

Notes on the Conversion of the
Tyche Simulation Engine from Visual
Basic 6.0 to Visual C#.NET
Tyche 3.0 Development Project

Terry Restoule
Contractor, LeverageTek IT Solutions

136 Lewis Street, Suite 1
Ottawa, ON K2P 0S7
Contract Project Manager: Mark Provenzano, 613-680-2933
PWGSC Contract Number: W7714-3810
CSA: Cheryl Eisler, 613-947-9796

Defence R&D Canada

Centre for Operational Research and Analysis

Maritime Operational Research Team
Maritime and Air Systems Section

DRDC CORA CR 2013–156
September 2013

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor
and the contents do not necessarily have the approval or endorsement of the Department of National
Defence of Canada.

Notes on the Conversion of the Tyche
Simulation Engine from Visual Basic 6.0 to
Visual C#.NET
Tyche 3.0 Development Project

Terry Restoule
Contractor

Prepared By:
Terry Restoule
LeverageTek IT Solutions
136 Lewis Street, Suite 1
Ottawa, ON
K2P 0S7
Contractor's Document Number: N/A
Contract Project Manager: Mark Provenzano, 613-680-2933
PWGSC Contract Number: W7714-3810
CSA: Cheryl Eisler, 613-947-9796

Defence Research and Development Canada – CORA
Contract Report
DRDC CORA CR 2013-156
September 2013

IMPORTANT INFORMATIVE STATEMENTS

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor
and the contents do not necessarily have the approval or endorsement of the Department of National
Defence of Canada.

Template in use: template-july2013-eng_V.03.01.dot

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

DRDC CORA CORA CR 2013-156 Page 1

Notes on the Conversion of the Tyche Simulation
Engine from Visual Basic 6.0 to Visual C#.NET

Tyche 3.0 Development Project

Prepared By:
Terry Restoule
LeverageTek IT Solutions
136 Lewis Street Suite 1, Ottawa, ON, K2P 0S7
Contract Number: W7714-3810
Contract Scientific Authority: Cheryl Eisler, Maritime Operational Research Team, 613-947-9796

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and
the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Version 4.0
Latest Revision
October 1, 2013

Page 2 DRDC CORA CR 2013-156

RECORD OF AMENDMENTS

Amendment
No.

Entered By Revisions Date

1 Terry Restoule Original Version Mar 19, 2013

2 Terry Restoule Response to comments May 15,2013

3 Terry Restoule Response to comments July 31, 2013

4 Cheryl Eisler Final publication edits October 1, 2013

DRDC CORA CORA CR 2013-156 Page 3

ABSTRACT

The objective of this work was to redevelop the Tyche Simulation Engine software using the integrated
development environment (Visual C#.NET) recommended in a preceding technical evaluation. Data
structures were transformed to reflect the performance results found during the technical evaluation. The
software was directly translated to allow the new system to be easily tested in parallel with the original
Visual Basic code. Once the new software produced output consistent with the Visual Basic version, the new
code was then restructured to improve maintainability. The redeveloped code ran approximately twice as
fast as the Visual Basic version during testing.

RÉSUMÉ

W Les travaux effectués avaient pour but la refonte du moteur logiciel de simulation Tyche à l’aide de
l’environnement de développement intégré recommandé dans une évaluation technique précédente, c’est-à-
dire Visual C#.NET. Nous avons revu les structures de données en fonction des performances observées dans
l’évaluation technique. Le logiciel a été porté directement, pour qu’on puisse comparer facilement le nouveau
système en parallèle avec le code Visual Basic (VB) d’origine. Une fois que le nouveau logiciel a produit des
résultats identiques à ceux de la version VB, nous avons restructuré le code C# pour en simplifier les
modifications ultérieures. Après redéveloppement, les essais ont révélé que ce code roule à peu près deux
fois plus vite que la version VB.

Page 4 DRDC CORA CR 2013-156

EXECUTIVE SUMMARY

The Tyche Simulation Engine and Graphical User Interface (GUI) programs were developed using Visual Basic
6.0 (SP6), which is no longer supported by Microsoft. To determine a successor to Visual Basic, a number of
commercially available and open source programming languages and software packages were evaluated.
Microsoft Visual C#.NET (C#) was selected to be used in the redevelopment effort.

During the technical evaluation, it was found that the class and collection object approach with respect to the
internal data had performance drawbacks and it was decided to store the data in structures (structs),
dynamic arrays, and lists as appropriate.

The code was translated as directly as possible to allow the new system to be easily tested in parallel with
the older one. The new system would be considered functional when it produced output identical to the old
one on a specific set of test cases.

