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Executive Summary 
This document is the compilation of the analysis and results of the research contract  w7714-

115195/A entitled  Research & development for Long Term Evolution (LTE) wireless location 

based on synthetic array.  The report is a compilation of the research activities and outcomes 

for the period of January 2012 to March 31 2014.   

 

The report consists of two parts.  This document is part A  and part B is a separate document. 
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Acronyms 

AN Access node (eNodeB) 

AP Anchor point 

ANan Access node that is an anchor node 

ANfp Access node that is feature point  

AWGN Additive White Gaussian Noise 

AOA Angle of Arrival 

BCRLB Bayesian Cramer-Rao Lower Bound 

BF Bayesian Filter 

BFI Bayesian Fisher Information 

BFIM Bayesian Fisher Information Matrix 

CDMA Code Division Multiple Access 

CML Concurrent Mapping and Localization  

CRLB Cramer-Rao Lower Bound 

CV Computer Vision 

EKF Extended Kalman Filter 

FastSLAM Factorized Solution for Simultaneous Localization and Mapping 

FI Fisher Information 

FIM Fisher Information Matrix 

FP Feature Point 

GNSS Global Navigation Satellite Systems 

GPS Global Positioning System 

i.i.d Independent and Identically Distributed  

IMM Interacting Multiple Model 

IMU Inertial Measurement Unit 
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IEEE  Institute of Electrical and Electronics Engineers 

KF Kalman Filter 

KL Kullback-Leibler 

LAMBDA Least-squares Ambiguity Decorrelation Adjustment 

LJG Linear and Jointly Gaussian 

LML Local Maximum Likelihood 

LOS  Line of Sight 

LTE  Long Term Evolution 

MAP Maximum A Posterior  

MC Monte Carlo 

M-CRLB  Modified Cramer-Rao Lower Bound 

MEMS Micro Electro-Mechanical Systems 

MI Mutual Information  

MLE Maximum Likelihood Estimator 

MM Multiple Model 

MMSE Minimum Mean Square Error 

MN Mobile Node 

NEES Normalized Estimation Error Squared 

OCXO  Oven-Controlled Crystal Oscillator 

OWLS Opportunistic Wireless Localization System 

PDF Probability Density Function 

PDOA Phase Difference of Arrival 

PEB Position Error Bound  

PF Particle Filter 

PRN Pseudo-Random Noise 
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POA Phase of Arrival 

RB Rao-Blackwellized 

RBPF Rao-Blackwellized Particle Filter 

RFID Radio Frequency Identification 

RIM Research in Motion 

RTOF Round-trip Time of Flight  

SLAM Simultaneous Localization and Mapping 

SNR Signal-to-Noise Ratio  

SS Signal Strength 

TCXO Temperature Compensated Crystal Oscillator 

TDOA Time Difference of Arrival 

TOA Time of Arrival 

UWB Ultra Wideband  

WiFi Wireless Fidelity 

WLAN Wireless Local Access Network 

 

Variables used 

variable description 

� �0:tbel x  Posterior pdf of the particles over the complete time interval from 0 to stT  

tb  range offset 

sB  signal bandwidth 

c  propagation velocity 

1
i

me �  1 m�  row vector whose elements are zero, except the i -th element which is 

equal to one. 
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f  carrier frequency 

bf  clock frequency bias 

f  clock frequency drift 

( )rf t  clock random frequency error 

( , )I X Y  mutual information between Y and X  

J  Fisher information matrix in general 

totJ  total Bayesian Fisher information matrix 

ZJ  measurement information matrix 

PJ  apriori information matrix 

ANK  vector of direction 

m  stacked vector of AN locations  

im  state vector describing the location of the ith ANs 

apm  stacked vector of APs location 

fpm  stacked vector of FPs location 

� �, ,,i x i ym m  2D location variables of an AN 

ANN  number of ANs 

APN  number of APs 

FPN  number of FPs 

dN  dimension of dynamic variable in state vector 

sN  dimension of stationary variable in state vector 

pN  number of particles 

tp  MN location vector 

1:tp  history of MN locations 

tq  state vector at time step t  
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,d tq  dynamic portion of state vector at time step t  

sq  stationary portion of state vector 

dQ  covariance matrix of dynamic variables update process 

PQ  motion process covariance matrix 

( )r t  geometric range between the AN and MN 

� �s t  bandpass signal 

� �s t� �s t�  lowpass signal 

tu  control vector 

1:tu  history of update control inputs 

tv  motion update process noise 

,i tw  measurement noise  

tz  measurement vector received at time step t  

,i tz  observation vector from i-th AN at the time t   

,1:i tz  history of observation from i-th AN 

,
1

i j
k� �  ( 1) ( 1)k k� � �  dimensional matrix whose elements are all zero except at the i -

th row and the j -th column which is one 

MNt�  MN clock bias 

ANt�  AN clock bias 

MNt� MNt� t  MN clock rate drift 

ANt� ANt� t  AN clock rate drift 

( )t	
  carrier phase variation 

�
�
  T

� �  , second order derivative operator 

	�  carrier phase measurement noise 

�  normalizing constant 
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�  carrier wavelength 

( , )N b B  Gaussian process with the mean vector b  and covariance matrix B  

�  overall transition matrix of sight states 

i�  transition matrix of the i-th AN’s sight state 

2
b� ( bQ ) range offset variance (covariance matrix) 

0	  carrier phase of AN transmitter at time of transmission 

( )t	  partial carrier phase cycle measurement 

2�  chi-square distribution 

dim(.)  dimension function 

��Re .  real part 

.  Jacobian function 
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1.1 Overview of the developed solution of  SGL  

1.2 Outline of the report  
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3.5.  General affine transformations 

3.6 3D Perspective ego-motion based on a 2D marker and unknown fp`s 

3.7 Alternative 3D Method 

3.8 Experimental results of 3D ego-motion based on Tracking fiducial markers 

3.9 Extracting Lines with Hough Transforms  

4. SGL Experimental Apparatus 
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4.2  Wireless measurement system 

4.3 Processing of received wireless signal 

4.4  Simultaneous CV and LTE outputs and processing 

4.5 Upgraded Experimental system based on NI RF PXI  

 

5.  Discussion  
  

 

 



 

 

  10/143 

 

 

Chapter 1   Overview of contract objective, phases and deliverables 

1.1 Overview of the developed solution of  SGL  

 

The overall objective of the research activities comprising this contract is mainly that of the 

development of self geo-location (SGL) in which the mobile unit (denoted as the UE for user 

equipment) is to be located relative to the surrounding environment based on using LTE 

wireless signals of opportunity.  To facilitate this we consider inputs as shown in Figure 1-1.   

 
Figure 1-1  Inputs to the UE for SGL 

 

Recent technology articles have outlined the race to have “Google Maps” extended to indoor 

locations, malls, airports, arenas and so forth.  Smartphone manufactures such as Apple, Nokia, 

Samsung and RIM and ASIC manufactures such as Infineon, Qualcomm and Broadcom are 

scrambling to achieve processing that will provide sufficient resolution such that the detail of 

these available maps will be useful to the smartphone user.  Such technology has obvious 

application for military based personal and asset location.  Differences will be that the wireless 

signals of opportunity that can be used for such positioning are perhaps uncooperative with 

 UE 
Signals from LTE and other wireless sources 

GNSS signals when available 

Camera sensor 

Other sensors 

- accelerometers, rate gyros, magnetometers 

prior information and maps 
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poorly defined source locations and no guarantee of being accurately synchronized.  The overall 

objective of the research is the enhancement of signal processing algorithms for estimating the 

location of a mobile station (MS) or user equipment (UE) based on wireless signalling.  The 

wireless signalling is assumed to be sourced from 4G Long Term Integration (LTE) access nodes 

(AN) which are primarily used for mobile data and voice communications. The downlink 

signalling is specifically exploited, as the desire is for the UE processing to be capable of stand 

alone “self geo-location” (SGL).  This implies that the network location processing or assistance 

is not involved.  Further it is not assumed that the UE be registered with the LTE network but 

rather that it exploits LTE downlink signals of opportunity for the location estimate.  Hence the 

relevant signalling will come from the LTE downlink reference signals (RS) that are synchronised 

across the LTE network of AN’s.  The signal structure of the RS’s are assumed to be known by 

the UE as well as the location of the AN’s.     

 

Additional inputs can come from GNSS (GPS) signals when they are available.  The camera input 

from a small web-cam like device integrated into the UE has been shown to be of very valuable 

input.  Other sensors are the accelerometers, gyros and magnetometers which provide some 

information relevant to SGL. In this work development effort has been expended on the 

ancillary inputs provided by the camera and accelerometers.  

 

The simplest scenario for the UE SGL within an LTE signalling environment is where the ANs are 

in known locations and synchronized in terms of the carrier frequency and code phase. This is 

typical of the CDMA IS2000 network that was studied in a previous contract in which the code 

phase synchronization tolerance is generally better than 50 nsec.    The code offset of the pilot 

channel actually identified the particular base station, hence the code phase had to be 

synchronized to facilitate this.  Also the IS2000 transmissions were calibrated in terms of delay 

such that they were within a 50 nsec tolerance relative to GPS time.  This facilitated network 

based location services with the initial impetus being compliance with the e911 requirements.  

However, this is an added complexity that needs to be maintained that LTE dispenses with.  

Clearly in LOS propagation environments, the SGL tracking is robust provided that there are a 
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sufficient number of ANs available and that the geometry does not significantly compromise the 

GDOP as is illustrated in Figure 1-2.   Here the UE is frequency and time synchronized with the 

set of AN’s that are all located such that there is a LOS connection with the UE.  Furthermore 

the AN locations are precisely known to the UE.  It is assumed that the AN to UE ranges can be 

determined accurately.  For the particular scenario depicted in Figure 1-2 there are only two 

unknowns, namely the � �,x y  position of the UE and there are 4 range measurements possible 

from the synchronized AN’s to the UE. Hence a single isolated position estimate can be 

achieved with redundancy.  Not prior trajectory knowledge or assumptions of the UE is 

necessary.    

 

 
Figure 1-2 Simplest case of SGL with all synchronized AN’s in known locations and LOS 

propagation 

 

The implied assumption that the UE and AN clocks are synchronized is of course invalid as 

these clocks are independent with no direct physical or implied connection.  Hence it is 

necessary to add the relative UE clock bias to the variable list such that we have � �, ,x y b  as the 

variable list.  This type of SGL is equivalent to the GNSS navigation solution or the SGL within a 

terrestrial CDMA IS2000 network.  Note that in the scenario depicted we still have a 

measurement redundancy allowing for an isolated position estimate of the UE.   
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Tight timing synchronization amongst the LTE AN’s is not necessary for optimum data 

communication functions nor is it necessary for facilitating network based location, hence there 

is little impetus for the service provided to accurately time synchronize the network. 

