

OpenSimulator Interoperability with DRDC
Simulation Tools
Compatibility Study

Mark Swartz
Evan Harris
CAE Inc. - Integrated Enterprise Solutions

Prepared By:
CAE Inc. - Integrated Enterprise Solutions
1135 Innovation Drive
Ottawa ON K2K 3G7

Contractor's Document Number: 5457-001 Version 01
Contract Project Manager: Damon Gamble, 613-247-0342
PWGSC Contract Number: W7707-135643
CSA: Mark G Hazen, Lead Maritime Command Team Support Group, 902-426-3100 x176

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do
not necessarily have the approval or endorsement of Defence R&D Canada.

Contract Report
DRDC-RDDC-2014-C222
September 2014

Principal Author

Original signed by Mark Swartz

Mark Swartz

M&S Consultant, CAE IES

Approved by

Original signed by Damon Gamble

Damon Gamble

Project Manager, CAE IES

Approved for release by

Original signed by Leon Cheng

Leon Cheng

Chair, Document Review Panel

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2014

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2014

 i

Abstract ……..

This compatibility study examines potential interoperability between OpenSimulator, a free,
server-based 3D virtual world simulator, and a set of DND/CF simulation tools. Interoperability
is assessed in four areas: simulation operation, terrain models, 3D models, and human factors
tools. Simulation technologies assessed for compatibility are the DIS and HLA simulation
protocols, the Unity game engine, the VBS2 serious game, SmartMarine 3D and SmartPlant 3D
CAD applications, the HumanCAD anthropomorphic articulation simulator, and the IPME task
modelling and crew simulator. OpenSimulator does not use DIS or HLA, so it is not currently
able to directly interface with any simulator that uses these industry standards. Terrain data
compatibility is limited by the RAW format used by OpenSimulator. Unity is able to provide the
required height-map portion of the terrain while VBS2 cannot produce a compatible terrain
component directly. The set of DND/CF tools that use model-based assets can, in most cases, be
converted to the COLLADA format which OpenSimulator is compatible with. HumanCAD also
has the ability to export model formats that can be converted to COLLADA. IPME can
communicate over TCP/IP connections and so an interface to OpenSimulator could be developed.
Overall, OpenSimulator is compatible with the set of DND/CF tools examined in terms of its
ability to re-use 3D model content originally developed for these tools. Some compatibility exists
with respect to re-use of terrain data. But there is marginal to no compatibility with respect to
operating OpenSimulator using the tools studied.

ii

This page intentionally left blank.

 iii

Executive summary

OpenSimulator Interoperability with DRDC Simulation Tools:
Interoperability with DRDC Simulation Tools

Mark Swartz; Dr. Evan Harris; September 2014.

Introduction: This report was written as part of the Virtual World (vWorld) Capability
Development Support project by CAE Integrated Enterprise Solutions (IES) on behalf of Defence
Research and Development Canada (DRDC). CAE investigated the compatibility of
OpenSimulator in terms of its interoperability with other DND/CF simulation technologies.

Interoperability was assessed in four areas: simulation operation, terrain models, 3D models, and
human factors tools. Additionally, four DRDC use cases were used to provide context within
which OpenSimulator compatibility would be applied. These use cases are the ability to (1)
import previously developed content, (2) export content created in OpenSimulator, (3) integrate
an OpenSimulator simulation into a larger simulation, and (4) enable distributed simulation
environments.

OpenSimulator is an open source server application that can be used to create a 3D distributed
virtual world that can be accessed by multiple users from disparate geographical regions for
collaboration and interaction activities. The OpenSimulator virtual world is accessed via a client
application known as a “viewer”. The DND/CF simulation technologies that were investigated
included the DIS and HLA distributed simulation protocols, Unity game engine, VBS2 combat
simulator, SmartMarine 3D and SmartPlant 3D CAD applications, and the human factors tools
HumanCAD anthropometric modelling environment, and IPME discrete event simulator.

Results: Regarding the interoperability of simulation operation by using DND/CF simulation
tools to operate, control, or perform a simulation using OpenSimulator, there exists effectively no
direct compatibility. OpenSimulator does not currently support DIS or HLA protocols for
distributed simulation, although it may be possible to develop this capability. While several
efforts to construct a Unity-based viewer have been made, no Unity-based clients are available.
The use of VBS2’s API to interface with OpenSimulator was discussed, but it was concluded that
there is likely no advantage to developing a VBS2 viewer to OpenSimulator. However, given that
OpenSimulator enables communication between multiple users via Linden Labs protocol (using
HTTP and UDP), interoperability with DND/CF tools is not required in order to execute a
distributed simulation compatible with DRDC use case (4). A number of freely available
compatible client applications (such as the Firestorm viewer) can be used to connect to
OpenSimulator over the Internet.

The investigation of the interoperability of terrain models developed by external applications with
OpenSimulator revealed that terrain models developed in Unity were compatible while VBS2
terrain models could not be directly converted by VBS2 to a compatible format.

It was found that OpenSimulator is directly compatible with 3D model files as long as they are in
COLLADA format. For models that are not in this format, this report demonstrates how
interoperability can be achieved by using a range of free and commercial tools for conversion.

iv

These tools include Blender, AutoCAD, 3DS Max and SketchUp. Thus, DRDC use case (1) was
demonstrated as feasible. However, regarding DRDC use case (2) for exporting content from
OpenSimulator, it was determined to be infeasible without significant development effort since
OpenSimulator cannot export models out into formats that can be used by the set of DND/CF
simulation tools.

The interoperability between OpenSimulator and human factors tools HumanCAD and IPME
proposed that model re-use of the human anthropometric mannequins could be enabled via
Blender-compatible formats where the motion kinetics could potentially be incorporated and the
new model subsequently exported from Blender to the OpenSimulator compatible format.
OpenSimulator could potentially be integrated with IPME through the use of Region modules,
making OpenSimulator a part of a larger simulation as per DRDC use case (3). However, without
further investigation and experimentation, the technical feasibility of this approach is uncertain.

Significance: This report demonstrates where compatibility exists, in terms of the interoperability
of OpenSimulator with several DND/CF tools exists. It also highlights where compatibility is
absent, or where it is uncertain or unknown, and identifies areas for further study and
investigation. The compatibility checklist it presents provides a useful tool to guide DRDC in the
assessment of OpenSimulator compatibility with additional tools not reviewed in this report.

Future plans: This report presents some detailed analysis of OpenSimulator compatibility and
often demonstrates the level of interoperability through step by step examples. However, where
scope constraints required, a higher level of assessment was provided, leading in several instances
to potential areas where further and more detailed investigation and experimentation would be
required to definitively conclude the level of compatibility. Depending on DRDC priorities, these
areas could provide avenues for future investigation or even development of technology to enable
compatibility where currently there is none. Specifically, further investigation could be applied to
the development of a DIS or HLA interface for OpenSimulator, development of content export
capability from OpenSimulator, and demonstration of model and/or terrain export from VBS2 to
OpenSimulator.

 v

Table of contents

Abstract …….. ... i
Executive summary .. iii
Table of contents ... v
List of figures .. vii
List of tables ... viii
Acknowledgements .. ix
1 Introduction ... 1

1.1 Overview of OpenSimulator vWorld Technology .. 1
1.2 Compatibility Assessment Areas ... 2
1.3 DND/CF Simulation Technology .. 3

1.3.1 HLA & DIS.. 3
1.3.2 Unity .. 4
1.3.3 VBS2 ... 4
1.3.4 SmartMarine 3D and SmartPlant 3D ... 4
1.3.5 HumanCAD ... 4
1.3.6 IPME .. 5
1.3.7 Supplementary Software Tools .. 5

1.4 Report Organization .. 5
2 Interoperability of Simulation Operation .. 6

2.1 OpenSimulator Clients .. 6
2.2 HLA & DIS Compliance ... 7
2.3 Client Development Using Unity .. 7
2.4 VBS2 API .. 9
2.5 Simulation Operation Summary .. 9

3 Interoperability of Terrain Models ... 11
3.1 Importing Terrain from Unity.. 11
3.2 Importing Terrain from VBS2 ... 15
3.3 Terrain Data Summary .. 16

4 Interoperability of 3D Models .. 17
4.1 Conversion of 3D Studio Max Mesh to COLLADA ... 18
4.2 Conversion to COLLADA using SketchUp .. 18
4.3 Conversion of SmartMarine/Plant 3D to COLLADA ... 19
4.4 Import COLLADA to Unity .. 19
4.5 Import COLLADA to OpenSimulator ... 20
4.6 Limitations on Exporting Models for OpenSimulator ... 21
4.7 Exporting Models Out of OpenSimulator ... 22

4.7.1 Archive Files .. 22

vi

4.7.2 OpenSimulator Database ... 22
4.7.3 Third Parties... 23

4.8 3D Models Summary ... 23
5 Interoperability with Human Factors Tools .. 24

5.1 The OpenSimulator Avatar .. 24
5.1.1 Default Appearance and Customization .. 24
5.1.2 Avatar Model ... 26

5.2 HumanCAD Compatibility .. 27
5.3 IPME Compatibility .. 28
5.4 HF Tools Summary ... 29

6 Compatibility Checklist .. 30
7 Conclusion .. 36
References 39
Annex A Firestorm Viewer Setup ... 41
List of symbols/abbreviations/acronyms/initialisms ... 42

 vii

List of figures

Figure 1: Rezzable’s Browser-Based Viewer Used Unity to Present OpenSimulator Content
(Source: [10]). ... 9

Figure 2: Creating Terrain in Unity. .. 12

Figure 3: The Terrain > Set Resolution Dialogue. .. 12

Figure 4: RAW Terrain Export Dialogue. ... 13

Figure 5: Terrain Profile Created in Unity Uploaded to OpenSimulator. 15

Figure 6: COLLADA Model Import into Unity (Source: [27]). ... 20

Figure 7: COLLADA Model Import into OpenSimulator ... 21

Figure 8: Default “Ruth” Avatar (left) and Customized Avatar (right). .. 25

Figure 9: Skin Textures Applied to Head, Upper, and Lower Body (Source:[19]). 25

Figure 10: Clothing Textures Used to Configure a New Shirt and Pair of Pants (Source:[19]). .. 26

Figure 11: Blender Biped Avatar Model (Source: [20]). ... 27

viii

List of tables

Table 1: OpenSimulator Viewers .. 7

Table 2: Viewer Mesh Capability .. 17

Table 3: OpenSimulator Compatibility Checklist for Technology X. ... 30

Table 4: OpenSimulator Compatibility Checklist for DIS, HLA, Unity, VBS2, HumanCAD
and IPME. ... 32

Table 5: Abbreviated OpenSimulator Compatibility Checklist for OpenSimulator viewers. 35

 ix

Acknowledgements

Special thanks to following individuals for their advice and input into this study:

Christopher Cooper, CAE IES Canada

Matthew Keown, Allen Vanguard

Tab Lamoureux, CAE IES Canada

Mike Lepard, CAE IES Canada

Tom Miller, CAE IES Canada

Chris Walters, CAE Professional Services Australia

x

This page intentionally left blank.