Once the new system was found to be functional, the performance needed to be improved. This was done by
removing extraneous table lookups. It was also decided that the code would be restructured to remove
unnecessary local variables, and to directly reference and update the static array structures as needed. The
restructuring was also intended to improve maintainability of the code.

This report describes the approach taken toward the redevelopment of the Simulation Engine, the structure
of the new application (new class files); the structure of the new data environment (the replacement of the
class objects used in the Visual Basic version with the corresponding dynamic arrays in C#); and how it was
transformed and the ways in which the code was restructured. Timing data is also presented to show a
quantitative performance improvement.

Running test simulations with the same input and parameters, the new C# Simulation Engine software runs
in slightly less than half the time of the Visual Basic version.

DRDC CORA CORA CR 2013-156 Page 5

SOMMAIRE

Le moteur de simulation Tyche et l’interface graphique connexe ont été développés en Visual Basic 6.0 SP6,
un environnement pour lequel Microsoft n’offre désormais plus aucun soutien technique. Pour choisir son
successeur, de nombreux produits commerciaux, langages de programmation et progiciels en source ouverte
ont été évalués. En fin de compte, Microsoft Visual C#.NET (C#) a été jugé l’environnement se prêtant le
mieux au redéveloppement prévu.
L’évaluation technique a révélé que la gestion des données internes par classes et collections d’objets
entraînait une lenteur indue à l’exécution; le choix s’est donc plutôt porté vers l’utilisation de structures de
données, de tableaux dynamiques et de listes, selon la méthode la mieux appropriée.
Le logiciel a été porté d’un langage à l’autre aussi directement que possible, pour qu’on puisse comparer
facilement le nouveau système en parallèle avec le code d’origine. On a décidé de ne juger le nouveau
système fonctionnel qu’une fois qu’il produisait à partir d’une série précise de données d’essai des résultats
identiques à la version précédente.
Une fois fonctionnel, il a ensuite fallu en optimiser l’exécution, tout d’abord en éliminant les recherches
inutiles dans les tableaux. Nous avons aussi restructuré le code pour éliminer les variables inutiles et pointer
directement aux structures et tableaux de données statiques, tant pour la lecture que l’écriture. Cette
restructuration visait aussi à simplifier les modifications ultérieures au code.
Le rapport décrit la démarche adoptée pour redévelopper le moteur de simulation, la structure de la nouvelle
application (les nouvelles classes), les nouvelles structures de données internes (le remplacement des objets
utilisés en VB par les tableaux dynamiques de C#), et de façon générale comment le code a été transformé
et restructuré. Le rapport présente aussi les résultats des essais de performance, afin de chiffrer
l’optimisation du rendement obtenue.
Dans les simulations d’essais effectuées avec les mêmes données et paramètres, le nouveau moteur de
simulation C# a exécuté les choses un peu plus de deux fois plus vite que la version Visual Basic.

Page 6 DRDC CORA CR 2013-156

TABLE OF CONTENTS

1. INTRODUCTION ... 7
2. REDEVELOPMENT METHODOLOGY .. 7
3. APPLICATION ARCHITECTURE .. 9
4. THE TRANSFORMED DATA ... 15
5. CODE OPTIMIZATION AND RESTRUCTURING ... 18
6. THE TEST PLATFORM .. 19
7. TESTING AND TEST RESULTS .. 19
8. CONCLUSIONS .. 20

Appendix A - Test Logs .. 21

DRDC CORA CORA CR 2013-156 Page 7

1. INTRODUCTION

The Tyche Simulation Engine and Graphical User Interface (GUI) programs were developed using Visual Basic
6 (SP6), which is no longer supported by Microsoft. A performance-based technical language selection
process1 recommended that Microsoft Visual C#.NET (C#) should be used to redevelop the software.

The technical evaluation also demonstrated that performance improvements could be obtained by moving
away from dynamic class and collection objects in favour of structures and dynamic arrays. These changes
were incorporated into the new system.

Once a version of the new simulation engine successfully could produce output that agrees with the VB6
version, the code would be re-structured for better clarity and maintainability.

2. REDEVELOPMENT METHODOLOGY

Due to the complexity of the model's internal algorithms, it was decided to translate the code as directly as
possible. Direct translation would allow the new version of the application to be more easily tested side by
side with the old version, and would simplify the tracing and correction of problems. It would also minimize
the chances of misinterpretation of the previous version's processing code.

