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Abstract

This report reviews metrics, methodologies and data-sets used for evaluation of face recognition in video

(FRiV) and establishes a multi-level evaluation methodology that is suitable for video surveillance ap-

plications. The developed methodology is particularly tailored for such video surveillance applications as

screening of faces against the wanted list (still-to-video application) and matching faces across several video

feeds, also known as search-and-retrieval or face re-identification problem (video-to-video application). Ac-

cording to the developed methodology, FRiV technologies are evaluated at several levels of analysis, each

level dealing with a particular source of potential system failure. Level 1 (transaction-based analysis) deals

with unbalanced target vs. non-target distributions. Level 2 (subject-based analysis) deals with robustness

of the system to different types of target faces. Level 3 (time-based analysis) allows to examine the quality

of the final decision while tracking a person over time. The methodology is applied to conduct an evalu-

ation of state-of-art Commercial Off-The-Shelf (COTS) face recognition systems, the results of which are

presented.

Keywords: video-surveillance, face recognition in video, instant face recognition, watch list screening,

biometrics, reliability, performance evaluation

Community of Practice: Biometrics and Identity Management

Canada Safety and Security (CSSP) investment priorities:

1. Capability area: P1.6 – Border and critical infrastructure perimeter screening technologies/ protocols

for rapidly detecting and identifying threats.

2. Specific Objectives: O1 – Enhance efficient and comprehensive screening of people and cargo (iden-

tify threats as early as possible) so as to improve the free flow of legitimate goods and travellers across

borders, and to align/coordinate security systems for goods, cargo and baggage;

3. Cross-Cutting Objectives CO1 – Engage in rapid assessment, transition and deployment of innovative

technologies for public safety and security practitioners to achieve specific objectives;

4. Threats/Hazards F – Major trans-border criminal activity – e.g. smuggling people/ material
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1 Introduction

The global market for video surveillance technologies has reached revenues in the billions of $US as tradi-

tional analog technologies are being replaced by IP-based digital surveillance technologies. In this context,

video surveillance based on the facial biometric modality is extremely useful. The ability to automatically

recognize and track individuals of interest in crowded airports or other public places, and across a network

of surveillance cameras may provide enormous benefits in terms of enhanced screening and situational

analysis.

Two main types of face recognition in video (FRiV) are possible:

1. still-to-video recognition, which deals with matching of facial images in a video stream with still

images stored in gallery.

2. video-to-video recognition, also referred to as re-identification, which deals with matching of facial

images in a video stream with facial images captured in another video stream.

Still-to-video recognition is used in such applications as Watch List Screening, where faces extracted

from video are matched to faces stored in a Watch List. Video-to-video recognition is used in such applica-

tions as search and retrieval, face tagging, video summarization, and face tracking and re-detection across

multiple video streams.

To evaluate and compare the performance of face recognition (FR) technologies and academic systems,

objective evaluation methodologies are required. Such methodologies depend on the task for which the FR

technologies are used. In video surveillance applications, the task of a FR system is to detect the presence

of an individual from a watch list gallery or cohort [29, 36, 34] in a variety of video surveillance environ-

ments, which can range from semi-controlled (one person, little motion) to uncontrolled environments with

crowded and moving scenes.

Systems and technologies for Face Recognition in Video Surveillance (FRiVS) should be evaluated in

terms of their ability to accurately and efficiently detect the presence of an individual’s face under various

operational conditions. In still-to-video recognition, a cohort typically corresponds to individuals populating

a pre-established watch list, while in video-to-video recognition, it is typically a set of suspicious individuals

to be monitored in a scene.

The divergence and uncertainty of facial models w.r.t. faces collected in real-world video scenes (due to

different cameras and uncontrolled and changing environments) underscores the need to assess image qual-

ity, context distortion of input Regions of Interest (ROIs) [35, 40, 43]. FR in video surveillance corresponds

to an open-set or open-world FR problem [29], in which only a very small proportion of captured faces

correspond to an individual of interest in a restrained cohort. FR systems are typically designed using the

samples from a Universal Model (UMs) to set decision thresholds and/or design accurate matchers. Some

individuals are naturally more difficult to detect than others, and the risk associated with detection errors

varies from one individual to another. Therefore, performance must be also assessed with skewed samples

and cost-sensitive decisions scenarios in mind. Finally, video surveillance networks are comprised of a

growing number of IP-based surveillance cameras and must transmit or archive massive quantities of data.

Storage and processing time of different systems is also an important consideration.
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Figure 1: Illustration of a basic matcher used in a biometric system. Decision threshold is set based on the

allowable False Accept Rate (FAR).

For evaluation, a FR system in video surveillance should not be viewed as an identification problem,

where each input ROI is simultaneously compared against all user templates and where the system outputs a

ranking of the best matching candidate 1, but rather should be viewed in terms of independent user-specific

detection (1:1 classification) problems, each one implemented using cost-effective template matchers or

one- or two-class pattern classifiers, and a threshold applied to its output scores s(a,mi) [2, 3, 13]. In

surveillance applications, the objective is to detect the presence of an individual of interest among a uni-

verse of people, regardless of other individuals in the cohort. The system outputs a list of all possible

matching individuals, that is, cases where di = 1(s(a,mi)≥ γ). As it is observed in practice however, most

biometric technologies, including those developed for FR in video surveillance, implement screening tasks

as a sequence of independent 1:1 classification tasks – comparisons of each input ROI (pattern a) against

user templates, over a gallery G of templates mi (see Figure 1).

In this report, we establish experimental methodologies for large-scale performance evaluation of state-

of-the-art commercial technologies and academic systems for both still-to-video and video-to-video FRiVS.

These methodologies are particularly tailored for such video surveillance applications as screening of faces

against wanted lists (still-to-video application) and matching a face/person across several video feeds, also

1 For a system that is implemented an an identification problem system, the Cumulative Match Curve (CMC) is a well es-

tablished performance measure that provides ranked lists of candidates. It has been shown by Bolle et al. [5] that the CMC is

related to the false positive/negative rates ( f pr and f nr) of a 1:1 classifier used to rank the candidates by sorting their classification

scores from high to low. As a consequence, when a 1:1 classifier is applied to identification (i.e., for sorting classification scores),

the CMC can be derived from the f pr and f nr, and does not provide any additional information beyond ROC or DET curves.

As emphasized recently by DeCann and Ross [10], the opposite however is not true: the same CMC curve can be generated by

different ROC or DET curves.
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Table 1: Datasets for FR in video-surveillance.
DATASET TARGET APPLICATIONS
1) CMU-MoBo [25] subjects performing different walking

Carnegie Mellon University Motion of Bodies patterns on a treadmill

2) CMU-FIA [15] subjects mimicking passport checkpoint

Carnegie Mellon University Faces in Action at airport

3) Chokepoint [47] video-surveillance

subjects walking though portals

4) MOBIO [32] m-modal unconstrained authentication

EC FP7 Mobile Biometry on mobile device (face + voice)

5) ND-Q0-Flip [33] detection of questionable observers

Notre-Dame Crowd Data that appear often in crowd videos

6) NIST-MBGC(http://www.nist.gov/itl/iad/ig/mbgc.cfm) m-modal verification of subjects walking

National Institute of Standards and Technology through portal or access control checkpoint

- Multiple Biometric Grand Challenge (still- and video-to-video)

7) NRC-FRiV [19] user identification for

National Research Council secured computer login

- Face Recognition in Video

8) XM2VTS(http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/) multi-modal verification

Multi-Modal Verification for for tele-service and security

Teleservices and Security Applications

known as search-and-retrieval, face re-identification problem (video-to-video application)

The report is organized as follows. First, we survey publicly-available reference data-sets (Section 2)

that can be used for the purpose. Then we survey performance metrics (Section 3) that are suitable for video

surveillance applications. Finally, we present a benchmarking protocol (Section 4), which is developed for

testing commercial and academic FR technologies for video surveillance applications. The complete results

obtained from the evaluation of commercial FR products using the presented protocol are presented in a

separate report [23].

2 Reference data-sets

2.1 Publicly-available data

Table 1 presents a survey of publicly-available data-sets that are suitable for medium- to large-scale bench-

marking of systems for mono-modal and multi-modal recognition of face in video-surveillance. Due to

constraints of standard evaluation protocols and performance metrics, these data-sets must contain at least

10 unique individuals, and a considerable number of frames per person. In addition, it is desirable to use

common data-sets that allow for comparison with results found in open literature.

For evaluation of video surveillance techniques and technologies, the CMU-FIA, Chokepoint and ND-

Q0-Flip data-sets are are the most suitable for mono-modal recognition and tracking of faces over one or
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more cameras. For applications involving multi-modal recognition and tracking, MOBIO (face and voice

modalities) and NIST-MBGC2 (face and iris modalities) data-sets are the most suitable for benchmarking

studies. Specific evaluation scenarios that involve these data-sets are presented in the next sections.

In Tables 2 through 4, CMU-FIA and Chokepoint, MOBIO data-sets from Table 1 are characterized on

the basis of:

• demographics: the distribution of people per session and in the entire data-set.

• complexity in scene: the systematic variation of illumination, occlusion, motion, expression and/or

pose for some target application;

• capture properties: the number and type of cameras, duration of video sequences, frame rate and

resolution

Properties for CMU-MoBo and NRC-FRiV are also shown for reference. Finally, some additional details

are provided only for data-sets used in case studies.

2Note that NIST-MBGC includes several data-sets, and is most relevant here for combined face-iris recognition at primary

inspection lanes.
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2.1.1 NRC-FRiV data

The NRC-FRiV [19] data-set is composed of 22 video sequences captured from eleven individuals posi-

tioned in front of a computer. For each individual, two color video sequences of about fifteen seconds

are captured at a rate of 20 frames per seconds with an Intel web cam of a 160× 120 resolution that was

mounted on a computer monitor. Of the two video sequences, one is dedicated to training and the other

to testing. They are taken under approximately the same illumination conditions, the same setup, almost

the same background, and each face occupies between 1/4 to 1/8 of the image. This data base contains

a variety of challenging operational conditions such as motion blur, out of focus factor, facial orientation,

facial expression, occlusion, and low resolution. The number of ROIs detected varies from class to class,

ranging from 40 to 190 for one video sequences. Figure 2 shows some frames captured for that data-set.

Figure 2: Video frames captured in the reference NRC-FRiV data-set [19].

2.1.2 CMU-MoBo data

The CMU-MoBo [25] data-set, and was collected at Carnegie Mellon University under the HumanID

project. Each video sequence shows one of 25 different individuals on a tread-mill so that they move

their heads naturally to four different motion types when walking: slowly, fast, on an inclined surface, and

while carrying an object. Six Sony DXC 9000 cameras, with a resolution of a 640× 480 pixels, are posi-

tioned at different locations around the individuals. Only the video sequences with visible faces were kept:

full frontal view and both sides with an angle of about 70◦ with the full frontal view. Figure 3 shows some

frames captured for that data-set.

Figure 3: Video frames from the reference CMU-MoBo data-set [25].
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2.1.3 CMU-FIA data

The FIA face database [15] is composed of 20-second videos of face data from 221 participants, mimicking

a passport checking scenario, in both indoor and outdoor scenario. Videos have been captured from three

different angles, with two different focal length for each, at a resolution of 640x480 pixels at 30 images per

second. Data were captured in three sessions, with at least a month between each one. On the first session,

221 participants were present, 180 of whom returned for the second session, and 153 for the third.

The simulations have been performed using pictures captured by the two frontal cameras, in the first

two indoor sessions – the first one for training and the one for testing. Among the all individual, 45 have

been selected to populate the watch list because they are present in every session, with at least 150 ROIs

for training and 300 ROIs for testing. This guarantees up to 15 samples per fold when performing 10-fold

cross-validation, and thus the possibility to experiment with different amounts of training samples. Among

the remaining 176 classes, 88 have been randomly chosen to build the UM for training, which guarantees

the presence of another unknown 88 individuals for testing. For each of the 3 sessions, the FIA dataset

have been separated into 6 subsets, according to the different cameras (left, right and frontal view, with 2

different focal length for each one). Figure 4 shows some frames captured for that data-set.

Figure 4: Video frames from the reference CMU-FIA data-set [15].

