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I. INTRODUCTION

Any signal in RN can be represented in terms of a basis of N ×1 vectors {Ψi}Ni=1. Using the N ×N

basis matrix Ψ = [Ψ1,Ψ2, ...,ΨN ]N×N with the vectors {Ψi} as columns, a signal x can be expressed

as

xN×1 =

N∑
i=1

siΨiN×1 = ΨN×N sN×1, (1)

where s = [s1, s2, ..., sN ]TN×1. Clearly, x and s are equivalent representations of the signal, with x in the

time or space domain and s in the Ψ domain.

The signal x is K-sparse if it is a linear combination of only K basis vectors; that is, only K of the si

coefficients in (1) are nonzero and (N −K) are zero. In the context of compress sensing (CS), the case

of interest is when K � N . The signal x is compressible if the representation (1) has just a few large

coefficients and many small coefficients.

Consider a general linear measurement process that computes M � N inner products between x and

a collection of N × 1 vectors {Φj}Mj=1, i.e. yj = ΦT
j x. We first arrange the measurements yj in an

M × 1 vector y and the measurement vectors Φj as rows in an M ×N matrix Φ. Then, by substituting

Ψ from (1), y can be written as:

yM×1 = ΦM×N xN×1 = ΦM×N ΨN×N sN×1 = ΘM×N sN×1. (2)

The measurement process is not adaptive, meaning that Φ is fixed and does not depend on the signal x.

In general, applying the technique of CS requires designing of [1]–[4]:

a) A stable measurement matrix Φ such that the salient information in any K-sparse or compressible

signal is not damaged by the dimensionality reduction from x ∈ RN to y ∈ RM ; and,

b) A reconstruction algorithm to recover x from only M ≈ K measurements y.

The measurement matrix Φ must allow the reconstruction of the length-N signal x from M � N

measurements y, which is an ill-conditioned problem. If, however, x is K-sparse and the K locations

of the nonzero coefficients in s are known, then the problem can be solved. For any vector v sharing

the same K nonzero entries as s and for some ε > 0, a necessary and sufficient condition for perfect

reconstruction was introduced in [1] as:

1− ε ≤
‖Θv‖2
‖v‖2

≤ 1 + ε, (3)

That is, the matrix Θ must preserve the lengths of these particular K-sparse vectors. Of course, in general

the locations of the K nonzero entries in s are not known. However, a sufficient condition for a stable
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solution for both K-sparse and compressible signals is that Θ satisfies (3) for an arbitrary 3K-sparse

vector v. This condition is referred to as the restricted isometry property (RIP). A related condition,

referred to as incoherence, requires that the rows {Φj} of Φ can not sparsely represent the columns

{Ψi} of Ψ (and vice versa). In summary, within the framework of CS theory, due to the fact that s is

K-sparse, signal recovery can actually be made possible when the matrix Θ obeys the rule of RIP or the

measuring matrix Φ is incoherence with the basis matrix Ψ.

Both the RIP and incoherence criteria can be achieved with high probability simply by selecting Φ as a

random matrix. For instance, let the matrix elements φi,j be independent and identically distributed (iid)

Gaussian random variables with mean zero and variance 1/N. Then, matrix Φ has following properties

[1]–[4]:

1-The matrix Φ is incoherent with the basis Ψ = I of delta spikes with high probability. More

specifically, an M ×N iid Gaussian matrix Θ = ΦI = Φ can be shown that satisfies the RIP property

with high probability if M ≥ cKlog(N/K), where c is a small constant. Therefore, K-sparse and

compressible signals of length N can be recovered from only M ≥ cKlog(N/K) random Gaussian

measurements.

2- The matrix Φ is universal in the sense that Θ = ΦΨ will be iid Gaussian and thus satisfies the

RIP with high probability, regardless of the choice of orthonormal basis Φ.

The authors of [5] introduced another criteria entitled as uniform uncertainty principle (UUP). The

UUP essentially state that the sensing matrix Θ of size M ×N obeys the restricted isometry hypothesis.

Let ΘT , T ∈ {1, ..., N}, be the M × |T | submatrix which is obtained by extracting the columns of Θ

corresponding to the indices in T. For all subsets T with |T | ≤ K and coefficient sequences (cj)j∈T , the

K-restricted isometry constant δK is defined as the smallest quantity such that:

(1− δK) ‖c‖22 ≤ ‖ΘT c‖22 ≤ (1 + δK) ‖c‖22 . (4)

This property essentially requires that every set of columns with cardinality less than K approximately

behaves like an orthonormal system. An important result is that if the columns of the sensing matrix Θ

are approximately orthogonal, then the exact recovery phenomenon occurs. As stated in [5], if every set

of sensing matrix columns with cardinality less than the sparsity of the signal of interest is approximately

orthogonal, then the sparse signal can be exactly recovered with high probability.
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II. COMPRESS SAMPLING RECEIVER

Fig. 1. Compress Sampling Receiver Schematic.

Let x(t) is the baseband equivalent of the received signal with bandwidth B. To avoid aliasing, Φj(t)

(j = 1, ...,M ) needs to be applied at the Nyquist frequency (fs) of the signal x(t) or higher (fs ≥ 2B).

Further, let N is the number of integration samples per compression blocks. Then, we have:

x̃j(t) = x(t)Φj(t), j = 1, ...,M (5)

yj [n] =

∫ t+ N

fs

t
x̃j(t)dt =

∫ t+ N

fs

t
x(t)Φj(t)dt, j = 1, ...,M (6)

It is worthy to mention that

Φj(t)|
t= m

fs

t=m−1

fs

= Pj,m ∈ {+1,−1}, j = 1, ...,M, m = 1, ..., N (7)
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Considering (7), we can rewrite (6) as

yj [n] =

∫ t+ N

fs

t
x(t)Φj(t)dt (8)

=

∫ t+ 1

fs

t
x(t)Φj(t)dt+

∫ t+ 2

fs

t+ 1

fs

x(t)Φj(t)dt+ ...+

∫ t+ N

fs

t+N−1

fs

x(t)Φj(t)dt

= Pj,1

∫ t+ 1

fs

t
x(t)dt︸ ︷︷ ︸

x1

+Pj,2

∫ t+ 2

fs

t+ 1

fs

x(t)dt︸ ︷︷ ︸
x2

+...+ Pj,N

∫ t+ N

fs

t+N−1

fs

x(t)dt︸ ︷︷ ︸
xN

=

N∑
m=1

Pj,mxm, j = 1, ...,M,

where xm,m = 1, ..., N , are simply the Nyquist samples of the signal x(t). For our purposes, it is

convenient to write (8) in matrix form as
y1[n]

y2[n]
...

yM [n]


︸ ︷︷ ︸

yM×1

=


P1,1 P1,2 . . . P1,N

P2,1 P2,2 . . . P2,N

...
...

...
...

PM,1 PM,2 . . . PM,N


︸ ︷︷ ︸

ΦM×N


x1

x2

...

xN


︸ ︷︷ ︸

xN×1

(9)

or, equivalently, as

yM×1 = ΦM×NxN×1 =


Φ1

...

