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Abstract

The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration has con-
structed a large-scale detector prototype for investigating the use of comic ray muon scat-
tering tomography for Special Nuclear Material (SNM) identification. In order to produce
reconstructed images of the highest quality, it is important to ensure that the detector has
achieved optimal performance. In this report, the detector operating parameters are inves-
tigated, with the goal of optimizing the hit resolution. Furthermore, the results of simple
Monte Carlo simulation are presented, which validate the observed geometric acceptance
of the detector and give a rough evaluation of the performance of the momentum estimate
algorithm.

Résumeé

La collaboration < Inspection et tomographie passive par rayonnement cosmique > (CRIPT,
de I’anglais Cosmic Ray Inspection and Passive Tomography) a construit le prototype dun
grand détecteur pour étudier lutilisation de la tomographie par diffusion de muons produits
par les rayons cosmiques afin de détecter les matieres nucléaires spéciales (MNS). Afin de
produire des images reconstruites de tres haute qualité, il est important de sassurer que le
détecteur offre une performance optimale. Le présent rapport fait état des travaux visant a
étudier les parametres opérationnels du détecteur, et a optimiser la résolution des impacts.
De plus, les résultats dune simulation Monte-Carlo simple sont présentés : ils valident lac-
ceptation géométrique observée du détecteur et ils donnent une évaluation approximative
de la performance de lalgorithme destimation de la quantité de mouvement.
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Executive summary

Optimization of CRIPT detector performance

Richard Hydomako; DRDC Ottawa CR 2013-127; Defence R&D Canada — Ottawa;
January 2014.

Background: The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has
constructed a large-scale prototype detector for the identification of Special Nuclear Ma-
terial (SNM). This detector measures the scattering of through-going cosmic ray muons to
infer the three-dimensional density of objects in the detector imaging volume. The detector
performance is an important factor in the production of good-quality reconstructed images.
In this report, the optimization of optimization parameters for the CRIPT detector is pre-
sented. Additionally, a simple Monte Carlo simulation study was performed with the goal
of validating the overall detector performance.

Principal results: By systematically varying the set-voltage for the photomultiplying-
tubes (PMTs) and data acquisition system (DAQ) threshold values, an optimal set of op-
erating parameters was arrived at that minimized the detector hit resolution. Moreover, an
bandwidth issue in the DAQ system was identified and a mitigating solution implemented
such that the number of usable muon tracks was increased by 17%. Finally, the Monte
Carlo simulation validated the observed detector acceptance and performance of the mo-
mentum estimate algorithm.

Significance of results: The results of this study help to improve the operation of the
CRIPT detector as well as provide a performance evaluation focusing on the Upper and
Lower Tracker sections. The recommended operating parameters should optimize the hit
resolution and thereby improve the overall imaging reconstruction. Likewise, the valida-
tion of the geometric acceptance using a simple Monte Carlo simulation should provide
confidence that the CRIPT detector is functioning correctly.

DRDC Ottawa CR 2013-127 iii



Sommaire

Optimization of CRIPT detector performance

Richard Hydomako ; DRDC Ottawa CR 2013-127 ; R & D pour la défense Canada
— Ottawa ; janvier 2014.

Contexte : Dans le cadre du projet < Inspection et tomographie passive par rayonne-
ment cosmique > (CRIPT, de I’anglais Cosmic Ray Inspection and Passive Tomography),
le prototype dun grand détecteur a été construit pour étudier lutilisation de la tomogra-
phie par diffusion de muons produits par les rayons cosmiques pour détecter les matieres
nucléaires spéciales (MNS). Ce détecteur mesure la diffusion des muons produits par les
rayons cosmiques et traversant les objets afin de déduire la densité tridimensionnelle de
ces objets dans le volume imagé par le détecteur. La performance du détecteur est un fac-
teur important pour produire des images reconstruites de bonne qualité. Dans le présent
rapport, les auteurs présentent les parametres doptimisation du détecteur CRIPT. En outre,
une simulation Monte-Carlo simple a été réalisée afin de valider la performance globale du
détecteur.

