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Abstract

Previous work developed simulation components for ship mechanical systems, includ-
ing cables, winches, cranes, and payloads. The payload modelling includes treatment
of collisions, such as those that can occur when cargo being lifted by a crane strikes
the side of a ship. The payload modelling also includes treatment of hydrodynamic
forces in calm water and in waves. This report describes improvements made to sim-
ulation components to achieve increases in both fidelity and computational speed.
Verification and validation of simulation components were performed using test cases
of varying complexity. A launch and recovery example demonstrates the usage of
crane and payload models when deploying a small boat from a large ship in waves.
A towing example demonstrates the usage of the cable model when a naval frigate is
towing a tuna clipper.

Résumé

Des travaux antérieurs ont permis de développer des composants de simulation pour
les systèmes mécaniques des navires, y compris les câbles, treuils, grues et charges
utiles. La modélisation de la charge utile comprend le traitement des collisions, comme
celles qui peuvent se produire lorsqu’une cargaison levée par une grue frappe le côté
d’un navire. La modélisation de la charge utile comprend également le traitement des
forces hydrodynamiques en eau calme et dans les vagues. Le présent rapport décrit les
améliorations apportées aux composants de simulation en vue d’augmenter la fidélité
et la vitesse computationnelle. La vérification et la validation des composants de
simulation ont été effectuées en utilisant des scénarios d’essai de diverses complexités.
Un exemple de lancement et récupération démontre l’utilisation de modèles avec grue
et charge utile pendant le déploiement d’un petit bateau à partir d’un gros navire
dans les vagues. Un exemple de remorquage démontre l’utilisation du modèle de câble
pendant qu’une frégate remorque un thonier.
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Executive summary

Improved Simulation of Ship Mechanical Systems
A. Roy, D. Steinke, R. Nicoll; DRDC Atlantic CR 2012-093; Defence Research
and Development Canada – Atlantic; May 2012.

Introduction: Simulation of multi-body dynamics is required when simulating many
naval operations, including replenishment at sea, launch and recovery, and towing.
Under a previous contract, a software library was developed for simulation of cranes,
winches, cables, and payloads.

Principal Results: This report describes improvements made to simulation com-
ponents for ship mechanical systems to achieve increases in both fidelity and compu-
tational speed. Verification and validation of simulation components were performed
using test cases of varying complexity. A launch and recovery example demonstrates
the usage of crane and payload models when deploying a small boat from a large ship
in waves. A towing example demonstrates the usage of the cable model when a naval
frigate is towing a tuna clipper. The simulation components typically run somewhat
slower than real-time.

Significance of Results: Simulation components are now available for representing
a range of naval platform systems. The simulation components can be easily config-
ured to model different systems, and can be used to explore proposed new systems.
The fidelity of the developed components and relatively fast execution speeds make
the simulation components suitable for a variety of applications.

Future Plans: Future optimization of simulation components will enable them to
run in real-time, making them suitable for training applications.
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Sommaire

Improved Simulation of Ship Mechanical Systems
A. Roy, D. Steinke, R. Nicoll ; DRDC Atlantic CR 2012-093 ; Recherche et
développement pour la défense Canada – Atlantique ; mai 2012.

Introduction : La simulation de dynamique multicorps est requise pour la simula-
tion de plusieurs opérations navales, y compris le ravitaillement en mer, le lancement
et la récupération et le remorquage. Dans le cadre d’un précédent contrant, une bi-
bliothèque de logiciels a été élaborée pour la simulation de grues, de treuils, de câbles
et de charge utiles.

Résultats principaux : Le présent rapport décrit les améliorations apportées aux
composants de simulation en vue d’augmenter la fidélité et la vitesse computation-
nelle. La vérification et la validation des composants de simulation ont été effectuées
en utilisant des scénarios d’essai de diverses complexités. Un exemple de lancement
et récupération démontre l’utilisation de modèles avec grue et charge utile pendant le
déploiement d’un petit bateau à partir d’un gros navire dans les vagues. Un exemple
de remorquage démontre l’utilisation du modèle de câble pendant qu’une frégate re-
morque un thonier. Les composants de simulation fonctionnent généralement plus
lentement qu’en temps réel.

Importance des résultats : Les composants de simulation sont maintenant dispo-
nibles pour la représentation d’une gamme de systèmes de plate-forme navale. Les
composants de simulation peuvent être facilement configurés pour modéliser divers
systèmes, et peuvent servir à l’exploration des nouveaux systèmes proposés. La fidélité
des composants développés ainsi que les vitesses d’exécution relativement rapides
rendent les composants de simulation convenables pour une variété d’applications.

Travaux ultérieurs prévus : L’optimisation future des composants de simulation
permettra leur utilisation en temps réel, les rendant convenables à des applications
d’instruction.
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Figure 25: The X̂ and Ŷ position of a SMS::Payload attached to a 10 m
cable pendulating by a buoyancy force larger than its weight
incorporating added mass . . . . . . . . . . . . . . . . . . . . . . 47

Figure 26: The simulation setup of the convex decomposed box impacting
another convex decomposed box. . . . . . . . . . . . . . . . . . . 49

Figure 27: The simulations results of position of the one-piece and convex
decomposed SMS::Payloads over time. . . . . . . . . . . . . . . . 50

Figure 28: The simulations results of orientation of the one-piece and convex
decomposed SMS::Payloads over time. . . . . . . . . . . . . . . . 50

Figure 29: The simulations results of stiffness and damping components of
the one-piece and convex decomposed SMS::Payloads over time. . 51

Figure 30: The simulations results of MSD/MTD and interference geometry
of the one-piece and convex decomposed SMS::Payloads over time. 51

Figure 31: The simulation setup for the oriented convex decomposed box
impacting another convex decomposed box. . . . . . . . . . . . . . 52

Figure 32: The simulated position for the pre-oriented convex decomposed
SMS::Payloads over time. . . . . . . . . . . . . . . . . . . . . . . 53

Figure 33: The simulated orientation for the pre-oriented convex decomposed
SMS::Payloads over time. . . . . . . . . . . . . . . . . . . . . . . 53

Figure 34: The simulated stiffness and damping components of the
pre-oriented convex decomposed SMS::Payloads over time. . . . . 54

Figure 35: A description of the effect of angular velocity, ω, on the contact
force without rolling resistance for a one-piece convex box and a
subdivided box. The initial state of the a) one-piece and c)
subdivided box, showing the contact force cause by the individual
volumes of interference, and the next time step showing no change
in the volume of interference for the one-piece box in b) and the
changes in the volumes of interference of the sub pieces of the
convex decomposed box d). . . . . . . . . . . . . . . . . . . . . . . 55

Figure 36: A comparison of the position of the 1 piece and 4 piece
subdivided pre-oriented box SMS::Payloads over time. . . . . . . 56

Figure 37: A comparison of the position of the 4 piece and 16 piece
subdivided pre-oriented box SMS::Payloads over time. . . . . . . 56

DRDC Atlantic CR 2012-093 xiii



Figure 38: The simulation setup of the multiple contact point simulation
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 39: The position of the SMS::Payload over time. . . . . . . . . . . . . 58

Figure 40: The Orientation of the SMS::Payload over time. . . . . . . . . . . 58

Figure 41: The contact force components of the SMS::Payload over time. . . 59

Figure 42: the volume of interference and MSD/MTD of the SMS::Payload
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 43: The decomposition of the rescue boat hydrodynamic hull mesh
into 19 convex sub-pieces. . . . . . . . . . . . . . . . . . . . . . . 61

Figure 44: The boat and cradle simulation setup. . . . . . . . . . . . . . . . . 61

Figure 45: The position of the SMS::Payload for the boat through time. . . . 62

Figure 46: The orientation of the SMS::Payload for boat through time. . . . 62

Figure 47: The number of collision pairs between the SMS::Payload and the
cradle through time. . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 48: The setup for the Generalised-α mass-spring-damper test case. . . 64

Figure 49: The time history of position of the mass for the mass spring
damper using the Generalized-α integrator and the RK45 integrator. 65

Figure 50: The setup for the Generalised-α mass-spring-damper test case. . . 66

Figure 51: The X̂ position of the mass over time for both the RK45 and
Generalised-α integrator simulations. . . . . . . . . . . . . . . . . 67

Figure 52: The cable tensions for the Generalised-α integrator simulation. . . 67

Figure 53: The cable tensions for the RK45 integrator simulation. . . . . . . 68

Figure 54: The simulation scenario for the Simplified Launch and Recovery
simulation. The Palfinger-like boomcrane is shown folded
(dotted), with a zero joint configuration (solid) and in an
unfolded pose (dashed). . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 55: The rescue boat a) visualization mesh and b) hydrodynamic
polyhedral mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiv DRDC Atlantic CR 2012-093



Figure 56: The Launch and Recovery simulation setup with the boomcrane
in a folded configuration (dotted outline and light color) and fully
unfolded configuration (solid outline and darker color). . . . . . . 77

Figure 57: The integration timestep size over the course of the Launch and
Recovery simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 58: The integration timestep size over the course of the improved
launch and recovery example simulation. . . . . . . . . . . . . . . 82

Figure 59: A screenshot from a visualisation of the Launch and Recovery
simulation, showing the rescue boat, cradle, frigate, boomcrane,
and cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 60: A snapshot of the Launch and Recovery simulation as the
Palfinger-like boomcrane begins to unfold. . . . . . . . . . . . . . 98

Figure 61: A snapshot of the Launch and Recovery simulation as the rescue
boat is lifted out of its cradle. . . . . . . . . . . . . . . . . . . . . 98

Figure 62: A snapshot of the Launch and Recovery simulation after the
rescue boat was dropped in the water. . . . . . . . . . . . . . . . . 99

Figure 63: A snapshot of the Launch and Recovery simulation as the rescue
boat is being lifted out of the water showing the tag lines used to
prevent the boat from yawing. . . . . . . . . . . . . . . . . . . . . 99

Figure 64: A snapshot of the Launch and Recovery simulations with the
rescue boat back in its cradle. . . . . . . . . . . . . . . . . . . . . 100

Figure 65: Simplified simulation of a small vessel tow. . . . . . . . . . . . . . 101

Figure 66: The rescue boat a) visualization mesh and b) hydrodynamic
polyhedral mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 67: The simulated rescue boat vessel position over time. . . . . . . . . 103

Figure 68: The simulated cable node N position over time. . . . . . . . . . . 103

Figure 69: A visualisation of the Tuna Clipper Towing simulation. . . . . . . 104

Figure 70: The tensions in the tow cable for the Tuna Clipper Towing
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

DRDC Atlantic CR 2012-093 xv



Figure C.1: The simulated position of the rescue boat for the Simplified
Launch and Recovery simulation (the X̂ position indicated in red,
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position is indicated in cyan). . . . . . . . . . . . . . . . . . . . . 132

Figure C.4: The simulated tension of the cable’s first element for the
Simplified Launch and Recovery simulation. . . . . . . . . . . . . 133

Figure C.5: The position of the rescue boat over the course of the Launch and
Recovery simulation (the X̂ position indicated in red, the Ŷ
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1 Introduction

Dynamic Systems Analysis Ltd. (DSA) has worked with DRDC Atlantic to develop
the Ship Mechanical Systems Application Programming Interface (SMS API). The
software has been developed to provide the capability to simulate ship-based mechan-
ical systems. Such systems could include shipborne boomcranes, cables, winches, and
general payloads (AUVs, small rescue crafts, etc.). Fidelity and accuracy of the al-
gorithms developed has been prioritized over execution speed. Contact dynamics
between objects such as the payload and the naval frigate are also of primary impor-
tance. More information on the development of the SMS API can be found in [1].

The following report reviews tasks the authors have completed to improve and aug-
ment the capabilities of the SMS API. The SMS API developments reviewed herein
have been focused by the need to assess operations such as the launch and recovery
of a small vessel from a naval frigate as well as the towing of an unpowered ves-
sel through a seaway by a naval frigate. This report summarizes advances made to
the SMS API, and demonstrates the use of the SMS API with the aforementioned
simulation scenarios.

1.1 Background
The SMS API is a C++ simulation library that provides a user with the ability to
create high fidelity simulations of ship mechanical simulations. There are four main
pieces of equipment the SMS API is able to simulate: boomcranes, slack/taut cables,
general rigid bodies (i.e. payloads), and winches (to pay in/out cable). The SMS
API consists of four main classes:

• SMS::BoomCrane

• SMS::Cable

• SMS::Payload

• SMS::Winch

The SMS::Payload class incorporates a collision resolution system to detect and re-
solve collisions between itself and some external object, such as a naval frigate hull
or deck.

1.2 Report overview
As mentioned above, this report in part presents improvements to the SMS API that
enable the simulation of two scenarios:
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• the launch and recovery of a small vessel from a naval frigate, and,

• the towing of a small vessel in a seaway by a naval frigate.

In order to simulate these complex scenarios, further development of the SMS API
was required. First, the SMS::Payload required a hydrodynamics model to capture
the interactions between itself and the seaway. Second, a facility was required to
enable the scripting of simulation events such as defining boomcrane motions, at-
tach/detaching cables, winching cables in and out, etc. Third, improvements to the
contact dynamics capabilities were required. The contact modeling capabilities in the
SMS API lacked robustness and needed an improved software architecture to manage
the simulation of convex decomposed concave objects. Lastly, the use of an implicit
numerical integrator was pursued to mitigate undesirable high frequency effects in
the cable model which causes explicit solvers to run at small time steps and thus
slower simulation speeds.

1.2.1 Payload hydrodynamics improvements overview

To determine the hydrodynamic and buoyancy forces that are to be applied to a pay-
load, it is necessary to describe the motion of the fluid relative to the payload. For
this work, this information is obtained using ShipMo3D’s ShipMo3D::DeepSeaway

library [2]. The seaway model describes the fluid domain used by ShipMo3D’s ship
and the SMS::Payload. Fixed and translating seaways as well as regular and ir-
regular wave models are modelled by the ShipMo3D::DeepSeaway DLL. The seaway
model is accurate for deep water conditions, which requires a depth greater than
half the wavelength of the oncoming ocean waves. The SMS API interacts with the
ShipMo3D::DeepSeaway library via a C# DLL. For the SMS API to call the C# DLL,
it was necessary to compile the SMS API using Microsoft .Net’s Common Language
Runtime (CLR).

Section 2.1 outlines how the SMS::Payload uses the information provided from the
ShipMo3D::DeepSeaway library to evaluate the hydrodynamics forces acting on it
and provides the theoretical background. Section 3.1 reviews the validation cases
that were simulated to test the payload hydrodynamics functionality in the SMS
API.

1.2.2 Director class overview

To create and simulate complex scenarios efficiently, a new class called the SMS::Di-
rector class was added to the SMS API. This enhancement of the SMS API was
built to facilitate the rapid creation and management of simulation scenarios. The
SMS::Director class was designed to manage a queue of commands, which each SMS
API SMS::SimObject will execute at various points throughout the simulation. The
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SMS::Director is tasked with ensuring each SMS::SimObject carries out the set of
instructions defined in the script. Section 2.2 discusses its implementation as well as
provides instructions on how to interact with it.

1.2.3 Contact dynamics improvements overview

Ship-borne crane operations, like maneuvering a payload suspended on a cable while
in rough sea states, could potentially see the payload impacting or making contact
with the ship deck, hull, transom, or other obstacles. To mitigate and manage the
risk of these operations, numerical simulations are often used to evaluate the safety of
multiple potential scenarios and operating procedures. To realistically simulate these
scenarios in the SMS API, it is necessary to:

• determine the minimum separation distance (MSD) and minimum translational
distance (MTD) between the SMS::Payload and external objects in its path,

• to detect collisions when they occur, and

• to determine the contact forces with a reasonable level of accuracy.

These capabilities had been previously implemented in the SMS API. Documenta-
tion and discussion of the methods and models used to accomplish these tasks have
been reported in [1]. However, the existing code used for MTD/MSD determina-
tion and volume of interference determination to determine the contact force would
frequently cause simulations to destabilize. In addition, simulations executed pro-
hibitively slowly for practical use. The contact dynamics code responsible for these
issues was re-visited to improve execution speed and simulation stability.

Some of the highlights of the work completed are:

• a new collision detection infrastructure to efficiently and cleanly handle convex
decomposed geometries,

• Expanded Polytope Algorithm (EPA) was implemented to determine the min-
imum translational distance (MTD) or penetration depth,

• exploitation of temporal coherence for GJK to speed up collision detection,

• creation of a new set of contact dynamics simulations to test the convex decom-
posed collision detection capabilities and identify bugs,

• bug fixes, exception handling and general improvements to increase simulation
stability and robustness,

• code profiling to identify inefficiencies and make performance improvements.
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A description of the improvements made to the code over the time period covered
by this report can be found in Section 2.3. This includes a discussion of the new
collision detection infrastructure, the EPA, and how temporal coherence is exploited
with GJK. A set of four simulation cases which ensures the proper functioning of the
new collision detection infrastructure can be found in Section 3.2. Discussion on the
scalability of the algorithms used for contact dynamics as well as the results of code
optimisation efforts can be found in Section 2.3.4.

1.2.4 Launch and recovery and towing simulation overview

As discussed above, the required outcome of the SMS API software developments
presented here was the creation of a simulation of the launch and recovery of a small
vessel from a naval frigate and a simulation of a small vessel being towed by a naval
frigate. These simulations were developed progressively over the course of the work.
As new functionality was added or improved, more complexity was added to these
simulations. Section 4 discusses a simplified version of the Launch and Recovery
simulation, the work done to improve the execution speed of the simulation and the
final version for which an animated visualisation was produced and submitted to
DRDC along with this report. Section 5 discusses a simplified version of the towing
of a small vessel simulation, followed by the final version of the towing simulation,
titled Tuna Clipper Towing, for which an animated visualisation was produced and
submitted to DRDC along with this report.
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2 SMS API development

This section describes the theory and technical details of the SMS API improvements
covered in this report. Section 2.1 discusses the theory behind the SMS::Payload hy-
drodynamic model. Section 2.2 describes the design and usage of the SMS::Director
scripting class. Section 2.3 describes the improvements made to the SMS::Payload

contact resolution system. Finally, section 2.4 discusses the theory behind the Gen-
eralised-α implicit numerical integrator for the SMS::Cable.

2.1 Payload hydrodynamics
2.1.1 Newton-Euler equation of motion of an SMS::Payload

The Newton-Euler equations of motion of an SMS::Payload as described in [1] state
that the relationship between its acceleration and the force applied to it is:

Bf =B MBacg (1)

where Bf is a 6 degree of freedom (DOF) spatial vector describing the force and
moment applied about each body-fixed frame axis of the SMS::Payload, BM is the
SMS::Payload’s rigid body mass matrix described about the body-fixed frame, which
is located at the center of mass, and Bacg is the spatial acceleration vector that
is the time derivative of the body velocity Bvcg, describing the linear and angular
acceleration of the SMS::Payload about each body-fixed frame axes. Because the
frame of reference is fixed to the body and is moving with respect to time, Bacg takes
the form:

Bacg =
B v̇cg +

B ωB
Bvcg (2)

where BωB is the angular velocity about the body-fixed frame. More information on
rigid body dynamics can be seen in [1].

The mass matrix generally takes the form of:

BM =

[
Bm 0
0 BI

]
(3)

where

Bm =

⎡
⎣ m 0 0

0 m 0
0 0 m

⎤
⎦ , (4)

BI =

⎡
⎣ Ixx Ixy Ixz

Iyx Iyy Iyz
Izx Izy Izz

⎤
⎦ , (5)
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and m is the mass of the object, Ixx, Iyy, and Izz are the mass moments of inertia
about the inertial frame axis, and Ixy, Ixz, and Iyz are the products of inertia.

The force applied to the SMS::Payload is the sum of all forces applied to it. This
includes cable forces, contact forces, gravitational, and hydrodynamics forces:

Bf =

Ncab∑
i=0

Bf iCAB +
Ncon∑
i=0

Bf iCON +B fG +B fM (6)

where Bf iCAB is the force from the ith attached cable, Bf iCON is the force from the ith

contact, BfG is the force due to gravity, BfM is the hydrodynamic force, and Ncab and
Ncon are the number of attached cables and contacts, respectively.

This work addresses the modelling of the hydrodynamic forces only. The entire
SMS::Payload object surface is discretised using a convex closed polygon mesh (poly-
hedron) representation. Individual pressures acting on each polygon panel are re-
solved and accrued over the entire polyhedron, which is a discrete form of a surface
integral over the surface of the object.

2.1.2 Object surface discretisation

The fluid force on the SMS::Payload is determined as the integral of the fluid pres-
sures acting on the payload. The integration of fluid pressures acting on the immersed
SMS::Payload surface is accomplished by discretising the surface using a polygon
mesh. The fluid forces acting on each polygon of the mesh are accumulated to obtain
the total fluid force acting on the SMS::Payload. For example, a 3× 1 linear force f
acting on the object is:

f =

Npoly∑
j=0

fj =

Npoly∑
p=0

−p(Cp,j)Aj f̂j (7)

where Npoly is the number of polygons on the polyhedron, fj is a 3×1 vector describing
the force applied to the polygon face j, the pressure, p(Cp,j), is a function of the

location of the polygon face centroid Cp,j, Aj is the area of polygon j, and f̂j is the
force direction at the centroid of polygon j.

The forces applied to each polygon face also produce a moment on the object:

τ =

Npoly∑
j=0

τj =

Npoly∑
j=0

Cp,j × fj (8)

where τ is the 3× 1 vector describing the total moment applied to the object, and τj
is the torque applied to the object from the force fj applied to polygon j.
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Figure 1: a) The fluid pressure distribution over the wetted surface of a cylinder from
buoyancy in calm water. b) The polygonal mesh discretisation used for the surface
integral of the pressure field over the body surface.

For floating objects in a seaway, some polygons will be exposed to water while others
are exposed to air. If a significant amount of the object area is exposed to the
air, the resulting forces from wind loading may need to be considered for accurate
simulation. However, in many cases hydrodynamic loading will dominate the response
of a payload and wind loading can safely be neglected. It was decided to neglect wind
loading on the payload in order to concentrate on first accurately estimating the
dominant hydrodynamic loading on a payload. An advantage of using the polyhedral
representation of the payload is that only the hydrodynamic forces acting on the
wetted polygons are considered. In a similar way, fluid forces from the air could
certainly be taken into account. A polygon is considered to be wet if its centroid is
below the water surface. The wetted area of a polyhedron is approximated as the sum
of the areas of the wetted polygons. The finer the polygon mesh, the more accurate
the wetted area calculations. It should be noted that as the number of polygons in a
mesh grows, the number fluid force calculations required grows linearly. As such, the
time required to determine the fluid forces can quickly become a significant bottleneck
to any potential benefits that could be gained from increased accuracy.

