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Abstract …….. 

Laser filaments represent a potentially useful tool in terms of remote and atmospheric 
applications.  Indeed, the high intensity inside the filament core induces nonlinear effects which 
can broaden the spectrum from the ultraviolet to the mid-infrared.  This white light laser could be 
used as an effective counter measure to blind detectors or guide missiles away from the target.  
Moreover, its intensity is sufficiently high to ionize the transparent medium in which it 
propagates.  The ionized atoms and molecules recombine and emit a fingerprint fluorescence, 
characteristic of the ionized elements.  This property of filamentation opens the way for remote 
sensing applications. However, the generation and control of those filaments poses real 
challenges. This report is about the work that has been done at RDDC-Valcartier, in collaboartion 
with Laval University, to design, develop and test an adaptive optics (AO) system to be used with 
a lidar in remote sensing applications. This AO system has been tested to allow initiation of 
filaments as far as 120 m from the lidar laser source. Also, in this work, the influence of 
atmospheric turbulences on the initiation and strength of the filamentation process has been 
studied. 

Résumé …..... 

Des filaments laser représentent un outil utile pour les applications en télédétection et études 
atmosphériques. Les grandes intensités réalisées au coeur des filaments induisent des effets non-
linéaires qui élargissent le spectre lumineux de l’ultraviolet jusqu’au moyen infrarouge. Cette 
lumière blanche pourrait être utilisée à titre de contre-mesure aux fins d’aveugler des détecteurs 
ou pour dévier des missiles de leur cible. De plus, leur intensité est suffisamment élevée pour 
ioniser le milieu transparent dans lequel ils se propagent. Les atomes et molécules ainsi ionisés se 
recombinent en émettant une fluorescence dont la signature est caractéristique des éléments 
ionisés. Cette propriété des filaments laser conduit à diverses applications en télédétection. 
Cependant, la génération et le contrôle de ces filaments posent de sérieux défis. Ce rapport 
concerne les travaux menés au RDDC-Valcartier, en collaboration avec l’Université Laval, dans 
le but de concevoir, développer et tester un système d’optique adaptative (OA) pouvant être 
utilisé avec un lidar dans des applications de télédétection. Lors de tests, ce système OA a permis 
le contrôle du début de la filamentation à une distance aussi grande que 120 m du lidar. Aussi, 
dans ce travail, l’influence des turbulences atmosphériques sur le processus d’initiation et sur 
l’intensité des filaments a été étudiée.  
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Executive summary  

Adaptive optics system for remote sensing applications of 
filamentation  

Jean-François Daigle; Robert Bernier; DRDC Valcartier CR 2011-539; Defence 
R&D Canada – Valcartier; March 2011. 

Introduction or background:  

When propagating in the atmosphere, the non-linear behavior of intense ultrashort laser 
pulses leads to the formation of long plasma channels or filaments with unique properties. 
They represent a potential breakthrough towards the development of atmospheric tools in 
the field of LIDAR remote sensing.  

However, the formation of filaments suitable for atmospheric studies at long distance 
remains an issue. In this document, we report the results of the work that has been done at 
RDDC-Valcartier and Laval University to develop and test an Adaptive Optics (AO) 
system to control the filamentation process. The effects of the atmospheric turbulences on 
the plasma channels are also investigated.  

Results:  

The AO system has been designed, developed and tested. It was experimentally 
demonstrated that the AO system can be used to efficiently deliver focused laser pulses 
and initiate filamentation at distances as large as 120 m, which is in itself a most 
promising accomplishment. 

The capability of the lidar with AO system for remote sensing applications was 
confirmed by detecting fluorescence from the N2 species at the distance of 120 m. The 
fluorescence from the N2 species is the result of multiphoton ionization attributed to the 
high intensity inside the filament core.   

Significance:  

Remote detection and identification of the spatial distribution of atmospheric pollutants 
like NOx, SO2, O3, Hg, Benzene, Toluene, methane or other Volatile Organic Compounds 
(VOC) could be rendered feasible with laser filamentation.  In addition, this white light 
laser could be used as an effective counter measure to blind detectors or guide missiles away from 
their target. 