ΦM


M×N

xN×1. (10)

As before mentioned, any signal in RN can be represented in terms of a basis of N ×1 vectors {Ψi}Ni=1.

Using the N ×N basis matrix Ψ = [Ψ1,Ψ2, ...,ΨN ]N×N with the vectors {Ψi} as columns, x can be

expressed as

xN×1 =

N∑
i=1

siΨiN×1 = ΨN×N sN×1 = [Ψ1,Ψ2, ...,ΨN ]N×N sN×1, (11)

where s = [s1, s2, ..., sN ]TN×1. As shown in Fig. 2, it is possible that all of the vector x coefficients be

non-zero values.
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M N
K-sparse

y Φ Ψ S

x

= =

Fig. 2. Compress Sampling Process.

By substituting x from (11), y can be written as

yM×1 = ΦM×N xN×1 = ΦM×N ΨN×N sN×1 (12)

=

⎡⎢⎢⎢⎣
Φ1

...

ΦM

⎤⎥⎥⎥⎦
M×N

[Ψ1,Ψ2, ...,ΨN ]N×N sN×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
Φ1Ψ1 Φ1Ψ2 . . . Φ1ΨN

Φ2Ψ1 Φ2Ψ2 . . . Φ2ΨN

...
...

...
...

ΦMΨ1 ΦMΨ2 . . . ΦMΨN

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ΘM×N

⎡⎢⎢⎢⎢⎢⎢⎣
s1

s2
...

sN

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

sN×1

= ΘM×N sN×1

III. XAMPLING: SIGNAL ACQUISITION AND PROCESSING IN UNION OF SUBSPACES

Signal processing methods have changed substantially over the last several decades. The number of

operations that are shifted from analog to digital is constantly increasing, leaving amplifications and

fine tunings to the traditional frontend. Sampling theory is the key enabling this revolution. Traditional

sampling theorems assume that the input lies in a predefined subspace. Recently, nonlinear union of

subspaces (UoS) models have been receiving growing interest in the context of analog sampling. The

UoS setting captures uncertainty in the signal by allowing several possible subspace descriptions, where

the exact signal subspace is unknown a-priori.

In contrast to classic subspace sampling, the theory of sampling over UoS is still developing. In

particular, to date, there is no equivalent to the oblique projection operator which reconstructs the signal

when its exact subspace is known for almost all sampling functions. The lack of a complete theory has not
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withheld development of numerous stylized applications that aim to reduce the sampling rate below the

Nyquist rate by exploiting the UoS model. The acquisition and reconstruction methods of UoS theory are

substantially different from each other, raising the question of whether the apparent distinct approaches

can be derived from a common framework.

The first and main contribution of [6] is defining a unified and pragmatic framework for acquisition

and processing of UoS signal classes, referred to as Xampling. It consists of two main functions: low

rate analog to digital conversion (X-ADC), in which the input is compressed in the analog domain prior

to sampling with commercial devices, and low rate digital signal processing (X-DSP), in which the

input subspace is detected prior to signal processing in the digital domain. As the second contribution,

the authors of [6], studied the X-ADC block and addressed the choice of analog compression. They

completed this task by examining the compression techniques used in the random demodulator (RD) and

modulated wide band converter (MWC) systems, which employ CS technique to reduce the sampling

rate of spectrally sparse signals below the Nyquist rate. As the last contribution, they studied the X-DSP

stage and sub-Nyquist processing, which are challenging tasks since conventional DSPs assume their

input data stream are given at the Nyquist rate. They developed a digital algorithm, named Back-DSP,

that provides the MWC with a smooth interface to existing DSP softwares.

A. Xampling

1) Union of subspaces: Let x(t) be an input signal in the Hilbert space H = L2(R). The signal x(t)

is assumed to lie in a UoS of H , namely U, within a parameterized family of subspaces

x(t) ∈ U
⋃
λ∈Λ

, Aλ (13)

where Λ is a list of indices, and each individual subspace Aλ ∈ H. The key property of the UoS model

is that the input x(t) resides within A∗λ for some λ∗ ∈ Λ, but a-priori, the exact subspace index λ∗ is

unknown. Equation (13) typically represents a nonlinear set of possible inputs, which is a true subset of

the linear sum of all subspaces Aλ, denoted hereafter by Σ.

Authors of [6] have considered multiband sampling as an motivating example. Multiband sampling,

encountered when a communication receiver intercepts multiple radio-frequency (RF) transmissions, but

the knowledge of carrier frequencies fi is not available. In this setting, the input x(t) has multiband spectra

with energy that is concentrated on N frequency intervals of individual widths B located anywhere below

some maximal frequency fmax. Such a receiver faces a challenging sampling problem, since classic

acquisition methods, such as RF demodulation or bandpass undersampling, require knowledge of fi

values. At first sight, it may seem that sampling at the Nyquist rate fNY Q = 2fmax is necessary. On
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the other hand, since each specific fills only a portion of the Nyquist range (only NB Hz), one would

intuitively expect to be able to reduce the sampling rate below fNY Q.

A multiband model can be described in union terminology by indexing the possible band positions with

λ = fi and letting Aλ capture the subspace of multiband signals on the chosen support. It is therefore

expected that an input from a multiband union can be determined from sampling at a rate proportional

to the actual bandwidth occupied by Aλ, namely NB, up to some rate increase needed to determine the

unknown subspace index λ∗ of the given x(t). In principle, fi lies in the continuum fi ∈ [0, fmax] in this

modeling, so that the union contains infinitely many subspaces. A different viewpoint, is to divide the

Nyquist range to M slices and enumerate the possible supports according to the slice indices that contain

signal energy. This approach results in a finite union of bandpass subspaces, which enables efficient

hardware and software implementation, as further discussed in detail.

2) Unified Goals: The authors of [6] defined the sampling problem for the union set (13) as the design

of a system that provides:

e1) ADC: an acquisition operator which converts the analog input x(t) ∈ U to a sequence y[n] of

measurements;

e2) DSP: a toolbox of processing algorithms, which uses y[n] to perform classic tasks, e.g., estimation,

detection, data retrieval etc., and

e3) DAC: a method for reconstructing x(t) from the samples y[n].

They adopted as a general design constraint that the above goals should be accomplished with minimum

use of resources.

3) Architecture: The Xampling framework has the high-level architecture presented in Fig. 3. As

highlighted, the Xampling architecture is driven by two main considerations: reducing analog bandwidth

prior to sampling and gaining lowrate DSP, preferably backward-compatible with existing processing

algorithms. We next describe the five functional blocks and explain these two considerations.

Fig. 3. Xampling - A functional framework for signal acquisition and processing in union of subspaces.
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Analog bandwidth compression. The first two blocks, termed X-ADC, perform the conversion of

x(t) to digital domain. An operator P compresses the high-bandwidth input x(t) into a signal with lower

bandwidth, effectively capturing the entire union U by a subspace S with substantially lower sampling

requirements. A commercial ADC device then takes pointwise samples of the compressed signal, resulting

in the sequence of samples y[n]. The role of P in Xampling is to narrow down the analog bandwidth

that enters the acquisition devices, so that lowrate ADC devices can be used.