2.1.3 Morison equation

Morison et. al proposed that the forces acting on a submerged body by a flowing
fluid can be reasonably represented as the sum of drag and inertial forces [3, 4]. The
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Morison equation describes the hydrodynamic force as:

fm = fd + ff−k + finertial (9)

where fd, ff−k, finertial are the 3 × 1 drag force, Froude-Krylov force, and inertial or
added mass force respectively. The objective of the proceeding is to examine how the
SMS API determines the Morison load acting on each panel of a discretized payload.

2.1.4 Description of the fluid domain

To calculate the Morison loading on a discretized payload, the flow field must be
described. The SMS API relies on knowing the velocity of the flow at any point in
the simulation space. The velocity at a given point, can be described in space and
time as [5]:

V(r, t) = îu(r, t) + ĵv(r, t) + k̂w(r, t) (10)

where î, ĵ, k̂ are the direction unit vectors about the 3 Cartesian frame axes and
u(r, t), v(r, t), w(r, t) are the absolute fluid vector components about the X̂, Ŷ, Ẑ
axes, respectively, at a point r in space and time, t. The acceleration of the fluid at
a location r in space and time, t, is described as the rate of change of V(r, t) in time:

a(r, t) =
dV(r, t)

dt
= î

du(r, t)

dt
+ ĵ

dv(r, t)

dt
+ k̂

dw(r, t)

dt
(11)

Assuming an irrotational fluid and an inviscid flow, the fluid field can be described
using the velocity potential function φ(r, t) where V(r, t) = �φ(r, t) leading to [5]:

u(r, t) =
∂φ(r, t)

∂x
, v(r, t) =

∂φ(r, t)

∂y
, w(r, t) =

∂φ(r, t)

∂z
. (12)

Bernoulli’s equation is described as [5]:

ρ
∂φ(r, t)

∂t
+ p(r, t) +

1

2
ρV (r, t)2 + ρgz(r, t) = C (13)

where V (r, t) = |�φ(r, t)| is the magnitude of the fluid velocity at a point r in space,
ρ is the fluid density, p(r, t) is the pressure at a point r in space and time t, z(r, t) is

the elevation of a point r in space, ∂φ(r,t)
∂t

is the partial derivative with respect to time
of φ(r, t) at a point r in space, g is gravitational acceleration and C is a constant [5].

The constant C for Bernoulli’s equation is found by sampling the fluid at some point
in the fluid where the pressure, fluid velocity, acceleration and depth from surface is
known, such as at the ocean surface, as illustrated in Figure 2.
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Psample

Figure 2: Evaluation of the constant for Bernoulli’s equation for a deep seaway by
sampling the fluid state at a point Psample on the surface where pressure and velocities
are known.

2.1.5 The Froude-Krylov force

The 3× 1 Froude-Krylov force is the result of the pressure field of the fluid acting on
the body:

ff−k = −
∫
Sw

p(s)n̂(s)ds (14)

where Sw is the wetted surface, p(s) is the pressure of the fluid at some point s on
the surface, ds is the differential area and n̂(s) is the surface normal at a point s
on the surface of the object. The Froude-Krylov force is the surface integral of the
pressure field of the undisturbed seaway acting on the body [4]. The Froude-Krylov
force does not include diffraction effects; it assumes that the fluid is not disturbed by
the presence of the body. Diffraction forces can be assumed to be zero if the body
length is small relative to the incident wavelength. When no waves are present, the
Froude-Krylov force is equal to the buoyancy force acting on the body.

As mentioned above, the SMS API uses a discretized mesh to represent the payload
hull in the seaway. To calculate the Froude-Krylov force acting on this payload
equation 14 becomes:

ff−k = −
Npoly∑
j=0

p(Cp,j)Ajn̂j (15)

where Aj is the area of polygon j and n̂j is the polygon face normal direction. For
the case where the fluid is not still, such as in a ShipMo3D::DeepSeaway, the pressure
field is also a function of the fluid motion, which can be described using the velocity
potential function for irrotational inviscid flows. The pressure of the fluid at a point
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Cp,j in space is derived from Bernoulli’s equation:

p(Cp,j) = ρC − ρ
∂φ(Cp,j)

∂t
− 1

2
ρU(s)2 − ρgh(Cp,j) (16)

where C is a constant determined by evaluating equation 13 at some point in the
Seaway where all other terms are known, U(Cp,j) is the scalar velocity of the fluid at
the centroid of polygon j, Cp,j, h(Cp,j) is the depth under the water surface at the
centroid of polygon j.

For a still object in still water, the pressure is simply equal to equation 13 where
the velocity terms V (Cp,j) and

∂φ(Cp,j)

∂t
are zero. Therefore, the pressure of the fluid

is a function of water depth alone, p(Cp,j) = ρgh(Cp,j). Figure 1 illustrates the case
where the pressure is a function of fluid depth alone.

2.1.6 Hydrodynamic drag forces

The drag force arises when a body moves relative to the fluid in which it is im-
mersed as indicated in Figure 3. Hydrodynamic drag is a complicated nonlinear
phenomenon that is not easily generalized. Approaches such as computational fluid
dynamics (CFD) resolve the fluid domain and the drag forces reasonably consistently
for arbitrary geometries, but simulation or analysis using these techniques can be a
complex process and is also computationally expensive. Rather than relying on gen-
eralized techniques for determination of drag, empirical data exists that report drag
coefficients for various shapes. The drag force acting on an object is based typically
on the frontal area of the object in the direction of the flow:

fd =
1

2
ρCdAprojv

2. (17)

where Cd is the drag coefficient, Aproj is the frontal projected area in the direction of
relative fluid flow and v is the relative fluid velocity.

For the purposes of the SMS API it is necessary to estimate the drag forces acting on
a given payload such that many types of operations can be simulated rapidly. Since
CFD is not appropriate for this, an approach relying on empirical drag coefficients was
implemented. Drag coefficient data for various shapes with fluid flowing across them
in many different directions are available in literature. Here, objects are assumed to
have the same drag coefficient in the positive and negative axes directions (e.g. the
object has the same drag coefficient in the positive X and negative X directions),
which simplifies the relationship between the drag force and relative velocity of the
fluid to:
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u
fDrag

Figure 3: Experimental setup for the variable buoyancy validation test

fd =

Npoly∑
j=0

⎧⎨
⎩

1
2
ρAj,x̂Cd,x̂(u(Cp,j)− v(Cp,j))|u(Cp,j)− v(Cp,j)| · î

1
2
ρAj,ŷCd,ŷ(u(Cp,j)− v(Cp,j))|u(Cp,j)− v(Cp,j)| · ĵ

1
2
ρAj,ẑCd,ẑ(u(Cp,j)− v(Cp,j))|u(Cp,j)− v(Cp,j)| · k̂

⎫⎬
⎭ (18)

where u(Cp,j) is the absolute fluid relative velocity at the centroid of polygon j,
v(Cp,j) is the absolute velocity of the object at the centroid of polygon j, Aj is the
area of polygon j, Cd,x̂,Cd,ŷ,Cd,ẑ are the overall drag coefficients for each of the 3
Cartesian flow directions and Aj,x̂, Aj,x̂ and Aj,x̂ are the projected areas of polygon i
in the YZ plane, ZX plane and XY plane respectively:

Aj,x̂ = Ajn̂j · î (19)

Aj,ŷ = Ajn̂j · ĵ (20)

Aj,ẑ = Ajn̂j · k̂ (21)

The drag coefficient is found by experiment for a single geometry and flow direction,
since objects have different drag coefficients acting on them depending on geometry
and relative flow direction. For example, the drag coefficient for fluid flow across a
cylinder would be different than the flow of fluid along it as in Figure 4. Aspect
ratios of the geometry influence the drag coefficient as well. For the case of a circular
cylinder whose central axis is aligned with the ẑ axis, the coefficients of drag in the
x̂ and ŷ directions would be identical and different from the coefficient of drag in the
ẑ axis.
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Cd,across

Cd,along

u

u

Figure 4: Normal and tangential drag coefficients for a cylinder

The absolute velocity of the object, v(Cp,i), at the centroid of polygon i can be
separated into two components:

v(Cp,i) = vbody + ωbody ×Cp,i (22)

where vbody is the linear absolute velocity of the body described about the body-fixed
frame, and the ωbody angular velocity of the body. The angular velocity component
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of the drag force inherent in Equation 18 can then be separated leading to:

fd =

Npoly∑
i=0

⎧⎨
⎩

1
2
ρAi,projCd,x̂(u(Cp,i)− vbody|u(Cp,i)− vbody)|̂i

1
2
ρAi,projCd,ŷ(u(Cp,i)− vbody)|u(Cp,i)− vbody |̂j

1
2
ρAi,projCd,ẑ(u(Cp,i)− vbody)|u(Cp,i)− vbody|k̂

⎫⎬
⎭ (23)

−
Npoly∑
i=0

⎧⎨
⎩

1
2
ρAi,projCd,x̂(ωbody ×Cp,i)|ωbody ×Cp,i |̂i

1
2
ρAi,projCd,ŷ(ωbody ×Cp,i)|ωbody ×Cp,i |̂j

1
2
ρAi,projCd,ẑ(ωbody ×Cp,i)|ωbody ×Cp,i|k̂

⎫⎬
⎭

2.1.6.1 Limitations

The above methodology for estimating the drag effect on payloads estimates the
drag moments using the translational drag coefficients. This is equivalent to finding
the center of pressure on a face of a submerged object, calculating the drag force
on that face, and computing the drag moment using the center of pressure location
relative to the center of mass and total drag force. This methodology is convenient
because arbitrary geometry with known rough translational drag coefficients can be
readily simulated in 6 DOF. However, the rotational drag effect is an approximation
as translational drag coefficients are developed considering only translational motion.
Consider Figure 5; in this case, the discretized drag moment as outlined in equation 23
is applied to the body using equation 8. In this figure it is assumed that the objects
have the same depth. Considering object a), the flow across the tip of this narrow
object due to the rotation of the object can be considered as linear movement across
that object. Now considering object b), the flow of fluid around the wider object takes
a longer path than if the body was in pure translation. This example emphasizes the
translational drag coefficients are not completely adequate to estimate drag effects in
rotation.

The skin friction effect is lumped into the translational drag coefficient with this
methodology. A consequence of this is that for bodies of revolution (e.g., cylinders or
spheres) that are rotating about their axis of revolution, no resistive force is applied
to the object to prevent spinning. In many applications, skin friction or viscous
effects are not critical to accurately determining the overall system dynamics and
can be safely neglected. However, some skin friction or viscous drag is convenient
in numerical simulation to prevent destabilisation of simulations. This phenomenon
will be investigated further to find a method of including it in the SMS::Payload

hydrodynamic loading model.

An alternate method that could be investigated for use in the SMS API payload
model, would be the specification of linear and quadratic drag coefficients. This
method completely decouples the drag calculations between the rotational and trans-
lational degrees of freedom by using a set of independently determined drag coeffi-
cients for each degree of freedom. However, a significant disadvantage of this method
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is that CFD or physical experiments are required to determine these coefficients. In
addition, this method would not apply to objects that are dynamically submerging
such as a small craft.

ωbody

ωbody

Practically linear across cylinder Not linear across cylinder

Figure 5: The path of the flow of fluid across a) a slender rotating object and b) a
non-slender rotating object.

2.1.7 Added Mass forces

When an immersed body is accelerated relative to a fluid, the object must also accel-
erate some fluid around it. The pressure force applied to the object as a result of the
acceleration of the surrounding fluid affects the dynamics of the object if the density
of the fluid is significant. This effect is usually referred to as virtual or added mass,
since it has the effect of increasing the apparent mass of the accelerating object. For
fully submerged rigid bodies in flows that are not accelerating, the added mass is
expressed as a symmetric 6×6 positive definitive added mass matrix that is added to
the body mass such that equation 1 becomes:

Bf = (BM+B A)acg (24)

where BA is the added mass matrix. In flows that are accelerating, such as an object
that is in a seaway with waves present, the acceleration of the surrounding must be
considered. Morison’s approach accounts for acceleration of a slender body relative to
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the fluid motion. In addition, the added mass effect is typically non-dimensionalised
such that it is expressed in terms of an added mass coefficient that is multiplied by
the weight of the displaced fluid. Added mass coefficients for Morison’s approach are
defined for simple cross-sectional geometries.

In the SMS API, to develop the the linear fluid inertial force acting on a payload,
first consider that the fluid inertial force can be expressed as:

fi =

Npoly∑
j=0

⎧⎨
⎩

Ca,x̂ρwVdisp,j(u̇(Ct,j)− a(Ct,j)) · î
Ca,ŷρwVdisp,j(u̇(Ct,j)− a(Ct,j)) · ĵ
Ca,ẑρwVdisp,j(u̇(Ct,j)− a(Ct,j)) · k̂

⎫⎬
⎭ (25)

where ρw is the fluid density, Vdisp,j is the displaced fluid volume of a tetrahedron
(for triangular polygons) created by the surface polygon j and the center of the
body-frame, u̇(Ct,j) is the absolute fluid acceleration at the centroid of a tetrahedron
created by polygon j and the body frame origin, a(Ct,j) is the body absolute accel-
eration at the centroid of a tetrahedron created by polygon j and the origin of the
body frame, Ca,x̂, Ca,ŷ and Ca,ẑ are the added mass coefficients in the 3 Cartesian
directions.

The acceleration of the body a(Ct,j) at the centroid of a tetrahedron created by
polygon j and the origin of the body frame is determined from the forces applied to
the object. Typically, the component of added mass force proportional to the body
absolute acceleration in equation 25 is brought to the other side of equation 1 and
lumped in with the physical mass while the component of added mass proportional to
absolute fluid acceleration remains lumped in with other forces applied to the body.
This facilitates an explicit evaluation for time domain simulation such that equation 1
becomes equation 24, where BMa is:

BA =

[
ma 0
0 Ia

]
. (26)

and ma is mass of the fluid that is accelerated when the body is accelerated and
Ia describes the moment of inertia of the distributed added mass. The added mass
matrix takes the form:

ma =

Npoly∑
i=0

ma,i =

Npoly∑
i=0

⎡
⎣ Ca,x̂ρwVdisp,i 0 0

0 Ca,ŷρwVdisp,i 0
0 0 Ca,ẑρwVdisp,i

⎤
⎦ (27)

Moving the inertial force component to the other side of the Newton-Euler equa-
tion leaves the inertial force component that is dependent only on the absolute fluid
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velocity as:

fi =

Npoly∑
i=0

⎧⎨
⎩

Ca,x̂ρwVdisp,iu̇(Ct,i) · î
Ca,ŷρwVdisp,iu̇(Ct,i) · ĵ
Ca,ẑρwVdisp,iu̇(Ct,i) · k̂

⎫⎬
⎭ (28)

In the SMS API the added mass moment of inertia matrix Ia is approximated by
summing the mass moments of inertia of the water displaced by a tetrahedral volume
formed by every polygon and the center of gravity of the object. To simplify this
calculation, the mass of each tetrahedron is lumped at its centroid and using the
parallel axis theorem following the relation for the mass moment of inertia about the
centroid of the body [6]:

Ia =

Npoly∑
i=0

ma,i(Ct,i ·Ct,iÎ+Ct,i ⊗Ct,i) (29)

2.1.7.1 Limitations

The added mass moment of inertia for bodies of revolution, such as cylinders or
spheres, about their axis will likely be negligible. The method discussed here dis-
tributes the added mass uniformly over the geometry of the object. This allows for a
good representation of the added mass moment of inertia for slender objects such as
long cylinders, however it will likely over-estimate the added mass moment of inertia
in certain cases such as for bodies of revolution rotating about the axis of revolution.
Due to the lack of available experimental data for objects with angular acceleration,
accuracy of the method used for calculating added mass moment of inertia is difficult
to verify. This limitation should be considered when using the model and more work
should be completed for validation.

2.1.8 Using ShipMo3D to determine Added Mass for an
SMS::Payload

In order to accurately model generic objects, alternative methods of determining
the hydrodynamics have been investigated. Specifically, time was spent researching
the use of potential flow theory to model these hydrodynamic forces. ShipMo3D is
software developed by DRDC to help simulate the motions of ships in seaways under
various environmental conditions [7]. A user manual and theory documentation for
the software can be found in [2, 7, 8, 9]. The theory behind how ShipMo3D determines
the added mass for different geometries is based on potential flow theory.

ShipMo3D can be used to determine the added mass coefficients for SMS::Payload ge-
ometry about 6 degrees of freedom. If the SMS::Payload is considered small compared
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to the incident wavelengths, diffraction and radiation effects can be assumed negli-
gible, and the resulting coefficients produced by ShipMo3D can be used. ShipMo3D
has the ability to determine the added mass of an object under various wave condi-
tions and constructs a hydrodynamic database. Because the SMS::Payload is always
assumed to be small relative to the incident wavelengths, those added mass coeffi-
cients for zero frequency waves are of interest. One important assumption to note is
that the added mass coefficients returned by ShipMo3D are for objects that have a
constant waterline.

2.1.8.1 Comparing ShipMo3D results with the literature

In order to understand the procedure of determining the zero frequency added mass
coefficients, 2 simple geometries were modelled in ShipMo3D and compared against
experimental results from literature. The first object is a fully submerged 6× 6 × 2
box and the second is a 100×6×12 also fully submerged box. These objects represent
a non-slender and slender object respectively. Figures 6 and 7 show the hull line
geometry representation read in by ShipMo3D and the meshed geometry that will be
used in radiation and diffraction function to determine the added mass coefficients of
restitution.

a) b)

Figure 6: The hull lines as defined for ShipMo3D panelling method of a a) 6× 6× 2
box b) 100× 6× 12 box.

The zero frequency linear added mass of these objects in heave are compared against
those found in [10]. The expected added mass in heave of the 6 × 6 × 2 box can be
found in Table 2.3 from [10] as a rectangular block. Likewise, the expected added
mass in heave of the 100 × 6 × 12 box can also be found in Table 2.3 from [10] as
the added mass per unit length of a rectangle.

The added mass moment of inertia about the roll degree of freedom was compared
against those found in [4]. The expected added mass in roll for both boxes can be
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a) b)

Figure 7: The resulting panelled hull created by ShipMo3D panelling method of a a)
6× 6× 2 box b) 100× 6× 12 box.

found in Table D-1 of [4] for a rectangular cross-section. It should be noted that
added mass for the 6× 6× 2 box may not match expected closely as it is not slender.
Tables 1 and 2 present the ShipMo3D zero frequency added mass coefficient output
as well as the expected heave and roll degrees of freedom coefficients of added mass
for the 6× 6× 2 and 100× 6× 12 geometries, respectively.

2.1.9 GPGPU parallelization of the hydrodynamic force
calculation

NVIDIA’s CUDA was chosen over OpenCL for investigating general purpose problem
solving on GPUs (GPGPU) because documentation and hardware drivers were more
accessible for it. The choice of CUDA limits the software to CUDA compatible cards
made by NVIDIA. Due to a similarity in how both libraries work, a change over should
not be difficult in the future should OpenCL become favorable. CUDA facilitates
programming NVIDIA’s GPUS and enables the parallelization of computational tasks
where the same operation must be effectuated many times on data sets much like a
traditional single-instruction multiple-data (SIMD) class parallel computer.

Though CUDA’s computational architecture is similar to SIMD class parallel com-
puters, it is more accurately classified as a single-instruction multiple-thread (SIMT)
infrastructure where a data set is assigned a thread that executes a particular instruc-
tion set. These GPUs sacrifice single-thread execution speed in exchange for total
computational throughput by executing many threads simultaneously. There are two
fundamental measures of processor performance: task latency and total throughput.
Task latency is the time required to initiate and complete a task, while throughput
is the amount of work (number of tasks) that can be completed per unit time. This
highlights the architectural design differences between CPUs and GPUS where CPUs
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Table 1: The added mass coefficients found by ShipMo3D for the 6 × 6 × 2 and the
expected added mass coefficients in roll and heave.

ShipMo3D Expected
Surge 0.347 –
Sway 0.346 –
Heave 1.70 1.66
Roll 0.893 0.95
Pitch 0.893 –
Yaw 0.182 –

Table 2: The added mass coefficients found by ShipMo3D for the 100 × 6 × 12 and
the expected added mass coefficients in roll and heave.

ShipMo3D Expected
Surge 0.063 –
Sway 2.042 –
Heave 0.66 0.67
Roll 0.55 0.565
Pitch .578 –
Yaw 1.73 –
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have been designed in such a way to minimize the latency (and hence maximize total
throughput) of the execution of a single thread at a time while GPUs try to max-
imize the total throughput by reducing the significance of added thread latency by
parallelizing thread execution [11].

A modern NVIDIA GPU is made up of multiple simultaneous multi-processors (SM)
each with multiple cores that can execute threads in parallel as seen in Figure 8.
Threads executed simultaneously on the same SM can cooperate and share low-
latency local memory, which helps reduce high-latency global memory accesses.

Thread
Processors

Local
Memory

Thread
Processors

Local
Memory

Thread
Processors

Local
Memory

Device Memory

GPU

Host Memory

Host CPU

Figure 8: NVIDIA GPU with an array of multi-threaded simultaneous multi-
processors

For the SMS API, geometries are discretised into a polyhedron mesh and the hy-
drodynamic forces acting on the surface of the object are determined for each face.
This method of calculating fluid forces is described in more detail in section 2.1.2.
The finer the polygon mesh, the more accurate the integration of the fluid forces on
the object surface will be. The number of hydrodynamic calculations grows linearly
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with the number of polygons. The calculations that must be effectuated for each face
consists of the same instructions for all faces and can all be performed in parallel.
This makes the problem of resolving the hydrodynamic fluid forces in this manner
embarrassingly parallel.

To date, the feasibility of using CUDA to calculate these fluid interaction forces has
been investigated for a simple hydrostatic buoyancy calculation, where the pressure
applied to each polygon is:

p(Cp,i) = ρghi. (30)

A thread is created for each polygon that calculates the simple hydrostatic buoyancy
force applied on each polygon. All polygon forces are accumulated to determine the
total force applied on the object. The threads are spread among the GPU’s SMs in
such a way that the block thread count does not exceed 512 threads per block.

A CUDA testbench application was created and the buoyancy calculation was imple-
mented 4 times: a functional C implementation, an implementation making use of
GeomLib like the SMS API, a CUDA conversion of the functional C implementation,
and a CUDA conversion of the C implementation that makes use of shared memory.
Results of these tests are found in Figure 9. The CUDA implementations were run on
an EVGA GeForce GTX 465 OC graphics card which features 11 SMs each with 32
cores. It should be noted that the buoyancy calculation that makes use of GeomLib
library was 6 times slower than a functional C implementation. CUDA implemen-
tations achieved a speedup even with a low resolution polygon mesh with speedups
of around 2.5 for higher resolution meshes. It should be noted that the CUDA im-
plementation is about 16 times faster than the GeomLib based implementation. The
speed up is low for these tests because very few calculations are effectuated on each
polygon, this means the ratio of time to acquire the polygon from global memory to
the time to effectuate the calculation is large. The shared memory implementation
showed no appreciable difference in speedup over the regular CUDA implementation
because each polygon has its own data and can not make use of another polygon’s
data. Very few calculations are made for each polygon, and each thread does not
make use of any data used by any other thread. It is anticipated that when moving
fluids are considered, greater speedups will be achieved due to increased computa-
tion load per polygon and shared memory will play a much more important role in
speedup since many polygons could share the same environmental data.