Future plans:  

Future research will try to verify whether the lidar signal itself from the N2 species could be a 
better signal for monitoring and controlling the quality of the filamentation process.  
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Sommaire ..... 

Adaptive optics system for remote sensing applications of 
filamentation  

Jean-François Daigle; Robert Bernier; DRDC Valcartier CR 2011-539; R & D 
pour la défense Canada – Valcartier; Mars 2011. 

Introduction ou contexte:  

Le comportement non-linéaire dans l’atmosphère d’impulsions laser ultra-brèves et intenses 
résulte en la formation de plasmas en forme de longs filaments. Les propriétés uniques de ces 
filaments amènent la possibilité d’une avancée majeure dans le développement des applications 
du lidar en télédétection. 

Cependant, la formation de filaments utilisables en études atmosphériques à de longues distances 
demeure un défi. Dans le présent document, nous faisons rapport des résultats du travail produit 
au RDDC-Valcartier et à l’Université Laval pour développer et tester un système d’Optique 
Adaptative (OA) devant servir à contrôler le processus de filamentation. Les effets des 
turbulences atmosphériques sur les filaments ont aussi été étudiés.   

Résultats:  

Le système OA a été conçu, développé et testé. Démonstration expérimentale a été faite qu’on 
peut l’utiliser pour focaliser les impulsions laser et causer la formation de filaments à aussi loin 
que 120 m. Ce résultat est en lui-même des plus encourageants. 

La capacité du lidar équipé du système OA pour les applications de télédétection a été confirmée 
par la détection de la fluorescence du N2 à la distance de 120 m. La fluorescence du N2 résulte 
d’un processus d’ionisation à photons multiples causé par la haute intensité dans le filament.   

Importance:  

La détection à distance et la mesure du profil spatial de polluants atmosphériques tels que NOx, 
SO2, O3, Hg, Benzène, Toluène, méthane ou autres Composés Organiques Volatiles 
(COV)  pourrait devenir possible au moyen d’un lidar à filamentation laser. De plus, cette 
lumière blanche pourrait être utilisée à titre de contre-mesure soit pour aveugler des détecteurs ou 
soit encore pour dévier des missiles de leur course. 

Perspectives:  

Dans un futur rapproché, la recherche tentera de montrer si le signal de fluorescence du N2 lui-
même pourrait être avantageusement mis à profit pour suivre et contrôler la qualité du processus 
de filamentation. 
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1 INTRODUCTION 

When propagating in the atmosphere, the non-linear behavior of intense ultrashort laser 
pulses leads to the formation of long plasma channels with unique properties. Their 
discovery [12] awoke the interest of many researchers in the field of non-linear optics to 
pursue atmospheric studies using these structures nowadays called filaments [3,4,5,6]. 
They represent a potential breakthrough towards the development of atmospheric tools in 
the fields of LIDAR remote sensing [7,8,9] and electric discharge triggering/guiding 
[10,11] for instance. 

In the specific field of Lidar remote sensing, it has been claimed that a lidar equipped 
with a spectrometer, analyzing the light backscattered by molecules excited by light 
filaments, via multiphoton ionization, could allow the remote sensing of many types of 
atmospheric pollutants. Several laser based methods, including remote nanosecond laser 
induced breakdown spectroscopy (ns-LIBS) and differential absorption LIDAR (DiAL) 
[12],were proposed to fulfill the requested task. However, numerous drawbacks limited 
the efficiency of these detection techniques. As an example, ns-LIBS provided the 
possibility to simultaneously identify multiple components present in a target but linear 
diffraction limitations at the focal spot annihilated any hopes for remote applications at 
reasonable laser cost and energy. On the other hand, because of its high sensitivity, DiAL 
proved to be very effective for long distance detection but, because it is highly selective, 
multiple or highly tunable laser sources would have been required to identify distinct 
constituents simultaneously. 
 
On the other hand high intensity inside the filament core provides simultaneous detection 
of multiple components present in the target [13,14]. Moreover, due to the non-linear 
behavior of the laser pulse during atmospheric propagation, the technique is less affected 
by the diffraction limitation. In fact, filaments have been observed over several hundreds 
of meters from the laser source [27]. 

