and
is much slower than stack memory allocation (heap allocation calls are usually forwarded up to
the operating system and depending of the platform, it can be 100x slower).

Using specialized memory allocator (ex: Nedmalloc®, ptmalloc® and Hoard’), it is possible to
prevent fragmentation and improve memory allocation to get huge performance improvement
(especially when using multiple threads (see 4.4)).

Finally, it is possible to get comparable performance to stack allocation out of heap allocation by
using memory pool to allocate a large memory block at the beginning of the application. It can
be somewhat complicated to implement without causing fragmentation and other problems,
but several open source implementations exists (such as Boost memory pool®).

4.8 Graphics processing unit

Exploiting the graphics processing units (GPU) for additional operations shall also be
investigated. As an example, the supersampling mechanism could use the GPU to avoid costly
memory transfers from the GPU to the CPU. Indeed, it is possible to downsample directly via the
GPU instead of downsampling via a custom method which accesses elements of the array to find
the appropriate samples. Also, reading back the image in the CPU, via the glReadPixels function,
would be faster since the size of the image is already at the final dimension (i.e. downsampled).

One of the improvements done (see Section 3.4.3) consists in only keeping the irradiance image
and converting it in radiance on demand. If it comes to the point where the two formats are
always necessary, the shaders already in place in the IRSG could manage the conversion. For
example, the radiance of a fragment could be placed in the red channel while the results of the
radiance multiplied by the conversion factor (radiance to irradiance) could be placed in the blue
channel.

® http://www.nedprod.com/programs/portable/nedmalloc/
® http://www.malloc.de/en/

7 http://www.hoard.org/

8 http://www.boost.org/doc/libs/release/libs/pool/
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Finally, instead of transferring the image from the GPU to the CPU, models processing this image
could be modified to process data directly in the GPU. However, this approach would tighten
dependencies between models and the IRSG.
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5 Conclusion

During this task, the IRSG was profiled to grasp a better understanding of the underlying
mechanisms as well as where the time is spent during the scene generation process. According
to the available time for the whole task AT-10, many optimizations were done. The
improvements were tested using a baseline scenario, and the results indicate that the frame
rate has been increased from 14.5 FPS to 32.4 FPS, with SMART still in the loop. Replacing
SMART with various LUT should allow obtaining 100 FPS in a similar scenario as the one used

during the performance profiling session.

There are still many possible optimizations, like those discussed in this document, which would
increase the frame rate of the IRSG. The rendering part shall be investigated in order to try
reducing the number of OpenGL calls. An OpenGL debugger tool used with the profiled scenario
indicated that 25% of the rendering calls are related to redundant OpenGL state changes. As
discussed previously, some solutions could be considered to reduce the effect of this expensive
mechanism. Additionally, it would be interesting to conduct performance profiling sessions
using scenarios involving multiple targets (platforms and flares), antialiasing mechanisms and
complex backgrounds (skybox and terrain). This would allow determining different bottlenecks
and possible optimizations for standard simulations.
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Appendix A

Profiling results (after optimization phase) with
supersampling 4x activated.
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Appendix B

Profiling results (after optimization phase) with ZAA 512
activated.
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Appendix C

OpenGL function calls before the optimization phase.

======= OpenGL function call statistics ==========
Total GL calls: 3947025

======= OpenGL function calls by call count ==========
glUniformlfv ... ... e 1508241
glMaterialfv ... .. e 864862
glUniform3fv ... .. ... e 430926
glDisable ... ... e 222176
glColordfv .. e 217873
glMaterialf ... ... .. 216366
glCallLiist vttt e e e 215764
glCULIFace .. e e e e e 208330
glEnable ... ... 6412
GlLAghtf 4515
GLLIGREEV ottt 4515
glIMatrixXMOdE . v v ittt e e e e e e e e e 3913
GlUSEPYOgYaAM v vttt e e e e e e e e e e e e e e e e e e e e e e 3615
glLoadIdentity ...ttt e e 3612
glLightModeli . ...... ...t e e 3612
glBindFramebufferEXT ......... ..., 2110
glColorMask ...ttt e e e 2107
GlGEeLErTrOr . .ttt e 1809
GlVieWPOTE vttt et e e e e e e e e e e e e e 1806
gINeWwList .. e e e 1507
glENAList ..t e e 1507
glVertexPointer . ... ...ttt 1507
glDeletelists ..ttt e e e e 1507
glGenLists ... e e 1507
glBlendFuUIC . ..ttt et ettt e e e e e e e 1505
glDrawBuffers . ...... ... ... e e 1207
glNormalPointer ... ...ttt et ettt e 1206
GIDTAWALTAYS t e e e e e e e e e e e e e e e e e e e e e e e e e e 1206
glAIphaFunC ...ttt e e e e e e e e 1204
glLoadMatrixd . ...t e e e e 1204
glLightModelfv . ... .. i 1204
GlTeXENVI & it e e e e e 1204