2.2 SMS::Director class
The SMS::Director class facilitates a user’s interaction with SMS API SMS::Sim-
Objects. The class allows a user to readily script commands that should be performed
over the course of an SMS API simulation. The class consists of a queue of commands
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Figure 9: Performance results of a simple buoyancy calculation implemented in C, in
C++ using GeomLib, in CUDA and in CUDA with shared memory. CUDA calcula-
tions were performed on an EVGA GeForce GTX 465 graphics card.

called a script, which the SMS::Director executes sequentially on a set of “actors”
it is controlling, where SMS::SimObjects are the actors. Each SMS::SimObject type
has it’s own set of commands that enable activities such as moving boomcrane joints
to a particular position, paying in or out cable, or attaching/detaching cables.

Each command is placed in a First In First Out queue and are executed sequentially.
The command consists of a string that begins with the name of the actor, followed by a
sequence of other parameters that help to define the command. The user can add com-
mands to the SMS::Director by using the AddCommand(std::string commandStr)

method which adds commandStr to the end of its queue or by reading it from file as
myDirector.ReadScriptFromFile(std::string fileName) where fileName is the
name of the text file which contains the scripts.

2.2.1 Using the SMS::Director

Actors can be assigned the SMS::Director object using the following method:

SMS::Director::AddActor(SimObject *object,

std::string actorName)

where object is a pointer to an SMS::SimObject that will be stored and actorName

is the name assigned to that particular actor. The SMS::Director will identify its
actor by name only.

Commands are added to the SMS::Director’s script using the following command:

22 DRDC Atlantic CR 2012-093



SMS::Director::AddCommand(std::string command)

where command is a string that contains multiple parameters that define the command.

2.2.2 SMS::Payload commands

The SMS::Payload has a number of commands available to it. The user can freeze
certain degrees of freedom and release them throughout a simulation using a hold or
release command, respectively. SMS::Cables can also be attached to or detached
from an SMS::Payload using the connect and disconnect commands, respectively.

2.2.2.1 Placing and releasing holds placed on a degree of freedom

In order to lock an SMS::Payload’s degree of freedom in space over time, the following
command would be provided to the SMS::Director:
"payloadName hold dof commandName"

where payloadName is the name given to the SMS::Payload when it was assigned as
an actor, hold is the hold command, commandName is the name given to the command
which will later identify it for release, and dof is one of the 6 degrees of freedom that
is being locked and can be any of the following: X, Y, Z, EX,EY,EZ.

To release a lock on an SMS::Payload’s degree of freedom, the following command is
provided to the SMS::Director:
"payloadName release commandName"

where release is the release command.

2.2.2.2 Connecting and disconnecting cables

The attachment and detachment of SMS::Cables to an SMS::Payload can be scripted
using the following commands:
"payloadName cableName winchName connect node softConnectTime x y z"

and
"payloadName cableName winchName disconnect

softDisconnectTime"

where payloadName is the name of the SMS::Payload actor, cableName is the name
of the SMS::Cable actor, connect and disconnect are the attachment/detachment
commands, x, y and z are the cable attachment location with respect to the body-
fixed frame of the SMS::Payload, winchName is the name of an SMS::Winch that
might be attached to the SMS::Cable, softConnectTime and softDisconnectTime

is the period of time over which to perform a connect or disconnect procedure to
prevent tension shocks, and node is simply which cable node to connect and is either
0 or N. If there is no SMS::Winch on the SMS::Cable, winchName is set to none. If
a SMS::Winch actor is specified, the SMS::Director will use the SMS::Winch actor
to control the tension in the cable during the attachment and detachment process as

DRDC Atlantic CR 2012-093 23



part of the soft connect/disconnect feature. Also, during the soft connect procedure,
the end of the cable node is moved to the connection point over the elapsed period
of time.

2.2.3 SMS::Boomcrane commands

The SMS::Director has one command available for an SMS::Boomcrane that allows
the scripting of its joint actuations. The user can add sequential joint actuation com-
mands as:
"boomcraneName jointID jointDesiredPos actuationVelocity"

where boomcraneName is the name of the SMS::Boomcrane actor, jointID is the
joint ID number, jointDesiredPos is the desired joint position which it is actu-
ated to (units of meters for prismatic joints and radians for revolute joints), and
actuationVelocity is the unsigned magnitude of the velocity the joint will actuate
by to reach the desired position.

2.2.4 SMS::Winch commands

The SMS::Director has one command available for an SMS::Winch. It allows the
scripting of the pay in or pay out out of cable. The user can add sequential pay in
and pay out commands as:
"winchName cableName cableLength payoutVelocity"

where winchName is the actor name for the SMS::Winch, cableName is the actor
name for the SMS::Cable, cableLength is the desired length of payed out cable, and
payoutVelocity is the desired rate of change over time of the cable length used to
achieve the desired length.

2.2.5 SMS::Cable commands

There are currently no SMS::Director commands available for an SMS::Cable. How-
ever, it must still be added as an actor if it is to be connected to an SMS::Payload

or controlled by an SMS::Winch.

2.2.6 Elapsing time between commands

The timing of actions can be manipulated by adding pauses between commands. This
is accomplished by adding the following command:
"pause timeToElapse"

where pause is the pause command and timeToElapse is the amount of time to allow
to elapse before the next command is executed.
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2.2.7 Example code

//Creating SimObjects

SMS::Payload testPayload("Payload.ini",0,true);

SMS::Cable testCable("Cable.ini",0,true);

SMS::Winch testWinch("Winch.ini",0,true);

SMS::BoomCrane testBoomCrane("BoomCrane.ini",0,true);

//Creating Director

SMS::Director myDirector;

//Assigning actors

myDirector.AddActor(&testBoomCrane,"testBoomCrane");

myDirector.AddActor(&testWinch,"testWinch");

myDirector.AddActor(&testCable,"testCable");

myDirector.AddActor(&testPayload,"testPayload");

//Hold the payload’s Z position at 10m

myDirector.AddCommand("testPayload hold Z 10 holdZ");

//move the boomcrane’s second joint to pi/4 trying to maintain

//0.5 radians per second

myDirector.AddCommand("testBoomCrane 1 0.7854 0.5");

//Pay in/out cable until it is 12.4 meters long at a rate of

// 1.5 m/s

myDirector.AddCommand("testWinch testCable 12.4 1.5");

//Release the payload’s Z hold

myDirector.AddCommand("testPayload release holdZ");

//Connect the cable to the payload, there’s a attached to the

//cable and we want to use it to soften the connection over a

//period of 1 seconds

myDirector.AddCommand("testPayload testCable testWinch

connect 0 1.0 0.0 0.0 1.5 ");

//Pause

myDirector.AddCommand("Pause 10");

//Disconnect the cable using an attached winch to

//soft-disconnect.

myDirector.AddCommand("testPayload testCable testWinch disconnect 0.5");
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2.3 Contact dynamics
A few major algorithm modifications have been made to the SMS API to handle
concave objects (via convex decomposition) and to generally improve the performance
of the code. First, a new collision detection infrastructure was put in place to handle
the difficulties that arise with convex decomposed collision geometries, such as keeping
track of collision pair contact data which must be remembered for future time steps.
The new architecture is described in Section 2.3.1. Second, a new penetration depth or
minimum translational distance (MTD) determination method called the Expanded
Polytope Algorithm (EPA), which is discussed in Section 2.3.2, was implemented to
improve performance over the previous brute force method. Finally, GeomLib’s GJK
implementation has been modified to make use of temporal coherence. A discussion
on how temporal coherence is exploited can be found in Section 2.3.3.

2.3.1 Improved collision detection code

In order to handle the complexities that arise when dealing with decomposed collision
objects, which are assembly of several connected convex hull objects, it was necessary
to introduce a revised collision detection infrastructure in the SMS API. Difficulties in
debugging and maintaining the initial infrastructure necessitated the development of
a revised infrastructure. At the foundation of the revised infrastructure is an abstract
base class called GeomLib::CollisionObject. This class forms the foundation for
the creation of other types of collision objects (e.g. convex collision objects, Axis
Aligned Bounding Boxes (AABB), Oriented Bounding Boxes (OBB), etc.).

The improvements can be summarized as:

• The creation of two child classes of the CollisionObject class to handle convex
collision object and convex decomposed collision object collisions. The classes
are called GeomLib::CollObjConvex and GeomLib::CollObjConvexDecomp, re-
spectively.

• Every CollisionObject type can be tested against any other type of Coll-

isionObject for collision by simply passing a pointer to the other Collision-
Object as a parameter of the CollisionObject::DetectCollision() func-
tion.

• The new collision infrastructure is compatible for N -body collision resolution.

• Each CollisionObject maintains a database of collision information stored
in a std::map with all other CollisionObjects it is tested against, making
temporal coherence and time dependent contact phenomena possible.
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Details of the improvements are provided in the following sections.

2.3.1.1 Details of improved collision detection code

The key function in the GeomLib::CollisionObject class is the pure virtual function
DetectCollision(...) which is passed a pointer to another CollisionObject.
Every child class implements its own version of that function and will cast the Coll-
isionObject pointer passed in to it to whatever type of CollisionObject child
class it is; and deal with detecting a collision appropriately. Every type of Coll-

isionObject should be able to be passed in any type of CollisionObject and know
how best to perform the collision detection check between itself and that particular
CollisionObject type.

Two CollisionObject types have been implemented: GeomLib::CollObjConvex

and GeomLib::CollObjConvexDecomp. The CollObjConvex object includes an inter-
nal GeomLib::Polyhedron object that defines its geometry which is passed in during
its initialisation process. The CollObjConvex guarantees that the Polyhedron is
convex by processing it through the GeomTools::QuickHull3D(...) algorithm. If
a CollObjConvex is passed in another CollObjConvex via the DetectCollision()

function, the GJK algorithm (GeomTools::FindMSDGJK(...)) is used to perform the
collision query.

The CollObjConvexDecomp object contains a std::vector of CollObjConvex ob-
jects. Because of the use of a std::vector of CollObjConvexs instead of some sort
of Bounding Volume Hierarchy (BVH), every CollObjConvex must be tested for col-
lision against the CollisionObject passed in. This can lead to a large number of
unnecessary collision checks especially if it is tested against another CollObjConvex-
Decomp and both have a large numbers of sub objects. Each CollObjConvex will
be tested against every CollObjConvex of the other CollObjConvexDecomp leading
to N ×M collision checks, where N and M are the number of CollObjConvex sub
objects for each CollObjConvexDecomp object, respectively. In the future, CollObj-
ConvexDecomp collision tests could be sped up using an AABB/OBB tree or some
other BVH.

Information about individual collisions, such as the Minimum Translation Distance
(MTD), the volume of interference and the final GJK simplex for temporal coher-
ence, are stored inside a GeomLib::CollisionDataContainer object. Every Coll-

isionObject has a std::map of CollisionDataContainer objects. Every time a
new CollisionObject is queried for collision with another CollisionObject, a new
CollisionDataContainer is added to the std::map and is mapped using a collision
object id which is unique to each CollisionObject. A copy of the Collision-

DataContainer is held by each CollisionObject in the collision pair. Whenever
a CollisionObject is queried a second time for collisions with another, the Coll-
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isionDataContainer for that collision pair is easily obtainable regardless of whether
CollisionObject A queried CollisionObject B or vice-versa. This leads to some
duplicated data though it renders the system more flexible.

This new collision detection infrastructure forms a strong basis around which a future
expansion into broad-phase collision detection to handle more general multi-body
simulations can occur. This would enable the boomcrane arm segments to collide
with each other and the payload.

2.3.2 Expanded Polytope Algorithm

The SMS API determines the contact force acting between two colliding objects using
the volume of interference between both objects. Currently, this is done using the
Muller-Preparata algorithm [12]. This requires knowledge of a point that is simulta-
neously located inside both colliding objects or in other words inside the volume of
interference. To accomplish this, the SMS API uses the MTD, which is represented
as a line segment between two points, P1 and P2, one on each object that represent
the maximum penetration depth, or the Minimum Translation Distance to achieve
separation. With knowledge of P1 and P2, a point located within the volume of
interference can usually be obtained1 as P1+P2

2
, as shown in Figure 10.

Figure 10: The use of the MTD to obtain a point within the interference volume of
two colliding objects.

The original implementation of the MTD determination code in SMS API used a
brute force approach with a complexity of O(N ∗M) where N and M are the number
of vertices of each collision object. Essentially, the SMS API constructed the entire
Minkowski difference and searched its surface for the closest point to the origin [1].
This resulted in an inefficient algorithm that did not scale well to geometries with
a large number of vertices. To improve the MTD code, a new method called the

1DSA is aware of an exception where the use of the MTD would fail to provide a point within
the volume of interference.
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Figure 11: A step by step description of the Expanded Polytope Algorithm for in-
terfering convex polyhedra: a) The desired point on the surface of the Minkowski
Difference surface that is closest to the origin Pmin, b) the original simplex returned
from GJK containing the origin showing the search direction vector n̂ from the nor-
mal of the closest face along with the furthest vertex in that direction, c) The new
geometry with the furthest point from the previous step including the new search
direction and furthest point, d) finally no further point can be identified in the search
direction, thus the closest face contains Pmin.
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Expanded Polytope Algorithm (EPA) [13] has been implemented. The EPA is a
complementary algorithm to GJK to help obtain the MTD and it has a complexity
of O(log(N + M)) so long as the polyhedral geometries make use of the Dobkin-
Kirkpatrick hierarchy [14]. The MTD can be obtained from the point PMin on the
surface of the Minkowski difference surface which is closest to the origin [1], as shown
in Figure 11 a). Instead of generating the entire Minkowski difference, the EPA
starts with a polyhedron created from the final 4-simplex (a tetrahedron) returned
from GJK which contains the origin, and identifies the face closest to the origin.
From here, a vertex of the Minkowski difference which lies furthest outside that face
using the support function is found, as shown in Figure 11 b) and c). If a vertex
is found to lie outside the face, it is added to the polyhedron which expands the
polytope. GeomTools::QuickHull3D(...) is used to effectively and efficiently add
it the mesh. When the support function fails to return any vertex which lie outside
the closest face, the point PMin is determined which provides the MTD [1].

2.3.3 Exploiting temporal coherence with GJK

The GJK algorithm [1, 15] determines whether or not two objects are interfering by
stepping through the Minkowski difference until a 4-simplex is found which encap-
sulates the origin. This process has a complexity of O(log(N + M)) where N and
M are the number of vertices for each interfering convex polyhedron when Dobkin-
Kirkpatrick hierarchies are used. However, unless the objects are moving at large
rates, or the numerical integration is taking large time steps, the Minkowski differ-
ence will vary little between time steps. The final 4-simplex returned from GJK is
likely to be identical or near identical to that returned in the previous time step.
This can be exploited to speed up the execution of the GJK algorithm. That is, the
final simplex obtained by GJK, whether it has determined that a collision is or is
not occurring, is saved for use in the next time step. This simplex is used as the
starting point for the next GJK run. In general, GJK will not require any stepping
through the Minkowski difference and is likely to immediately return a collision or
non-collision state. Thus, by exploiting temporal coherence, GJK can be effectively
made to run at O(1) regardless of the complexity of the geometries except for the
first run.

2.3.4 Contact dynamics code performance

This section presents the benefits of the contact dynamics code improvements. Sec-
tion 2.3.4.1 summarizes the results of implementing the EPA, using temporal co-
herance with the GJK, and improving memory management in the SMS API. Sec-
tion 2.3.4.2 reviews additional benefits and improvements that were made to the SMS
API contact dynamics capabilities by examining the algorithmic complexity of GJK,
EPA and the Muller-Preparata algoritms.

30 DRDC Atlantic CR 2012-093



2.3.4.1 Code performance increases

Benefits of memory allocation optimisation When the EPA and the temporal
coherance algorithm changes were implemented in the SMS API, the ‘boat and cradle’
simulation from Section 3.2.4 had a simulation time ratio of 28:1 2. To reduce this
time ratio function level memory creation and destruction was minimized by:

• removing functions with vectorial return types,

• removing function or loop level memory creation.

In addition, the code was generally cleaned up by removing unnecessary tasks from
functions. After these changes were made, the ‘boat and cradle’ simulation had a
simulation time ratio of 23:1.

Benefits of algorithmic changes To demonstrate the benefits of the algorithmic
improvements made, the boat and cradle simulation was re-run without temporal
coherence and again when using the brute force MTD method instead of EPA. These
simulations’ time ratios, including those discussed above can be found in Table 3.
From this table, one can see that the largest performance increase was due to replace-
ment of the brute force MTD method with EPA. Temporal coherence and memory
optimisation also contributed significantly to the overall performance increase.

Table 3: The time ratios for the boat and cradle simulation before and after optimi-
sation, without temporal coherence and with the original brute force MTD method.

Variation Time ratio
Algorithmic changes, no memory optimisation 28:1
Algorithmic changes, with memory optimisation 23:1

Without temporal coherence, with memory optimisation 32:1
Brute force MTD method, with memory optimisation 166:1

2.3.4.2 Algorithmic complexity of GJK, EPA and Muller-Preparata

To demonstrate the scalability and in some cases the improvements of the computa-
tional geometry algorithms used to detect collisions and determine the contact forces
in the SMS API, the run times of the GJK, EPA and the Muller and Preparata al-
gorithms for pairs of spheres with varying mesh resolutions were determined. The
execution times of each of these functions were recorded and averaged over 300 trials
for each mesh resolution pair and plotted in the proceeding figures.

2This large time ratio is mainly due to the fact that the boat is subdivided into 19 sub-objects
and the cradle is made up of 4 sub-objects; leading to ∼80 potential collision pairs.
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The GJK algorithm has a complexity of about O(log(n + m)) where n and m are
the number of polygons between both objects. This complexity and scalability is
already quite desirable, however by exploiting temporal coherence a complexity of
O(1) can be, and has been, achieved. The execution times of the GJK algorithm with
and without exploiting temporal coherence were obtained for a pair of identical non-
interfering spheres of varying mesh resolutions. The results of those runs can be found
in Figure 12. The execution times of the GJK algorithm without temporal coherence
follows a logarithmic curve while the GJK algorithm with temporal coherence has a
constant time complexity.
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Figure 12: The execution times for the GJK algorithm for pairs of identical spheres
of varying mesh resolutions.

The EPA algorithm also has a O(log(n+m)) complexity. The previous algorithm, a
brute force approach, used to determine the minimum translational distance (MTD)
or penetration depth, constructed the entire Minkowski difference geometry. This
costly operation had a time complexity of O((n+m)2). Though it would have been
interesting to compare the execution times of these two methods, the brute force
approach took far too long to execute with such high polygon counts thus the com-
parison was not practical or necessary. The execution times for the EPA algorithm
can be found in Figure 13.

Due to the way in which the EPA converges to its solution, it was anticipated that
the execution time of the EPA algorithm might be shorter when the MTD was small.
To demonstrate this phenomenon, two spheres of 16128 polygons each were processed
through GJK and EPA from a state of non-interference to a penetration of 1

2
radius.

The results of these tests can be found in Figure 14. As anticipated, the EPA algo-
rithm performs somewhat faster in cases of small interpenetration. This limitation is
fine for most contact situations since large penetration depths are not typical.
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Figure 13: The execution times for the EPA algorithm for pairs of identical spheres
of varying mesh resolutions.
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Finally, the Muller-Preparata intersection geometry algorithm has a worst-case com-
plexity of O((n +m)log(n +m)). This complexity is because the Muller-Preparata
algorithm is dependent on the use of a convex hull algorithm. The most efficient
convex hull algorithms (such as the QuickHull3D algorithm), have a complexity of
O((n + m)log(n + m)). Thus, the bottleneck in the Muller-Preparata algorithm is
the convex hull algorithm. If a more efficient convex hull algorithm can be found, it
would have a significant impact on the Muller-Preparata algorithm. Unfortunately,
the authors are currently unaware of a more efficient volume of interference algorithm
or 3d convex hull algorithm. There is also a lack of efficient parallel convex hull al-
gorithms, so speeding up the Muller-Preparata algorithm through parallelization is
not immediately evident. The execution times of the Muller-Preparata algorithm for
two identical spheres of varying mesh resolutions for the Muller Preparata algorithm
can be found in Figure 15.
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Figure 15: The execution times for the Muller-Preparata algorithm for pairs of iden-
tical spheres of varying mesh resolutions.

2.4 Generalised-α implicit integrator
The objective of this section is to describe the Generalised-α numerical integrator.
Section 2.4.1 discusses the difference between explicit and implicit numerical integra-
tors in general. Section 2.4.2 discusses the Generalised-α integrator in detail, while
Section 2.4.3 discusses issues that arise when using Generalised-α with multiple degree
of freedom (DOF) nonlinear systems.

34 DRDC Atlantic CR 2012-093



2.4.1 Implicit integration

An explicit numerical integrator evaluates accelerations at a given point in time as
a sole function of present time position and velocity or in other words system state
information. This allows a numerical integration process to march forward without
any iteration as the accelerations are evaluated directly and utilized to predict future
positions through some particular explicit algorithm, such as Runge-Kutta regime. In
contrast, implicit numerical integrators predict future positions by using an assumed
acceleration profile over a span of time on the order of the time step. This results in
quantifying the future state via a blend of accelerations known at the present time as
well as from some future point in time and requires iteration to converge on the future
state as the future accelerations can not normally be known a priori. A particular
nuance of implicit integrators is their ability to introduce artificial numerical damp-
ing. This can help attenuate high frequency effects that otherwise may destabilize a
system or require unrealistic or complex physical damping to control. This can afford
significant increases in numerical stability in some systems that otherwise require a
much smaller time step or are even incapable of execution with explicit numerical in-
tegrators. It is very common for large degree of freedom structural or computational
fluid dynamics models to use implicit numerical integration when studying dynamic
problems. While stability is an advantage in its own right, artificial numerical dissipa-
tion may afford larger time steps that also significantly increase simulation execution
speed when compared to explicit numerical integration.

