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1 Introduction

Underwater sensor networks consist of a number of fixed or mobile sensors, deployed in the
underwater environment. The sensors are capable of sending/receiving data using acoustic,
optical, or radio-frequency communication channels [1], [2], [3]. A typical objective for
such networks is to perform data aggregation for applications as diverse as environmen-
tal monitoring, underwater exploration, disaster prevention, climate reporting, and mine
detection [1], [4], [5].

The acoustic communication channel is the most typical physical layer technology used
in underwater sensors. Unlike the communication channels used in the terrestrial sensor
networks, there are several sources of uncertainty which influence the communication be-
tween underwater nodes such as underwater currents, temperature fluctuations, multi-path
fading, ambient noise, and sound speed profile [6], [7], [8]. Furthermore, these sources of
uncertainty vary over time and space in an unpredictable manner, and hence one can use
random graphs to model the underwater sensor networks more effectively [9]. This results
in a time-varying network structure with the possibility of edge addition/deletion. Also, the
node deletion can occur as a probable scenario for underwater applications due to limited
sensor battery life [10].

Distributed computation over networks has attracted considerable attention during the last
decade due to its efficiency in many cooperative control applications [11]. Consensus pro-
tocols are among the fully distributed computation techniques that are applicable to data
aggregation tasks in sensor networks providing robustness to node failures. In order to
achieve adequate data aggregation over a sensor network, connectivity preservation of the
graph representing the network can be a sufficient and/or necessary condition [12], [13].
Thus, it is important to define a proper connectivity measure and develop an efficient algo-
rithm to monitor, and if possible control, the network connectivity at all times. Although
there exists various schemes for connectivity assessment in the literature [14], [15], [16],
the corresponding algorithms are not distributed.

An adaptive algorithm for structure estimation of wireless underwater networks is devised
in [9]. However, the approach is constrained merely to the case of complete expected
graphs which imposes some constraints on the network communication. This limitation
is relaxed to certain degree in the present publication by extending the results to the case
where the expected graph is connected but is not complete.

In this publication, a distributed procedure is developed to estimate the connectivity de-
gree of an expected communication graph representing a sensor network [17]. The sensors
communicate based on a periodic broadcast schedule in such a way that data interference is
avoided. An algorithm is employed by each sensor to upgrade its estimate of the expected
communication graph. Moreover, an estimation method is proposed for every sensor to
estimate the probability matrix of the underlying random network using the beliefs of its
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neighbors. Then, weighted vertex connectivity is introduced as a novel metric of connec-
tivity which extends the notion of vertex connectivity to random graphs. The simulation
results confirm the efficacy of the proposed strategy.

The remainder of the publication is organized as follows. In Section 2, the problem is
formulated and some relevant definitions are given. A distributed method to estimate the
expected communication graph and the probability matrix of the network is introduced in
Section 3. The weighted vertex connectivity degree is proposed in Section 4. The simula-
tion results are provided in Section 5, and the concluding remarks are made in Section 6.

2 Problem formulation

The problem of distributed connectivity assessment for an underwater acoustic sensor net-
work in a data aggregation application is investigated in this publication. Because of the
random nature of the underwater communication channels, some notions about random
graphs are borrowed from [12], [13], which are presented next.

Definition 1 Let G = (V,E) denote a random graph composed of a set of n vertices V and
a set of directed edges E. Let also the matrix P = [pi j] represent the existence probabilities
for all possible edges, where pi j ∈ [0,1] is the probability of the existence of the edge
( j, i) ∈ E. Denote the adjacency matrix of the network by A = [ai j], and note that ( j, i) ∈ E
if and only if ai j /= 0, where ai j is defined by:

ai j =


1, with probability pi j,

0, with probability 1− pi j.
(1)

Definition 2 Define Ĝ=E(G) as the expected graph of a random graph G= (V,E), where
E(·) represents the expectation operator. The set of vertices of the expected graph Ĝ is
denoted by V̂ which is the same as the vertex set of G, and the set of its edges is denoted by
Ê. Furthermore, the weighted adjacency matrix of Ĝ is defined as Â = [âi j], where âi j = pi j
for all i, j ∈ V̂ . Moreover, ( j, i) ∈ Ê if and only if pi j /= 0.