Consequently, assuming that the bias of the code phase of the AN emissions is sufficiently 

accurately synchronized for SGL is not valid.  Hence it is necessary to carry a state variable for 

each observable AN for the code phase bias.  However, it is a reasonable assumption that the 

LTE AN signals are frequency synchronized as such reference signals are available from GNSS 

sources and back-haul links.  As determined in phase I simulations, allowing for a static bias of 

the code phase of each AN did not significantly degrade the robustness of the SGL tracking 

even though there were more state variables to contend with.  However, we now have more 

variables than observables for a single static location of the UE.  A further complexity is that it is 

not guaranteed that the LTE AN is in a precisely known location which is likely the case in a 

non-cooperative scenario.  This issue in addition to not knowing the code phase implies that 

isolated UE location estimates are not possible.   

 

This significantly complicates SGL in that we have to generate additional measurements to 

exceed the number of unknowns.  A key is that the AN’s are assumed to be in static positions 

and are frequency locked. Consequently if two consecutive measurements of the AN-UE links 

are taken then we can amass more measurements than unknowns.  However, the consecutive 

sets of AN-UE measurements are clearly linearly dependent and hence to not lead to a 

sufficient set of linearly independent measurements necessary for resolving all of the unknowns.  

However, if the AN is moved between the sets of UE-AN measurement sets then independent 

measurement sets result.  This is illustrated in Figure 1-3.   
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Figure 1-3 Multiple sets of measurements generated by moving the UE  

 

Assume that a set of K UE positions are used and that for each position a complete set of 

measurements is available.  If each measurement set is entirely independent then there is 

nothing gained from combining the K sets of measurements.  However, the trajectory of the UE 

is typically quite smooth and also the random instability of the AN and UE clocks are highly 

correlated.  Hence while we have not explicitly resolved the issue that the number of unknowns 

exceeds the number of measurements, then at least we have minimized the uncertainty of the 

variables.  Consider it this way. If noise free measurements are available that exceed the 

number unknowns then deterministic calculations of the unknown UE position variables are 

possible.  However, the measurements have a random component hence the estimate of the 

UE position will be random.  With taking the K strongly correlated measurements into account 

where the UE is moved into K positions along a smooth trajectory, the issue is to exploit all of 

the correlations that are there as deterministic.  The end result is that the moving UE just 

makes it more complicated to extract and exploit all of the underlying correlations.     

 

Consequently we need a method that could efficiently use any prior information and disparate 

measurements that were related to the unknown variables in arbitrary ways.  The only means 
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of robust SGL in such a context is to use Bayesian filtering methods.  The Kalman filter (KF), 

extended Kalman filter (EKF) and the particle filter (PF) have been thoroughly investigated in 

this context as part of this research. The complexity of the problem revealed that additional tools 

were needed to accommodate the numerous and disparate constraints and observations. This 

was really the impetus for involving the Simultaneous Location and Mapping (SLAM) algorithms 

that were developed for the LTE SGL.  It was discovered that in many scenarios of practical 

interest that the UE could use signals of opportunity from the LTE sources.   That is, just 

knowing that the LTE AN transmission comes from a stationary source is sufficient to gainfully 

use it in a SLAM context.  Even if all of the AN’s are in unknown locations then, in principle, it is 

possible to simultaneously locate the AN’s and the trajectory of the UE.  Also a more efficient 

fastSLAM method was developed for the SGL.  An overview of these Bayesian methods is 

given in chapter 2 with the details presented in part II of this report.     

 

To proceed with a Bayesian approach we make the justifiable assumption that the AN’s are 

assumed to be stationary and that the AN signals are frequency locked.  Note that this does not 

imply that they are time synchronized such that the code phase is arbitrary but the offsets are 

relatively static in comparison to the AN emissions.  A separate bias for each AN emission is 

then assumed and denoted by the variables � �1,... Mb b  which are unknown but constant with 

time.  In Figure 1-3, the UE is moved while taking range measurements with the underlying 

assumption that a Bayesian estimator can be realized that incorporates the assumption of a 

smooth trajectory with  an uncertainty imposed at each time step. The Bayesian filter can also 

take into account the prior knowledge of the UE position from the last known position or user 

input relative to a supplied map.   

A significant reduction in the uncertainty of each of the UE update steps is possible if computer 

vision (CV) inputs are used from a small webcam that can easily be integrated into the handset 

device.  As described in chapter 3, CV provides an accurate measurement of short trajectory 

lengths on the order of several tens of meters.  Figure 1-4 outlines the basic concept of using 

CV ego-motion relative to a ground surface for generating updates for the Bayesian filter.  Even 

if these inputs drift over longer trajectory lengths they significantly reduce the update uncertainty 

that the Bayesian filter has to otherwise contend with.  Note that the CV measurements add 

tighter constraints between the UE positions by removing much of the uncertainty of the UE 

update.  
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Figure 1-4  Ego-motion of camera sensor relative to a 2D manifold surface  

 

A challenge is that the CV problem is not trivial as the UE is hand held and hence is subject to 

random motion in 6 DOF (3 translation and 3 orientation angle variables).  If it can be assumed 

that a flat levelled floor is being observed then the two tilt angles of the camera can be 

measured absolutely.  As such only the azimuth angle and the height of the camera needs to be 

added as nuisance variables to the state variable list. To robustly measure these tilt angles and 

hence provide a direct CV based trajectory ego-motion output that can be used in the Bayesian 

estimator, a Kinect type of projector/camera combination is considered.  A stereoscopic camera 

was also considered and partially developed for this purpose.  These means were demonstrated 

to work extremely well however, the additional hardware complexity is a factor. As well it does 

not fit the handheld form factor. Hence monocular webcam solutions are currently being 

considered as no additional hardware is required.   

 

Additionally 3D CV perspective transformations have been developed in phase II as providing a 

potential solution to resolve the unknown nuisance variables associated with the UE/camera 

trajectory.  A promising possibility for absolute trajectory start point referencing is that of the CV 

recognizing a wall mounted icon, template or other geometric structure.  The perspective 

transformation is used in this case as is illustrated in Figure 1-5.   The 2D template is shown on 

the right side with the perspective on the left side.  From the vantage point of the camera the 

perspective transformation can be determined from which the 6 DOF variables of the relative 

camera position can be determined.  
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Figure 1-5  Inverse perspective transformation obtained of a known template on the wall   

 

CV processing with the standard web camera, which is compatible with a handset device, is 

sufficiently capable of estimating this perspective transformation.  Naturally, if such templates or 

icons are readily observable throughout the UE trajectory then one can question the 

requirement for the LTE signalling.  However, icons are not always available, in known locations 

or sufficiently distributed that they are visible throughout the UE trajectory.  Certainly in airport 

lobbies or commercial buildings such icon systems will inevitably be implemented. However, in 

more hostile or unknown territory scenarios, the existence of usable icons is not guaranteed but 

is probable.  Hence the development has been extended to markers of opportunity as observed 

in the FOV of the camera.  Also as will become evident is that the CV observables are useful in 

obtaining accurate assessment of short trajectory lengths but that ego-motion based on CV 

alone drifts.  Hence the combination of CV and LTE wireless observables are complementary.   

 

A major limitation with SGL based on LTE signals is the multipath propagation effects which 

typically randomly disperses the signal such that delay spread can be up to several hundred 

nsec.  Hence the deviation of the range measurements can be several 10’s of meters due to 

multipath alone.  This renders the LTE signals of very little information content in the SGL 

context.  Certainly the wide 20 MHz bandwidth helps as the resolvable components of the 
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multipath can be eliminated leaving only the initial group of multipath components 

corresponding to the leading edge and hence reducing the range uncertainty to about 30 

meters.  Also there is progress in LTE technology development to push the bandwidth up to 100 

MHz.  However, with current bandwidths, the delay spread in NLOS environments is such that 

the uncertainty in the pseudo-range measurement is too large to be of practical use for indoor 

SGL.   

  

In phase II consideration was given to representing the multipath delay bias with a random 

process as the bias will change between LOS and NLOS conditions.  The alternative is a 

Boolean switch that indicates states of high LOS and high NLOS.  The detector processing for 

such a switch is based on the synthetic array. Note that the AN-UE propagation path will be 

LOS in certain locations.  The SA can be used to accurately access the spatial coherency of the 

incident LTE wireless signal as illustrated in Figure 1-6.  Here the spatial coherency of the AN 

signal is evaluated as the UE is moved.  If the spatial coherence metric, denoted by LOS� , is high 

then a LOS condition is declared.      

 

 

Figure 1-6  Illustration of the boundary between the NLOS and the LOS region.    

Based on this assessment various options are available.   

1. Trigger a direct calculation of the estimate of the AN location relative to the UE trajectory if 

LOS�  is sufficiently high.  

2. If a radio map exists that is based on LOS� then modify the belief map of the location of the UE 

in a Bayesian sense that takes the overall UE trajectory into account.   

3. It is necessary to use a state variable in the SGL SLAM that is related to the delay bias 

between the UE and the AN.  Different values of the delay bias state variable can be used 

NLOS 

LOS 

AN 

UE 
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depending on the condition of multipath.  Hence  LOS� can be used to select the appropriate 

model of the delay bias for the currently encountered propagation condition.  

4. Multiple pseudo range measurements are made at each location of the UE as it moves along 

the trajectory.  The quality of these measurement in terms of the SGL objective is generally 

higher for LOS vs NLOS conditions.  Hence LOS� can be used to form a weighting factor related 

to how reliable a given UE-AN pseudo-range measurement is.   

5. RSS measurements are easier to generate by the UE and can also be incorporated as a set 

of measurements for the SGL.  If LOS� is low then a predominantly NLOS condition exists in 

which the RSS observables often provide more information than the pseudo-range 

measurements.  Hence the weighting of point 4 can be extended to the RSS observables. 

Figure 1-7 illustrates the trajectory of the UE intercepting the spherical wave emanating from the 

AN.  If the local trajectory can be accurately determined say from a CV input then if LOS�  is such 

that there is a LOS condition then it is possible to determine the location of the AN relative to the 

trajectory as stated resulting in a high information observable.  

 

 

 

 
Figure 1-7  Assessment of the spatial coherence by continuous sampling of the AN complex 
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An overall flow chart of the SGL processing is given in the Figure 1-8.  Initially prior maps and 

information are used by an initialization phase which configures the SLAM algorithm for SGL. 

The initial displacement increment is taken along the trajectory and the observables are sampled.    

  
Figure 1-8  Overall flow of SLAM algorithm 

 

Initialization phase – the UE is enabled for the SGL operation.  Any prior maps are read into 

the device along with knowledge of where it was last time it did an SGL estimate.  Any user 

input information is of course also applied.  Also radio maps are loaded in corresponding to the 

approximate location.  These will include the list of possible AN’s in the vicinity that are known.  

Additionally, the statistical trajectory information will be input and processed.  This may include 

knowledge of whether the UE is mounted to push cart, vehicle, foot soldier or other asset.  A 

search of GPS and perhaps other GNSS sources is done with a listing of the available sources for 

clock synchronization and possibly AN sources.  Next the UE clock offset is estimated from the 

set of observable signals.  It is assumed here that the UE is relatively stationary and that the 

signals are categorized for their quality in terms of use as frequency reference signals.   A model 

for the clock oscillator instability is then determined as will be used in the SLAM method.  Then 

the UE camera is used to scan for a LandMark (LM) that can correspond with the map.  The user 

can optionally assist in this stage by scanning the camera.  Of course if there are no relevant 
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maps available then this step is skipped.  Based on the observed CV LM’s and the set of GNSS 

signals and AN signals that are available the SLAM algorithm is configured along with an initial 

belief map of the UE (x,y) (and possibly z) position that is used for the SLAM.     