Résultats principaux : En variant systématiquement la tension de consigne des tubes pho-
tomultiplicateurs (PMT) et les valeurs seuils du systeme dacquisition de données (DAD),
on a obtenu un ensemble optimal de parametres opérationnels qui minimise la résolution
des impacts dans le détecteur. De plus, un probleme de largeur de bande dans le systeme
DAD a été constaté, et une solution a été trouvée qui a permis datténuer le probleme,
de sorte que le nombre de trajectoires de muons utilisables a augmenté de 17%. Enfin,
la simulation Monte-Carlo a validé lacceptation géométrique observée du détecteur et la
performance de lalgorithme destimation de la quantité de mouvement.

Portée des résultats : Les résultats de cette étude aident a améliorer le fonctionnement du
détecteur CRIPT et ils permettent dévaluer la performance des sections de suivi supérieure
et inférieure. Les parametres opérationnels recommandés devraient optimiser la résolution
des impacts, et ainsi améliorer la reconstruction globale des images. Par ailleurs, la valida-
tion de lacceptation géométrique, au moyen dune simulation Monte-Carlo simple, devrait
permettre davoir confiance dans le bon fonctionnement du détecteur CRIPT.
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1 Introduction

The Cosmic Ray Inspection and Passive Tomography (CRIPT) project is an effort to con-
struct a novel cosmic ray muon detector for the purposes of identifying Special Nuclear
Material (SNM) [1, 2]. The CRIPT collaboration has constructed a large-scale prototype
at Carleton University to investigate the merits of muon scattering tomography, wherein
the three-dimensional density of a scanned object is inferred by the measured scattering
of through-going charged particles. Extremely dense materials, such as SNM, can then be
identified within the large three-dimensional scanning volume of the CRIPT detector.

It is important to evaluate the operation of the detector, especially as a means of perfor-
mance optimization. A sub-optimally configured detector will take longer to scan objects,
and the resulting images will be of poorer quality. This report details a series of anal-
yses that quantify the performance of the detector planes, specifically looking to set the
operating parameters such as to optimize the key metrics of resolution and efficiency. Ad-
ditionally, a Monte Carlo simulation is used to investigate the geometric acceptance of
the CRIPT detector. Finally, the simulation is used to validate the implementation of the
momentum estimate algorithm.

1.1 Detector overview

The CRIPT detector (Fig. 1) is comprised of twelve 2mx2m planes of triangular scintilla-
tor bars. Each plane contains 121 individual scintillator bars, which are 2m long and have
a triangular cross-section with a base of 3.23 cm and height of 1.65 cm. The scintillator
bars are arranged in a close-fitting pattern of alternating right-side-up and up-side-down
bars such that there are no gaps across the plane surface. The scintillated light from each
individual bar is collected by a wavelength-shifting optical fiber which is coupled to a 64-
channel photo-multiplying tube (PMT) readout device (two PMTs are needed to read out
each plane).

Furthermore, the CRIPT detector is divided into six layers, where each layer contains two
planes arranged orthogonally. Two layers are located above the imaging volume and are
referred to as the Upper Tracker (UT), two layers are located directly below the imaging
volume and are referred to as the Lower Tracker (LT), and the final two layers are located
below the LT and are referred to as the Spectrometer (SPEC). Note that this report is mainly
focused on the optimization of the performance of the UT and LT layers, as these layers are
responsible for the tracking used for reconstructive imaging. The SPEC layers are largely
ignored, as the multiple-scattering that occurs due to the steel plates (needed to perform the
momentum estimate) inevitably degrades the overall SPEC performance.

DRDC Ottawa CR 2013-127 1



Plane 10 and Plane 11

Upper Tracker
Plane 8 and Plane 9
/ Steel plates for support
Plane 6 and Plane 7 B
—Lower Tracker
Plane 4 and Plane 5 J

Plane 2 and Plane 3 ! M
* - Spectrometer
Plane 0 and Plane 1 J

\ Steel plates for spectrometer

Figure 1: Simplified diagram of the CRIPT detector, showing only the position of the
scintillator layers and steel plates (not to scale).