The sensor network considered in this work is composed of underwater sensors, which use
acoustic waves for broadcast-based information exchange. In order to avoid transmission
collisions and data interference, it is assumed that only one successful broadcast can occur
at a time. In other words, a time slot is assigned to each sensor in a periodic manner
for broadcasting its data. The communication graph of the underwater sensor network
composed of n sensors is specified by a random digraph G = (V,E), where its vertex and
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edge sets are given by:

V = {1,2, ...,n}, (2a)
E = {(i, j)| i, j ∈V, a ji = 1}. (2b)

Also, Ĝ = (V̂ , Ê) denotes the expected communication graph of the underwater sensor
network, where V̂ =V and its edge set is characterized by:

Ê = {(i, j)| i, j ∈ V̂ , p ji /= 0}. (3)

From the results given in [12], a sufficient condition to reach asymptotic almost sure con-
sensus in a network represented by a random graph G is that the expected graph Ĝ is
strongly connected. Therefore, data aggregation is achieved successfully in an underwater
sensor network as long as the expected communication graph remains strongly connected.
Before introducing appropriate measures for the connectivity assessment of the underwa-
ter sensor network, it is required to estimate the topology of the expected communication
graph and its underlying probability matrix in a distributed manner.

3 Distributed estimation of expected graph
topology and probability matrix

3.1 Topology estimation
In the underwater sensor network under study, only one sensor is allowed to broadcast its
data at any time instant in order to avoid data interference. A broadcast cycle of length T
(T ∈ R>0) is considered, from which a time slot is dedicated to each sensor to broadcast
its data. Denote the k-th broadcast cycle by B(k) = [(k − 1)T, kT ), where k ∈ N. Let
Bi(k) = [(k−1)T +δi,(k−1)T +δi +∆) be the k-th broadcast interval for sensor i (i∈V ),
where ∆ (∆ ≤ T

n ) is the length of each time slot, and δi ∈ [0,T − (n− i+1)∆) indicates the
beginning of broadcasting for the sensor i in the initial broadcast cycle B(1) = [0,T ). The
acoustic propagation time from any node to its neighboring nodes is taken into account
by appropriately selecting ∆. The broadcast intervals Bi(k)’s constitute a family of disjoint
subsets of B(k) for every k ∈N. This implies that |δi−δ j| ≥ ∆ for all pairs of distinct nodes
i, j ∈V .

Each node broadcasts its estimate of the global expected communication graph Ĝ during
its designated broadcast interval. Moreover, the estimate of Ĝ is updated by each node
before its broadcasting starts. The update procedure for the i-th node is performed using
its previous estimate and the information it has received from the other nodes since its
last broadcast. This time interval is referred to as the k-th receive interval for node i and
is denoted by Ri(k). Note that Ri(k) = [(k − 2)T + δi +∆,(k − 1)T + δi) for all k ≥ 2.
The initial receive interval for node i is defined as Ri(1) = [0,δi) for any i ∈ V . A simple
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example is given in Fig. 1 to illustrate the partitioning of the time axis for a network of
three sensors during two broadcast cycles.

Figure 1: An example of periodic broadcast in a network of three sensors.

3.2 Probability matrix estimation
Let X(k) represent a random variable with a Bernoulli distribution at discrete time instant
k ∈N such that X(k)∈ {0,1}. Assume that p0(k) and p1(k) denote the probabilities of two
complementary events X = 0 and X = 1 at discrete time instant k, respectively. Then, the
random variable X(k) is described as:

X(k) =


1, with probability p1(k),
0, with probability p0(k),

(4)

where 0 ≤ p0(k), p1(k)≤ 1 and p0(k)+ p1(k) = 1. Define X̂(k) as the estimation of X(k)
such that:

X̂(k) =


1, with probability p̂1(k),
0, with probability p̂0(k).

(5)

The objective is to design an estimation procedure such that the expected values of p̂0(k)
and p̂1(k) converge asymptotically to the real values of p0(k) and p1(k), respectively. In
other words, E[p̂i(k)] → pi(k) as k → ∞ for i ∈ {0,1}. The update procedure of the pro-
posed estimation scheme is given by:

p̂i(k+1) =


(1−α)p̂i(k)+α, if X(k) = i,
(1−α)p̂i(k), if X(k) /= i,

(6)

for i ∈ {0,1}, where α ∈ (0,1) denotes the learning rate of the estimation method. Let
the probability vector representing two complementary events in a stationary Bernoulli
distribution be denoted by P = [p0 p1]

T . It is desired to find the variance of the estimate of
p0 and p1 given in (6), as time increases.
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Theorem 1 Consider an unknown stationary Bernoulli distribution given by (4) and apply
the procedure (6) to estimate the probability vector P. Then, E[P̂(k)] converges to P as
k → ∞ in an asymptotic manner.