2.1.4 Chokepoint data

The Chokepoint [47] video surveillance data-set is a publicly available data-set that features video streams

with either one or several subjects walking in a naturally way through several indoor portals (chokepoints of

pedestrian traffic) mounted with modern array of IP network cameras. This setup is similar to the surveil-

lance environments setup observed in airports [22] where individuals pass in a natural free-flow way in a

narrow corridor. The array of three cameras is mounted just above a door, used for simultaneously recording
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the entry of a person from three viewpoints. Figures 5 and 13 show examples of frames captured in the

data-set.

The data consists of 25 subjects (19 male and 6 female) in portal 1, and 29 subjects (23 male and 6

female) in portal 2. Videos were recorded over two sessions 1 month apart. In total, it consists of 54

video sequences and 64,204 labeled face images. Each sequence was named according to the recording

conditions, where P, S, and C stand for portal, sequence and camera, respectively. E and L indicate subjects

either entering or leaving the portal. Frames were captured with the 3 cameras at 30 fps with an SVGA

resolution (800X600 pixels), and faces incorporate variations of illumination, expression, pose, occlusion,

sharpness and misalignment due to automatic frontal detection.

The Chokepoint data-set is suitable for medium- to large-scale benchmarking of systems for mono-

modal recognition and tracking of faces over one or more cameras in watch list applications. It is provided

with the ground truth (person ID, eye location and ROIs for each frame), as well as a high-resolution mug

shot for each individual in the data-set. These stills images can be used as facial models of people in a watch

list.

Figure 5: Video frames from the Chokepoint data-set [47].

3 Performance Metrics

This section provides a summary of metrics for transaction-based, subject-based and time-based analysis,

as well as clustering and image-based quality measure and computational complexity measures proposed

for performance evaluation. These metrics are used to establish a multi-level benchmarking protocol for

testing face recognition systems in video surveillance applications, similar to the multi-order evaluation of
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iris systems performed for border control applications described in [18]. Section 5 presents evaluation

results of commercial products in the form of score cards, obtained used the defined levels of analysis.

3.1 Acquisition errors

Regardless of the accuracy of the classification systems, the performance of any biometric system is com-

promised by individual that cannot enroll or if they cannot present a satisfactory samples during operations.

The failure to enroll (FTE) rate is estimated as the proportion of individuals in the population that

cannot be enrolled under the pre-determined enrollment policy. Individuals for whom the system is unable

to generate repeatable templates include those unable to present the required face, those unable to produce

an image of sufficient quality at enrolment, and those who cannot reliably classify their template in attempts

to confirm a usable enrollment.

The failure to acquire (FTA) rate is estimated as the proportion of recorded transactions (both genuine

and impostor) for which the system is unable to capture a face of sufficient quality. This involves failures

at capture, feature extraction, or quality control phases. The FTA rate may depend on adjustable thresholds

for face quality. Low-quality samples trigger a FTA, and may prompt the user to provide more training

samples.

In performance evaluations, analysis is often based on a previously-collected database and there will

be no problem in obtaining a sample image. However, there may be enrollment or acquisition failures, for

example, when the ROI sample is of too low a quality for features to be extracted.

3.2 Transaction-based analysis

Transaction-based performance analysis allows to evaluate quality at the decision level. A crisp detector

outputs a binary decision Y ∈ {0,1} in response to each input sample (vector x extracted from an ROI),

while a soft detector assigns scores to the input samples (feature vector x) by the means of a scoring function

s : x → ℜ. As illustrated in Figure 6, the higher the score value s(x), the more likely the prediction of the

positive event (Y = 1). A soft detector outputs binary decisions by applying a threshold to scores. That is,

sample x leads to a positive decision (Y = 1) if s(x) ≥ τ, and negative decision (Y = 0) otherwise. These

two mutually exclusive cases are denoted by p (for positive or target) and n (for negative or non-target).

By presenting a sample (input ROI) to a matcher or classifier applied to detection, and comparing

it against facial models, the four possible outcomes may be tabulated in the confusion matrix shown in

Figure 7. When a positive test sample (p) is presented to the detector and predicted as positive ( p̂) then

it is counted as a true positive (T P); if it is however predicted as negative (n̂) then it is counted as a false

negative (FN). On the other hand, a negative test sample (n) that is predicted as negative (n̂) is a true

negative (T N), while it is a false positive (FP) if predicted as positive ( p̂). Given the responses of a detector

over a test set of test samples, the true positive rate (t pr) is therefore the proportion of positives correctly

detected (as positives) over the total number of positive samples in the test. The false positive rate ( f pr)

is the proportion of negatives incorrectly detected (as positives) over the total number of negative samples
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Crisp Detector

Soft Detectorx
s(x)

x

≥ τ
Score

p̂, (Y = 1)

n̂, (Y = 0)

p̂, (Y = 1)

n̂, (Y = 0)

Figure 6: Illustration of a crisp versus soft detector.

in the test. Similarly, the true negative rate (tnr = 1− f pr) and false negative rate ( f nr = 1− t pr) can be

defined over the negative cases.

Performance evaluation of 1:1 classification (detection) systems is achieved by estimating t pr, tnr,

f pr and f nr over a test set, and using these estimates to construct a curve or compute a scalar metric

that expresses different performance tradeoffs. Receiver Operating Characteristic (ROC) and Detection

Error Trade-off (DET) curves are well-accepted graphical representations to express the performance of

1:1 classification, although there are others to evaluate detection quality at the transaction-level, such as

ROC isometrics, Precision-Recall curves, Cost Curves, Lift Charts, etc. This section will focus on the more

relevant graphical representations and scalar metrics for FR in video surveillance

3.2.1 ROC analysis

Assume that each detector is implemented using a template matchers or using a 1- or 2-class classifiers, the

performance of a user-specific detector for a set of test samples may be characterize in the ROC space [14].

As shown in Figure 8(a), a ROC curve is a parametric two-dimensional curve in which the t pr is plotted

against the f pr over all threshold values. In practice, an empirical ROC curve is obtained by connecting

the observed (t pr, f pr) pairs of a soft detector at each threshold. By sorting the output scores (decision

thresholds) from the most likely to the least likely positive, a soft detector can efficiently produce an empir-

ical ROC curve. Positive and negative classes are often assumed to have equal prior probabilities, and the

optimal operational point is the closest point on the ROC graph to the upper-left point (1, 0) of the plane

(point with maximum difference between t pr and f pr).
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Figure 7: Confusion matrix and common performance measures. Rows accumulate the number of detector

predictions as either positive or negative, and columns indicate the true classification of samples.

Figure 8: Example of a ROC curve.

ROC curves are commonly used for evaluating the performance of detectors at different operating

points, without committing to a single decision threshold [27]. ROC analysis is robust to imprecise class

distributions and misclassification costs [39]. A crisp detector outputs a binary decision and produces a sin-

gle operational data point in the ROC space, while a soft detector assigns scores to the input samples, which

can be converted to a crisp detector by thresholding the scores. A ROC curve is obtained by varying the

threshold that discriminates between genuine and impostor classification scores. These scores are converted

into a compact set of operational points, which indirectly convey information about score distributions.

Each operation point on the ROC curve corresponds to a particular threshold applied to scores. When the

optimal operation points are obtained on a ROC, the thresholds of scores are also obtained. The operation

points are tunable, and can be optimized with respect to accuracy. Given two operation points, say a and

b, in the ROC space, a is defined as superior to b if f pra ≤ f prb and t pra ≥ t prb. If a ROC curve has
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t prx > f prx for all its operation points x then, it is a proper ROC curve. In practice, an ROC plot is a

step-like function which approaches a true curve as the number of samples approaches infinity. Therefore,

it is not necessarily convex and proper.

For scalar performance measurement, it is possible to measure the detection rate t pr for a fixed point of

operation (threshold of f pr) of particular interest for an application. However, summarizing performance

into a single number, by fixing the operational threshold, leads to some information loss in terms of errors

and costs trade-offs. Accuracy, or its complement error-rate, is defined as:

error =
FN +FP

P+N
= Pp f nr+Pn f pr, (1)

an estimates the overall probability of correctly predicting a test sample, but combines results for both

classes in proportion to the class priors, Pp and Pn.

The area under the ROC curve (AUC) or the partial AUC (over a limited range of f pr values) is largely

known as a robust scalar measure of detection accuracy [44] over the entire range of t pr and f pr. The

AUC is equivalent to the probability that the classifier will rank a randomly chosen positive sample higher

than a randomly chosen negative sample. The AUC assesses ranking in terms of class separation – the

fraction of positive–negative pairs that are ranked correctly. For instance, with an AUC = 1, all positives

are ranked higher than negatives indicating a perfect discrimination between classes. A random classifier

has an AUC = 0.5, and both classes are ranked at random. For an empirical ROC curve, the AUC may be

obtained through trapezoidal interpolation or by means of the Wilcoxon-Mann-Whitney statistic. When the

ROC curves cross, It is possible for a high-AUC classifier to perform worse in a specific region of ROC

space than a low-AUC classifier. In such case, the partial area under the ROC curve (pAUC) could be useful

for comparing the specific regions of interest.

3.2.2 Detection Error Tradeoff analysis

The Detection Error Trade-off (DET) space [31] resembles the ROC space, but it plots the f pr versus the

f nr, where f nr = 1− t pr over all possible thresholds. The ROC curve is designed to depict the ranking

performance, and treat positives differently than negatives. In contrast, DET curves [30] focus on the miss-

classification errors made by the detector, giving uniform treatment to both error types. DET curves were

introduced to evaluate detection techniques for speaker and language recognition with the advantage over

ROC curve of presenting performance results where a tradeoff between two error types ( f pr and f nr) is

involved. In the DET curve gives a more uniform treatment to both types of error, and use a scale for both

axes which spreads the plot and better distinguishes different well performing systems.

3.2.3 Precision-Recall analysis

Accuracy is well-established and commonly used to measure the frequency of correct binary decisions, but

is prone to biased performance evaluations when faced with highly imbalanced class distributions. Estimates

of class priors may not reflect real operational data, and may vary over time. Moreover, traditional ROC
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Figure 9: Error rates employed for a DET curve (a) FMR and FNMR for a given threshold τ are displayed

over the genuine and impostor score distributions; (b) The DET curve plots the False Match Rate, where

f pr = FMR, versus the False Non-Match Rate (FNMR), where t pr = 1−FNMR.

analysis cannot distinguish between two classifiers for specific class miss-classification costs. Accuracy

of a detector estimates the percentage of the actual cases predicted correctly for either p or n class. ROC

curves and the AUC allow for a performance evaluation that is independent of costs and priors by integrating

performance over a range of decision thresholds.

FR in video surveillance translates imbalanced settings, where the prior probability of the positive target

class (πp) is significantly less than that of the negative class (πn). It is important to measure performance as

the proportion of the correctly predicted positive ROIs out of the total number of ROIs predicted to belong

to a given individual. Otherwise, when processing highly imbalanced data, and the minority (positive)

samples are of interest, a detector may outperform others by predicting a very large number of samples

as minority, resulting in an increased t pr at the expense of an increased f pr. Accuracy is inadequate as

a performance measure since it becomes biased towards the majority (negative) class [45]. That is, as the

skew3 increases, accuracy tends towards majority class performance, effectively ignoring the recognition

3Skew, L, is defined at the ratio of the prior probability of the positive class to that of the negative class, L = Pp/Pn
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Figure 10: Illustration of (a) ROC curve and (b) Precision-Recall curves for systems with balanced (A) and

imbalanced (B) class distributions.

capability with respect to the minority class [26].

In this situation, using an estimate of precision (in conjunction with recall, same as t pr) is more ap-

propriate, as it remains sensitive to the performance on each class. In these applications recall only makes

sense when combined with precision, as the prior class probabilities are unknown or highly variable. In

these situations, end-users relate to precision-recall curves as they indicate how many true positives are

likely to be found in a typical search. It is possible to measure what the database image retrieval community

calls precision rate:

pr =
T P

T P+FP
, (2)

the proportion of positive predictions that are actually correct. Precision effectively estimates an overall

posterior probability and is therefore a meaningful performance measure when detecting rare events. The

pr is relevant for problems with highly imbalanced data because both the T P and pr are zero if the detector

predicts all samples as belonging to the majority class. Therefore, the precision, pr = T P
T P+FP , and recall rate,

t pr = T P
T P+FN , measure the precision and accuracy for the positive instances, respectively, while tnr = T N

T N+FP
measures the accuracy for the negative instances. Figure 10 compares ROC and Precision-Recall curves for

2 systems, A and B, that have different class distributions.