 
Figure 1-9  Initialization phase  

 

Sample observables 

The various observables are sampled as configured from the set in the initialization step.  These 

involve the wireless signals from the LTE, WiFi, RFID  or other sources of opportunity, any 

available GNSS signals, camera inputs as well as inputs from MEMS inertial sensors and 

magnetometers.   

 

SLAM update 

The fastSLAM method is used for the Bayesian filter for updating the trajectory and the feature 

point information. The most efficient combination is the PF used for the UE displacement and 

the EKF for tracking nuisance variables and converging map FP’s.   

SGL enabled 

read in prior information – relevant maps, user information, last location etc. 

statistical trajectory information  

wireless scans for LTE signals of sufficient quality, correspondences with map 

UE clock offset and stabilization 

construct initial belief map 

configure overall SLAM algorithm 

scan camera for LM’s that are cataloged in map 
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Figure 1-10 SLAM update 

 

Finally, the possibility of a map is being considered for the SGL activity.  Such a map, if 

available, would provide the UE with an outline of the building from which a prior belief map of 

location can be assessed.  It would show the position of permanent obstacles and walls such that 

probabilities of estimated trajectories can be assessed.  This is a very useful input for the various 

Bayesian filters that are being developed.  The map could also provide location of templates that 

can be observed by CV and perhaps the locations of AN’s.  In hostile scenarios where a partial 

map is available at best, an outcome of the SLAM could be to slowly anneal such a map and add 

features to it.  This is a powerful tool especially if there are several UE’s in the area 

cooperatively building up such a map. 

    

 

 

 

1.2 Outline of the report  

The organization of the remainder of this final report is as follows: 

 

trajectory update model 

- update particles representing position  

- EKF representing mapping and nuisance variables 

Determine the EKF  Taylor components 

based on the observations and update all of the EKF’s 

determine the particle weights and resample the particles 
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Chapter 2.  Overview of the SLAM algorithm for SGL – This chapter describes the SLAM 

algorithm as applicable to the SGL problem.  The general set of observables from the AN 

wireless downlink transmissions and the CV observables will be described in the context of 

being inputs for the SLAM algorithm.  The PF from the phase I will be reviewed followed by a 

development of the SLAM based on the Kalman filter (KF), extended Kalman filter (EKF) and 

then the fastSLAM which involves a combination of the EKF and PF.  fastSLAM will be what is 

used specifically for the SGL algorithm development.   The details of the SLAM algorithm 

research are contained in Part B. Also in this section is a detailed description of the downlink 

LTE signal. As described, the resource blocks in the reference channel contain the coherent 

synchronization blocks from which the signal phasing at the mobile can be estimated.  

 

Chapter 3.  CV Ego-motion -  There have been many new developments in the CV ego-motion 

that are of significance to the objectives of this contract.  These have been developed to the 

point that integration with the SLAM algorithm is practical.  The CV forms an independent set of 

observables that is useful for short term trajectory estimation.    Not only is the CV ego-motion 

used as SLAM observables but also as a means of testing the algorithms for the LOS AN wireless 

beamforming.  Given a good set of feature points, the ego-motion is sufficiently accurate to 

precisely track the translation and orientation of the wireless receiver.   

 

Chapter 4: Development of Experimental Hardware – Several iterations of the hardware have 

been undertaken with the current unit, capable of some simultaneous recording and fusion of 

wireless and CV signals in the SLAM context.  The receiver processing consists of two parts. The 

first is the signal is down-converted, sampled and stored.  Then post-processing simulates the 

SLAM tracking algorithms along with the synthetic beam forming.   

 

Chapter 5: Discussion - Overall observations and outcomes of the theoretical and experimental 

outcomes and suggested next steps.  
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Chapter 2 SLAM SGL Algorithm 
 

2.1  Overview 

In this chapter the outline of the SLAM method developed for the SGL system will be described.  

The bulk of the details are in part B of the report which describes the OWLS (Opportunistic 

wireless location system).  As described in Chapter 1, the SGL problem involves the estimation 

of the UE trajectory with LTE wireless signals emanating from AN’s from which range 

measurements are extractable.  AN’s occur in two types: Anchor nodes where the location of 

the AN is known which is denoted as ANan and feature nodes of initially unknown position 

denoted as ANfn.  In either case there are additional unknowns such as the delay bias 

attributed to each UE-AN link as well as the orientation of the UE which affects the antenna 

response.  SLAM processing is ideally suited for this type of SGL problem and will be developed 

in this chapter.     

The basic assumptions are as follows: 

1.  LTE wireless signalling will be used for the observables 

2.  Only downlink LTE signals will be assumed.  The UE is not registered with the network and 

hence uses the LTE downlink signals as signals of opportunity. 

3. The LTE downlink signals from the various AN’s may or may not be accurately time 

synchronized.  Both modes will be considered. 

4.  The UE has to have all the information regarding the SGL estimate such that a handset based 

location solution is possible for an uncooperative network. 

5. Multipath will be variable as indoor and dense development areas are of primary interest.  

6. The UE is expected to be undergoing some arbitrary motion that varies in terms of 

smoothness. 

7. UE  is not frequency synchronized to the AN in any way.  That is it must be assumed that the 

UE has a free running clock. 

8. CV inputs are available for updates  of the UE pose.  
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9.  SGL algorithm must accommodate the possibility that the AN locations are not accurately 

known.   

The overall objective is to generate a belief map of the location of the UE as the trajectory 

unfolds.  The belief map will provide a posterior estimate of the location of the UE that is 

iterated every time interval which is based on all available data up to the current time.   For 

such estimation problems based on the aforementioned assumptions, it is generally not valid to 

assume Gaussian statistics.  Consequently Kalman filter (KF) type parametric Bayesian filters 

(BF) are typically sub-optimal. The particle filter (PF) has been developed for the SGL problem 

as described in the first interim report.  However, a limitation is that the number of state 

variables is large such that a mix of EKF and PF is necessary which is the fastSLAM algorithm 

that will be developed for the SGL problem.  

Indoor environments are subject to severe multipath which significantly distorts wireless 

signals in the LTE frequency bands.  Even though LTE has a potentially large 20 MHz bandwidth, 

this is typically not sufficient to provide adequate accuracy of time of flight measurements for 

indoor SGL.  Multipath distortions it itself renders traditional isolated location estimate 

methods of SGL virtually useless for indoor applications where an accuracy of 1 meter is 

required. Combatting the effects of multipath is the most significant challenge in providing 

adequately accurate LTE based SGL.  This is exasperated by the fact that the AN’s are not 

necessarily synchronized nor in accurately known positions.  This implies that there is a random 

delay offset that must be considered with regards to each AN that cannot be considered to be a 

Gaussian random variable.  The only way to mitigate these limitations is if the relatively smooth 

trajectory of the UE is exploited by the BF. With a smooth trajectory, multiple measurements 

between the UE and the same AN can be combined.  The other key point is that the AN is 

assumed to be stationary.   Additionally it is optionally assumed that CV inputs exist such that 

the relative short-term update motion in terms of translation and orientation can be 

determined and passed to the BF as statistical UE update information.  The CV will be assumed 

to consist of a small webcam which is compatible with the monocular 3D vision systems. An 

overall imposed constraint is that the UE needs to be self-contained and that the apparatus and 
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processing required for the SGL function must be commensurate with the handheld form factor 

hence the monocular limitation.   

 

Initially pure LOS links will be assumed between the UE and the various AN’s.  However, these 

will be supplanted with NLOS multipath links which will be accounted for by assuming a time of 

flight (TOF) bias that varies with time. Hence it is not really a bias but more a slowly varying 

random variable representing the bias.  This bias can switch quickly when moving from LOS to 

NLOS conditions.  As described previously, Boolean switch models and Markov models have 

been analysed for the fluctuating delay bias issue.  We have also analysed the possibility of 

generating a metric based on the equivalent of the Ricean K factor which provides an 

approximate measure of the level of multipath in the LTE wireless signal sources.  

 Boolean multipath model switches are compatible with the Bayesian filter however with the 

expense of carrying an additional state variable.  An example of a scenario where the 

propagation changes from LOS to NLOS is shown in Figure 2.1.  The concept would be that the 

processing would have to recognize that there has been a change in the propagation perhaps 

from  the coherency of the carrier phase as the UE propagates.  This is where the CV updates 

will have a significant impact as they will provide a short term trajectory that is sufficiently 

accurate to facilitate beamforming on the AN signal to determine it’s spatial coherency.  Hence 

the quality of the LOS component can be determined and different models can be switched into 

the SGL SLAM algorithm.      

 

 

NLOS 

LOS 

AN 

UE 
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Figure 2.1  Illustration of the boundary between the NLOS and the LOS region.  In theory, as the 

UE moved across this boundary, the bias model would switch from LOS to NLOS with 

appropriately selected delays 

The LOS/NLOS state variable can take several forms.  The first is a Boolean indicator whether 

the signal carrier phase is sufficiently coherent such that a LOS threshold is surpassed.  Hence 

the Bayesisan filter can incorporate both the LOS and NLOS propagation models for the signal.  

For the LOS case a fixed excess propagation delay can be assumed.  In the pure NLOS case, any 

time delay observables are of little value to the overall SLAM and the RSS observables are used 

instead.  While individual RSS measurements are low in information value, the sequence of RSS 

measurements can give approximate location information where TOA based observables are 

useless.  

Another implementation is that the excess propagation delay is a state variable.  The receiver 

demodulates the resource blocks of the LTE signal which are narrow bandwidth coded signal 

bursts that are then Fourier transformed to obtain the channel time domain impulse response.  

The TOA estimate of a given LTE signal is then taken as the time of the leading edge of the 

transformed impulse response offset by the parameter “b” which is determined by the PF.  The 

higher the aggregate bandwidth of the LTE downlink signal the sharper the leading edge 

transition of the estimated channel impulse response will be which will result in less variation of 

“b”.  In turn, this implies that the spread of the posterior pdf of the state variable belief is more 

confined resulting in an overall lower position variance.    

In summary, the key to indoor positioning based primarily on wireless signalling is that the 

there is a sequence of correlated measurements.  That is the trajectory of the UE is relatively 

smooth.  This correlates the observables such that even if the trajectory is random, a steady 

state covariance of the state variable vector is achieved.  

The Bayesian Fisher information matrix (BFIM) is derived as a central key to the SLAM-based 

opportunistic wireless localization system (OWLS) that unifies all information from observables, 

the MN trajectory, and a priori knowledge in one single matrix. The BFIM illustrates that 

observability of a SLAM-based OWLS is achieved under the assumptions of stationary ANs and 
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the MN smooth trajectory.   The development of OWLS is convoluted and detailed in places.  

Consequently, in an attempt at a coherent overview, the details of OWLS are deferred to part B 

of this report.    