Theorem 2 Consider an unknown stationary Bernoulli distribution X(k) and apply the
procedure (6) to identify X(k). Then, the variance of the estimated Bernoulli distribution
as k → ∞ is given by:

Var[p̂i(∞)] =
α

2−α
pi(1− pi), (7)

for i ∈ {0,1}, where α ∈ (0,1) denotes the learning rate of the update procedure.

Consider a stationary Bernoulli distribution with the estimated probabilities obtained by
using (6), and let (7) denote the variance of the estimated probabilities as k → ∞. It can be
inferred that as α → 0, the variance tends to zero and results in more accurate estimation.
On the other hand, the resulted estimation is deteriorated as α → 1 because of the increasing
variance. Moreover, it can be shown that the learning rate α ∈ (0,1) is directly proportional
to the convergence rate of E[p̂i(k)] to pi for i ∈ {0,1}. Therefore, there is a trade-off
between the convergence rate and the estimation accuracy in the choice of an appropriate
learning rate α .

Remark 1 The results presented above correspond to stationary Bernoulli distributions.
One can extend the results to the case of non-stationary Bernoulli distributions and derive
an upper bound on the estimation error in terms of the sampling interval and the rate of
change of the probabilities p0(k) and p1(k).

4 Weighted vertex connectivity measure

The objective of this section is to find a global metric to evaluate the connectivity degree of
the expected communication graph Ĝ of a sensor network. It is known that the strong con-
nectivity of Ĝ is a sufficient condition for asymptotic almost sure convergence to consensus
over a network characterized by a random graph. Consider a group of sensors represented
as the node set of a random digraph G = (V,E), where the existence probability of every
directed edge in E is assumed to have a Bernoulli distribution. Let the random variables
describing the existence probability of all edges be independent and identically distributed.

To illustrate the importance of a connectivity measure in a random graph, consider the
consensus problem for two random networks G1 and G2 composed of three sensors as
shown in Fig. 2.

Let the purpose of information exchange between the nodes in each graph be to reach an
agreement upon a certain quantity of interest. The simulation results, as given in Fig. 3,
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Figure 2: Two directed graphs with the same topology but different probabilities for the
existence of edges.

demonstrate faster convergence for the network associated with the random graph G1 which
has a stronger connectivity due to higher probability of the existence of its edges.

Figure 3: Consensus convergence of the sensor beliefs for the graphs G1 and G2 in Fig. 2.

The concept of vertex connectivity (VC) has been used as a measure to evaluate the global
connectivity of digraphs [18]. The VC degree of G is defined as the minimum number of
vertices that need to be removed such that G is no longer strongly connected. Let G=(V,E)
represent a digraph with node set V and edge set E. Then the VC degree of G, denoted by
q, is defined as:

q = min
i, j∈V, i/= j

q(i, j), (8)

where,

q(i, j) =


N(i, j), if (i, j) /∈ E,
|V |−1, if (i, j) ∈ E,

(9)

and N(i, j) denotes the maximum number of vertex-disjoint directed paths connecting i to
j in G.
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Several polynomial-time algorithms are provided in the literature to find the VC degree of a
graph [19], [20], [21]. The general idea behind these algorithms is that the minimum num-
ber of vertices whose removal disconnects any pair of non-adjacent vertices is equal to the
maximum number of mutually vertex-disjoint directed paths between them (see Menger’s
Theorem [18]).

However, this measure does not account for the probability matrix P and this calls for a
more accurate measure of connectivity capturing the probabilistic nature of the environ-
ment. The weighted vertex connectivity (WVC) measure extends the notion of the VC
degree to the more general case of weighted graphs. This nonnegative measure is positive
for a strongly connected graph, and a larger value of this measure represents “stronger”
connectivity. To clarify this new concept, the multiplicative path weight is defined, which
is based on the mutual independence of the random variables used for describing the prob-
abilistic nature of the network’s edges.