 1

1 Introduction

This report is written as part of the Virtual World (vWorld) Capability Development Support
project; contract number W7707-135643/001/HAL. The contractor, CAE Integrated Enterprise
Solutions (IES), on behalf Defence Research and Development Canada (DRDC), has investigated
how OpenSimulator can be used to provide an interactive 3D virtual environment to facilitate
collaborative activities between disparate DRDC team members.

The potential DRDC use cases of virtual world simulation technology provide opportunities for
cost savings through re-use of virtual world assets and content previously developed and by
providing the capability to distribute simulation activities across computer systems and between
disparate personnel. These use cases can be categorized as follows:

1. Import of content: re-use of content developed for one simulation application in another.
This would require the ability to import to OpenSimulator virtual content developed by
external model development tools, possibly for other simulation applications.

 Example: Conduct an After Action Review in OpenSimulator using a ship model
reused from a navigation trainer simulation.

2. Export of content: re-use of content developed for a specific vWorld instance/application
into another instance/application. This might require the ability to transfer content
between two different OpenSimulator applications or projects, or it may require export of
content developed in OpenSimulator to external software applications (other simulators
or CAD environments).

 Example: Re-use of compartment layouts developed as part of the design process
within OpenSimulator to develop operation procedures.

3. Simulation integration: re-use of a virtual world developed for one application by
integrating it into another, perhaps larger, simulation.

 Example: Integrate a virtual world developed in OpenSimulator into a broader
distributed simulation framework (perhaps using DIS/HLA) or add external
stimulation engagement models by interfacing with IPME to run a discrete event
simulation.

4. Distributed simulation: provide the capability for distributed human engagement in
exercises and experiments.

 Example: Render a virtual ship layout or operations centre where disparate
personnel can interact and execute objectives to complete a common set of tasks.

With the above use cases providing the context in which OpenSimulator could be employed, CAE
IES performed a compatibility study between OpenSimulator and several DND/CF simulation
technologies. Compatibility was assessed based on the level of interoperability between
OpenSimulator and these technologies. This report presents the results of the compatibility study.

1.1 Overview of OpenSimulator vWorld Technology

OpenSimulator is an open source server application that can be used to create 3D virtual worlds
that can be accessed, potentially, from any point in the world using a variety of clients.
OpenSimulator is written in C# and can operate on Windows using the .NET Framework or on

2

Unix-like machines using the Mono Framework. The source code is released under a BSD
License.

The OpenSimulator server is divided into two components: (1) backend data services consisting
of user accounts, login service, assets, and inventory; and (2) the simulator server which can host
numerous virtual environments called regions. Two modes are available: standalone mode and
grid mode. In standalone mode, these two components are combined into a single OpenSimulator
process. In grid mode, the two components are separated, placing the backend services into a
ROBUST process (Redesigned OpenSimulator Basic Universal Server Technology) and the
simulation servers into OpenSimulator processes. This allows scaling of services to support user
growth since the ROBUST services and simulation servers can run on completely separate,
dedicated machines if required. Multiple instances of the OpenSimulator process can be run on
different machines in order to distribute processing load. For practical applications consisting of
many simultaneous users, most implementations of OpenSimulator will operate in grid mode.

The term grid is derived from the nature of the 3D virtual world created by the OpenSimulator
server. The world is comprised of a virtual grid of regions located by a unique pair of (x, y)-
coordinates. Each region is 256 × 256 m2 and is hosted by a simulation server. One simulation
server can host multiple regions. Multiple simulation servers can be connected forming grids
(potentially) as large as 65,5362 regions. The simulation servers may also be distributed over a
large geographic area, providing the ability to form private network-based grids over a LAN or
WAN, or public grids comprised of simulation servers that host regions worldwide and which can
be accessed from the internet. From an avatar’s perspective, however, these regions are all part of
the same grid or virtual environment, and therefore, two adjacent regions in the virtual world
hosted by two different servers in the real world that are separated by hundreds of kilometers can
be easily traversed by simply walking the avatar across the region boundary. Grid-to-grid
connections can also be established via a hypergrid which is comprised of a network of grids that
are linked via portals which avatars can use to teleport to alternate grids.

1.2 Compatibility Assessment Areas

In this report, the compatibility of OpenSimulator with several other simulation technologies used
by DND/CF is investigated. The term compatibility is defined as the level of interoperability, or
how well OpenSimulator works with these other simulation technologies. Specifically, this report
examines interoperability with respect to four areas: simulation operation, terrain data, 3D
models, and human factors tools.

Any limitations imposed by OpenSimulator as a result of how it has been designed to operate or
work within these areas will directly affect the level of interoperability that can be achieved with
alternate simulation technology. It is therefore important to understand how OpenSimulator has
been designed to operate and interface with users, how it incorporates terrain models, and what its
capabilities are with regard to modelling other content and virtual assets. These facets are
discussed in the three following paragraphs.

Simulation operation:

1. OpenSimulator is a client-server application that uses HTTP- and UDP-based
messages to communicate between ROBUST services and the various simulation

 3

servers, between ROBUST services and the client, and directly between the
simulation servers and the client. OpenSimulator requires a database to store
information persistent both within particular regions (terrain configuration, terrain
assets, buildings, etc.) and also grid-wide across regions (user account information,
user assets, avatar configuration). In standalone mode, SQLite is the default
database. In grid mode, MySQL is currently the only fully supported database,
although most OpenSimulator features are also supported by Microsoft SQL Server.
The clients that connect to the simulator are called viewers. Viewers allow the user
to see the virtual world, move within it, and alter it by making changes to the terrain
and environment, virtual objects (structures, vegetation, etc.), and avatar appearance.

Terrain models:

2. OpenSimulator terrains are modelled using a RAW format which consists of 13-
layers of information including a height-map, provided as a gray-scale image, in the
first layer. Terrain models are tiled to provide coverage for a single 256 × 256 m2
region or can be created to cover multiple adjacent regions. Individual textures are
applied separately via the viewer, allowing the owner of a region to customize its
terrain with multiple textures that take effect depending on the elevation of a specific
point. Terrain data is stored in the database.

3D models and meshes:

3. All in-world objects, or assets, are based on some type of 3D model or mesh. These
include the avatar, its shape, clothes, and accessories; the virtual objects such as
buildings, structures, and vehicles; and terrain culture such as trees and plants.
OpenSimulator supports mesh objects and 3D models in COLLADA format;
however, since not all viewers support mesh, the ability to import and/or view these
models depends on the client used to connect to the grid. This report recommends the
use of the Firestorm viewer since it supports both import and view of mesh objects
(see Table 2 in section 4). Most viewers also provide the ability to construct simple
primitive objects (“prims”) directly in-world, such as cubes and spheres, and include
a limited set of prim re-shaping operations to customize them. Importing sculpted
prims (“sculpties”), which are prims whose shapes are determined by their texture, is
also possible.

1.3 DND/CF Simulation Technology

This report describes the result of investigating the compatibility of OpenSimulator with the
simulation technologies used by DND/CF. These simulation technologies are discussed in the
following sections.

1.3.1 HLA & DIS

High-Level Architecture (HLA), or IEEE Standard 1516, and Distributed Interactive Simulation
(DIS), or IEEE Standard 1278, are standards that facilitate interoperability of distributed
simulations regardless of computing platform. Each standard defines an architecture (HLA) or
communication protocol (DIS) for the transfer of data and synchronization of actions across

4

distributed platforms connected to a single real-time simulation environment. HLA and DIS are
widely used within Defence for the purpose of conducting war-gaming, real-time strategy, and
training simulations.

1.3.2 Unity

Unity is a cross-platform game engine and integrated development environment targeting 3D
interactive content. Unity supports desktop computers, web plugins, video game consoles and
mobile devices. Potential points of compatibility between Unity and OpenSimulator include: a
Unity-based desktop computer OpenSimulator viewer; a Unity-based web-plugin OpenSimulator
viewer; the sharing or converting of regions developed in one platform to the other; and the
sharing or converting of 3D assets developed in one platform to the other. Unity version 4.1 was
used for the purposes of this compatibility study.

1.3.3 VBS2

Virtual Battlespace 2 (VBS2) is used to create a virtual world focused primarily on land combat
situations. DND is in possession of an enterprise license for VBS2 from Bohemia Interactive,
which provides broad use of the application suite across the entire department, including
contractors executing work for DND. Notwithstanding that VBS2 is primarily focused on land
combat situations, VBS2 does come with an extensive development kit and the ability to modify
and extend the capability inherent in the product. As such there is always potential for engineers
and developers to design and implement extensions to VBS2 that would meet the needs of the
vWorld efforts.

1.3.4 SmartMarine 3D and SmartPlant 3D

Intergraph’s SmartMarine 3D for ship design, and SmartPlant 3D for plant design, are two CAD
programs used or intended to be used by DND. The 3D CAD models created by these programs
could potentially be imported into the OpenSimulator vWorld. To this end, this report
investigates the interoperability of the 3D formats used by these software programs with
OpenSimulator.

1.3.5 HumanCAD

HumanCAD allows a 3-D model of a virtual environment (e.g., an operations room on a ship) to
be developed in order facilitate both visualization and the performance of anthropometric
assessments. A series of mannequins to represent the effective physical range of the anticipated
user population (e.g., 5th percentile female to 95th percentile male) are available within
HumanCAD. These mannequins can be employed within the virtual environment to assess a
series of reach, vision and clearance tests, corresponding to the task-based scenario in order to
evaluate a proposed layout. These tests could be used to determine if the anticipated user
population could perform the defined tasks that are under consideration. Demonstrating
compatibility between HumanCAD and OpenSimulator could allow anthropometric mannequins
to be employed within open source virtual worlds for the purposes of conducting HF-based
assessments.