2 Data acquisition system performance

To receive the track information from the 24 PMTs, the CRIPT detector includes a cus-
tom data acquisition system (DAQ). Each PMT is read out by a dedicated Front-End (FE)
board, which is, in-turn, controlled by a Collector card. The DAQ system includes 4 Col-
lector cards: each detector section (UT, LT, SPEC) is controlled by a collector card that
handles 8 FE cards, and the additional “master” collector coordinates the three “sub” col-
lectors. The analog PMT signal is digitized by the FE board (when the pulse height exceeds
a programmable threshold) and the pulse information is transmitted through the DAQ as
an individual “packet”. Each FE board has 64 ADC (analog-to-digital converter) chan-
nels, which allows for every PMT channel (and therefore every scintillator bar) to have a
dedicated, and individually programmable, data-path. Moreover, the DAQ system is re-
sponsible for combining all 1452 data-channels so that the read-out events are complete
and understandable by back-end analysis routines. To accomplish this data-merging, the
data-paths are multiplexed at several stages: 8 channels are merged at the ADC chip level;
the data from the 8 chips are the multiplexed within the FE board before being sent to a
sub-collector; the sub-collector then multiplexes data from 8 FE boards and sends it to the
master-collectors; finally, the master-collector merges the data from the three sub-collectors
and forwards it to the back-end computer (BEC) where it is recorded to disk.

Figure 2 shows a diagram of the DAQ architecture, highlighting the master-/sub- collector

2 DRDC Ottawa CR 2013-127
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Figure 2: Simplified diagram of the DAQ architecture. The thin black lines represent the
data-paths: the 24 FE boards are connected to 3 sub-collectors; the sub-collectors are con-
nected to the master-collector; the master-collector is connected to the back-end computer.

distinction. It is important to understand the DAQ architecture to explain the operation
of the DAQ event trigger. The event trigger is the condition that needs to be satisfied for
detector data to be read out and recorded. Detector trigger conditions usually involve the
time-wise coincidence of signals, which helps filter out detector noise. For the CRIPT
detector the standard trigger condition requires a PMT pulse to be present in at least all of
the UT and LT planes, which is the minimum condition to determine tracks through the UT
and LT for imaging (note that PMT pulses in the SPEC layers can still be recorded, but they
are not required to be present for this trigger). The enforcement of this trigger condition
is accomplished in two stages: first, the sub-collectors enforce a sub-trigger within their
detector sections, which involves having that sub-collector look for the coincidence of
PMT pulses in all four planes of the detector section and only sending on those pulses in
coincidence to the master collector. Next, the master-collector looks for the coincidence
between the pulses arriving from the UT and LT, and will send to the BEC all packets
within the coincidence window when the trigger condition is met.

However, it was noticed that not all of the events recorded by the DAQ appeared to satisfy
the detector trigger condition. That is, for about 18% of the recorded detector events, at
least one of the UT or LT planes would be totally empty of pulses. After investigation, it
was determined that this was an issue stemming from limited bandwidth within the master-
collector. In order to multiplex data-packets from up to eight inputs, each collector input

DRDC Ottawa CR 2013-127 3



PMT Voltage
(for the excluded plane) P4 PS5 P6 P7 P8 P9 P10 PIl

800V 407
840V 462 435 439 443 408 419 423 427
8715V 463 436 440 444 409 420 424 428
900 V 464 437 441 445 410 421 425 430
925V 465 438 442 446 411 422 426 431
950 V 406

Table 1: Data runs for high-voltage scan.

has in-memory first-in-first-out (FIFO) buffers to store the packets until it is their turn to
be multiplexed. However, when too many packets arrive concurrently, the FIFO buffers
can overflow causing data loss. Moreover, since a sub-collector will merge and send all
of its data-packets to the same master-collector input, the master-collector FIFO buffers
need to be significantly larger that the sub-collector buffers to accommodate all of the data-
packets that arrive from that detector section. A firmware upgrade which quadrupled the
FIFO buffer size helped significantly mitigate the packet-loss issue, such that after upgrade,
only about 1% of events recorded do not satisfy the trigger condition. This improvement
benefits the CRIPT analysis as a whole, as the result is an additional 17% of usable events
for imaging, which will help decrease collection times, and improve image resolution.