Among those contaminants, we could find such molecules or compounds as NOx, SO2, 
O3, Hg, Benzene, Toluene, methane or other Volatile Organic Compounds (VOC) 
[7,8,15]. A review of the situation in the field has been presented in [16]. 

In the atmosphere, the filaments appear as a dynamic equilibrium between Kerr self-
focusing and self-defocusing by the self-generated low-density plasma produced by 
multiphoton/tunnel ionization of the air molecules [2]. Indeed, for a non-uniform 
intensity distribution laser pulse (Gaussian, for example) with peak power higher than the 
critical power for self-focusing, the Kerr effect will act as a non-linear lens that will focus 
the light pulse until its intensity is sufficiently high to ionize the medium in which it 
propagates. Once the plasma is sufficiently dense to counteract the Kerr lens effect, the 
laser pulse will start to defocus. The defocusing nature of the plasma limits and stabilizes 
the light intensity in each of the filaments. In air, the clamped intensity, for laser pulses at 
800 nm, is approximately 5 x 1013 W/cm2 [17,18]. Filamentation intensity clamping 
represents an incredible advantage for atmospheric studies. 
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There are, however, at least two problems to overcome for filaments to be of practical use 
in remote applications. First, there needs to be found a means to control the distance at 
which the onset of the filamentation process will occur. Second, it has been shown that 
the presence of atmospheric turbulences along the propagation path of the laser source 
could be such as to even prevent the filamentation process from occurring [19].  

In this report, an approach using Adaptive Optics (AO) is proposed in order to address 
the problem of controlling the onset of the filamentation process (Section 2). Further, 
some experimental results are presented showing that the detection of atmospheric 
pollutants is indeed possible with such a lidar instrument equipped with the AO beam 
control system (Section 2.4).  

Section 2.4 discusses various applications and their experimental results. Some of these 
results have been published in a peer reviewed paper. A copy of the paper is joined as 
Annex A. 

This report also discusses the results of an experimental study of the effects of 
atmospheric turbulences on the filamentation process (Section 3).  

Section 4 discusses the possibility of using the closed-loop correction of the laser beam 
by the AO system in view of compensating for the effects of atmospheric turbulences. 
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2 THE ADAPTIVE OPTICS BEAM CONTROL SYSTEM 

 

The formation of filaments suitable for atmospheric studies at long distance remains an 
issue; a system to adequately control the onset of filaments at atmospheric-scale distances 
has to be designed.  

The laser pulse intensity at which air ionization, and thus filamentation, could start to 
occur is in the order of 1012 W/cm2 [12]. The distance at which this intensity will be 
reached by a laser pulse can be controlled in various ways: initial laser beam diameter, 
beam shape, beam divergence, pulse duration and pulse chirp. Chirped pulses can be 
obtained by use of either two gratings setups or spatial light modulators [20].  

Rodriguez et al. [21] reported the observation of filamentation processes at vertical 
heights as large as 2 km with proper use of a telescope to vary the beam divergence and 
of different values of negative pulse chirps. The chirp was being varied by moving one of 
the compressor’s gratings with respect to the other in a 2 gratings setup. Jin et al. [22] 
reported controlling precisely the filamentation onset between 7 and 20 meters by varying 
the beam divergence and/or the initial laser intensity. The variation of the beam 
divergence was operated by properly controlling the actuation of a deformable mirror.  