It is possible to combine t pr and pr into scalar performance measures such as the geometric mean and

the F-measure. The geometric mean of t pr and pr,
√

t pr · pr ∈ [0,1], combines the two conflicting measures

into the square root of their product, taking the value 1 when both components are equal to 1, and the value

0 when either components are equal to 0. In general, the t pr increases with the number of minority cases

in the dataset, while the pr decreases. Thus, an increase of the geometric mean indicates that the achieved

increase in t pr is beneficial since it is not accompanied by a large decrease of pr.

The general Fβ-measure (for non-negative real values of β) is another scalar performance measure where
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the t pr and pr rates may be combined:

Fβ = (b2 +1)
t pr · pr

β2 · pr+ t pr
(3)

where the b ∈ [0, in f inity] is used to control the influence of the t pr and pr separately. When β = 0 then Fβ
reduces to the pr, and conversely when b → in f inity then Fb approaches t pr. The well-known F1-measure

assumes that t pr and pr are evenly weighed (b = 1):

F1 = 2
t pr · pr
pr+ t pr

(4)

The Precision-Recall Operating Characteristic (PROC) [26] space allows detector performance to be

represented graphically for the data skew in mind. Evaluation considers the entire operating surface, and

integrated performance measures are then derived in a similar way to conventional ROC analysis. Unlike

ROC analysis, it relies on an inter-class measure, the precision between the positive and negative decisions.

Landgrebe et al. [26] showed that since precision depends on the degree of skew, an additional dimension,

λ, must be introduced for PROC analysis, resulting in a 3-dimensional ROC surface. ROC Isometrics

[FLA03] follow a similar approach, where the relationships between a number of performance evaluation

criteria were derived with respect to the ROC curve. With PROC analysis, the operating characteristic

constitutes a surface of operating points, with each prior resulting in a slice of this surface.

The precision can be defined as:

pr =
T P

T P+ lambdaFP
, (5)

Given an ROC curve, Equ. 5 allows for performance to be obtained analytically. In the example shown

in Figure 11, the precision characteristics are shown to vary significantly for three different prior: lambda
= 0.5, 0.1, and 0.01. Similarly, the precision-recall characteristic can be integrated across both decision

thresholds τ and priors lambda, thus obtaining a scalar performance metric AUPREC using the trapezoidal

approximation.

Davis and Goadrich [9] describe a methodology to find the PROC achievable curve (analogous to the

ROC convex hull) and how to interpolate points to calculate the area under the PROC curve (PROC-AUC).

They demonstrated that there is an equivalence between actual operating points in the ROC and PROC

spaces. Operating points that belong to the ROC convex hull also belong to the PROC achievable curve.

The operating point A in the PROC space is calculated under the true positive (T PA) and false positives (FPA)

values. Given two operating points A and B apart in the PROC space, the intermediate points between them

are calculated by interpolating their T PA and T PB, and FPA and FPB values. The goal is to find how many

negatives examples are necessary to equal one positive, which is the local skew between A and B:

lskewA,B =
FPB −FPA

T PB −T PB
(6)

New T PA + x values are created for all integer x values 1 ≤ x ≤ T PB − T PA and corresponding FP are

calculated by linearly increasing the false positives to the local skew for each new point x. Resulting
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Figure 11: Illustration of (a) ROC curve and (b) corresponding precision-recall characteristics [26].

interpolated PROC points are given by:

(
T PA + x

T PA +FNA
,

T PA + x
T PA + x+FPA + lskewA,B × x

) (7)

Once the interpolation between all points in the PROC achievable curve is done, the PROC-AUC may

be calculated using trapezoidal integration. Classifier performance comparison in the PROC space is done

by comparing the PROC-AUC of all classifiers. Whereas there is a relation between the ROC convex

hull and the PROC achievable curve, dominance in the ROC space does not translate as dominance in the

PROC space, which is also demonstrated in [9]. This property is related to the local skew used to calculate

intermediate operating points in Equ. 7, an information committed by traditional ROC analysis.

As for ROC graphs for binary predictions, where each classifier in the ROC space has its correspondent

line in the cost space, we can derive a cost curve correspondent to a ROC curve. The process is very similar

to the generation of a ROC curve: by varying the percentage of cases classified as positive from 0 to 100

percent. This percentage is used as a parameter so that each possible parameter value produces a line in the

cost space. A set of points in the ROC space is a set of cost lines, one for each ROC point.

3.2.4 Uncertainty of estimates

Given the sources of noise and uncertainty introduced during facial matching, statistical techniques are

needed to estimate t pr, tnr, f pr and f nr, over a test set. Many studies report performance in the form

of classification score distributions. Parametric and nonparametric (bootstrap) methods may be used to

measure the confidence intervals for these distributions, to indicate the significance of the estimates provided

for detection quality [6].
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Performance estimates will be affected by random noise (natural variations) and by bias in evaluation

protocols. Uncertainty arising from random noise declines as the size of the test set increases, and the

effects of some protocol bias may also be mitigated. For instance the error rates for an under-represented

individual may be validated for consistency with the overall error rates. Experimental trial should also

be repeated in different environmental conditions for sensitivity analysis. It is possible to estimate the

variance of performance measure and thus confidence intervals under the following assumptions about the

distribution of decisions:

• enrolled individuals are representative of the target population;

• attempts by different subjects are independent from one another, and from the threshold;

• error rates vary across the population, i.e., we explicitly allow for goats, wolves, and lambs [11].

3.3 Subject-based analysis

The performance of FR systems is typically evaluated using a transaction-based analysis in the ROC or

DET space, and scalar measures over all individuals allow for a first order analysis. However, performance

of FR systems may vary drastically from one person to the next[42]. Each individual enrolled to the system

is categorized according to the Doddington’s zoo subject based analysis [11, 41]. In subject-based analysis,

the error rates are assessed with different types of individuals in mind, rather than with the overall number

of transactions. An analysis of these individuals and their common properties can expose fundamental

weaknesses in a biometric system, and allows us to develop more robust systems. Quantitative methods for

dealing with the existence of user variation is an active area of research. User-specific schemes allow us to

set user-specific or template-specific thresholds, score normalization, and user-specific fusion [37, 41].

Pattern Specific Error Inhomogeneities (PSEI) analysis [11] has shown that the error rates vary across

the entire population (e.g., individuals in a watch list). It has lead to the characterization of target populations

(positive) as being composed of sheep and goats. According to this characterization, the sheep, for whom

FR systems tend to perform well, dominate the population, whereas the goats, though in a minority, tend

to determine the performance of the system through their disproportionate contribution to FNRs. Goats

are characterized by consistently low classification scores against themselves. In non-target populations

(negative), some individuals – called wolves – are exceptionally successful at impersonating many different

targets, while some targets, called lambs, are easy to impersonate and thus seem unusually susceptible to

many different impostors. The definitions of lambs and wolves are symmetric. Lambs, on average, tend

to produce high match scores when being matched against by another user. Similarly, wolves receive high

scores when matching against others. For both of these user groups, the match score distributions are

significantly different than those of the general population.

Doddington’s Zoo analysis [11, 41] categorizes individuals in one of the following four categories: (1)

sheeps, easy to identify individuals (positive or negative class), (2) goats, positive class individuals that

are difficult to identify, (3) wolves, negative class individuals that impersonate one or more positive class

individuals or (4) lambs, positive class individuals that are easy to impersonate.
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Category Positive class Negative class
Sheep f rr < 50% and not a lamb f pr ≤ 30%

Lamb at least 3% of non-target individuals are wolves –

Goat f rr ≥ 50% and not a lamb –

Wolf – f pr > 30%

Table 5: Doddington’s zoo analysis adapted for a sequence of binary decisions over a video track to decide

the individual identity. False rejection rate ( f rr) and false positive rate ( f pr) thresholds are applied to each

individual detector module.

The traditional way to define the system users likeliness in a Doddington zoo’s category is through

the classifier output scores for all tested samples [41]. For techniques that provide crisp decisions and the

confusion matrix of individual accumulated decisions is used to categorize individuals according to Table

5. This approach is based on the technique used in [29], and considers the f pr and the false rejection rate

( f rr, the percentage of positive individual rejections) for one individual detector module. The f rr and f pr
decision thresholds were selected to provide a more conservative categorization.

ROC and DET analysis can be improved significantly if samples from the more difficult cases (e.g., the

goats) can be detected automatically and processed differently. The distribution of classification scores in a

biometric system will naturally vary across a range of results. Of interest to biometric system for evaluation

are individuals that consistently yield poor scores, outside expected random variation. The score distribu-

tions for these individuals (goats, lambs, and wolves) are fundamentally different from the distributions

of the general population (sheep). The definitions presented above state that match score distributions are

user dependent. Once this fact is established, it follows that some users are performing differently than

others, and the presence of the animals is established without explicitly labeling users. Doddington et al.
use a variety of tests at the score level to demonstrate that the animals defined above exist to a statistically

significant degree in their biometric system [11].

Results in the literature suggests that contribution made by different individuals to the overall system

error is uneven on the [29, 38, 46]. Wittman et al. [46] found evidence for the existence of goats, wolves,

and lambs in FRGC 2.0 FR data. Their test for goats involves analyzing how individual score when matched

against themselves. To compute an individual’s goat statistic, the worst matching score recorded for each of

the individual’s input ROIs is compared against all other images from the same individual, and the averaged

together. In order to determine a wolf score, a statistic is used to represents how well a subject impersonates

other individuals enrolled to the system. To compute the wolf score for an individual, they find for each

input ROI the best score against a facial model from another subject. Then, these scores are averaged

together, resulting in a single wolf score for each of the individuals. The computation of the lamb statistic
involves two values for each input ROI - the best score of an impostor against the individual’s ROI, and

the best matching score of the individual’s ROI image against an ROI from the same individual. Authors

typically use hypothesis testing for the existence goats, lambs, and wolves to demonstrate user dependent

match score distributions, to statistically ensure that variations in the data are no random chance. One-way
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ANOVA is a method for testing the null hypothesis for differences between independent distributions. The

Kruskal-Wallis test is similar to ANOVA except that scores are replaced by ranks, thereby relaxing the

assumption of normality.

A recent study by Yager and Dunstone [48] has noted that the four (4) traditional biometric animals

are based on only genuine match scores (low for goats) or impostor match scores (high for lambs and

wolves). A new class of animals has been defined in terms of a relationship between genuine and impostor

match scores. The animals are called worms, chameleons, phantoms, and doves, and have combinations of

low/high and genuine/impostor match scores. The new animals differ in that they are defined in terms of

a relationship between genuine and impostor match scores. Unlike goats, lambs, and wolves, the specific

users who belong to the new animals groups will be identified. For example, chameleons are users who

tend to have high genuine match scores and high impostor match scores. The existence test is based on

whether or not there are more or less members of an animal group than expected. The authors propose a

new group-centric framework for the evaluation of biometric systems based on the biometric menagerie, as

opposed to collective statistics.

3.4 Clustering quality of triaging

Clustering or categorization is important in some applications for (1) regrouping per person for more reliable

decision in, e.g., in spatio-temporal FR, (2) estimating the number of individuals in a scene, and (3) for

reducing computational complexity, by limiting the number of input ROIs to be classified by the FR systems.