The elimination of collections of class objects meant that class files similar to the .cls files in the Visual Basic
version would not have to be created. In their place, a new TycheData class was created containing the data
structures for the various dynamic arrays and lists needed. A structure (struct) was defined for each of the
class objects to be replaced. These structures contained fields based on the properties of their corresponding
class objects. Where a class object contained a collection of objects in the past, a new array field of the
appropriate structure type was included. The new TycheData class also contained definitions for all publicly
shared variables; along with past class object method code that was still required.

Most of the C# code methods retained the names and calling structures of their corresponding functions and
subroutines in the VB6 version. Variables in the C# version were defined with the same names as the class
object variables used locally within the Visual Basic code. These variables were defined to be of the
replacement structure defined in the TycheData class. For example, in Visual Basic, a local variable
"thisAsset" would be declared as:

thisAsset As clsAsset

In C#, the corresponding variable would be declared as:

TycheData.Asset thisAsset

This approach allowed the new version to retain the code structure of the previous version to a large extent.

1 Eisler, C. (2012), Tyche 3.0 Development: Comparison of Development Environments for a Monte Carlo Discrete Event
Simulation (MCDES), (DRDC CORA TM 2012-231), Defence Research and Development Canada.

Page 8 DRDC CORA CR 2013-156

The representation of data in structures rather than classes presented its own challenges. One of the
consequences of using a structure was that field values on a record could not be passed by reference.
Whenever a field value had to be passed into a routine and updated, a variable had to be declared and then
loaded with the data from the structure. The new variable (or field value) could be passed by reference.
Once the modified value was returned from the method, the global structure item would have to be updated
with the contents of the local variable that had been used.

The code was translated and tested in stages. The code necessary to initialize the processing environment
was created first. This included the handling of command line parameters, reading from and writing to the
registry, variable initialization and the loading of input data.

The code used to generate the statistical output was translated next because the data analysis was a self-
contained process. In comparison with the main iteration code, the statistical analysis code was relatively
straightforward, and much was learned about the mechanics of how best to translate the code. Once the
statistical analysis code was ready, it was tested by having it interpret simulation output data created by the
Visual Basic application to produce comparable statistics. During this testing, errors were found in the Visual
Basic code and the C# code was corrected to address these errors.

The main iteration processing code was the last code to be translated. This allowed it to take advantage of
all that had been learned in the translation of the other code. In order to verify the accuracy of the code, the
new version of the engine had to be able to create output that was identical to the output produced by the
Visual Basic version running the same input data with the same run parameters.

As with the statistical analysis, bugs in the Visual Basic code were found from time to time. Since the output
from the C# application had to be identical in order to verify processing accuracy, the C# code had to be
"broken" to match the output of the old code. When these situations occurred, the correct code was left in
as comments and further comments were added to the code so that the C# code could be easily fixed at a
later date (i.e., in the next task authorization).

DRDC CORA CORA CR 2013-156 Page 9

3. APPLICATION ARCHITECTURE

The new C# application's code exists across 12 code classes. The following table identifies each of these
class files and describes contents relative to the Visual Basic version.

Table 1: Class Files with Descriptions.

Class File Name Description
DataAnalysis.cs This class contains the logic necessary to produce the run statistics analysis

(modDataAnalysis.bas). It also contains the data structures equivalent to
clsDataAnalysisAsset.cls, clsDataAnalysisLevel.cls and clsDataAnalysisPhase.cls.

Logging.cs This class produces all of the messages written to the application log, the XML file and
the console screen (modLogging.bas).

MathProcs.cs This class is equivalent to modMathFunction.bas. The routines used in the Visual
Basic version to determine Maximum and Minimum values were dropped in favour of
the C# intrinsic functions.

RandomProcs.cs This class is equivalent to modRandom.bas.
RegAssets.cs This class is equivalent to modAssetsRegistration.bas.
RunAdmin.cs Contains the code from modSubmitJob.bas and modSystem.bas.
RunFileIO.cs This class is equivalent to modFileIO.bas with the following exceptions:

 The CountSeparator routine was no longer needed and was removed;
 The family of AddElementToArray overloads were added

SelAssets.cs This class is equivalent to modAssetsSelection.bas
SimSetup.cs Contains the code from modSimulationSetup.bas and modSimulationRun.bas
SimXML.cs This class is equivalent to modSimulationInstance.bas.
TycheData.cs See section 4 for details.
TycheMain.cs Contains the code from modMain.bas and modCommandLine.bas.