Liu et al. [23] proposed a method to properly control the filaments at long distances that 
combines beam expansion and geometrical focusing. The device consisted of a 5 cm 
diameter convex mirror, whose focal length is 50 cm, and a focusing lens with focal 
length of 100 cm (diameter of 8 cm). The focusing lens was installed on a motorized 
stage, allowing a variable effective focal length. The purpose of the device is to generate 
energetic filaments at a far distance. Distances up to 100 meters were achieved by this 
method. In order to counter the unwanted effects of multi filamentation competition for 
the energy in the reservoir, the pulses’s perturbations, which caused an early collapse of 
the filaments, were stretched by increasing the beam diameter with the convex mirror. 
This process delays the onset of filaments by reducing the self-focusing effects of hot 
spots in the initial spatial intensity distribution. The position and focal length of the 
converging lens is adjusted so that the geometrical focus is much shorter than the non 
linear focus. This means that all the energy contained inside the reservoir is merged 
around the geometrical focusing area where a sudden generation of strong constructively 
interfering filaments occurs. However, as the focusing distance increases, the validity of 
the approximation is not accurate anymore. In fact, because of the limited lens aperture, 
the difference between the self focal and geometrical distances becomes larger for longer 
focal distances and leads to multi-filament competition. In an attempt to increase the 
filamentation onset distance, a new telescope that could further increase the beam 
diameter was designed. 

In a similar approach they called the double-lens setup, Eisenmann et al. [24] report 
results wherein filamentation was made to start at controlled distances between 16 meters 
and 330 meters. In this experiment, the presence or absence of filaments was 
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and CM-PM parallel during the displacement of the translation stage. Therefore, the 
movement of the stage is collinear with the beam output while the segment DM-CM is at 
15 degrees with respect to this axis. 

 

2.2 The AO system 

As stated earlier, the AO system is comprised of a wavefront sensor (WFS) and a deformable 
mirror (DM). Both are operated in a closed loop mode wherein the output from the WFS is used 
as the error signal to be corrected by proper actuation of the DM. 

2.2.1 The Wavefront sensor (WFS) 
The entrance aperture of the wavefront sensor (WFS) is positioned behind a 10 cm 
diameter dielectric wedge (W, fig.1), whose reflecting surface is coated for high 
reflectivity at 800 nm at normal incidence. The pulses’ energy transmitted through the 
other interface is imaged on the WFS detector’s surface. Since the wedge is the last 
optical component before the target, the system’s total aberrations can be measured. 
 
The wavefront sensing device used in these preliminary tests is of type Shack-Hartmann.  
It consists of an array of lenslets (LA) of the same focal length (size of array: 40 x 40, 
dlenslet = 250 μm, flenslet = 14 mm). Each is focused onto a CMOS detector. The local tilt of 
the wavefront across each lens can then be calculated from the position of the focal spot 
on the sensor. Any phase aberration can be approximated to a set of discrete tilts.  Figure 
2 presents the typical response of a Shack-Hartmann detector. By sampling an array of 
lenslets, all of these tilts can be measured and thereafter used to reconstruct the 
wavefront. The local phase shifts are calculated with respect to the Shack-Hartmann’s 
response of a collimated beam without aberration, measured previously and saved in the 
software’s memory. 
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Once the source is collimated, the output is aligned through the WFS. In order to 
facilitate the task, a circular aperture, centered on the beam, is inserted before the WFS to 
reduce the source’s diameter. Using an IR viewer and a specially designed target fitting 
L1’s surface (fig.3), the WFS is placed so that the reduced beam is superimposed on L1’s 
axis. Another specially designed target, centered on L2, is placed on the Shack-
Hartmann’s protective cover. M1 and M2 (fig.3) are then used to align the imaged beam 
along the movement of the translation stage, centered on the target. This procedure can be 
facilitated by superposing a He-Ne laser at 632 nm to the infrared light for a preliminary 
alignment with visible light. 
 
The Shack-Hartmann’s pattern can be viewed using the closed-loop software. The 
reduced beam’s image is then centered on the CMOS camera using the tilting screws 
located on the detector’s side (fig.3). Before going any further, move the translation stage 
to verify that the beam is aligned along its axis: if it is so, the beam should not be 
displaced sidewise. 
 
While performing a phase measurement with the software, the defocus is eliminated by 
adjusting the distance between L1 and L2. In this case, if the source is really collimated 
and all the previous steps have been respected, it will indicate that the WFS is correctly 
aligned. Then, the reference can be measured and stored for the correction of collimated 
beams (See owner’s manual). It is of crucial importance that the calibrated source’s 
diameter be similar to that of the beam to be corrected.  

IMPORTANT: The camera has to be protected at all times by its protective cap or by 
sufficiently dense ND filters. 