Lowrate DSP. A second goal of Xampling is to translate the sampling rate reduction to a comparable

decrease in processing speeds. Their proposal for achieving this goal consists of the three computational

blocks in the digital part of Fig. 3. A nonlinear step detects the signal subspace Aλ∗ from the lowrate

samples. Once the index λ∗ is determined, a low-rate sequence z[n] of numbers that matches standard

sampling of Aλ is computed. As a nice feature, this creates a seamless interface to existing DSP

algorithms and interpolation techniques, hence provides backward compatibility. The combination of

nonlinear detection and standard DSP is referred to as X-DSP.

Xampling is a generic template architecture. It does not specify the exact acquisition operator P or

nonlinear detection method to be used. These are application-dependent functions. The authors goal in

introducing Xampling was to propose a high-level system architecture and a basic set of guidelines:

1) An analog preprocessing unit to compress the input bandwidth;

2) Commercial lowrate ADC devices for actual acquisition at a low rate;

3) Subspace detection in software; and

4) Standard DSP and DAC methods.

B. X-ADC: SUB-NYQUIST SIGNAL ACQUISITION

In this section, we study the X-ADC stage of Fig. 3 and in particular the analog compression operator P .

Please note that, analog compression involves mixing the input with certain waveforms prior to sampling,

and reconstruction relies on CS techniques. The RD approach treats signals consisting of a discrete set

of harmonic tones with the system that is depicted in Fig. 4.

Signal model. A multitone signal f(t) consists of a sparse combination of integral frequencies:

f(t) =
∑
w∈Ω

awe
j2πwt (14)

where Ω is a finite set of K out of an even Q number of possible harmonics. The model parameters are

the tone spacing ∆, number of active tones K and grid length Q. The Nyquist rate is Q∆.
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Fig. 4. Block diagram of the random demodulator.

Sampling. The input signal f(t) is mixed by a pseudorandom chipping sequence pc(t) which alternates

at a rate of W . The mixed output is then integrated and dumped at a constant rate R, resulting in the

sequence y[n], 1 ≤ n ≤ R. The vector of samples can be written as

y = Φx, x = Fs, ‖s‖0 ≤ K (15)

The matrix Φ has dimensions R×W , effectively capturing the mechanism of integration over W
R Nyquist

intervals, where the polarity of the input is flipped on each interval according to the chipping function

pc(t). The W -squared discrete Fourier transform (DFT) matrix F accounts for the sparsity in the frequency

domain. The vector s has Q entries sw which are up to a constant scaling from the corresponding tone

amplitudes aw. Since the signal has only K active tones, ‖s‖0 ≤ K, where the `0-norm counts the

number of nonzero entries.

Reconstruction. The unknown in (15) is s. This type of problem has received extensive treatment in

the CS literature, where Φ is referred to as the sensing matrix and F is termed the sparsity basis of x.

Several polynomial-time CS techniques are known to coincide with the true s under certain conditions on

ΦF. Example techniques include basis pursuit and greedy-type algorithms. Once the sparse s is found, the

amplitudes aw are determined from sw by constant scaling, and the output f(t) is synthesized according

to (14).
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Fig. 5. The Nyquist-equivalents of RD sample the input at its Nyquist rate and apply the sensing matrix digitally.

Fig. 5 depicts the Nyquist-equivalent of RD method, which is the system that samples the input at

its Nyquist rate and then computes the relevant sub-Nyquist samples by applying the sensing matrix

digitally. The RD-equivalent integrates and dumps the input at rate W , and then applies Φ on Q serial

measurements, x = [x[1], ..., x[Q]]T . To coincide with the sub-Nyquist samples of Fig. 4, Φ = HD is

used, where D is diagonal with ±1 entries, according to the values pc(t) takes on t = n
W , and H sums

over W
R entries.

C. X-DSP: SUB-NYQUIST SIGNAL PROCESSING

Whilst the streaming measurements enter the digital domain at a low rate, they often cannot be used

directly for DSP purposes. More broadly, the difficulty in directly processing the X-ADC output stems

from the fact that popular DSP algorithms assume an input stream at the Nyquist rate. A fundamental

reason for processing at the Nyquist rate is the clear relation between the spectrum of x(t) and that of

its pointwise values x(nT ), so that digital operations can be easily substituted for their continuous

counterparts. Digital filtering is an example where this relation is successfully exploited. Since the

power spectral densities of continuous and discrete random processes are associated in a similar manner,

estimation and detection of parameters of analog signals can be performed by DSP. When sampling below

Nyquist, this key relation no longer holds in general.

Therefore, the authors of [6] addressed the challenge of lowrate DSP and developed the Back-DSP

algorithm, which completes the X-DSP functionality for another system (MWC system), with lowrate

processing options via a smooth interface to standard DSP packages.
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IV. SIGNAL PROCESSING WITH COMPRESSIVE MEASUREMENTS

In recent decades, the digital signal processing (DSP) community has enjoyed enormous success in

developing algorithms for capturing and extracting information from signals. Capitalizing on the early

work of Whitaker, Nyquist, and Shannon on sampling and representation of continuous signals, signal

processing has moved from the analog to the digital domain. Digitization has enabled the creation of

sensing and processing systems that are more robust, flexible, cheaper and, therefore, more ubiquitous

than their analog counterparts.

As a result of this success, the amount of data generated by sensing systems has grown from a trickle

to a torrent. We are thus confronted with the following challenges:

1) acquiring signals at ever higher sampling rates;

2) storing the resulting large amounts of data;

3) processing/analyzing large amounts of data.

Until recently, the first challenge was largely ignored by the signal processing community, with most

advances being made by hardware designers. Meanwhile, the signal processing community has made

tremendous progress on the remaining two challenges, largely via research in the fields of modeling,

compression, and dimensionality reduction. However, the solutions to these problems typically rely on

having a complete set of digital samples. Only after the signal is acquired, presumably using a sensor

tailored to the signals of interest, could one distill the necessary information ultimately required by the

user or the application. This requirement has placed a growing burden on analog-to-digital converters.

As the required sampling rate is pushed higher, these devices move inevitably toward a physical barrier,

beyond which their design becomes increasingly difficult and costly.

Thus, in recent years, the signal processing community has also begun to address the problem of

signal acquisition more directly by leveraging its successes in addressing the last two above-mentioned

challenges. In particular, CS method has emerged as a framework that can significantly reduce the

acquisition cost at a sensor. Up to now, most of the CS literature has focused on improving the speed

and accuracy of the signal recovery, i.e., the problem of recovering the signal from the measurements.