 What makes indoor positioning difficult in the LTE SGL scenario is that there are so many 

unknowns.  If the UE trajectory was the only unknown with the AN’s synchronized and in known 

locations, and the propagation LOS then the SGL would be that of the conventional GPS 

navigation problem which is very well understood and generally robust.  Unfortunately, in the 

LTE SGL context, the location of the AN’s is generally unknown as is the code phase of the 

signal.  Furthermore the multipath propagation results in a TOA bias that is unknown and is not 

stationary. Further the clock of the UE is not synchronized to any reference point in the 

network.   Hence SGL is a problem where the UE trajectory is a small component of the overall 

list of unknowns with the bulk of the unknowns being the vast list of nuisance parameters 

involving the AN’s and the multipath propagation.   For this reason the development of SLAM 

(Simultaneous Localization and Mapping) has been pursued.   SLAM is a promising algorithm for 

this situation as the mapping component can be more abstract than merely determining the 

position of the AN’s as part of the map discovery.  SLAM will simultaneously determine the 

unknown parameters of the AN’s and the trajectory of the UE itself.  Hence the “map” 

component consists of the long list of nuisance  parameters. The key result of the early work in 

SLAM was that there is a high degree of correlation between estimates of the location of 

different landmarks in a map and these correlations would increase with future observations 

[1].   Later in decade of 1990, the key research on convergence were developed by Csorba [8] 

and then on KF based SLAM methods and the probabilistic localisation and mapping methods 

by Thrun [9]. The conceptual breakthrough in SLAM research formulated around this time was 

that it was generally convergent.  It was recognized that the correlations between landmarks 

were the critical component that enabled convergence. 
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To describe SLAM in the SGL context begin with a consideration of the isolated UE for which we 

wish to estimate the position.  Clearly this is impossible without any observations so assume an 

AN that generates a recognizable pilot signal as observed by the UE which perhaps does a TOA 

measurement of the signal relative to it’s own clock.  Unfortunately this provides no 

information as the AN location is not known, the downlink signal is not synchronized and the 

phase of the UE clock is random.  Now suppose that the UE moves and at an other time instant 

observes the AN signal.  As the two UE positions are assumed to be independent, nothing is 

gained from the second observation.  If the UE was stationary such that the measurements 

were totally correlated, we would just have two measurements of the same thing.  In fact the 

measurements would still be uncorrelated as the clocks are not synchronized and that the time 

interval between measurements is assumed to be entirely random.   

But now suppose that the time between measurements is a fixed time set by the UE and that 

the frequency offset and drift between the clocks has been noted by the UE.  Then based on the 

sequence of two measurements it is possible to say that the UE radial distance from the AN has 

changed by an estimated amount subject to some uncertainty traceable to the relative 

instability of the clocks and perhaps TOF variations due to multipath.  However, this is 

information regarding the UE trajectory albeit modest.  Now suppose that the UE is moved by 

an operator who is constrained to some form of stochastic model.  That is we know the 

operator is walking and not in a high speed vehicle for example.  Now the radial position 

information can be combined with the user motion dynamics model to present a refined 

estimate regarding the trajectory.  Now consider this as extended over a number of 

observations as the UE is moved.  We can infer plausible trajectories from the sequence of 

observations and the prior assumptions of the dynamics model.  The end result after the 

sequence of observations is a belief map or PDF of the possible UE trajectory relative to the 

unknown position of the AN.  Even though the absolute position is not known, there is 

quantifiable information in the resulting conditional belief map. 
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Next consider another AN from which the UE can make observations. The only assumption is 

that both AN’s are stationary.  The UE is moved while a sequence of observations is made.  

Without observations, as time progresses, the PDF of the UE location will diffuse due to 

uncertainties in the UE motion itself.  The observations themselves are subject to clock 

instability and variations in the multipath delays.  However, the net information of the 

observations will tend to offset the probability diffusion that occurs due to the UE dynamics 

itself.  It is the correlation between the sequence of measurements that provides the 

information rather than the isolated measurements themselves.  SLAM will extract all of the 

information contained in these correlations and establish a joint belief map of all of the 

unknown variables.  These include not only the UE trajectory but also the nuisance or mapping 

variables.    

  

qt-1 qt qt+1

ut-1 ut ut+1

zt-1 zt zt+1

m

qt-1 qt qt+1

ut-1 ut ut+1

zt-1 zt zt+1

m
 

(a)                                                                                        (b) 

Figure 2.2 Graphical schemes of a) online SLAM in comparison with b) full SLAM 

  

As the UE is moved and the location of the M fp’s and the UE trajectory is estimated, the errors 

in the state variables are correlated  [2].  This correlation is exploited in SLAM and can be 

conceptualized as an emerging mesh of constraints as illustrated in Figure 2.2.  Here z denotes 

the measurement, m the variables associated with the AN’s and other nuisance parameters.  u 
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denotes the UE position or the trajectory and q the dynamics model of the UE location update. 

Typically an on-line SLAM algorithm is required that continuously processes the information 

and provides the output of the most current estimate of the UE trajectory and mapping 

variables.  This is illustrated in Figure 2.2a.  In Figure 2.2b the off-line SLAM is illustrated in 

which the overall UE trajectory estimate and mapping variable estimate is done off line.  Hence 

the overall trajectory is not available until all of the observations have been made.  While the 

off-line gives better performance as it uses all of the measurements made it has an obvious 

latency issue such that it is not suitable for real time applications.  One illustration of the SLAM 

constraints is that of representing the individual constraints as springs between the fp’s and UE 

pose as shown in Figure 2-2.  An observation at each time is analogous with a displacement in 

spring network and it correlation effects on neighbors depends on their distances to other 

feature points, i.e. , the nearer they are, the greater is effect. As the UE moves and received 

more observations of feature points, the correlation between feature points’ estimates 

increase and the spring become stiffer.  Noise and un-modelled uncertainty can be imagined as 

disturbances to this spring model that distorts the estimates of the state variables.  Hence the 

stiffer the springs, the more robust the solution and the less the influence of these noise 

disturbances will cause errors.  Note that the map features could be in known locations.  As 

such they are anchors from which absolute location reference can be inferred.  Also map 

features could have various degrees of freedom.  For instance, a floor marker may not be 

unique but may be oriented in a specific direction. A difficultly that is encountered with 

features in SLAM is that of establishing correspondence.  For active AN’s, this is not an issue as 

the signal is generally coded such that it can be uniquely identified relative to the other AN 

signals.  However, if the AN coding is not known beforehand then it is difficult to separate it 

from the other AN emissions compounding the correspondence problem.  SLAM maps for SGL 

can extend beyond the AN’s as CV is used.  Hence while CV is powerful in terms of establishing 

and using map fp’s there is the issue of determining correspondence as will be developed in the 

following chapter.  

 

2.2  SLAM Information Matrix 
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SLAM in the SGL context is a unifying method that can accommodate multiple disparate 

observations over multiple time intervals.  It can also accommodate what is known and 

unknown about the various features provided that the uncertainty can be quantified by 

reducing it to a set of covariances.  SLAM thereby forms a unified framework for fusing the 

information from all of the disparate bits of information, constraints, measurements and so 

forth into a single information matrix.   It is therefore ideal for the LTE/CV/SGL problem 

formulation. 

   The concept of the information matrix, denoted in general by J , is key to the SLAM algorithm.  

It can loosely be regarded as a quantitative summary of all of the information regarding the 

unknowns in terms of the map variables and the UE trajectory in one matrix.  The relation to 

quantifiable information is only valid for the case where the problem is linear and jointly 

Gaussian however for problems where the nonlinearity is mild and that the measurement and 

update noise is unimodal and approximately Gaussian then the information matrix has deep 

significance.  To develop the information matrix assume that the MLE of a set of variables of q  

can be approximated as being jointly Gaussian represented by � �1,N y �J .  Here q  represents 

the actual value of the state variable vector expressed as 

1

t

q

q
q
m

� �
� �
� ��
� �
� �
� �

�
�
��

 (1)  

For typical problems that are not strictly Gaussian, the approximation of the PDF of the MLE as 

� �1,N y �J  is still generally valid.   Regardless, J  is the information matrix and is the inverse of 

the covariance matrix of the MLE estimators for q .  The concept of the information matrix is 

best exemplified through the following set of simple examples.  

 

Consider a case where the UE undergoes random motion in the x direction according to a first 

order markov (random walk) model.  Consider the initial step where � �2
0 00,x N �� 2

0�0N �  which is of 

course the prior PDF.  Now consider the step between 0x and 1x as shown in Figure 2-4. 
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Figure 2-4 One step problem 

 

The update from t=0 to t=1 is characterized by  

� �
1 0

20, u

x x u

u N �

� �

� 20, uN �
 (2)  

The joint posterior PDF of � �0 1,x x is given as a normal of zero mean and covariance of  

2 2
0 0
2 2 2
0 0 u

Q
� �
� � �
� �

� � ��� �
 (3)  

Note that the covariance of 1x  given 0x is denoted as 2
1|0�  is determined as 

� �
4

2 2 2 20
1|0 0 2

0
u u

�� � � �
�

� � � �  (4)  

which makes sense.  Likewise the covariance of 0 1|x x is  

4 2 2
2 0 0
0 2 2 2 2

0 0

u

u u

� � ��
� � � �
� �

� �
 (5)  

which for the case where 2 2
0 u� � 2

u�  is about 2
u� .  If there is no measurement then the variance 

of the estimate of 1x  is 2 2
0 u� ��  which is also consistent with the covariance matrix.   The 

inverse of Q is given as 

2 2
20

1 2 2
0

2 2

u
u

u

u u

J Q
� � �
� �
� �

�
�

� �

� ��
�� �� � � �

� ��� �

 (6)  

Note that J  can be expressed as 
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0
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 (7)  

which is the combined information from the initial condition and from the update.  Note that 

� �
� �

0 1
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2
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x x
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J

J
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�

�

�

�
 (8)  

Consider another problem where we have a measurement associated with an anchor point of 

1m  as illustrated in Figure 5.    Assume that the variance of the measurement of the anchor 

point is 2
z� .    

 
Figure 2-5 Single measurement of an initial trajectory point   

 

The covariance of 0x  given the measurement is  

4 2 2
2 2 0 0
0| 0 2 2 2 2

0 0

z
z

z z

� � �� �
� � � �
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� �

 (9)  

Now suppose that we consider the measurement as an amendment to the prior one step 

problem as shown in Figure 2-6.  The two steps with the measurement of the anchor feature. 

From the graph we can infer 

2 2 2
1|0, 0|

2 2
20

2 2
0

z z u

z
u

z

� � �
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� �

� �

� �
�

 (10)  

x0 

m1 
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Figure 2-6 Single step with a single measurement 

Alternately, consider the state vector of � �0 1
Tq x x� : 

1. first start with the covariance matrix of the positions 

2 2
0 0
2 2 2
0 0 u

Q
� �
� � �
� �
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 (11)  

2. The information from the measurement is given as 

2 0
0 0
z

zJ
� �� �

� � �
� �

 (12)  

as it refers to the 0x  position state.  