 5

1.3.6 IPME

Integrated Performance Modeling Environment (IPME) is a task network simulation environment
created to model human work. IPME’s underlying architecture is a Discrete-Event Simulation
(DES). A DES is the simulation of the changes of states in a system. A DES is thus either a
process-oriented, event-oriented, or activity-oriented simulation tool. Tasks are described in
IPME according to who performs them and the load the task imposes in terms of visual effort,
auditory effort, cognitive effort and psychomotor effort. These dimensions can be affected by
environmental conditions, and can interfere with each other. In addition to the description of task
demands imposed on operators in a workflow, an operator’s workload capabilities represent the
amount of time a resource (split between the broad categories of input, central, and output
resources) is used during a task. Further, tasks themselves can be given priority weightings,
leading to tasks being interrupted or shed altogether at times of significant demand. IPME has
been shown to be an effective method of representing human performance for the purposes of
system evaluation and design. Task network models developed in IPME could be used to
stimulate avatars within OpenSimulator virtual worlds with the added benefit of being able to
assess human performance through IPME’s workload algorithms.

1.3.7 Supplementary Software Tools

Additional software is referred to throughout this report that has been found to provide
supplementary support for the creation of content and resources compatible with OpenSimulator.
These include programs such as Blender, GIMP, AutoCAD, 3DS MAX, and SketchUp. They are
discussed in context within the relevant sections of this report.

1.4 Report Organization

The remainder of this report breaks down the compatibility study into four main compatibility
assessments between OpenSimulator and each relevant DND/CF simulation tool as follows:

1. Interoperability of Simulator Operation

2. Interoperability of Terrain Models

3. Interoperability of 3D Models

4. Interoperability with Human Factors Tools

Each assessment examines communication protocols, and/or file formats that would allow
DND/CF personnel to leverage existing vWorld infrastructure (GUIs, 3D models, environments,
terrain) created using familiar simulation tools, and incorporate them into OpenSimulator, all in
the context of the DRDC use cases. The final section presents the conclusions of the
compatibility study.

6

2 Interoperability of Simulation Operation

The interoperability between OpenSimulator and the set of DND/CF simulation tools with
regards to operating, controlling, and/or performing a simulation is discussed in this section.
Specifically, this section discusses the possibility of communication between simulations run
within the different simulation environments, and also identifies if certain DND/CF tools could be
used to build platforms for direct operation of OpenSimulator. This discussion begins with an
overview OpenSimulator communication protocol.

2.1 OpenSimulator Clients

OpenSimulator’s server-client architecture provides a distributed simulation architecture that
connects multiple users located at different geographic locations to a common virtual
environment where they can interact. As such, OpenSimulator enables DRDC use case (4), that of
providing a distributed simulation, by allowing disparate DRDC personnel to connect from
anywhere with internet access.

OpenSimulator uses the Linden Lab viewer protocol: a combination of HTTP and UDP
communication protocols. Communication occurs initially between the client (known as the
viewer) and ROBUST services when a user first logs in to the vWorld grid. ROBUST informs
the simulation (region server) to expect the arrival of the user’s avatar, while simultaneously
providing the address of the simulation back to the client. The client and simulation then
communicate directly to handle in-region tasks (object updates, avatar position updates, etc.)
while grid-wide tasks (map services, teleports, etc.) are handled via communication between
ROBUST, the client and simulator simultaneously [1].

A number of viewers have been developed which are compatible with OpenSimulator and Linden
Labs Second Life virtual world. A viewer typically allows the user to roam the virtual
environment via walking, running, or flying. Also, depending on the permissions set by the
region owner(s), the viewer allows the user to modify the terrain, add, edit, or remove virtual
objects that populate the world, as well as customize the avatar. Table 1 lists a subset of available
viewers. A comprehensive list is available from the OpenSimulator website [2]. The selection of
a particular viewer over another will depend on the capabilities of each respective viewer. In
section 4, the Firestorm viewer is recommended in part based on its ability to import and/or view
mesh objects. Note that some viewers are no longer being actively developed. In some cases,
activity by its developers has been transferred to another viewer which is intended to replace the
original one. If this is a case with a viewer listed in the table below, it is noted in the active
column by indicating if the viewer has been replaced and what viewer has replaced it.

 7

Table 1: OpenSimulator Viewers

Viewer Developer Website Active
Cool VL Henri

Beauchamp
http://sldev.free.fr/ Yes

Firestorm The Phoenix
Firestorm
Project, Inc

http://www.firestormviewer.org/ Yes - replaced
Phoenix

Hippo Metropolis http://www.hypergrid.org/metropolis/wiki/en/ Yes
Imprudence Imprudence http://wiki.kokuaviewer.org/wiki/Main_Page No - replaced

by Kokua
Kokua Imprudence http://wiki.kokuaviewer.org/wiki/Main_Page Yes - replaced

Imprudence
Phoenix The Phoenix

Firestorm
Project, Inc

http://www.firestormviewer.org/ No - replaced
by Firestorm

Singularity Singularity https://sites.google.com/site/singularityviewer/ Yes
Teapot ArminW https://bitbucket.org/ArminW/teapot/wiki/Home No

2.2 HLA & DIS Compliance

While OpenSimulator is a real-time distributed simulation, it was not originally designed to work
with either the HLA or DIS standards. This means it cannot presently be used to interface with
DND/CF simulation tools that can operate with these standards, such as VBS2, “out-of-the-box”.
While it is technically possible to develop an HLA or DIS interface in some form to
OpenSimulator, it would require a significant software development effort. DND is aware that the
U.S. Navy has developed an HLA/DIS gateway to OpenSimulator allowing them to use
OpenSimulator as a federation viewer. This demonstrates that OpenSimulator could be operated
over a DIS/HLA network. At the time of writing, neither detailed information on how the
gateway works, nor access to the gateway technology was available.

2.3 Client Development Using Unity

An area where DND/CF tools could be used to directly interface with the operation of
OpenSimulator vWorlds is the development of a client (OpenSimulator viewer) application using
Unity. Note that this may not be a desirable or practical application of DND/CF resources
because it is likely to be costly and there are many free viewers currently available for download.

As discussed above, a variety of third-party viewers can be used to interface with OpenSimulator.
A complaint against these viewers, as discussed by one of the founders of OpenSimulator, Adam
Frisby, is their inability to scale to large volumes of users (e.g. rendering more than 60 avatars in
a single region, which is unlikely to be an issue for DND applications) and their dated graphics
rendering capability compared to state-of-the-art game rendering engines [3]. Since Unity does
not suffer from these shortcomings, some vWorld simulation providers are focusing on the Unity
platform instead of OpenSimulator to develop virtual world environments and content, and then

8

deploy them to either the web as a browser plug-in or to private standalone applications. Such
companies include Sine Wave Entertainment [4], ReactionGrid [5], Second Places [6], Rezzable
[7], TPLD [8], and Hyperfair Inc. [9].

In early 2011, Rezzable produced a Unity-based web-browser viewer that interfaced with
OpenSimulator directly [10]. Rezzable’s viewer, shown in Figure 1, used a Rezzable module
attached to an OpenSimulator region to package the content of the region and send it to a
browser. A Unity scene was used to present the content and OpenSimulator was used as the
“Massively Multiplayer Online” (MMO) engine. The region content received by the browser was
the content present in the region at the time of the download. To see new content, users would
have to refresh their browser. As with other viewers, visitors could interact with other avatars
accessing the region.

However, it would seem that Rezzable has abandoned their Unity-based OpenSimulator viewer as
no mention of it can currently be found on their website. Conversely, Unity remains one of their
listed “preferred tools”. This may be a result of Rezzable’s plan to charge Grid operators a
$50/region license fee in order to use the Rezzable module. This module needs to be attached to
each region to publish OpenSimulator regions online, when one is not able to use the free
OpenSimulator viewers [10].

Some challenges to developing an OpenSimulator client using Unity have been described by Rob
Smart [11]. The article referenced mainly applies to web-browser based targets, but could
potentially impact standalone client implementations. The primary issue involves incompatibility
between the .NET/Mono library version used by OpenSimulator and the Mono version used by
Unity. Library incompatibility issues can affect various aspects of simulator operation such as
server communication using the “libomv” library. At the time the article was written (2009),
OpenSimulator was at version 0.7.0 (.NET 3.5) and Unity was based on Mono 2.0, and the
solution was to implement an earlier version of OpenSimulator to align library compatibility and
establish server communication. However, at the time of writing this report, both OpenSimulator
(version 0.7.5) and Unity (version 4), support .NET 4, and this particular issue is likely to have
been resolved.

 9

Figure 1: Rezzable’s Browser-Based Viewer Used Unity to

Present OpenSimulator Content (Source: [10]).

2.4 VBS2 API

The level of interoperability between OpenSimulator and VBS2 is extremely limited in terms of
simulator operation due to the inherent differences of the two applications. OpenSimulator is a
server-based application, coded in C#, running on the .NET framework, accessing a remote SQL
database, connects disparate users via Linden Labs viewer protocol (over HTTP and UDP), and
employs a simple height-map-based terrain. VBS2 operates on the Real Virtuality 3 game
engine, incorporates constructive AI entities, features complex terrain, and can connect to
distributed simulations using DIS or HLA.

The VBS2Fusion product provides an Application Programming Interface (API) to VBS2 that
allows the state of objects within the VBS2 environment to be manipulated. This allows users to
customize the VBS2 simulation by adding plug-ins to interface with, and gain control of, objects,
entities, and other aspects of the virtual battlespace. This allows new features and capabilities to
be added to the VBS2 simulated environment. Potentially, the API could be used to develop an
interface to OpenSimulator, although it would likely be a significant development effort because
OpenSimulator does not support a number of the features of a serious (war) game, including
sensor and weapon effects.

2.5 Simulation Operation Summary

This section discussed the interoperability of DND/CF simulation tools with regard to operating,
controlling, and/or performing a simulation using OpenSimulator. Overall, there exists little to no
compatibility to operate or control OpenSimulator using any of DIS/HLA protocols, Unity, or
VBS2 without exerting significant development effort.