However, signal recovery is not actually necessary in many signal processing applications. Very often

we are only interested in solving an inference problem (extracting certain information from measurements)

or in filtering out information that is not of interest before further processing. While one could always

attempt to recover the full signal from the compressive measurements and then solve the inference or

filtering problem using traditional DSP techniques, this approach is typically suboptimal in terms of both

accuracy and efficiency.
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Recently, [7] takes some initial steps towards a general framework for what the authors call compressive

signal processing (CSP), an alternative approach in which signal processing problems are solved directly

in the compressive measurement domain without first resorting to a full-scale signal reconstruction. In

espousing the potential of CSP, the authors of [7] focus on four fundamental signal processing problems:

detection, classification, estimation, and filtering. The first three enable the extraction of information from

the samples, while the last enables the removal of irrelevant information and separation of signals into

distinct components. While these choices do not exhaust the set of canonical signal processing operations,

the authors of [7] believe that they provide a strong initial foundation.

As has been demonstrated in the CS literature, for example, random measurements can be used to

acquire any sparse signal without requiring advance knowledge of the locations of the nonzero coefficients.

Thus, compressive measurements are agnostic in the sense that they capture the relevant information for

the entire class of possible K-sparse signals. The authors of [7] have extended this concept to the CSP

framework and demonstrated that it is possible to design agnostic measurement schemes that preserve

the necessary structure of large signal classes in a variety of signal processing settings.

A. Compressive Sensing and Restricted Isometries

In the standard CS framework, we acquire a signal x ∈ RN via the linear measurements

y = Φx (16)

where Φ is an M × N matrix representing the sampling system and y is the vector of measurements.

The CS theory, allows for M � N as long as the signal x is sparse or compressible in some basis.

To understand how many measurements are required to enable the recovery of a signal x, we must

first examine the properties of Φ that guarantee satisfactory performance of the sensing system. In [8],

Candes and Tao introduced the restricted isometry property (RIP) of a matrix Φ and established its

important role in CS. We say that a matrix Φ satisfies the RIP of order K if there exists a constant

δ ∈ (0, 1), such that

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (17)

holds for all x ∈ ΣK , where ΣK is the set of all K-sparse vectors.

The following Theorem bounds the recovery error of x with respect to the measurement noise and

with respect to the `1-distance from x to its best K-term approximation denoted xK which is defined as:

xK = argmin
x́
‖x− x́‖1.
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Theorem 1 [Candes]: Suppose that Φ satisfies the RIP of order 2K with isometry constant δ <
√

2−1.

Given measurements of the form y = Φx + e, where ‖e‖2 ≤ ε, the solution to

x̂ = arg min
x́∈RN

‖x́‖1 subject to ‖Φx́− y‖2 ≤ ε (18)

obeys

‖x̂− x‖2 ≤ C0ε+ C1
‖x− xK‖1√

K
(19)

where

C0 = 4

√
1 + δ

1− (1 +
√

2)δ
, C1 = 2

1− (1−
√

2δ)

1− (1 +
√

2)δ
.

Note that in practice we may wish to acquire signals that are sparse or compressible with respect to a

certain sparsity basis Ψ, i.e., x = Ψα, where Ψ is represented as a unitary N ×N matrix and α ∈ ΣK .

In this case, we would require instead that ΦΨ satisfy the RIP, and the performance guarantee would

be on ‖α̂−α‖2.

Before we discuss how one can actually obtain a matrix Φ that satisfies the RIP, we observe that we

can restate the RIP in a more general form. Let δ ∈ (0, 1) and U,V ⊂ RN be given. We say that a

mapping Φ is a δ-stable embedding of (U,V) if

(1− δ)‖u− v‖22 ≤ ‖Φu−Φv‖22 ≤ (1 + δ)‖u− v‖22 (20)

for all u ∈ U and v ∈ V.

We now turn to the more general question of how to construct linear mappings Φ that satisfy (20)

for particular sets U and V. While it is possible to obtain deterministic constructions of such operators,

at present the most efficient designs (i.e., those requiring the fewest number of rows) rely on random

matrix constructions.

Several hardware architectures have been proposed that enable the acquisition of compressive measure-

ments in practical settings. Examples include the random demodulator [9], random filtering and random

convolution [10], and several compressive imaging architectures [11].

January 17, 2015 DRAFT



15

Fig. 6. Random demodulator for obtaining compressive measurements of analog signals.

We briefly describe the random demodulator as an example of such a system. Fig. 6 depicts the

block diagram of the random demodulator. The four key components are a pseudo-random ±1 chipping

sequence operating at the Nyquist rate or higher, a low-pass filter, represented by an ideal integrator

with reset, a low-rate sample-and-hold, and a quantizer. An input analog signal x(t) is modulated by

the chipping sequence and integrated. The output of the integrator is sampled and quantized, and the

integrator is reset after each sample.

Mathematically, such a system implements a linear operator that maps the analog input signal to

a discrete output vector followed by a quantizer. It is possible to relate this operator to a discrete

measurement matrix Φ which maps, for example, the Nyquist-rate samples of the input signal to the

discrete output vector. The resulting Φ matrices, while randomized, typically contain some degree of

structure. For example, a random convolution architecture gives rise to a Φ matrix with a subsampled

Toeplitz structure. While theoretical analysis of these matrices remains a topic of active study in the CS

community, there do exist guarantees of stable embeddings for such practical architectures.

B. Detection with Compressive Measurements

We begin by examining the simplest of detection problems. We aim to distinguish between two

hypotheses:

H0 : y = Φn

H1 : y = Φ(s + n)

where s ∈ RN is a known signal, n ∼ N(0, σ2IN ) is i.i.d. Gaussian noise, and Φ is a known (fixed)

measurement matrix. We will consider instead the case where Φ is designed without knowledge of s.
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To set notation, let

PF = Pr(H1 chosen when H0 true) and

PD = Pr(H1 chosen when H1 true)

denote the false alarm rate and the detection rate, respectively. The Neyman-Pearson (NP) detector is

the decision rule that maximizes PD subject to the constraint that PF < α. In order to derive the NP

detector, we first observe that for the hypotheses H0 and H1, we have:

f0(y) =
exp

(
−1

2yT (σ2ΦΦT )−1y
)

(2π)M/2|σ2ΦΦT |1/2
and

f1(y) =
exp

(
−1

2(y−Φs)T (σ2ΦΦT )−1(y−Φs)
)

(2π)M/2|σ2ΦΦT |1/2

It is easy to show that the NP-optimal decision rule is to compare the ratio f1(y)/f0(y) to a threshold

η, i.e., the likelihood ratio test as:

Λ(y) =
f1(y)

f0(y)
≷ η,

where η is chosen such that

PF =

∫
Λ(y)>η

f0(y)d(y) = α.

By taking the logarithm, we obtain an equivalent test that simplifies to:

yT (ΦΦT )−1Φs ≷ σ2log(η) +
1

2
sTΦT (ΦΦT )−1Φs︸ ︷︷ ︸
γ

.

We now define the compressive detector as:

t , yT (ΦΦT )−1Φs. (21)

It can be shown that t is a sufficient statistic for our detection problem, and thus contains all of the

information relevant for distinguishing between H0 and H1.

Using PΦT = ΦT (ΦΦT )−1Φ and sTΦT (ΦΦT )−1Φs = ‖PΦT s‖22, it is easy to prove

γ = σ‖PΦT s‖2Q−1(α) (22)

January 17, 2015 DRAFT



17

and

PD(α) = Q

(
Q−1(α)− ‖PΦT s‖2

σ

)
(23)

Let us now define SNR , ‖s‖22
σ2 . We can bound the performance of the compressive detector as follows.