Due to the direct translation approach used, most of the classes mentioned in the table above closely
resemble their Visual Basic predecessors. The notable exceptions are SimSetup.cs, SelAssets.cs and
RegAssets.cs. These classes contain methods based on long and repetitive Visual Basic subroutines that
were restructured to simplify the code and enhance its maintainability.

In SimSetup.cs, the GenerateEvents method which is analogous to the GenerateEvents subroutine in the
Visual Basic modSimulationSetup.bas, was a single large routine. Its processing was simplified by moving
portions of its code to asset-based and scenario-based versions of the GenScheduled and GenRandom
methods. These methods, in turn, call other new, smaller methods intended to make the code more
manageable. The following call diagram illustrates how these methods are inter-related.

Page 10 DRDC CORA CR 2013-156

Figure 1: GenerateEvents Call Diagram2

Similarly, the ScheduleAssets method is equivalent to the ScheduleAssets subroutine in the Visual Basic
module modSimulationRun.bas. Its processing was also spread across several new methods to improve code
manageability. These new methods included UpdateAllAssetActivity, ProcessScenarioEvent and two methods
addressing asset event processing depending upon whether or not the asset has future events. The following
call diagram illustrates how the ScheduleAssets method is now structured.

2 The author would like to thank Cheryl Eisler for the initial development of the call diagrams and the entity relationship
diagram in this report.

DRDC CORA CORA CR 2013-156 Page 11

Figure 2: ScheduleAssets Call Diagram

In SelAsset.cs, the AssignAssets method is analogous to the AssignAssets subroutine in the Visual Basic
module modAssetsSelection.bas. In the interest of maintainability, the processing in the AssignAssets
method was broken into a set of helper methods. The new methods were created in such a way as to
maintain the original structure of the AssignAssets routine.

At the beginning of the AssignAssets method, array initialization is performed by two new methods. There
are also separate initialization methods for scenario and asset events.

In the main processing loop, methods are called to determine which assets are available for selection and to
evaluate those assets for selection. New methods were also created to contain other distinct portions of
processing. These methods initialize processing at a new layer, check scoring thresholds, setup for
reprocessing at a previous layer, check for redundant processing, remove unused external assets and verify
essential assets. New methods also were created to set unmatched capability arrays and to store capabilities
met by the assets.

Several methods were created to encapsulate processing that previously had been duplicated throughout the
routine. These include methods to add to capability demand, to abandon selected assets and to prepare for
a new asset search.

The call diagram on the following page illustrates how the asset assignment process is now structured.

Page 12 DRDC CORA CR 2013-156

Figure 3: AssignAssets Call Diagram

DRDC CORA CORA CR 2013-156 Page 13

In RegAssets.cs, the RegisterSelectedAssets method is analogous to the RegisterSelectedAssets subroutine in
the Visual Basic module modAssetsRegistration.bas. As with the methods mentioned in SimSetup.cs and
SelAssets.cs, the RegisterSelectedAssets method was restructured in the interest of maintainability.

A set of new methods were created to encapsulate discrete portions of processing while allowing the original
structure of the RegisterSelectedAssets method to be preserved. The following is a list of the major new
methods:

 FindReplacementAssets
 AddAssetToCheckedAssets
 AddReplacementAssetToAssignedAssets
 RegisterAssetToEssentials
 UpdateEssentialAssetDates
 RemoveCurrentEventAssetsFromTheatre
 UpdateReplacedAssetAssignment
 UpdateBumpedAssetFutureEventsCurrentActivity
 CheckFollowOnEvents

The call diagram on the following page illustrates how RegisterSelectedAssets is now structured.

Page 14 DRDC CORA CR 2013-156

Figure 4: RegisterSelectedAssets Call Diagram

DRDC CORA CORA CR 2013-156 Page 15

4. THE TRANSFORMED DATA

Where collections of class objects were used in the Visual Basic version of the simulation engine, dynamic
arrays of structures are now used in the C# version. Each of the dynamic arrays was based on structures
derived from the properties of their respective Visual Basic class objects. A set of public static arrays of each
of these structures were then created in a central data repository, populated and manipulated throughout the
course of the simulation processing. A single method "GetElementIndex" was created to retrieve the index of
the record required from a named array. There were other functions for array manipulation, as well as a
number of new functions that replaced the class methods in Visual Basic.

The table on the following page describes how the C# structures map back to their Visual Basic counterparts.
The new global arrays are also identified.

Not all of the arrays and collections used in the Visual Basic version were defined globally. In the following
table, the Visual Basic structures are defined globally except where indicated.

Refer to the notes following the table for further information regarding the implementation in C#.