 

2.2.4.2 Procedure for the WFS installation 

During the installation of the WFS in the focusing beam expander, the calibrated WFS’s 
alignment must not be modified. The WFS is positioned behind the wedge (W, fig.1) and, 
once again, the specially designed targets used previously and the IR viewer are used. It 
is also strongly recommended to reduce the beam size with a centered circular aperture 
placed just before the WFS.  
  
Once the beam is correctly aligned in the focusing beam expander, the reduced beam is 
centered on L1 using the concentric target. Afterwards, the front part of the WFS has to 
be fixed on the optical table. Then, the imaged point is centered on L2’s target by moving 
the rear of the WFS and the back part is fixed on the table. Unfix the front end of the 
WFS and iterate these adjustments until it is perfectly aligned.  
    
The Shack-Hartmann’s CMOS camera is connected to the laptop via USB to allow 
wavefront analysis using the software. The alignment on the CMOS camera is facilitated 
using the reduced beam. If it is not centered horizontally on the screen, the rear end of the 
WFS can be moved gently. If it is not centered vertically, the alignment of the focusing 
beam expander has to be modified. Once the Shack-Hartmann is aligned along the beam 
axis, the central spot position will no longer change when the translation stage moves 
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longitudinally. The aperture can now be opened to verify that the whole beam fits the 
CMOS sensor correctly. 

IMPORTANT: The camera has to be protected at all times by its protective cap or by 
sufficiently dense ND filters. 

 

2.2.4.3 Procedure for the DM installation 

The deformable mirror is positioned at DM (fig.1). The top of the mirror is indicated by a 
metallic pin in the connector’s socket. Once the mirror is properly installed in the mount, 
it can be connected to the control unit’s cable.  
  
During the alignment, the beam should be centered on the mirror’s surface. For a normal 
incidence scenario, a hole is punched in the center of the mirror’s protective cap as a 
reference. However, the mirror is positioned at a slight angle which makes this reference 
useless for the horizontal axis (the vertical reference can be trusted). 

IMPORTANT: To install the cable on the mirror, push it gently a few millimeters into the 
socket and then turn the fixing knob until it is blocked. Repeat these two operations until 
the cable is in place. Do not use excessive strength during the cable installation. 

 

2.3 Experiments for characterizing the AO system 

Two series of experiments have been performed: the first series would only monitor the shape of 
the wavefront with and without the AO system being engaged; the second would monitor the 
quality of the filamentation process with and without the AO system being engaged. The quality 
of the filamentation process is assessed, in the second series of experiments (section 2.4), by 
measuring the fluorescence from the N2 species. In this section, we cover the experiments 
performed to characterize the AO system per se. 

2.3.1 Controlling the beam pattern 
The laser pulses (15 mJ, 5 ps (-) chirp) are launched into a 30 m long corridor, with 
reflectors (3 dielectric mirrors coated for high reflectivity at 800 nm at normal incidence) 
at both ends, which provide ~120 m long propagation. The focusing beam expander’s 
translation stage is positioned 216.4 mm from its home so that the focal spot’s size is 
minimized at the end of the propagation distance. Figure 6a and 6b present typical 
uncorrected and corrected laser shots, respectively, measured 120 m after the telescope.  
The RMS aberrations measured by the WFS in both cases are, 4 μm (a) and 0.2 μm (b).  
Obviously the AO system seems to be correcting something, but it is not the focal spot! 
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regions, within the micro droplets, to produce a plasma and fingerprint emissions. Indeed, 
when an ultrashort laser pulse meets a micro droplet contaminated with NaCl, the light 
coupling mechanism takes place and Na emissions are produced. As a result, the signal is 
already strong for uncorrected wavefronts and any enhancement due to filaments formed 
from the corrected wavefronts becomes limited. 