Definition 3 Let the ordered set of distinct nodes {i0, i1, ..., im} denote a directed path from
i0 to im in the expected communication graph Ĝ. The multiplicative path weight of this
directed path, denoted by PW (i0, im), is defined as follows:

PW (i0, im) =
m

∏
k=1

pikik−1, (10)

where pi j is the (i, j) element of the probability matrix P. Furthermore, the length of the
above path is given by:

PL(i0, im) = m. (11)

Since every element of the matrix P represents the probability of the existence of the corre-
sponding edge in the expected communication graph Ĝ, the multiplicative path weight can
be interpreted as the probability of the existence of a given path, as long as the probabilities
of the existence of different edges of the path are mutually independent. In order to extend
the notion of vertex connectivity degree to random graphs, it is first required to define the
local WVC measure for any pair of distinct nodes i, j ∈ V̂ in the expected communication
graph Ĝ = (V̂ , Ê). This local measure, denoted by q̂(i, j), is defined as the maximum value
of the summation of the multiplicative weights of all vertex-disjoint directed paths from i
to j which belong to Ĝ. In other words, q̂(i, j) represents the maximum of the summation
of the existence probability of the vertex-disjoint paths from i to j. Let ϒ(i, j) contain all
possible directed paths from i to j in Ĝ. Then:

q̂(i, j) =


N̂(i, j), if (i, j) /∈ Ê,
max


(|V̂ |−1)pi j, N̂(i, j)


, if (i, j) ∈ Ê,

(12)
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where,

N̂(i, j) = max
Ξ(i, j)⊆ϒ(i, j)

|Ξ(i, j)|

∑
k=1

PWk(i, j), (13)

and Ξ(i, j) represents a set of directed paths from i to j which are mutually vertex-disjoint.
Then, the WVC metric, denoted by q̂, is introduced as a global connectivity measure of the
expected communication graph Ĝ as follows:

q̂ = min
i, j∈V̂ ,i/= j

q̂(i, j). (14)

The WVC measure q̂ can be considered as an extension of the VC degree q for weighted
graphs, where an edge weight in the present problem denotes the existence probability of
that edge, and varies between zero and one. Furthermore, the WVC measure q̂ is a non-
negative real value (q̂ ∈ R≥0), and is more sensitive to changes in the network compared
to the VC degree q which is a nonnegative integer (q ∈ Z≥0). Note that For two differ-
ent expected communication graphs Ĝ1 and Ĝ2 with q1 > q2, it is possible that q̂1 < q̂2,
depending on the probability matrices P1 and P2. Note also that since the random nature
of the environment is captured by the WVC measure, it is more suitable for the networks
which are represented by random graphs.

4.1 Illustrative examples to compare the connectivity
measures

Example 1: As the first example, consider the expected communication graph Ĝ shown
in Fig. 4, where the elements of the probability matrix are shown as weights on all edges.
Using the definition of VC degree and on noting that Ĝ is strongly connected, one obtains
q = 1. Based on the definition of WVC measure, q̂(a,c) = q̂(c,a) = 0.72, which results in
q̂ = 0.72.

Figure 4: Expected communication graph of Example 1

Example 2: In the second example, the expected communication graph Ĝ shown in Fig. 5
is considered. This graph is similar to the one used in Example 1 with the difference that
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the values of edge weights pag, pga, pbc, pcb have been changed from 0.4 to 0.3 in this
example. Like the previous example, the edge weights shown in this figure represent the
existence probability of the corresponding edges. Since the graph is strongly connected
and there exists at least one directed path between any pair of its distinct nodes, Ĝ is 1-
vertex connected (q = 1) similar to Example 1. Unlike Example 1, the minimum local
WVC measure is given by q̂(a,c) = q̂(c,a) = 0.648, which leads to q̂ = 0.648.