10

OpenSimulator does not currently directly support DIS or HLA protocols for distributed
simulation and therefore the capability to participate in distributed simulations exercises with
DIS/HLA compliant simulations is currently non-existent. A DIS/HLA gateway developed by
the U.S. Navy may allow some interoperability, although details are currently limited. Several
efforts to construct a Unity-based client in order to overcome the shortcomings in graphics and
scalability to large user numbers were discussed but currently, no Unity-based clients are
available to use. Finally, the use of VBS2’s API to interface with OpenSimulator was discussed,
but it was concluded that there is likely no significant advantage to developing a VBS2 interface
with OpenSimulator given the cost of developing such an interface.

However, given that OpenSimulator enables communication between multiple users via Linden
Labs protocol (using HTTP and UDP), means that such interoperability is not required in order
for DRDC to conduct a distributed simulation, DRDC use case (4). A number of freely available
compatible client applications (such as the recommended Firestorm viewer) can be used to
connect to OpenSimulator over the Internet.

 11

3 Interoperability of Terrain Models

Terrain is modeled in OpenSimulator as a height-map that can be represented as a grey-scale
image where black is “low” terrain and white is “high” terrain. The height-map is the first layer
of a 13-layer (or channel) “RAW” format. The channels are labelled: height, factor, water,
parcels, for sale, edit object, edit land, safe, flying, landmark, scripts, original height, and original
factor. Each channel consists of 256 × 256 eight-bit pixels. This represents one 256 × 256 m2

region in the simulator where each pixel in the terrain file represents a 1 m2 area.

This section describes a step-by-step method for exporting a terrain model from Unity and
importing it into OpenSimulator as well as briefly addressing terrain export from VBS2.
Therefore, this section relates to DRDC use case (1) discussed in section 1, in which content
developed for previous simulations by external applications is re-used by OpenSimulator.

3.1 Importing Terrain from Unity

Terrain models created in Unity can be exported in RAW format, and with some intermediate
steps, imported into OpenSimulator. An example is used to illustrate the steps involved in this process.

Begin by creating a new terrain (Terrain > Create Terrain) in Unity or opening an existing
terrain asset (drag a terrain model from the Asset window into the Hierarchy). Terrain created in
Unity is shown in Figure 2.

For new terrain, before adding any terrain features it is possible to configure the RAW file to fit
perfectly into a 256 × 256 m2 OpenSimulator region. This is accomplished by selecting:

1. Terrain > Set Resolution…

2. Set the parameter “Heightmap Resolution” to 256 (Unity will add a +1 to the value)
which corresponds to 256 × 256 m2, as shown in Figure 3. Setting a higher
resolution will result in a terrain map that will be larger than a single region.

3. If a multiple region terrain is desired, set the resolution to a value which is a multiple
of 256. For example, a 2 by 2 set of regions spans 512 m2 and the terrain created in
Unity corresponds to a resolution of 512 (+1). As will be subsequently described,
multi-region terrains can be cut up into single 256 × 256 m2 region parcels and
loaded into the simulator piece-wise.

4. The other parameters within the Set Resolution dialogue referring to terrain width,
length, and height do not affect the height-map that is ultimately used by
OpenSimulator.

For existing terrains, the resolution cannot be changed from the original as all features are reset
when the height-map resolution is changed. Since the resolution corresponds to the square size of
the region in OpenSimulator, checking the height-map resolution parameter will provide the size
of the terrain as it will appear in OpenSimulator. If the existing terrain has a height-map
resolution larger than 256, it will span more than one region and it will be required in a
subsequent step to subdivide the height-map before it can be imported to OpenSimulator.

12

Figure 2: Creating Terrain in Unity.

Figure 3: The Terrain > Set Resolution Dialogue.

Next, a RAW height-map file is generated by selecting Terrain > Export Heightmap – Raw…

1. The Export Heightmap dialogue will open as shown in Figure 4.

2. Change the parameter Byte Order to the respective OS platform.

3. If the height-map resolution was set to 257 in the previous step, then the Width and
Height in the export dialogue will be 257 (an OpenSimulator region size).
Otherwise, these values will correspond to the height-map resolution set previously
for a larger size of terrain.

 13

Figure 4: RAW Terrain Export Dialogue.

Unity exports the terrain into a single-channel RAW file containing only the height-map. Since
OpenSimulator uses 13-channel RAW files (with the first layer containing the height-map), the
Unity RAW file needs to be converted into the RAW format that OpenSimulator can read. One
method of providing this conversion is by the following procedure.

First, the height-map data is converted to a Targa image file (.tga) via a terrain converter program
that can be downloaded from [12]. This is accomplished by simply dragging and dropping the
icon of the Unity RAW file over top of the icon of the converter, terrconv.exe. The Targa image
file appears in the same directory and represents a grey scale height-map of the terrain created
using Unity. This file can be opened directly by GIMP (the GNU Image Manipulation Program).

The next steps require two files that were provided by the OpenSimulator training program:

(1) blank.raw, a 13-channel empty RAW terrain file for OpenSimulator terrains, and

(2) file_slraw.py, a Python plug-in for GIMP that allows the 13-channel RAW files to be
opened and edited using GIMP. This file must be copied to the following location:
C:\Users\username\.gimp-2.8\plug-ins.

The steps are:

1. Open the Targa height-map image in GIMP.

2. Open blank.raw in GIMP.

3. Make the “Height” layer the visible layer then copy and paste the Targa image onto it.

4. Select Layer > Anchor Layer.

5. If the Targa image has a resolution of 257, it will fit perfectly into 2562 pixel layer.
Otherwise, if the resolution is larger, the Targa image will have to be subdivided into
several 2562-sized parcels and each piece copied into the “Height” layer of an
independent blank.raw file. GIMP makes this process relatively easy since the whole
Targa height-map can be selected and pasted into the “Height” layer, and then
repositioned over the layer. Overlapping portions are automatically excluded.

6. Finally, select File > Export… and enter the name for the new RAW parcel created.

14

Note that, with a moderate amount of effort, an application could be developed to combine these
steps into a single process, allowing Unity-produced RAW height-maps to be converted to
OpenSimulator 13-channel RAW terrain files directly.

The final step is to import each RAW terrain file into an OpenSimulator region. The terrain can
be loaded into an existing region (which replaces the existing terrain but leaves all assets such as
trees, buildings, or other models intact including their positions within the region) or into a new
region.

New regions are created from the OpenSim.exe command console using the command:

1. create region <regionName> region.ini.

2. If multiple regions are required, set the coordinates of each new region such that the
terrain parcels will align to form the original terrain created in Unity.

To upload the new terrain:

1. Fly or teleport to the region.

2. From the Client/Viewer menu, select the Terrain tab located within the following
menu structure depending on the viewer examples below:

Hippo Viewer: World > Region/Estate > Terrain

Firestorm Viewer: World > Region Details > Terrain

3. Click Upload Raw Terrain… and select the 13-channel RAW file created using
GIMP. The OpenSim.exe console will display a lot of scrolling red text. This is
normal, and after 20 to 30 seconds the new terrain should be drawn by the viewer.
However, if the scrolling text stops with an I/O read error displayed within the
console window, it means that the 13-channel RAW terrain file was formatted
incorrectly.

Figure 5 shows the terrain created in Unity shown in Figure 2 being displayed in an
OpenSimulator viewer after being uploaded into an OpenSimulator region.

 15

Figure 5: Terrain Profile Created in Unity Uploaded to OpenSimulator.

3.2 Importing Terrain from VBS2

VBS2 includes the ability to generate terrain models using the Visitor 4 application [13]. Three
primary sources of input data are required to construct the terrain as follows:

1. Height-map/Elevation Data: from Digital Terrain Elevation Data (DTED), Digital
Elevation Model (DEM), GeoTIFF, ArcInfo ASCII, or XYZ raster data;

2. Imagery: from satellite images and aerial photography (GeoTIFF or PNG) to apply
realistic texture and look to the terrain;

3. Vector Map (VMAP): terrain cultural features (roads, trees, buildings) from ESRI
Shapefiles or other VMAP sources.

The height-map data consists of a matrix of terrain elevation values. While VBS2 provides the
capability to export this data into an external ASCII file for archive/backup purposes, this format
is fundamentally different than the gray-scale image used by OpenSimulator to represent terrain
elevation. This means it cannot be used as is by OpenSimulator.

To generate the terrain file that will be used by VBS2, the height-map, imagery, and VMAP are
overlaid within Visitor 4, and then exported to a “WRP format” file which is then packed into a
compressed format that is read by VBS2 during simulation. This format is unofficially
documented on the Bohemia Interactive web site as “internal undocumented structures”. This
means, while it would be possible to develop a convertor between the VBS2 file format and the
OpenSimulator format, there is no guarantee that it would continue to work across releases of
VBS2 as the internal undocumented structures may change.

Alternatively, by using third party GIS data processing applications (e.g. Global Mapper), it
should be possible to take the height-map or elevation source data used by VBS2 and process it to

16

produce a gray-scale height-map required by OpenSimulator. Note that, this approach has not
been verified during the course of this compatibility study.

3.3 Terrain Data Summary

This section discussed the interoperability of OpenSimulator with terrain models developed by
alternate DND/CF simulation technologies, Unity and VBS2. The study revealed that terrain
models developed in Unity were compatible with OpenSimulator: Unity terrain can be exported
directly as a gray-scale height-map which forms the first layer in the 13-layer RAW terrain file
used by OpenSimulator to model terrain. Step-by-step instructions were provided to illustrate the
process. Conversely, VBS2, which constructs terrain models using actual terrain data (digital
elevation data, imagery, and vector maps), does not export terrain to a gray-scale height-map
directly, making it incompatible with OpenSimulator without the aid of additional software to
convert the VBS2 terrain model. However, the height-map or elevation source data used by VBS2
should be able to be processed for use by OpenSimulator. Thus, DRDC use case (1) regarding the
re-use of simulation content can be achieved with respect to terrain models by using Unity, but
not VBS2 directly, unless additional processing is applied to the VBS2 terrain model or the
source data for VBS2 is used.

 17

4 Interoperability of 3D Models

An important aspect of interoperability is the potential for reuse of assets, in the form of mesh
models, previously constructed for DND/CF’s alternate simulation tools.This is related to DRDC
use cases (1) and (2), identified in the introduction of this report, which involve the re-use or
virtual content developed for use with other simulation applications (import), or transferred from
one vWorld application to another (export).

