Finite Element Modelling of the Acoustic Properties of Rubber Containing Inclusions

 (Contract \# W7707-145685/001/HAL)Prepared for Contract Scientific Authority:
Dr. Jeff Szabo, Defence Scientist, Telephone 902-427-3427
DRDC - Atlantic Research Centre

Prepared by:
Franck Sgard, Ph.D
Noureddine Atalla, Ph.D
Raymond Panneton, Ph.D.
Mecanum Inc., Suite 202, 1060 Cherbourg, Sherbrooke, QC J1K 2N8, CANADA DRDC-RDDC-2014-C235

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R\&D Canada.

This document contains proprietary information. It is provided to the recipient on the understanding that proprietary and patent rights belonging to Mecanum Inc. are not to be infringed.

Release Date: March 31, 2014
© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2014

Part 1 - Theoretical Description of PCFEM Code

PUC: A Periodic Unit Cell based code for modeling materials with inclusions

The theory behind the implemented Periodic Unit Cell based code is described. The work is based on references [1-3].

Figure 1
The material is periodic in the directions x and y and is excited by an oblique incidence plane wave given by:

$$
\begin{equation*}
\hat{p}_{i}(x, y, z)=\hat{A} e^{-j k(\sin \theta \cos \phi x+\sin \theta \sin \phi y+\cos \theta z)} \tag{1}
\end{equation*}
$$

where we have assumed a $e^{j o t}$ temporal dependency.

External fluid
(receiver side)

Figure 2
We start with the Unit Cell Finite Element system (see Figure 2 for a cut along plane xz and for notations):

$$
\left(\begin{array}{cc}
{[K]-\omega^{2}[M]} & -[C] \tag{2}\\
-[C]^{T} & \underline{[H]} \\
\omega^{2} & {[Q]}
\end{array}\right)\left\{\begin{array}{l}
\{u\} \\
\{p\}
\end{array}\right\}=\left\{\begin{array}{l}
\{F\} \\
\frac{1}{\rho_{f} \omega^{2}}\{\Phi\}
\end{array}\right\}
$$

$\{u\}$ and $\{p\}$ contain the structural displacement (displacements along $\mathrm{x}, \mathrm{y}, \mathrm{z}$) and pressure dof respectively before imposition of boundary conditions. $\{F\}$ and $\{\Phi\}$ represents the external force nodal vector acting on the structure and the external normal pressure gradient nodal vector acting on the fluid domain boundary respectively.
Note that for an acoustical excitation $\{F\}=0$ and $\{\Phi\}$ is only non-zero at degrees of freedom on boundaries Σ^{+}and $\Sigma^{-} .\{\Phi\}$ is given by

$$
\begin{equation*}
\{\Phi\}=\int_{\Sigma^{+} \cup \Sigma^{-} \cup B \cup T \cup L \cup R}\{N(\underline{x})\} \frac{\partial \hat{p}}{\partial n_{\text {ext }}}(\underline{x}) d S(\underline{x}) \tag{3}
\end{equation*}
$$

where \hat{p} is the acoustic pressure inside the finite element domain $\Omega^{+} \cup \Omega^{-}$. Actually, it will be shown after that only the contribution of Σ^{+}and Σ^{-}needs to be calculated (see Eq(67)).

Since the material is periodic in direction x and y, any function solution of the problem must satisfy:

$$
\begin{align*}
\Gamma\left(x+2 d_{1}, y+2 d_{2}, z\right) & =\Gamma(x, y, z) \mathrm{e}^{-j 2 d_{1} q_{x}} \mathrm{e}^{-j 2 d_{2} q_{y}} \tag{4}\\
& =\Gamma(x, y, z) \mathrm{e}^{-j \varphi_{x}} \mathrm{e}^{-j \varphi_{y}}
\end{align*}
$$

with

$$
\left\{\begin{array}{l}
q_{x}=k^{-} \sin \theta \cos \phi \tag{5}\\
q_{y}=k^{-} \sin \theta \sin \phi
\end{array}\right.
$$

Note that a function $\Gamma(x, y, z)$ satisfying $\mathrm{Eq}(4)$ can be written as:

$$
\begin{equation*}
\Gamma(x, y, z)=\Theta(x, y, z) \mathrm{e}^{-j q_{x} x} \mathrm{e}^{-j q_{y} y} \tag{6}
\end{equation*}
$$

where $\Theta\left(x+2 d_{1}, y+2 d_{2}, z\right)=\Theta(x, y, z) . \Theta(x, y, z)$ is a periodic function of x and y of period $2 d_{1}$ and $2 d_{2}$ in each direction.

To calculate this vector, the pressure in Ω_{e}^{-}is expanded in Bloch series. The reflected pressure in Ω_{e}^{-}can be written using Eq(6) as:

$$
\begin{equation*}
\hat{p}_{r}^{-}(x, y, z)=\hat{\Theta}_{r}^{-}(x, y, z) e^{-j k(\sin \theta \cos \phi x+\sin \theta \sin \phi y)} \tag{7}
\end{equation*}
$$

And since $\hat{\Theta}_{r}^{-}(x, y, z)$ is a periodic function in x and y , it can be expanded in term of spatial Fourier series along x and y as:

$$
\begin{align*}
\hat{\Theta}_{r}^{-}(x, y, z) & =\sum_{m, n=-\infty}^{+\infty} \hat{\Theta}_{r, m n}^{-}(z) e^{-j \gamma_{x} m x} e^{-j \gamma_{y} n y} \tag{8}\\
& =\sum_{m, n=-\infty}^{+\infty} \hat{\Theta}_{r, m n}^{-} e^{j k_{m n} z} e^{-j \gamma_{x} m x} e^{-j \gamma_{y} n y}
\end{align*}
$$

With

$$
\begin{equation*}
\hat{\Theta}_{r, m n}^{-}=\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} \hat{\Theta}_{r}^{-}(x, y, z) e^{j \gamma_{x} m x} e^{j \gamma_{y} n y} d x d y \tag{9}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\gamma_{x}=\frac{\pi}{d_{1}} \tag{10}\\
\gamma_{y}=\frac{\pi}{d_{2}}
\end{array}\right.
$$

For the z-dependence, the reflected wave is supposed to propagate in the -z direction. Therefore the total pressure in Ω_{e}^{-}can be written as:

$$
\begin{align*}
\hat{p}^{-}(x, y, z) & =\hat{p}_{i}(x, y, z)+\sum_{m, n=-\infty}^{+\infty} \hat{p}_{m n}^{-} e^{j k_{m m}^{-} z} e^{-j k(\sin \theta \cos \phi x+\sin \theta \sin \phi y)} e^{-j \gamma_{x} m x} e^{-j \gamma_{y} n y} \tag{11}\\
& =\hat{p}_{i}(x, y, z)+\sum_{m, n=-\infty}^{+\infty} \hat{p}_{m n}^{-} e^{j k_{m m}^{-} z} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}
\end{align*}
$$

with

$$
\left\{\begin{array}{l}
\alpha_{m}=m \gamma_{x}+k^{-} \sin \theta \cos \phi \tag{12}\\
\beta_{n}=n \gamma_{y}+k^{-} \sin \theta \sin \phi
\end{array}\right.
$$

Inserting Eq(11) in Helmholtz equation leads to

$$
\begin{equation*}
\left(k_{m n}^{-}\right)^{2}=\left(k^{-}\right)^{2}-\alpha_{m}^{2}-\beta_{n}^{2} \tag{13}
\end{equation*}
$$

Similarly, the pressure in Ω_{e}^{+}can be written as

$$
\begin{equation*}
\hat{p}^{+}(x, y, z)=\sum_{m, n=-\infty}^{+\infty} \hat{p}_{m n}^{+} e^{-j k_{m m}^{+}\left(z-h^{+}\right)} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(k_{m n}^{+}\right)^{2}=\left(k^{+}\right)^{2}-\alpha_{m}^{2}-\beta_{n}^{2} \tag{15}
\end{equation*}
$$

To calculate the right-hand side $\left\{\Phi_{z}^{c}\right\}$ (see $\operatorname{Eq}(67)$), the idea is to express $\frac{\partial \hat{p}}{\partial z}$ in terms of the nodal values of the acoustic pressure in the finite element domain.
The normal pressure gradient on $\Sigma^{+}\left(z=h^{+}\right)$can be calculated from Eq(14) as

$$
\begin{align*}
\left.\frac{\partial \hat{p}^{+}}{\partial z}\right|_{z=h^{+}} & =\sum_{m=-M}^{M} \sum_{n=-N}^{N}-j k_{m n}^{+} \hat{p}_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{16}\\
& =\left\langle-j k_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left\{p_{m n}^{+}\right\}
\end{align*}
$$

where $(2 M+1)$ terms along x and $(2 N+1)$ terms along y have been kept in the series expansion. The vector $\left\langle-j k_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle$ is of size $(2 M+1) \times(2 N+1)$.