3. Compute the total information 

2
1 0

0 0
z

totJ Q
� �

� � �
� � � �

� �
 (13)  

4. Determine the inverse 

1
tot totQ J ��  (14)  

For the current example we can determine that 

2 2
0 2 2 2 2 2 2

2 2 0 0
0 2 2

0

1 1

1
z

tot z z u u
z

z

Q � �
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 (15)  

 

Note that  

� �
2 2 2 2 2 2 2 2

2 20 0 0
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z z u u z
tot u z

z z
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 (16)  
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Note that incrementing the information matrix J with a new incremental entity of information 

such as a measurement is trivial as illustrated by this example.  The only processing problem is 

that J has to be eventually inverted to extract the actual variances of the state variables.  The 

other issue is of course that of the underlying assumption of the problem being jointly Gaussian.  

Note that if the measurement provides no information then 2
z� �  and 2 2 2

1|0, 0z u� � �� �  as in 

the previous example. 

 

Next suppose that independent measurements of the anchor were done from both 0x  and 1x  

which is illustrated in Figure 2-9.  

 
Figure 2-9 Two independent  measurements of the position states 0x  and 1x  

The information matrix for the two independent measurements is given as  
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0
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z
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J
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 (17)  

Note that we are implying here that the noise or uncertainty in the measurements is 

independent and hence the contribution to zJ   is a diagonal matrix.  The state covariance is 

then determined as 

12
1 1

2

0
0
z

tot tot
z

Q J Q
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�
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 (18)  

Next consider the problem depicted in Figure 4-9 but now assume that the anchor point is from 

a feature point of initially unknown location. Now we have a state vector of � �0 1
Tq x x m� .   

The covariance matrix of the updates is given as  

x0  x1 

mm 
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 (19)  

The information added by the two independent measurements between m and 0x  and between 

m and 1x  are captured in the pair of information matrices as 
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 (20)  

 

and 
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 (21)  

Note that while the two measurements are independent they individually couple the state 

variables of  m and 0x  and m and 1x .  Hence the overall covariance matrix is given as 

1
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0 0
2 2 2
0 0 2 2
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2 2 2
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 (22)  

An interesting observation in this example is that it is the multiple connectivity of a fp that makes 

it carry useful information.  A fp measurement that is only connected to one state variable does 

not convey information.  We can see this in the present example from the observation that 
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Also it should be pointed out that the component of the information matrix for the measurement 

has the form of 
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 (23)  

where � �|p z q is the joint pdf of the measurements.  Note that for the case where the 

measurements are jointly Gaussian with a covariance that is independent of q then 
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 (24)  

Reconsider the one step problem shown in Figure 4-6 with the assumption that initially nothing 

is known of the position of 0x and 1x .   Now information is given as � �2
0 00,x N �� 2

0�0N �   and 

� �2
1 0 0, ux x N �� � 20, uN � .  We then have 

11 2 22
0

2 2

2 2
0 0
2 2 2
0 0

0 0
0 0 0

u u
s

u u

u

Q
� ��
� �

� �
� � �

�� � ��

� �

! " � �� � �� �
# $� � � � �� �� �# $ �� � � � � �% &

� �
� � ��� �

 (25)  

In the special case where the following conditions are met: 

1. initial distribution of the state variables is jointly normal 

2.update of the state vector is a linear function of the state at the previous iteration 

3. measurements relate linearly to the state variables 

then the state variables conditioned on the measurements remain jointly normal.  In this case 

the MMSE estimate of the state variables given as the conditional mean as (Kay pg.382)   

� � 1
mmse qz zzq E q Q Q z�� �  (26)  

is the efficient estimator.  The covariance of this estimator is denoted as |q zQ   and is given as    
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1
|

T
q z qq qz zz qzQ Q Q Q Q�� �  (27)  

where |q zQ is the inverse of the Fisher Information matrix. Hence the information matrix provides 

a direct quantification of the variance of the state variables without having to calculate the 

estimator first.  Hence the information matrix provides an important means of determining the 

classes of SGL SLAM problems that are solvable. 

 

The information matrix is the kernel of any Bayesian filter approach and especially SLAM which 

incorporates many disparate observations.  Recognizing the information associated with each 

observation such that it contributes constructively to the estimation of the eventual overall set of 

state variables is the key to a SLAM implementation.  Details of SLAM based on various 

Bayesian filters will be given in part B.   

 

2.3  Downlink LTE signalling 

 In this section we intend to expound on the details of the downlink of an LTE system. That is 

the link between eNodeB to UE.  For convenience we also denote the eNodeB as the access 

node or AN. LTE also known as evolved universal terrestrial radio access (E-UTRA), Super 3G 

(S3G) has differentiated itself from WCDMA by using Orthogonal Frequency Division 

Multiplexing (OFDM) as a way to transfer data for its downlink scheme and Single Carrier FDMA 

(Frequency Division Multiple Access) for its uplink scheme.  

LTE is designed to transfer packets and should satisfy the following specifications. 

 

( 100 Mbit/s for downlink and 50Mbit/s for uplink 
( Optimized operation for mobility of 0 to 15 Km/h and high performance between 

15Km/h to 120 Km/h and connected at speeds above 120 Km/h till 350 Km/h. 
( Bandwidths of 1.5 to 20 MHz depending 
( Support of both FDD (Frequency Division Duplexing) and TDD (Time division Duplexing)  
( User latency of 5ms and control latency of 100 ms going from idle to active 
( Support for 20 users at 5MHz bandwidth and 400 users at higher bandwidths. 

The difference between the LTE and prior standards is the reduction of latency and new 

modulation scheme that has improved the performance. LTE has reduced the interfaces 

between the core network and the base station which is also called eNodeB. In LTE eNodeB 
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does the both jobs of mobility management and radio resource management which reduce the 

latency between these tasks. Figure 2-6 shows the structure of LTE architecture. 

 
Figure 2-6 LTE architecture 

 

LTE is divided into user plane protocols and  control protocols which all  reside between the 

eNodeB and the UE (user end) or as it called the mobile terminal (also User Equipment). These 

protocols are shown in Figure 2-7.  

 
Figure 2-7 User plane and Control plane protocols 

The protocol layer we are interested in is the Physical layer which is all the modulation; coding 

and antenna schemes are located.  LTE uses OFDM with cyclic prefix. OFDM is a type of multi-

carrier transmission where narrowband channels overlap each other but remain orthogonal 

due to their unique orthogonal basis function. Figure 3-3 shows an OFDM carrier division.  

Figure 2-8 shows LTE block diagram. 
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Figure 2-8 OFDM carrier spectrum 

 

 
Figure 2-9 LTE Physical layer block diagram 

 

The two important blocks that we are interested in are the resource mapping and the antenna 

port blocks. Resource mapping has the task to assign symbols to the carriers based on the 

quality of the particular channel.  LTE transmission is based on radio frames. LTE has a 10 ms 

radio frame which is divided into 10 sub-frame and each 1 ms sub-frame is divide into 2 slots of 

0.5 ms. Slot is the smallest unit of LTE radio structure with 0.5 ms time duration each slot 

contains 6 or 7 symbols for normal and extended cyclic prefix consequently. The length of cyclic 

prefix is related to the channel length and the symbol number. A larger CP is intended in rural 

areas and the shorter CP in urban areas where the channel length is smaller and higher 

throughput without a loss of signal orthogonality is required. 
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OFDM symbols have either normal or extended cyclic prefix. In case of a normal CP, the CP 

length is equal to 5.2 us for the first symbol and 4.7 us for the remaining symbols. A CP length 

of 17.7 us is used for the extended CP which as mentioned before is used in areas where there 

is a long delay spread. OFDM symbol duration without a guard interval has a duration of 66.7 

us. Figure 2-10. Shows LTE radio frame and the mentioned timings. 

 
Figure 2-10. LTE radio frame 

 

LTE supports channel bandwidth from 1.4 to 20 MHz and subsequently subcarrier sizes from 

128 to 2048 carriers. Sampling time of it has been carefully placed at multiple of 3.84 MHz at 

30.72 MHz for back compatibility with legacy standard like UMTS and EDGE. 

 

The subcarrier frequency space is divided into smaller units named as resource block. Each 

resource block consists of 12 carriers and 2 slots which can virtually be shown in time and 

frequency domain. A resource block consists of 84 resource elements for normal cyclic prefix 

and 72 resource elements for extended cyclic prefix. A resource element is a symbol 

transmitted on a single carrier on an OFDM symbol.  Carriers in a resource block are spaced 15 

KHz apart, therefore an RB spans the bandwidth of 180 KHz. 

 

In order to obtain channel information for coherent detection and synchronization some 

carrier-symbol cells of the resource block is dedicated to reference signals. These reference 
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signals are either Pilots, which are known symbols transmitted at certain RE’s or dedicated 

channels for synchronization such as PSS (primary sync. series) and SSS (secondary sync. series) 

channels. Pilots are inserted in the RB depending on what antenna port is being used.   In a 

simple single antenna scheme pilots is placed in  

 
Figure 2-11 Resource block (RB) and Resource Element (RE) 

 

first and third last  OFDM symbol. Pilots are placed 6 carriers apart in frequency domain and 3 

symbols apart in time domain. The simplest channel estimator scheme needs to interpolate in 

time and frequency domain to obtain the channel response for the entire resource block. 

Obviously more sophisticated methods are used when mobility is involved. 
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Figure 2-12 Resource element and pilot positioning in CP for two antenna ports 

 

In a multiple antenna scheme pilots are positioned such that they are orthogonal to other 

antenna ports. A channel estimation algorithm requires calculating the channel information for 

each of the antennas separately.  In a multiple antenna scheme, the resource elements 

occupied for the pilot in one antenna port is empty in another antenna port RE to avoid 

interference with each other. Figure 2-12 shows the pilot positioning for a normal CP scheme in 

two antenna ports. In the channel estimation section we will show how the pilots are used for 

estimating the channel information. Before we proceed into detail physical layer algorithms we 

need to investigate the procedures in LTE to know how UE and base station communicate.  

Important physical layer procedures 

The most important procedure  that UE uses to initiate a communication with the eNodeB are: 

 

( Cell search 

( Random Access procedures 

 

CELL SEARCH 

Cell search is the method that UE uses to find a suitable base station to communicate with. UE 

identifies the cell which is associated with the base station via detecting the primary and 

secondary synchronization signals that are transmitted from the base station on regular basis. 

When discussing the synchronization procedures we will examine the cell search procedure in 

more detail. 
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What important for us is that cell search procedure is also utilized to search neighbouring cells 

for handover procedures. Resource have to be allocated at specific time to minimize 

interference with cells own resources.  

 

RANDOM ACCESS PROCEDURES 

UE requests resources from base station using the RA channels. This would be important as if 

utilized extra information would be available for the UE to estimate its position. In order to 

initiate such requests the user terminal needs to send known preambles which are the Zadoff-

Chu sequences. These sequences have the characteristic that they build an orthogonal basis 

each and when transmitted together are separable. As long as they are not repeated by 

different users there would be no collision. When base station detects the preamble or in other 

words the RA procedure request, the terminal can send further information and initiate the 

channel. Random access channels can be a part of standalone locationing algorithm as it utilizes 

the eNodeB and UE alone. 

 

In order to conduct the experiments as realistic to the LTE physical characteristics we briefly 

outline the LTE characteristics. 