Theorem 2: Suppose that
√
N/MPΦT provides a δ-stable embedding of (S, {0}). Then, for any s ∈ S,

we can detect s with error rate

PD(α) ≤ Q

(
Q−1(α)−

√
1 + δ

√
M

N

√
SNR

)
and

PD(α) ≥ Q

(
Q−1(α)−

√
1− δ

√
M

N

√
SNR

)
.

Theorem 2 tells us in a precise way how much information we lose by using random projections rather

than the signal samples themselves, not in terms of our ability to recover the signal as is typically

addressed in CS, but in terms of our ability to solve a detection problem. Specifically, for typical values

of δ

PD(α) ' Q

(
Q−1(α)−

√
M

N

√
SNR

)
(24)

which increases the miss probability by an amount determined by the SNR and the ratio M/N .

Corollary 1: Suppose that
√
N/MPΦT provides a δ-stable embedding of (S, {0}). Then, for any s ∈ S,

we can detect s with success rate

PD(α) ≥ 1− C2e
−C1M/N

where C1 and C2 are absolute constants depending only on α, δ, and the SNR. Thus, for a fixed SNR

and signal length, the detection probability approaches 1 exponentially fast as we increase the number

of measurements.
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C. Experiments and Discussion

Fig. 7. Effect of M on PD .

We first explore how M affects the performance of the compressive detector. As described above,

decreasing M does cause a degradation in performance. However, in certain cases (relatively high SNR;

20 dB in this example), the compressive detector can perform almost as well as the traditional detector

with a very small fraction of the number of measurements required by traditional detection. Specifically,

in Fig. 7 we illustrate the receiver operating characteristic (ROC) curve, i.e., the relationship between

PD and PFA predicted by (24). Observe that as M increases, the ROC curve approaches the upper-left

corner, meaning that we can achieve very high detection rates while simultaneously keeping the false

alarm rate very low. As M grows we see that we rapidly reach a regime where any additional increase

in M yields only marginal improvements in the tradeoff between PD and PFA.

Fig. 8. Effect of M on PD at different SNR values.
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Furthermore, the exponential increase in the detection probability as we take more measurements is

illustrated in Fig. 8, which plots the performance predicted by (24) for a range of SNRs with α =

0.1. However, we again note that in practice this rate can be significantly affected by the SNR, which

determines the constants in the bound of Corrolary 1.

V. MIMO RADAR USING COMPRESSIVE SAMPLING

The authors of [12]–[14] proposed a MIMO radar system that can be implemented by a small-sized

wireless network. Network nodes serve as transmitters or receivers. Transmit nodes transmit uncorrelated

waveforms. Each receive node applies compressive sampling to the received signal to obtain a small

number of samples, which the node subsequently forwards them to a fusion center. Assuming that the

targets are sparsely located in the angle-Doppler space, the fusion center formulates an l1-optimization

problem, the solution of which yields target angle and Doppler information. The proposed approach can

extract target information based on a small number of measurements from one or more receive nodes. In

particular, for a mild jammer, the proposed method has been shown to be at least as good as the Capon,

APES, GLRT, and MUSIC techniques while using a significantly smaller number of samples. In the case

of strong thermal noise and strong jammer, the proposed method performs slightly worse than the GLRT

method. In that case, its performance is still acceptable, especially if one takes into account the fact that

it uses significantly fewer samples than GLRT.

An important feature of the proposed approach is energy saving. The obtained energy saving would

be significant in prolonging the life of the wireless network. The proposed approach assumes that nodes

are synchronized and the fusion center has perfect node location information. The effects of localization

and synchronization errors and ways to mitigate them need to be further studies.

A. System Model

i) Mt transmit nodes, location of i-th transmit node (rti , α
t
i)

ii) Nr receive nodes, location of i-th receive node (rri , α
r
i )

iii) K point targets, k-th target is at azimuth angle θk and moves with constant radial speed vk, its

range is dk(t) = dk(0) − vkt, where dk(0) denotes the distance between k-th target and the origin at

time equal to zero.

The i-th transmit node transmits the continues-time waveform xi(t)e
j2πft (complex baseband equivalent

signal), where xi(t) is a periodic pulse with duration Tp and pulse repetition interval (PRI) T and Tp � T .

Throughout [12], the following assumptions are considered:
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1- Far field assumption, dk(t)� r
t/r
i , which results in:

d
t/r
ik (t) ≈ dk(t)− η

t/r
i (θk) = dk(0)− vkt− η

t/r
i (θk), (25)

where ηt/ri (θk) = r
t/r
i cos(θk − α

t/r
i ).

2- Clutter-free environment

3- Perfect synchronization

4- The location of all nodes is available

5- xi(t) is a narrow-band signal

6- Slowly moving targets, i.e., vkfTp
c � 1

Based on above assumptions, the received signal at k-th target is modeled as:

yk(t) = βk

Mt∑
i=1

xi

(
t−

dtik(t)

c

)
e
j2πf

(
t− d

t
ik

(t)

c

)
(26)

where βk, k = 1, ...,K are complex amplitudes proportional to the RCS and are assumed to be the same

for all the receivers. In addition, the received signal at l-th receive antenna is given by:

zl(t) =

K∑
k=1

yk

(
t−

drlk(t)

c

)
+ εl(t)

=

K∑
k=1

βk

Mt∑
i=1

xi

(
t−

dtik(t) + drlk(t)

c

)
e
j2πf

(
t− d

t
ik

(t)+dr
lk

(t)

c

)
+ εl(t) (27)

Considering the fact that dtik(t) + drlk(t) ≈ 2dk(0)− 2vkt− ηti(θk)− ηrl (θk), and recalling the narrow-

band assumption of transmit waveforms along with slowly moving target and far-field assumptions, leads

us to the following equations:

xi

(
t−

dtik(t) + drlk(t)

c

)
= xi

(
t−

2dk(0)− 2vkt− ηti(θk)− ηrl (θk)
c

)
≈ xi

(
t− 2dk(0)

c

)
(28)

and

j2πf

(
t−

2dk(0)− 2vkt− ηti(θk)− ηrl (θk)
c

)
= j2πft+ j2π

2vkf

c
t+ j

2π

λ

(
−2dk(0) + ηti(θk) + ηrl (θk)

)
= j2πft+ j2π

2vkf

c
t− j 2π

λ
2dk(0) + j

2π

λ
ηti(θk) + j

2π

λ
ηrl (θk)

= j2πft+ j2πfkt− j
2π

λ
2dk(0) + j

2π

λ
ηti(θk) + j

2π

λ
ηrl (θk),

(29)

where fk = 2vkf
c is the doppler shift caused by the k-th target. Removing ej2πft from xi(t)e

j2πft, the
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demodulated baseband signal can be approximated by:

zl(t) ≈
K∑
k=1

βk

Mt∑
i=1

xi(t)e
j2πfkte−j

2π

λ
2dk(0)ej

2π

λ
ηti(θk)ej

2π

λ
ηrl (θk) + εl(t)