Table 2: Class Object Mapping.

Visual Basic C#

Class Object Collection Structure Definition Static Array(s)
clsAsset.cls arrAssets,

arrExternalAssets
Asset arrAssets, arrExternalAssets

clsAssignedAsset.cls arrAssignedAssets AssetAssignment arrAssetAssignments
clsAssetType.cls colAssetTypes AssetType arrAssetTypes
clsBase.cls colBases Base arrBases
clsBaseDistance.cls colBaseDistances BaseDistance arrBaseDistances
clsBumpData.cls colBumpdata (in

clsAssetType)
BumpData arrBumpData

clsCapability.cls colCapabilities Capability arrCapabilities
clsCapDem.cls colCapDems (in clsLevel

and clsPhase)
CapDem arrCapDems

clsCapSup.cls colCapSups (in
clsLevel)

CapSup arrCapSups

clsConstraint.cls colConstrainedValues
(in clsAsset),
colConstraints (in
clsLevel)

Constraint Constraints (in Level)

clsDataAnalysisAsset.cls arrAssets (in
modDataAnalysis)

DA_Asset arrAssets

clsDataAnalysisLevel.cls arrLevels (in
clsDataAnalysisAsset)

DA_Level arrLevels

clsDataAnalysisPhase.cls arrPhases (in
modDataAnalysis)

DA_Phase arrPhases

clsDistance.cls colDistances,
colBaseDistances (in

Distance arrDistances

Page 16 DRDC CORA CR 2013-156

Visual Basic C#
Class Object Collection Structure Definition Static Array(s)

clsBase)
colDistances (in
clsTheatre)

clsEvent.cls colEvents (in
modSimulationSetup)

Event lstEvents

clsFleet.cls colFleets Fleet arrFleets
clsFleetMember.cls colFleetMembers (in

clsFleet)
Member arrMembers

clsLevel.cls Levels (in
clsAssetType),
Levels (in
clsMultiLevelConstraint)

Level arrLevels

clsLevelHistory.cls WholeHistory (in
clsAsset)

LevelHistory arrLevelHistories

clsMultiLevelConstraint.cls Constraints (in
clsAssetType)

MultiLevelConstraint MultilevelConstraints
(Dictionary in Asset),
MultilevelConstraints (in
AssetType)

clsPhase.cls Phases (in clsScenario) Phase arrPhases
clsScenario.cls colScenarios Scenario arrScenarios
clsScenarioType.cls colScenarioTypes ScenarioType arrScenarioTypes
clsScoringCriterion.cls ScoringCriteria (in

clsLevel),
ScoringCriteria (in
clsPhase)

ScoringCriterion arrScoringCriteria

clsTheatre.cls colTheatres Theatre arrTheatres

1. The arrays (arrAssets, arrLevels, arrPhases) based on the structures DA_Asset, DA_Level and
DA_Phase are defined locally within the DataAnalysis.cs and are NOT available globally.

2. lstEvents is a C# intrinsic List structure and not an array. The List structure was used so that the
events could be efficiently maintained in start date order.

On the next page is the final Entity/Relationship Diagram that illustrates how the data is used by the
Simulation Engine. The entities (boxes in the diagram) represent the various structures defined in the
program. The relationships (lines in the diagram) identify how the various entities work together. The
connectors at each entity identify whether the relationship is one-to-one or one-to-many.

DRDC CORA CORA CR 2013-156 Page 17

Figure 5: Tyche Simulation Engine Entity/Relationship Diagram

Page 18 DRDC CORA CR 2013-156

5. CODE OPTIMIZATION AND RESTRUCTURING

Once the C# version was largely functional, it became clear that the performance could be improved. That
improvement was accomplished through the following strategies:

1. Removal of extraneous table look-ups.
2. The replacement of temporary working variables with direct references and updates to the global

arrays.
3. Improved code re-use through shorter methods, eliminating duplication and making future upgrades

easier.

In addition, the calling of many methods was simplified through variable scoping. Many variables that had
been defined local to a method and passed to other methods through parameters were redefined as global
within the class. This re-scoping necessitated the creation of a new method called ResetClassVariables that
ensured that the class level variables were reinitialized properly for the processing of each event. A version
of this method was added to both SelAssets.cs and RegAssets.cs.

The classes central to the processing of the simulation (SimSetup.cs, SelAssets.cs, RegAssets.cs) were
restructured to improve the maintainability of the code.

 In SimSetup.cs, the GenerateEvents and ScheduleAssets methods was simplified by splitting the
code into sets of helper methods.