3 PMT high-voltage scan

The PMT set-voltage is an important operating parameter, as it controls the gain of the PMT
device: if the voltage is set too high, the signal pulse-heights will be larger than the dynamic
range of the ADCs and charge information (used to improve the hit resolution) will be lost;
if the PMT voltage is set too low, the pulse-heights will be too small to make accurate
charge determinations (again affecting the hit resolution). Following this argument, there
should be a set-voltage that optimizes the dynamic range of the ADCs — thereby minimizing
the hit resolution.

A data series was collected to investigate the hit resolutions and efficiencies as a function
of PMT set-voltage for each plane in the UT and LT. Each datarun taken focuses on one
plane and one set-voltage (see Table 1). Only the set-voltages for two PMTs from the plane
under investigation are changed. Moreover, the plane under investigation is removed from
the event trigger to avoid trigger bias when measuring the plane hit efficiency.

4 DRDC Ottawa CR 2013-127



3.1 Hit resolution

The hit resolution (that is, how close the hit measured by the scintillator bars comes to
actual point that the muon traveled through the plane) is particularly important for the
CRIPT detector, as the quality of the final reconstructed images is related to how well the
muon tracks can be determined, which depends strongly on the hit resolution. As such,
it is important to minimize the overall hit resolutions and throughout this report, the hit
resolution is taken as the overriding figure of merit to optimize.

The method for determining the hit resolution, o, is discussed in Reference [3]. To sum-
marize, for a given event, two linear fits are performed on the measured hit positions for
all planes for the coordinate (x or y) of the plane under study: the first fit includes all of
the hits, the second fit includes all of the hits excluding those for the plane under study.
Two histograms are then prepared for the sum of all events, where both histograms contain
the residual values between the linear fit and the measured hit position for the plane under
study and the linear fit (the first histogram contains all of the residual values for the linear
fits including all hits, while the section histogram contains the residual values for the fits
that excluded the hits from the plane under study). Gaussian fits are then performed on the
two histograms, with the width of the distribution of residuals including all hits labeled as
Oy, and the width of the distribution excluding the hit from the plane under study labeled
as O,,,. The hit resolution is then estimated as:

G = +/OywOwpo- (D

Note that this estimate relies on the assumptions that all the planes are the same and do
not suffer from multiple scattering. For this study both assumptions are invalidated, as
the planes do induce some small amount of multiple scattering, but more importantly, by
changing the PMT set-voltage on only one plane, the plane-uniformity assumption is inval-
idated. For this reason, the resolutions determined from this study should not be considered
as absolute, rather the optimization should be considered relative.

Figure 3a shows the measured resolution as a function of position across Plane 8 (the full set
of UT and LT plots are included as Appendix B). The position-binning roughly corresponds
to the scintillator bar width, which aids in the identification of problems affecting individual
scintillator bars. Similarly, a plane-wise resolution value is determined from Fig. 3b, by
histogramming all of the bin values from Fig. 3a, then performing a Gaussian fit. The mean
of the Gaussian fit is taken as the aggregate hit resolution value for that plane and voltage.
Finally, Fig. 3c shows the aggregate hit resolution values as a function of PMT set-voltage
for plane 8 (the full set of UT and LT summary plots are included as Appendix A).