2.4.2 The Generalised-α integrator

There are several implicit numerical integrators available that have been developed
over several decades. One of the more recent versions referred to as the Generalised-α
method is an excellent candidate for implementation [16]. This particular integrator
has a single, user-settable parameter that directly controls the amount of artificial
numerical dissipation in the integration process. In the original work presenting
this integrator, the authors analysed its effect on a linear second-order differential
equation:

ü+ 2ζωu̇+ ω2u = f (31)

which was then reformulated in to a linear algebraic update equation giving the
relationship between present and future states via the amplification matrix, A:

Xn+1 = AXn (32)
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The spectral radius, ρ, is defined as the maximum absolute value of the eigenvalues
of the amplification matrix. The authors found that the spectral radius varies as a
function of the ratio of the numerical time step used divided by the natural period
of the system. For values less than 1 (indicating a very small time step), the spec-
tral radius produced approached 1. As this ratio passed a value of 1 and increased,
the spectral radius converges to a value between 1 and 0 and this limit is referred
to the spectral radius at infinity, ρ∞. Through additional analysis and constraints,
the authors formulated the coefficients of the integrator as a function of the spectral
radius at infinity, giving a single parameter to control the amount of artificial numer-
ical dissipation in the system. When the spectral radius, and therefore the largest
eigenvalues of the amplification matrix, is less than 1, the system dynamic response
is attenuated, emulating the effect of damping. In general, an analyst can establish
the effect of numerical dissipation readily by sensitivity study and comparison with
the RK45 integrator. However, based on the experience gained in this work on cable
dynamics, it is expected that maximum damping will be typically used. Other than
the damping effect, there are no other numerical or accuracy costs to using different
values of ρ∞.

It should be noted that the Generalised-α parameters can also be easily adjusted to
known values to produce identical results of older implicit numerical integrators such
as Wilson-θ and Newmark-β. In more recent years, the literature indicates cable
dynamics problems can be resolved utilizing these integrators, which indicates it is
a feasible approach [17, 18]. One challenge with implicit numerical integrators is a
theoretical framework for error control and therefore adaptive time step capability.
However, more recent work in the literature indicates that some algorithms exist
and are worth exploring in future work to better leverage the capabilities of implicit
numerical integration [19].

All implicit numerical integrators afford blending of present and future accelerations
in order to predict future positions by utilizing position and velocity update equations
as their theoretical foundation. For mechanical systems in particular they also enforce
dynamic equilibrium at some future time via Newton’s Second Law of motion. The
Generalised-α update equations for displacement, d, velocity, v are [16]:

dn+1 = dn + hvn + h2 ([0.5− β] an + βan+1) (33)

vn+1 = vn + h ([1− γ] an + γan+1) (34)

and equilibrium at a future time point is guaranteed by utilizing Newton’s Second
Law:
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Man+1−αm +Cvn+1−αf
+Kdn+1−αf

= F(tn+1−αf
) (35)

where

dn+1−αf
= (1− αf )dn+1 + αfdn (36)

vn+1−αf
= (1− αf )vn+1 + αfvn (37)

an+1−αm = (1− αm)an+1 + αman (38)

tn+1−αf
= (1− αf )tn+1 + αf tn (39)

and h is the time step at time point n, a is the acceleration and M, C and K are the
system mass, damping and stiffness values respectively. In the original work, analysis
was completed to determine the appropriate relationships between the constants γ,
β, αf , and αm. Relationships were derived that enforce second order accuracy and
desired level of numerical dissipation [16].

2.4.3 Implementation for nonlinear systems

For linear systems, the structural stiffness, damping, and mass values indicated in
equation 35 are by definition independent of the system state. The stiffness and
damping terms are a manifestation of the structural response to strain and strain
rate of the system and in any case are constant based on the mass spring damper
system properties.

However, the structural response of a cable is highly nonlinear with stiffness and
damping terms changing depending on the state of the system. A significant source
of nonlinearity is that the stiffness term is a function of the tension in the cable,
though there are nonlinearities in mass and damping matrices as well. In order to
accommodate the nonlinear nature of the system, equation 35 is resolved utilizing a
Newton-Raphson approach as indicated in [17]. In this approach, the external forces
(including hydrodynamic loading) are assumed to be constant over the time step.
The Newton-Raphson approach is implemented by utilizing the update equations to
solve for the future acceleration, an+1, and future velocity, vn+1 to be solely in terms
of a single unknown, the future displacement, dn+1. Rearranging equations 34 and
34 produces:

an+1 =
1

βh2
[dn+1 − dn]− 1

βh
vn − [0.5− β]

β
an (40)

vn+1 =
γ

βh
[dn+1 − dn] +

[
1− γ

β

]
vn +

[
h− hγ − hγ

β
(0.5− β)

]
an (41)
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Note that equations 40 and 41 show future accelerations, an+1, and velocities, vn+1,
expressed in terms of the single unknown parameter of future displacement, dn+1.
Present time displacement and velocity, are known from either initial conditions or
from the last numerical integration step. The initial accelerations are known directly
from Newton’s Second Law or are the product of the last numerical integration step.

The result of substituting equations 36-39 in to equation 35 produces equation 42 [17]:

(1− αm)Man+1 + αmMan + (1− αf )Kdn+1 + αfKdn = (1− αf )Fn+1 + αfFn (42)

where the stiffness matrix K represents the axial, bending, and torsion stiffness of
the cable. Note that in this case structural damping is lumped in with the external
forces. In addition, unlike the work presented in [17] additional temporal blending of
the mass, M, and stiffness matrices has been neglected for simplicity. Equation 42
represents Newton’s Second Law as envisioned through the Generalised-α algorithm,
which blends present and future accelerations to establish the future state. If equa-
tions 40 and 41 are substituted in to equation 42, the resulting equation is still
Newton’s Second Law but with a single unknown in the form of the future displace-
ment. Recall that the present displacement, velocity, and accelerations are known
quantities. The tangent stiffness matrix is the term used to describe the remaining
matrix of terms that are proportional to the future displacement and include compo-
nents from the structural stiffness as well as mass terms. The tangent stiffness matrix
therefore describes inertial resistance to abrupt temporal changes in future position
as well as resistive structural forces that oppose changes in future position regardless
of the time step.

The iterative Newton-Raphson technique can be used to resolve the future displace-
ment based on a first-order Taylor series approximation to any function as described
in [18]:

f(x+ ε) = f(x) + J(x)ε = 0 (43)

The change required in the state, ε, can be found with knowledge of the matrix of
first derivatives or Jacobian, J, by solving the system 43:

ε = −[J(x)]−1f(x) (44)

Typically the time steps must be small for stability purposes and this affords an
approximation to the Jacobian:

J(x) ≈ (1− αf )K+
1− αm

βh2
M (45)
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In the context of structural analysis problems that utilize the Newton-Raphson ap-
proach, this approximation is referred to as the tangent stiffness matrix. The struc-
tural stiffness matrix, K, and combined lumped structural mass and directional added
mass matrix, M, are computed at each point in time. The tangent stiffness matrix
is then computed and an LU decomposition regime is leveraged to solve the system
of equations from equation 44. As the full mass and stiffness matrices are required,
the number of equations in the cable model grows rapidly with the number of nodes.
However, the LU decomposition step is the most computationally costly and is only
performed once per time step and multiple iterations in the Newton-Raphson process
do not significantly increase the computational burden.
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3 Validation
3.1 Hydrodynamics validation
3.1.1 Partially submerged body buoyancy test in calm water

To verify accuracy of the buoyancy force created by the fluid pressure field for a
partially submerged body, a buoyant box shaped SMS::Payload is placed in a calm
seaway as shown in Figure 16. The SMS::Payload has dimensions of 10 m in length
and width and a height of 1 m which makes it a stable low-profile floating platform.
The SMS::Payload has a mass of 25625 kg and a density of 256.25 kg/m3, which is 1

4

that of ocean water at 1025 kg/m3. It has the mass moment of inertia of a solid box
where Ixx = Iyy = 210, 000 kg· m2 and Izz = 430, 000 kg· m2. Each of the 6 sides of
the box is discretised into 10×10 sets of 4 sided polygons, for a total of 600 polygons.

Displaced volume

Figure 16: The experimental setup for the variable buoyancy validation test.

The SMS::Payload is expected to displace 1
4
of the volume of the box of water, the

Ẑ position of the SMS::Payload should average 0.25 m above the ocean surface (Z =
0 m).

Results

Table 4 shows both the expected and the simulated average position for the floating
SMS::Payload. Figure 17 indicates its position over time, and Figure 18 indicates
orientation over time.

Table 4: The expected and simulated Ẑ position of the SMS::Payload

Variable Expected Ẑ position Simulated Ẑ position
ZPayload 0.25 m 0.250133 m
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Figure 17: The Ẑ position of an SMS::Payload floating on water for the variable
buoyancy validation test.
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Figure 18: The orientation of an SMS::Payload floating on water for the variable
buoyancy validation test.
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3.1.2 Fully submerged body pendulum test in calm water

To verify accuracy of the buoyancy force created by the fluid pressure field for a fully
submerged body, a buoyant sphere shaped SMS::Payload is placed in a calm seaway
at PE→B = {0.0, 0.01,−10.0} attached to a 10 m long SMS::Cable whose bottom
node is fixed in space, as shown in Figure 19. The SMS::Payload has a radius of 1
m, a volume of 4.1888 m3, a mass of 1000 kg, and the mass moment of inertia of a
solid sphere where Ixx = Iyy = Izz = 400 kg· m2. The fluid drag and inertial loading
effects on the SMS::Payload are turned off. The spherical SMS::Payload surface is
represented using a spherical polyhedron with 128 triangular polygons.

The SMS::Cable’s node 0 is attached to the SMS::Payload at {0.0, 0.0, 0.0} from its
body-fixed frame and has its node N located at the global {0.0, 0.0,
− 20.0}.

PE→NodeN = {0.0, 0.0,−20.0}

PE→B = {0.01, 0.0,−10.0}

Figure 19: The experimental setup for the fully submerged body buoyancy pendulum
validation test.

The expected period of oscillation for the pendulum is:

τpend =
2π√
Fb−mg
mL

(46)

where Fb is the buoyant force:

Fb = ρwgVPayload (47)

m is the mass, g is the gravitational acceleration, L is the length of the cable, ρw is
the density of sea water and VPayload is the volume of water the payload displaces.
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Results

Table 5 indicates the expected and simulated periods of oscillation for the SMS::Pay-
load and Figure 20 illustrates its position over time.

Table 5: The expected and simulated period of oscillation of the SMS::Payload.

Variable Expected period of oscillation (s) Simulated period of oscillation (s)
τpend 3.6516 3.6409
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Figure 20: The X̂ and Ŷ position of a SMS::Payload attached to a 10 m cable
pendulating by a buoyancy force larger than its weight.

3.1.3 Hydrodynamic drag test

To verify that the polygon mesh method of determining the drag force in com-
bination with the buoyancy or Froude-Krylov force is producing expected results,
a buoyant sphere-shaped SMS::Payload is placed in a translating uniform seaway
moving at a speed of 7 m/s along the X̂ axis. The SMS::Payload is located at
PE→B = {0.0, 0.0,−10.0}, which is attached to a SMS::Cable whose bottom node
is fixed in space, as shown in Figure 21. The SMS::Cable’s node 0 is attached to
the SMS::Payload at {0.0, 0.0, 0.0} from its body-fixed frame. The SMS::Cable is
10m long which means its node N is located at {0.0, 0.0,−20.0}. The spherical
SMS::Payload surface is represented using a spherical polyhedron with 128 triangu-
lar polygons and the simulation is re-executed with a mesh of 512 polygons.

The SMS::Payload has a radius of 1m which gives it a volume of 4.1888 m3. The
SMS::Payload has a mass of 3000kg. It has the mass moment of inertia of a solid
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sphere where Ixx = Iyy = Izz = 1200kg · m2. The SMS::Payload was given a drag
coefficient and added mass coefficient of 0.5 in all directions.

The expected angle θ between the cable and the Ẑ axis is:

θ = atan((Fd)/(Fb −mg)); (48)

where Fd is the drag force, Fb is the buoyancy force, m is the mass and g is the
gravitational acceleration.

PE→NodeN = {0.0, 0.0,−20.0}

PE→B = {0.0, 0.0,−10.0}

θ

mg

fd

fb

u

Figure 21: Experimental setup for the hydrodynamic drag test

Results

Table 6 shows the expected and the simulated final angle between the SMS::Cable

and the vertical Ẑ axis when using a 128 face polyhedron well as a 512 polyhedron
for the SMS::Payload. Figures 22 and 23 indicate the SMS::Payload’s position over
time for the 128 face polyhedron and 512 face polyhedron, respectively.

3.1.4 Fully submerged body added mass test

To verify that the fluid inertial loading is functioning as expected, the buoyancy
pendulum test is reproduced with the addition of the added mass effect (Figure 24).
The added mass coefficient for a sphere of 0.5 about all three degrees of freedom was
chosen.

The expected period of oscillation for the pendulum with added mass is:
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Table 6: The expected and simulated SMS::Cable angle with the vertical Ẑ axis for
a 128 face mesh and 512 face mesh, respectively.

Variable Expected cable angle Simulated cable angle
(rad, relative to vertical) (rad, relative to vertical)

τpend (128 faces) 1.2411 1.2999
τpend (512 faces) 1.2411 1.2588
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Figure 22: The simulated position of the SMS::Payload with a 128 face mesh
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Figure 23: The simulated position of the SMS::Payload with a 512 face mesh
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PE→NodeN = {0.0, 0.0,−20.0}

PE→B = {0.01, 0.0,−10.0}

Figure 24: Experimental setup for the variable buoyancy validation test with added
mass

τpend =
2π√
Fb−mg

(m+ma)L

(49)

where Fb is the buoyant force:

Fb = ρwgVPayload (50)

m is the mass, ma is the added mass, g is the gravitational acceleration, L is the
length of the cable, ρw is the density of sea water and VPayload is the volume of water
the payload displaces. The added mass for a fully submerged 2 m diameter sphere
with an added mass coefficient of 0.5 is 2147 kg.

Results

Table 7 shows the expected and the simulated periods of oscillation for the SMS::Pay-
load and Figure 20 indicates its position over time.

3.1.5 Additional proposed verification tests

• Cylinder at 45 degree inclination to a current
This test would verify the effect of drag forces acting on an object with non-
uniform drag coefficients due to flow moving past it along more than one of its
axes.
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Table 7: The expected and simulated period of oscillation of the SMS::Payload

Variable Expected period of oscillation (s) Simulated period of oscillation (s)
τpend 6.2008 6.3015
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Figure 25: The X̂ and Ŷ position of a SMS::Payload attached to a 10 m cable
pendulating by a buoyancy force larger than its weight incorporating added mass
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• Articulated body cylinder link in wave with added mass test
This test would compare the wave forces acting on a fixed cylinder against
expected analytical results.

• Variable submergence drag test
The body would be partially submerged, the linear drag force and results drag
moment would be compared against expected analytical results.

• Variable submergence added mass test
The body would be partially submerged, accelerated and/or subjected to an
accelerating flow. The linear added mass force, added mass, added mass mo-
ment and added mass moment of inertia would be compared against expected
analytical results.

• Axial motion added mass effect
Objects whose geometry is symmetrical about an axis would exhibit negligible
added mass when it is rotationally acceleration about that axis. The added
mass moment of inertia and added mass moment would be compared against
expected analytical result.

3.2 Contact dynamics validation for convex
decomposed objects

The following four tests have been developed to demonstrate the proper function-
ing of the revised collision detection architecture. The first two tests described in
sections 3.2.1 and 3.2.2 verify the convex decomposition method by comparing the
results from convex decomposed objects to the same systems created without convex
decomposition.

The third test described in section 3.2.3 consists of a simple multi-contact situa-
tion where the SMS::Payload collides with two separate collision objects. Finally,
section 3.2.4 takes a rescue boat hydrodynamics hull, decomposes it into convex sub-
pieces, and simulates the contact scenario between the hull and a cradle.

3.2.1 Subdivided and non-subdivided box collision tests

Two scenarios were executed using the SMS API that simulated a 1m cube colliding
with a larger 100m × 100m surface. In the first scenario, the cube and surface were
subdivided into four separate sub-pieces, and in the second scenario the cube and
surface were modeled as one object each. These scenarios were built to qualitatively
demonstrate the ability of the SMS API to represent complex contact geometry by
several sub-pieces, such that complex shapes can be simulated easily.
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This simulation example consists of a 1m × 1m × 1m box as the SMS::Payload

hull impacting a 100m × 100m × 10m box that is the static external contact geom-
etry. For the decomposed (subdivided) object version of the simulation, both the
SMS::Payload box and the external contact geometry box are subdivided into four
equal convex sub pieces, as shown in Figure 26. The SMS::Payload has a mass of
7000 kg, and moments of inertia of 583 kg·m2 about three degrees of freedom. Both
object’s material properties consist of a Young’s modulus of 209 GPa and a damping
factor of 10 MPa·s. The SMS::Payload starts at 0.05 m above the external box and
falls under gravity.

Figure 26: The simulation setup of the convex decomposed box impacting another
convex decomposed box.

3.2.1.1 Results

The simulation was run until a steady state was reached. Figure 27 shows the position
of the SMS::Payload over time. The payload starts at a Ẑ position of 5.55 m and
settles at a position of slightly less than 5.5 m. Initial collision occurs when the
SMS::Payload is at a height of 5.5 m. The difference in the position of the one-piece
SMS::Payload and the convex decomposed SMS::Payload is negligible, as shown in
Figure 27. Note that the plot lines of the convex decomposed object are plotted last,
which obscures the plot lines of the one-piece SMS::Payload).

As shown in Figure 28, the convex decomposed SMS::Payload’s orientation over time
is different than the one-piece SMS::Payload, which oscillates on the order of 1.0e-16
radians. However, even though the orientation oscillations are larger for the con-
vex decomposed SMS::Payload, they are negligible like the one-piece SMS::Payload.
One possible reason for this is that for the one-piece object there is only one force
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Figure 27: The simulations results of position of the one-piece and convex decomposed
SMS::Payloads over time.

application point which varies rapidly to ensure self-righting moments are applied to
the SMS::Payload, while for the convex-decomposed object there are four contact
points whose application points vary less. This means the four individual contact
forces must work to achieve a balance in the self-righting moment.
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Figure 28: The simulations results of orientation of the one-piece and convex decom-
posed SMS::Payloads over time.

Figure 29 shows the stiffness and damping components of the normal contact force
over time and Figure 30 shows the MSD/MTD and volume of interference for both the
one-piece and convex decomposed SMS::Payloads. The forces, volumes and distances
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are practically identical between the one-piece and convex decomposed objects. This
test shows that decomposing the objects into convex sub pieces and evaluating the
contact force acting on each individual sub pieces has no significant impact on the
final results of the simulation.
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Figure 29: The simulations results of stiffness and damping components of the one-
piece and convex decomposed SMS::Payloads over time.
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Figure 30: The simulations results of MSD/MTD and interference geometry of the
one-piece and convex decomposed SMS::Payloads over time.
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3.2.2 Oriented box collision test

This simulation example is a modified version of the subdivided box test from Sec-
tion 3.2.1. The only difference is the SMS::Payload is given an initial orientation of
0.1 radians in roll and pitch and an initial separation of the box centers of 10 m as
seen in Figure 31. All other properties are identical.

Figure 31: The simulation setup for the oriented convex decomposed box impacting
another convex decomposed box.

3.2.2.1 Results

The simulation was run until a steady state was reached. Figures 32, 33, 34 show the
position, orientation and contact force components of the SMS::Payload over time.
The SMS::Payload drops onto the large flat box and due to the high damping proper-
ties of the materials, the SMS::Payload comes to a rest quickly. The SMS::Payload

ends with a constant rate of rotation about the Ẑ axis due to a lack of spinning
friction.
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Figure 32: The simulated position for the pre-oriented convex decomposed SMS::-

Payloads over time.
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Figure 33: The simulated orientation for the pre-oriented convex decomposed SMS::-

Payloads over time.
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Figure 34: The simulated stiffness and damping components of the pre-oriented con-
vex decomposed SMS::Payloads over time.

3.2.2.2 A discussion on rolling resistance

It is important to note that convex decomposition of the box into four pieces has the
added benefit of distributing the volumes of interferences into four spatially spread
contact volumes. When the box has an angular velocity, the individual volumes of
interference will experience different rates of change, thus creating some rotational
damping resistance. This effect helps to approximate the effect of rolling resistance.
If the box consisted of single convex pieces, the relative angular velocity of the ob-
jects would cause no change in the volume of interference and little energy would be
dissipated as indicated in Figure 35 a) and b). The individual volumes of interference
for the sub-pieces of a subdivided box for the same contact situation would however
see volume rates of change and thus dissipate energy due to rolling resistance, see
Figure 35 c) and d). Rolling resistance has not yet been implemented in the SMS
API and can only be approximated by decomposing the objects into sub-pieces.

To demonstrate this phenomena through simulation, the first 1.5 seconds of the sim-
ulation presented in this section is reproduced with a one piece box, a 4 piece box
and a 16 piece box. The one piece box reacts significantly differently to the contact
in Figure 36 than the 4 piece box, while the reactions of the 4 piece and 16 piece
box in Figure 37 are quite similar since they both handle rolling resistance similarly.
An alternative to relying on many sub-pieces to model rolling resistance that may be
inaccurate and increase computational demand is the inclusion of a rolling resistance
model [20].
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Figure 35: A description of the effect of angular velocity, ω, on the contact force
without rolling resistance for a one-piece convex box and a subdivided box. The
initial state of the a) one-piece and c) subdivided box, showing the contact force
cause by the individual volumes of interference, and the next time step showing no
change in the volume of interference for the one-piece box in b) and the changes in
the volumes of interference of the sub pieces of the convex decomposed box d).
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Figure 36: A comparison of the position of the 1 piece and 4 piece subdivided pre-
oriented box SMS::Payloads over time.
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Figure 37: A comparison of the position of the 4 piece and 16 piece subdivided pre-
oriented box SMS::Payloads over time.
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3.2.3 Multiple contact point collision test

A scenario was created to test that the SMS::Payload can make contact with two
separate external objects. The simulation consists of an SMS::Payload described
geometrically with an elongated box with dimensions of 1m × 8.25m × 1m dropping
onto two small 1 m × 0.9 m × 1.45 m boxes whose centers are separated by 6.75
m as shown in Figure 38. The SMS::Payload has a mass of 40,000kg and the mass
moments of Inertia about the X̂, Ŷ, and Ẑ axes are 3,333 kg·m2, 233,000 kg·m2,
and 233,000 kg·m2, respectively. Both object material properties consist of a Young’s
modulus of 20 GPa and a damping factor of 1 MPa·s. The SMS::Payload starts the
simulation with a small air gap between itself and the boxes which it will come to
rest on.

The collision detection system will detect two collisions, resolve two volumes of inter-
ference, and apply two contact forces to the SMS::Payload. The system is considered
to be functioning properly if the SMS::Payload comes to rest on the two external
boxes.

Figure 38: The simulation setup of the multiple contact point simulation example.