=

K∑
k=1

βke
−j 2π

λ
2dk(0)ej

2π

λ
ηrl (θk)ej2πfktxT (t)v(θk) + εl(t) (30)

where

x = [x1(t), x2(t), ..., xMt
(t)]TMt×1 (31)

v(θk) =
[
ej

2π

λ
ηt1(θk), ej

2π

λ
ηt2(θk), ..., ej

2π

λ
ηtMt (θk)

]T
Mt×1

(32)

B. Nyquist Sampling

The l-th node samples the return signal to obtain L samples per pulse, where L = Tp
Ts

denotes the

number of Ts-spaced samples of the transmitted waveforms within one pulse. The Received samples

collected during the m-th pulse are given by:

zlm =



zl[(m− 1)T ]

zl[(m− 1)T + Ts]

zl[(m− 1)T + 2Ts]
...

zl[(m− 1)T + (L− 1)Ts]


L×1

=

K∑
k=1

γke
j 2π

λ
ηrl (θk)ej2πfk(m−1)TD(fk)Xv(θk) + εlm, (33)

where γk = βke
−j 2π

λ
2dk(0),

D(fk) = diag
([

1, ej2πfkTs , ..., ej2πfk(L−1)Ts
])

L×L
(34)

X = [x[0], x[Ts], ..., x[(L− 1)Ts]]
T
L×Mt

(35)

εlm = [εl[(m− 1)T ], εl[(m− 1)T + Ts], ..., εl[(m− 1)T + (L− 1)Ts]]
T
L×1 (36)

C. Compress Sampling

Let us discretize the angle-Doppler plane on a fine grid

a = [(a1, b1), (a2, b2), ..., (aN , bN )] . (37)

We can rewrite (33) as

zlm =

N∑
n=1

sne
j 2π

λ
ηrl (an)ej2πbn(m−1)TD(bn)Xv(an) + εlm, (38)
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where

sn =

 γk, if the k− th target is at (an, bn)

0, otherwise

 (39)

In matrix form we have

zlm = Ψlms + εlm, (40)

where s = [s1, s2, ..., sN ]TN×1 and

Ψlm =
[
ej

2π

λ
ηrl (a1)ej2πb1(m−1)TD(b1)Xv(a1), ..., ej

2π

λ
ηrl (aN )ej2πbN (m−1)TD(bN )Xv(aN )

]
L×N

(41)

It is worthy to mention that ηrl (ak) = rrl cos(ak −αrl ), where (rrl , α
r
l ) is the location of the l-th Receiver

in the polar coordinates and

D(bk) = diag
([

1, ej2πbkTs , ..., ej2πbk(L−1)Ts
])

L×L
(42)

X =


x1(0) x1(Ts) . . . x1[(L− 1)Ts]

x2(0) x2(Ts) . . . x2[(L− 1)Ts]
...

...
...

...

xMt
(0) xMt

(Ts) . . . xMt
[(L− 1)Ts]



T

L×Mt

(43)

v(ak) =
[
ej

2π

λ
ηt1(ak), ej

2π

λ
ηt2(ak), ..., ej

2π

λ
ηtMt (ak)

]T
Mt×1

(44)

where ηti(ak) = rticos(ak − αti). Here, (rti , α
t
i) is the location of the i-th Transmitter in the polar

coordinates.

Assuming that there are only a small number of targets, the positions of targets are sparse in the

angle-Doppler plane, i.e., s is a sparse vector. Let us measure linear projections of zlm as

rlm = Φlmzlm = ΦlmΨlms + Φlmεlm = ΦlmΨlms + ε̃lm, (45)

where rlm denotes an M × 1 vector, Φlm is an M × L (M < L) zero-mean Gaussian random matrix

that has small correlation with Ψlm, and M must be larger than the number of targets (M > K).

If the l-th node in the network knows which nodes are the transmit nodes and also knows the transmitters

coordinates relative to a fixed point in the network, then the node is able to construct the matrix Ψlm.

Hence, it can recover the sparse vector via l1-optimization approach, based on the nodes own received data.

If no such location information is available to the node, or the interference is strong, then the receive

node will pass the linear projections rlm to a fusion center, which has global and local information.
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Combining the output of Np pulses at Nr receive antennas, the fusion center can formulate the equation

r =



r11

...

r1Np

...

rNr1
...

rNrNp


MNpNr×1

=



(Φ11Ψ11)
...

(Φ1NpΨ1Np)
...

(ΦNr1ΨNr1)
...

(ΦNrNpΨNrNp)


MNpNr×N

s +



ε̃11

...

ε̃1Np

...

ε̃Nr1
...

ε̃NrNp


MNpNr×1

= Θs + E (46)

Thus, the fusion center can recover s by applying the Dantzig selector to the convex problem of (46) as

follows:

ŝ = min ‖s‖1 Subject to ‖ΘH(r−Θs)‖∞ < µ, (47)

where µ < ‖ΘHr‖∞.

The schematic diagram of the receiver is shown in Fig. 9.

Fig. 9. Schematic diagram of the receiver. Φl denotes the measurement matrix for the l-th receive node.

1) Resolution: As before mentioned, the UUP indicates that if every set of columns with cardinality

less than the sparsity of the signal of interest of the sensing matrix are approximately orthogonal, then the

sparse signal can be exactly recovered with high probability. For a fixed M , the correlation of columns

of the sensing matrix can be reduced if the number of pulses Np and/or the number of receive nodes

Nr is increased. Intuitively, the increase in Np and Nr increases the dimension of the sensing matrix

columns, thereby rendering the columns less similar to each other. Moreover, increasing the number of

transmit nodes, i.e., Mt, also reduces the correlation of columns.
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In general, to achieve high resolution, a fine grid is required. However, for fixed Mt, Np and Nr,

decreasing the distance between the grid points would result in more correlated columns in the sensing

matrix. Also, based on the theory of CS, the effects of a higher column correlation can be mitigated by

using a larger number of measurements, i.e., by increasing M .

One might tend to think that in order to achieve good resolution one has to involve a lot of measure-

ments, or trasnmit/receive antennas, or pulses, which in turn would involve high complexity. However,

extensive simulations suggest that this is not the case. In fact, the proposed approach can match the

resolution that can be achieved with conventional methods, while using far fewer received samples, than

those used by the conventional methods.

2) Maximum Grid Size for the Angle-Doppler Space: The grid in the angle-Doppler space must be

selected so that the targets that do not fall on the chosen grid points can still be captured by the closest

grid points. This requires sufficiently high correlation of the signal reflected by each target with the

columns of Θ corresponding to grid points close to the targets in the angle-Doppler plane. However, this

requirement goes against the UUP, which requires that every set of columns with cardinality less than the

sparsity of the signal of interest be approximately orthogonal. Thus, there is a tradeoff of the correlation

of between the columns of the sensing matrix and the grid size.