 

SUPPORTED BW  

LTE supports the following bandwidths. Each bandwidth then would have specific RB’s that it 

can support which in turn dictates the number of maximum pilots available to each UE. Table 2-

1. Shows the available bandwidth. 

 
Table 2-1. Supported Bandwidths 

LTE DUPLEX 

LTE transmits in FDD or TDD full and half duplex method. E-UTRA TDD band 40 is the band that 

occupies the ISM band and could be utilized for tests. This band occupies 2300 to 2400 MHz. 
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LTE SPECTRAL MASK 

FCC guidelines for the LTE transmission masks are shown in Figure 8. It is suggested that tighter 

requirements be placed for locationing purposes to reduce interference from neighbouring 

cells. Possibly this should go with better pulse shaped OFDM transmitter and receivers for 

locationing purposes. This is feasible if non-commercial radio is intended. 

 

 
Figure 2-13 LTE TX spectral mask 

 

 

OFDM have succeeded as a high data rate transmission scheme on the fact that it combines 

high data rates with low symbol period time. Unlike a single carrier transmission where data 

rate is inversely proportional to the symbol duration Ts, therefore susceptible to channel delay 

spread Td, OFDM by transferring serial data symbols in parallel increases he symbol time in 

expense of slight frequency bandwidth increase. 

 

In OFDM stream of data is first converted from serial to a parallel stream and then transmitted 

onto each carrier. The transformation of serial stream into N parallel data streams increases the 

symbol time, which is the time it takes for one symbol to transmit, by a factor of N. Figure 9. 

shows a typical OFDM transmission scheme. 
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Figure 2-14 OFDM transmission 

As seen in  Figure 2-14 each symbol is transmitted via one carrier. In an OFDM system total 

number of carriers is always more than the transmitted symbols. Some of these extra carriers 

are used as guard bands and some used to transmit reference symbols.  Figure 3-10 shows an 

OFDM transmitter and receiver. 

 

 
Figure 2-16. OFDM transmitter and receiver 



 

 

 

  48/143 

 

One concept in modem design is the equalization and match filtering. OFDM modulation 

scheme has solved the match filter concept by using two orthogonal and matched basis 

function which is sine and cosine transformation. An iFFT and FFT is used as transmitter and 

receiver matched filters. In such scheme equalization of the signal is done in frequency domain, 

therefore prior to match filtering preserving the symbol energy in one FFT block is very 

important. 

 

OFDM solves the channel effect and the ISI by introducing Cyclic Prefix and by simply copying 

the last L symbols to the beginning of the block and then transmitting through the channel. By 

doing so any channel with length less than L will have its effect preserved in the CP. In this way 

an FFT block becomes cyclo-stationary and it would be unimportant from which position the 

FFT block is taken as long as it contains the whole CP as a part of the block. By doing this 

basically the effect of the channel is reversed and OFDM blocks are capable of equalizing the 

channel very effectively with minimal resources provided that they are given the channel 

information in frequency domain. Figure 3-11. shows the position of CP in an FFT block. In this 

figure Tcp is the duration of the CP which depends on the channel it is going to be used. Tu is the 

actual symbol duration. 

 
Figure 2-17: Cyclic Prefix in FFT block 

At the receiver the beginning of the packet is  found and from that position and FFT block is 

separated and an ISI free block is passed to the FFT which in turn transfers back the signal from 

what is known time domain to frequency domain.  We will dig into the math of such operation 

next. 

Down Link Model 

Now that we have familiarized ourselves with OFDM, LTE basic facts and procedures we will 

discuss the LTE downlink specifically.  



 

 

 

  49/143 

 

( LTE resources 

( LTE Synchronization 

( LTE Channel estimation 

We also discuss LTE preambles (Zadoff-Chu sequence) and their unique characteristics. 

 

SYNCHRONIZATION 

No resource can be extracted including pilots if proper synchronization is not performed 

between eNodeB and UE. The following synchronization has to be performed: 

( Carrier frequency synchronization 
( Symbol and frame timing synchronization 
( Sampling clock synchronization 

Without the above three synchronization no pilots can be extracted and no channel 

information culd be calculated, therefore prior to channel estimation we are interested in how 

to make a good synchronization. 

CELL SEARCH 

UE (user equipment) needs to perform a cell search procedure to access an LTE cell. This 

involves detecting the Primary Synchronization Signal (PSS) and Secondary Synchronization 

Signal (SSS) which is broadcasted by the eNodeB at specific radio frame locations for this 

purpose. 

 
Figure 2-18: Cell search procedures 

As seen from Figure 2-18, in order to examine the pilots for neighbouring cell and associated 

cells, SSS and PSS has to be performed in order. In a radio frame the PSS and SSS signal position 

is different for FDD or TDD transmission. Figure 2-19 shows the position of these signals in the 
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radio frame for both types of frames. Prior to SSS detection the CP length is unknown so the 

synchronizer blindly should search for the SSS in the given locations. Totally 4 different 

positions has to be searched if both TDD and FDD is supported in an algorithm design.  PSS 

signal always proceeds SSS either immediately (FDD) or after 3 symbols (TDD). The job of a 

locationing algorithm besides extracting information from the channel information is to provide 

better synchronization algorithms for neighbouring cells if it intends to use multiple cell 

information in its positioning algorithms. 

 

We mentioned the position of the PSS and SSS signals in time domain which their position in 

the radio frames. Now we are interested in their position in frequency domain. As no 

bandwidth information is known prior to synchronization the PSS and SS are positioned in 

centre of the frequency band occupy 6 resource blocks (RB’s) which is the minimum number to 

allocate.  The PSS and SSS have 62 symbols which are all mapped to 62 central carriers in the 6 

mentioned RB’s. As mentioned before each RB has 12 subcarriers which mean from 72 

subcarriers available only 62 carriers are used and the rest is not used.  This means 5 RE at each 

end of the resource block is not used. Figure 2-20 shows the position of the RB’s and the empty 

RE’s at the lower end RB. 

  

(a) (b) 

Figure 2-19: (a) FDD frame, (b) TDD frame 
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Figure 2-20: PSS and RSS position in RB’s 

DETECTION OF PSS AND SSS 

PSS uses Zadoff-Chu (ZC) sequence. ZC sequences are Constant Amplitude Zero Auto correlation 

sequences. Unlike golden codes these codes are non-binary and suitable for IQ transmission. 

Equation 1 shows the odd length ZC sequence: 

 

                 (1) 

 

Where : 

 is the root index. 

 

 where in LTE l = 0 is used. 

 

               (2) 

 

Where R(.) is the autocorrelation function of ak at position  

The properties of these sequences are: 

( ZC sequences have constant amplitude in time and frequency domain. 
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( ZC codes have ideal cyclic autocorrelation which enables the user to detect the codes 
even when they are delayed. If the code is designed to operate at delay N. The 
autocorrelation of a delayed sequence will generate a peak at the delayed time as long 
as the delay is shorter than the designed maximum delay of N samples. 

( Multiple orthogonal sequences can be generated from one sequence. The cross 

correlation of two sequences have a constant amplitude of   if and only if the 
difference of sequence indices are relatively prime to . This means if  is chosen as 
a prime number  orthogonal sequences may be generated by just changing the 
indices of the sequence. 

( A DFT of the ZC sequence is a weighted cyclic shift ZC. This means ZC can be generated 
in frequency domain directly. Later some papers will be shown that use this property to 
generate ZC sequences efficiently. 
 

PSS SIGNAL: 

As mentioned above the ZC codes can be generated in frequency domain directly. The 

frequency domain codes have the exact same characteristic as time domain ZC codes. A PSS 

signal uses this feature and transmits a 63 length ZC code on 63 carriers with middle code 

punctured to avoid dc subcarrier. LTE uses 3 PSS codes for 3 possible physical layer sections in a 

cell which means one PSS code for each group in the cell. 

In equation (1) q is the root of the ZC sequence. PSS codes are defined if choosing  and q = 

29, 34, 25. The chosen PSS signals have low sensitivity on frequency offset and can still be 

detected if there is a 7.5 KHz frequency drift. This is due to their almost flat frequency response. 

A correlator will decide which code has been transmitted. The received signal is correlated 

against the existing codes and the position of the peak shows the offset of the signal. 

SSS SIGNAL: 

SSS is signal is an M-sequence. It is constructed by interleaving two 31 length BPSK M-sequence 

codes known as SSC1 And SSC2. SSC1 and SSC2 are cyclic shifted versions of a 31 length M-

sequence.  The shift of each code is mentioned in 6.11.2.1-1 in technical specification 36.211 of 

3GPP group. SSC2 is scrambled by a sequence depending on the SSC1 shift and SSC1 is 

scrambled based on the PSS signal index. 
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SSS detection is done after PSS detection and therefore the system has the channel information 

at this point. The system can either use a coherent detector or a non-coherent one which is 

based on the code correlation. 

In coherent detection the performance depends on the presence of the interferer and the 

quality of the channel estimation, this is due to the fact that the  interfere uses the same PSS 

signal therefore the SC1 and SC2 signals would be identical.  In a non coherent detection the 

performance depends on the coherent bandwidth of the channel which should be greater than 

the 6 resource blocks being used by the SSS signal. This ensures that the SS signal would not be 

changing during the transmission. 

Channel estimation 

A locationing algorithm needs channel estimation. A coherent detector is used that can utilize 

the phase and amplitude of the received signal.  A common way to estimate the channel 

information is to use a known signal such as a pilot.  These known signals are called Reference 

Signals (RS’s). One can realize an OFDMA signal as a three dimensional frame of time, frequency 

and space signal. RS signals are placed in the LTE frame at known time and frequency positions 

on an optional or chosen space which is the antenna port. The position in frequency is called 

subcarrier and the position in time is known as slots and the smallest element in this two 

dimensional domain is called the Resource Element (RE). 

LTE downlink uses 5 different reference signals (RS) based on the LTE release number.  

( Common reference signal which are available to all UEs (Pilots) 
( Demodulation reference signal specific to the UE 
( Multimedia broadcast Single Frequency Network MBSFN specific reference signal 
( Positioning reference signal (Release 9 onwards) 
( Channel state Information reference signal (Release 10 LTE advanced) 

Reference signals are transmitted from eNodeB. LTE introduces antenna ports as ports to 

transmit RS which can either be physical antenna or virtual ports. From UE point of view any 

measurement obtained from these antenna ports defines the characteristic of that port. 
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What we are going to first target for the channel estimation is the common reference signals or 

the cell specific signals. These RS signals are available to all UE’s in the cell and it is a standard 

RS since release 8, these are the primary RS for channel estimation purposes. 

In Figure 15 an R0 indicates a RS for antenna port zero.  The transmitted RS signal is a QPSK 

signal defined in equation (3).  

        (3) 

In equation (3), m is the reference signal index, ns is the slot number and  is the symbol 

number. C(m) is taken from a length 31 gold sequence which is initialized based on the RS type. 

The initialization is done every OFDM symbol and the value depends on the cell identity, . 

Each cell uses a cell specific frequency shift equal to  which avoids frequency 

collisions between the RS signals from neighboring 6 cells. This is an important feature when 

using the channel estimation from neighboring cells to calculate the location. 