A partition of n patterns into K groups defines a clustering. This can be represented as a set A =
{a1,a2, ...,an}, where ah ∈ {1,2, ...,K} is the category label assigned to pattern h. The degree of match

between two clusterings, say A and B, may be compared by constructing a contingency table. In this figure,

c11 (c22) is the number of pattern pairs that are in a same (different) cluster in both partitions. The value c21

is the number of pattern pairs that are placed in a same cluster by A, but in different clusters by B. The value

c12 reflects the converse situation. The sum of all elements m = c11 + c12 + c21 + c22 = n(n− 1)/2 is the

total number of combinations of two out of n patterns. The four variables within the contingency table have

been used to derive measures of similarity between two clusterings A and B [12] [1]. These measures are

known in pattern recognition literature as external criterion indices, and are used for evaluating the capacity

to recover true cluster structure. Based on a previous comparison of these similarity measures, the Rand

Adjusted, defined by:

SRA(A,B) =
2(c11c22 − c12c21)

2c11c22 +(c11 + c22)(c12 + c21)+ c2
12 + c2

21

(8)

and Jaccard statistic [12], defined by:

SJ(A,B) =
c11

c11 + c12 + c21
(9)

have been selected to assess clustering quality for this study. It is worth noting that variable c22 does not

appear in SJ(A,B).
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Since correct classification results (ground truth) are known for an evaluation data-sets used, their pat-

terns are all accompanied by category labels. These labels are withheld from the system under test, but

they provide a reference clustering, R, with which a clustering produced by computer simulation, A, may be

compared. Then, variables c11 and c22 represent the number of pattern pairs which are properly clustered

together and apart, respectively, while c12 and c21 indicate the improperly clustered pairs. In this case,

Eqs. 8 and 9 yield scores that describe the quality of the clustering produced by a systems. Both the Rand

Adjusted and Jaccard measures yield a score ranging from 0 to 1, where 0 denotes maximum dissimilarity,

and 1 denotes equivalence. The closer a clustering A is to R, the closer the scores are to 1. Notice the

dependence of these scores on the number of clusters in A and R.

3.5 Facial image (ROI) quality

Computation of a quantitative objective image quality measure is an important tool for biometric applica-

tions, for quality control to accept, reject, or re-acquire biometric samples, to select a biometric modality,

algorithm, and/or system parameters, and as confidence estimators of reliability of decision. For example,

selecting high quality images may improve recognition performance, and reduce the overall computation

load during feature extraction and matching.

Several face image standards , e.g., ISO/IEC 19794-5 (Biometric Data Interchange Format Face Image

Data) and ICAO 9303, have been proposed to establish guidelines to capture facial images, and to assess

their quality. In these standards, quality can be measured in term of: (i) image specific qualities such

as sharpness, contrast, compression artifacts, and (ii) face specific qualities such as face geometry, pose,

illumination, etc. Other universal measures in literature involve comparing each input ROI against the

facial models of a person (gallery templates or statistical representation) to measure image variations. The

rest of this subsection summarizes two such image-based measures that allow to compute image quality –

the distance and distortion between a pair of images.

Image subtraction is a process where pixels values in an image are subtracted from those of another

image. This is commonly used to detect changes between two images, for instance to know if an object in

an image has moved.

Assuming that all facial representations are coherent gray-level images that are scaled to the same 2D

size, the basic point-wise distance, PWD(R,M), measures the distance between an input ROI R and a facial

model M (e.g., a gallery template or a mean value of densities in a generative statistical representation).

Point-wise distance is defined as the average difference between the gray-level values of all pairs of corre-

sponding pixels (two points in the same location):

PWD(R,M) =
1

n ∑
x∈mask

| R(x)−M(x) |= 1

LW

L

∑
l=1

W

∑
w=1

| R(l,w)−M(l,w) | (10)

where n is the total number of pixels in the facial region of length L and width W (n = L×W ), and R(x) or

R(l,w) is the gray-level value of the pixel in location x or (l,w) in image R, respectively.

It is assumed in Equ. 10 that facial images were normalized with respect to position and size – gray-level

values were therefore compared for corresponding locations of the face. The regional distance compensates
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for a displacement of up to three pixels of the images in the plane. The regional distance, RD(R,M), is

defined as the average of the minimum difference between the gray-level value of a pixel and the gray-level

value of each pixel in the neighborhood of the corresponding pixel:

RD(R,M) =
1

n ∑
x∈mask

min
i∈neighb(x)

| R(x)−M(i) |= 1

LW

L

∑
l=1

W

∑
w=1

min
(i, j)∈neighb(l,w)

| R(l,w)−M(i, j) | (11)

where neighb(x) or neighb(l,w) is a square neighborhood of 5×5 pixels around x or (l,w), respectively.

To compensates for uniform affine transformation of the gray-level values of one of the images, the

affine gray-level distance is often used. It is defined as the minimum Euclidian distance between the gray-

level values of one of the image and any affine transformation of the gray-level values of the other image.

The universal image quality index (Q) [WAN02] allows to compare different types of image distortions

by modeling any image distortion as a combination of the following three factors – loss of correlation,

luminance distortion and contrast distortion.

Let r = (r1,r2, ...,rN) and m = (m1,m2, ...,mN) be vectorized version of a ROI and a facial model M,

respectively. The universal quality index in [WAN02] is defined as

Q(r,m) =
4σrmr m

(σ2
r +σ2

m)(r
2 +m2)

(12)

Statistical features for Equ.12 are measured locally to accommodate space-variant nature of image quality,

and then combined to an overall quality measure for the entire image. A local quality index Q j is calculated

with Q(r,m) by sliding a window of B×B pixels from the top-left corner to the bottom-right corner of the

image. For a total of W steps, the overall quality index is given by:

Qtot(r,m) =
1

W

W

∑
j=1

Q j (13)

The universal quality index Q(r,m) of Equ.12 can be written as a product of the three factors – loss of

correlation, luminance distortion and contrast distortion:

Q(r,m) =
σrm

σr σm
· 2r m

r2 +m2
· 2σr σm

σ2
r +σ2

m
(14)

3.6 Analysis of computational complexity

Measuring the average enrollment and matching time in seconds does not allow for unbiased evaluation

of complexity because of the dependency on specific implementations and platforms. Approximating the

time and memory complexity of various components of a FR system important in the context of real-time

surveillance systems, where complexity scales according to system parameters [28].

A first order approximation of the computational complexity for the algorithms may be obtained by as-

sessing their execution time FR systems on an idealized computer. Thus, the time complexity, T , combined
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with a fixed computing area C, allows for comparison of area-time complexities, CT . To that effect, assume

that FR techniques are implemented as software programs running on a generic, single processor, random

access machine (RAM) [8], where instructions are executed one after the other. This generic machine is

capable of no more than one operation per cycle. Using the RAM model avoids the challenging task of

accurately determining the performance of specific VLIW or superscalar machines, which is beyond the

scope of this analysis.

Time complexity can be estimated from the maximum execution time required by a FR system to process

a single ROI. The result is a total worst-case running time formula, T , which summarizes the behavior of a

FR system as a function of key parameters: the ROI size, the dimensionality of the input patterns a used for

classification, M, and the number of reference samples or templates per individual, N. Specifically, T can

be defined as the sum of the worst-case running times Tp for each operation p that is required to process a

ROI [8]:

T = ∑
p

Tp = ∑
p

op ·np (15)

where op is the constant amount of time needed to execute an operation p, and np is the number of times

this operation is executed.

For simplicity, we assume that p can take one out of two values, 1 or 2, where o1 is the time required

to execute an elementary operation such as: x+ y, x− y, max(x,y), min(x,y), 1− x, x < y, etc., and o2 is

the time needed to compute a division x/y, a multiplication x · y, a square root
√

x, or an exponent ex. In

addition, x and y are assumed to be real numbers represented by an integer with a b bit resolution, where b
corresponds to the number of bits needed to represent each system’s elementary values (i.e., template and

input pattern components) with a sufficient precision. Operations of type p= 2 are more complex than those

of type p = 1, and their complexity, which is a function of b, depends on their specific implementation.

Nevertheless, to simplify the analysis, it is assumed that o2 � F(b) · o1 = F · o1, where F remains as an

explicit parameter in the complexity formulas. Finally, the growth rate is obtained by making the parameters

of the worst-case complexity tend to infinity.

In a similar way, memory complexity M may be estimated as the number of 8 bit registers needed during

biometric recognition process to store variables. Only the worst-case memory space required for storage

during matching phase is considered.

3.7 Time-Based Analysis

Systems for FRiVS typically use different algorithms and techniques to implement their functions such as

face detection, matching and tracking. In order to evaluate and compare systems for FRiVS it is important

to observe their ability to detect a person of interest globally over time, using all its functions to process a

video stream. Besides, decisions taken by an operator take place over a time period that is longer than a

frame rate.

In this study, we propose to count the number of positive matching predictions over a moving window

of time for input ROIs that correspond to a high quality facial track. Assume for instance a system that

produces decisions at a maximum rate of 30 fps once, Each detected ROI is presented to the face matcher,
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Figure 12: Accumulation of the positive predictions over time for a FRiVS system with 3 individuals in the

CMU-FIA data-set.

that produces predictions, true or false, for each person enrolled to the system. Given a high quality face

track, the number of positive predictions for a person of interest will grows rapidly. In this was, the operator

can more reliably assume the presence of a person of interest. Figure 12 show an example of a time-based

analysis on the CMU-FIA data-set. The 2nd person is enrolled to the system as a person of interest, while

persons 1 and 3 are unknown to the system. In this example, the operator receives a notification once the

number of positive predictions surpasses a rate of 8 positives per second.

4 Benchmarking Protocols

Automated systems designed for detecting individuals of interest involve open-set FR, where the vast major-

ity of individuals interacting with the system are not of interest (not enrolled). Table 6 presents a taxonomy

of FRiVS evaluation scenarios for video surveillance applications described in the introduction. For this

project, CMU-FIA, Chokepoint and ND-Q0-Flip data-sets are found relevant for evaluation protocols in-

volving mono-modal recognition.

There are a few variants of the screening problem that are evaluated with the same protocol. Depending

on the enrollment process, these applications either perform still-to-video (e.g., screening against the watch

Table 6: Taxonomy of FRiVS evaluation scenarios.
Surveillance setup Applications data-set
Type 0 access control, eGate N/A

cooperative biometric setup
Type 1: primary inspection lane CMU-FIA

semi-constr. setup, one-at-time
Type 2: checkpoint entry Chokepoint (1 person)

unconstr. free-flow, one-at-time (portal)

Type 3: indoor airport setting Chokepoint, ND-Q0-Flip

unconstr. free-flow, many-at-time (n persons)

Type 4: outdoor setting N/A

no lighting or structural constr.
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Table 7: Chokepoint video sequences selected for performance evaluation. The sequences are captured with

one of three cameras when subject are leaving portal number 2.
Data sequences no. of subjects type of scenario

1) P2L S1 C1, P2L S1 C2, P2L S1 C3 1 type 2, with different cameras

2) P2L S2 C1, P2L S3 C1, P2L S4 C1 1 type 2, with different recorded sequence

3) P2L S4 C1, P2L S4 C2, P2L S5 C3 24, crowded type 3, with different cameras

list gallery of still images) or video-to-video recognition (e.g., tracking and re-detecting individuals in mul-

tiple video-streams). During the enrollment process, still-to-video recognition involves pre-processing and

storing an input pattern extracted from the ROI corresponding to each still image of the watch list. There

may be one or more still images per individual, and corresponding patterns form the facial model of individ-

uals of interest in the cohort. Video-to-video recognition involves capturing one or more video sequences

for enrolling a person of interest. High quality ROIs are extracted to form the facial model of individuals of

interest.

As mentioned, the objective of FR in video surveillance is to accurately and efficiently detect the pres-

ence of individuals of interest in semi-constrained and unconstrained environments, leading to either con-

tinued surveillance or interdiction. The rest of this report presents two generic benchmarking protocols for

evaluation state-of-the-art commercial technologies and academic systems.

4.1 Generic protocol: still-to-video recognition

Still-to-video face recognition for Type 2 and 3 application scenarios can be evaluated using the Chokepoint

video surveillance data-set [47] described in Section 2. As mentioned earlier, this data-set is suitable for

medium- to large-scale benchmarking of systems for mono-modal recognition and tracking of faces over

one or more cameras in watch list applications. It is provided with the ground truth (person ID, eye location

and ROIs for each frame), as well as a high resolution mug shot for each individual in the data-set. These

still images can be used as facial models of people in a watch list. Table 7 shows the Chokepoint video

sequences that were used in our evaluations. Figure 13 shows examples of frame captures from one of those

sequences.