2.4.5 Extrapolation over distance 
In the current beam-folding configuration, N2 fluorescence excited by filaments generated 
110 m after the focusing telescope was detected with a LIDAR located 18 m away from 
the filament zone. Therefore, an extrapolation based on the LIDAR equation [11] has to 
be performed to verify whether the produced signal is sufficiently intense to be detected 
at a distance larger than 110 m. Assuming a perfect scenario where only the detection 
solid angle dependence is influent, the collected signal will decrease as the square of the 
distance (R) between the LIDAR and the filaments (1/R2). The traces presented in Fig. 12 
are used to extrapolate the N2 fluorescence signal collected at a distance of 18 m for 
uncorrected and corrected wavefronts. For this calculation, the peak signal intensity is 
extrapolated, based on the R 2 relationship, until it reaches the detection limit which 
corresponds to the maximum background signal (Fig. 12, 95 m-102 m) plus 3 times the 
background standard deviation . 
 
The results are presented in Table 2.1. This simple calculation demonstrates that the 
signal produced by the uncorrected wavefronts could be observed at a maximal distance 
of 32 m whereas the corrected ones could reach 125 m. It corresponds to an increase by a 
factor 3.9 in probing distance. 
 

 Uncorrected Corrected 
Peak signal (a.u.) 14.6 132.8 

Peak signal distance from LIDAR (m) 16.8 19.3 
Detection limit, meanbg + 3  (a.u.) 4.2 3.1 

Extrapolation distance (m) 32.1 125.3 

Table 2.1: Details of the extrapolation performed for the backscattered traces presented in Fig.12 

 

2.4.6 Perspectives 
Even if the previous experiment is not realistic in real field applications, i.e: the WFS 
cannot be located 60 m away from the laser system, we demonstrated that the AO system 
can be used to efficiently deliver focused laser pulses at 120 m. The aberrations induced 
by the wedge’s reflection can be solved by replacing this component for one with a better 
surface quality. However, this component would be hard to produce and very expensive.   

Another method consists in using an indirect measurement, other than the wavefront’s 
flatness, to optimize the laser pulses. This indirect signal could be, as an example, the N2 
signal emitted from the filament, remotely collected by a LIDAR. Therefore, instead of 
optimizing the wavefront, the DM could optimize the fluorescence signal. This technique 
would avoid any problem caused by surface qualities of the mirrors or the turbulence 
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present in the propagation path since the AO system would work on the optimization of 
the filaments’ quality. 
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3 THE EFFECTS OF ATMOSPHERIC TURBULENCES 

Several groups investigated the effects of air turbulence on remote filamentation. It is 
now common knowledge that a strong turbulence source localized prior to filamentation 
may lead to their destruction [27]. In fact, the Teramobile group demonstrated that a 
turbulence source, characterized with a structure parameter of the refractive index Cn

2 > 
10-9 m-2/3, located 5 m before the filamentation would result in a filamentation shot-to-
shot probability lower than 10 %. However, once the filament is formed, the turbulence 
effect is considerably attenuated. Indeed, they also demonstrated that a turbulence source 
characterized with a Cn

2 < 10-8 m-2/3 placed immeidately after the collapse point would 
still allow a 90 % filamentation shot-to-shot probability. In both scenarios, the results are 
promising since typical atmospheric structure parameters of the refractive index range 
from Cn

2 = 10-15 m-2/3 to 10-13 m-2/3, which is well below the values mentioned above. 

In another set of experiments [28], a well calibrated turbulence chamber was used to 
simulate an extended source of turbulence. They demonstrated that filamentation can be 
initiated and propagate through strong extended turbulences well above the typical 
atmospheric values. It was found that a 50% shot-to-shot probability of filament 
transmission was still obtained for Cn

2L < 4.4x10-10 m1/3 where L is the length of the 
turbulence chamber (1.3 m). Moreover, the transmitted filaments kept their spectral 
properties including correlations inside the white-light supercontinuum generated through 
self-phase modulation occurring during filamentation. 

More recently, the effects of air turbulence on filamentation were investigated 
experimentally and numerically for femtosecond pulses with power of a few critical 
powers for self-focusing [29]. They demonstrated that air turbulence in the path of the 
beam prior to filamentation induced large beam pointing and formation of instabilities 
attributed to an increase of the self-focusing distance [23, 30]. In contrast, Kandidov et 
al. [31] found from a numerical simulation that the distance at which the intensity in the 
non-linear focus reaches the ionization threshold is random for the different laser shots 
but that, on the average, turbulence should lead to a shorter collapse distance. The 
principal difference between these two studies is that the latter considered laser pulses of 
power well beyond the critical power for self-focusing, resulting in multiple 
filamentation, while the former, with laser pulses slightly above the critical power, 
observed the collapse of the beam as a whole. 