glClear ... e 903



glClearDepth ... .. 903

GlSCiSS0T &ttt e e e 903
glDepthMask . ... ... e 903
glTexCoordPointer . ... ...ttt iieeeen 808
wglGetCurrentContext ......... ... ... ... ...... 303
wglGetCurrentDC . ... ..ttt e 303
glReadPixels ... ... e e 301
glClearColor . .ttt e e e e e e 301
glPixelStoref ... ... ... 301
glColorMaterial ... ...ttt e 301
glDrawElements .. ... ...ttt e 301
WGlGetProCAddresSS v vttt it e e e e e 239
glGetString . ...t 48
glGetActiveUniform .......... ... 13
glGetUniformLocation ...............cuieeeee.. 13
glGetProgramiv . ..ttt e e e e e 12
glDisableClientState ........ ... 11
wglMakeCurrent . ....... ... e 10
glEnableClientState ........ .. ..., 8
glGetShaderiv ... ... e 8
glProgramParameteri ............iiiiiinn.. 6
glGetIntegerv . ... e e e 5
glCreateShader ...... ... .. iiiiinenn. 4
wglCreateContext ....... ... .. ... ... 4
wglDeleteContext . ... ... ... 4
glTexParameteri .. ... ...ttt eeeeeen 4
wglSetPixelFormat ....... ittt 4
glCompileShader ........ ... iiiiiiiiinnnnn.. 4
glAttachShader ...... . ... .. i i 4
glDeleteShader ....... ..., 4
glGetActiveAttrib . ... ... .. ... 4
glGetAttribLocation ...........uiiiiinnnn... 4
glShaderSource . ..... ...ttt 4
glBindRenderbufferEXT ......... ... itiiino... 3
glGenRenderbuffersEXT ..............cceeo.. 3
glRenderbufferStorageEXT .............cccco... 3
glGenFramebuffersEXT ......... ..., 3
glFramebufferTexture2DEXT .................... 3
glCheckFramebufferStatusEXT .................. 3
glFramebufferRenderbufferEXT ................. 3
wglChoosePixelFormatARB . ..........coiuiueeninn.. 2
glCreateProgram . ... ...t iiee et etneeeeenn. 2
wglChoosePixelFormat . .........oiuiiuiiueennnnn 2
glDeleteProgram . ... ...ttt iie ettt 2
GlLinkPrOgram . .. i it e e e e e e e e e e e e 2
wglGetExtensionsStringARB ... ... 2
glTexXImage2D . ..ttt e e e e e e e e e e e e e e e e e e 2
glGetTexLevelParameteriv ............ccuino... 1
FlGENTEeXtUTES & i ittt it e et et e e e e e e 1
glBIindTexXtUre ...ttt ittt e e et e 1
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Appendix D

OpenGL function calls after the optimization phase.

======= OpenGL function call statistics ==========
Total GL calls: 932845

======= OpenGL function calls by call count ==========
glUniform3fv ... ... e 431522
GlCallliist v v e e e e 215761
GlCUullFace . ... e 208198
glDisable ... ... e 6584
glEnable ... ... 6584
GlLAght eV o 4515
glLightf ... e 4515
glMatrixXMOdEe . i v ittt e e e e e e e e e 3913
GlUSEPYOgTaAM « v ittt e e e e e e e e e e e e e e e e e e e e e 3615
glLightModeli .. ... ... e 3612
glMaterialfv ... ... 3612
glLoadIdentity ..o i it e e e e e 3612
glColordfv .. e e 2711
glBindFramebufferEXT . ... ... ... 2110
glColorMask ... ... e 2107
GlGEeLErTOr o i ittt e e e e e e e e e e 1809
GlVIieWwpOTrt o i i e e e 1806
GINeWList ..ttt e e e e e 1507
GlENALIisSt .t i it e e e 1507
glVertexPointer . ... ...ttt 1507
glDeletelists ...t e e 1507
glGenLists v vttt e e e 1507
GlBlendFUNC . it ittt ettt e e e e e e e e e e 1505
glDrawBuffers ... ... ... .. 1207
glNormalPointer . ...ttt ittt e e e 1206
GLIDTAWATTAYS « e o v et ettt et e e e e e e 1206
glMaterialf ... ... 1204
glAIphaFunc . ... e e e e e 1204
glLoadMatrixXd ...ttt e e 1204
glLightModelfv . ... ... . 1204
GlTeXENVI & it e e e e e e e 1204
glClear ..ttt e e e 903