OpenSimulator only supports the COLLADA (.dae) mesh format amongst common 3D model
formats. COLLADA was designed as an interchange file format for 3D applications and has been
standardised as ISO/PAS 17506. As a result, it is a format that is supported by most 3D modeling
applications. Unity and VBS2 support a variety of mesh formats such as COLLADA plus those
produced by a spectrum of 3D modeling applications including Maya, Cinema 4D, 3D Studio
Max, Cheetah3D, Modo, Lightwave and Blender. Intergraph’s SmartMarine 3D and SmartPlant
3D ship and plant design software support the PDS, PDMS, ACIS (.sat), MicroStation (.dgn), and
AutoCAD (.dwg) formats, but not COLLADA directly [14]. An important limitation of
OpenSimulator is that while it can import objects in COLLADA format, it does not provide a
means to export individual objects back out for direct use with other tools. Like other simulation
and gaming engines, such as Unity and VBS2, OpenSimulator is a tool that consumes 3D virtual
content. While OpenSimulator can create specialized archive files (called OpenSimulator
ARchive or “OAR” files and Inventory ARchive or “IAR” files) that effectively export vWorld
3D content and assets, these currently only work with other instances of OpenSimulator. The
possibility of extending this capability is discussed in section 4.6.

While OpenSimulator supports the COLLADA format, the ability to import COLLADA models
and, separately, view them, depends upon the viewer selected. The Hippo viewer neither
supports the ability to upload nor view such models. Another viewer, Singularity, can view mesh
models, but not upload them. Firestorm is one popular viewer that provides both capabilities and
thus it is recommended that DRDC adopt this viewer. We note that Cool VL, Kokua, and Teapot
also support both capabilities. Table 2 summarizes the mesh capabilities of the viewers that were
tested for this study. In the following discussion, Firestorm will be used to demonstrate how a
mesh model developed for Unity or VBS2 can easily be imported into OpenSimulator. To
properly setup Firestorm to connect to a private OpenSimulator grid, refer to Annex A.

Table 2: Viewer Mesh Capability

Viewer Mesh Upload Mesh View

Cool VL Yes Yes

Firestorm Yes Yes

Hippo No No

*Imprudence N/A N/A

18

Viewer Mesh Upload Mesh View

Kokua Yes Yes

*Phoenix N/A N/A

Singularity No Yes

Teapot Yes Yes

*Discontinued viewer

4.1 Conversion of 3D Studio Max Mesh to COLLADA

The 3D modeling and animation software, 3D Studio Max (3DS Max) is a ubiquitous and
common application for the development of 3D assets for gaming and simulation applications.
While 3DS Max can export to COLLADA directly, the following example illustrates how free 3D
modeling application Blender (version 2.65)1 can be used to convert 3DS Max assets in .3ds
format to COLLADA .dae format.

1. Open Blender.

2. Select File > Import > 3D Studio (.3ds).

3. Choose the file and either double-click or click Import 3DS in the top right of the
GUI to import the 3DS Max model.

4. Select File > Export > Collada (Default)(.dae).

5. Chose the location and click Export COLLADA in the top right of the GUI to export
the model to .dae format.

4.2 Conversion to COLLADA using SketchUp

The 3D modeling and animation software, SketchUp (owned by Google between 2006 and 2012,
now by Trimble Navigation) is another application for the development of 3D assets. In the
current version, SketchUp Pro 2013, it natively uses its own format for 3D models (.skp), but is
able to import and export a number of other formats, including COLLADA (.dae), 3DS Max
(.3ds) and AutoCad (.dwg, .dxf) formats.

The following steps illustrate how to import and export from SketchUp Pro 2013.

1. Open SketchUp.

2. Select File > Import...

3. Within the dialog, choose the appropriate Files of type if it is not the default.

1 Note that Blender version 2.49b was used during the vWorld Training Course to demonstrate how to
make and import sculpted mesh objects into OpenSimulator. This version is not recommended for mesh
conversion due to the quality of its COLLADA implementation.

 19

4. Choose file and either double-click or click Open to import the model.

5. Select File > Export > 3D Model...

6. Within the dialog, set the Export type to COLLADA File (*.dae) if it is not the
default.

7. Chose the location, set the File name and click Export to export the model to .dae
format.

4.3 Conversion of SmartMarine/Plant 3D to COLLADA

Intergraph’s design software for ships and plants, SmartMarine 3D and SmartPlant 3D,
respectively, provide support for the PDS, PDMS, ACIS (.sat), MicroStation (.dgn), and
AutoCAD (.dwg) formats, but not COLLADA, the only format accepted by OpenSimulator.
Since Intergraph’s software cannot export to COLLADA directly, they must be converted by
another program. Unfortunately, Blender does not support any of these formats and therefore it
cannot be used to convert them to COLLADA for import into OpenSimulator as was the case
with 3DS Max.

One possible workflow would import the models from either SmartMarine 3D or SmartPlant 3D
into Autodesk’s AutoCAD 2014, which supports .sat and .dgn models. These would then be
exported to .fbx format. Then, 3DS Max would be used to import the .fbx file and export to .dae
(COLLADA). Alternatively, a second workflow (again using AutoCAD 2014) would involve
exporting the .sat/.dgn file to .dwg format. This file would then be imported into SketchUp and
exported as .dae [15]. These workflows would maintain the model geometry, but some model
information (materials, textures) may be lost.

Neither approach was verified during the compatibility study. We recommend that models
produced by SmartMarine 3D or SmartPlant 3D be obtained and the two workflows tested to
ascertain the efficacy of the approach and the quality of the result.

Import COLLADA to Unity

Unity supports a variety of 3D model files including .fbx, .3ds, .dxf, .obj, and .dae files. The
following steps can be used to import a COLLADA model into Unity as shown in Figure 6.

1. Open Unity.

2. Select Assets > Import New Asset…

3. Select the COLLADA model file and click Import.

4. The COLLADA model will appear listed in the Assets window.

5. Drag the model into the Hierarchy window and it will appear in 3D in the Scene
window.

20

Figure 6: COLLADA Model Import into Unity (Source: [27]).

4.4 Import COLLADA to OpenSimulator

OpenSimulator supports COLLADA mesh files. Thus, any COLLADA-based mesh asset used in
Unity or VBS2 can also be used by OpenSimulator. To import a mesh model in COLLADA
format into OpenSimulator, a viewer supporting mesh uploads such as Firestorm must be used.
Refer to Annex A for information on installing this viewer.

The following procedure will upload a COLLADA mesh into OpenSimulator, such as the one
shown in Figure 7. From the Firestorm viewer:

1. Select Build > Upload > Mesh Model…

2. Select the COLLADA (.dae) file and click Open.

3. The Upload Model dialogue appears. Several options are available for selecting the
level of detail (number of triangles and vertices), applying physics to the model, and
previewing the model. Under the Level of Detail tab select either High, Medium,
Low, or Lowest labels. These can be previewed in the preview pane on the right by
selecting the corresponding level from the drop-down menu. The preview can be
zoomed in by using the mouse scroll wheel or by left-clicking and dragging vertically
upwards. The preview can also be rotated by dragging the mouse horizontally while
left-clicking on the image.

4. Click the Calculate weights and fees button. This feature calculates the
computational cost of the model on the simulation. The calculation may take several
minutes to complete. Once it does, the button will change to Upload. Alternatively,
a lower level of detail could be selected and the cost recalculated.

 21

5. Click the Upload button to upload the model to the user’s inventory. The inventory
dialogue will automatically open once the upload is complete showing the model in
the Objects category.

6. The model can be placed into the OpenSimulator environment by dragging it from
the inventory into the 3D virtual world.

7. Right-clicking on the model and selecting Edit will launch the editing tool.

Once the model has been imported, its size in each of the X, Y and Z directions can be changed
but not its shape: direct editing of the mesh itself is not possible. Several different models can be
grouped together so that they move as a single model by holding “Ctrl”, selecting each model,
and then (in the Firestorm viewer) going to Build > Link.

Figure 7: COLLADA Model Import into OpenSimulator

4.5 Limitations on Exporting Models for OpenSimulator

As Unity and VBS2 are both consumers of 3D model assets and not producers of these assets,
neither application is capable of directly exporting model content out in a form that can be easily
reused by third-party applications such as OpenSimulator. For example, in Unity, assets can be
imported in a variety of formats. But assets can only be exported to a Unity-friendly package for
import to alternate instances of Unity itself. On export, models are broken down into their
disparate parts, categorized into a multitude of files, and then compressed into gzip format
(obscured by Unity with a .unity extension).

VBS2 content can be packaged and exported out to a “Packed Bohemia Object” (PBO) file.
These files can contain any VBS2 object that is represented within the Mission Editor folder tree
such as missions, campaigns, add-ons, animations, or 3D models. Within the PBO file, the
models are represented as P3D files. The PBO export function is designed to work only with

22

other instances of VBS2 (which can directly import the PBO file) and it does not directly
facilitate exporting out 3D assets for use with OpenSimulator. However, Bohemia Interactive
does produce a P3D-to-FBX converter and the resulting FBX files can either be imported to
AutoCAD and 3DS Max [16]. By using 3DS Max, the model could then be exported either
directly to COLLADA format, or to the 3DS format that Blender, as per section 4.1, can convert
to the required COLLADA format. Due to legal limitations on the content provided with VBS2, it
should be verified before exporting any 3D model out of VBS2 that the user or organization has
the legal right to do so.

4.6 Exporting Models Out of OpenSimulator

Similar to Unity and VBS2, OpenSimulator is a consumer of 3D model assets that are built using
other tools. While most OpenSimulator viewers provide the ability to create, edit, and upload
objects inside the virtual world there is currently no mechanism available to easily export those
objects out of OpenSimulator for use with other DND/CF simulation technologies.

4.6.1 Archive Files

OpenSimulator does provide the ability to save archived copies of whole regions (OAR-files) and
inventory items (IAR-files), but these are designed to work with other instances of
OpenSimulator and, to our knowledge, no free or commercial tools have been developed that
would allow the information stored in these files to be converted to other formats, such as
COLLADA, that could be imported into other programs.