Ma et al. [32] investigated numerically the influence of air turbulence on long range 
filamentation. The results obtained indicated that the diameter of the filaments formed by 
femtosecond laser pulses propagating freely in the atmosphere, which is normally around 
100 microns, could be widened to mm level under air turbulence conditions. This 
widening effect is caused by phase perturbations of the background energy reservoir 
which can be accumulated with propagation distance. The ‘hot’ perturbations induced 
compete for the energy, which partly breaks the processes of self focusing and energy 
replenishment from the background reservoir to the filament core. As a result, linear 
diffraction becomes a significant factor to balance the self focusing nature of the 
filaments and their intensity is reduced to approximately 1012 W/cm2, which is around the 
ionization threshold of air. The simulations revealed that the peak electron density 
produced by the filaments passed from ~1015 cm-3 to ~30 cm-3 for unperturbed and 
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turbulent media respectively. This propagation regime is similar to the self-channelling of 
infrared laser pulses without ionization observed by Méjean et al. [33] during an outdoor 
experiment. 

In the present report, the effects of strong and localized air turbulences on filamentation is 
investigated via the direct observation of the plasma channels left behind the laser pulse.  
This characterization is performed using a LIDAR system which collects the N2 
fluorescence emitted by the recombination of the ionized molecules. The filamentation 
instability when the turbulence source is located prior to filamentation is confirmed.  
However, even though the filaments survive the interaction when the turbulence source is 
placed in the filament zone, an overall partial extinction of the plasma emissions is 
observed due to the locally enhanced Cn

2. Moreover, because of the temperature 
dependent N2 fluorescence yield, the hot stream of air induces a longitudinal dip located 
at the position of the 600 °C stream of air. 

 

3.1 Description of the Experimental Setup 

In this experiment, the filaments are produced from negatively chirped laser pulses 
emitted at a 10 Hz repetition rate by a commercial Ti:Sapphire CPA laser system 
(Spectra-Physics). The collimated pulses propagate through a 5 m distance before hitting 
an on-axis circular aperture of 4.5 mm diameter. The aperture is inserted in the beam path 
to stabilize and enhance the plasma emissions [34]. 

A LIDAR [35] system, looking at the filaments formed in a 20 m long corridor, is used to 
collect the plasma’s fluorescence on the sensitive surface of a photomultiplier tube (PMT, 
Hamamatsu R7400P). A UG11 filter [36] and a dielectric mirror coated for high 
reflectivity at 800 nm at perpendicular incidence, are used as a band pass filter for 
optimal detection of the molecular fluorescence of N2. Because of the known speed of 
light, the temporal traces from the oscilloscope can be converted to a spatial scale which 
allows longitudinal positioning of the produced signal. Considering that the lifetime of 
the N2 fluorescence signal is around 1–2 ns [37], the resolution of this detection system, 
and hence, the longitudinal error in the starting and ending positions of the filament is 
around 30–60 cm for a single-shot pulse.  
 
Before the aperture, the pulses are characterized with a negatively chirped duration of 
100 fs FWHM and energy of 7.2 mJ.  The initial beam diameter, measured where the 
intensity is decreased by a factor e-1 with respect to the signal’s peak value, is 5.2 mm.   