The acoustic pressure on $\Sigma^{+}\left(z=h^{+}\right)$can be approximated as

$$
\begin{equation*}
\hat{p}^{+}\left(x, y, h^{+}\right)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{p}_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{17}
\end{equation*}
$$

Where the coefficient $\hat{p}_{m n}^{+}$writes:

$$
\begin{equation*}
\hat{p}_{m n}^{+}=\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} \hat{p}^{+}\left(x, y, h^{+}\right) e^{j \alpha_{m} x} e^{j \beta_{n} y} d x d y \tag{18}
\end{equation*}
$$

$\hat{p}^{+}\left(x, y, h^{+}\right)$can be expressed in term of pressure nodal values as:

$$
\begin{equation*}
\hat{p}^{+}\left(x, y, h^{+}\right)=\left\langle N^{p}\left(x, y, h^{+}\right)\right\rangle\{p\} \tag{19}
\end{equation*}
$$

The vector $\left\langle N^{p}\left(x, y, h^{+}\right)\right\rangle$is of size N^{p} where N^{p} is the total number of pressure dofs.
Therefore substituting $\mathrm{Eq}(19)$ in $\mathrm{Eq}(18)$ and putting the $(2 M+1) \times(2 N+1)$ terms in a vector leads to:

$$
\begin{align*}
\left\{p_{m n}^{+}\right\} & =\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}}\left\{e^{j \alpha_{m} x} e^{j \beta_{n} y}\right\}\left\langle N^{p}\left(x, y, h^{+}\right)\right\rangle d x d y\{p\} \tag{20}\\
& =\left[A^{+}\right]\{p\}
\end{align*}
$$

Matrix $\left[A^{+}\right]$is a rectangular matrix of size $\left((2 M+1)(2 N+1), N^{p}\right)$
The normal pressure gradient on $\Sigma^{-}(z=0)$ can be calculated from Eq(11) as

$$
\begin{align*}
-\left.\frac{\partial \hat{p}^{-}}{\partial z}\right|_{z=0} & =-\left.\frac{\partial \hat{p}_{i}}{\partial z}\right|_{z=0}-\sum_{m=-M}^{M} \sum_{n=-N}^{N} j k_{m n}^{-} \hat{p}_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{21}\\
& =-\left.\frac{\partial \hat{p}_{i}}{\partial z}\right|_{z=0}+\left\langle-j k_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left\{p_{m n}^{-}\right\}
\end{align*}
$$

where the same number of terms as before has been kept in the expansion.
The acoustic pressure on $\Sigma^{-}(z=0)$ can be approximated as

$$
\begin{equation*}
\hat{p}^{-}(x, y, 0)=\hat{p}_{i}(x, y, 0)+\sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{p}_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{22}
\end{equation*}
$$

Where the Fourier coefficient $\hat{p}_{m n}^{-}$writes:

$$
\begin{equation*}
\hat{p}_{m n}^{-}=\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}}\left(\hat{p}^{-}(x, y, 0)-\hat{p}_{i}(x, y, 0)\right) e^{j \alpha_{m} x} e^{j \beta_{n} y} d x d y \tag{23}
\end{equation*}
$$

$\hat{p}^{-}(x, y, 0)$ can be expressed in term of pressure nodal values as:

$$
\begin{equation*}
\hat{p}^{-}(x, y, 0)=\left\langle N^{p}(x, y, 0)\right\rangle\{p\} \tag{24}
\end{equation*}
$$

$\hat{p}_{i}(x, y, 0)$ can also be expressed in term of incident pressure evaluated on the FEM nodes:

$$
\begin{equation*}
\hat{p}_{i}(x, y, 0)=\left\langle N^{p}(x, y, 0)\right\rangle\left\{p_{i}\right\} \tag{25}
\end{equation*}
$$

Therefore substituting $\mathrm{Eq}(24)$ in $\mathrm{Eq}(23)$ and putting the $(2 M+1) \times(2 N+1)$ terms in a vector leads to:

$$
\begin{align*}
\left\{p_{m n}^{-}\right\} & =\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}}\left\{e^{j \alpha_{m} x} e^{j \beta_{n} y}\right\}\left\langle N^{p}(x, y, 0)\right\rangle d x d y\left\{p-p_{i}\right\} \tag{26}\\
& =\left[A^{-}\right]\left\{p-p_{i}\right\}
\end{align*}
$$

Finally, Eq(3) rewrites :

$$
\begin{align*}
\left\{\Phi_{z}^{c}\right\} & =\int_{\Sigma^{+}}\left\{N\left(x, y, h^{+}\right)\right\}\left\langle-j k_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left[A^{+}\right] d S\{p\} \\
& +\int_{\Sigma^{-}}\{N(x, y, 0)\}\left\langle-j k_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left[A^{-}\right] d S\{p\} \\
& -\int_{\Sigma^{-}}\{N(x, y, 0)\}\left\langle-j k_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left[A^{-}\right] d S\left\{p_{i}\right\} \tag{27}\\
& -\left.\int_{\Sigma^{-}}\{N(x, y, 0)\} \frac{\partial \hat{p}_{i}}{\partial z}\right|_{z=0} d S
\end{align*}
$$

Besides, it can be noted that

$$
\begin{equation*}
\left\langle-j k_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left[A^{-}\right]\left\{p_{i}\right\}=\left.\frac{\partial \hat{p}_{i}}{\partial z}\right|_{z=0} \tag{28}
\end{equation*}
$$

Indeed, $\hat{p}_{i}(x, y, z)$ can be expanded as

$$
\begin{equation*}
\hat{p}_{i}(x, y, z)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{p}_{i, m n} e^{-j k_{m m}^{k} z} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{29}
\end{equation*}
$$

So that

$$
\begin{align*}
\left.\frac{\partial \hat{p}_{i}}{\partial z}\right|_{z=0} & =-\sum_{m=-M}^{M} \sum_{n=-N}^{N} j k_{m n} \hat{p}_{i, m n} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{30}\\
& =\left\langle-j k_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left\{p_{i, m n}\right\}
\end{align*}
$$

with

$$
\begin{align*}
\left\{p_{i, m n}\right\} & =\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}}\left\{e^{j \alpha_{m} x} e^{j \beta_{n} y}\right\}\left\langle N^{p}(x, y, 0)\right\rangle d x d y\left\{p_{i}\right\} \tag{31}\\
& =\left[A^{-}\right]\left\{p_{i}\right\}
\end{align*}
$$

Therefore Eq(27) becomes :

$$
\begin{align*}
\left\{\Phi_{z}^{c}\right\} & =\int_{\Sigma^{+}}\left\{N\left(x, y, h^{+}\right)\right\}\left\langle-j k_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left[A^{+}\right] d S\{p\} \\
& +\int_{\Sigma^{-}}\{N(x, y, 0)\}\left\langle-j k_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle\left[A^{-}\right] d S\{p\} \tag{32}\\
& -2 \int_{\Sigma^{-}}\{N(x, y, 0)\} \frac{\partial \hat{p}_{i}}{\partial z} d S
\end{align*}
$$