3.2 Efficiency

Another important performance indicator is the hit efficiency. A bar or plane with low
hit efficiency (that is, where a hit should have been detected, but is not registered by the

DRDC Ottawa CR 2013-127 5
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Figure 3: Resolution measurement for Plane 8: a) the hit resolution as a function of position
along the plane, b) histogram of the measured resolution values, ¢) summary of measured
hit resolutions as a function of PMT set-voltage.
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Figure 4: Efficiency measurement for Plane 8: a) the efficiency as a function of position

along the plane, b) histogram of the measured efficiency values, ¢) summary of measured
efficiency as a function of PMT set-voltage.

detector) can reduce the overall number of tracks detected (lengthening the track collection
time required), or reduce the tracking effectiveness of regions of the detector. For these
reasons, it is desirable to have the efficiency as close to 100% as possible.

For efficiency measurements, it is important that the plane under study is not included in
the trigger condition. If the trigger strictly enforces that there should be a hit in a specific
plane, it is difficult to look for missing hits in that same plane. For that reason, as detailed
in Table 1, the plane under study was removed from the sub-collector trigger condition.

Moreover, for the efficiency analysis, two types of inefficiencies are considered: 1) when
there are no hits registered at all in the plane under study, and 2) when there are hits in the
plane under study, but those hits are nowhere close to where the track is passing through the
plane. It should be noted that the packet-dropping issue described in Sec. 2 can contribute
to inefficiencies recorded in this measurement (that is, a hit might be missing because
the data-packet was dropped by the DAQ, rather than being due to a problem with the
scintillator or PMT). However, with the DAQ improvements discussed in Sec. 2, this issue
has a very small impact on the overall efficiency.

DRDC Ottawa CR 2013-127 7



Threshold | 50 60 70 80 90 100 110 120 130 140 150
Run 470 471 472 473 474 475 476 477 478 479 250
Table 2: List of dataruns for the threshold scan (PMT set-voltage 900V).

Figure 4a shows the efficiency estimate as a function of position across plane 8. Similar
to Fig. 3a, the positional binning is on the order of the bar width so that problems with
individual bars might be identified. A plane-wise efficiency value is determined in Fig. 4b
(where the method for determining the overall efficiency value is identical to that of Fig.
3b). Finally, a summary of the efficiency measurements as a function of PMT set-voltage
for plane 8 is given as Fig. 4c (the full set of UT and LT summary plots are included as
Appendix A).

3.3 Recommendation

Although there is a fair bit of variability in the estimates, the results of the set-voltage scan
(Appendices A and B) generally suggest that the optimal set-voltage is around 900V. For
the CRIPT detector at around this voltage, the PMT pulse-height distributions fully utilizes
the dynamic ADC range, without excessively exceeding the ADC range.

4 Threshold scan

Figure 5 shows an example PMT pulse-height distribution for a single scintillator bar,
where the x-axis is in units of ADC bins. The large peak to the left of the distribution is
attributed to spontaneously emitted photons from the wavelength-shifting fiber [4], while
the rest of the distribution comes from the scintillator single produced by through-going
cosmic ray muons. It is important to separate the signal from the noise by rejecting as
many spurious noise pulses as possible, while not erroneously refusing too much of the
actual scintillator signal. The ADC threshold allows us to set the ADC bin below which
pulses are rejected (for example, in Fig. 5 the ADC threshold is set to 50, which can be
seen in the sharp drop-on at the far left of the distribution).

For the determination of the optimal ADC threshold, all of the PMT set-voltages were fixed
to 900V, and a series of data-runs taken with a variety of ADC thresholds. Table 2 gives the
list of data-runs and their corresponding threshold values, which ranged from 50 to 150.
Figure 6 summarizes all the plane resolution values as a function of ADC threshold.

4.1 Recommendation

From Fig. 6, the majority of planes see an resolution improvement as the ADC thresholds
are increased from 50 to about 120. However, above a threshold of 120, the resolutions
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Plane 8 Resolution Map (HV=900V, TH=120)
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Figure 7: Resolution map for Plane 8

appear to worsen for most planes. For this reason, a threshold setting of 120 will likely
provide the optimal hit resolution when the PMTs are set to 900V.