A tool could be developed that would read in the 3D object data contained in an OpenSimulator
archive file, since the object data within these archives is stored in XML format, and use it to
construct the 3D model formats required by other applications. The OAR file contains a sub-
folder with XML files that correspond to each object within the vWorld. For groups of “linked”
objects, as described in section 4.4, the OAR file combines the objects into one XML file.
Therefore, an export tool could work on individual as well as “linked” groups of objects.

4.6.2 OpenSimulator Database

Details of the OpenSimulator regions, inventories, and other details, are also stored within the
OpenSimulator database. The database schema is partially documented on the OpenSimulator
web site [26], although the structure is considered “alpha” and may not be stable between
OpenSimulator releases.

A tool could be developed that would read the 3D object data contained in the OpenSimulator
database and use it to construct the 3D model formats required by other applications. Similar to
an export tool developed to read the archive files, such a tool could work on individual as well as
“linked” groups of objects.

 23

4.6.3 Third Parties

Further investigation and experimentation into the feasibility of these proposed tools is required,
but the ability to export OpenSimulator model data to other formats has been demonstrated
previously by third parties who developed their own proprietary methods. For example, Tip-o-
de-an Technologies provides a conversion service that transforms OpenSimulator objects,
including entire regions, into a COLLADA mesh that can then be imported into Unity [17].
Additionally, DRDC is aware of software developed by the U.S. Navy that exports assets or
models created in OpenSimulator into a format that can be imported into Unity. At the time of
writing, no references to this work were available.

4.7 3D Models Summary

This section discussed that OpenSimulator is directly compatible only with 3D model files in the
COLLADA format and showed how interoperability can be achieved using a range of free and
commercial tools for conversion, notably Blender, AutoCAD, SketchUp and 3DS Max, as well as
source and target applications including SmartMarine 3D/SmartPlant 3D, Unity, and VBS2.
Where conversion to COLLADA is indirect, involving several intermediate tools, it is likely that
if the original model is CAD-based and includes material information, then this information will
be lost and only the geometric model component will be preserved. This is not an issue since
OpenSimulator does not interpret any other information other than the model geometry.

It was discussed that OpenSimulator, as a virtual world simulator, was not designed to produce
3D model content for use with other applications, but was designed to consume content for
building virtual worlds. It therefore includes features to import models and textures, and internal
tools to build virtual environments but not to export them back out in a format compatible with
other external tools. It was proposed that model export functionality could be added with
considerable development effort, by using the geometric model information contained within
OpenSimulator archive files or the database.

Based on the discussion presented above, the DRDC use case of content re-use via import of
existing model assets can be achieved. However, as far as model re-use for content developed
within OpenSimulator, no course for direct export to external applications is available.

24

5 Interoperability with Human Factors Tools

Human Factors is the study of how devices and equipment work with the human body and the
brain’s cognitive abilities. It incorporates the disciplines of engineering and psychology,
anthropometry, biomechanics, and industrial design [18]. Within an OpenSimulator virtual
world, the avatar represents the user. It may or may not look like the user depending on how the
avatar appearance has been configured. It may not even appear human although most avatars tend
to be humanoid. Thus, emphasis tends to be on avatar personalization rather than on optimizing
fidelity to the human form factor.

This section discusses possible areas of compatibility between OpenSimulator and two Human
Factors software applications: HumanCAD and IPME. It will address DRDC use cases (1),
importing existing content, and (3), integrating OpenSimulator as part of a larger simulation.

5.1 The OpenSimulator Avatar

5.1.1 Default Appearance and Customization

The default avatar loaded by running OpenSimulator for the first time is called “Ruth”: a generic
female avatar with default body shape configuration and clothing options selected as shown in
Figure 8. Assuming that the Firestorm viewer is used, these settings can be changed by right-
clicking the on the avatar and selecting Appearance > Edit Outfit. Three tabs present the options
“Clothing”, “Attachments”, and “Body Parts”.

Clicking on the “Body Parts” tab reveals a list that displays the avatar’s default eyes, hair, shape,
and skin. Hovering the mouse over any of these will illuminate the item and show a wrench icon
which can be clicked to edit the default settings. Alternatively, the edit feature can be opened by
right-clicking the item and selecting Edit. Right-clicking also reveals options to Replace the
existing body part with something else, or Create a new one.

Editing the Shape body part involves adjusting various sliders that control the shape parameters
for each of the categories: Body, Head, Eyes, Ears, Nose, Mouth, Chin, Torso, and Legs. The
Eyes, Hair, and Skin body parts, in addition to providing various configuration parameters, also
allow a texture to be uploaded which can effectively alter the look of the avatar as much as
changing the parameters settings. Textures must be uploaded in advance using either Avatar >
Upload > Image or Build > Upload > Image. New textures are added to the user’s inventory
under the Textures category.

Changing the skin texture has a pronounced effect on the avatar appearance. Three textures, one
each for the head, upper body, and lower body, are required. As shown in Figure 8, new skin
textures were uploaded to the user inventory, and then a new skin was created to which the skin
textures were applied. These skin textures are shown in Figure 9. Alternatively, instead of
creating a new skin, the default Ruth skin texture could be replaced with the new one. In order
for new user avatars to automatically be configured with the new default, the textures and shape

 25

settings have to reside within the centralized ROBUST database rather than an individual user’s
inventory.

Similarly, under the Clothing tab, different types of clothing can be applied to the avatar, and
reconfigured, including applying new textures to simulate more complex clothing patterns than
the default colours provided. Figure 10 shows the clothing textures used to customize the avatar
in Figure 8.

Figure 8: Default “Ruth” Avatar (left) and Customized Avatar (right).

Figure 9: Skin Textures Applied to Head, Upper, and Lower Body (Source:[19]).

26

Figure 10: Clothing Textures Used to Configure a New Shirt and Pair of Pants (Source:[19]).

5.1.2 Avatar Model

OpenSimulator avatar models consist of the mesh components that form a “bone structure” and a
set of animations that simulation the body kinematics of walking, running, flying, sitting, and
other possible movements. Two applications are primarily used to construct the avatar models
and their corresponding animations:

1. Blender

2. Make Human

A biped Blender model is shown in Figure 11. This model, a set of tutorials, and a listing of best
practices can be found on the OpenSimulator website [20].

These tools could be used to customize the base avatar mesh model in order to increase the
fidelity of the anthropomorphic features. Alternatively, it is possible to use specialized Human
Factors tools to create a mesh model of a humanoid in various poses of interest and import them
into either:

(a) OpenSimulator directly, but the imported model would simply be geometric with no
animation capabilities, or

(b) Blender first, to construct, piece-wise, the avatar components modelled by the Human
Factors tool, and adding in the other avatar components such as animations before
importing the avatar model into OpenSimulator.

 27

Figure 11: Blender Biped Avatar Model (Source: [20]).

5.2 HumanCAD Compatibility

The ability to reuse the HumanCAD anthropometric mannequins within the OpenSimulator
environment would provide a natural avenue for compatibility and would apply directly to DRDC
use case (1). HumanCAD 2 comes standard with a variety of supported model formats including
DXF, FBX, OBJ, 3DS, and others. With the optional CADExchange module, models in IGES,
STEP, and STL can be imported and exported (DWF can also be exported) [21]. However, since
OpenSimulator supports only the COLLADA format, models exported from HumanCAD could
not be directly imported without an intermediate conversion step. Further, the exported
mannequin models would be geometric only: the ability to pose a mannequin would be lost
during the export process. The free 3D modelling software Blender can be used to solve the
problem of format conversion, as can a number of commercial software tools, and potentially
Blender could also be applied to the problem of restoring body articulation, although this was not
tested during this compatibility study.

Blender can import at least three of the model formats exported by HumanCAD. These include:

1. OBJ,

2. 3DS, and

3. STL.

The first two model formats come standard with HumanCAD while the last model format is
enabled with the optional CADExchange module. Blender can then export the model in
COLLADA format which can be imported into OpenSimulator using a mesh-compatible viewer
such as Firestorm. However, as previously mentioned, the model will be geometric only, and
thus an exported mannequin model will lose all body articulation.

As discussed in the previous section, the OpenSimulator community has made available a
Blender-based (.blend format) avatar model that models not only the geometry of the avatar (its
“bone” structure), but the body kinematics that simulate body articulation and motion [20]. This
model could provide a base avatar upon which the exported HumanCAD mannequin model could
built upon to form a hybrid avatar compatible with OpenSimulator. The hybrid model would be

28

constructed by replacing the base bone structure of the blender avatar with the exported
HumanCAD mannequin model. The modelled avatar kinematics would then be incorporated, if
not inherited, from the base model and subsequently tuned as required to provide body
articulation within the human ranges of motion. The hybrid model could then be used in
OpenSimulator as an avatar that could be posed and controlled for the purpose of conducting HF-
based assessments.

In addition, any model-based infrastructure used in HumanCAD could be reused in the
OpenSimulator virtual world. Similar to the mannequin models, modelled objects such as
equipment and furniture can be exported from HumanCAD into one of the three Blender-
compatible formats, imported into Blender, and then exported to a COLLADA model. Finally,
the COLLADA model would be imported by OpenSimulator and positioned in the virtual world.

5.3 IPME Compatibility

Alion MA&D’s Integrated Performance Modelling Environment (IPME) has the ability to link to
other simulation environments in real-time through TCP/IP sockets or the HLA protocol [22]. As
a result, there is the potential for task network models developed in IPME to interface with
entities in OpenSimulator with some development effort. This would facilitate DRDC use case
(3). For example, DRDC Toronto has experience in utilizing IPME simulation input-output
protocols to engage with external simulators such as the Fire and Smoke Simulation Model
(FSSIM). This was used in DRDC Toronto’s study of crewing effectiveness and automation to
simulate a ship crew’s effectiveness in extinguishing a fire [23].

In the crew effectiveness simulation, FSSIM modelled the spread of fire and smoke within a
specific environment (such as a ship), where different subsystems, such as ventilation systems,
automatic fire suppression systems, doors, and valves were also modelled. IPME modelled the
crew performance via a network of tasks that must be performed including the time to detect the
fire, make assessments, as well as time it takes to take appropriate actions to contain the fire such
as turning off ventilation systems and closing bulkheads, doors, and valves. These tasks are
coupled with a stochastic model.