Or

$$
\begin{equation*}
\left\{\Phi_{z}^{c}\right\}=\left(\left[\Delta^{+}\right]+\left[\Delta^{-}\right]\right)\{p\}-2 \int_{\Sigma^{-}}\{N(x, y, 0)\} \frac{\partial \hat{p}_{i}}{\partial z} d S \tag{33}
\end{equation*}
$$

System (2) becomes :

$$
\left(\begin{array}{cc}
{[K]-\omega^{2}[M]} & -[C] \tag{34}\\
-[C]^{T} & \frac{[H]}{\omega^{2}}-[Q]-\left(\frac{\left[\Delta^{+}\right]}{\rho_{f}^{+} \omega^{2}}+\frac{\left[\Delta^{-}\right]}{\rho_{f}^{-} \omega^{2}}\right)
\end{array}\right)\left\{\left\{\begin{array}{l}
\{u\} \\
\{p\}
\end{array}\right\}=\left\{\begin{array}{l}
\{F\} \\
\frac{2}{\rho_{f}^{+} \omega^{2}}\left\{\Phi_{i}\right\}
\end{array}\right\}\right.
$$

With $\left\{\Phi_{i}\right\}=\int_{\Sigma^{-}}\{N(x, y, 0)\} \frac{\partial \hat{p}_{i}}{\partial n_{\text {ext }}} d S$

Figure 3

The nodal vector $\{u\}$ and $\{p\}$ can be partitioned in nine parts: surfaces $\mathrm{B}, \mathrm{L}, \mathrm{T}, \mathrm{R}$, corner lines C_{1}, C_{2}, C_{3} and C_{4}, inner domain I (see Figure 3).

$$
\begin{gather*}
\left\{u^{r e n}\right\}=\left\langle\left\langle u_{L}\right\rangle\left\langle u_{R}\right\rangle\left\langle u_{B}\right\rangle\left\langle u_{T}\right\rangle\left\langle u_{C_{1}}\right\rangle\left\langle u_{C_{2}}\right\rangle\left\langle u_{C_{3}}\right\rangle\left\langle u_{C_{4}}\right\rangle\left\langle u_{I}\right\rangle\right\rangle^{T} \tag{35}\\
\left\{p^{r e n}\right\}=\left\langle\left\langle p_{L}\right\rangle\left\langle p_{R}\right\rangle\left\langle p_{B}\right\rangle\left\langle p_{T}\right\rangle\left\langle p_{C_{1}}\right\rangle\left\langle p_{C_{2}}\right\rangle\left\langle p_{C_{3}}\right\rangle\left\langle p_{C_{4}}\right\rangle\left\langle p_{I}\right\rangle\right\rangle^{T} \tag{36}
\end{gather*}
$$

Where \langle.$\rangle denotes the transpose of \{\} ..\left\langle u_{L}\right\rangle,\left\langle u_{R}\right\rangle,\left\langle u_{B}\right\rangle,\left\langle u_{T}\right\rangle$ contain the displacement degrees of freedom on surfaces $\mathrm{L}, \mathrm{R}, \mathrm{B}, \mathrm{T}$ except those on their edges. $\left\langle u_{C_{1}}\right\rangle,\left\langle u_{C_{2}}\right\rangle,\left\langle u_{C_{3}}\right\rangle,\left\langle u_{C_{4}}\right\rangle$ contain the displacement degrees of freedom on the unit cell edges along direction z . $\left\langle u_{I}\right\rangle$ contains the internal displacement degrees of freedom (all those which are not on the boundaries of the unit cell). The same notations are used for the pressure degrees of freedom.
Similarly, the force and normal pressure gradient nodal vectors can be partitioned as:

$$
\begin{equation*}
\left\{F^{\text {ren }}\right\}=\left\langle\left\langle F_{L}\right\rangle\left\langle F_{R}\right\rangle\left\langle F_{B}\right\rangle\left\langle F_{T}\right\rangle\left\langle F_{C_{1}}\right\rangle\left\langle F_{C_{2}}\right\rangle\left\langle F_{C_{3}}\right\rangle\left\langle F_{C_{4}}\right\rangle\left\langle F_{I}\right\rangle\right\rangle^{T} \tag{37}
\end{equation*}
$$

$$
\begin{align*}
\left\{\Phi^{r e n}\right\}= & \left\langle\left\langle\Phi_{L}\right\rangle\left\langle\Phi_{R}\right\rangle\left\langle\Phi_{B}\right\rangle\left\langle\Phi_{T}\right\rangle\left\langle\Phi_{C_{1}}\right\rangle\left\langle\Phi_{C_{2}}\right\rangle\left\langle\Phi_{C_{3}}\right\rangle\left\langle\Phi_{C_{4}}\right\rangle\langle 0\rangle\right\rangle^{T}+ \tag{38}\\
& \left\langle\left\langle\Phi_{L}^{z}\right\rangle\left\langle\Phi_{R}^{z}\right\rangle\left\langle\Phi_{B}^{z}\right\rangle\left\langle\Phi_{T}^{z}\right\rangle\left\langle\Phi_{C_{1}}^{z}\right\rangle\left\langle\Phi_{C_{2}}^{z}\right\rangle\left\langle\Phi_{C_{3}}^{z}\right\rangle\left\langle\Phi_{C_{4}}^{z}\right\rangle\left\langle\Phi_{I}^{z}\right\rangle\langle 0\rangle\right\rangle^{T}
\end{align*}
$$

where $\left\langle\Phi_{L}\right\rangle,\left\langle\Phi_{R}\right\rangle,\left\langle\Phi_{B}\right\rangle,\left\langle\Phi_{T}\right\rangle$ are nodal vectors containing the normal pressure gradient to surfaces L, R, B, T^{1} except those on their edges. $\left\langle\Phi_{C_{1}}\right\rangle,\left\langle\Phi_{C_{2}}\right\rangle,\left\langle\Phi_{C_{3}}\right\rangle,\left\langle\Phi_{C_{4}}\right\rangle$ are corner-line nodal vectors containing the sum of the normal pressure gradient to surfaces L and B, L and T, B and R, L and T respectively ${ }^{2} .\langle 0\rangle$ is the nodal vector which refers to the PUC internal nodes not on its lateral boundaries. $\left\langle\Phi_{L}^{z}\right\rangle,\left\langle\Phi_{R}^{z}\right\rangle,\left\langle\Phi_{B}^{z}\right\rangle,\left\langle\Phi_{T}^{z}\right\rangle,\left\langle\Phi_{C_{1}}^{z}\right\rangle,\left\langle\Phi_{C_{2}}^{z}\right\rangle,\left\langle\Phi_{C_{3}}^{z}\right\rangle,\left\langle\Phi_{C_{4}}^{z}\right\rangle,\left\langle\Phi_{I}^{z}\right\rangle$ are nodal vectors containing the normal pressure gradient in the z direction to faces Σ^{-}and Σ^{+}. The last vector $\langle 0\rangle$ is the nodal vector which refers to the PUC internal nodes not on Σ^{-}and Σ^{+}(i.e internal fluid nodes comprised between Σ^{-}and Σ^{+}).