 In SelAssets.cs, the AssignAssets method was similarly simplified through the creation of a set of

helper methods. The general structure of the original method was preserved. The method
BuildAvailableArray was also simplified.

 The RegisterSelectedAssets method in RegAssets.cs was simplified by the creation of a set of helper

methods. The general structure of the original method was preserved.

DRDC CORA CORA CR 2013-156 Page 19

6. THE TEST PLATFORM

Final tests runs for all of the programs were performed on an Acer Aspire M3910 with a 3.2 GHz Intel Core
i5-650 CPU (4 MB L3 cache, 3.20 GHz, DDR3 1333 MHz) with the Intel H57 Express Chipset, and 6 GB of
RAM.

The test computer ran Windows 7 Home Premium (64 bit), Service Pack 1.

7. TESTING AND RESULTS

Table 3 summarizes the results of the test runs of the simulation performing 1000 iterations of a seven year
simulation period. Two versions of the C# program were used. The optimized version was built with the
"Optimize code" option checked on the "Build" tab of the project's Properties. This option was unchecked
when the "Not Optimized" version was built.

Table 3: Average iteration run time results.

Platform Test Description Results

Visual Basic 6

Full Simulation Run 2 hours 42 minutes 28 seconds
Average Time/Iteration 9.748 seconds
Statistics Generation 42 seconds

Visual C# (Not
Optimized)

Full Simulation Run 1 hour 17 minutes 42 seconds
Average Time/Iteration 4.622 seconds
Statistics Generation 21 seconds

Visual C#
(Optimized)

Full Simulation Run 1 hour 13 minutes 18 seconds
Average Time/Iteration 4.398 seconds
Statistics Generation 20 seconds

The optimized version of the C# program runs the simulation in 45% of the time taken by the Visual Basic
version.

It is recommended that the "Optimize code" option should be checked on the "Build" tab of the project's
Properties because the optimization does produce slightly faster code.

Page 20 DRDC CORA CR 2013-156

8. CONCLUSIONS

Though the new C# version of the simulation engine showed a significant improvement in processing speed
over the Visual Basic-based one, the speed improvement was not as dramatic as the results in the
technology evaluation predicted. The better speed in the evaluation program may have been due to the
simplicity of the structures used. The structures used in the simulation engine are larger and more complex.

Whenever an array is resized, a new copy with altered size is allocated and then the data in the current array
is then copied to the new array. For large arrays, this overhead can be significant. In the simulation engine,
several of the structures that are the basis of arrays contain fields which are themselves arrays. When any
of these array fields are resized, the overhead is compounded. Further investigation will have to be
conducted to determine what the actual overhead of array resizing is and how best to address it.

Moving forward, a number of issues with the code must be addressed. They include:

 During the testing of the C# version a few bugs were found in the Visual Basic code. Rather than fix
the code in the old system, the C# code was modified so that its output would agree with the Visual
Basic output. These changes must now be removed.

 "Base Distances" have been kept separate from "Distances". This isn't necessary and Base Distances
should be handled simply as distances.

 The console window used for the main simulation program and the output zipping operation should
be removed and any lingering issues with Dashboard interaction must be resolved.

DRDC CORA CORA CR 2013-156 Page 21

APPENDIX A - TEST LOGS

When a simulation is run, an XML file containing the run parameters and log messages is produced.

The following are the log results for each of the test runs used in Section 7. The date and time stamp on the
log messages enable the user to calculate the total time required to complete the simulation run.