Algorithm 1 shown in Figure 4.1 and the dataflow diagram shown in Fig. 15 present an overview of our

protocol for still-to-video screening over a single video sequence. In our still-to-video screening protocol,

the mugshot images are employed to define the facial model of each person in the Chokepoint video data,

and these models are stored in the gallery of templates. In our experiments, each person in a given video

takes a turn at being the individual of interest in a watchlist. Given the matching sores and image quality of

each person for each ROI in a video. if is possible to assess the performance of a system on many levels.

The reader is referred to the next subsection for details on performance metrics. This process should be

replicated over several video sequences to assess the confidence of performance evaluations.
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Figure 13: Examples of frames 1003, 1028 and 1059 captured for sequence P2L S5 C3.

Figure 14: Overview of Protocol for Still-to-Video Screening Applications.
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Figure 15: Dataflow diagram representing benchmarking protocol for still-to-video recognition.

4.2 Generic protocol: video-to-video recognition

In many applications such as speaker recognition, the use of a “Universal Background Model” is widely

used for better discrimination between target voice from all other sounds [7]. This UBM is built by selecting

samples of the background sound that characterizes a recording environment, and is used to discriminate

between the individual (speaker) of interest and other sounds. In the same manner, the cohort model is a set

of selected samples from non-target samples from already known voices to discriminate known individuals

from other known speakers. These cohort and UBM models constitute an important source of discriminative

information in the training stage of the classifiers.

It is desirable to have several individuals in the data-set to form watch lists. At least 10 individuals are

needed as candidates to form the Cohort Model (CM), each one comprised of several samples for design and

testing. This allows to collect information about the system’s ability to detect individuals of interest, and

guarantees enough samples per fold when performing cross-validation. Among the remaining individuals,
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several different ones are needed to build the Universal Model (UM) for system design, which guarantees

the presence of unknown individuals in testing. In practice, data from many ’unknown’ individuals may be

available from a UM, for design and testing.

For example, the CMU-FIA data-set is composed by 20-second videos of face data from 221 partici-

pants, mimicking a passport checking scenario, in both indoor and outdoor scenarios. Data has been cap-

tured over three sessions, with at least a month between each one. On the first session, 221 participants were

present, 180 of whom returned for the second session, and 153 for the third. In our experiments, 45 classes

have been isolated as candidates for the watch list, as they fulfil the following conditions: (1) the subject

is present in every session, (2) at least 150 samples (5 secs of footage) are available in training, and (3), at

least 300 samples (10 secs of footage) are available in testing. Among the remaining 176 classes, 88 have

been randomly chosen to build the UM for design, which guarantees the presence of unknown individuals

(the other 88 individuals) during testing phases.

Independent simulation trials are performed for each individual of interest (assigned to the watch list).

Prior each trial, the data-set is partitioned into two parts – data subsets comprised of ROIs extracted from

design and test sequences. Different steps of the design phase are always performed using dbLearn, where

ROIs are captured during the first session, and under the most ideal conditions possible (frontal cameras,

high quality, constant indoor lighting, etc.). The order of ROIs in this design subset is not important. Then,

the design subset is further divided into folds for k-fold cross validation, allowing to establish confidence

intervals and statistical significance of results. During each trial, one or more folds are systematically

or randomly selected for validation (selection of different systems parameters, most notably the decision

threshold), and the remaining folds used, as needed, as reference design samples. Each fold is organized to

contain a even number of samples from the individual of interest (positives, under test) and other individuals

(negatives, random selection of samples from the UM and CM).

Given the limited data4 (i.e., positive samples), simulation scenarios follow a 2 x 5-fold cross-validation

process for independent 10 replication. At replication 5, the 5 folds are regenerated after a randomization

of the sample order for each class. The first step of a simulation scenario is the generation of the dbLearn
dataset, which is used for system design. dbLearn remains unchanged for the two sets of five replications.

Dataset dbLearn is divided into the following subsets, based on the 2x5 cross-validation methodology:

• dbTrain: the training dataset used to represent facial models for different individuals.

• dbVal: validation dataset used to set system parameters, most notably the decision threshold.

Again, dbLearn is composed of positive reference samples of an individual of interest, as well as the same

amount of negative samples randomly selected for other individuals in the scene (UM), and from the other

individuals of interest in the watch list (CM).

After a design phase, dbTest is presented to the system under evaluation, and performance metrics are

computed. Unlike dbLearn, the testing data-set dbTest remains constant over all tests, and preserves the

chronological order of ROIs. The testing phase is performed using dbTest, where ROIs are captured under

4This procedure assumes at least 5 positive samples for dbLearn
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variable conditions with, e.g., different lighting and pose, ageing, occlusion, camera angle, etc. As recom-

mended in Section 3, systems are evaluated by estimating the, precision pr, recall t pr (seen in precision-

recall curves), F-measure, and complexity over dbTest. When the 10 replications are completed, the average

value and confidence interval of these estimates are computed. For additional insight on systems under test,

the performance of each individual is further analyzed to characterize the type of individual following the

Doddington zoo taxonomy.

4.3 Recommendations

For evaluation of mono-modal recognition and tracking of faces over one or more cameras, the authors of

this report recommend using the CMU-FIA (for Type 1 setup), Chokepoint (for Types 2 and 3 setups) and

ND-Q0-Flip for Types 3 setup) datasets. For application involving multi-modal recognition and tracking,

MOBIO (face and voice modalities) and NIST-MBGC (face and iris modalities) data-sets are the most

suitable for benchmarking studies. These publicly-available data-sets are suitable for medium- to large-

scale benchmarking, and appear commonly in the open literature.

Evaluation of FR systems in video surveillance should be viewed in terms of independent user-specific

detection problems. Although, ROC and DET analysis are commonly used to measure the quality in

transaction-based analysis, the precision-recall space provides a more informative picture of system per-

formance, when dealing with highly skewed data. Indeed, given the open set recognition problem, we are

primarily interested in analyzing performance of the positive class (individual of interest), with imbalanced

class distributions, i.e., the number of negative cases heavily outnumbers the number of positive cases. This

particular characteristic compresses the area of interest in a ROC graph to a small corner in the lower left

side of the ROC space. Other alternatives like Cost Curves or Brier Curves also allow one to observe the

impact on performance of systems when operational data are very skewed or when the costs of errors differ.

Given a classifier and its results on a set of test samples, we must assess confidence on estimates of

accuracy, precision, recall, or F-measure. For instance, Goutte and Gaussier [21] present a probabilistic

interpretation of precision, recall, and F-score to compare performance scores produced by two information

retrieval systems. Moreover, several studies have shown that performance varies across a population of

individuals. Analyzing the type of individuals and their common properties, using subject-based analysis

(Doddington’s zoo), can reveal detailed insight of systems under test.

Given the uncontrolled nature of video-surveillance applications, the image and tracking quality are

important characteristics of input ROIs, and will have a considerable impact on system performance. As-

sessing clustering quality (for triaging), using the Rand Adjusted, measure the quality of ROI groupings, and

indicates the capacity to reduce computational complexity by grouping input ROIs according to individuals

in a scene. To avoid bias, the complexity of different technologies and systems should be estimated ana-

lytically whenever possible, and compared in terms of both processing time and memory requirements. Of

course, performance results dependent on the application set-up, environment and population. To interpret

results correctly, some additional information should be considered, such as:

• type of evaluation: technology, scenario or operational;
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• scale of evaluation: number of subjects, number of transactions per subject, etc.

• details on demographics and operational environment;

• time between enrollments and operational transactions;

• quality and decision thresholds used during capture of samples;

• factors potentially affecting performance were controlled.

5 Experimental Results

In the following, the developed evaluation methodology is applied to testing three commercial products.

The products are: Cognitec (FaceVACS-SDK 8.5 Release Date: 2011-12-19), PittPatt (Face Detection,

Tracking and Recognition FTR SDK 5.2.2, Release Date: 2010) and Neurotechnology (Verilook SDK 5.4,

Release Date: 2011).

A multi-level performance analysis presented in Section 4 is applied to evaluate and compare the system

performance to one another. First, the level 0 or score-based analysis illustrates the probability distribution

of the genuine scores against that of the impostor. Then, level 1 analysis provides a transaction-based

performance evaluation of decisions using the ROC, DET and PROC curves. The subject-based evaluation

(level 2 analysis) focuses on the categorization of individuals using according to Doddington’s Zoo. Finally,

a time analysis is performed at level 3 to evaluate systems performance over video streams, by accumulating

the positive predictions (and hence an increased confidence in decision making) over a moving time window.

These products are tested using the Chokepoint data-set described in Section 2. For the testing, ten

individuals are randomly selected from the Chokepoint dataset as target individuals and included in the

watch list. The target individuals include six males and four females, and have the following identification

numbers (id) in the Chokepoint dataset: 1,4,5,7,9,10,11,12,16 and 29. For each target individual, the

remaining 28 individuals are considered as impostors. The performance is evaluated based on a fixed

operating point (face matching threshold) of 5% false positive rate, using three different distances between

the eyes: 10,20 and 30 pixels. The video streams from Chokepoint dataset portal 2, session 1, camera 1.1

(P2L S1 C1.1) are considered as a validation set and used to compute matching thresholds for each target

individual and each distance between the eyes. These thresholds are then applied to Chokepoint dataset

portal 2, session 4, camera 1.1 (P2L S4 C1.1), to evaluate systems performance for each target individual.

As emphasized earlier, target-specific thresholds allow for improved system performance since some in-

dividuals are naturally more difficult to recognize than others and the risk associated with recognition errors

varies from one individual to another. However, setting and optimizing a specific threshold for each target

individual makes systems comparison more difficult to illustrate and harder to summarize. In particular,

averaging the performances among all target individuals (each with a different matching threshold) may not

provide meaningful results. Therefore, the detailed results for each system based on each target individual

are presented using the concept of a Report Card, one Report Card per each target individual.
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For each tested FR system, two-page Report Cards illustrating four levels of performance analysis

are generated for each target individual in the watch list, showing the performance of the system at three

minimum allowed facial resolutions: 10 pixels, 20 pixels and 30 pixels between the eyes.

For the purpose of illustrating the evaluation methodology, this report presents the Report Cards pro-

duced for target individual 1 only (shown in the next six pages), followed by a comparative analysis of

the performance of all three systems for that particular individual based on the obtained results. A sepa-

rate report entitled “Results from evaluation of three commercial off-the-shelf face recognition systems on

Chokepoint dataset” provides the exhaustive results of this evaluation, showing the two-page reports cards

for all tested target individuals for each of three tested systems [23].

By analyzing and comparing Reports Cards from three different FR products, important conclusions

can be made about tested products and suitability of FR technology for video-surveillance applications in

general. This is further discussed next.



Biometric System: Cognitec Biometric Modality: Face

Data Source: Chokepoint – Portal 2, leaving portal setup, session 4, camera 1.1 Individual Template: 1

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Level 0: Score Distribution − Individual 1, Eye distance: 10

score

in
st

an
ce

s

 

 

Genuine:  74 total
Impostor: 1632 total

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Level 0: Score Distribution − Individual 1, Eye distance: 20

score

in
st

an
ce

s
 

 

Genuine:  44 total
Impostor: 1162 total

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Level 0: Score Distribution − Individual 1, Eye distance: 30

score

in
st

an
ce

s

 

 

Genuine:  26 total
Impostor: 638 total

Fig. 1: Level 0 – Class scores distributions.

Level 1 Analysis

The figures bellow detail several performance curves, and the stars indicate the selected operation point for a target fpr = 5%
(for each ed distance between eyes). The table summarizes the number of genuine and impostor samples, as well as face detection

related metrics.
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Fig. 2: ROC curve.
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Fig. 3: PROC curve.
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Fig. 4: DET curve.

Measure Eyes distance (pixels)
10 20 30

Genuine faces (total) 74 44 26

Impostor faces (total) 1632 1162 638

Detection Level
Falsely detected faces 30.42% 11.65% 18.74%

Failure to acquire rate 2.25% 30.42% 60.96%

Matching Level
Low quality faces 6.57% 11.72% 19.20%

Operating points 0.1383 0.1315 0.1294

False positive rates 5.09% 4.30% 4.23%

True positive rates 62.16% 75.00% 69.23%

Tab. 1: Test set results for fpr = 5%.