glClearDepth ... . 903



glDepthMask ... ... 903

GlSCiSS0T &ttt e e e 903
glTexCoordPointer . ...........iuuiiimieennnnna.. 808
glColorMaterial . ... ...t 602
wglGetCurrentContext ......... ... ... ... ...... 303
wglGetCurrentDC . ... ..ttt e 303
glReadPixels ... ... e e 301
glClearColor . .ttt e e e e e e 301
glPixelStoref ... ... ... 301
glDrawElements . .... ... .. e 301
glUniformlfv ... .. e e 301
WGlGetProCAddresSS v vttt it e e e e e 239
glGetString . ...t 48
glGetProgramiv . ...t e e 12
glDisableClientState ....... .. ... ... .. 11
wglMakeCurrent . ....... ..ttt 10
glGetActiveUniform .......... ... 9
glGetUniformLocation ............ .. .. .. .. .... 9
glEnableClientState ........ .. ..., 8
glGetShaderiv ... ... e 8
glProgramParameteri ............iiiiiinn.. 6
glGetIntegerv . ... e e e 5
glCreateShader ...... ... .. iiiiinenn. 4
wglCreateContext ....... ... .. ... ... 4
wglDeleteContext . ... ... ... 4
glTexParameteri .. ... ...ttt eeeeeen 4
wglSetPixelFormat ....... ittt 4
glCompileShader ........ ... iiiiiiiiinnnnn.. 4
glAttachShader ...... . ... .. i i 4
glDeleteShader ....... ..., 4
glGetActiveAttrib . ... ... .. ... 4
glGetAttribLocation ...........uiiiiinnnn... 4
glShaderSource . ..... ...ttt 4
glBindRenderbufferEXT ......... ... itiiino... 3
glGenRenderbuffersEXT ..............cceeo.. 3
glRenderbufferStorageEXT .............cccco... 3
glGenFramebuffersEXT ......... ..., 3
glFramebufferTexture2DEXT .................... 3
glCheckFramebufferStatusEXT .................. 3
glFramebufferRenderbufferEXT ................. 3
wglChoosePixelFormatARB . ..........coiuiueeninn.. 2
glCreateProgram . ... ...t iiee et etneeeeenn. 2
wglChoosePixelFormat . .........oiuiiuiiueennnnn 2
glDeleteProgram . ... ...ttt iie ettt 2
GlLinkPrOgram . .. i it e e e e e e e e e e e e 2
wglGetExtensionsStringARB ... ... 2
glTexXImage2D . ..ttt e e e e e e e e e e e e e e e e e e 2
glGetTexLevelParameteriv ............ccuino... 1
FlGENTEeXtUTES & i ittt it e et et e e e e e e 1
glBIindTexXtUre ...ttt ittt e e et e 1

36



DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the document. 2.  SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Centre sponsoring a (Overall security classification of the document
contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable.)
LTI software & engineering UNCLASSIFIED
825 Boul. Lebourgneuf, Bureau 204 (NON-CONTROLLED GOODS)
Québec, Canada DMC A
G2J 0B9 REVIEW: GCEC JUNE 2010
3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)
Air Defence System: Profiling and Optimizing the KARMA IRSG Module
4.  AUTHORS (last name, followed by initials — ranks, titles, etc. not to be used)
Labrie, M.-A., Rouleau, E., Desmeules, M.
5. DATE OF PUBLICATION 6a. NO. OF PAGES 6b. NO. OF REFS
(Month and year of publication of document.) (Total containing information, (Total cited in document.)
including Annexes, Appendices,
etc.)
July 2012 50 1
7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)
Contract Report
8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development — include address.)
Defence R&D Canada — Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada
9a. PROJECT OR GRANT NO. (If appropriate, the applicable research 9b. CONTRACT NO. (If appropriate, the applicable number under
and development project or grant number under which the document which the document was written.)
was written. Please specify whether project or grant.)
Project 13nb W7701-083373-AT10
10a. ORIGINATOR'S DOCUMENT NUMBER (The official document 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
number by which the document is identified by the originating assigned this document either by the originator or by the sponsor.)
activity. This number must be unique to this document.)
LTI-ADS-2012-1 DRDC Valcartier CR 2012-070
11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)
Unlimited
12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the

Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited




13.

ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

The main objectives of task AT-10, as part of contract W7701-083373, was to profile the
performance of the infrared scene generator (IRSG) module of the KARMA simulation
framework, pinpoint bottlenecks, optimize critical portions of code through basic corrective
measures, and update the SMART (Suite for Multi-resolution Atmospheric Radiative
Transmission) library to the latest version. The work has been carried out from January 2012 to
March 2012. The profiling has been limited to a basic scenario using the IRSG and the
wideband mode. The code optimizations allowed to double the frame rate for this scenario.
Some optimization avenues were investigated and could be realized as a part of another task or
contract.

Les objectifs de la tache AT-10, du contrat W7701-083373, étaient d’effectuer le profilage des
performances du module de génération de scéne infrarouge (IRSG) de I’environnement de
simulation KARMA, d’identifier les ¢léments critiques, d’optimiser certaines portions critiques
par des mesures correctives de base, et de mettre a jour la librairie de calculs atmosphérique
SMART (Suite for Multi-resolution Atmospheric Radiative Transmission). Les travaux ont été
effectués de janvier 2012 a mars 2012. Le profilage des performances a ét¢ limité a un scénario
simple utilisant ’IRSG en mode large-bande. Les optimisations au code ont permis de doubler
la cadence pour un tel scénario. Des avenues ont aussi été identifiées pour une éventuelle
deuxiéme phase d’optimisation.

14.

KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

IR Scene Generation; Code Optimisation; Graphics Processing Units




Defence R&D Canada R & D pour la défense Canada

Canada’s Leader in Defence Chef de file au Canada en matiére
and National Security De science et de technologie pour
Science and Technology la défense et la sécurité nationale

Y

DEFENCE DEFENSE

www.drdc-rddc.gc.ca