$$
\begin{align*}
& \left\{\Phi_{L}^{z}\right\}=\left\langle\left\langle\Phi_{L}^{-}\right\rangle\left\langle\Phi_{L}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{R}^{z}\right\}=\left\langle\left\langle\Phi_{R}^{-}\right\rangle\left\langle\Phi_{R}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{B}^{z}\right\}=\left\langle\left\langle\Phi_{B}^{-}\right\rangle\left\langle\Phi_{B}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{T}^{z}\right\}=\left\langle\left\langle\Phi_{T}^{-}\right\rangle\left\langle\Phi_{T}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{C_{1}}^{z}\right\}=\left\langle\left\langle\Phi_{C_{1}}^{-}\right\rangle\left\langle\Phi_{C_{1}}^{+}\right\rangle\right\rangle^{T} \tag{39}\\
& \left\{\Phi_{C_{2}}^{z}\right\}=\left\langle\left\langle\Phi_{C_{2}}^{-}\right\rangle\left\langle\Phi_{C_{2}}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{C_{3}}^{z}\right\}=\left\langle\left\langle\Phi_{C_{3}}^{-}\right\rangle\left\langle\Phi_{C_{3}}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{C_{4}}^{z}\right\}=\left\langle\left\langle\Phi_{C_{4}}^{-}\right\rangle\left\langle\Phi_{C_{4}}^{+}\right\rangle\right\rangle^{T} \\
& \left\{\Phi_{I}^{z}\right\}=\left\langle\left\langle\Phi_{I}^{-}\right\rangle\left\langle\Phi_{I}^{+}\right\rangle\right\rangle^{T}
\end{align*}
$$

where the vectors have been partitioned in two domains Σ^{-}, Σ^{+}. $\left\langle\Phi_{J}^{-}\right\rangle,\left\langle\Phi_{J}^{+}\right\rangle, J=L, R, B, T, C_{1}, C_{2}, C_{3}, C_{4}, I$ refer to the vectors containing the normal pressure gradient in the z-direction on faces Σ^{-}and Σ^{+}.
There remains to apply the boundary conditions on the unit cell which read :

[^0]\[

$$
\begin{align*}
&\left\{u_{R}\right\}=\left\{u_{L}\right\} e^{-j \varphi_{y}} \tag{40}\\
&\left\{u_{T}\right\}=\left\{u_{B}\right\} e^{-j \varphi_{x}} \tag{41}\\
&\left\{u_{C_{2}}\right\}=\left\{u_{C_{1}}\right\} e^{-j \varphi_{x}} \tag{42}\\
&\left\{u_{C_{3}}\right\}=\left\{u_{C_{1}}\right\} e^{-j \varphi_{y}} \tag{43}\\
&\left\{u_{C_{4}}\right\}=\left\{u_{C_{1}}\right\} e^{-j\left(\varphi_{x}+\varphi_{y}\right)} \tag{44}
\end{align*}
$$
\]

The same holds for the pressure dofs. These equations allows for expressing the nodal vectors in terms of reduced nodal vectors $\left\{u^{c}\right\}=\left\langle\left\langle u_{L}\right\rangle\left\langle u_{B}\right\rangle\left\langle u_{C_{1}}\right\rangle\left\langle u_{I}\right\rangle\right\rangle^{T}$ and $\left\{p^{c}\right\}=\left\langle\left\langle p_{L}\right\rangle\left\langle p_{B}\right\rangle\left\langle p_{C_{1}}\right\rangle\left\langle p_{I}\right\rangle\right\rangle^{T}:$

$$
\begin{align*}
& \left\{u^{\text {ren }}\right\}=\left[Q^{U}\right]\left\{u^{c}\right\} \tag{45}\\
& \left\{p^{\text {ren }}\right\}=\left[Q^{p}\right]\left\{p^{c}\right\} \tag{46}
\end{align*}
$$

With

$$
\left[Q^{U}\right]=\left[\begin{array}{cccc}
{\left[Q^{u_{L}}\right]} & {[0]} & {[0]} & {[0]} \tag{47}\\
{[0]} & {\left[Q^{u_{B}}\right]} & {[0]} & {[0]} \\
{[0]} & {[0]} & {\left[Q^{u_{G_{I}}}\right]} & {[0]} \\
{[0]} & {[0]} & {[0]} & {\left[I_{I}^{u}\right]}
\end{array}\right]
$$

and

$$
\begin{gather*}
{\left[Q^{u_{L}}\right]=\left[\begin{array}{c}
{\left[I_{L}^{u}\right]} \\
{\left[I_{L}^{u}\right] e^{-j \varphi_{y}}}
\end{array}\right]} \tag{48}\\
{\left[Q^{u_{B}}\right]=\left[\begin{array}{c}
{\left[I_{B}^{u}\right]} \\
{\left[I_{B}^{u}\right] e^{-j \varphi_{x}}}
\end{array}\right]} \tag{49}\\
{\left[Q^{u_{C_{1}}}\right]=\left[\begin{array}{c}
{\left[I_{C_{1}}^{u}\right]} \\
{\left[I_{C_{1}}^{u}\right] e^{-j \varphi_{x}}} \\
{\left[I_{C_{1}}^{u}\right] e^{-j \varphi_{y}}} \\
{\left[I_{C_{1}}^{u}\right] e^{-j\left(\varphi_{x}+\varphi_{y}\right)}}
\end{array}\right]} \tag{50}
\end{gather*}
$$

In the previous equations $\left[I_{A}^{u}\right]$ denotes the identity matrix of size equal to the number of structural degrees of freedom belonging to entity A (face or edge). Similarly

$$
\left[Q^{p}\right]=\left[\begin{array}{cccc}
{\left[Q^{p_{L}}\right]} & {[0]} & {[0]} & {[0]} \tag{51}\\
{[0]} & {\left[Q^{p_{B}}\right]} & {[0]} & {[0]} \\
{[0]} & {[0]} & {\left[Q^{p_{C_{1}}}\right]} & {[0]} \\
{[0]} & {[0]} & {[0]} & {\left[I_{I}^{p}\right]}
\end{array}\right]
$$

and

$$
\begin{gather*}
{\left[Q^{p_{L}}\right]=\left[\begin{array}{c}
{\left[I_{L}^{p}\right]} \\
{\left[I_{L}^{p}\right] e^{-j \varphi_{y}}}
\end{array}\right]} \tag{52}\\
{\left[Q^{p_{B}}\right]=\left[\begin{array}{c}
{\left[I_{B}^{p}\right]} \\
{\left[I_{B}^{p}\right] e^{-j \varphi_{x}}}
\end{array}\right]} \tag{53}\\
{\left[Q^{p_{C_{1}}}\right]=\left[\begin{array}{c}
{\left[I_{C_{1}}^{p}\right]} \\
{\left[I_{C_{1}}^{p}\right] e^{-j \varphi_{x}}} \\
{\left[I_{C_{1}}^{p}\right] e^{-j \varphi_{y}}} \\
{\left[I_{C_{1}}^{p}\right] e^{-j\left(\varphi_{x}+\varphi_{y}\right)}}
\end{array}\right]} \tag{54}
\end{gather*}
$$

For the external forces, we have the following relationships:

$$
\begin{gather*}
\left\{F_{R}\right\}+\left\{F_{L}\right\} e^{-j \varphi_{y}}=\{0\} \tag{55}\\
\left\{F_{T}\right\}+\left\{F_{B}\right\} e^{-j \varphi_{x}}=\{0\} \tag{56}\\
\left\{F_{C_{1}}\right\}+\left\{F_{C_{2}}\right\} e^{-j \varphi_{x}}+\left\{F_{C_{3}}\right\} e^{-j \varphi_{y}}+\left\{F_{C_{4}}\right\} e^{-j\left(\varphi_{x}+\varphi_{y}\right)}=\{0\} \tag{57}
\end{gather*}
$$

Let assume that each component of corner line nodal vectors $\left\{F_{C_{2}}\right\},\left\{F_{C_{3}}\right\}$ and $\left\{F_{C_{4}}\right\}$ is proportional to the corresponding component of $\left\{F_{C_{1}}\right\}$, that is:

$$
\begin{equation*}
F_{C_{2}, i}=\varpi_{i} F_{C_{1}, i}, F_{C_{3}, i}=\vartheta_{i} F_{C_{1}, i}, F_{C_{4}, i}=\xi_{i} F_{C_{1}, i} \tag{58}
\end{equation*}
$$

Then using Eq(57), we get the following relationship between the proportionality constants ϖ_{i}, ϑ_{i} and ξ_{i} :

$$
\begin{equation*}
1+\varpi_{i}^{F} e^{-j \varphi_{x}}+\vartheta_{i}^{F} e^{-j \varphi_{y}}+\xi_{i}^{F} e^{-j\left(\varphi_{x}+\varphi_{y}\right)}=\{0\} \tag{59}
\end{equation*}
$$

The same relations Eq(55) to Eq (59) holds for the normal pressure gradients but with different constants.