3.2.3.1 Results

Figure 39 shows that the SMS::Payload comes in contact with external boxes and
due to the high damping of the material settles to a steady state rest. Figure 40 shows
that the SMS::Payload oscillates back and forth about the X̂ axis until a balance is
achieved as the contact forces imparts opposing moments. The contact force stiffness
component shown in Figure 41 oscillates about 3.9e6 N to match the weight of the
SMS::Payload, while the volume of interference in Figure 42 is negligible for the
duration of the simulation due of the high stiffness of the material.
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Figure 39: The position of the SMS::Payload over time.
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Figure 40: The Orientation of the SMS::Payload over time.
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Figure 41: The contact force components of the SMS::Payload over time.
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Figure 42: the volume of interference and MSD/MTD of the SMS::Payload over
time.
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3.2.4 Boat and cradle collision test

This simulation example demonstrates the ability of the SMS API to handle collision
detection and contact dynamics of complex concave geometries with fine detail by
decomposing it into convex sub-pieces. The SMS::Payload for this test case is a
rescue boat. The hydrodynamics hull for the rescue boat was manually decomposed
into 19 convex sub-pieces as shown in Figure 43. These were passed through the
Quickhull3D algorithm prior to being used in the collision detection system to ensure
their convexity. A cradle was created using four convex boxes with one heavily tapered
edge that is used to support the boat as shown in Figure 44.

The material properties for the boat and cradle were both chosen to have a stiffness of
100 MPa and a damping factor of 1.0 MPa·s. The boat is initially approximately half
a meter above its final resting position in the cradle. When the simulation begins, it
falls under gravity until it collides with the cradle and eventually comes to rest. The
sticking and sliding friction coefficients have both been set to 0.3.

3.2.4.1 Results

The boat begins from a height of 0.5 m and accelerates under gravity until it makes
contact with the cradle as seen in Figure 45. When it makes first impact, it bounces
several times, but the kinetic energy of the boat is quickly dissipated through material
damping. The boat makes first impact in the bow, which causes it to first pitch back.
However, it quickly settles to its final resting state with a slightly negative pitch angle
as seen in Figure 46. There was a maximum of 20 individual collision pairs during
the collision which settled to 13 while at steady state as can be seen in Figure 47.
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Figure 43: The decomposition of the rescue boat hydrodynamic hull mesh into 19
convex sub-pieces.

Figure 44: The boat and cradle simulation setup.
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Figure 45: The position of the SMS::Payload for the boat through time.
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Figure 46: The orientation of the SMS::Payload for boat through time.
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Figure 47: The number of collision pairs between the SMS::Payload and the cradle
through time.

3.3 Generalised-α validation
Two tests were conducted to compared the performance of the Generalised-α integra-
tor against the adaptive Runge-Kutta (RK45) integrator. The first test, presented in
section 3.3.1, consists of the integration of a simple mass-spring-damper system. The
second test consists of the integration of a simple gravity pendulum system using a
cable, presented in section 3.3.2.

3.3.1 MSD

To verify the proper functioning of the Generalised-α integrator, a simple linear sys-
tem was simulated and compared using both the Generalised-α and RK45 adaptive
integrator. The simple linear system simulated here is a 1DOF mass-spring-damper.
The simulation setup and results are described in Section 3.3.1.1 and Section 3.3.1.2,
respectively.

3.3.1.1 Setup

The mass-spring-damper system, shown in Figure 48, consists of a mass of 1 kg, a
spring with a spring constant of 1 N/m, and a damper damping factor of 0.4 Ns/m.
This gives the system a natural frequency of 1 rad/s and a damping ratio of 0.2. The
mass has an initial displacement from the static position of 5 m. When the simulation
begins, the free vibration of the mass is driven by the reaction forces imparted by
the spring and damper. Three Generalised-α simulations were run and compared
against a benchmark simulation that consists of the same system integrated with an
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RK45 integrator using a constant time step of 1e-3 s. The first simulation was given
a spectral radius of 0 (maximum artificial dissipation) and a time step (dt) of 1e-3 s.
The second simulation was given a spectral radius of 0 and a time step of 5e-1 s while
the last simulation was given a spectral radius of 1 (no artificial dissipation) and a
time step of 5e-1 s.

X̂

Figure 48: The setup for the Generalised-α mass-spring-damper test case.

3.3.1.2 Results

The simulation was executed for 50 seconds during which time the mass oscillated
due to its initial offset position. The underdamped vibrations were quickly eliminated
after a few oscillations. The Generalised-α simulation with a time step of 1e-3 s and
the RK45 integrator simulation provided effectively identical results. However, the
Generalised-α simulation completed in 823 milliseconds while the RK45 simulation
completed in 726 milliseconds. However, both integrators are constrained to integrate
at the same constant rate and so this does not demonstrate the Generalized-α’s ability
to integrate at a larger time step than the RK45 integrator. Increasing the time step
size in the generalised-α simulation while maintaining a spectral radius of 0 had
the effect of increasing the amount of dissipation while the same simulation with a
spectral radius of 1 results adhered much closer to the benchmark case.

3.3.2 Pendulum

Due to the nature of the Generalised-α integrator, the numerical dissipation provided
should only affect oscillations at periods smaller than the time step utilized and so
more important lower frequency effects should not be significantly influenced. Fur-
thermore, large, potentially unrealistic, structural damping values will not be needed
to otherwise control these high frequency effects that could otherwise potentially
destabilise the simulation as in the explicit integrator in certain circumstances. The
gravity pendulum test demonstrates how the Generalised-α integrator will accurately
simulate the desired lower frequency behaviour in a complex stiff multiple DOF non-
linear system. In this case, the lateral pendulum oscillation is low frequency, which
is unaffected, while the high frequency axial vibration induced from the cable initial
conditions is damped.

64 DRDC Atlantic CR 2012-093



-4

-2

0

2

4

6

0 10 20 30 40 50

M
as
s
P
os
it
io
n
(m

)

Time (s)

RK45 (dt = 1e-3s)
Generalised-α (dt = 1e-3s, ρ = 0)
Generalised-α (dt = 5e-1s, ρ = 1)
Generalised-α (dt = 5e-1s, ρ = 0)

Figure 49: The time history of position of the mass for the mass spring damper using
the Generalized-α integrator and the RK45 integrator.

3.3.2.1 Setup

The gravity pendulum system for this test, illustrated in Figure 50, consists of a 20
m long vertical steel cable with a diameter of 5 mm. The cable has an axial stiffness
of 1.5e6 N. The cable has its top end fixed in space while the bottom end has a
spherical mass of 5 kg attached. The cable is initially displaced by a small amount
and is also given a small initial velocity to begin oscillation. The expected period of
oscillation from this system is 8.97 s. There is no damping in the system, such as
air drag, other the axial material damping which had to be provided to the RK45
simulation to maintain stability. The axial damping given to RK45 was 5 Ns while
for the Generalised-α simulation the cable was given a material damping of 0.0 Ns.

Both the RK45 and Generalised-α simulations were run at a time step of 1.0e-4 s. The
Generalised-α simulation was given a spectral radius of 0 to maximize the numerical
damping. The RK45 algorithm was locked at the desired time step by setting the
minimum and maximum allowable time step to 1.0e-4 s.

3.3.2.2 Results

Both the RK45 and Generalised-α simulations completed successfully. The positions
of the mass at the end of the pendulum is plotted in Figure 51. The simulated period
of oscillation matches expectations for both integrators. However, the spectral radius
of 0 seems to have a damping effect on the low-frequency amplitude of oscillation
of the pendulum, which was unexpected. Setting the spectral radius to 0.5 largely
removes this low-frequency damping effect. Figures 52 and 53 show the tensions in
the cables for both integrators. Note the rapid damping out of the high frequency

DRDC Atlantic CR 2012-093 65



δX

Figure 50: The setup for the Generalised-α mass-spring-damper test case.

axial strain vibrations seen in tension time history in the Generalised-α simulation
even when there is no material damping used in the simulation.

The RK45 simulation has much larger material damping with a mild effect on the high
frequency axial strain vibrations. The execution times for both the Generalised-α and
RK45 simulations were 148.478 s and 146.893 s, respectively. It is anticipated that
larger time steps will be allowed by an adaptive Generalised-α integrator since the
higher frequency effects are damped out quickly and are a constraining factor on the
stability of the simulation. An adaptive time step algorithm will likely significantly
improve execution speed in the implicit numerical integrator in an analogous manner
to RK45’s performance benefits over RK4.
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Figure 51: The X̂ position of the mass over time for both the RK45 and Generalised-α
integrator simulations.
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Figure 52: The cable tensions for the Generalised-α integrator simulation.
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Figure 53: The cable tensions for the RK45 integrator simulation.
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4 Launch and Recovery simulation

This section describes the process undertaken to produce the Launch and Recovery
simulation, in which a small craft is launched from a frigate, then recovered. Section
4.1 describes the creation of a simplified version of the launch and recovery without
contact dynamics or naval frigate motions. The results of the simulation of the sim-
plified version showed unacceptable simulation execution speeds. In order to execute
the Launch and Recovery simulation at a reasonable rate, some time was spent to
optimise the code and to identify simulation bottlenecks. Section 4.2 describes these
efforts and their results. Finally, contact dynamics and naval frigate motions in waves
were added to the simulation to generate the final simulation. The simulation setup
and results of the final simulation can be found in Section 4.3.

4.1 Simplified Launch and Recovery simulation
A simplified simulation was first constructed to demonstrate the SMS API’s capability
to simulate the launch and recovery of a small vessel from a naval frigate using a
Palfinger-like boomcrane (Palfinger PK45000). The Simplified Launch and Recovery
simulation scenario is depicted in Figure 54. The simulation begins with the Palfinger-
like crane attached to a naval frigate with an SMS::Cable attached to its last link
while the rescue boat is sitting still on the ship deck. Next, the boat is lifted off of
the deck using the crane and winch. The boat is then placed in the water and the
cable is detached from the boat. Next, the boat is reconnected with the cable and
then placed back on board the ship using the crane and winch.

This simulation demonstrates several key capabilities of the SMS API:

• Use of the Director class within the SMS API

• Boomcrane control

• Attachment and detachment of a cable to a payload midway through a simula-
tion

• Winch operation

4.1.1 Simulation setup
4.1.1.1 Boomcrane setup

The SMS::BoomCrane base is fixed in space to simulate being attached to the deck
of a still ship. Its base frame relative to the Earth-fixed frame, P̌

(1)
E→p is made of

3 Cartesian position components followed by 3 Euler angles which defines its orien-
tation. The boomcrane’s first joint frame is defined in this simulation as P̌

(1)
E→p =
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[ −1.0 0 18.5 0 0 0
]
. The Palfinger-like boomcrane begins the simulation ini-

tially in a folded state (see Figure 54), the initial D-H parameters for the SMS::-

BoomCrane are defined in Table 8. The details of the Palfinger-like boomcrane’s
representative rigid body mass properties and CG locations can be found in [1].

Z = 18.5 m

Z = 10
m

Z = 0 mẐ
X̂

ẑboat

x̂boat

Figure 54: The simulation scenario for the Simplified Launch and Recovery sim-
ulation. The Palfinger-like boomcrane is shown folded (dotted), with a zero joint
configuration (solid) and in an unfolded pose (dashed).

4.1.1.2 Rescue boat setup (SMS::Payload)

The rescue boat is a 6 m long vessel provided to DSA by DRDC in the form of
a VRML geometry file, as shown in Figure 55 a). From this file, DSA generated a
closed mesh polyhedron representative hull which is used by the SMS API to calculate
hydrodynamic loads. As in the towing simulation, the center of gravity of the rescue
boat is located 0.04 m above the baseline and 1.7 m from the stern of the vessel. The
rescue boat has a mass of 500 kg and mass moments of inertia about the X, Y and Z
axis of 400, 1541 and 1760 kg·m2 respectively. The cable connection point relative to
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Table 8: The SMS::BoomCrane’s initial D-H Parameters in a folded configuration for
the Simplified Launch and Recovery capabilities test. Entries with a ()∗ represent
the joint variable.

Link id αi ai di θi
1 90 -0.65 1.4 0∗

2 0 1 0 −15∗

3 90 0 0 −90∗

4 0 0 0∗ 0
5 0 0 0∗ 0
6 0 0 0∗ 0
7 0 0 0∗ 0

a) b)

Figure 55: The rescue boat a) visualization mesh and b) hydrodynamic polyhedral
mesh.

the rescue boat’s body-fixed frame was set to PB→C = [0, 0, 1.5]T . The rescue boat
begins the simulation sitting on the deck of a ship at PE→B = [2.2, 0.0, 10.0]T . For
this simplified simulation, contact dynamics has not been enabled.

4.1.1.3 Cable Setup

The SMS::Cable begins the simulation as 6 m long and hanging vertically with its
node N attached to the CG of the SMS::BoomCrane’s last link. An SMS::Winch is
attached to the cable’s node N . The cable element lengths are limited to no shorter
than 1m and no longer than 7 m. The SMS::Cable properties are set to EA = 1.0e7
N, EI = 1.0e3 Nm2 and GJ = 1.0e3 Nm2. The cable has a density of steel and a
diameter of 0.02 m.

4.1.1.4 Seaway Setup
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The ocean was assumed to be calm for this simplified simulation and no waves were
present in the seaway.

4.1.1.5 SMS::Director script

// Place a hold on the payload’s position and orientation

// It’s lying on the Ship’s Deck

myDirector.AddCommand("testPayload hold X 2.2 holdX");

myDirector.AddCommand("testPayload hold Y 0.0 holdY");

myDirector.AddCommand("testPayload hold Z 10 holdZ");

myDirector.AddCommand("testPayload hold EX 0.0 holdEX");

myDirector.AddCommand("testPayload hold EY 0.0 holdEY");

myDirector.AddCommand("testPayload hold EZ 0.0 holdEZ");

// Fully Extend the BoomCrane

myDirector.AddCommand("testBoomCrane 1 0.7854 0.5");

myDirector.AddCommand("testBoomCrane 2 1.57 0.5");

myDirector.AddCommand("testBoomCrane 3 1.0 0.5");

myDirector.AddCommand("testBoomCrane 4 1.0 0.5");

myDirector.AddCommand("testBoomCrane 5 1.0 0.5");

myDirector.AddCommand("testBoomCrane 6 1.0 0.5");

//Pause for a second to let things settle a bit

myDirector.AddCommand("pause 1");

// Payout cable to pick up the payload

myDirector.AddCommand("testWinch testCable 12.4 1.5");

//Release the hold on the Payload and Soft Connect

//with the Cable

myDirector.AddCommand("testPayload release holdX");

myDirector.AddCommand("testPayload release holdY");

myDirector.AddCommand("testPayload release holdZ");

myDirector.AddCommand("testPayload release holdEX");

myDirector.AddCommand("testPayload release holdEY");

myDirector.AddCommand("testPayload release holdEZ");

myDirector.AddCommand("testPayload testCable connect

0.0 0.0 1.5 testWinch");

//Pause for a second to let things settle

myDirector.AddCommand("pause 1.0");
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// Payin cable and move the crane’s first joint by

// 90 degrees so the Payload is over the deck and

// over the water.

myDirector.AddCommand("testWinch testCable 8.0 1.0");

myDirector.AddCommand("testBoomCrane 0 1.57 0.5");

myDirector.AddCommand("pause 0.3");

// Payout cable lowering the boat into the water

myDirector.AddCommand("testWinch testCable 15 1.5");

myDirector.AddCommand("testWinch testCable 22.4 0.75");

//Disconnect the cable from the Payload

myDirector.AddCommand("testPayload testCable testWinch

disconnect 0.1");

//Play a hold on X, Y and EZ so the payload does not

//drift away too far.

myDirector.AddCommand("testPayload hold X -1.0 holdX");

myDirector.AddCommand("testPayload hold Y 3.3 holdY");

myDirector.AddCommand("testPayload hold EZ 0 holdEZ");

// Payin Cable in order to simulate a recovery.

myDirector.AddCommand("testWinch testCable 10.0 1.0");

// Wait a bit

myDirector.AddCommand("pause 2");

//Payout Cable in order to Recover the Payload

myDirector.AddCommand("testWinch testCable 22.4 1.5");

myDirector.AddCommand("pause 1");

//Release holds on the payload

myDirector.AddCommand("testPayload release holdX");

myDirector.AddCommand("testPayload release holdY");

myDirector.AddCommand("testPayload release holdEZ");

//Soft connect the cable to the payload

myDirector.AddCommand("testPayload testCable testWinch

connect 0 0.3 0.0 0.0 1.5");
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//Payin Cable and rotate back over the deck.

myDirector.AddCommand("testWinch testCable 10.0 1.0");

myDirector.AddCommand("testBoomCrane 0 0 0.5");

//Payout Cable and drop the Rescue boat on the deck

//of the ship.

myDirector.AddCommand("testWinch testCable 17.17 1.5");

myDirector.AddCommand("testPayload testCable testWinch

disconnect 0.1");

myDirector.AddCommand("testPayload hold X 2.2 holdX");

myDirector.AddCommand("testPayload hold Y 0.0 holdY");

myDirector.AddCommand("testPayload hold Z 5.0 holdZ");

myDirector.AddCommand("testPayload hold EX 0.0 holdEX");

myDirector.AddCommand("testPayload hold EY 0.0 holdEY");

myDirector.AddCommand("testPayload hold EZ 0.0 holdEZ");

//Payin Cable and fold the Palfinger completing

//the simulation

myDirector.AddCommand("testWinch testCable 6.0 1.0");

myDirector.AddCommand("testBoomCrane 6 1.0 0.5");

myDirector.AddCommand("testBoomCrane 5 1.0 0.5");

myDirector.AddCommand("testBoomCrane 4 1.0 0.5");

myDirector.AddCommand("testBoomCrane 3 1.0 0.5");

myDirector.AddCommand("testBoomCrane 2 1.57 0.5");

myDirector.AddCommand("testBoomCrane 1 0.7854 0.5");

4.1.2 Simulation results

The simulation performs as expected, The cable is connected to the payload at 23
seconds. When the connection is made, the rescue boat’s 6 DOF hold is released.
Next, the cable lifts up the boat, and drops it in the ocean and disconnects at 5̃5
seconds. The cable is reconnected at 95 seconds, lifted up and dropped back on the
ship deck, where the cable is then disconnected.

The boomcrane begins in a folded state and fully extends each joint sequentially.
The unfolding process is completed at around 17 seconds. After the rescue boat is
attached and lifted, the SMS::Boomcrane’s first joint is then actuated by π

4
until the

boat is over the water. After the boat is recovered, the SMS::BoomCrane’s first joint is
actuated back to its initial folded position. The first 18 seconds has the cable moving
around as the SMS::BoomCrane unfolds. The remainder of the simulation has the
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cable being payed in and out through the course of the simulation.

Plots of the simulation results for the various simulation components can be found in
Figures C.1 through C.4. During the simulation, there were large tension oscillations
experienced by the SMS::Cable while the payload was attached. This is likely causing
a reduced integration time step in the adaptive integrator, and therefore slowing
execution speed during those phases of the simulation.

The simulation script shows that the SMS::BoomCrane should fold itself before the
simulation is completed. The actual simulation ended in a SMS::Cable destabilisation
during the last SMS::Payload disconnect procedure. It was first thought that the
soft disconnect time was set to 0.1 seconds which was likely not enough to reduce the
tension in the cable. Thus when the cable was disconnected under tension, the cable
released with too much stored elastic energy causing a snap load on release, potentially
causing the destabilisation. However, later on, through further investigation it was
found that a bug in the code was the culprit.

4.2 Improving execution speeds
4.2.1 The integration timestep size

The adaptive Runge-Kutta (RK45) algorithm is the only integrator currently fully
supported by the SMS API. The algorithm adjusts the integration step size to mini-
mize the error between 4th and 5th order approximation of the solution. In situations
of abrupt changes in state, the error can be high and thus the timestep size becomes
reduced to minimize the error to below some tolerance. This self-adjusting mecha-
nism of the RK45 integrator provides stability and efficient execution compared to
fixed time step integrators.

Situations with large and abrupt accelerations tend to have smaller time steps. Most
time-domain engineering simulations consist of objects with non-linear external dis-
turbances acting on them and thus the integration timestep size is expected to vary
over the course of a simulation as the system is perturbed.

When identifying areas of improvement in simulation scenario execution speeds, the
integration step size is an important indicator. For each order of magnitude the
time step size is reduced, an order of magnitude more dynamics calculations must
be effectuated, which significantly decreases execution speed. On the other hand, an
increase in the time step size leads to immediate reductions in the number of dynamics
calculations required with much faster execution speed. Dynamics calculations for a
single time step can be expensive if for example a Payload with contact dynamics or
mesh-based hydrodynamics functionality is enabled.

In systems where SMS::SimObjects are in a master-slave relationship, such as for an
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SMS::Cable attached to an SMS::Payload, the master SMS::SimObject’s integrator
concatenates the slave’s state vector to its own forcing the dynamics of both objects
to integrate at the same rate using the master’s integrator. If the SMS::Cable is
more prone to integration error than the SMS::Payload, it will negatively affect
the execution speed of the SMS::Payload since it will have to effectuate that many
more dynamics calculations. This problem is aggravated when the SMS::Payload’s
hydrodynamics feature is enabled, as those calculations tend to be costly. One way to
avoid this phenomenon would be to simulate the SMS::SimObjects using their own
integrators and their own step sizes. This functionality is not yet implemented in the
SMS API. Prior to implementing independent integrators within the SMS API, each
SMS::SimObject’s code is being investigated independently.

To identify why the integration time step was falling so low in an earlier launch and
recovery simulation, the scenario was investigated in more detail. The results of the
analysis are presented in Section 4.2.1.1. Based on the analysis in Section 4.2.1.1, and
to further identify or isolate the source of the low time steps, 4 variations of a case
representative of the operations that caused small timesteps of the launch and recov-
ery simulation have been created. Section 4.2.1.2 discusses execution performance for
these tests in detail, optimizes the SMS::SimObject parameters to improve perfor-
mance, and compares the before and after performance results of the 4 test variations.
Finally, Section 4.2.2, the full launch and recovery simulation is re-run to check the
performance of the simulation with the optimized parameters.

4.2.1.1 The launch and recovery simulation

The launch and recovery simulation presented in Section 4.1 is representative of the
types of operations and interactions the SMS API will be used for. A full script and
description of the simulation can be found in Section 4.1. The operation, illustrated
in Figure 56, consists of the following steps:

1. the crane unfolds

2. the cable pays out

3. the cable connects to the payload

4. the cable pays in

5. the crane rotates the payload overboard

6. the cable pays out

7. the cable disconnects from the payload, which floats in the water

8. the cable pays in
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9. the cable pays out

10. the cable connects to the floating payload

11. the cable pays in

12. the crane rotates the payload on-board

13. the cable pays out and disconnects leaving the payload on the deck

14. the cable pays in

15. the crane folds

Z = 18.5 m

Z = 10
m

Z = 0 mẐ
X̂

ẑboat

x̂boat

Figure 56: The Launch and Recovery simulation setup with the boomcrane in a
folded configuration (dotted outline and light color) and fully unfolded configuration
(solid outline and darker color).

