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Abstract

This project considers the problem of localization and tracking an underwater target from
bearings-only measurements obtained by static underwater sensors. Nodes communicate
their local observations over volatile, unreliable underwater channels with the aim being to
improve the overall accuracy of each sensor’s estimate, while also aligning the estimates so
that all nodes agree on the target location. This report summarizes our initial investigation
of having each node locally run a particle filter for state estimation.
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1 Introduction

Note: At the time the present contract was awarded, the outcome of the “Adaptive Multi-
sensor Biomimetics for Unsupervised Submarine Hunt” (AMBUSH) Technology Investment
Fund (TIF) competition was not known. Since then, the TIF AMBUSH project has been
awarded. The present contract is thus viewed as an initial effort which will lead into and
benefit the extended TIF project. In light of this, the Project Authority has authorized the
contractor to write a shorter-than-normal contract report so as to focus on research and
staffing efforts which will ultimately benefit the TIF project.

We consider a network of underwater sensors which cooperate to localize and track the
position of target emitting an acoustic signal. The sensors measure the direction to the
target, relative to true North. Although rough distance information can also be obtained
from the data, it appears to be highly unreliable and so for the time being we focus on the
problem of cooperative bearings-only localization and tracking.

The underwater sensors communicate over acoustic channels, and this is a very challenging
and unreliable medium [1]. The quality of the communication channel changes dramatically
as thermoclines and other environmental factors vary. Consequently, communication links
are directed and time-varying: a node i may receive messages transmitted by j while j does
not receive messages transmitted by i, and the times when i does receive messages from j
may be sporadic.

The aim of the project is to develop a method for collaborative target localization and
tracking in this volatile environment. Consensus algorithms [2] are very attractive for use
in such environments because they do not involve routing messages over multiple hops.
Instead, nodes exchange messages with their immediate neighbors and fuse data with the
aim of reaching a state where all nodes agree on the same value. The existing literature
on consensus algorithm provides conditions under which convergence to a consensus is
guaranteed in spite of time-varying and directed network connectivity [2, 3, 4, 5].

2 Literature Review

Consensus dynamics have been studied intensively in the systems and control community
during the past decade [2, 6]. The vast majority of analyses consider continuous time
dynamics which imply that nodes are in constant communication with their neighbors.
There are also discrete-time versions of the consensus dynamics considered, however these
also assume synchronous communication and updating.

Given the dynamic nature of the communication medium and the network in this project,
a different class of consensus algorithm called randomized gossip is more suitable [7, 8]. In
asynchronous randomized gossip algorithms, pairs of neighboring nodes exchange messages
and perform updates in an asynchronous and unattended manner, and they also
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The class of broadcast gossip algorithms [9, 10, 11, 12] are particularly relevant to this
project since underwater communications should be modeled as a broadcast medium; when
one node transmits, all other nodes potentially receive the message. Of course, in practice,
only a (random) subset will actually receive the message. In contrast to synchronous con-
sensus dynamics [2] and asynchronous pairwise randomized gossip [7, 8], broadcast gossip
algorithms do not require that nodes know the identities of their neighbors. Instead, in
broadcast gossip, nodes periodically and asynchronously broadcast their current estimate,
and those other nodes who receive the message perform an update and aggregate the re-
ceived information with their own local estimate. Consequently, nodes do not need to know
any characteristics of the network (size, or other structure-related parameters), and the
algorithm is highly robust to changing network size, topology, and other conditions.

The majority of work on consensus and gossip has focused on the distributed averaging
problem, where each node has an initial value and the objective is to reach a state where
all nodes have the average of the initial values. A smaller subset of the literature has con-
sidered the estimation and tracking of time-varying signals, typically in a linear-quadratic-
Gaussian framework, with the aim being to minimize mean-squared error or mean-squared
deviation [13, 14, 15, 16]. Bearings measurements are highly nonlinear, and the noise in
underwater acoustic measurements is likely not Guassian. Thus, these methods are not
likely to be well-suited to the problem at hand.

Recently, there has been interest in developing consensus-based approaches to distributed
particle filtering [17, 18, 19, 20]. Particle filters are a sequential Monte Carlo method
for recursive state estimation [21]. Instead of assuming that the target dynamics and
measurements follow a particular parametric distribution (e.g., Gaussian measurements or
linear dynamics), particle filters represent uncertainty in the target state using a collection of
weighted point masses (the particles). Although particle filters can be more computationally
intensive than the Kalman family of filtering approaches, they can also provide significantly
better tracking performance, especially when the target dynamics are non-linear and/or the
measurement noise is non-Gaussian. In distributed particle filtering approaches, each node
runs a local particle filter. In order to update the state estimates, the measurements from
different sensors need to be fused and incorporated, and different approaches have been
proposed to accomplishing this using consensus algorithms [17, 18, 19, 20], with the aim
being to aggregate and diffuse information over the network so that all nodes agree on the
target state and track.