We then have

$$
\begin{gather*}
\left\{F^{\text {ren }}\right\}=\left[Q^{F}\right]\left\{F^{c}\right\} \tag{60}\\
{\left[Q^{F}\right]=\left[\begin{array}{cccc}
{\left[Q^{F_{L}}\right]} & {[0]} & {[0]} & {[0]} \\
{[0]} & {\left[Q^{F_{B}}\right]} & {[0]} & {[0]} \\
{[0]} & {[0]} & {\left[Q^{F_{c_{i}}}\right]} & {[0]} \\
{[0]} & {[0]} & {[0]} & {\left[I_{I}^{F}\right]}
\end{array}\right]} \tag{61}
\end{gather*}
$$

and

$$
\begin{align*}
& {\left[Q^{F_{L}}\right]=\left[\begin{array}{c}
{\left[I_{L}^{F}\right]} \\
-\left[I_{L}^{F}\right] e^{-j \varphi_{y}}
\end{array}\right]} \tag{62}\\
& {\left[Q^{F_{B}}\right]=\left[\begin{array}{c}
{\left[I_{B}^{F}\right]} \\
-\left[I_{B}^{F}\right] e^{-j \varphi_{x}}
\end{array}\right]} \tag{63}\\
& {\left[Q^{F_{C_{1}}}\right]=\left[\begin{array}{c}
{\left[I_{C_{1}}^{F}\right]} \\
{\left[\varpi_{C_{1}}^{F}\right] e^{-j \varphi_{x}}} \\
{\left[\vartheta_{C_{1}}^{F}\right] e^{-j \varphi_{y}}} \\
{\left[\xi_{C_{1}}^{F}\right] e^{-j\left(\varphi_{x}+\varphi_{y}\right)}}
\end{array}\right]} \tag{64}
\end{align*}
$$

Matrices $\left[\varpi_{C_{1}}^{F}\right],\left[\vartheta_{C_{1}}^{F}\right]$ and $\left[\xi_{C_{1}}^{F}\right]$ are diagonal matrices of size the number of structural dofs on corner line C_{1} whose generic term are $\varpi_{C_{1}, i i}^{F}=\varpi_{i}^{F}, \vartheta_{C_{1}, i i}^{F}=\vartheta_{i}^{F} \xi_{C_{1}, i i}^{F}=\xi_{i}^{F}$ respectively.
We also have

$$
\begin{equation*}
\left\{\Phi^{r e n}\right\}=\left[Q^{\Phi}\right]\left\{\Phi^{c}\right\}+\left\{\Phi_{z}\right\} \tag{65}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\{\Phi^{c}\right\}=\left\langle\left\langle\Phi_{L}\right\rangle\left\langle\Phi_{B}\right\rangle\left\langle\Phi_{C_{1}}\right\rangle\left\langle\Phi_{I}\right\rangle\right\rangle^{T} \tag{66}
\end{equation*}
$$

and

$$
\begin{align*}
\left\{\Phi_{z}\right\} & =\left\langle\left\langle\Phi_{L}^{z}\right\rangle\left\langle\Phi_{R}^{z}\right\rangle\left\langle\Phi_{B}^{z}\right\rangle\left\langle\Phi_{T}^{z}\right\rangle\left\langle\Phi_{C_{1}}^{z}\right\rangle\left\langle\Phi_{C_{2}}^{z}\right\rangle\left\langle\Phi_{C_{3}}^{z}\right\rangle\left\langle\Phi_{C_{4}}^{z}\right\rangle\left\langle\Phi_{I}^{z}\right\rangle\langle 0\rangle\right\rangle^{T} \\
& =\left\langle\left\langle\Phi_{z}^{c}\right\rangle\langle 0\rangle\right\rangle^{T} \tag{67}
\end{align*}
$$

For the normal gradients in the plane (x, y) we have,

$$
\left[Q^{\triangleright}\right]=\left[\begin{array}{cccc}
{\left[Q^{\Phi_{L}}\right]} & {[0]} & {[0]} & {[0]} \tag{68}\\
{[0]} & {\left[Q^{\Phi_{B}}\right]} & {[0]} & {[0]} \\
{[0]} & {[0]} & {\left[Q^{\Phi_{C}}\right]} & {[0]} \\
{[0]} & {[0]} & {[0]} & {\left[I_{l}^{\omega_{c}^{\circ}}\right]}
\end{array}\right]
$$

and

$$
\begin{align*}
& {\left[Q^{\Phi_{L}}\right]=\left[\begin{array}{c}
{\left[I_{L}^{\Phi}\right]} \\
-\left[I_{L}^{\Phi}\right] e^{-j \varphi_{y}}
\end{array}\right]} \tag{69}\\
& {\left[Q^{\Phi_{B}}\right]=\left[\begin{array}{c}
{\left[I_{B}^{\Phi}\right]} \\
-\left[I_{B}^{\Phi}\right] e^{-j \varphi_{x}}
\end{array}\right]} \tag{70}\\
& {\left[Q^{\Phi_{C_{1}}}\right]=\left[\begin{array}{c}
{\left[I_{C_{1}}^{\Phi}\right]} \\
{\left[\Phi_{C_{1}}^{\Phi}\right] e^{-j \varphi_{x}}} \\
{\left[\vartheta_{C_{1}}^{\Phi}\right] e^{-j \varphi_{y}}} \\
{\left[\xi_{C_{1}}^{\Phi}\right] e^{-j\left(\varphi_{x}+\varphi_{y}\right)}}
\end{array}\right]} \tag{71}
\end{align*}
$$

Matrices $\left[\varpi_{C_{1}}^{\Phi}\right],\left[\vartheta_{C_{1}}^{\Phi}\right]$ and $\left[\xi_{C_{1}}^{\Phi}\right]$ are diagonal matrices of size the number of pressure dofs on cornerline C_{1} whose generic term are $\varpi_{C_{1}, i i}^{\Phi}=\varpi_{i}^{\Phi}, \vartheta_{C_{1}, i i}^{\Phi}=\vartheta_{i}^{\Phi} \xi_{C_{1}, i i}^{\Phi}=\xi_{i}^{\oplus}$ respectively.

Matrices $\left[I_{L}^{\Phi}\right],\left[I_{B}^{\Phi}\right],\left[I_{C_{1}}^{\oplus}\right]$ are diagonal matrices of size the number of pressure dofs on the respective partition.
Substituting $\operatorname{Eq}(45), \mathrm{Eq}(46), \mathrm{Eq}(60)$ and $\mathrm{Eq}(65)$ in $\mathrm{Eq}(2)$, multiplying the first and the second line of the resulting system by $\left[Q^{u}\right]^{* T}$ and $\left[Q^{p}\right]^{* T}$ respectively, the following reduced system is obtained:

$$
\begin{aligned}
& {\left[Z^{m u}\right]=\left[Q^{u}\right]^{u T}\left[[K]-\omega^{2}[M]\right]\left[Q^{u}\right]} \\
& {\left[Z^{p p}\right]=\left[Q^{p}\right]^{* T}\left[\frac{[H]}{\omega^{2}}-[Q]-\left(\frac{\left[\Delta^{+}\right.}{\rho_{f}^{+} \omega^{\omega^{2}}}+\frac{\left[\Delta^{-}\right.}{\rho_{f}^{-} \omega^{2}}\right)\right]\left[Q^{p}\right]} \\
& {\left[Z^{\text {wh }}\right]=-\left[Q^{u}\right]^{T^{T}}[C]\left[Q^{p}\right]}
\end{aligned}
$$