The reader is referred to Figures C.5-C.8 to see plots of the state of the various
components of the launch and recovery operation over the course of the simulation.
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Figure 57: The integration timestep size over the course of the Launch and Recovery
simulation.

Figure 57 shows the master SMS::SimObject’s (i.e. the SMS::Boomcrane’s) integra-
tion time step variation through the course of the Launch and Recovery simulation.
Small timesteps can be seen when the SMS::BoomCrane is actuating. Also the best
achievable time step with these properties appears limited to 4e-4.

This indicates poor time step sizes are caused by the PID joint controllers of the
SMS::BoomCrane. Currently, the PID controllers achieve desired actuation solely
with proportional gain and viscous damping which results in a stiff system response.
The SMS::Cable is also a possible limiting factor of time step sizes so it was also
investigated as an avenue to improve the time step.

4.2.1.2 Identifying and resolving the source of small timesteps for a
representative launch and recovery simulation.

Based on the analysis in Section 4.2.1.1 and to further help identify or isolate the
source of the small time steps, 4 variations of a case representative of the small
timestep operations of the launch and recovery simulation were created. These tests
consist of the unfolded Palfinger-like boomcrane with an attached SMS::Cable that
in turn has an SMS::Payload attached at its other end. The first variation consists
of the SMS::Cable paying out by an SMS::Winch attached at the SMS::BoomCrane

end. The second variation has no SMS::BoomCrane with the SMS::Cable’s free node
fixed in space, the third variation is simply the SMS::BoomCrane, the SMS::Cable,
and the SMS::Payload with no SMS::Winch, while the last variation is consists only
of the SMS::Cable and SMS::Payload alone.

To see plots of the timestep size and the time ratios for the four setup variations
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over time the reader is referred to Figures C.9 and C.10 respectively. Large oscil-
lation amplitudes in the time step of the simulation without the SMS::BoomCrane

are experienced and likely caused by small oscillations in the tension of the cable
as the SMS::Winch begins to payout. Another cause is a slightly non steady state
initial pre-tension in the cable from the SMS::Payload’s initial position. These os-
cillations are not present when the SMS::BoomCrane is attached likely because the
SMS::Boomcrane’s timestep is lower than the SMS::Cable’s.

The permutation with the SMS::Cable and SMS::Payload alone has a generally large
timestep of 3.5e-3 s, especially after the oscillations caused by non-equilibrium initial
conditions are damped out. When an SMS::BoomCrane is involved, the simulation
time step is limited considerably to about 6.0e-4 s. The presence of an SMS::Winch

that is paying out cable also seems to be similarly limited. These findings indicate the
SMS::BoomCrane PID controller coefficients must be better tuned to maximize the
time step and therefore simulation execution speed. This process and its results are
presented in Section 4.2.1.3. The SMS::Cable and SMS::Winch properties are then
adjusted to help improve simulation performance. This is described in Section 4.2.1.4.
The 4 test variation cases presented here were executed again using these new tuned
parameters and the results of which can be found in Section 4.2.1.4.

4.2.1.3 Tuning PID controllers and damping values

The SMS::Boomcrane induces a small timestep with potential for improvement as
discussed in Section 4.2.1.2. It was postulated that the likely source of the small
timestep was the PID controller gains. The PID controller was set up using only the
P-control and some joint viscous damping was used to dampen out higher frequency
oscillation of the joints. To help increase the integration timestep sizes, the PID
controller P gains were reduced and the I-control gain was added to help achieve the
desired joint positions or velocities desired.

The original PID gains for the Palfinger-like boomcrane for the launch and recovery
simulation can be found in Table 9.

The PID gain tuning process consisted of tuning one joint at a time, starting with
the last joint and progressing sequentially towards the base. The tuning process used
here is similar to the Ziegler-Nichols tuning process [21, 22]. To illustrate the tuning
process, the second joint is used as an example. The boomcrane joint positions were
configured in such a way to reasonably load the joint by fully extending the crane and
adding the payload to the attached cable. With the crane configured to appropriately
load the joint, the following steps are followed to tune the PID controller gains to
achieve a desired joint position of 45 degrees:

1. Reduce the viscous joint damping to ensure minimal influence during the tuning
process.
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Table 9: Table of untuned PID controller gains for the Palfinger-like boomcrane,
where only P gain and viscous damping are used. Here ξ is a placeholder for rad for
joints 1-3 and m for joints 4-7.

Position controller Velocity controller Joint viscous
Joint # P I D P I D Damping co.

(N/ξ) (N/(ξ · s)) (N · s/ξ) (N · s/ξ) (N/ξ) (N · s2/ξ) (N · s/ξ)
1 1000000 0 0 1000000 0 0 10000000
2 10000000 0 0 10000000 0 0 10000000
3 10000000 0 0 10000000 0 0 10000000
4 1000000 0 0 1000000 0 0 100000
5 1000000 0 0 1000000 0 0 1000000
6 1000000 0 0 1000000 0 0 100000
7 1000000 0 0 1000000 0 0 100000

2. With the I and D gains initially set to 0, increase the P gain from zero until
a sustained joint oscillation can be observed partway to the desired actuation
position.

3. With the P gain set, increase the I gain until oscillation about the desired joint
position is achieved with a desired or reasonable response time.

4. Joint viscous damping is set to some known real-world amount or adjusted as
needed to help the PID controller response and attenuate vibrations3.

The joint position PID controller load, τ
(i)
PID, for joint i is defined as:

τ
(i)
PID = C(i)

p,p(ε
(i)
target − ε(i)p ) + C

(i)
I,p(

∑
(ε

(i)
target − ε(i)p )dt)− C

(i)
d,p(ε̇

(i)
p ) (51)

where C
(i)
p,p is the position proportional gain, C

(i)
I,p is the position integral gain, C

(i)
d,p is

the position derivative gain for joint i, ε
(i)
target is the joint deflection set point for joint

i, ε
(i)
p is the actual joint deflection, ε̇

(i)
p is the joint deflection rate of change and dt is

the simulation integrator time step.

For a velocity controller, the controller load is defined as:

τ
(i)
PID = C(i)

p,v(ε̇
(i)
target − ε̇(i)p ) + C

(i)
I,v(

∑
(ε̇

(i)
target − ε̇(i)p )dt)− C

(i)
d,v(ε̈

(i)
p ) (52)

3Beware that adding more damping past the optimum amount will reduce the time step.

80 DRDC Atlantic CR 2012-093



Table 10: Table of tuned PID controller gains, tuned to maximize integration
timestep. No D gain is used in the presence of joint viscous damping. Here ξ is
a placeholder for rad for joints 1-3 and m for joints 4-7.

Position controller Velocity controller Joint viscous
Joint # P I D P I D Damping co.

(N/ξ) (N/ξ · s) (N · s/ξ) (N · s/ξ) (N/ξ) (N · s2/ξ) (N · s/ξ)
1 10000 100000 0 10000 10000 0 1000000
2 1000000 300000 0 100000 1000000 0 300000
3 1000000 1000000 0 100000 1000000 0 300000
4 100000 100000 0 10000 10000 0 30000
5 100000 300000 0 10000 10000 0 30000
6 100000 300000 0 10000 10000 0 10000
7 100000 400000 0 10000 10000 0 10000

where ε̈
(i)
p is the acceleration of the joint deflection, and C

(i)
p,v, C

(i)
I,v, and C

(i)
d,v are the

velocity proportional, integral and derivative controller gains respectively.

The joint velocity PID controller gains were set in a similar way to the joint position
PID controller gains. This procedure was repeated for each consecutive joint starting
with the last. A manual sensitivity study was also conducted to some degree on each
gain or damping factor to help optimise the time step size. The tuned PID controller
gains and viscous damping ratios can be found in Table 10.

4.2.1.4 Tuning SMS::Cable and SMS::Winch properties

The SMS::Cable damping parameter and SMS::Winch acceleration settings were also
modified such that the system response was not adversely affected while maximizing
the integration time step. The cable damping value was changed from 5e3 Ns/m to
1e3 Ns/m while the winch acceleration and decelerations were changed from +/- 3
m/s2 to +/- 0.5 m/s2. This reduced excessive damping in the cable and also prevented
the winch from responding too quickly and inducing shock loading in the cable.

Improved results The four variation tests from 4.2.1.2 were repeated with the tuned
SMS::BoomCrane PID coefficients. For plots of the simulation time steps and execu-
tion speed time ratios over time, the reader is referred to Figures C.11 and C.12,
respectively. The simulation time steps have considerably improved. The Crane-
Cable-Winch-Payload case is running at a time step of about 1.0e-3s which is similar
to how the Cable-Payload case ran previously. This highlights the need for well-tuned
PID controller gains. The change in the SMS::Cable’s axial damping property has a
beneficial effect when in steady state as seen in the variations without any boomcrane.
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4.2.2 Improved launch and recovery simulation execution
performance

The improved SMS::SimObject properties obtained from Sections 4.2.1.3 and 4.2.1.4
were used to rerun the Launch and Recovery simulation in order to compare the
execution performance. For plots of the simulation state of various simulation objects
over the course of the Launch and Recovery simulation with improved parameters,
the reader is referred to Figures C.13 to C.16 respectively. The new PID controller,
cable, and winch properties have affected the system’s response slightly, but more
importantly it has increased integration time step considerably. The time steps are
an order of magnitude larger in general as can be seen in Figure 58. This has favorably
affected the simulation time ratio which is now 10:1 with the large majority of the
simulation running at 3:1.
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Figure 58: The integration timestep size over the course of the improved launch and
recovery example simulation.

4.2.3 Profiling

To help determine how much time is spent in different parts of the code during
execution, the code was instrumented and analysed using the AQTime code profiling
software. Doing this has allowed DSA to identify bottlenecks in execution speed. To
profile the code, a representative simulation was required. The first second of the
Crane-Cable-Winch-Payload test variation from Section 4.2.1.4 was selected. The
setup was modified to help profile the hydrodynamics code as the SMS::Payload was
set to be initially floating on the water.

The code profile was obtained using AQTime and a copy of SMS API v0.1.261 and
associated code profiling test suite. The instrumented code profile can be found in
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Section 4.2.3.1. Based on the profile, the SMS API was updated to address some of
the inefficiencies identified in the profile of SMS API v0.1.261. This updated code is
versioned as SMS API v0.1.263 and its code profile can be found in Section 4.2.3.2.

Finally, the Launch and Recovery simulation was rerun using SMS API v0.1.263
to compare against the results from Section 4.2.1.1. Those results can be found in
Section 4.2.3.3.

4.2.3.1 Profile before improvements

The CalcDynamics() functions encapsulate most of the floating point operations
completed by an SMS::SimObject during a simulation. The rest of the SMS API
code is simulation management overhead. Though the the simulation management
code merits profiling, it is not as critical to fast simulations as profiling of the
CalcDynamics() function. Table 11 shows a list of the times with children for the
CalcDynamics() functions of the SMS::SimObjects with hydrodynamics. Table 12
updates the execution times for the SMS::Payload without hydrodynamics. Note
that the SMS::Winch::CalcDynamics() function is not included as the time spent
executing that function was insignificant.

Table 11: The execution time of SMS API CalcDynamics() functions for 1.0 second
of simulation time with hydrodynamics calculations (SMS API v0.1.261).

Function Time with children (ms)

SMS::Payload::CalcDynamics() 9016.85

SMS::Boomcrane::CalcDynamics() 428.32

SMS::Cable::CalcDynamics() 165.00

Table 12: The execution time of SMS::Payload::CalcDynamics() and
SMS::RigidBody::CalcDynamics() functions for 1.0 second of simulation time
without hydrodynamics calculations (SMS API v0.1.261).

Function Time with children (ms)

SMS::Payload::CalcDynamics() 31.13

Each CalcDynamics() function in Table 11 and their related sub-functions were pro-
filed line by line to identify if any line, function, or routine’s execution speeds could
be improved. The SMS::BoomCrane::CalcDynamics() function profile and potential
sources for improvement are described in Section 4.2.3.1 with the SMS::Cable and
the SMS::Payload following in Sections 4.2.3.1 and 4.2.3.1, respectively.
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SMS::BoomCrane::CalcDynamics() The function CalcDynamics() was profiled
on a line by line basis to identify the functions and operations that take the longest
to execute. The majority of the issues identified as leading to poor performance for
this code are due to:

• the use of functions with vectorial (e.g. std::vector or UBLAS vector) return
types,

• the use of function-scope temporary memory allocation and destruction, and

• the use of mutil::InvertMatrix() on orthogonal matrices when a much more
efficient transpose function would be ideally suited.

Table 13 lists the functions that took a significant amount of time to execute.

Table 13: The execution times of SMS::BoomCrane::CalcDynamics() sub-functions
for 1.0 second of simulation time (SMS API v0.1.261).

% Time of
Function BoomCrane::CalcDynamics() Time (ms)

ABA RigidBody:: 19.10% 81.89
CalcForces()

ABA RigidBody:: 18.40% 78.81
CalcInertiaRBFrame2JointFrame()

ABA RigidBody:: 17.29% 74.06
CalcTransformationMatrices()

ABA RigidBody:: 11.38% 48.74
CalcVelocities()

ABA RigidBody:: 4.05% 17.35
GetNandBetaComponent()

To improve the SMS:BoomCrane’s performance, the problems identified above were
addressed. The metric for improvement is the SMS::BoomCrane::CalcDynamics()

execution time and the execution times of the functions listed in Table 13.

SMS::Cable::CalcDynamics() The function Cable::CalcDynamics() was profiled
on a line by line basis to identify the functions and operations that take the longest
to execute. There were no major issues identified for potential improvement from the
SMS::Cable class itself. That being said, the SMS::Cable class does call SMS::Rigid-
Body and SMS::Winch functions if one is attached. These external class calls have
inefficient sections of code caused by:

• the use of functions with vectorial return types,
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• the use of function-scope temporary memory allocation and destruction, and

• the use of mutil::InvertMatrix() on orthogonal matrices when a much more
efficient transpose function would be ideally suited.

Table 14 lists the functions or lines of code that took the most time execute in the
SMS::Cable::CalcDynamics() function.

Table 14: The execution times of SMS::Cable::CalcDynamics() sub-functions for
1.0 second of simulation time (SMS API v0.1.261).

% Time of
Function SMS::Cable::CalcDynamics() Time (ms)

SMS::Cable::CalcCableProfile() 35.13% 57.96

SMS::Cable::CalcExternalForces() 28.91% 47.70

SMS::Cable::CalcInternalForces() 19.97% 32.95

SMS::Cable::CurvatureAccel() 4.31% 7.11

SMS::Cable::CalcAccel() 3.87% 6.28

To improve the SMS::Cable’s performance, the problems identified above were re-
solved. The metric for improvement was the SMS::Cable::CalcDynamics() execu-
tion time and the execution times of the functions listed in Table 14.

SMS::Payload::CalcDynamics()

With hydrodynamics The functions Payload::CalcDynamics() and RigidBody-

::CalcDynamics() were profiled on a line by line basis to identify the functions and
operations that take the longest to execute. The majority of the issues identified as
leading to poor performance for this code are due to:

• the use of functions with vectorial return types,

• the use of function level temporary memory allocation and destruction, and

• the use of mutil::InvertMatrix() on orthogonal matrices when a much more
efficient transpose function would be ideally suited.

Tables 15 through 17 list the functions that took the most time execute.

The hydrodynamic calculations require a considerable amount of effort because the
forces must be computed individually for each one of the thousands of hydrodynamic
mesh polygons. The hydrodynamic calculations were turned off to help highlight
other inefficiencies in the SMS::Payload and SMS::RigidBody classes. To improve the
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Table 15: The execution times of SMS::Payload::CalcDynamics() sub-functions
for 1.0 second of simulation time with hydrodynamics calculations enabled (SMS
API v0.1.261).

% Time of
Function SMS::Payload::CalcDynamics() Time (ms)

myRigidBody->CalcDynamics() 99.84% 9002.7

Table 16: The execution times of SMS::RigidBody::CalcDynamics() sub-functions
for 1.0 second of simulation time with hydrodynamics enabled (SMS API v0.1.261).

% Time of
Function SMS::RigidBody::CalcDynamics() Time (ms)

SMS::RigidBody::CalcForces() 99.83% 8987.4

Table 17: The execution times of SMS::RigidBody::CalcForces() sub-functions for
1.0 second of simulation time with hydrodynamics enabled (SMS API v0.1.261).

% Time of
Function RigidBody::CalcForces() Time (ms)

RigidBody::CalcHydroDynamicLoading() 53.33% 4793.0

RigidBody::CalcBuoyancy() 45.80% 4116.2
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SMS::RigidBody’s performance, the problems identified above were addressed. The
metric for improvement was the SMS::Payload::CalcDynamics() execution time
and the execution times of the functions listed in Tables 15 through 17.

Without hydrodynamics The SMS::Payload::CalcDynamics() and SMS::Rigid-

Body::CalcDynamics() functions were profiled on a line by line basis to identify
the functions and operations that take the longest to execute, this time without any
hydrodynamic force calculations. The majority of the issues identified as leading to
poor performance for this function code are due to:

• the use of functions with vectorial return types,

• the use of function level temporary memory allocation and destruction, and

• the use of mutil::InvertMatrix() when a much more efficient transpose func-
tion would be ideally suited.

Comparing Table 11 with Table 12 highlights how much time is spent calculating
the hydrodynamic forces versus the rest of the SMS::Payload and SMS::RigidBody

dynamics calculations. This is due mostly because the hydrodynamics calculations
must be repeated for each of the thousands of polygons that represent the rescue
boat. Tables 18 through 20 lists the functions that took a significant amount of
time to execute without hydrodynamics involved.

To improve the SMS::Payload’s performance, the problems identified above will be
resolved. The metric for improvement shall be the SMS::Payload::CalcDynamics()
function execution time and the execution times of the functions listed in Tables 18
through 20.
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Table 18: The execution times of SMS::Payload::CalcDynamics() sub-functions for
1.0 second of simulation time without hydrodynamics (SMS API v0.1.261).

% Time of
Function SMS::Payload::CalcDynamics() Time (ms)

myRigidBody->CalcDynamics() 69.87% 21.751

SMS::RigidBody::UpdateRBPosOri() 25.76% 7.7825

Table 19: The execution times of SMS::RigidBody::CalcDynamics() sub-functions
for 1.0 second of simulation time without hydrodynamics (SMS API v0.1.261).

% Time of
Function RigidBody::CalcDynamics() Time (ms)

RigidBody::CalcForces() 51.23% 11.143

RigidBody::CalcAccelerations() 28.75% 6.25

RigidBody::CalcTd() 19.55% 4.25

RigidBody::CalcT() 0.22% 0.05

Table 20: The execution times of SMS::RigidBody::CalcForces() sub-functions for
1.0 second of simulation time without hydrodynamics (SMS API v0.1.261).

% Time of
Function RigidBody::CalcForces() Time (ms)

RigidBody::CalcContactForces() 41.68% 4.64
RigidBody::CalcHydroDynamicLoading() 17.98% 2.00

RigidBody::CalcGrav() 19.61% 2.18
RigidBody::ConvertForces() 9.25% 1.03
RigidBody::CalcBuoyancy() 6.51% 0.72

RigidBody::CalcCoriolisForce() 4.95% 0.55
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4.2.3.2 Profile after improvements

Areas of poor performance were identified using AQTime. The majority of the poor
performance was due to the use of functions with vector or matrix return types, the
use of in-function or worse in-loop vector or matrix memory allocations, and the use
of matrix inversions of orthogonal matrices when the transpose would be faster to exe-
cute. These issues have been addressed one by one and a new instrumented code pro-
file of the same case discussed in Section 4.2.3.1 was regenerated. Table 21 shows a list
of the times with children for the CalcDynamics() functions of the SMS::SimObjects
with hydrodynamics. Table 22 updates the execution time for the SMS::Payload

without hydrodynamics. Note that the SMS::Winch::CalcDynamics() function is
not included as the time spent executing that function was insignificant.

Table 21: The execution time of SMS API CalcDynamics() functions for 1.0 second
of simulation time, with hydrodynamics calculations (SMS API v0.1.263).

Function Time with Children (ms) Speed Up

SMS::Payload::CalcDynamics() 4762.43 1.89

SMS::Boomcrane::CalcDynamics() 177.63 2.41

SMS::Cable::CalcDynamics() 150.24 1.10

Table 22: The execution time of SMS::Payload::CalcDynamics() and
SMS::RigidBody::CalcDynamics() functions for 1.0 second of simulation time,
without a hydrodynamics (SMS API v0.1.263).

Function Time with Children (ms) Speed Up

SMS::Payload::CalcDynamics() 20.49 1.52

Each CalcDynamics() function in Table 21 and their related subfunctions were
profiled line by line to compare against the profile of the SMS API v0.1.261 pre-
sented earlier. The SMS::BoomCrane::CalcDynamics() function profile is presented
in Section 4.2.3.2, with the SMS::Cable, and the SMS::Payload following suit in
Sections 4.2.3.2 and 4.2.3.2 respectively.

SMS::BoomCrane::CalcDynamics() Profiling was performed for function Boom-

Crane::CalcDynamics(). Table 23 lists the functions that took a significant amount
of time to execute.

SMS::Cable::CalcDynamics() Table 24 lists the functions or lines of code that took
the most time to execute in the SMS::Cable::CalcDynamics() function.
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Table 23: The execution times of SMS::BoomCrane::CalcDynamics() subfunctions
for 1.0 second of simulation time (SMS API v0.1.263).

% Time of
Function BoomCrane::CalcDynamics() Time (ms) Speed Up

ABA RigidBody:: 15.34% 27.25 2.71
CalcTransformationMatrices()

ABA RigidBody:: 14.14% 25.12 1.94
CalcVelocities()

ABA RigidBody:: 12.94% 22.98 3.56
CalcForces()

ABA RigidBody:: 7.10% 12.612 6.25
CalcInertiaRBFrame2JointFrame()

ABA RigidBody:: 2.52% 4.47 3.88
GetNandBetaComponent()

Table 24: The execution times of SMS::Cable::CalcDynamics() subfunctions for
1.0 second of simulation time (SMS API v0.1.263).

% Time of
Function Cable::CalcDynamics() Time (ms) Speed Up

Cable::CalcCableProfile() 35.31% 53.03 1.09

Cable::CalcExternalForces() 28.22% 42.39 1.12

Cable::CalcInternalForces() 19.37% 29.10 1.13

Cable::CurvatureAccel() 3.79% 5.69 1.25

Cable::CalcAccel() 5.14% 7.72 0.81
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SMS::Payload::CalcDynamics()

With hydrodynamics Tables 25 through 27 list the functions that took the most
time execute.