 
Figure 2-21: Cell specific RS for normal CP length 

We would leave the rest of the RS signals for now till later phases of the project but before 

leaving this section we need to mention the next important RS which is the UE specific RS. UE-

specific RS are used only between eNodeB and particular UE and are transmitted as of any 

other PDSCH (Physical Downlink Shared Channel) signal. The difference is that these RS signals 

are mapped to specific RB’s that target the specific UE and therefore contain UE specific RS 

signals. This can be beam-forming signals  or extra RS signals. We will go into details of these 

specific RS signals later. 

We will consider the channel  time varying complex signal at delay   

and time instant of t.  In a discrete form this channel is modelled as  with  as the delay 
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at time sampling instant kT. We also consider the channel to be approximated by an FIR vector 

of: 

           (4) 

where L is the channel delay. 

Practical channel estimation for LTE is done in frequency domain. If the received signal is: 

             (5) 

The FFT of the received signal is: 

             (6) 

Where X is the Nx1 FFT of the transmitted symbols and H is the LxN cyclic FFT of the channel 

information and N is a zero mean complex cyclic white noise with covariance of C. In order to 

obtain the channel matrix H it is sufficient to correlate the X with the known transmitted 

symbols and obtain H: 

         (7) 

If X is the reference symbols and has zero mean and unit energy then z is still a circular zero 

mean noise and the result would be the NxL estimated channel where L is the channel length. 

As shown in Figure 15, the channel estimation would result in estimating the channel for 

locations in frequency-time lattice that the RS signal is present. In order to estimate the channel 

for the rest of the subcarriers approximate estimation of the channel at the frequency and time 

lattice is required. If the frequency and time is considered statistically independent then we can 

divide the estimation in 2 domains as a single domain linear estimation which in its simplest 

form will be interpolation.   

More sophisticated approaches to obtain the two dimensional estimates would be LS least 

square and MMSE approach. Any approach in time domain has been proven to be impractical 

although from estimation point of view it would have resulted in more accurate unbiased 

estimations. Chapter 8.4 in [1]  compares different channel estimation methods but the most 

practical channel estimation for an immobile user is the interpolation method described above. 
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Simulation Environment 

The system requires TOA and  channel estimation from multiple eNodeB’s at the UE position. As 

mentioned in previous sections the synchronization methods provided in LTE system would 

provide the TOA  of signals from different cells to the UE and the channel estimation methods 

described in previous section would provide the channel information needed. In order to set up 

such simulation environment a single antenna downlink scheme as shown in Figure 16 is 

provided: 

Scrambling Modulation
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Figure 2-22. Downlink Physical Chain per eNodeB 

 

The OFDM signal from different eNodeB goes through a Lagrange interpolator to change phase 

according to their distance to the UE and then multiplexed with other eNodeB’s and passed 

through the channel.  Figure 2-23 shows an alternative that the signal is individually passed 

through the channel and delay is performed on the signal after the channel.  

 
Figure 2-23. Downlink channel 

 

On the receiver the PSS and the SSS signal is extracted and the delay associate with the 

intended eNodeB is considered. The interpolated signal for each intended eNodeB is passed to 

their channel estimator and the channel is extracted for each eNodeB-UE path. 
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The LTE observables which are relevant are essentially the known synchronization signal 

segments that are part of the resource blocks.  While it is a reasonable assumption that the LTE 

AN signals are frequency synchronized (which can be accurately obtained from GPS signals 

amongst other potential sources), it is not a reasonable assumption in many cases to assume 

that the AN’s are accurately time synchronized.  This depends as the network may be 

specifically calibrated for SGL purposes.  Tight timing synchronization amongst the AN’s is not 

necessary for optimum data communication functions nor is it necessary for facilitating 

network based location, hence there is little impetus for the service provided to accurately time 

synchronize the network.   Consequently, the SGL processing developed will consider the two 

modes when the LTE network is tightly time synchronized and when it is not.    
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Chapter 3   CV observables and processing 
3.1  Overview  

The SGL observables created from LTE range measurements are useful as the wireless signals 

are generally ubiquitous throughout the environment that the UE is immersed in.  The LTE AN’s 

are generally frequency synchronized but may not be time synchronized and with possible 

uncertainty in terms of the AN transmitter location.  Furthermore the LTE signals are subject to 

a significant amount of multipath  which for isolated  SGL estimates renders them virtually 

useless.  However the SLAM algorithm, developed in the previous chapter estimates the 

trajectory of the UE in light of all of these uncertainties partially ameliorating the detrimental 

uncertainty due to multipath.  CV observables, complement the LTE observables in that they 

provide high accuracy over shorter segments of the trajectory.  Hence, relative updates in the 

UE position can be achieved based on CV observables. They also have the very important 

attribute of being independent of any LTE signalling providing observables where LTE downlink 

signals are not available or compromised in some way.  Additional notable advantages of 

incorporating CV is that it is possible to detect if the LTE signals are LOS or NLOS over small 

trajectory segments.  Detection of a small LOS trajectory segment implies that beamforming 

can be used on the LTE signals which are highly effective in determining the relative position of 

the UE with respect to the AN.  Another advantage of using CV is that these observables are 

immune to LTE signal jamming or spoofing.   Finally CV observables can be sourced from small 

uncalibrated cameras which are typically part of the UE handset such that additional hardware 

to generate the CV observables is negligible.   

The basic method of generating CV sensor inputs is to track features on the ground manifold 

surface updating outputs of the differentials in the pose and the translational motion relative to 

the ground manifold at the frame rate interval of the camera as illustrated in Figure 3.1.  The CV 

update rate of between 10 to 30 frames per second (fps) is possible while maintaining real time 

processing which is sufficiently fast to provide highly accurate relative updates of the UE 

position and orientation.  Ego-motion is essentially the process of determining the relative 

position and orientation of the camera based on what it observes.  What is observed is the 
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surrounding 3D scenery in the world reference that is mapped onto the image plane of the 

camera.  If features of known identity and location (relative to the world reference) can be 

observed then we have ego-motion in the absolute sense.  However, a more common scenario 

is that the features cannot be uniquely classified or do not have a location that is known 

absolutely.  Hence only relative motion and orientation of the camera is possible.  In the latter 

case, it is generally assumed that the feature points are static relative to the world reference and 

hence the relative ego-motion is possible.  In using these static feature points of unknown 

absolute location, the ego-motion algorithm actually simultaneously determines its own 

trajectory relative to the array of feature points such that all the observations are consistent.  

That is, in the end, the relative positioning of both the trajectory and fp’s is then established 

which is a form of SLAM, (simultaneous location and mapping).  If a set of known fp’s with 

known locations in the world reference is observed by the camera then the combined array of 

fp’s and trajectory can then fixed absolutely to the world reference.  Hence absolute mapping 

and location is achieved.     

  

Feature points that are suitable for tracking are determined by the GF2T (Good Features to 

Track) and then tracking them frame to frame with LKP (Lucas Kanade Pyramid)  method.  The 

LKP is used to establish the necessary correspondence between the fp’s in different frames 

such that the motion of the fp’s can be determined. The set of fp’s used will be assumed to be 

stationary relative to the world reference frame. We can assume different sets of constraints.  

For instance, we can assume that the FOV of the camera is confined to the floor surface or the 

ceiling of a building.  We may assume that the fp’s are distributed instead in the 3D space but 

perhaps confined to a set of planes.  These planes may be known to intersect at 90 degrees or 

may be more random. Generally we will find that the camera provides a wealth of observations, 

however, the ego-motion problem is generally ill-conditioned.   Hence while it is possible to do 

full 6 DOF ego-motion (full evaluation of T and R) with a single camera, two cameras or a 

projector and camera is in the Kinect application is typically required to make the 

implementation robust. 

   

We will start the ego-motion development with a highly constrained motion in 2D.  The 2D 

problem will involve tracking of stationary fp’s coincident with a 2D manifold surface such as the 

floor surface or a wall.  As is illustrated in Figure 3-1, the camera is oriented such that it is 

looking at a flat 2D manifold surface which could be a ground or floor surface.  As the camera is 

moved across this surface, there will be a flow of features in the field of view which is related to 
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the motion of the camera itself.  This 2D problem is significantly simpler than the 3D case where 

the camera has to perceive a 3D environment, usually with multiple cameras or correlating 

multiple views of the same camera. Throughout this chapter we will assume a perfectly 

calibrated camera that behaves as an ideal pin-hole camera which is reasonable as camera 

calibration can be assumed as it is a robust procedure.  

 

camera 
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Figure 3-1  Ego-motion relative to a 2D manifold surface  

  

3-2 System Definitions 
 
In this section a set of necessary definitions will be given that will facilitate the development of 

the ego-motion algorithms.  Initially only a single camera will be considered.  In each image 

frame made available from this camera as it moves, there is a set of observable fp’s. New fp’s 

are typically identified by a corner feature detector.  We will denote this as the Good Features 

two Track (GF2T) algorithm.  The features are matched from one frame to the next to determine 

the correspondence based on the Lucas Kanate Pyramid (LKP) routines.    

The set of fp’s generated from these algorithms for the tth frame is denoted as � �, ,,t t
k x k yf f .  Here 

the index t denotes the frame, k denotes the feature index and � �,x y denote the integer indices 

of the location of the feature point as referenced to the image plane of the camera.   The 

analysis is primarily focussed on a monocular ego-motion single camera video frame sequence 

consistent with what is in the handheld device.  We will start with Ego-motion for a 2D plane as 

shown in Figure 3-1 followed by ego-motion in a 3D environment.  Differential ego-motion will be 
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considered which is based on determined by how the fp’s have moved from the previous 

camera image to the current image as captured in the fp data � �1 1
, ,,t t

k x k yf f� � and � �, ,,t t
k x k yf f  

respectively.  From this a differential or incremental update can be determined by relating this to 

the underlying transformation.  As established in the previous chapter on optical flow, finding the 

correspondence between � �, ,,t t
k x k yf f  and � �1 1

, ,,t t
k x k yf f� �  is not trivial.  Undetected errors made in 

the fp correspondences will result in significant distortions of the estimated differential motion 

update. Parameters for the LKP routine have to be carefully selected to obtain robust fp 

correspondence assignment.  In the following chapter on Bayesian filtering emphasis will be 

given to the overall uncertainty of the fp migration. 