Using $\mathrm{Eq}(47)$ and $\mathrm{Eq}(61)$ on the one hand and Eq (51) and $\mathrm{Eq}(68)$ on the other hand, it can be shown that:

$$
\left[Q^{u}\right]^{*}\left[Q^{F}\right]\left\{F^{c}\right\}=\left\{\begin{array}{l}
\{0\} \tag{73}\\
\{0\} \\
\{0\} \\
\left\{F_{I}\right\}
\end{array}\right\} \underset{\text { no }}{\substack{\text { no intermal force } \\
\text { acting on the structure }}}=\{0\}
$$

and

$$
\left[Q^{p}\right]^{* T}\left[Q^{\Phi}\right]\left\{\Phi^{c}\right\}=\left\{\begin{array}{l}
\{0\} \tag{74}\\
\{0\} \\
\{0\} \\
\{0\}
\end{array}\right\}
$$

Eq(72) becomes

$$
\left(\begin{array}{cc}
{\left[Z^{u u}\right]} & {\left[Z^{u p}\right]} \tag{75}\\
{\left[Z^{u p}\right]^{* T}} & {\left[Z^{p p}\right]}
\end{array}\right]\left\{\begin{array}{l}
\left\{u^{c}\right\} \\
\left\{p^{c}\right\}
\end{array}\right\}=\left\{\begin{array}{l}
\{0\} \\
\frac{2}{\rho_{f} \omega^{2}}\left[Q_{p}\right]^{* T}\left\{\Phi^{z}\right\}
\end{array}\right\}
$$

System in $\mathrm{Eq}(75)$ is Hermitian and can be solved using appropriate resolution algorithm. The matrices $\left[[K]-\omega^{2}[M]\right],[C]$ and $\left[\frac{[H]}{\omega^{2}}-[Q]\right]$ are obtained directly from Novafem without imposing any boundary conditions on the fluid and the structure. System (75) requires to build the condensation matrices $\left[Q^{u}\right]$ and $\left[Q^{p}\right]$. Note that in $\left\{\Phi^{z}\right\}$ only the normal incident pressure gradient degrees of freedom (on $\Sigma^{-}(z=0)$) are non-zero.

The steps in the methodology are the following:

1. Identify corner line, lateral face and internal nodes
2. Partition global solution vector into nine components
3. Build the periodic boundary condition condensation matrix for the structure $\left[Q^{u}\right]$
4. Build the periodic boundary condition condensation matrices for the fluid $\left[Q^{p}\right]$ and $\left[Q^{\Phi}\right]$
5. Calculate matrices $\left[\Delta^{+}\right]$and $\left[\Delta^{-}\right]$
6. Calculate the normal incident pressure gradient nodal vector $[\Phi]$
7. Build system (72) (Hermitian projection of $\mathrm{Eq}(2)$ on $\left[Q^{g}\right]=\left[\begin{array}{cc}{\left[Q^{u}\right]} & {[0]} \\ {[0]} & {\left[Q^{p}\right]}\end{array}\right]$)
8. Solve the projected Hermitian system

Calculation of $\left[\Delta^{+}\right]$
$\left[\Delta^{+}\right]$can be rewritten as

$$
\begin{align*}
{\left[\Delta^{+}\right] } & =\int_{\Sigma^{+}}\left\{N\left(x, y, h^{+}\right)\right\}\left\langle-j k_{m n}^{+} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\right\rangle d S\left[A^{+}\right] \\
& =\frac{1}{\Sigma^{+}}\left[A^{+1}\right]^{* T}\left[D^{+}\right]\left[A^{+1}\right] \tag{76}
\end{align*}
$$

where $\left[\mathrm{D}^{+}\right]$is a diagonal matrix of dimension $((2 M+1) \times(2 N+1),(2 M+1) \times(2 N+1))$

$$
\left[D^{+}\right]=\left[\begin{array}{ccccc}
-j k_{-M-N}^{+} & 0 & 0 & 0 & 0 \tag{77}\\
0 & -j k_{-M-N+1}^{+} & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & -j k_{M N-1}^{+} & 0 \\
0 & 0 & 0 & 0 & -j k_{M N}^{+}
\end{array}\right]
$$

where $\left[A^{+1}\right]$ is a matrix of dimension $\left((2 M+1) \times(2 N+1), N^{p}\right)$ given by

$$
\begin{align*}
{\left[A^{+1}\right] } & =\int_{\Sigma^{+}}\left\{e^{j \alpha_{m} x} e^{j \beta_{n} y}\right\}\left\langle N^{p}\left(x, y, h^{+}\right)\right\rangle d S \\
& =\left[e^{j \alpha_{m} x_{i}} e^{j \beta_{n} y_{i}}\right] \int_{\Sigma^{+}}\left\{N^{p}\left(x, y, h^{+}\right)\right\}\left\langle N^{p}\left(x, y, h^{+}\right)\right\rangle d S \tag{78}\\
& =\left[e^{j \alpha_{m} x_{i}} e^{j \beta_{n} y_{i}}\right]\left[C^{p}\right] \\
& =[\Upsilon]\left[C^{p}\right]
\end{align*}
$$

$[\Upsilon]=\left[e^{j \alpha_{m} x_{i}} e^{j \beta_{n} y_{i}}\right]$ is a matrix of dimension $\left((2 M+1) \times(2 N+1), N^{p}\right)$ which contains on each line the nodal values of term $e^{j \alpha_{m} x} e^{j \beta_{n} y}$. Actually, only the dof on face Σ^{+}are considered in the calculation.

Calculation of the transmitted power (power exchanged between the structure and Ω^{+})

$$
\begin{align*}
W^{+} & =\frac{1}{2} \mathfrak{R}\left[\int_{\partial \Omega^{+}} \hat{p}^{+} \hat{\vec{v}}^{*} \cdot \vec{n} d S\right] \\
& =\frac{1}{2} \mathfrak{R}\left[-j \omega\left\langle p^{+}\right\rangle[C]\left\{u^{*}\right\}\right] \tag{79}
\end{align*}
$$

Calculation of the power exchanged between the structure and Ω^{-}

$$
\begin{align*}
W^{-} & =\frac{1}{2} \mathfrak{R}\left[\int_{\partial \Omega^{-}} \hat{p}^{-} \hat{\vec{v}}^{*} \cdot \vec{n} d S\right] \\
& =\frac{1}{2} \mathfrak{R}\left[-j \omega\left\langle p^{-}\right\rangle[C]\left\{u^{*}\right\}\right] \tag{80}
\end{align*}
$$

Calculation of the Reflection and transmission coefficients

In the case where only the normal modes taken care of, the reflection coefficient is given by:

$$
\begin{align*}
R= & \hat{p}_{00}^{-}=\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} \hat{p}^{-}(x, y, 0) e^{j k^{-} \sin \theta \cos \phi x} e^{j k^{-} \sin \theta \sin \phi y} d x d y \\
& =\frac{1}{2 d_{1}} \frac{1}{2 d_{2}}\left\langle e^{j k^{-} \sin \theta \cos \phi x_{i}} e^{j k^{-} \sin \theta \sin \phi y_{i}}\right\rangle\left[C^{p}\right]\left\{\hat{p}^{-}\right\} \tag{81}
\end{align*}
$$

Similarly, the transmission coefficient is given by \hat{p}_{00}^{+}with:

$$
\begin{align*}
T & =\hat{p}_{00}^{+}=\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} \hat{p}^{+}\left(x, y, h^{+}\right) e^{j k^{-} \sin \theta \cos \phi x} e^{j k^{-} \sin \theta \sin \phi y} d x d y \tag{82}\\
& =\frac{1}{2 d_{1}} \frac{1}{2 d_{2}}\left\langle e^{j k^{-} \sin \theta \cos \phi x_{x}} e^{j k^{-} \sin \theta \sin \phi y_{i}}\right\rangle\left[C^{p}\right]\left\{\hat{p}^{+}\right\}
\end{align*}
$$