3 Proposed Solution

We propose to adopt a distributed particle filtering approach in this work. This choice is
motivated by the observations drawn from the dataset provided by the Scientific Authority
at the start of the project. In this dataset, the targets dynamics are linear for a significant
portion of the time, but they become reasonably non-linear when the target turns or ma-
neuvers. Moreover, the measurements contain a very significant amount of noise and many
measurements should be treated as coming from clutter. For this reason, approaches which
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attempt to sequentially localize the target without accounting for its dynamics are unlikely
to succeed, and some smoothing or filtering will significantly improve the performance.

In contrast to existing approaches to distributed particle filtering [17, 18, 19, 20], which
require a considerable amount of communication since nodes send information about the
particle cloud, we propose to have each node run a local particle filter but nodes will instead
communicate their measurements directly. When a node receives the message with mea-
surements from any neighbor, it will incorporate the information into its own particle filter.
Another attractive feature of the particle filter is that it is straightforward to incorporate
a varying number of measurements at each step, so nodes can easily make use of whatever
information is received from their neighbors.

4 Results
4.1 Modeling

A significant portion of the team’s effort so far has focused on investigating and processing
the dataset provided. Because of the significant noise levels in the data and the limited
number of measurements at each time step, it is necessary to exploit as much side informa-
tion as possible. This includes accounting for the fact that the target must obey the laws of
physics and cannot change locations arbitrarily in a fixed time interval. We have developed
an initial motion model. The motion model assumes the target moves at a constant velocity
and switches between heading straight ahead, executing a gradual turn, and executing a
sharp turn. The model parameters have been estimated from the data. We have also begun
to characterize the distribution of noise in the data. Each sensor produces roughly between
0 and 5 bearings measurements at each time step, and the offset between the measurements
recorded and the “true” bearings (calculated based on the GPS coordinates provided for
the ship towing the target) has somewhat heavier tails than a Gaussian distribution. These
models are used in the initial particle filter implementation.

4.2 Tracking Results

As a baseline we consider the performance of a centralized particle filter which receives
all of the measurements from all sensors. For the application scenario provided, if every
sensor always received the messages sent by every other node (i.e., the network topology
corresponded to a complete graph at every step), then each node would effectively be
implementing a replica of this centralized filter. Thus, we can compare the performance of
the distributed filters with that of this centralized filter.

Preliminary results are shown in Figure 1. Fig. 1(a) shows the results of tracking if the
sensors were to measure the true bearings at each time step (corresponding to one minute),
with a small amount of additive white Gaussian noise. This “idealized” setting shows the
performance limits arising from the configuration of the sensors and the current motion
model. Fig. 1(b) shows the performance of a particle filter which uses all of the measure-
ments available at every time step, and Fig. 1(c) shows the performance of a particle filter
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(a) Tracking using the true bearings
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(b) Tracking using all the measurements
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(c) Tracking using the best measurements

Figure 1: Centralized particle filter using 10,000 particles. The red curve shows the true
target trajectory and the black curves correspond to 10 different runs of the particle filter.
The magenta squares indicate the locations of each sensor.

which clairvoyantly selects only the most accurate measurement from each sensor at each
time step (disregarding the others). There is a distinct improvement from (b) to (c), but
clearly there is still plenty of room for improvement.

4.3 Discussion

Now that we have a clear understanding of the performance of the centralized particle
filter, we are conducting experiments to understand how distributed particle filters which
only receive a subset of the observations will perform in comparison. Preliminary results
indicate that performance depends significantly on the percentage of transmissions received
from neighboring nodes, and on the position of the particular sensor. More detailed results
will be provided in the final report.
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5 Ongoing and Future Work

As is evident from the initial results shown in Figure 1, there is plenty of room for improve-
ment, even in the centralized particle filter. To address the significant amount of spurious
measurements due to clutter, we are working on incorporating probabilistic data association
methods [22] into the particle filter. These methods assess each incoming message with
respect to the current state estimate to distinguish (via a hypothesis test) whether or not
the measurement is due to clutter or the target. This is done before fusing the measure-
ment into the estimate, and should lead to improvements in the accuracy of the estimator.
The improvement in the centralized estimator will be directly applicable to the distributed
estimators as well.

On the theoretical side there is plenty of work to be done. Existing analyses of broadcast
gossip algorithms assume the network topology is fixed, although not necessarily known.
Little work has considered time-varying networks or unreliable links. We will begin to
pursue an analysis along these lines. In terms of relaxation of the consensus concept, we
are working on developing bounds on the ε-averaging time [7, 8], the worst-case number
of iterations that must be performed in order to reach within ε of a consensus with high
probability (i.e., with probability 1 − δ for some δ > 0). The ε-averaging time depends
in general on the network size and structure (through the second largest eigenvalue of
the graph Laplacian matrix), as well as the desired level of accuracy, ε, and the desired
confidence δ. In relation to the goals of this project, such results will allow us to guarantee
approximate consensus in finite amounts of time. The extension to time-varying topologies
requires additional work to understand exactly how the time-varying nature of the topology
affects the ε-averaging time.

These aspects and others will be the focus of our attention moving forward into the TIF
AMBUSH project.
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