The turbulence source consists in a heat gun (Ungar 1095) providing a continuous stream 
of air, with an approximate diameter of 2 cm, at a temperature of approximately 600 °C 
(known from the heat gun’s specifications). However, since the hot stream of air was not 
confined in any sort of enclosure, it increased significantly the surrounding value of the 
structure parameter around the turbulence source. The structure parameter of the 
refractive index (Cn

2) was calculated from the data measured with a commercial 
scintillometer (SLS 20). Based on Clifford’s model [38], Cn

2 can be retrieved from the 
equation: 
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For Figures 18 a-d (a-d is from top downwards), the horizontal axis corresponds to the 
propagation distance from the aperture, the vertical axis corresponds to the number of the 
individual shot and the color scale corresponds to the collected signal intensity in 
arbitrary units. Each individual trace corresponds to the N2 signal produced with a single 
laser shot. Figure 18a presents the situation when no turbulence was inserted in the beam 
propagation axis. The fluorescence signal collected is rather stable from shot-to-shot both 
in intensity and in position. As expected, when the turbulence is inserted between the 
aperture and the filamentation zone (Figure 18b, turbulence position 2.3 m), the 
fluorescence signal recorded by the detector is on average 14 times weaker and rather 
unstable in both intensity and localization.  Figure 18c and 18d present the results when 
the heat gun is inserted in the filamentation zone. It can be seen that the hot air turbulent 
zone significantly reduces the produced fluorescence intensity. Moreover, when it is 
inserted in the center of the filament zone (Figure 18d), the fluorescence signal is 
partially extinguished in the turbulence zone and immediately after, returns to its normal 
level. As discussed in the following section, this local extinction is not attributed to an 
increase in Cn

2, but rather to the N2 temperature dependent fluorescence yield. 

 

3.3 Discussion 

The fluorescence signal extinction observed when the hot air turbulent zone is inserted in 
the filaments’ zone is due both to a reduction of the filament intensity in this area and a 
decrease of the fluorescence yield in the hot air stream. For the first case, the decrease of 
the filament intensity has been well described by the simulations performed by Ma et 
al.[31]. In fact, they observed that the filaments’ diameters were widened to mm size 
when propagating in a turbulent medium. This widening effect caused a significant 
reduction of the filament intensity to 1012 W/cm2, just above the ionization threshold for 
air. They explained that this widening effect is caused by a distortion of the pulse’s 
background reservoir which cannot efficiently replenish the filaments’ core anymore.  
This effect explains the overall decrease by a factor of three for the integrated 
fluorescence signal in Figure 17 when the turbulence was inside the filamentation zone. 
Actually, as discussed in the experimental setup, even though the turbulent stream of hot 
air is considered punctual (2 cm), its presence along the beam path increased the 
neighboring value of Cn

2 in a 1 m radius around the turbulence source. The lengthening of 
the filaments in Figure 18c - 18d originates from random intensity modulations of the 
energy reservoir induced by the turbulence which form multiple filaments at different 
distances. 

The effect of the localized hot air turbulent zone on the fluorescence yield is presented in 
Figure 19 in which the 1000 backscattered traces shown in Figure 18d (turbulence 
position 5.5 m after the aperture) have been summed.   
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turbulence zone was also localized approximately 20 cm before the observed dip. This 
spatial shift is simply caused by the fluorescence lifetime of the N2 molecule which is 
approximately 1-2 ns. This behavior would delay the dip position approximately 30 cm to 
60 cm after the turbulence zone. 

 

3.4 Conclusion 

 

In this part of the research, the effects of a strong and localized turbulence on laser 
filamentation were studied using a PMT based LIDAR to directly observe and 
characterize, via N2 molecular fluorescence, the filaments’ plasma distribution. The 
filaments’ elimination when the turbulent zone was placed prior to filamentation was 
confirmed. However, when the hot turbulent source was inserted in the plasma zone, a 
clear reduction of the filaments’ emissions was observed, though not a total extinction of 
them. The overall decrease of the fluorescence is explained by an increased diameter of 
the filament core due to the induced distortion of the background reservoir which leads to 
a reduction of the filaments’ intensity. The sharp dip was caused by a localized decrease 
of the nitrogen fluorescence yield in the hot stream of air.  
 
This interesting behavior of filaments in hot air turbulent medium could lead to multiple 
interesting atmospheric applications. One of them consists in the detection of aircrafts 
which cannot be detected with conventional radars. In fact, the air turbulence induced by 
their jet engines could be detected and positioned using the method described, giving the 
exact position of the aircraft. This method could not be used for global positioning of 
aircrafts but could be used in specific areas where secrecy and security is of major 
importance. 
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