D. Performance Analysis in the Presence of a Jammer Signal

It is clear that, in the presence of a jammer that transmits a waveform which is uncorrelated with the

radar transmit waveforms, the performance of the proposed CS method will deteriorate. Suppose that

each transmitter transmits Np pulses. Recalling (28) and (29), in the presence of a jammer at location

(d, θ), the received signal at the l-th receive antenna during the m-th pulse can be expressed as:

rlm = Φlmzlm =

K∑
k=1

γke
j 2π

λ
ηrl (θk)Φlme

j2πfk(m−1)TD(fk)Xv(θk) + βe−j
2π

λ
(d−ηrl (θ))Φlmx̃m + Φlmεlm, (48)

where x̃m = [x̃m(0), x̃m(Ts), ..., x̃m[(L − 1)Ts]
T
L×1 contains the samples of the signal transmitted by

the jammer during the m-th pulse, and β denotes the square root of the power of the jammer over the
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duration of one signal pulse. We can rewrite (48) as

rlm =


rl1
...

rlNp


MNp×1

=

K∑
k=1

γke
j 2π

λ
ηrl (θk)


Φl1

...

ΦlNpe
j2πfk(Np−1)T

D(fk)Xv(θk) +

βe−j
2π

λ
(d−ηrl (θ))


Φl1x̃1

...

ΦlNp x̃Np

+


Φl1εl1

...

ΦlNpεlNp

 (49)

The following assumptions are considered for jammer:

1 - Jammer is located at (d, θ).

2 - For all m, E{x̃∗m(i)x̃∗m(j)} = 1/L, and 0 otherwise. Thus, E{x̃Hm(i)x̃∗m(j)} = 1.

3 - x̃m,m = 1, ..., Np are uncorrelated with the main period of the transmitted waveforms. Thus, the

effect of the jammer signal is similar to that of additive noise. In the related analysis it is assumed that

the jammer contribution is much stronger than that of additive noise, and therefore the third term on the

right-hand side of (49) is ignored.

4 - All receive nodes use the same random measurement matrix over Np pulses, i.e., Φl = Φl1 = ... =

ΦlNp .

Based on the above-mentioned assumptions, the average power of the desirable signal taken over the

positions of TX/RX nodes can be approximated by:

Similarly, the average power of the jammer signal over TX/RX locations is given by:

Pj(l) = E{rHlj rlj} = |β|2
Np∑
m=1

x̃HmΦ
H
l Φlx̃m. (50)

The SJR is defined as the ratio of the power of the signal to the power of the jammer. Since the

denominator does not depend on node locations, the average SJR equals

SJR =
Ps(l)

Pj(l)
(51)
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SJR Based on a Modified Measurement Matrix:

Since the jammer signal is uncorrelated with the transmitted signal, the SJR can be improved by

correlating the jammer signal with the transmitted signal. Therefore, the following measurement matrix

is proposed:

Φ̃l = Φ́lXH (52)

where Φ́l is an M×Mt Gaussian random matrix. Note that Φ̃l is also Gaussian. A random measurement

matrix with i.i.d. entries, e.g., Gaussian or ±1 random variables, is nearly incoherent with any fixed basis

matrix. Therefore, the proposed measurement matrix exhibits low coherence with Ψl, thus guaranteeing

a stable solution to (47). Applying some minor changes, the average power of the desirable signal given

before is usable. The average power of the jammer signal is given by (50) where Φl is replaced by Φ̃l.

In summary, the use of Φ́l instead of Φ́l improves SJR by a factor of L/Mt when L > Mt. The SJR

can be improved by an increase in L. However, increasing L will require a smaller Ts when the pulse

duration is fixed. This will increase the bandwidth of the signal. Finally, it is important to note that the

obtained SJR do not depend on the number of measurements, M .

VI. TARGET ESTIMATION USING SPARSE MODELING FOR DISTRIBUTED MIMO RADAR

MIMO radar is typically used in two antenna configurations, namely distributed and co-located. In

distributed MIMO radar the antennas are widely separated. This enables viewing the target from different

angles. Hence, if the target returns between a particular transmitter and receiver are weak, then it is highly

likely that they will be compensated by the returns between other antenna pairs. While distributed MIMO

radar exploits the spatial diversity, co-located MIMO radar exploits the waveform diversity. In co-located

configuration, all the antennas are closely spaced and hence the target radar cross section (RCS) values are

the same for all transmitter-receiver pairs. RCS denotes the transformation undergone by the transmitted

signal while reflecting from the surface of the target. Since all the antennas are closely spaced in the

co-located configuration, each antenna pair will have the same RCS value as all the signals bounce off

the target surface at the same angle.

A. System Model

The authors of [15] assume that there are MT transmitters, MR receivers, and K targets. Further, they

assume that all the targets are moving in a two dimensional plane. The RCS center of gravity of the target

is located at
−→
pk = [pkx, p

k
y ] on a Cartesian coordinate system and it moves with a velocity

−→
vk = [vkx, v

k
y ].

The i-th transmitter and j-th receiver are located at
−→
ti = [tix , tiy ] and

−→
rj = [rjx , rjy ], respectively. Let
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wi(t) be the complex baseband waveform transmitted from the transmitter. Then, the bandpass signal

emanating from the i-th transmit antenna is given as

w̃i(t) = Real
(
wi(t)e

j2πfct
)

(53)

Under a narrow band assumption on the waveforms, the bandpass signal arriving at the j-th receiver can

be expressed as

yj(t) = Real

(
K∑
k=1

MT∑
i=1

akij(t)wi(t− τkij)e
j2π

(
fkDij (t−τkij)+fc(t−τkij)

))
. (54)

The received signals at each receiver are first down converted from the radio frequency and then passed

through a bank of matched filters, each of which corresponds to a particular transmitter. The sampled

outputs of the i-th matched filter at the j-th receiver are given as:

yij(n) =
∑
k

akij(n)e
j2π

(
fkDij (nTs−τkij)−fcτkij

)
+ eij(n). (55)

We define the target state vector ζ = [px, py, vx, vy]
T . Hence, the important properties of the target

(position, velocity) are specified by ζ. The goal is to estimate ζ for all the K targets. Now, the target

state space is discretized into a grid of L possible values ζl, l = 1, ..., L. Hence, each of the targets is

associated with a state vector belonging to this grid. If the presence of a target at ζl would contribute to

the matched filter output at n, then we have

ψlij(n) = e
j2π

(
f lDij (nTs−τ lij)−fcτ lij

)
(56)

otherwise, ψlij(n) = 0. Also, if ζl is the state vector of the k-th target, we define

slij(n) = akij(n) (57)

Otherwise, slij(n) = 0. For each j, vectors stack as:

slj(n) = [sl1j(n), sl2j(n), ..., slMT j(n)]T (58)

yj(n) = [y1j(n), y2j(n), ..., yMT j(n)]T (59)

ej(n) = [e1j(n), e2j(n), ..., eMT j(n)]T (60)

Ψl
j(n) = diag[ψl1j(n), ψl2j(n), ..., ψlMT j(n)] (61)
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Further, it is possible to arrange them as:

sl(n) = [(sl1(n))T , (sl2(n))T , ..., (slMR
(n))T ]T (62)

y(n) = [(y1(n))T , (y2(n))T , ..., (yMR
(n))T ]T (63)

e(n) = [(e1(n))T , (e2(n))T , ..., (eMR
(n))T ]T (64)

Ψl(n) = diag[Ψl
1(n),Ψl

2(n), ...,Ψl
MR

(n)] (65)

Finally, the received vector can be expressed as:

y(n) = Ψ(n)s(n) + e(n) (66)

where

s(n) = [(s1(n))T , (s2(n))T , ..., (sL(n))T ]T (67)

Ψ(n) = diag[Ψ1(n),Ψ2(n), ...,ΨL(n)] (68)

In the above formulation, Ψ(n) is known and only s(n) depends on the actual targets present in the

illuminated area. The nonzero entries of s(n) represent the target attenuation values and the corresponding

indices determine the positions and velocities. Further, note that in order to obtain the measurement vector

in the above equation, each of the receivers sends their measurements to a common processor that stacks

them appropriately to obtain y(n).