Visual Basic

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This is an Extensible Markup Language file (XML). This template is to be used to run
an unattended simulation on a Tyche input file (tyi). Execute Tyche with the path to this
XML file as the argument. Do not make changes above this line. -->
<execution command="run">
 <input-file>c:\tyche\test data\dummy datav17.tyi</input-file>
 <fleet>1a</fleet> <!-- Choose only one fleet for the simulation. (case sensitive) -->
 <iterations>1000</iterations> <!-- Iterations must be a positive integer. -->
 <years>7</years> <!-- Years must be a positive integer between 1 and 80 inclusive. -->
 <!--<seed>-2147</seed>--> <!-- OPTIONAL. Override the simulation random seed value. -->
 <scenario-types>
 <!-- Choose at least one scenario type. (case sensitive) -->
 <scenario-type>3c4d</scenario-type>
 <scenario-type>1a2b</scenario-type>
 </scenario-types>
 <!-- OPTIONAL. Specify a name for the output directory.
 NOTE: Existing output files will be overwritten. Omit this tag to generate the
 result directory automatically as a subdirectory of the input file's location. -->
 <result-directory>c:\tyche\test data\1a 130429 02H59S21</result-directory>
 <generate>
 <apply-specialized-lift-capability-rules>True</apply-specialized-lift-capability-rules>
 <!-- Choose the types of statistics (asset, scenario and/or capability) to generate. -->
 <asset-statistics>True</asset-statistics>
 <scenario-statistics>True</scenario-statistics>
 <capability-statistics>True</capability-statistics>
 <compute-risk>True</compute-risk>
 </generate>
 <log date="2013-04-29" time="02:59:21">Saved simulation parameters to new XML file</log>
 <log date="2013-04-29" time="02:59:22">Simulation Starting: My unique ID is Node USSW
792</log>
 <log date="2013-04-29" time="05:41:50">Simulation Completed</log>
 <log date="2013-04-29" time="05:41:50">Statistics Generation Starting</log>
 <log date="2013-04-29" time="05:41:50">Built the assets used for collection and calculation</log>
 <log date="2013-04-29" time="05:41:51">Built the phases used in collection and calculation</log>
 <log date="2013-04-29" time="05:41:53">Built the data structure used in collection and calculation
of risk</log>

Page 22 DRDC CORA CR 2013-156

 <log date="2013-04-29" time="05:42:29">Collected data from output file</log>
 <log date="2013-04-29" time="05:42:29">Completed Asset Statistics Generation</log>
 <log date="2013-04-29" time="05:42:29">Completed Scenario Statistics Generation</log>
 <log date="2013-04-29" time="05:42:29">Completed Capability Statistics Generation</log>
 <log date="2013-04-29" time="05:42:32">Completed Risk Spreadsheet Update</log>
 <log date="2013-04-29" time="05:42:32">Statistics Generation Completed</log>
 <log date="2013-04-29" time="05:42:39">TYO file successfully zipped</log>
 <log date="2013-04-29" time="05:42:39">Run Finished</log>
</execution>

DRDC CORA CORA CR 2013-156 Page 23

Visual C#.Net (Not Optimized)

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This is an Extensible Markup Language file (XML). This template is to be used to run
an unattended simulation on a Tyche input file (tyi). Execute Tyche with the path to this
XML file as the argument. Do not make changes above this line. -->
<execution command="run">
 <input-file>c:\tyche\test data\dummy datav17.tyi</input-file>
 <fleet>1a</fleet> <!-- Choose only one fleet for the simulation. (case sensitive) -->
 <iterations>1000</iterations> <!-- Iterations must be a positive integer. -->
 <years>7</years> <!-- Years must be a positive integer between 1 and 80 inclusive. -->
 <!--<seed>-2147</seed>--> <!-- OPTIONAL. Override the simulation random seed value. -->
 <scenario-types>
 <!-- Choose at least one scenario type. (case sensitive) -->
 <scenario-type>3c4d</scenario-type>
 <scenario-type>1a2b</scenario-type>
 </scenario-types>
 <!-- OPTIONAL. Specify a name for the output directory.
 NOTE: Existing output files will be overwritten. Omit this tag to generate the
 result directory automatically as a subdirectory of the input file's location. -->
 <result-directory>c:\tyche\test data\1a</result-directory>
 <generate>
 <apply-specialized-lift-capability-rules>True</apply-specialized-lift-capability-rules>
 <!-- Choose the types of statistics (asset, scenario and/or capability) to generate. -->
 <asset-statistics>True</asset-statistics>
 <scenario-statistics>True</scenario-statistics>
 <capability-statistics>True</capability-statistics>
 <compute-risk>True</compute-risk>
 </generate>
 <log date="2013-03-19" time="18:06:23">Saved simulation parameters to new XML file</log>
 <log date="2013-03-19" time="18:06:37">Simulation Starting: My unique ID is Node IGQX
174</log>
 <log date="2013-03-19" time="19:24:19">Simulation Completed</log>
 <log date="2013-03-19" time="19:24:19">Statistics Generation Starting</log>
 <log date="2013-03-19" time="19:24:19">Built the assets used for collection and calculation</log>
 <log date="2013-03-19" time="19:24:19">Built the phases used in collection and calculation</log>
 <log date="2013-03-19" time="19:24:23">Built the data structure used in collection and calculation
of risk</log>
 <log date="2013-03-19" time="19:24:35">Collected data from output file</log>
 <log date="2013-03-19" time="19:24:35">Completed Asset Statistics Generation</log>
 <log date="2013-03-19" time="19:24:35">Completed Scenario Statistics Generation</log>
 <log date="2013-03-19" time="19:24:35">Completed Capability Statistics Generation</log>
 <log date="2013-03-19" time="19:24:40">Completed Risk Spreadsheet Update</log>
 <log date="2013-03-19" time="19:24:40">Statistics Generation Completed</log>
 <log date="2013-03-19" time="19:24:41">Run Finished</log>
</execution>