A “Model Bridge” application was developed in Java to allow IPME to poll the outputs from
FSSIM. Communication was not performed in parallel with the execution of the two simulators
due to an FSSIM limitation. Instead, FSSIM was run in advance under a variety of initial
conditions to create a set of deterministic outputs that the Model Bridge could poll based on the
current success of the simulated IPME crew. The simulation continued until the fire was
completely suppressed and extinguished.

Applying a similar approach to OpenSimulator is probably not appropriate since the purpose of
IPME is to simulate a crew of individuals whereas the purpose of OpenSimulator is to allow
groups of real people to interact via their avatars. In such a scenario, crew simulation is
unnecessary given the fact that a real crew could be used instead. Regardless, OpenSimulator
does provide a way to provide access to its virtual world environment by other simulation
technologies via region modules.

 29

Region modules have access to all of OpenSimulator’s core functions. This allows modules to be
developed that interface with a variety of events such as logging, chat messages, user logins,
texture transfers, and positioning of object prims [24]. To illustrate how to implement a region
module, the OpenSimulator website provides a “Hello World” example which writes the phrase
in large block letters (primitive objects) floating within the region and moves them every few
seconds [25]. This could provide external simulation tools a way to interface with OpenSimulator
or for “bridge” applications to provide an interface similar to how the Model Bridge application
facilitated communication between FSSIM and IPME. Development would be required to create
this interface.

5.4 HF Tools Summary

This section discussed the interoperability between OpenSimulator and human factors tools
HumanCAD and IPME. In terms of the DRDC use case scenarios, model re-use of the human
anthropometric mannequins could be enabled by exporting to a Blender-compatible format where
the motion kinetics could potentially be incorporated and the new model subsequently exported
from Blender to the OpenSimulator compatible format. OpenSimulator could potentially be
integrated with IPME through the use of Region modules, making OpenSimulator a part of a
larger simulation (DRDC use case (3)). However, without further investigation, the feasibility of
this proposed approach is uncertain.

30

6 Compatibility Checklist

The following checklist can be used to determine various aspects of OpenSimulator compatibility
with third-party tools. The checklist summarizes all the features and functions that are relevant
when determining the compatibility and were used in the preparation of this report. Note that a
simulation tool can be compatible in one aspect and incompatible in another aspect
simultaneously.

Table 3: OpenSimulator Compatibility Checklist for Technology X.

Question Yes? If Yes:

Simulation Operation

Does X use the Linden Labs (Second Life) Protocol? Directly compatible

Does X have a well-documented external
communication format (e.g., HTTP, other forms of
TCP or UDP)?

 Development of interface
technically possible but may
require significant effort

Does X have an API? Development of interface
technically possible but may
require significant effort

Otherwise Not compatible

Viewer Features

Does X support COLLADA Mesh viewing? Directly compatible

Does X support COLLADA Mesh loading into
OpenSimulator?

 Directly compatible

Terrain Generation

Does X generate the Linden Labs 13-layer RAW
terrain format?

 Directly compatible

Does X generate / export height map data in an image
format that can be read by GIMP?

 Indirectly compatible

Does X generate / export height map data in a format
that another tool (e.g., terrconv.exe) can convert to an
image format that can be read by GIMP?

 Indirectly compatible

 31

Does X generate / export height map data in an
officially documented format?

 Development of a convertor is
possible; effort required is likely
to be moderate

Does X generate / export height map data in an
unofficially documented format?

 Development of a convertor is
possible but is not guaranteed to
work across releases of X; effort
required is likely to be moderate

Otherwise Not compatible

3D Model Generation

Does X generate / export files in Linden Labs sculpted
primitive format?

 Directly compatible

Does X generate / export files in the COLLADA
format?

 Directly compatible

Does X import OpenSimulator archive files (OAR /
IAR)?

 Directly compatible

Does X generate / export files in a format that another
tool (e.g., Blender, 3DS Max, SketchUp) can read and
then export in the COLLADA format?

 Indirectly compatible

Can the files imported by X be converted to
COLLADA format by another tool (e.g., Blender,
3DS Max, SketchUp) and therefore also be imported
to OpenSimulator?

 Indirectly compatible

Does X generate / export files in an officially
documented format?

 Development of a convertor is
possible but effort may be
significant

Does X generate / export files in an unofficially
documented format?

 Development of a convertor is
possible but is not guaranteed to
work across releases of X; effort
may be significant

Otherwise Not compatible

32

Table 4 contains the compatibility checklist for each of the major technologies considered in this
report. Within it: means “yes”, means “no”, and - means “not applicable”.

Table 4: OpenSimulator Compatibility Checklist for DIS, HLA, Unity,
VBS2, HumanCAD and IPME.

Question Yes? If Yes:

D
IS

H
L

A
2

U
ni

ty

V
B

S2

H
um

an
C

A
D

IP
M

E

Simulation Operation

Does X use the Linden Labs
(Second Life) Protocol?

 Directly compatible

Does X have a well-documented
external communication format
(e.g., HTTP, other forms of
TCP or UDP)?

 Development of interface
technically possible but may
require significant effort

Does X have an API? Development of interface
technically possible but may
require significant effort

Otherwise - - - - - Not compatible

Viewer Features

Does X support COLLADA
Mesh viewing?

- - - - Directly compatible

Does X support COLLADA
Mesh loading into
OpenSimulator?

- - - - Directly compatible

Terrain Generation

2 For specific HLA-compatible products and implementations

 33

Question Yes? If Yes:

D
IS

H
L

A
2

U
ni

ty

V
B

S2

H
um

an
C

A
D

IP
M

E

Does X generate the Linden
Labs 13-layer RAW terrain
format?

- - - - Directly compatible

Does X generate / export height
map data in an image format
that can be read by GIMP?

- - - - Indirectly compatible

Does X generate / export height
map data in a format that
another tool (e.g., terrconv.exe)
can convert to an image format
that can be read by GIMP?

- - - - Indirectly compatible

Does X generate / export height
map data in an officially
documented format?

- - - - Development of a convertor
is possible; effort required
is likely to be moderate

Does X generate / export height
map data in an unofficially
documented format?

- - - - Development of a convertor
is possible but is not
guaranteed to work across
releases of X; effort
required is likely to be
moderate

Otherwise - - - - - - Not compatible

3D Model Generation

Does X generate / export files in
Linden Labs sculpted primitive
format?

- - - - - Directly compatible

Does X generate / export files in - - - - - Directly compatible

34

Question Yes? If Yes:

D
IS

H
L

A
2

U
ni

ty

V
B

S2

H
um

an
C

A
D

IP
M

E

the COLLADA format?

Does X import OpenSimulator
archive files (OAR / IAR)?

- - - Directly compatible

Does X generate / export files in
a format that another tool (e.g.,
Blender, 3DS Max, SketchUp)
can read and then export in the
COLLADA format?

- - - Indirectly compatible

Can the files imported by X be
converted to COLLADA format
by another tool (e.g., Blender,
3DS Max, SketchUp) and
therefore also be imported to
OpenSimulator?

- - - Indirectly compatible

Does X generate / export files in
an officially documented
format?

- - - - - Development of a convertor
is possible but effort may be
significant

Does X generate / export files in
an unofficially documented
format?

- - - - - - Development of a convertor
is possible but is not
guaranteed to work across
releases of X; effort may be
significant

Otherwise - - - - - - Not compatible

 35

Table 5 contains an abbreviated compatibility checklist for the OpenSimulator viewers considered
in this report. Within it: means “yes”, means “no”, and - means “not applicable”.

Table 5: Abbreviated OpenSimulator Compatibility Checklist for OpenSimulator viewers.

Question Yes? If Yes:

C
oo

l V
L

Fi
re

st
or

m

H
ip

po

Im
pr

ud
en

ce

K
ok

ua

Ph
oe

ni
x

Si
ng

ul
ar

ity

T
ea

po
t

Viewer Features

Does X support COLLADA
Mesh viewing?

 Directly
compatible

Does X support COLLADA
Mesh loading into
OpenSimulator?

 Directly
compatible

OpenSimulator provides a 3D persistent virtual world in which humans may interact through their
avatars. As such, it serves a different purpose from each of the other technologies considered in
this report which have different use cases and may all be considered to be complementary.
Interoperability is likely to be most useful for the sharing of Terrain and 3D Models rather than
direct connection of the technologies, which would be likely to involve significant development
effort.

36

7 Conclusion

This compatibility study explored the interoperability of OpenSimulator with a set of DND/CF
simulation technologies and standards which include DIS, HLA, Unity, VBS2, SmartMarine
3D/SmartPlant 3D, and human factors applications HumanCAD and IPME. Interoperability was
investigated over four main categories: simulator operation, terrain models, 3D model
compatibility, and human factors tools. It also examined compatibility in the context of four
DRDC use cases which included (1) import of existing vWorld content, (2) export of
OpenSimulator content, (3) integration of OpenSimulator into a larger simulation scenario, and
(4) enabling of distributed simulation exercises.

The study of the interoperability of simulator operation first revealed that OpenSimulator has the
ability to launch distributed simulations via HTTP and UDP protocols, and therefore the DRDC
use case (4), requiring the ability to perform distributed simulations, could be achieved without
any additional tools or development. As far as interoperability with other DRDC technologies, the
study found that Unity could potentially be used to develop a client/viewer for OpenSimulator.
While limited success has been shown from using Unity directly as an interface with
OpenSimulator, the potential to leverage Unity’s advanced graphical capabilities and ability to
scale to large numbers of users provides some motivation to explore this development path
further if this capability is desired. The capability to develop plug-ins to interface with VBS2 via
its API infrastructure could provide some compatibility in terms of simulator operation, although
it is unclear what utility an OpenSimulator-to-VBS2 simulation operation plug-in would have
given that the two tools have different purposes.

Investigation of terrain model interoperability found that Unity’s terrain creation tools can be
used to export a terrain height-map which can then be combined with OpenSimulator’s 13-
channel RAW format using the GIMP image manipulation software and a third-party conversion
tool. An example demonstrated the process where a terrain model built in Unity was imported
into OpenSimulator. Thus, DRDC use case (1) regarding the re-use of existing simulation content
could be realized with regards to terrain models produced by Unity. Conversely, it was
determined that while VBS2 has advanced terrain generation capabilities, these capabilities do not
extend to exporting those models for use in a directly compatible format with OpenSimulator.