B. Sparse Support Recovery

In order to find the properties of the targets (position, velocity), we need to recover the sparse vector

s(n) from the measurements y(n). There are many approaches to perform the recovery. Two approaches

are basis pursuit (BP) and matching pursuit (MP). These algorithms are well known in the field of

sparse signal processing.

1) Basis Pursuit: BP is an unconstrained minimization problem which can be expressed as:

min
1

2
(‖y(n)−Ψ(n)‖2)2 + λ‖s(n)‖1 (69)

BP problems can be solved by CVX.

2) Block-Matching Pursuit: If the columns of Ψ are divided into blocks of size MTMR, L blocks

are obtained. In each subsequent iteration, we project the residual vector onto all of these L blocks and

pick the block that gives the highest energy after projection. Now, the estimated reconstructed vector is
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updated by adding the projections onto each of the columns of this block. The residual is also updated

accordingly. Note that the main difference when compared with BP is that here the updates are done

one block (columns corresponding to different transmitter and receivers) at a time whereas in BP, the

updates are done one column at a time. The improvement in using the block sparsity based recovery

algorithms is maximum when all the columns within a block are orthogonal. It can be easily checked

that the columns corresponding to different transmitter-receiver pairs in the basis matrix are orthogonal

by the definition of Ψ in the above mentioned signal model.

C. Optimal Adaptive Energy Allocation

Adaptive energy allocation has been shown to provide improved detection performance in distributed

MIMO radar systems. In this section, we present a novel adaptive energy allocation scheme to improve

the estimation performance.

Let Ei be the energy of the waveform transmitted from the i-th transmitter. The authors of [15]

initialize the system by transmitting multiple pulses of unit energy waveforms Ei = 1 , from all the

transmitters. Hence, the total energy transmitted per pulse is
∑MT

i=1Ei = MT . After collecting a vector

of outputs at the multiple receiver matched filters, the processor performs the sparse recovery to estimate

the attenuations akij using the algorithms mentioned in the previous section. Since the different antenna

pairs view the targets from different angles, these attenuations and their corresponding estimates will be

different from each other. Hence, equal energy allocation to all the transmitters does not necessarily give

the best performance. After the estimation, the energy allocation scheme is applied to decide upon the

transmit energies for the next set of transmit pulses while keeping the total transmitted energy constant.

The goal of this scheme is to maximize the minimum target returns. This is naturally motivated from the

performance metric defined earlier in this section. The numerator in the performance metric denotes the

minimum target returns. The authors of [15] solved the following optimization problem and found the

optimal Ei such that

max
Ei

min
k

MT∑
i=1

MR∑
j=1

Ei‖âkij‖
2 (70)

Since this problem depends only on the dimensionality of the MIMO radar configuration and the number

of targets and not on the huge dimensionality of the basis dictionary, it can be solved quickly. This makes

it amenable to use in practical systems in an online manner. After solving this problem, the processor

feeds back this information to the transmitters which send the next set of pulses with these optimally

selected values of energies. Hence, the system operates in a closed loop. The energy allocation mechanism
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discussed above is not only applicable to the sparsity based estimation method mentioned in this paper

but it is relevant in any multiple target scenario. Note that it only requires us to have estimates of the

attenuations. These estimates are computed using sparse support recovery. In principle, these estimates

can be computed using any other approach and still this energy allocation scheme will be relevant.

REFERENCES

[1] E. Candes and M. Wakin, “An introduction to compressive sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2,

pp. 21–30, 2008.

[2] E. Candes, N. Braun, and M. Wakin, “Sparse signal and image recovery from compressive samples,” in Biomedical Imaging:

From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, 2007, pp. 976–979.

[3] R. Baraniuk, “Compressive sensing,” in Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on,

2008, pp. iv–v.

[4] R. Baraniuk, E. Candes, R. Nowak, and M. Vetterli, “Compressive sampling [from the guest editors],” Signal Processing

Magazine, IEEE, vol. 25, no. 2, pp. 12–13, 2008.

[5] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling (a sensing/sampling paradigm that goes against

the common knowledge in data acquisition),” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, 2008.

[6] M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” Signal Processing,

IEEE Transactions on, vol. 59, no. 10, pp. 4719–4734, 2011.

[7] M. Davenport, P. Boufounos, M. Wakin, and R. Baraniuk, “Signal processing with compressive measurements,” Selected

Topics in Signal Processing, IEEE Journal of, vol. 4, no. 2, pp. 445–460, 2010.

[8] E. Candes and T. Tao, “Decoding by linear programming,” Information Theory, IEEE Transactions on, vol. 51, no. 12, pp.

4203–4215, 2005.

[9] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, “Beyond nyquist: Efficient sampling of sparse bandlimited

signals,” Information Theory, IEEE Transactions on, vol. 56, no. 1, pp. 520–544, 2010.

[10] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk, “Random filters for compressive sampling and reconstruction,”

in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on,

vol. 3, 2006, pp. III–III.

[11] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive

sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 83–91, 2008.

[12] A. Petropulu, Y. Yu, and H. Poor, “Distributed mimo radar using compressive sampling,” in Signals, Systems and Computers,

2008 42nd Asilomar Conference on, Oct 2008, pp. 203–207.

[13] Y. Yu, A. Petropulu, and H. Poor, “Measurement matrix design for compressive sensing x2013;based mimo radar,” Signal

Processing, IEEE Transactions on, vol. 59, no. 11, pp. 5338–5352, Nov 2011.

[14] ——, “Cssf mimo radar: Compressive-sensing and step-frequency based mimo radar,” Aerospace and Electronic Systems,

IEEE Transactions on, vol. 48, no. 2, pp. 1490–1504, APRIL 2012.

[15] S. Gogineni and A. Nehorai, “Target estimation using sparse modeling for distributed mimo radar,” Signal Processing,

IEEE Transactions on, vol. 59, no. 11, pp. 5315–5325, Nov 2011.

January 17, 2015 DRAFT


	C15-0122-1529 cover page 2015-C026[1].pdf
	Blank Page