Once the operation parameters have been chosen, the a dataset using the ‘nominal’ settings
can be collected to determine the baseline resolution. Figure 7 shows the measured hit
resolution values binned across both x- and y-coordinates for plane 8. The poor resolution
values between 100 cm < x < 160 cm is likely due to a poorly functioning bar in plane 10
(since hit information from plane 10 is also used for plane 8). The full set of resolution
maps for the UT and LT is included as Appendix C.

5 Monte Carlo simulation

A powerful way to cross-check the results coming from a detector is to perform a Monte
Carlo simulation. With such a simulation, the input (in this case, the trajectory and mo-
mentum of the through-going muon) is known and can be directly compared with the re-
sult after the simulated detector event has been processed by the analysis suite. For this
study, a GEANT4 simulation was conducted in order to emulate cosmic ray muons passing
through the CRIPT detector. A number of detector effects, such as light attenuation in the
wavelength-shifting fiber and the quantum efficiency of the PMTs, are taken into account
in an effort to keep the simulation as faithful to the actual data as possible. However, due
mainly to time constraints, the implementation of a detailed geometry and the completion
of a high-statistics simulation were infeasible. As such, this study focuses on the gross
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Plane 8: bar occupancy (data) Plane 8: bar occupancy (simulation)
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Figure 8: Comparison of bar occupancy distributions between data (a) and simulation (b)
for plane 8.

aspects of the geometrical detector aspects and a rough validation of the muon momentum
estimate implementation.

5.1 Geometric acceptance

Due to the geometry of the detector and implementation of the event read-out trigger, not
every incoming cosmic ray muon trajectory will be recorded by the CRIPT detector. For
example, incoming muons with track angles close to horizontal will not be able to pass
through enough planes to satisfy the event trigger condition. It is important to understand
the effect of the event trigger and detector geometry in order to properly interpret the data
that are produced by CRIPT.

For this study, 400000 cosmic ray muons were simulated with (x,y) random positions
just above the detector, and initial energies given by the CRY particle generator package
[5]. Only events where the muon passed through all of the UT and LT planes were kept,
resulting in a total of 96002 events. Figure 5.1 shows the comparison of bar occupancies
(that is, how often the specific bar is included in a reconstructed track) between data and
simulation for plane 8. As can be seen, both data and simulation share a very similar
distribution shape, including the tapered edges and flat-top between bars 30 and 90 (the
full set of UT and LT occupancy plots are included in Appendix D). The tapering in the
occupancy distribution is an example of an acceptance effect, as the edge bars in plane 8
(as well as in planes 6,7, and 9) have a truncated distribution of track angles that can reach
those edge bars and still result in a read-out trigger. As such, a change of read-out trigger,
for example requiring hits in all twelve planes, would affect the shape of the resultant
occupancy plots.

Similarly, the distributions of track angles reconstructed in the Upper and Lower Trackers
and be compared with the simulation predictions. Figure 5.1 shows the zenith angle dis-
tribution in the x coordinate, for both the data and simulation. The spiky features in these

DRDC Ottawa CR 2013-127 11



Lower Tracker 6, track distribution (data) Lower Tracker 6, track distribution (simulation)
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Figure 9: Comparison of 0, distributions for reconstructed track angles between data (a)
and simulation (b) for plane 8.

plots are due to tracks that only had isolated one-pulse hits. With the fixed positions of
the bars, these tracks will be reconstructed at discrete angles, resulting in that sub-category
of tracks to all be forced into the same angular bin. The overall shape and extent of the
distributions is again due to the geometric acceptance of the detector. As can be seen from
Figs. and , there are no gross defects found between these comparisons of the expected and
observed distributions.

5.2 Momentum estimate

A novel aspect of the CRIPT detector is the inclusion of a spectrometer to estimate the
momentum of the through-going cosmic ray muons. This spectrometer relies on two thick
steel plates to introduce a measurable amount of multiple-scattering, and the particle mo-
mentum can then be inferred from that scattering [6]. The momentum information will then
be used to improve the reconstructed images. It is therefore important to ensure that the
momentum estimate is functioning correctly. A good method for validating the momentum
estimates is to use the Monte Carlo simulation to compare the estimated muon momentum
with the momentum known from the simulation input.