Level 2 Analysis

Distance Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6 Ind. 7 Ind. 8 Ind. 9 Ind. 10 Ind. 11 Ind. 12 Ind. 13 Ind. 14 Ind. 15
10 px. 62.16% 0.00% 0.00% 1.61% 8.20% 1.18% 14.47% 0.00% 3.39% 3.03% 1.35% 3.03% 7.78% 6.33% 0.00%

20 px. 75.00% 0.00% 0.00% 2.63% 4.44% 1.69% 19.67% 0.00% 0.00% 4.00% 0.00% 0.00% 3.08% 5.66% 0.00%

30 px. 69.23% 0.00% 0.00% 0.00% 8.33% 0.00% 12.50% 0.00% 0.00% 3.57% 0.00% 0.00% 5.13% 6.67% 0.00%

(a)

Distance Ind. 16 Ind. 17 Ind. 18 Ind. 19 Ind. 20 Ind. 21 Ind. 22 Ind. 23 Ind. 24 Ind. 25 Ind. 26 Ind. 27 Ind. 28 Ind. 29 Ind. 30
10 px. 5.00% 3.08% 4.23% 2.78% 7.55% 0.00% 0.00% 14.75% 6.17% 3.90% 11.11% 1.37% 3.23% 3.45% 5.63%

20 px. 2.70% 0.00% 5.66% 2.00% 9.52% 0.00% 0.00% 12.50% 5.26% 1.79% 2.78% 2.04% 4.00% 4.65% 6.52%

30 px. 5.26% 0.00% 6.25% 3.70% 12.50% 0.00% 0.00% 14.29% 3.23% 3.12% 0.00% 3.85% 3.57% 7.69% 0.00%

(b)

Tab. 2: Dodington’s zoo based analysis for the detection module associated to individual 1. Columns details the individuals in the

data set, while lines detail their detection by the module for each value of distance between the eyes. Colors are as follows: green for

sheep like individuals (easy to predict), yellow for goat like individuals (difficult to predict), blue for lamb like individuals (can be

impersonated by someone else) and red for wolf like individuals (who can impersonate another user).

Level 3 Analysis

Each of the below figures details the performance of systems by accumulating positive predictions over a time-window on the

video stream for different distances between the eyes. The tracker is used to separate faces of different persons, and accumulate

their predictions. Matching thresholds are set to provide a 5% false positive rate, and positive individual decision takes place after

accumulating 20 detections in a 30 frames window (1 sec). Red stars indicate faces that have not been correctly matched to the target

individual, while blue stars indicate that the individual captured in the video has been successfully matched to the target individual.
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Fig. 5: Accumulated detections for 10 pixels between eyes.
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Fig. 6: Accumulated detections for 20 pixels between eyes.
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Fig. 7: Accumulated detections for 30 pixels between eyes.
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Fig. 8: Variations of quality measures.



Biometric System: PittPatt Biometric Modality: Face

Data Source: Chokepoint – Portal 2, leaving portal setup, session 4, camera 1.1 Individual Template: 1
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Fig. 1: Level 0 – Class scores distributions.

Level 1 Analysis

The figures bellow detail several performance curves, and the stars indicate the selected operation point for a target fpr = 5%
(for each ed distance between eyes). The table summarizes the number of genuine and impostor samples, as well as face detection

related metrics.
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Fig. 2: ROC curve.
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Fig. 3: PROC curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Level 1: DET curve − Individual 1

fpr − false positive rate

fn
r 

−
 fa

ls
e 

ne
ga

tiv
e 

ra
te

 

 
ed=10, AUD=0.05
ed=20, AUD=0.04
ed=30, AUD=0.05

Fig. 4: DET curve.

Measure Eyes distance (pixels)
10 20 30

Genuine faces (total) 65 51 27

Impostor faces (total) 1523 1121 634

Detection Level
Falsely detected faces 1.79% 1.10% 1.93%

Failure to acquire rate 10.54% 33.97% 62.76%

Matching Level
Low quality faces 0.00% 0.00% 0.00%

Operating points -1.2690 -1.2726 -1.3660

False positive rates 4.60% 4.01% 6.15%

True positive rates 86.15% 86.27% 88.89%

Tab. 1: Test set results for fpr = 5%.



Level 2 Analysis

Distance Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6 Ind. 7 Ind. 8 Ind. 9 Ind. 10 Ind. 11 Ind. 12 Ind. 13 Ind. 14 Ind. 15
10 px. 86.15% 0.00% 0.00% 0.00% 18.03% 14.10% 35.82% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.41% 0.00%

20 px. 86.27% 0.00% 0.00% 0.00% 16.67% 5.08% 42.86% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.41% 0.00%

30 px. 88.89% 0.00% 0.00% 0.00% 25.00% 0.00% 72.73% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.67% 0.00%

(a)

Distance Ind. 16 Ind. 17 Ind. 18 Ind. 19 Ind. 20 Ind. 21 Ind. 22 Ind. 23 Ind. 24 Ind. 25 Ind. 26 Ind. 27 Ind. 28 Ind. 29 Ind. 30
10 px. 0.00% 1.61% 1.54% 4.35% 3.64% 0.00% 0.00% 5.17% 1.28% 0.00% 0.00% 0.00% 0.00% 0.00% 14.52%

20 px. 0.00% 0.00% 1.96% 5.66% 2.44% 0.00% 0.00% 0.00% 1.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

30 px. 0.00% 3.33% 3.33% 3.45% 0.00% 0.00% 0.00% 5.56% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.69%

(b)

Tab. 2: Dodington’s zoo based analysis for the detection module associated to individual 1. Columns details the individuals in the

data set, while lines detail their detection by the module for each value of distance between the eyes. Colors are as follows: green for

sheep like individuals (easy to predict), yellow for goat like individuals (difficult to predict), blue for lamb like individuals (can be

impersonated by someone else) and red for wolf like individuals (who can impersonate another user).

Level 3 Analysis

Each of the below figures details the performance of systems by accumulating positive predictions over a time-window on the

video stream for different distances between the eyes. The tracker is used to separate faces of different persons, and accumulate

their predictions. Matching thresholds are set to provide a 5% false positive rate, and positive individual decision takes place after

accumulating 20 detections in a 30 frames window (1 sec). Red stars indicate faces that have not been correctly matched to the target

individual, while blue stars indicate that the individual captured in the video has been successfully matched to the target individual.
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Fig. 5: Accumulated detections for 10 pixels between eyes.
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Fig. 6: Accumulated detections for 20 pixels between eyes.
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Fig. 7: Accumulated detections for 30 pixels between eyes.
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Fig. 8: Variations of quality measures.



Biometric System: Neurotechnology Biometric Modality: Face

Data Source: Chokepoint – Portal 2, leaving portal setup, session 4, camera 1.1 Individual Template: 1
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Fig. 1: Level 0 – Class scores distributions.

Level 1 Analysis

The figures bellow detail several performance curves, and the stars indicate the selected operation point for a target fpr = 5%
(for each ed distance between eyes). The table summarizes the number of genuine and impostor samples, as well as face detection

related metrics.
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Fig. 2: ROC curve.
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Fig. 3: PROC curve.
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Fig. 4: DET curve.

Measure Eyes distance (pixels)
10 20 30

Genuine faces (total) 32 32 17

Impostor faces (total) 421 421 306

Detection Level
Falsely detected faces 0.22% 0.22% 0.31%

Failure to acquire rate 74.48% 74.48% 81.86%

Matching Level
Low quality faces 0.00% 0.00% 0.00%

Operating points 10.7913 10.7913 10.1951

False positive rates 3.09% 3.09% 2.94%

True positive rates 25.00% 25.00% 23.53%

Tab. 1: Test set results for fpr = 5%.



Level 2 Analysis

Distance Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6 Ind. 7 Ind. 8 Ind. 9 Ind. 10 Ind. 11 Ind. 12 Ind. 13 Ind. 14 Ind. 15
10 px. 25.00% 0.00% 0.00% 11.11% 0.00% 0.00% 4.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

20 px. 25.00% 0.00% 0.00% 11.11% 0.00% 0.00% 4.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

30 px. 23.53% 0.00% 0.00% 11.11% 0.00% 0.00% 5.88% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(a)

Distance Ind. 16 Ind. 17 Ind. 18 Ind. 19 Ind. 20 Ind. 21 Ind. 22 Ind. 23 Ind. 24 Ind. 25 Ind. 26 Ind. 27 Ind. 28 Ind. 29 Ind. 30
10 px. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.09% 0.00% 0.00% 0.00% 26.67% 8.70% 0.00% 33.33%

20 px. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.09% 0.00% 0.00% 0.00% 26.67% 8.70% 0.00% 33.33%

30 px. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.09% 0.00% 0.00% 0.00% 26.67% 7.69% 0.00% 0.00%

(b)

Tab. 2: Dodington’s zoo based analysis for the detection module associated to individual 1. Columns details the individuals in the

data set, while lines detail their detection by the module for each value of distance between the eyes. Colors are as follows: green for

sheep like individuals (easy to predict), yellow for goat like individuals (difficult to predict), blue for lamb like individuals (can be

impersonated by someone else) and red for wolf like individuals (who can impersonate another user).

Level 3 Analysis

Each of the below figures details the performance of systems by accumulating positive predictions over a time-window on the

video stream for different distances between the eyes. The tracker is used to separate faces of different persons, and accumulate

their predictions. Matching thresholds are set to provide a 5% false positive rate, and positive individual decision takes place after

accumulating 20 detections in a 30 frames window (1 sec). Red stars indicate faces that have not been correctly matched to the target

individual, while blue stars indicate that the individual captured in the video has been successfully matched to the target individual.
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Fig. 5: Accumulated detections for 10 pixels between eyes.
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Fig. 6: Accumulated detections for 20 pixels between eyes.
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Fig. 7: Accumulated detections for 30 pixels between eyes.
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Fig. 8: Variations of quality measures.
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5.1 Comparison of COTS Systems

This section provides a comparative analysis of systems performance according to level 1, 2 and 3, based

on the distance of 20 pixels between the eyes. The impact of different eye distances on system performance

is also discussed.

As shown in previous sections, at the level 0 analysis, the histogram distributions of matching scores are

illustrated in Figure 1 of each Report Card for both target and impostor individuals and according to each

distance between the eyes. For instance, the middle sub-figure of Figure 1 of each Report Card provides the

matching scores produced by each system for 20 pixels between the eyes. Larger overlaps between the two

distributions indicate that the system would have a low recognition rate, due to the difficulty in separating the

target from impostor classes. On the other hand, less overlap between the distributions indicate easier class

separation, and hence the system is expected to achieve a high recognition rate. Both the Cognitec and the

PittPatt systems are shown to provide less overlap between the target and impostor distributions compared

to that of the Neurotechnology, and therefore expected to provide a higher level of recognition performance

as shown in level 1 analysis. The number of genuine and impostor individuals are also presented in the

legend of each figure, which provides an indication about the number of frames detected by each system.

The Report Cards also provide other information at the detection level such as the failure to acquire

(FTA) rate (the number of faces that are not detected by the system to the total number of faces found in

the ground truth), the percentage of falsely detected faces (the number of faces incorrectly detected by the

system, which has no match in the ground truth, over the total number of correctly detected faces), and the

percentage of low quality faces (the number of correctly detected faces for which the system was not able to

provide a matching score, over the total number of correctly detected faces). Table 8 presents the detection

performance measures provided by each system using a distance of 20 pixels between the eyes.

As shown shown in Table 8, the Cognitec detector is able to achieve the lowest FTA rate however it also

provides the highest percentage of falsely detected faces. On the other hand, the Neurotechnology detector

achieves the highest FTA rate but with the lowest percentage of falsely detected faces, which means that

the detector drops all frames that have low probabilities to include faces. PittPatt detector seems to be the

most accurate providing the best tradeoff between FTA rate and the falsely detected faces. The percentage

of low quality faces detected by the Cognitec results from a rejection threshold at the matcher level, which

does not provide a matching score for the detected faces that are considered of poor quality. In contrast,

the matchers for the other two systems always provide scores for the detected faces regardless of the face

quality, therefore the values of the low-quality face measure remain zero.

In surveillance applications, the objective is to detect the presence of an individual of interest with a high

Table 8: Summary of system detection measures for 20 pixels between the eyes.