Figure 5: Expected communication graph of Example 2

Remark 2 The results developed in this work can be used to improve the performance of
an underwater acoustic sensor network by identifying the relative contribution of each link
in the connectivity of the overall network. For example, consider an underwater sensor
network represented by the random graph given in Fig. 6. While there are two edges of

Figure 6: Expected communication graph of Remark 2

the same probability 0.1 in this graph, it results from the proposed connectivity measure
that the edge from node 3 to node 1 plays a more important role than the edge from node
1 to node 3 in the connectivity of this graph because there exists another path from node
1 to node 3 with maximum probability of existence while the edge from node 3 to node 1
represents the only path from node 3 to node 1.
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5 Simulation results

Consider a network of six underwater acoustic sensors with the periodic broadcast schedule
described in Section 3. Assume that the existence probability of the edges in the commu-
nication digraph G is described by a time-varying matrix P(k) given below:

P(k) =


0 0.5 0 0.8 0.7 0

0.6 0 0.6 0 0.5 0.9
0.7 0.6 0 0.9 0 0
0 0.7 0.4 0 0.9 0.7
0 0.7 0 0.9 0 0.7+0.3sinωk

0.8 0 0.3 0.9 0 0

 , (15)

where ω = 0.005, and k ∈N denotes the k-th broadcast cycle (note that the above matrix is
only used in simulations, and is considered as an unknown matrix in all algorithms). The
expected communication graph Ĝ, which is constructed based on the random graph G with
the edge weight matrix P(k), has the following adjacency matrix:

Â =


0 1 0 1 1 0
1 0 1 0 1 1
1 1 0 1 0 0
0 1 1 0 1 1
0 1 0 1 0 1
1 0 1 1 0 0

 . (16)

The expected communication graph Ĝ induced by Â is depicted in Fig. 7.

Figure 7: Expected communication graph Ĝ.

Let the length of each broadcast cycle be T = 6 sec, and the length of each broadcast
interval be ∆ = 1 sec. Let also the broadcast order of the i-th sensor be specified by δi =
i− 1 for i ∈ {1,2, ...,6}. Using α = 0.01 as the learning rate, the estimated network size
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perceived by each node versus the number of broadcast intervals is shown in Fig. 8. On
the other hand, Figs. 9 and 10 present estimates of the edge-set size and the VC degree,
respectively, by each node. Fig. 8 demonstrates that all nodes identify the network size after
3 broadcast cycles, while Figs. 9 and 10 show that all nodes precisely estimate the edge-set
size and VC degree after 10 broadcast cycles (note that each broadcast cycle consists of six
broadcast intervals).

Figure 8: Network size estimation perceived by every sensor versus the number of broad-
cast intervals.

In order to verify the effectiveness of the probability estimation method and the proposed
WVC measure, the corresponding algorithms are simulated for a sequence of 1000 broad-
cast cycles. The results of the probability estimation procedure to identify the constant
element p15 and the time-varying element p56 are demonstrated in Figs. 11 and 12, respec-
tively. Fig. 11 shows the efficacy of the estimation procedure for a stationary Bernoulli
distribution, while Fig. 12 shows the performance of the proposed method in estimating
a non-stationary Bernoulli distribution. In Fig. 13, the connectivity measures q̂ from the
viewpoint of sensor 1 is demonstrated.

6 Summary

Connectivity assessment of an underwater sensor network using distributed algorithms is
investigated in this publication. The sensors are assumed to broadcast their information in a
periodic manner using acoustic modems, and the underlying communication graph is mod-
eled by a random graph due to unpredictable conditions of the underwater environment.
An update procedure is used by sensors to identify the structure of the expected commu-
nication graph at first. Also, a novel estimation procedure is introduced to estimate the
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Figure 9: Edge-set size estimation perceived by every sensor versus the number of broad-
cast intervals.

probability matrix in a distributed manner by each sensor. Then, the weighted vertex con-
nectivity is proposed as a novel measure to evaluate the connectivity of the network which,
in fact, extends the vertex connectivity metric to the case of random graphs, capturing the
probabilistic nature of the underwater sensor networks. The main challenge for the future
work is to come up with computationally efficient algorithms to assess the connectivity
of a random network. Simulation results demonstrate the effectiveness of the algorithms
developed in this publication.
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Figure 10: VC degree perceived by every sensor versus the number of broadcast intervals.

Figure 11: Estimated and actual probability p15 perceived by every sensor versus the num-
ber of broadcast cycles.
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Figure 12: Estimated and actual probability p56 perceived by every sensor versus the num-
ber of broadcast cycles.

Figure 13: WVC metric q̂ from the viewpoint of sensor 1.
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