Figure 10 shows the correspondence between the simulated and reconstructed momenta for
the 400000 event dataset described above (note the log scale for the colour scale). Only
events where all twelve planes recorded hits (58363 events in total) are passed to the mo-
mentum estimate, and 15017 of those events (or 25.7%) successfully returned a momentum
estimate. There is a obvious proportionality between the simulated and reconstructed mo-
menta with a correlation factor of 0.425, although the estimated reconstructed momenta
appears to be biased towards higher momenta. Likewise, Fig. 11a shows a histogram of
the percent difference between the simulated and reconstructed momenta. Although the
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Likelihood res=0.24 (total events=58363, reconstructed=16878, correlation=0.425)
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Figure 10: Comparison between the simulated and reconstructed muon momentum (note
the log colour scale).

Gaussian in Fig. 1la does not provide a very good fit, it does give a rough estimate of
about 48% for the reconstructed momentum resolution.

Finally, it is also interesting to investigate the performance of the momentum estimate as
a function of simulated momentum. Figure 11b shows percentage of events that return
momentum estimates as a function of simulated momentum. Above about 1 GeV, the
number of events that successful return a momentum estimate drops off sharply. This is the
expected performance of the reconstruction algorithm, as the multiple-scattering of high-
momentum muons is not as pronounced as low-energy scattering and it can be difficult to
accurately measure the scattering angles.

6 Conclusion

This study primarily investigated the optimal operating parameters for the CRIPT detector.
Guided mainly by the goal of minimizing the hit resolution, it is determined that the PMT
set-voltage of 900V and ADC threshold of 50 provide the optimal performance.

Secondly, a simple Monte Carlo simulation study was performed to investigate the geo-
metric acceptance of the CRIPT detector and to validate the momentum estimate imple-
mentation. In both cases, the detector and the analysis algorithms were found to perform
as expected.
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Figure A.1: Summary plots of resolutions and efficiencies as a function of set-voltage for
the Lower Tracker.
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Annex B: Resolution and efficiency plots as a
function of voltage
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Figure B.2: Efficiency measurements for Plane 4
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Figure B.4: Efficiency measurements for Plane 5
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Figure B.11: Resolution measurements for Plane 9
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Figure B.15: Resolution measurements for Plane 11
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P11 Efficiency (HV=840V)
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Figure B.16: Efficiency measurements for Plane 11
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Annex C: Resolution map plots
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Plane 4 Resolution Map (HV=900V, TH=120) Plane 5 Resolution Map (HV=900V, TH=120)
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Figure C.1: Lower tracker resolution maps
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Plane 8 Resolution Map (HV=900V, TH=120) Plane 9 Resolution Map (HV=900V, TH=120)

20 40 60 80 100 120 140 160 180
X (cm)

20 40 60 80 100 120 140 160 180
X (cm)

(b) Plane 9

Plane 11 Resolution Map (HV=900V, TH=120)

(a) Plane 8

Plane 10 Resolution Map (HV=900V, TH=120)

40 60 80 100 120 140 160 180
X (cm)

(c) Plane 10 (d) Plane 11

Figure C.2: Upper tracker resolution maps
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Annex D: Occupancy plots for data and
simulation
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Plane 4: bar occupancy (data)
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Figure D.1: Occupancy plots for the Lower Tracker (data and simulation).
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Figure D.2: Occupancy plots for the Lower Tracker (data and simulation).

DRDC Ottawa CR 2013-127

45



46

This page intentionally left blank.

DRDC Ottawa CR 2013-127



Annex E: Reconstructed track theta plots for
data and simulation
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Lower Tracker 6, track distribution (data)

Lower Tracker 6, track distribution (simulation)
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Figure E.1: Lower Tracker reconstructed track 6,..,) distributions.
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Upper Tracker 6, track distribution (data) Upper Tracker 6, track distribution (simulation)
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Figure E.2: Upper Tracker reconstructed track 6., distributions.
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