Table 25: The execution times of the SMS::Payload::CalcDynamics() subfunctions
for 1.0 second of simulation time with hydrodynamics enabled (SMS API v0.1.263).

% Time of
Function Payload::CalcDynamics() Time (ms) Speed Up

myRigidBody->CalcDynamics() 99.88% 4755.68 1.89

Table 26: The execution times of SMS::RigidBody::CalcDynamics() subfunctions
for 1.0 second of simulation time with hydrodynamics enabled (SMS API v0.1.263).

% Time of
Function RigidBody::CalcDynamics() Time (ms) Speed Up

RigidBody::CalcForces() 99.82% 4747.10 1.89

Table 27: The execution times of SMS::RigidBody::CalcForces() subfunctions for
1.0 second of simulation time with hydrodynamics enabled (SMS API v0.1.263).

% Time of
RigidBody::

Function CalcForces() Time (ms) Speed Up

RigidBody::CalcHydroDynamicLoading() 57.76% 2741.9 1.75

RigidBody::CalcBuoyancy() 41.54% 1971.9 2.09

Without hydrodynamics Comparing Table 21 with Table 22 highlights how much
time is spent calculating the hydrodynamic forces versus the rest of the SMS::Payload
and SMS::RigidBody dynamics calculations. The hydrodynamics calculations still
dominate the execution times for the SMS::Payload due to the repetition of the hy-
drodynamics calculations for each polygon. Tables 28 through 30 lists the functions
that took a significant amount of time to execute without hydrodynamics involved.
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Table 28: The execution times of SMS::Payload::CalcDynamics() subfunctions for
1.0 second of simulation time (SMS API v0.1.263).

% Time of Payload::
Function CalcDynamics() Time (ms) Speed Up

myRigidBody->CalcDynamics() 81.86% 16.77 1.30

RigidBody::UpdateRBPosOri() 17.67% 3.62 2.15

Table 29: The execution times of SMS::RigidBody::CalcDynamics() subfunctions
for 1.0 second of simulation time (SMS API v0.1.263).

% Time of
RigidBody::

Function CalcDynamics() Time (ms) Speed Up

RigidBody::CalcForces() 44.27% 7.42 1.5

RigidBody::CalcAccelerations() 37.71% 6.32 0.99

RigidBody::CalcTd() 17.39% 2.92 1.46

RigidBody::CalcT() 0.36% 0.06 0.83

Table 30: The execution times of SMS::RigidBody::CalcForces() subfunctions for
1.0 second of simulation time (SMS API v0.1.263).

% Time of
RigidBody::

Function CalcForces() Time (ms)

RigidBody::CalcContactForces() 19.89% 1.47 3.16

RigidBody::CalcHydroDynamicLoading() 24.21% 1.97 1.01

RigidBody::CalcGrav() 15.84% 1.17 1.86

RigidBody::ConvertForces() 6.93% 0.51 2.02

RigidBody::CalcBuoyancy() 11.53% 0.85 0.85

RigidBody::CalcCoriolisForce() 8.62% 0.64 0.86
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4.2.3.3 Improvements to the launch and recovery simulation

After improvements to the SMS API code were made using a code profiling software,
the Launch & Recovery simulation from Section 4.2.2 has be rerun to highlight the
improvements made in the SMS API v0.1.263 code. The 250 second simulation
executed with a time ratio of 5.6:1 which is 1.7 times faster than the performance
in Section 4.2.2 and 7.3 times faster than the original performance of the simulation
from Section 4.2.1.1.

4.3 Full Launch and Recovery simulation
After the Simplified Launch and Recovery simulation was profiled to improve execu-
tion speed, it was expanded to include both ship motions as well as contact dynamics.
To visualise the simulation results, a simple software tool was created. A screenshot
taken from it can be seen in Figure 59. A geometric model of a Halifax class naval
frigate was obtained from DRDC and used to represent the ship in the seaway. The
ship motions for this simulation were generated from ShipMo3D’s GenericFrigate
sample project, which was modified slightly to suit this particular simulation sce-
nario. The FreeMo module generated a time history of the position, velocity, and
acceleration for the frigate which were then used to define the position of the base of
the boomcrane as well as the position of the rescue boat cradle which is location on
the ship deck. The naval frigate has no forward velocity.

In the SMS simulation, the position, velocity, and acceleration of the frigate between
was linearly interpolated between time points obtained from ShipMo3D. These were
then used to extrapolate the position of the frigate over the course of simulation.

The boat and cradle simulation files from Section 3.2.4 were used in the Launch and
Recovery simulation in that the rescue boat was given the same convex decomposed
contact geometry and the cradle was positioned and fixed on the ship deck. The
material properties of both the rescue boat and the cradle were maintained. The
rescue boat was initially sitting in the cradle. The SMS API’s contact dynamics
capabilities prevent interference of the rescue boat and cradle, deck, and side of the
naval frigate.

A DeepSeaway::FixedRegularSeaway was used in SMS to model the seaway with 3
m, 10 s waves, which were the same parameters used in ShipMo3D to generate the
ship’s motions. To help control the orientation of the rescue boat during the recovery
process and to guide it back into the cradle, a pair of cables were introduced into
the simulation to act as tag lines. Tension control winches were added to represent
human behavior in controlling the tag lines.

The full simulation script that governs this simulation is very similar to that found
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Figure 59: A screenshot from a visualisation of the Launch and Recovery simulation,
showing the rescue boat, cradle, frigate, boomcrane, and cable.

in Section 4.1 with a few minor modifications. The boomcrane starts in a folded
configuration and the simulation process is as follows:

• the boomcrane unfolds,

• the lifting cable is attached to the rescue boat,

• the boat is lifted out of the cradle,

• the boat lowered into the water and detached from the cable.

From the water:

• the cable is reattached,

• the tag lines are attached to the boat,

• the boat is lifted back up,

• the boat lowered back into the cradle.

The full script can be found in the following section.
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4.3.0.4 Simulation script

#########################

#Unfold the crane

#########################

myCrane 1 0.7854 0.5

myCrane 2 1.57 0.5

myCrane 3 1.25 0.5

myCrane 4 1.25 0.5

myCrane 5 1.25 0.5

myCrane 6 1.25 0.5

myCrane 0 3.14 0.75

#######################################

#Payout the cable and attach the boat

############################

myWinch myCable 6.5 1.5

rescueboat myCable myWinch connect 0 0.5 0.0 0.0 1.5

pause 2

##################

#Lift the boat out of the cradle

###################

myWinch myCable 4 1.0

pause 2

#########################

#Rotate the crane overboard

##############

myCrane 0 1.57 0.5

####################

#Payout Cable

##################

myWinch myCable 15.5 1.5

#######################

#Disconnect the boat

##########################

rescueboat myCable myWinch disconnect 0.5

##########################################

#Payout a bit in preparation for reattachment

##################################

DRDC Atlantic CR 2012-093 95



myWinch myCable 17.5 3.5

pause 4

#####################

#Connect the boat

#####################

rescueboat myCable myWinch connect 0 0.5 0.0 0.0 1.5

#############

#Connect the taglines to the rescueboat

#######################

tagLineMan tagLine 15 1.0

tagLineManBack tagLineBack 15 1.0

rescueboat tagLine tagLineMan connect 0 3.0 3.0 0.0 0.4

tagLineMan tagLine 75

rescueboat tagLineBack tagLineManBack connect 0 3.0 -1.66 0.0 0.4

tagLineManBack tagLineBack 75

############

#Payin

########

pause 3

myWinch myCable 6 0.5

#######################

#Increase the tension

###########

tagLineMan tagLine 155

tagLineManBack tagLineBack 155

##########################

#complete the payin

###################

myWinch myCable 4 0.25

#############################

#Rotate over the cradle

#################

pause 2

myCrane 0 3.14 0.25

####################################################

#Payout the cable and disconnect the cable and tagline
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##################################

myWinch myCable 6.6 0.5

tagLineMan tagLine 30.0

tagLineManBack tagLineBack 30

pause 2

rescueboat tagLine tagLineMan disconnect 0.3

rescueboat tagLineBack tagLineManBack disconnect 0.3

pause 2

rescueboat myCable myWinch disconnect 0.3

######################

# Reel in a bit of cable

##################

myWinch myCable 4 0.25

######################

#Fold the crane, and Complete.

####################

myCrane 0 0 0.75

myCrane 6 0 0.5

myCrane 5 0 0.5

myCrane 4 0 0.5

myCrane 3 0 0.5

myCrane 2 -1.57 0.5

myCrane 1 -0.26 0.5

pause 5

4.3.1 Simulation results

The Launch and Recovery simulation began with the naval frigate floating in waves
with no forward velocity. The boomcrane can be seen in the process of unfolding in
Figure 60. The cable was then payed out, attached to the rescue boat, and lifted out
of its cradle as shown in Figure 61.

The boomcrane rotated the rescue boat overboard and lowered it in to the water as
shown in Figure 62. While in the water, the cable was detached from the rescue boat
and was left to float there for a few seconds before both the boomcrane lifting cable
and the two tag lines were attached to begin the recovery process. The tag lines were
used to help control the rescue boat orientation. A snapshot of the rescue boat being
lifted back up out of the water with the tag lines attached can be seen in Figure 63.

DRDC Atlantic CR 2012-093 97



Finally, the boomcrane rotated back over the cradle, with the tag lines maintaining a
steady tension to keep the rescue boat oriented with the cradle. The rescue boat was
then lowered back into its cradle, and all cables were detached, as shown in Figure 64.
The boomcrane then completed the simulation by folding back up to its original state.

Figure 60: A snapshot of the Launch and Recovery simulation as the Palfinger-like
boomcrane begins to unfold.

Figure 61: A snapshot of the Launch and Recovery simulation as the rescue boat is
lifted out of its cradle.
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Figure 62: A snapshot of the Launch and Recovery simulation after the rescue boat
was dropped in the water.

Figure 63: A snapshot of the Launch and Recovery simulation as the rescue boat
is being lifted out of the water showing the tag lines used to prevent the boat from
yawing.
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Figure 64: A snapshot of the Launch and Recovery simulations with the rescue boat
back in its cradle.

One of the challenges that arose when creating this scenario was that the simulation
was prone to destabilisation when the rescue boat is in the cradle. In this case, the
normal contact forces and friction forces between the cradle and the boat all sum
up to act vertically against the rescue boat weight. Friction simulations, especially
at low velocities around the stick-slip transition velocity, can be very stiff systems
and explicit integrators tend to have difficulty handling such stiff system [23]. One
potential solution to resolving this issue may be the development of a more advanced
friction model that can mitigate difficulties at the transition velocity.
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5 Tuna Clipper Towing simulation

This section describes the creation of the Tuna Clipper Towing simulation. Section
5.1 describes the creation of a simplified version of the towing simulation using the
rescue boat from the Launch and Recovery simulation and kinematically moving the
free end of the cable at a constant velocity. Section 5.2 describes the final Tuna
Clipper Towing simulation which consists of a much larger vessel being towed in a
seaway by a naval frigate whose motions were determined using ShipMo3D.

5.1 Simplified towing simulation
A simplified simulation was designed to demonstrate the towing of a small vessel
through a seaway. The simulation scenario is depicted in Figure 65 shows a small
vessel being towed by a cable. The cable is 20 m long and it is towing the small craft
at a constant velocity through the seaway.

Vtow

Z = 0 mẐ
X̂

ẑboat
x̂boat

Figure 65: Simplified simulation of a small vessel tow.

5.1.1 Simulation Setup
5.1.1.1 Payload setup

The 6m long rescue boat was provided to DSA by DRDC in the form of a VRML
geometry file and can be seen in Figure 66 a). From this file, DSA generated a closed
mesh polyhedron representative hull, as shown in Figure 66 b), which is used by the
SMS API to calculate the hydrodynamic loading.

The actual mass properties of this vessel are unknown. For the purposes of testing
the SMS API, values were estimated for the key simulation parameters. The center
of gravity of the rescue boat was chosen to be located 0.04 m above the baseline
and 1.7 m from the stern of the vessel. The rescue boat has a mass of 500 kg and
mass moments of inertia about the X, Y and Z axis of 400, 1541 and 1760 kg·m2,
respectively. The cable connection point relative to the rescue boat’s body-fixed frame
was set to PB→C = [2.73, 0, 0.5]T . The rescue boat begins the simulation floating in
the wave at PE→B = [0.0, 0.0, 0.0]T .
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a) b)

Figure 66: The rescue boat a) visualization mesh and b) hydrodynamic polyhedral
mesh.

5.1.1.2 Cable setup

The SMS::Cable towing the small vessel is 20 m long. It begins with its node 0
attached to the small vessel and it is stretched out horizontally in the global X̂
direction. The SMS::Cable’s node N is moved in the X direction at a velocity of
1 m/s. The SMS::Cable’s properties are set to EA = 1.0e7 N, EI = 1000.0 Nm2

and GJ = 0.0 Nm2. The cable has a density of water and a diameter of 0.02. No
hydrodynamic forces are acting on the SMS::Cable.

5.1.1.3 Seaway setup

The seaway consists of a single regular wave oscillating with a period of 8 seconds,
and an amplitude of 0.5 m. The wave has a heading of 90 degrees.

5.1.2 Simulation results

Figures 67 and 68 shows the boat position and the SMS::Cable’s node N, respectively.
The boat is moving with a velocity of approximately 1 m/s. The accelerations of the
boat is due to the elastic cable that stretches as it pulls the boat from an initial
non-moving state. The boat also heaves due to the ocean waves present.

5.2 Full Tuna Clipper Towing simulation
The final version of this simulation consists of an unpowered tuna clipper, a naval
frigate, and a towing line, as shown in Figure 69. In this simulation, the tuna clipper
is modeled using an SMS::Payload object. A visualisation geometry of the tuna
clipper was provided by DRDC from which a hydrodynamics mesh was generated
to provide hydrodynamics forces acting on the tuna clipper similarly to Figure 55.
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Figure 67: The simulated rescue boat vessel position over time.
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Figure 68: The simulated cable node N position over time.
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The tuna clipper was provided drag coefficients of 1.5 and added mass coefficients
of 1.0 for all directions. Note that the tuna clipper is about 45 m in length, and
that the small body approximation (relative to the wave length) is assumed by the
SMS::Payload’s hydrodynamics model. The simulation of the tuna clipper violates
the small body approximation and thus the results may be inaccurate. However, the
simulation is intended as a proof of concept and the small body approximation allows
this complex scenario to be simulated in a reasonable amount of time.

Figure 69: A visualisation of the Tuna Clipper Towing simulation.

The motions of the naval frigate were determined using DRDC’s ShipMo3D simula-
tion software a-priori and used to kinematically control the end node of the cable.
The naval frigate has a forward velocity of 2.5 m/s north and is floating in a seaway
with a 1.5 m wave height and 10 second period. The tuna clipper is 40 m long and
was given a mass of 400,000 kg. A 175 m tow cable is attached to the stern of the
naval frigate and the bow of the tuna clipper. The cable, assumed to be wire rope,
has a diameter of 90 mm and an axial and bending stiffness of 5.0e8 N and 2.5e5 Nm2

respectively.

5.2.1 Results

A full animated visualization of the results of the simulation was submitted to DRDC
with this report. A screenshot of that visualisation can be found in Figure 69.

The tensions in the cable during the simulation are shown in Figure 70. The average
tension in the cable is approximately 60 kN.
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Figure 70: The tensions in the tow cable for the Tuna Clipper Towing simulation.
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6 Future work
6.1 General
One of the requirements of the SMS API is to provide the ability to conduct a
distributed simulation by communicating the boundary conditions of various SMS::-
SimObjects at regular intervals. While this capability has been implemented in a
basic form, it should be expanded and properly tested.

Parallelizing of the hydrodynamics calculations could significantly improve the execu-
tion speed of simulations. This could be supported either via GPGPU programming
or simple CPU multi-threading exploiting modern multi-core CPUs.

The SMS::Payload’s orientation is described and integrated over time using Euler
angles which have the potential to undergo a singularity event called “gymbal lock”.
This is likely to occur and halt the simulation if the body passes through a 90-
degree change in pitch. To alleviate the potential for such an event, quaternion based
orientation descriptions could be implemented as an option in the SMS API.

6.2 Winch class
A relatively simple winch model that accounts for drum inertia and braking friction
could be implemented to increase fidelity of the SMS::Winch class.

6.3 Contact dynamics
6.3.1 Resolving N-body collisions

The current collision detection system does not scale well as it must effectuate
O(NANB) collision checks where NA is the number of convex geometrical features
that make up the SMS::Payload and NB is the number of convex geometrical fea-
tures that make up the external object. The system can only account for a single
rigid external object, such as the naval frigate, and so for example it cannot handle
collisions between an SMS::Payload and an SMS::BoomCrane. In order to provide
a scalable system to handle the ability to resolve the N-body collision problem, the
implementation of a broad-phase collision detection system would be required. The
foundation for such a system has already been laid in the SMS API.

6.3.2 Continuous collision detection

The current SMS API contact resolution system only checks for instantaneous colli-
sions and does not account for tunneling. Tunneling occurs when two objects pass
through each other in between time steps and will therefore not be detected without
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the use of continuous collision detection. To handle tunneling, continuous collision
detection methods would be implemented, such as through the use of swept volumes.
Tunneling is not an important phenomena to detect if the objects are large, and
velocities as well as time steps are small.

6.3.3 Rolling resistance implementation

Rolling resistance was discussed in Section 3.2.2.2 of this report. Rolling resistance
is currently not accounted for in the current contact model implementation, though
a crude effect is produced by hull partitioning.

6.3.4 Friction model improvements

An improved more continuous friction model could increase run times by reducing
instabilities that cause time-step reductions in the integrator. A potential candidate
for investigation could be the Gonthier et al. version of the LuGre friction model [24].
In addition, spinning friction is currently not implemented. A simple Karnopp-style
friction model is currently implemented. This model can have detrimental effects on
the integrator in high friction situations.

A more sophisticated friction model to help model lubricated conditions like wet ship
decks should also be implemented for increased accuracy. The LuGre friction model
would account for this. Squeeze-film lubrication could also be taken into account and
might be important under some circumstances.

6.3.5 Volume of interference research

Computing the volume of interference is currently the execution speed bottleneck
when a collision is occurring. Improvements in execution speed of simulations with
contact dynamics may require research into alternative methods of determining the
volume of interference. Computing the normal contact force direction using the MTD
as well as the use of the volume of interference centroid as the contact point are
approximations that have some limitations.

6.3.6 Volume of interference limitations

The volume of interference algorithm implementation is limited to double precision.
Errors can build up quickly after a few numerical operations in certain circumstances.
A problem has been identified when the integration time step is small during the first
occurrence of a collision. Volumes of interference smaller than 1e-9 m3 are generally
not detectable due to numerical precision and the algorithmic tolerances required to
handle such precision errors. This can lead to a very large instantaneous volume
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rate of change destabilizing the simulation. That is, the smallest detectable volume
will never be much smaller than 1e-9 m3 which will get divided by the time step
to obtain the volume rate of change. The time step can drop very low, while the
volume rate of change stays constant at the lowest discrete detectable level, leading
to unrealistically large damping factors. Currently, a workaround to this problem
has been implemented where the damping term is artificially limited to prevent this
situation from destabilizing the simulation. An alternative to this approach might be
to use higher precision data types offered by, for example, the boost library, though
the use of such data types would come at the expense of execution speed. Logic could
potentially be used to switch between regular doubles to higher precision data types
when situations requiring higher precision are encountered.

6.3.7 Winkler elastic bed depth

Computing the Winkler elastic bed depth is currently based on the radius of a sphere
with the same volume of the sum of the convex sub pieces of the contact geometry.
This is an approximation and more accurate methods of defining the elastic bed depth
could be identified.

6.3.8 Improving normal contact model fidelity

Currently the normal contact force model is modelled using a Winkler elastic bed
depth where each spring is free to move independently of its neighbours. To im-
prove the contact dynamics model, three dimensional contact stress effects, such as
accounting for Poisson’s ratio, for the contact model could be investigated.

6.4 Cable improvements
There are several options for further development of the cable model.

6.4.1 Clamped terminations

The current cable model only supports pinned cable connections. Though clamped
cable connection SMS::Payload and SMS::Boomcrane objects would only be needed
in rare circumstances, particularly when flexural stiffness of the cable is high, it may
be desirable to implement that capability.

6.4.2 Implicit numerical integration

Promising results have been obtained with the implicit numerical integrator. In the
simple test cases studied so far, it successfully damps out high frequency effects.
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However, the simulation execution speed can likely be significantly increased by im-
plementing an adaptive time step capability. This requires a method to assess error
in the simulation results as a function of time step. Generally, it is difficult to assess
error as computationally inexpensive as the RK45 algorithm does. However, a litera-
ture review indicates that an error control algorithm is available for the Generalised-α
method that affords significant increase in simulation execution speed and this should
be investigated. In addition, more insight is needed as to why validation experiment
pendulum oscillations decay when such a small time step is utilized in conjunction
with maximum numerical dissipation, which was unexpected.

The implicit integrator is currently only supported by the mass spring damper and
cable models in isolation. Effort should be expended to facilitate using a separate
integrator for the cable when used in conjunction with the boomcrane and payload
models.

6.5 Launch and Recovery simulation
The Launch and Recovery simulation showed that the simple friction model used
by the contact force calculation model may induce numerical instability due to the
abrupt transition between static and dynamic friction. One way to address this issue
would be to use a friction model that has a more continuous approach in modeling the
transition between static and dynamic friction and also includes a viscous component,
as mentioned in the contact dynamics recommendations.

6.6 Tuna Clipper Towing simulation
The Tuna Clipper Towing simulation revealed the need for further software devel-
opment to allow for environment load modeling for the cable due to the ShipMo3D
seaway. Additional development is needed to couple seaway effects with the cable
hydrodynamics model.
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7 Conclusion

The preceding report reviews improvements to the SMS API, namely:

• the addition of a hydrodynamics model for the SMS::Payload class,

• the inclusion of the ShipMo3D::DeepSeaway class via DLL to model fluid envi-
ronment,

• the creation of the SMS::Director class to facilitate the scripting of simulation
events,

• the general improvement of code performance by identifying and resolving bot-
tlenecks,

• the improvement of the collision detection code by implementing a new collision
detection software architecture, the EPA algorithm, and exploiting temporal
coherence,

• the investigation and implementation of the Generalised-α implicit integrator
for cables.