To validate these statements, note that the incident pressure $\hat{p}_{i}(x, y, z)$ can be expanded as

$$
\begin{equation*}
\hat{p}_{i}(x, y, z)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{p}_{i, m n} e^{-j k_{m m} z} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} \tag{83}
\end{equation*}
$$

with

$$
\begin{align*}
\left\{p_{i, m n}\right\} & =\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}}\left\{e^{j \alpha_{m} x} e^{j \beta_{n} y}\right\}\left\langle N^{p}(x, y, 0)\right\rangle d x d y\left\{p_{i}\right\} \tag{84}\\
& =\left[A^{-}\right]\left\{p_{i}\right\}
\end{align*}
$$

Compare to the reflected pressure:

$$
\begin{equation*}
\hat{p}^{-}(x, y, z)=\sum_{m, n=-\infty}^{+\infty} \hat{p}_{m n}^{-} e^{j k_{m m}^{-}{ }^{z}} e^{-j \alpha_{m} x} e^{-j \beta_{n} y} . \tag{85}
\end{equation*}
$$

At $z=0$:

$$
\begin{equation*}
\hat{p}_{i}(x, y, 0)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{p}_{i, m n} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}, \tag{86}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
\hat{p}^{-}(x, y, 0)=\sum_{m, n=-\infty}^{+\infty} \hat{p}_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}=R \hat{p}_{i}(x, y, 0) \tag{87}
\end{equation*}
$$

Explicitly,

$$
\begin{align*}
& \frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} \sum_{m, n=-\infty}^{+\infty} \hat{p}_{m n}^{-} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\left(e^{j \alpha_{p} x} e^{j \beta_{q} y}\right) d x d y= \tag{88}\\
& \frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} R \sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{p}_{i, m n} e^{-j \alpha_{m} x} e^{-j \beta_{n} y}\left(e^{j \alpha_{p} x} e^{j \beta_{q} y}\right) d x d y
\end{align*}
$$

So that,

$$
\begin{equation*}
\hat{p}_{m n}^{-}=R \hat{p}_{i, m n} \Rightarrow R=\frac{\hat{p}_{m n}^{-}}{\hat{p}_{i, m n}} \neq f(m, n)=\frac{\hat{p}_{00}^{-}}{\hat{p}_{i, 00}}=\hat{p}_{00}^{-} . \tag{89}
\end{equation*}
$$

Note that we can verify :

$$
\begin{aligned}
& \frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \hat{p}_{m n}^{-}=\frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} R \hat{p}_{i}(x, y, 0)\left(e^{j \alpha_{p} x} e^{j \beta_{q} y}\right) d x d y= \\
& \\
& R \frac{1}{2 d_{1}} \frac{1}{2 d_{2}} \int_{0}^{2 d_{1}} \int_{0}^{2 d_{2}} \hat{A}\left(e^{j \frac{p \pi}{d_{1}} x} e^{j \frac{q \pi}{d_{2}} y}\right) d x d y=R \hat{A}=R \hat{p}_{i, 00}
\end{aligned}
$$

The same proof can be given for the transmission coefficient.

REFERENCES

[1] Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the Acoustical Society of America, 90, 3356
[2] V. Easwaran and M. L. Munjal, Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: A finite element approach, JASA, 93(3) 1993, 13081318
[3] P.Langlet (1993). Analyse de la propagation d'ondes acoustiques dans les matériaux périodiques à l'aide de la méthode des éléments finis, PhD thesis, 200p. Université de Valenciennes, Valenciennes, France.

Part 2 - Validation of PCFEM Code: Materials with no Inclusions

Preliminary TL Validation tests of embedded
Helmholtz resonators in a porous frame
N. Atalla / F. Sgard / R. Panneton
January 31,2013
GAUSO
M̈ecanum
Methods

GAUSO
M̈ecanum
m

Case T1 (Waveguide option)

Case T1 (PUC option)

GAUS
M̈ecanum

Case T2b (PUC option)

Case T3 (Waveguide option)

GAUSO
\wedge
Case T4 (PUC option)

It seems that the reference solution given in caseT4.mat is wrong?
∞
Case T5 (Waveguide option)
Test Case 5: Water/ 50 mm Rubber \#1/ 50 mm Steel/ water, 0 degrees

σ
Case T6 (Waveguide option)

gauso
M̈ecanum

GAUS
M̈̈ecanum

Part 3 - Validation of PCFEM Code:
 Materials with Inclusions

PCFEM - Validation cases with inclusions

CASE 1 : DOUBLY PERIODIC CICURLAR CYLINDRICAL AIR INCLUSIONS

REFERENCES

- Easwaran, V. and Munjal, M. (1993), Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: A finite element approach, The Journal of the Acoustical Society of America, 93, 1308.
- Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the Acoustical Society of America, 90, 3356.

DESCRIPTION

- Alberich anechoic coating with circular cylindrical air inclusion immersed in water on both sides.
- Normal incidence acoustic wave.
- Air is not modelled in References - see as void.
- Only transmission results are available.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case1\case1.pcf
- Waveguide solver with TETRA 10 elements
- $\lambda / 4$ criterion CPU time is 19 s ; Number of elements: 1268
- $\lambda / 6$ criterion CPU time is 98 s ;

Number of elements: 5080

Number of nodes: 2474
Number of nodes: 8784

PCFEM - Validation cases with inclusions

CASE 2 : DOUBLY PERIODIC CICURLAR CYLINDRICAL AIR INCLUSIONS

REFERENCES

- Easwaran, V. and Munjal, M. (1993), Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: A finite element approach, The Journal of the Acoustical Society of America, 93, 1308.
- Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the Acoustical Society of America, 90, 3356.

DESCRIPTION

- Alberich anechoic silicon coating with circular cylindrical air inclusion immersed in water on both sides.
- Normal incidence acoustic wave.
- Air is not modelled in References - see as void.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case2\case2.pcf
- Waveguide solver with TETRA 10 elements
- $\lambda / 2$ criterion CPU time is 95 s

Number of elements: 6314
Number of elements: 21674

- $\lambda / 3$ criterion CPU time is 581 s
- $\lambda / 3$ yields results very very close to $\lambda / 2$ for a fraction of time.

Number of nodes: 9888
Number of nodes: 32240

PCFEM - Validation cases with inclusions

$\mathrm{x}_{\uparrow} \quad \mathrm{x}_{\uparrow} \mathrm{H}^{\mathrm{cm}} \quad 2 \mathrm{~cm}$	Elastic properties of silicon coating
	E (Pa) ${ }^{\text {a }}$ (1.8×10^{6}
5 cm	v(-) 0.49976
water water	$\eta_{L}(\%) \quad 15$
$\begin{array}{llllll} 5 \rightarrow \mathrm{~cm} & \text { A } & 1.2 \mathrm{~cm} & 4 \mathrm{~cm} & 1.2 \mathrm{~cm} & \text { z } \end{array}$	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ 1000

Good correlation obtained compared with FEM and EXP results from reference.

Validation cases with inclusions

CASE 3 : SINGLE PERIODIC INFINITE RECTANGULAR CYLINDRICAL AIR INCLUSIONS

REFERENCES

- Hladky-Hennion, A.C. and Decarpigny, J.N. (1991), Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings, The Journal of the Acoustical Society of America, 90, 3356.

DESCRIPTION

- Alberich anechoic polyurethane coating with an infinite rectangular air inclusion immersed in water on both sides.
- It is similar to a 2D case (arbitrary 1 cm height is imposed).
- Normal incidence acoustic wave.
- Air is not modelled in References - see as void.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case3\case3.pcf
- Waveguide solver with TETRA 10 elements
- $\lambda / 4$ criterion CPU time is $12 \mathrm{~s} \quad$ Number of elements: 720
- $\lambda / 6$ criterion CPU time is 38 s

Number of elements: 2412
Number of nodes: 1440
Number of nodes: 4228

Elastic properties of polyurethane material	
$\mathrm{E}(\mathrm{Pa})$	2.81×10^{8}
$\nu(-)$	0.479
$\eta_{\mathrm{L}}(\%)$	45
$\eta_{\mathrm{S}}(\%)$	1.78
$\rho\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1100 (estimation)

PCFEM - Validation cases with inclusions

Good correlation obtained compared with reference except above 15000 Hz . We have checked several meshes, and the curve doesn't change. However the results are very sensitive to damping. Here we apply, separate damping to E and Poisson and deduce G... So we are wondering if there is an error in the data especially the damping...It is surprising that only case 1 was reproduced in various papers.