Measure Cognitec PittPatt Neurotechnology

Failure to acquire rate 30.42% 33.97% 74.48%

Falsely detected faces 11.65% 1.10% 0.22%

Low quality faces 11.72% 0.00% 0.00%
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level of accuracy without generating many false alarms. Level 1 analysis evaluates the overall recognition

performance – the system capability to correctly match the faces of target individuals on watch list. The

transaction-based performance evaluation (level 1 analysis) is illustrated in Report Cards using the ROC,

DET and PROC curves. For a given false positive rate, the ROC or DET curve illustrates the proportion of

target individuals that has been correctly detected by the system among all target individuals (i.e., the true

positive rate or recall), while the precision on the PROC curve evaluates a system’s ability to detect target

individuals (among all individuals detected as positives) at every recall. For each distance between the eyes,

the operating points (matching thresholds) selected during validation (using Chokepoint P2L S1 C1.1 data)

are also shown as stars on the curves achieved by each system using Chokepoint test data (P2L S4 C1.1).

Larger deviations between the points and the curves indicate large variation between systems perfor-

mance on validation and test data. Table 9 presents a summary of transaction-based performance evaluation

for 20 pixels between the eyes. Since the operating points are computed during validation according to a

false positive rate ( f pr) of 5%, a high-performing system must therefore maintain a f pr value of 5% or

lower during testing, while achieving high-level of true positive rate (t pr), precision (prec), F1 measure,

and Area under the ROC curve (AUC) and AUC0.05. Note that AUC0.05 means the area under the ROC curve

for a f pr = [0,0.05], which focuses on the low f pr region and is more accurate than the AUC especially

when the ROC curves cross.

As shown in Table 9, the three systems are able to maintain a f pr value lower than 5% on average

among all target individuals. Neurotechnology system provides the lowest level of recognition performance

in terms of all measures (t pr, prec, F1, AUC and AUC0.05). The average level of recognition performance

achieved by Cognitec and PittPatt systems is comparable. Although PittPatt system provides a slightly

higher average level of matching performance than that of Cognitec, the lower variations in the perfor-

mance measures achieved by Cognitec system indicate more robustness to target individual variations. This

variation in PittPatt system performance can also be seen in the results of Individuals 6 and 11 in Table 9,

where the achieved f pr value on the test data is higher than the desired validation value of 5%. Typi-

cally, lower variations between the results achieved during validation and testing (along with high level of

performance values) provides more confidence in the expected system performance during operations.

Level 2 analysis presents subject-based categorization according to Doddington’s Zoo. Each individual

can be categorized as a sheep (easy to classify), lamb (a target easy to be impersonated), a goat (a target

difficult to classify) or a wolf (an impostor that can easily impersonate someone else). The numbers in

Table 2 in the Report Cards present the proportions of samples that have been matched to target individuals,

whereas the colors indicate the type of each individual.

Finally, the time analysis performed at level 3 provides an unbiased evaluation and comparison of sys-

tems performance over video streams. When individuals appear in the video frames, the system attempts to

detect individual faces, track their positions over time (by assigning each individual face a unique ID), and

then match each face to those in the target watch list. If the final decision (target or non-target) is based on

each frame independently, the system is would provide a higher rate of false positive and negative errors.

A more deep individual specific analysis can be made by looking at the entire sequences of decisions ac-

cumulated on the face trajectories over the entire video frames. When a tracked face is matched to a target

individual in the watch list, the positive predictions are accumulated over a moving time window of one
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Figure 16: Example of time-based analysis (level 3) for target individual 1 and 20 pixels between the eyes:

a) Cognitec, b) PittPatt, c) Neurotechnology.
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Figure 17: Summary of time-based analysis (level 3) for 20 pixels between the eyes: a) Cognitec, b) PittPatt,

c) Neurotechnology.
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second (or 30 frames). Decision thresholds can then be set on these cumulative positive predictions to ob-

tain various levels of confidence in identifying the target individual. The maximum confidence in decision

making is obtained when the accumulated positive predictions attain the value of 30 and maintain this value

over the face trajectory, which means that the face has been detected, tracked and identified correctly.

Figure 16 presents and example of the time-based analysis produced by each system, for target individ-

ual 1 in the watch list using 20 pixels between the eyes. The decision thresholds are set to 5, 10 and 20

(illustrated by the yellow, orange and red dashed lines on the figures) on the accumulated positive predic-

tions, which provide a low, medium and high confidence in the final decision about the target individual. As

shown in Figure 16, Cognitec and PittPatt systems are able to achieve a high level of accumulated positive

predictions (the black graph exceeded the red threshold), while Neurotechnology system provided a low

confidence in identifying the same target individual. The red stars on the figures indicate the detected faces

that have not been correctly matched to the target individual, while the blue stars indicate that the individ-

ual face captured in the corresponding video frame has been successfully matched to the target individual.

These points also provide an indication of the face detection algorithm performance. When more faces are

detected over time (as shown in Figure 16 for PittPatt detector), chances are higher to accumulate positive

predictions and increase the confidence in identifying a given target individual. The Report Cards evaluate

systems time analysis performances for each target individual using the three distances between the eyes.

An important aspect of the time analysis is to illustrate the accumulative positive predictions for the non-

target individuals as shown in Figure 16. A large difference between the maximum level of accumulated

positive predictions of the target (red bars on figures) and all non-target individuals (blue bars on figures),

enforces the system confidence in detecting a specific target and indicates more robustness to variations in

environment conditions. This also confirms the importance of setting a subject-specific matching thresholds.

Although both the Cognitec and the PittPatt systems achieve a comparable (high) level of accumulated pos-

Table 9: Summary of transaction-based (level 1) analysis for 20 pixels between the eyes.
Product Measure Ind01 Ind04 Ind05 Ind07 Ind09 Ind10 Ind11 Ind12 Ind16 Ind29 AVG STD

Cognitec

f pr 4.30% 3.77% 4.05% 3.84% 5.14% 3.81% 3.73% 5.43% 3.34% 3.10% 4.05% 0.007

t pr 75.00% 47.37% 68.89% 70.49% 71.05% 62.00% 75.00% 95.56% 43.24% 97.67% 70.63% 0.166

prec 39.76% 29.03% 39.74% 49.43% 31.03% 41.33% 47.56% 40.57% 29.09% 53.85% 40.14% 0.081

F1 0.520 0.360 0.504 0.581 0.432 0.496 0.582 0.570 0.348 0.694 0.509 0.101

AUC 0.944 0.908 0.936 0.946 0.944 0.941 0.951 0.994 0.945 0.997 0.951 0.025

AUC0.05 0.719 0.443 0.589 0.636 0.567 0.549 0.686 0.885 0.414 0.953 0.644 0.165

PittPatt

f pr 4.01% 3.43% 0.62% 4.48% 1.68% 6.04% 3.30% 11.00% 2.21% 1.75% 3.85% 0.028

t pr 86.27% 72.22% 91.67% 87.50% 92.11% 48.94% 21.15% 100.00% 84.21% 89.29% 77.34% 0.230

prec 49.44% 40.00% 86.27% 49.49% 64.81% 25.27% 22.92% 26.63% 56.14% 55.56% 47.65% 0.188

F1 0.629 0.515 0.889 0.632 0.761 0.333 0.220 0.421 0.674 0.685 0.576 0.193

AUC 0.956 0.852 0.968 0.946 0.985 0.725 0.600 0.997 0.916 0.946 0.889 0.123

AUC0.05 0.852 0.613 0.929 0.796 0.945 0.407 0.184 0.948 0.762 0.884 0.732 0.244

Neurotech.

f pr 3.09% 1.80% 13.41% 4.89% 1.35% 2.26% 4.90% 4.76% 1.60% 2.71% 4.08% 0.034

t pr 25.00% 66.67% 53.85% 45.45% 25.00% 18.18% 50.00% 41.67% 6.67% 40.00% 37.25% 0.173

prec 38.10% 42.86% 10.61% 50.00% 25.00% 16.67% 36.36% 19.23% 12.50% 25.00% 27.63% 0.128

F1 0.302 0.522 0.177 0.476 0.250 0.174 0.421 0.263 0.087 0.308 0.298 0.132

AUC 0.726 0.978 0.882 0.905 0.866 0.779 0.854 0.805 0.645 0.808 0.825 0.090

AUC0.05 0.206 0.757 0.152 0.402 0.626 0.238 0.400 0.413 0.114 0.356 0.366 0.194
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itive predictions, the maximum value of the non-target positive predictions achieved with PittPatt is closer

to that of the target individual. This means a slight variation in the operating or environment conditions

would make the PittPatt system to incorrectly identify a non-target individual as a person in the watch list.

Figure 17 provides a summary of time-based performance achieved by each system for 20 pixels be-

tween the eyes, in terms of the maximum level of accumulated positive predictions of the target and all

non-target individuals. In general, both Cognitec and PittPatt systems achieve higher levels of accumulated

positive predictions for target individuals than that of the Neurotechnology system. These performance

levels are comparable for the Cognitec and the PittPatt systems, however Cognitec seems to have larger

differences (and lower variations) between the maximum values of the target and non-target positive predic-

tions than that of the PittPatt. In some cases, such as for individual 11, the PittPatt system provides larger

value for the maximum level of accumulated positive predictions of non-target individuals than that of the

target individual. This higher level of maximum accumulated positive predictions of non-target individuals

is also apparent in the performance of Neurotechnology (as seen in Figure 17) for individuals 5,10,12, 16.

Subject-based analysis (level 2) provides more insights on the type of errors committed by the system

based on the type of individuals as charachterized by the Doddington’s Zoo. An analysis of individuals

properties can expose fundamental weaknesses in a biometric system, and allows to develop more robust

systems. Level 2 analysis presented in Table 2 in the Report Cards shows that the target individuals dis-

cussed above (i.e., individual 11 for PittPatt, and individuals 5,10,12, 16 for Neurotechnology system) are

assigned to the goat category. Goats like (target) individuals are intrinsically difficult to recognize, they are

characterized by consistently low classification scores against themselves, and tend to adversely degrade

system performance by increasing the false negative rate. The subject-based analysis shows that the sheep

like individuals, which are easy to discriminate from other non-target individuals, dominate the population

and the levels of performances provided by each system is relatively high for this category.

In non-target populations, subject-based analysis also show the presence of wolves and lambs (see for

example, individual 1 and 12 for PittPatt system). Wolves are exceptionally successful at impersonating

other targets, while lambs are easy to impersonate and thereby contributing to a high false alarm rate.

The presence of wolves and lambs in non-target individuals, explains the small differences between the

maximum level of accumulated positive predictions between the target individuals 1 and 12 and the non-

target individuals for PittPatt system, as shown in Figure 16. Subject-based analysis confirms therefore the

need for user-specific or template-specific thresholds.

According to Cognitec5 the sharpness assessment of images quality is computed by applying a 3x3 mean

filter to the image and calculating the distance between original image and filtered one. Larger sharpness

values (or larger difference between the original and the filtered image) indicate higher level of noise in

the original image, which may lead to lower recognition performances. The sharpness value seems to have

an inverse impact on systems performance, as shown in Figure 8 of the Report Cards, and to be positively

correlated with deviation from uniform lighting. On the other hand, the deviation from frontal pose and

the pose angle roll measures are shown to have a large impact on systems performances. The larger the

deviation from frontal pose the lower the recognition performance.

5See slide 5: http://biometrics.nist.gov/cs_links/quality/workshopI/proc/weber_bqw.pdf
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The impact on system performance of the distance between the eyes is illustrated in Report Cards at

level 1-3 analysis. A large distance between the eyes (based on the number of pixels between the center

of the eyes) implies a high resolution face image, which is typically captured when the individual is at a

small distance from the camera with a close to frontal pose. On the other hand, a small inter-eye distance

implies low resolution face image with a large distance from the camera or a close to profile head pose.

In surveillance application, the time or the number of frames with large distances between the eyes is

typically short, since the individuals approaching the camera would quickly go out of its field of view. In

general, the transaction-based performance increases with eye distance, as shown for level 1 analysis in the

Report Cards, because the system ability to correctly identify target individuals increases with eye distance.