The investigation into the interoperability of 3D mesh models discussed how a spectrum of 3D
modelling and animation software could be used to generate the assets used to populate the virtual
world environments created by Unity, VBS2, SmartMarine 3D, and SmartPlant 3D. These mesh
models include avatars, buildings, vehicles, and other objects. It was shown how these models
could be converted to COLLADA format, and then imported into OpenSimulator using the
Firestorm viewer. Full interoperability exists for 3D models between OpenSimulator and these
alternate simulation tools due to the universality of the COLLADA format. Therefore, the DRDC
use case (1) was extended beyond the re-use of terrain models to all virtual content models in
general. Regarding DRDC use case (2), content export, it was discussed that OpenSimulator, like
Unity and VBS2, does not intrinsically include the ability to export out models to COLLADA
format (or any other 3D format) regardless of whether these models were originally imported
into, or created within, OpenSimulator. It also does not have the ability to edit the shape of the
imported COLLADA model, save for specifying the length, width, and height dimensions.

 37

However, virtual content can be transferred from one OpenSimulator instance to another via
archive OAR files.

The Human Factors tools HumanCAD and IPME were also evaluated for compatibility at a high
level. In another example of the model import and DRDC re-use cases, it was discussed that
HumanCAD uses articulated mannequin models for anthropomorphic visualization that can be
exported to a standard set of external model formats. It was discussed how Blender can be used
to convert those models to COLLADA format which can then be imported into OpenSimulator.
The loss of the articulated component of the mannequin can potentially be restored by using the
avatar model for OpenSimulator that is freely available in Blender to combine the HumanCAD
model components with the Blender avatar kinematic animation model.

IPME compatibility was demonstrated through a DRDC case study where a “Model Bridge”
application was built to facilitate communication between IPME and FSSIM. This example
illustrates how IPME could potentially interface with OpenSimulator. OpenSimulator’s region
modules also provide a level of customization that allows external applications to interface with
the simulator’s base functions. This could potentially allow the integration of OpenSimulator with
a larger IPME discrete event simulation – an example of DRDC use case (3).

Finally, a compatibility checklist was presented which summarizes each area of compatibility that
was examined in this study and could be applied by DRDC to assess alternate software
technologies that were not assessed in this report for compatibility with OpenSimulator.

This report presents some detailed analysis of OpenSimulator compatibility and often
demonstrates the level of interoperability through step by step examples. However, due to time
and scope constraints, in some cases only a high level of assessment is provided, leading in
several instances to potential areas where further and more detailed investigation and
experimentation is required to definitively conclude the level of compatibility. Depending on
DRDC priorities, these areas could provide avenues for future investigation or even development
of technology to enable compatibility where currently there is none. For example, further
investigation could be applied to the development of a DIS or HLA interface for OpenSimulator,
development of content export capability from OpenSimulator, and demonstration of model
and/or terrain export from VBS2 to OpenSimulator.

38

This page intentionally left blank.

 39

References ..

[1] OpenSimulator.org. “Communication Protocols”. Internet:
http://opensimulator.org/wiki/Communication_Protocols. 11 March 2013 [March 2013].

[2] OpenSimulator.org. “Connecting”. Internet: http://opensimulator.org/wiki/Connecting. 7
December 2012 [March 2013].

[3] Alexander Gladstone. “OpenSim founder goes for Unity”. Internet:
http://www.hypergridbusiness.com/2012/02/opensim-founder-goes-for-unity. 7 February
2012 [March 2013].

[4] Sine Wave Entertainment. Internet: http://www.sinewavecompany.com/. 2012 [March 2013].

[5] ReactionGrid Inc. “Jibe”. Internet: http://reactiongrid.com/. 2012 [March 2013].

[6] Second Places. “Second Places Unifier”. Internet:
http://www.secondplaces.net/opencms/opencms/virtualWorlds/unifier/. 2011 [March 2013].

[7] Jon Himoff. “Try Rezzable’s new Unity-based Browser Viewer for OpenSim”. Internet:
http://rezzable.com/blogs/jon-himoff/try-rezzables-new-unity-based-browser-viewer-
opensim. 2 February 2011 [March 2013].

[8] TPLD. “Virtual Events”. Internet: http://hostavirtualevent.com/. [March 2013].

[9] Hyperfair. Internet: http://www.hyperfair.com/. 2012 [March 2013].

[10] Jon Himoff. “Try Rezzable’s new Unity-based Browser Viewer for OpenSim”. Internet:
http://rezzable.com/blogs/jon-himoff/try-rezzables-new-unity-based-browser-viewer-
opensim. 2 February 2011 [April 2013].

[11] Rob Smart. “The Challenges of writing an OpenSim client in Unity3D”. Internet:
http://robsmart.co.uk/2009/11/12/the-challenges-of-writing-an-opensim-client-in-unity3d/.
12 November 2009 [March 2013].

[12] Terrain Converter. Internet: http://dubaron.com/terrainconvert/. [March 2013].

[13] Bohemia Interactive Australia. “VBS2 Visitor 4 Terrain Editor’s Manual”, 1.30 Tools.

[14] Intergraph, “Intergraph® Releases New Version of SmartMarine® 3D Software for
Offshore and Ship Design”. Internet:
http://www.intergraph.com/assets/pressreleases/2010/05-05-2010.aspx. 5 May 2010 [July
2013].

[15] Autodesk, “Discussion Group: Is there a Collada (DAE) Export”. Internet:
http://forums.autodesk.com/t5/Autodesk-Revit-Architecture/Is-there-a-Collada-DAE-
Export/td-p/3306713. 25. January 2012 [July 2013].

40

[16] Bohemia Interactive Simulations, “P3D to FBX converter”. Internet:
http://resources.bisimulations.com/wiki/P3D_to_FBX_converter#Summary. 2012 [July
2013].

[17] Tip-o-de-an. “Convert your OpenSim Island into COLLADA to run within Unity3D”.
Internet: http://www.tipodean.com/converter/index.html. 2010 [March 2013].

[18] Wikipedia. “Human factors and ergonomics”. Internet:
http://en.wikipedia.org/wiki/Human_factors_and_ergonomics. 25 April 2013 [April 2013].

[19] Jamie Wright. “The Ginger Punk Complete Make Avatar Update”. Internet: http://opensim-
creations.com/2013/01/02/the-ginger-punk-complete-male-avatar-update/). 2 January 2013
[April 2013].

[20] OpenSimulator. “OpenSimulator Avatar”. Internet:
http://opensimulator.org/wiki/OpenSimulator_Avatar. 4 March 2012 [April 2013].

[21] NEXGEN Ergonomics. “HumanCAD® 2”. Internet:
http://www.nexgenergo.com/ergonomics/humancad2.html. [April 2013].

[22] MA&D, Alion Science and Technology. “Integrated Performance Modelling Environment
(IPME)”. Internet: http://www.maad.com/index.pl/ipme. [April 2013].

[23] Curtis Coates, Rui Zhang, Chris Cooper. “Crewing Effectiveness Modeling Proof of
Concept”. Esterline|CMC Electronics Inc. on behalf of Department of National Defence.
Report Number: DRDC-TORONTO-CR-2008-079 . 31 March 2008.

[24] OpenSimulator. “IRegionModule”. Internet: http://opensimulator.org/wiki/IRegionModule.
4 March 2012 [April 2013].

[25] OpenSimulator. “Getting Started with Region Modules”. Internet:
http://opensimulator.org/wiki/Getting_Started_with_Region_Modules. 4 March 2012 [April
2013].

[26] OpenSimulator. “Database:Documentation”. Internet:
http://opensimulator.org/wiki/Database_Documentation. 29 May 2013 [September 2013].

[27] 3D Ship Model. Internet: http://archive3d.net/?a=download&id=2c6df1c9. [October 2013].

 41

Annex A Firestorm Viewer Setup

The Firestorm viewer is one of the few available viewers that can both import and view mesh
models. However, the configuration of the viewer to enable log-in to a private grid can
potentially be more complicated due to a bug which prevents a private grid operator from adding
their grid IP address to the grid list. The following procedure serves as a guide to manually add
the grid operator’s private grid IP address.

1. Download the Firestorm viewer from the following location
(http://wiki.phoenixviewer.com/downloads#current_release_-_opensim_build). Note
that there are several viewers are available: select the OpenSimulator build.

2. Install and run Firestorm (also launch ROBUST and OpenSim instances).

3. To login into a private grid:

1. Select Viewer > Preferences from upper left corner of main GUI window

2. Under the Advanced tab check the box next to “Allow login to other grids…”

3. Select the OpenSim tab

4. Attempt to enter your IP address, omitting the “http://” and click Apply. If
this fails to add your IP address, skip to step 6 otherwise, click Apply and OK.

5. Select the new grid from the Log onto Grid drop-down menu. Enter your
credentials and login. The Username is your account First and Last name
separated by a space.

6. If the grid selector does not add your IP address after pressing Apply, you
will have to manually edit the grid user XML file as Firestorm has mistakenly
associated your IP address with another grid (most likely Metropolis/Hippo).
This is a known bug. To fix it:

a. Go to C:\Users\username\AppData\Roaming\Firestorm\user_settings.

b. Open grids.user.xml using a text editor.

c. Locate your grid IP address in the list. This address has most likely been
associated with a login URI for another grid (look for the string under
loginuri) and therefore could not add it again.

d. Change the string under loginuri from the incorrect http address to your
IP address. Also change the string under gridname to the name of your
grid.

e. Save the XML file and re-launch Firestorm. Your grid should appear in
the grid list. Select it and login as described above.

42

List of symbols/abbreviations/acronyms/initialisms

3DS Max 3D Studio Max

API Application Programming Interface

DEM Digital Elevation Model

DES Discrete-Event Simulation

DIS Distributed Interactive Simulation (IEEE 1278)

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

DTED Digital Terrain Elevation Data

HLA High-Level Architecture (IEEE 1516)

HTTP Hypertext Transfer Protocol

IAR (OpenSimulator) Inventory Archive

IEEE Institute of Electrical and Electronic Engineers

IES Integrated Enterprise Solutions

IPME Integrated Performance Modeling Environment

OAR OpenSimulator Archive

R&D Research & Development

ROBUST Redesigned OpenSimulator Basic Universal Server Technology

UDP User Datagram Protocol

URI Uniform Resource Identifier

VBS2 Virtual Battlespace 2

VMAP Vector Map

vWorld Virtual World