The new additions and improvements made to the SMS API have enabled the simu-
lation of the launch and recovery of a small vessel in waves as well as the towing of
a small vessel through a seaway. These two simulations were set up, simulated, and
visualized. The visualizations were submitted to DRDC as attachments along with
this report.
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Annex A: Sample initialisation files
A.1 Cable class

//Verbose output mode on/off

$VERBOSE 1

/////////////////

//Cable material and geometrical properties

//Axial Stiffness

$EA 5e5

//Bending stiffness

$EI 20

//Torsional stiffness

$GJ 20

//Material density

$rho_cable 7778.0

//Axial damping

$CID 5e3

//Bending damping

$BCID 10

//ratio of compressive stiffness/tensile stiffness

$CE 1.0

//Cable Diameter

$dia_cable 0.02

/////////////

// Hydrodynamic properties

//Drag coefficient across cable

$CDc 1.0

//Added mass coefficient across cable

$CAc 1.0

/////////////////

// Element length control properties for Winch Payout/Payin

$ElementLengthMax 6

$ElementLengthMin 1

/////////////////////

// End-node boundary condition properties
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//end-nodes statically clamped in space, dynamics

//not computed for the end node if turned on.

$NODE0_STATIC 0

$NODEN_STATIC 0

//////////////////////

//Cable node initial conditions.

//Format: vX X vY y vZ Z

//Node 0

$0|IC 0 3.0426 0 8.4 0 6.4

//Node 1

$1|IC 0 3.0426 0 8.4 0 7.9

//Node 2

$2|IC 0 3.0426 0 8.4 0 9.4

//Node 3

$3|IC 0 3.0426 0 8.4 0 10.9

//Node 4

$4|IC 0 3.0426 0 8.4 0 12.4//

//Unstretched element lengths

$ElementLengths 1.525 1.525 1.525 1.527

//////////////////

// External spherical masses added to cable. Format:

//[0]: arcdistance to applied mass

//[1]: diameter of extmass

//[2]: density (dry) of extmass

//[3]: drag coefficient (optional, default: 1.0)

//[4]: added mass coefficient (optional, default: 0.5)

//external mass 0

$0|ExtMasses 0.1 0.1 7778 1.0 0.5

//external mass 1

$0|ExtMasses 0.1 0.1 7778 1.0 0.5

//Output folder for cable’s results files

//(relative or absolute path).

$OutputFolder LaunchAndRecovery/Results/Cable

114 DRDC Atlantic CR 2012-093



A.2 Winch class
//The winch controller’s target velocity for

//velocity control mode

$VelocitySetPoint 0

//The winch controller’s target tension for

//tension control mode

$TensionSetPoint 15

//Forces the target velocity when in velocity

//control mode

$KinematicControl 1

//maximum positive acceleration

$accel_max 5

//maximum negative acceleration

$decel_max -25

//Winch controller’s PID coefficients

$Kp 0.01

$Kd 0.000001

$Ki 0.00001

//Output folder for Winch’s results files

//(relative or absolute path).

$OutputFolder LaunchAndRecovery/Results/Winch

A.3 Payload class
//////////////////

// Payload Initial conditions (12 entries)

$0|IC 1 //Vx

$1|IC 0 //Vy

$2|IC 0 //Vz

$3|IC 0 //phiDot (Euler Z-Y’-X’’)

$4|IC 0 //thetaDot(Euler Z-Y’-X’’)

$5|IC 0 //psiDot (Euler Z-Y’-X’’)

$6|IC -1.35 //X

$7|IC 8.4 //Y
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$8|IC 9.6 //Z

$9|IC 0 //phi (Euler Z-Y’-X’’)

$10|IC 0 //theta (Euler Z-Y’-X’’)

$11|IC 3.14 //psi (Euler Z-Y’-X’’)

////////////////////////////////

// Mass Inertia Matrix about Body Frame

$0|Mass 500 0 0 0 0 0

$1|Mass 0 500 0 0 0 0

$2|Mass 0 0 500 0 0 0

$3|Mass 0 0 0 400 0 0

$4|Mass 0 0 0 0 1541 0

$5|Mass 0 0 0 0 0 1760

////////////////////

// Friction properties if using contact dynamics

//coulomb friction

$muc 0.05

//sticking friction

$mus 0.05

//Output folder for Payload’s results files

//(relative or absolute path).

$OutputFolder LaunchAndRecovery/Results/RescueBoat

A.4 Boomcrane class
//Verbose output mode on/off

$VERBOSE 1

%%%%%%%%%%%%%%%%%%%%

%% Link 1 Red

%%%%%%%%%%

//Description of Link 1’s proximal joint frame relative

//to the base frame using Paul’s Denevit-Hartenberg

//parameter convention

//Format: alpha a d theta

$0|LinkDHParameters 90 -0.65 1.4 0
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//Defines whether the link’s proximal joint is revolute

//(’theta’) or prismatic (’d’)

$0|LinkJointVariable Theta

//target joint velocity when in velocity control mode.

$0|LinkJointVelocity 0

//The link’s rigidbody cg location relative to the proximal

//joint frame

$0|LinkCGLocation -0.35 0.0 0.7

//The link’s rigidbody body-fixed frame orientation relative to

//the proximal joint frame

$0|LinkCGOrientation 0 0 0

//The mass of the link’s rigidbody in the X Y and Z directions

$0|LinkMass 682.97 682.97 682.97

//The mass moment of inertia of the rigidbody described about the

//body-fixed frame(Ixx, Iyy, Izz)

$0|LinkMomentOfIntertia 139.44 139.44 55.776

//Joint controller’s control type (position or velocity)

$0|JointControlType position

//Joint controller’s position control PID gains

$0|JointProportionalCoefficientPos 10000

$0|JointIntegralCoefficientPos 100000

$0|JointDerivativeCoefficientPos 0

//Joint controller’s velocity control PID gains

$0|JointProportionalCoefficientVel 10000

$0|JointIntegralCoefficientVel 10000

$0|JointDerivativeCoefficientVel 0

//viscous damping coefficient for the joint

$0|JointViscousDamping 1000000

//The maximum allowable power applicable by the joint controller

$0|MaximumActuatablePower 10000000

//Joint limits to prevent the joint from actuating past some
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//threshold

$0|UpstreamJointLimits -1e30 1e30 //no limits

//Joint limit penalty force’s stiffness and damping coefficients

$0|JointLimitStiffness 10000

$0|JointLimitDamping 10000

%%%%%%%%%%%%%%%%%%%%

%% Link 2 Green

%%%%%%%%%%

$1|LinkDHParameters 0 1 0 -15

$1|LinkJointVariable Theta

$1|LinkJointVelocity 0

$1|LinkCGLocation 0.5 0 0

$1|LinkCGOrientation 0.0 0 0

$1|LinkMass 754 754 754

$1|LinkMomentOfIntertia 31.42 78.5 78.5

$1|JointControlType position

$1|JointProportionalCoefficientPos 1000000

$1|JointIntegralCoefficientPos 300000

$1|JointDerivativeCoefficientPos 0

$1|JointProportionalCoefficientVel 100000

$1|JointIntegralCoefficientVel 1000000

$1|JointDerivativeCoefficientVel 0

$1|JointViscousDamping 300000

$1|MaximumActuatablePower 10000000

$1|UpstreamJointLimits -45 90

$1|JointLimitStiffness 10000000

$1|JointLimitDamping 1000000

//Output folder for Winch’s results files

//(relative or absolute path).
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$OutputFolder LaunchAndRecovery/Results/Boomcrane
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Annex B: Descriptions of important class
methods

This section is a short, non-comprehensive manual to document some of the important
methods that a user might require.

B.1 Payload class methods
B.1.1 Creating a payload object

An SMS::Payload object can be created using the class constructor:

SMS::Payload(std::string init file,

double t0,

bool file output)

where init file is a string that contains the location of the payload’s initialization
file, t0 is the start time of the cable object and file output is set to true to allow
simulation data to be output to disk.

B.1.2 Overridding the payload position and velocity

An SMS::Payload’s position and velocity can be overridden using:

SMS::Payload::SetPosOri(ub::vector<double> &posOri,

ub::vector<double> &posOriDot)

where posOri is a size 6 vector containing the Cartesian position followed by the 3
Euler angles that describe its orientation, and posOriDot is the time rate of change
of posOri.

B.1.3 Overridding gravitational constant

An SMS::Payload’s gravitational constant can be overridden using:

SMS::Payload::SetGrav(double grav)

where grav is the new gravitational constant.
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B.2 Adding a hydrodynamics mesh for non-linear
hydrodynamics

A hydrodynamics mesh can be provided to an SMS::Payload to allow for non-linear
hydrodynamics forces to be calculated using:

SMS::Payload::InitialiseHydrodynamicPolyhedronWith3DS(

std::string file name,

double scaleX,

double scaleY,

double scaleZ,

ub::vector<double> &posOri,

ub::vector<double> &CDc,

ub::vector<double> &CAc)

where file name is the name of the .3ds geometry file, scaleX, scaleY and scaleZ

are the scaling factors for the geometry in the X̂, Ŷ and Ẑ directions respectively,
posOri is the length 6 position and orientation vector, and CDc and CAc are length
3 vectors that describe the drag and added mass coefficients in the X̂, Ŷ and Ẑ
directions respectively.

B.2.1 Defining wave conditions of the environment

Waves can be added to the SMS::Payload’s description of the enviroment using
ShipMo3D’s DeepSeaway library. Currently, only fixed regular seaways are supported,
adding it to the simulation can be accomplished using:

SMS::Payload::InitialiseEnvironmentAsFixedRegularSeaway(

std::string label,

double waterDensity,

double waveHeadingFromDeg,

double waveFreq,

double waveAmp,

double phaseDeg,

bool StokesSecondOrder,

bool WheelerStretching)

where label is the ocean label for identification purposes, waterDensity is the
density of the water, waveHeadingFromDeg is the heading of the waves in degrees,
waveFreq is the frequency of oscillation of the wave in radians, waveAmp is the am-
plitude of the wave, phaseDeg is the phase of the wave in degrees, and StokesSe-

condOrder and WheelerStretching are flags that turn stokes second order waves
and Wheeler stretching on and off.
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B.2.2 Adding contact dynamics geometries

To enable contact dynamics between an SMS::Payload and the environment, geome-
tries must be added to the SMS::Payload that describes the payload’s contact geom-
etry as well the external object’s contact geometry. These can be done respectively
using:

SMS::Payload::Add3DSContactPolyhedron(

std::string file name,

double scaleX,

double scaleY,

double scaleZ,

ub::vector<double> &posOri)

SMS::Payload::AddExternal3DSContactPolyhedron(

std::string file name,

double scaleX,

double scaleY,

double scaleZ,

ub::vector<double> &posOri)

where file name is the name of the .3ds geometry file, scaleX, scaleY and scaleZ

are the scaling factors for the geometry in the X̂, Ŷ and Ẑ directions respectively, and
posOri is the length 6 position and orientation vector. The position and orientation
of the SMS::Payload’s contact objects are described relative to the SMS::Payload’s
body-fixed frame, while the position and orientation of the external object’s contact
geometriess are described relative to the external object’s origin which defaults to the
inertial frame’s origin.

The geometries added must be convex. Multiple convex objects can be added to the
Payload to build more complex concave shapes.

B.2.3 Setting the material properties for contact dynamics

The material properties for both the SMS::Payload’s and external object’s contact
objects can be set using:

SMS::Payload::SetMaterialProperties(double Young modulus set,

double B set)

SMS::Payload::SetExternalObjectMaterialProperties(

double Young modulus set,

double B set)
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where Young modulus set is the Young’s modulus and B set is the damping coeffi-
cient.

B.2.4 Changing the position and orientation of the external
contact objects

The position and orientation of the external contact objects are defined relative to
the external object’s origin. The origin of the external object can be redefined in the
SMS::Payload using:

SMS::Payload::SetExternalContactPolyhedraPositionOrientation(

ub::vector<double> &posOri,

ub::vector<double> &posOriDot,

ub::vector<double> &posOriDotDot,

double &currTime)

where posOri is the length 6 position and orientation vector while posOriDot and
posOriDotDot are the first and second time derivative of posOri.

B.2.5 Advancing simulation through time

SMS::Payload::AdvanceTime(double DeltaT)

B.2.6 Outputting simulation results to disk

SMS::Payload::OutputSimObjectData()

B.3 Cable class methods
B.3.1 Creating a Cable object

An SMS::Cable object can be created using the class constructor:

SMS::Cable(std::string init file,

double t0,

bool file output)

where init file is a string that contains the location of the cable’s initialization
file, t0 is the start time of the cable object and file output is set to true to allow
simulation data to be output to disk.
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B.3.2 Defining wave conditions of the environment

Waves can be added to the Cable’s description of the enviroment using ShipMo3D’s
DeepSeaway library. Currently, only fixed regular seaways are supported, adding it
to the simulation can be accomplished using:

SMS::Cable::InitialiseEnvironmentAsFixedRegularSeaway(

std::string label,

double waterDensity,

double waveHeadingFromDeg,

double waveFreq,

double waveAmp,

double phaseDeg,

bool StokesSecondOrder,

bool WheelerStretching)

where label is the ocean label for identification purposes, waterDensity is the
density of the water, waveHeadingFromDeg is the heading of the waves in degrees,
waveFreq is the frequency of oscillation of the wave in radians, waveAmp is the am-
plitude of the wave, phaseDeg is the phase of the wave in degrees, and StokesSe-

condOrder and WheelerStretching are flags that turn stokes second order waves
and Wheeler stretching on and off.

B.3.3 Attaching a Winch to the cable

A SMS::Winch object can be added to an SMS::Cable to handle payin and payout
effects. The winch can be added to either the SMS::Cable’s node 0 or node N using:

SMS::Cable::AddWinch0(Winch &winch add)

SMS::Cable::AddWinchN(Winch &winch add)

respectively, where winch add is a reference to the winch object being attach.

B.3.4 Setting the Cable’s end node condition

The condition of the cable at its end nodes can be set using:

SMS::Cable::SetNode0BoundaryConditions(

ub::vector<double> &NodePos,

ub::vector<double> &NodeVel,

ub::vector<double> &NodeAccel)
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SMS::Cable::SetNode0BoundaryConditions(

ub::vector<double> &NodePos,

ub::vector<double> &NodeVel,

ub::vector<double> &NodeAccel)

for node 0 and N respectively where NodePos is the Cartesian position of the node
while NodeVel and NodeAccel are the first and second time derivatives of NodePos.

B.3.5 Advancing simulation through time

SMS::Cable::AdvanceTime(double DeltaT)

B.3.6 Outputting simulation results to disk

SMS::Cable::OutputSimObjectData()

B.4 Winch class methods
B.4.1 Creating a Winch object

An SMS::Winch object can be created using the class constructor:

SMS::Winch(std::string init file,

double t0,

bool file output)

where init file is a string that contains the location of the winch’s initialization
file, t0 is the start time of the winch object and file output is set to true to allow
simulation data to be output to disk.

B.4.2 Setting the winch’s controller mode

An SMS::Winch’s controller mode can be set to either velocity or tension control mode
using:

SMS::Winch::SetMode(std::string velocity or tension)

where velocity or tension is a string that can be set to either “velocity” for velocity
control or “tension” for tension control.

B.4.3 Setting the velocity control set point

The target velocity for velocity control mode can be set using:
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SMS::Winch::SetVelocitySetPoint(double setpoint)

where setpoint is the target velocity.

B.4.4 Setting the tension control set point

The target tension for tension control mode can be set using:

SMS::Winch::SetTensionSetPoint(double setpoint)

where setpoint is the target tension.

B.5 Boomcrane class methods
B.5.1 Creating a Boomcrane object

An SMS::Boomcrane object can be created using the class constructor:

SMS::Boomcrane(std::string init file,

double t0,

bool file output)

where init file is a string that contains the location of the boomcrane’s initializa-
tion file, t0 is the start time of the boomcrane object and file output is set to true
to allow simulation data to be output to disk.

B.5.2 Attaching a Cable to one of the Boomcrane’s links

An SMS::Cable can be attached to a SMS::Boomcrane’s link using:

SMS::BoomCrane::AddCablePinned(int joint num,

SMS::Cable *cable to attach,

ub::vector<double> &location,

int end)

where joint num is the id of proximal joint belonging to the link the cable is being
attached to, cable to attach is a pointer to the cable being attached, location is
a length 3 vector of the attachment location of the cable with respect to the link’s
body-fixed frame, and end is which end node of the cable is being attached: either 0
for node 0 or 1 for node N.

B.5.3 Adjusting the boomcrane base position and orientation

The position of the SMS::Boomcrane’s base frame can be modified using:

DRDC Atlantic CR 2012-093 127



SMS::BoomCrane::SetBaseGlobalPositionAndOrientation(

ub::vector<double> &posOri,

ub::vector<double> &velocity,

ub::vector<double> &acceleration)

where posOri is a length 6 array containing the length 3 position of the base, and
the length 3 Euler angles, and posOriDot and posOriDotDot are its first and second
time derivatives.

B.5.4 Advancing simulation through time

SMS::Cable::AdvanceTime(double DeltaT)

B.5.5 Outputting simulation results to disk

SMS::Cable::OutputSimObjectData()

B.6 Director class methods
B.6.1 Creation a Director object

A SMS::Director class object can be created to help control a simulation using:

SMS::Director()

B.6.2 Adding actors

SMS::SimObjects can be assigned to an SMS::Director to be controlled as an actor
using:

SMS::Director::AddActor(SimObject *object,

std::string actorName)

where object is a pointer to any of the child classes of SMS::SimObject, and actor-

Name is a label assigned to the actor for future identification.

B.6.3 Adding acting command to a script

A single command can be appended to a script using:

SMS::Director::AddCommand(std::string command)

where command is a string containing the command. A list of available commands
can be found in Section 2.2.
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B.6.4 Loading a script from file

A script can be loaded from file using:

SMS::Director::ReadScriptFromFile(std::string filePath)

where filePath is the absolute or relative path of the file to be loaded. A list of
available commands can be found in Section 2.2.

B.6.5 Managing a scene

Before every AdvanceTime call round, the Director must be told to manage the scene.
The SMS::Director will check that commands are still in progress, or if completed,
begin to the next command. This can be done using:

SMS::Director::ManageScene(double time,

double tStep)

where time is the current time of the scene and tStep is the time step for the next
AdvanceTime call.
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Annex C: Supplementary plots
C.1 Plots of the simplified Launch and Recovery

simulation from Section 4.1
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Figure C.1: The simulated position of the rescue boat for the Simplified Launch and
Recovery simulation (the X̂ position indicated in red, the Ŷ position indicated in
green and the Ẑ position indicated in blue).
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Figure C.2: The simulated joint positions of the boomcrane for the Simplified Launch
and Recovery simulation (the position of joint 1 is indicated in red, the position of
joint 2 is indicated in green, the position of joint 3 is indicated in blue, the position
of joint 4 is indicated in yellow, the position of joint 5 is indicated in magenta, the
position of joint 6 is indicated in cyan, the position of joint 7 is indicated in black).
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Figure C.3: The simulated position of the cable end nodes for the Simplified Launch
and Recovery simulation (the cable’s node 0 X̂ position is indicated in red, the cable’s
node 0 Ŷ position is indicated in green, the cable’s node 0 Ẑ position is indicated
in blue, the cable’s node N X̂ position is indicated in yellow, the cable’s node N Ŷ
position is indicated in magenta, the cable’s node N Ẑ position is indicated in cyan).
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Figure C.4: The simulated tension of the cable’s first element for the Simplified
Launch and Recovery simulation.

C.2 Plots from the process of improving execution
speeds of the Launch and Recovery simulation
from Section 4.2.1
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Figure C.5: The position of the rescue boat over the course of the Launch and Re-
covery simulation (the X̂ position indicated in red, the Ŷ position indicated in green
and the Ẑ position indicated in blue).
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Figure C.6: The position of the Palfinger-like boomcrane joints over the course of
the Launch and Recovery simulation (the position of joint 1 is indicated in red, the
position of joint 2 is indicated in green, the position of joint 3 is indicated in blue,
the position of joint 4 is indicated in yellow, the position of joint 5 is indicated in
magenta, the position of joint 6 is indicated in cyan, the position of joint 7 is indicated
in black).
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Figure C.7: The position of the cable’s end node 0 over the course of the Launch and
Recovery simulation (the cable’s node 0 X̂ position is indicated in red, the cable’s
node 0 Ŷ position is indicated in green, the cable’s node 0 Ẑ position is indicated
in blue, the cable’s node N X̂ position is indicated in yellow, the cable’s node N Ŷ
position is indicated in magenta, the cable’s node N Ẑ position is indicated in cyan).
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Figure C.8: The tension in the cable’s first element over the course of the Launch
and Recovery simulation.

C.3 Plots from the process of Identifying source of
small timesteps from Section 4.2.1.2

1.0e− 004

1.0e− 003

1.0e− 002

0 2 4 6 8 10

In
te
gr
at
io
n
S
te
p
si
ze

(s
)

Time (s)

Crane, Winch, Cable, Payload
Winch, Cable, Payload
Crane, Cable, Payload

Cable, Payload

Figure C.9: The integration timestep size over the course of the simulation for the
4 setup variations (Crane-Winch-Cable-Payload case indicated in red, Winch-Cable-
Payload case indicated in green, Crane-Cable-Payload case indicated in blue, Cable-
Payload case indicated in magenta).
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Figure C.10: The integration execution speed time ratio over the course of the simu-
lation for the 4 setup variations (Crane-Winch-Cable-Payload case indicated in red,
Winch-Cable-Payload case indicated in green, Crane-Cable-Payload case indicated in
blue, Cable-Payload case indicated in magenta).
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Figure C.11: The integration timestep size over the course of the simulation for
the 3 setup variations (Crane-Winch-Cable-Payload case indicated in red, Winch-
Cable-Payload case indicated in green, Crane-Cable-Payload case indicated in blue,
Cable-Payload case indicated in magenta).
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Figure C.12: The time ratio over the course of the simulation for the 3 setup varia-
tions (Crane-Winch-Cable-Payload case indicated in red, Winch-Cable-Payload case
indicated in green, Crane-Cable-Payload case indicated in blue, Cable-Payload case
indicated in magenta).

C.3.1 Plots of the optimised Launch and Recovery simulation of
Section 4.2.2
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Figure C.13: The position of the rescue boat over the course of the improved launch
and recovery example simulation (the X̂ position indicated in red, the Ŷ position
indicated in green and the Ẑ position indicated in blue).
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Figure C.14: The position of the boomcrane joints over the course of the improved
launch and recovery example simulation (the position of joint 1 is indicated in red,
the position of joint 2 is indicated in green, the position of joint 3 is indicated in
blue, the position of joint 4 is indicated in yellow, the position of joint 5 is indicated
in magenta, the position of joint 6 is indicated in cyan, the position of joint 7 is
indicated in black).
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Figure C.15: The position of the cable’s end node 0 over the course of the improved
launch and recovery example simulation (the cable’s node 0 X̂ position is indicated in
red, the cable’s node 0 Ŷ position is indicated in green, the cable’s node 0 Ẑ position
is indicated in blue, the cable’s node N X̂ position is indicated in yellow, the cable’s
node N Ŷ position is indicated in magenta, the cable’s node N Ẑ position is indicated
in cyan).
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Figure C.16: The tension in the cable’s first element over the course of the improved
launch and recovery example simulation.
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