However, the number of genuine and impostor faces decrease (and hence the FTA rate increases) when the

distance between eyes increases, because the frames with smaller eye distances than the desired value are

dropped. Similarly, the time analysis performance decreases when the eye distance increases due to the

short time spent in front of the camera view field. Therefore, the system will not be able to accumulate a

high level of confidence in the positive predictions over the small number of captured frames.

The above discussions hold for the two other distances between the eyes of 10 and 30 pixels for each

of the evaluated systems. However, Neurotechnology system provides similar and substantially poorer

performance for both 10 and 20 pixels between the eyes, which indicates that the system may not be suitable

for small distances between the eyes.

6 Conclusions

This report surveys metrics, methodologies and data-sets used for evaluation of face recognition in video

and establishes a multi-level evaluation methodology that is suitable for video surveillance applications.

The developed methodology allows one to access the vulnerabilities of FR systems when applied to real-

time surveillance applications such as screening of faces against wanted list (still-to-video application) and

matching a faces across several video feeds (video-to-video application).

The results obtained by using the methodology from the evaluation of three COTS FR products (Cog-

nitec, PittPatt and NeuroTechnology) on the publicly available Chokepoint data-set are presented to il-

lustrate the methodology and to expose the vulnerabilities of each product. The performance results are

reported using a two-page Report Card format, one Report Card per each target individual in a Watch List,

which summarize the ability of the system to automatically detect and recognize each target individual in

a surveillance video-stream. This report showed the Reports Cards obtained only for one individual in

the Chokepoint data-set (Individual 1). The complete results obtained for each tested individual from the

data-set are presented in a separate report [23].

The obtained evaluation results presented in this report, along with the survey of academic and com-

mercial state of art solutions presented in [20, 24], provided the basis for the assessment of readiness of the

FR technology for video surveillance applications. This assessment was the key objective of the PROVE-

IT(FRiV) study and it has been reported in [16, 4] and further refined in [17].
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Summary 

With ETS and U. Ottawa (TAMALE Lab) 
1. Overview of the FRiV market / solutions 
2. Developed methodology for evaluating FRiV solutions 

(using sets, mockups, and pilots) 
3. Investigated, developed and tested the Face Processing 

(FP) components 
1. Pre-processing,  Post-processing, Fusion 
2. Face Detection, Face Tracking, Face Tagging 

4. Identified environmental and procedural constraints under 
which Instant Face Recognition (iFR) is feasible (has 
Technology Readiness Level TRL> 5 )  

5. VT4NS workshop with demonstration of FRiV technology  
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DISCLAIMER:  

The results presented in this report were produced in experiments conducted by 
the CBSA, and should therefore not be construed as vendor's maximum-effort 
full-capability result.  In no way do the results presented in this presentation 
imply recommendation or endorsement by the Canada Border Services Agency, 
nor do they imply that the products and equipment identified are necessarily 
the best available for the purpose. 
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ETS Mandate in PROVE-IT(FRiV) 

 

1. Survey Face Recognition in Video Sruveillance: 
̶ commercial technologies and patents 
̶ academic systems and software 

 

2.  Evaluation Methodologies for FRiVS: 
̶ public data sets for medium- to large-scale evaluation 
̶ experimental protocols for video surveillance scenarios 
̶ performance metrics and analysis 

 

3. Case Studies – Evaluate in Applications 
̶ unmanned screening of faces against a wanted list  
̶ fusion of face recognition across cameras, etc.  
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1) FR in Video Surveillance 
 

Objectives: enhanced screening  
    and situation analysis across a  
    network of surveillance cameras 
 
 

automatically recognize and track individuals within 
semi- and unconstrained environments 
 

determine if facial regions captured in video streams 
correspond to individuals of interest populating a 
restrained list 

8 

1) FR in Video Surveillance 
A Generic System for Video-Based FR 

1) FR in Video Surveillance 
Recognition Scenarios 

 

ROIs extracted from video frames are matched against the 
facial model of individuals of interest 
 

Still-to-video recognition: facial model of each individual are 
extracted from 1+ gallery of stills 

Typical application: screening against various watchlists 
 

Video-to-video recognition: facial model of each individual are 
extracted from 1+ video sequences 

 Typical application: person re-identification (recognize and track an 
individual over a network of cameras) 

9 

Taxonomy of Surveillance Setups 
 

Type 0: cooperative biometric setup (for access control, eGate) 
Type 1: semi-constrained setup (for primary inspection lane) 
Type 2: unconstrained free-flow, one-at-time (CATSA chokepoint entry and 

other portals) 
Type 3: unconstrained free-flow, many-at-time (airports, train stations and 

other indoor public spaces) 
Type 4: no lighting or structural constraints (outdoor scenes) 

1 2 3 

TT f S ill S t

1) FR in Video Surveillance 
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1) FR in Video Surveillance 
Challenges 

  

Complex and changing environments :  
̶ low quality and resolution of video frames 

̶ limited control of acquisition conditions – variation in poses, 
expressions, illumination, scale, blur, occlusion… 

̶ ageing and variation of interaction between individual–sensor   

̶ facial models: poor representatives of real faces because they 
are designed during enrollment with limited reference data  

̶ imbalanced data distributions: very few positives (from 
individuals of interest) w.r.t. negatives (from open world) 
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1) FR in Video Surveillance 
Challenges  

 

Computational resources: video surveillance 
networks are comprised of a growing number of IP-
based cameras 

̶ transmit or archive massive quantities of data 

̶ memory requirements: storage and retrieval of facial 
models 

̶ processing time: face detection, and matching ROIs 
against facial models 
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3) Evaluation Methodologies 
 

Objective: benchmark state-of-the-art commercial 
technologies and academic systems for FRiVS:  
 

̶ public data sets for medium- to large-scale evaluation 
 

̶ performance measures:  
• transaction- subject-based analysis 
• time analysis over tracks 

 

̶ experimental protocols for different types of surveillance 
applications, e.g., 

• screening of faces against watchlist list 
• matching a face across several video feeds 
• fusion of face recognition from different cameras 

 

̶ still-to-video and video-to-video recognition scenarios 
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3) Evaluation Methodology 
Public Data Sets for FRiVS 
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3) Evaluation Methodologies 

Public Data Sets for FRiV - summary 
 

datasets have been characterized according to:  
̶ demographics: distribution of individuals per session and in 

the entire dataset; 

̶ complexity in scene: the systematic variations of 
illumination, motion, occlusion, expression and/or pose for 
some target application; 

̶ capture properties: the number and type of cameras, 
duration of video sequences, frame rate and resolution. 
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3) Evaluation Methodology 
CMU – FIA (mono-modal, 1 face) 

PIL: subjects mimicking passport checkpoint at airport 
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3) Evaluation Methodology 
Chokepoint (mono-modal, 1 to 24 faces) 

CATSA checkpoint: subjects walking though portals 

24 



3) Evaluation Methodology 

ND-Q0-Flip (mono-modal, 4 to 12 faces) 
detection of questionable observers in 
crowded scenes 
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3) Evaluation Methodology 

NIST-MBGC (multi-modal, 1 person) 
portal or access control checkpoint:  unconstrained 
authentication from face and iris (still- and video-to-
video) 

http://www.nist.gov/itl/iad/ig/mbgc.cfm 

26 

3) Evaluation Methodology 

MOBIO (multi-modal, 1 person) 
 PIL: unconstrained authentication from face 
& voice 

http://www.idiap.ch/dataset/mobio 
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3) Evaluation Methodology 
Laboratory mock up data 

 

Watchlist: 60 individuals from CBSA wanted list + 6 persons 
from CBSA-VSB group 
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3) Evaluation Methodology 
Evaluation of mono-modal scenarios 
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3) Evaluation Methodologies 
Performance metrics for FRiVS 

 

Fundamental task under evaluation: 
̶ user-specific analysis – detection of an individual of interest 

among a restrained list of individuals 
̶ ability to accurately and efficiently detect the presence of an 

individual’s face under various operational conditions 

30 



3) Evaluation Methodologies 
Performance metrics for FRiVS 

 
 

̶ Open-set FR problem with imbalanced class distributions 
(majority of individual seen are not of interest) 

 - decision spaces to analyze performance of ‘positives’ 
 

̶ Complex environments and ill-defined of facial models 
  - quality of facial captures (ROIs) and tracks 
 

̶ Performance varies across a population of individuals, and 
some individuals are harder to recognize 

 - menageries – statistical tests to characterize individual 
 

̶ Growing complexity of surveillance networks 
 - analysis of time and memory complexity 
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3) Evaluation Methodologies 
Metrics – Transaction-Based Analysis 

 

1:1 classification (detection) systems: 
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3) Evaluation Methodologies 
Metrics – Transaction-Based Analysis 

Evaluation of detectors – count correct and incorrect decisions 
over a test set, and express performance trade-offs using… 
̶ Traditional: ROC or DET curves (scalar metric: accuracy, AUC, pAUC) 

 

̶ With imbalances classes: precision-recall (scalar metric: F-score) 
 

33 

3) Evaluation Methodologies 
Metrics – Transaction-Based Analysis 

 

P-R curve: with imbalanced class distributions (very few 
positive detections from a restrained cohort) 
̶ unbiased towards the majority (negative) class as skew grows 

̶ measures the proportion of correctly predicted positive ROIs 
out of the total number of ROIs predicted as belonging to an 
individual of interest 

̶ scalar metric that combines pr and tpr :  
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3) Evaluation Methodologies 
Metrics – Subject-Based Analysis: 

 Doddington’s  zoo – performance is assessed with 
different types of individuals in mind 
̶ performance of face recognition systems may vary drastically from one 

individual to the next 
̶ an analysis of these individuals and their common properties can: 
̶ expose fundamental weaknesses in a FR system 
̶ schemes for user-specific thresholds, score normalization and fusion 
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positives 
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3) Evaluation Methodologies 

Metrics – Time analysis 
group ROIs corresponding to high confidence tracks 
accumulate positive predictions over fixed time window: 

Green 
Yellow 
Orange 
Red 



3) Evaluation Methodologies 
Generic protocol: still-to-video recognition 

 type 1 and 2 application scenarios using the Chokepoint 
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5) In-House Evaluations 
  

Still-to-Video Results with Chokepoint   
 Example of transaction-based analysis: 
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5) In-House Evaluations 
  

Still-to-Video Results with Chokepoint   
 Example of time-based analysis: 
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5) In-House Evaluations 
  

Still-to-Video Results with Chokepoint   
 Example of time-based analysis: 
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6) Conclusions and Recommendations 
  

Technology Readiness Assessment   
 Five-level scale used in this report: 
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6) Conclusions and Recommendations 
  

Technology Readiness Assessment   
 

 A preliminary TRL assessment according to 5 levels.   
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6) Conclusions and Recommendations 
  

Recommendations   
 

Current COTS and Academic products can be found useful 
for many FRiV applications, but not for all of them! 

Post-processing and pre-processing (inc. Video Analytics) are 
critical for success  

Potential for new video-based (eg Biological Vision driven) 
techniques, as opposed to status-quo still-image-based. 

There’s no all-inclusive evaluation methodology for FRiV 
FMR/FNMR metric can be misleading 
For operational agency, TRL-based evaluation should prevail 

Ultimate metric  - satisfaction of the end-user Border Officer! 
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6) Conclusions and Recommendations 
  

Recommendations   
 

State-of-the-art commercial that implement core FRiVS 
functions – face detection, grouping, matching and tracking. 

They cannot by themselves perform automated FR with a 
high level of performance in semi- or unconstrained 
environments:  

̶ difficulties capturing high quality ROIs (typically poor 
quality and low resolution), 
̶ complex environments, that change during operations,  
̶ face models are designed a priori using limited number of 

reference samples. 
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6) Conclusions and Recommendations 
  

Recommendations   
 

For robust and accurate performance in real-word 
environments: incorporate the proven academic techniques 
within state-of-the-art commercial technologies, in particular:  
̶ modular and ensemble-based classification architectures  
̶ fusions of multiple sources over different templates and 

frames,  an array of cameras, etc. 
̶ exploit soft biometric traits and contextual information  
̶ adaptive biometric to refine facial models over time 
̶ spatio-temporal recognition – exploit face-person tracking to 

accurately recognize by accumulating evidence 