Validation cases with inclusions

CASE 4 : DOUBLY PERIODIC ALBERICH ANECHOIC COATING ON STEEL PLATE - WATER/SLAB/AIR

REFERENCES

- Meng, H., Wen, J., Zhao, H., Lv, L. and Wen, X. (2012), Analysis of absorption performances of anechoic layers with steel plate backing, The Journal of the Acoustical Society of America, 132, 69.

DESCRIPTION

- Alberich anechoic coating with a cylindrical air inclusion as in CASE 1 backed by a STEEL plate.
- Water on incident side and air behind the steel plate.
- Normal incidence acoustic wave.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case4\case4.pcf
- Waveguide solver with TETRA 10 elements
- $\lambda / 3$ criterion CPU time is $47 \mathrm{~s} \quad$ Number of elements: 1050
- $\lambda / 6$ criterion CPU time is 539 s

Number of elements: 9452
Number of nodes: 1996
Number of nodes: 15310

PCFEM - Validation cases with inclusions

Good correlation with reference. However we have tried to explain differences. We have checked several meshes and also meshed various air-layers upstream and downstream slab... the curves do not change. We believe that our results are more representative compared the reference since (1) the anechoic coating alone is exactly case 1 that was validated; and (2) the homogeneous case (=without the inclusion) agrees with the Transfer Matrix Method (TMM) - see
next page.
Still, we are trying to find out what's wrong with the input data!

Homogeneous case (without inclusion)
 Comparison between PCFEM (waveguide solver *) and TMM (green curve)

PCFEM - Validation cases with inclusions

CASE 4B : DOUBLY PERIODIC ALBERICH ANECHOIC COATING ON WATER - WATER/SLAB/WATER

REFERENCES

- Meng, H., Wen, J., Zhao, H., Lv, L. and Wen, X. (2012), Analysis of absorption performances of anechoic layers with steel plate backing, The Journal of the Acoustical Society of America, 132, 69.

DESCRIPTION

- Alberich anechoic coating with a cylindrical air inclusion with water of both sides = CASE 1.
- As in case 1 , however this time in absorption.
- Normal incidence acoustic wave.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case4b\case4b.pcf
- Waveguide solver with TETRA 10 elements
- $\lambda / 6$ criterion CPU time is 176 s

Number of elements: 6410
Number of nodes: 10936

PCFEM - Validation cases with inclusions

Good correlation with reference with same conclusions as in case 4 relatively to the differences.
NOTE that usually the absorption coefficient is defined as $\alpha=1-|R|^{2}$. Here the absorbance they defined seems to be equal to $\alpha_{\text {diss }}=D=1-|R|^{2}-|T|^{2}$ which is in fact the energy dissipated in the coating. While for the previous case both absorptions are very close due to the steel plate causing very low value of T, in this case this is no longer true.

CASE 5 : DOUBLY PERIODIC COATED RIGID SPHERE COATING ON STEEL PLATE OR ON WATER

REFERENCES

- Meng, H., Wen, J., Zhao, H., Lv, L. and Wen, X. (2012), Analysis of absorption performances of anechoic layers with steel plate backing, The Journal of the Acoustical Society of America, 132, 69. (FIGURE 6)

DESCRIPTION

- Doubly periodic ALUMINUM coated sphere in a host rubber backed by a STEEL plate or WATER. Water on incident side and air behind the steel plate if not water backing. The core of the coated sphere is in Aluminum, while is coating is a soft silicon rubber.
- Normal incidence acoustic wave.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case5\case5.pcf (for steel backing)
- \PCFEM\work\Test cases with inclusion\case5b\case5b.pcf (for steel backing)
- Waveguide solver with TETRA 10 elements
- $\lambda / 10$ criterion CPU time is $2202 \mathrm{~s} \quad$ Number of elements: 29184 (24576) Number of nodes: 42471 (35 937)
- $\lambda / 6$ criterion CPU time is $115 \mathrm{~s} \quad$ Number of elements: 6528 (3 456) Number of nodes: 10115 (5 491)

PCFEM - Validation cases with inclusions

$\lambda / 10$ criterion for layer 1 . Manual for layer 2.

Good correlation with reference. Finer mesh yields better correlation around peaks.

PCFEM - Validation cases with inclusions

CASE 6 : DOUBLY PERIODIC COATED SPHERE COATING - WATER/SLAB/AIR

REFERENCES

- Wen, J., Zhao, H., Lv, L., Yuan, B., Wang, G. and Wen, X. (2011), Effects of locally resonant modes on underwater sound absorption in viscoelastic materials, The Journal of the Acoustical Society of America, 130, 1201. (FIGURE 3)

DESCRIPTION

- Doubly periodic STEEL coated sphere in a host rubber backed by a STEEL plate. Water on incident side and air behind the steel plate. The core of the coated sphere is in Aluminum, while is coating is a soft silicon rubber.
- Normal incidence acoustic wave.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case6\case6.pcf (for steel backing)
- Waveguide solver with TETRA 10 elements
- $\lambda / 8$ criterion CPU time is $901 \mathrm{~s} \quad$ Number of elements: 18816
- $\lambda / 10$ criterion CPU time is s

Number of elements: 34992
Number of nodes: 27753
Number of nodes: 50653

PCFEM - Validation cases with inclusions

Good correlation with reference; however some discrepancies are not explained. We thought that coarser mesh was not enough to discretize geometry; however coarse and very fine meshes yield same results. In the paper, only sound speeds in media were given. So we deduced from equations the properties given in the table. We expect the discrepancies result from errors in the input data given in the reference paper.

PCFEM - Validation cases with inclusions

CASE 7 : RUBBER/STEEL PLATE WITH DOUBLY PERIODIC PRISMATIC VOIDS AT JUNCTION (PUC CASE)

REFERENCES

- Email by Jeff Szabo entitled "Test Case" and sent on February $20^{\text {th }}$, 2014.

DESCRIPTION

- Rubber/Steel plate with doubly periodic prismatic voids at junction.
- Normal incidence acoustic wave.
- Properties of material are frequency dependent and given in MAT file "rubber3.mat" and "steel.mat" of reference.

PCF MODEL

- \PCFEM\work\Test cases with inclusion\case7\case7.pcf (for 1x1 PUC)
- \PCFEM\work\Test cases with inclusion\case7a\case7a.pcf (for 4×4 PUC)
- Waveguide solver with TETRA10 elements
- $\sim \lambda / 2$ (USER DEFINED) criterion CPU time is $60 \mathrm{~s}(347 \mathrm{~s})$ Num. of elements: 1008 (16 128) Num. of nodes: 1836 (24 615)
- Dynamic complex material properties. Their spectra are stored in MAT files: Rubber3_table.mat and Steel_table.mat located in folder: \PCFEM\work\Material Library

PCFEM - Validation cases with inclusions

$h x=h y=\left[\begin{array}{lllllllll}2.5 & 5 & 2.5 & 5 & 2.5 & 5 & 2.5 & 5 & 2.5\end{array}\right]$ and $h z=\left[\begin{array}{lll}2.5 & 2.5\end{array}\right.$ 8]

For the same mesh definition, one 1×1 PUC cell yields exactly the same results as one 4×4 PUC cell

[^0]: ${ }^{1}$ Terms in $\frac{\partial \hat{p}}{\partial n_{y}}$ for $\left\langle\Phi_{L}\right\rangle,\left\langle\Phi_{R}\right\rangle$ and in $\frac{\partial \hat{p}}{\partial n_{x}}$ for $\left\langle\Phi_{B}\right\rangle,\left\langle\Phi_{T}\right\rangle$.
 ${ }^{2}$ Terms in $\frac{\partial \hat{p}}{\partial n_{x}}+\frac{\partial \hat{p}}{\partial n_{y}}$