Page 24 DRDC CORA CR 2013-156

Visual C#.Net (Optimized)

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This is an Extensible Markup Language file (XML). This template is to be used to run
an unattended simulation on a Tyche input file (tyi). Execute Tyche with the path to this
XML file as the argument. Do not make changes above this line. -->
<execution command="run">
 <input-file>c:\tyche\test data\dummy datav17.tyi</input-file>
 <fleet>1a</fleet> <!-- Choose only one fleet for the simulation. (case sensitive) -->
 <iterations>1000</iterations> <!-- Iterations must be a positive integer. -->
 <years>7</years> <!-- Years must be a positive integer between 1 and 80 inclusive. -->
 <!--<seed>-2147</seed>--> <!-- OPTIONAL. Override the simulation random seed value. -->
 <scenario-types>
 <!-- Choose at least one scenario type. (case sensitive) -->
 <scenario-type>3c4d</scenario-type>
 <scenario-type>1a2b</scenario-type>
 </scenario-types>
 <!-- OPTIONAL. Specify a name for the output directory.
 NOTE: Existing output files will be overwritten. Omit this tag to generate the
 result directory automatically as a subdirectory of the input file's location. -->
 <result-directory>c:\tyche\test data\1a 130429 15H44S32</result-directory>
 <generate>
 <apply-specialized-lift-capability-rules>True</apply-specialized-lift-capability-rules>
 <!-- Choose the types of statistics (asset, scenario and/or capability) to generate. -->
 <asset-statistics>True</asset-statistics>
 <scenario-statistics>True</scenario-statistics>
 <capability-statistics>True</capability-statistics>
 <compute-risk>True</compute-risk>
 </generate>
 <log date="2013-04-29" time="15:44:32">Saved simulation parameters to new XML file</log>
 <log date="2013-04-29" time="15:44:33">Simulation Starting: My unique ID is Node PDIC
205</log>
 <log date="2013-04-29" time="16:57:51">Simulation Completed</log>
 <log date="2013-04-29" time="16:57:51">Statistics Generation Starting</log>
 <log date="2013-04-29" time="16:57:51">Built the assets used for collection and calculation</log>
 <log date="2013-04-29" time="16:57:51">Built the phases used in collection and calculation</log>
 <log date="2013-04-29" time="16:57:56">Built the data structure used in collection and calculation
of risk</log>
 <log date="2013-04-29" time="16:58:06">Collected data from output file</log>
 <log date="2013-04-29" time="16:58:06">Completed Asset Statistics Generation</log>
 <log date="2013-04-29" time="16:58:06">Completed Scenario Statistics Generation</log>
 <log date="2013-04-29" time="16:58:06">Completed Capability Statistics Generation</log>
 <log date="2013-04-29" time="16:58:11">Completed Risk Spreadsheet Update</log>
 <log date="2013-04-29" time="16:58:11">Statistics Generation Completed</log>
 <log date="2013-04-29" time="16:58:12">Run Finished</log>
</execution>

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Terry Restoule
136 Lewis Street, Suite 1
Ottawa, ON
K2P 0S7

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

 2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)

in parentheses after the title.)

Notes on the Conversion of the Tyche Simulation Engine from Visual Basic 6.0 to Visual C#.NET:
Tyche 3.0 Development Project

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Restoule, T.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

September 2013

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

28

 6b. NO. OF REFS
(Total cited in document.)

1
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – CORA
101 Colonel By Drive
Ottawa, Ontario K1A 0K2

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 W7714-3810

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

N/A

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

DRDC CORA CR 2013-156

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

The objective of this work was to redevelop the Tyche Simulation Engine software using the
integrated development environment (Visual C#.NET) recommended in a preceding technical
evaluation. Data structures were transformed to reflect the performance results found during the
technical evaluation. The software was directly translated to allow the new system to be easily
tested in parallel with the original Visual Basic code. Once the new software produced output
consistent with the Visual Basic version, the new code was then restructured to improve
maintainability. The redeveloped code ran approximately twice as fast as the Visual Basic
version during testing.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Tyche; Monte Carlo; Discrete Event Simulation; Visual C#; Performance;