The ego-motion geometry will be based on the world centered and camera centered coordinate 

systems as described in conjunction with the perspective transformation in a previous chapter 

with the following definitions: 

 

cO  - camera origin in world coordinate space 

wO  - world origin in world coordinate space (Usual definition is � �0,0,0 T�wO  )  

,
t

w kf  - fp in the world coordinate frame with coordinates of � �, , , , , ,, ,t t t
w k x w k y w k zf f f  

,
t

c kf  - fp in the world coordinate frame with coordinates of � �, , , , , ,, ,t t t
c k x c k y c k zf f f  

� �w w wX ,Y ,Z  - world coordinate system directional unit vectors (left hand system) 

� �c c cX ,Y ,Z  - camera coordinate system directional unit vectors (left hand system) 

π  - image plane, given by the plane f�cZ  

� �,x y - unit vectors of 2D camera image plane π  

 Figure 3- 2 is an illustration of the mapping of a fp between the world and camera coordinate 

systems.  It is important to realize that the rays between ,
t

c kf  and ,
t

W kf , as illustrated in Figure 3-

2 are essentially lines of ambiguity where the fp actually originates from.   
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Figure 3-2  Projection of fp in the world coordinate system onto camera 2D image plane 

The projective transformation defined earlier resulted in the transformation of 

� �� �c wP R P T  (1)  

relating the position vector in the world coordinate frame to that of the position vector of the 

camera coordinate frame.  Here T is the translation vector � �C WT O O and the rotation matrix 

is given as the projection coefficients of the unit vectors of � �, ,w w wX Y Z  onto � �, ,c c cX Y Z as  

� �
� �� � �
� �� �

w c w c w c

w c w c w c

w c w c w c

X X Y X Z X
R X Y Y Y Z Y

X Z Y Z Z Z

�
�
��
�
�
��

����
 (2)  

where  denotes the dot product between the unit vectors.   (1) relates the fp’s referenced to the 

world and camera references as 

� �, ,
t t

c k W kf f� �R T  (3)  

 

Expressing R in terms of row vectors  

Actual fp on ground manifold surface   

zc 

xc 
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� �
� �� � �
� �� �

1

2

3

R
R R

R
 (4)  

such that the homogeneous camera coordinates are then 

1

w
c

w
c

w
c

X
X

Y
Y

Z
Z

� �
�� � � � � �

� � � � � �� �� � � � � �
� � � �� � �� � � �

� �

1 1

2 2

3 3

R R T
R R T
R R T

 (5)  

From which the non-homogeneous image plane coordinates are written as  

� �
� �
� �
� �

x f

y f

z f

�
�

�

�
�

�

�

1 w

3 w

2 w

3 w

R P T
R P T

R P T
R P T

 
(6)  

In the application of current interest, a handheld device is hovering over a 2D flat ground 

surface such that the fp’s are residing on the surface the surface of the world reference as 

0wZ �  as in figure 1 such that , , 0t
W k zf � .  We also assume that the fp’s are stationary such that 

for the world coordinates we can drop the “t” index.  Then we have 

, , , ,

, , , ,

, , 1

t
c k x W k x
t

c k y W k y
t

c k z

f f
f f
f

� � � �
� � � ��� � � �
� � � �� � � �

H  (7)  

where H  was defined earlier as  

� � � �
� � � �
� � � �

1,1 1,2 1,3 1 2

2,1 2,2 2,3 2 21 2

3,1 3,2 3,3 3 31 2

H H H
H H H
H H H

� �� �
� �� �� � �� �� �
� �� �� � � �

1 1R R
H R R RT

R R
 (8)  

The nonhomogeneous coordinates are then  
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11 , , 12 , , 13
, , , , ,

31 , , 32 , , 33

21 , , 22 , , 23
, , , , ,

31 , , 32 , , 33

w k x w k yt t t
k x c k x c k z

w k x w k y

w k x w k yt t t
k x c k y c k z

w k x w k y

H f H f H
f f f

H f H f H

H f H f H
f f f

H f H f H

� �
� �

� �

� �
� �

� �

 (9)  

In many cases of practical interest where the fp’s as distributed such that , ,
t

c k zf  does not vary 

significantly then the weak perspective assumption can be used such that , ,
t

c k zf  is taken to be a 

constant denoted as oc  . Then we have 

, 11 , , 12 , , 13

, 21 , , 22 , , 23

t t t
o k x w k x w k y

t t t
o k x w k x w k y

c f H f H f H

c f H f H f H

� � �

� � �
 (10)  

Note that we are really implying that , ,
t

c k zf  is constant relative to both time and the fp index k.  

With this the perspective matrix reduces to that of the affine transformation which is 

conveniently redefined  as  

, ,
,

, ,
, 1

W x kt
x k

W y kt
y k

f
f a b c

f
f d e f

� �
� � � � � ��� � � � � �
� � � �� � � �� �

 (11)  

where � �, , , , ,a b c d e f  are coefficients dependent on the geometry of the camera orientation and 

position relative to the world reference.  This weak perspective transformation or affine 

transformation is clearly applicable where the camera axis cZ  is collinear with the WZ axis.  

That is the camera can translate and rotate in azimuth but have not tilt.  The affine 

transformation is still a reasonable approximation  for cases where there is a slight tilt provided 

that the fp’s considered in the world plane of 0Wz �  are close to the intercept point of the  cZ

axis in the 0Wz �  plane.   

Finally define tA as the transformation corresponding to the tth frame such that   
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, ,
,

, ,
, 1

W k xt
k x

W k yt
k y

f
f

f
f

� �
� � � ��� � � �
� �� � � �� �

tA  (12)  

 

 3.3   2D translation ego-motion 

Consider the camera oriented horizontally over the 0WZ �  plane as illustrated in figure 3 such 

that the perspective rotation matrix is � 3R I .  Denote the perspective translation vector as tT

where the subscript t denotes the frame. For the 2D ego-motion case at a constant height h we 

have 
Tt t

t T Tx y h� �� �� �T where � �,t t
T Tx y  is the displacement along the x and y  axis of the 

camera frame relative to the world reference and h  denotes the height. 

 

Begin with the simplified 1D case of motion only along the XW axis such that 0
Tt

t Tx h� �� �� �T

.     Assume that the sets of feature points of  ,
t

c kf  for the current frame and 1
,
t

c kf �  from the 

previous frame are available.      

 

 
Figure 3 Simplified 1D translation in the WX  direction  

Based on this definition the affine transformation is given as  
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1 0
0 1 0

t
Txf

h
� ��

� � �
� �

tA  (13)  

Typically the scaling of f h  is ill defined as the focal length of the camera is typically not well 

known.  Hence we replace this with a scaling factor of s which is assumed to be known from the 

camera calibration.  The overlay of the kth fp in two successive frames is illustrated in Figure 4. 

Note that we can determine the differential change 1�
 �t t tA A A �t tA�tt but we cannot determine the 

absolute tA .  From (12) we have   

� �
, , , ,1

, ,
1 , , , ,1

, , 1 1

W k x W k xt t
k x k x

W k y W k yt t
k y k y

f f
f f

f f
f f

�

��

� � � �
� � � � � � � �� � � � 
� � � � � � � �
� � � �� � � � � � � �� � � �

t t tA A A  (14)  

Based on the case where we have motion only along the x axis 

0 0
0 0 0

t
Tx

s
� ��



 � � �
� �

tA  (15)  

where 1t t t
T T Tx x x �
 � 1t t

T TxT TT
�txT  and s is a scaling factor. Based on similar triangles we can derive 

� �1
, ,

1T t t
t k x k xx f f

s
�
 � � �  (16)  
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Figure 4 Similar triangles used to determine the geometry between the camera image plane 

and ground plane  

 

Note that we can estimate the relative 1D ego-motion based on a single fp.  If the fp is a 

landmark or anchor point then we can determine the absolute ego-motion from just a single 

frame with the assumption that the camera is precisely calibrated.  As stated earlier, the 

practicality of CV ego-motion estimation is that the relative camera motion can be determined 

from arbitrary and previously unknown fp’s that are only assumed to be temporally static relative 

to the world (ground manifold) reference frame.  An issue with fp’s is that they are subject to 

random fluctuations from one frame to the next as observed in the previous chapter.  Typically 

the random fluctuation is independent from one fp to the next.  Hence the random deviation of 
t
Tx
 can be reduced by using the complete set of observed fp’s in the cameras FOV.  This 

results in an over-determined set of constraints for tx
 which, in the absence of further statistical 

information, can be optimally used in a least squares sense as 

1
1, 1,

1
, ,

1

1

t t
x x

t
T

t t
K x K x

f f
s x

f f

�

�

� �� � �
� � � � � �� 
� � � �� �
� � � �� � �� �

� � � � �t� � � ��
��

� �T� �� �t
Ts xT��s xx� �

� �� �  (17)  
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The fp constraint relations are expressed in this rather cumbersome way to establish the 

notation that we will require shortly when we have more than one ego-motion variable.  Note 

that we have sets of over-determined equations of the form of �M AP  where M denotes the 

measurement vector, A the model matrix and P the parameter vector of the unknowns.  The 

least squares solution is � �TT T�P A A A M .  This approach will be used for all of the ego-

motion calculations.  In this case, x
  becomes the average of the data contained in  

1
1, 1,

1
, ,

t t
x x

t t
K x K x

f f

f f

�

�

� ��
� �� � �
� ��� �

M �
�
��  (18)  

Next consider the more general motion of a translation in both the Wx  and Wy directions from 

the frame t-1 to the current frame t .  Use the notation that we have developed.  We now have 
Tt t

t T Tx y h� �� �� �T  such that the affine transformation is given as  

1 0
0 1

t
T
t
T

x
s

y
� ��

� � ��� �
tA  (19)  

Again assume that the sets of feature points of  ,
t

c kf  for the current frame and 1
,
t

c kf �  from the 

previous frame are available.  The differential change 1�
 �t t tA A A �t tA�t  is now    

0 0
0 0

t
T
t
T

x
s

y
� ��



 � � ��
� �
tA  (20)  

where 1t t t
T T Tx x x �
 � 1t t

T TxT TT
�txT  and 1t t t

T T Ty y y �
 � 1t t
TyTT
�tyT   .  Extending the notation developed for the 1D case 

1
, ,

1
, ,

1 0
0 1

t t t
k x k x T
t t t

k y k y T

f f s x
f f s y

�

�

� �� � �
� �
�� � � �� �� 
� � � � � �� �

 (21)  

This is of course separable into two independent sets of constraints over the K fp’s as 
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1
1, 1,

1
, ,

1
1, 1,

1
, ,

1

1

1

1

t t
x x

t
T

t t
K x K x

t t
y y

t
T

t t
K y K y

f f
s x

f f

f f
s y

f f

�

�

�

�

� �� � �
� � � � � �� 
� � � �� �
� � � �� � �� �
� �� � �
� � � � � �� 
� � � �� �
� � � �� � �� �

� � � � �t� � � ��
��

� �T� �� �t
Ts x��s xx� �

� �� �

� � � � �t� � � ��
��

� �Ty� �� �t
Ts y��s yy� �

� �� �

 (22)  

 These are solvable in the LS sense which in this case just amounts to determining the mean 

(over k) as 

� �
� �

1
, ,

1
, ,

t t
t k x k x

t t
t k y k y

s x mean f f

s y mean f f

�

�

� 
 � �

� 
 � �
 (23)  

This provides the estimate of the differential motion of the camera based on two consecutive 

frames.  If the requirement was essentially to only estimate the incremental translation of the 

camera between the two frames with no prior information then (17) would constitute the best 

estimate possible.  However, we are generally interested in the translation motion over multiple 

frames.  Extending the LS solution over multiple frames significantly improves the performance. 

For example if we make the additional assumption that the translation velocity is constant over 

three frames then we can extend the LS solution as 

1
1, 1,

1
, ,

1
1, 1,

1
, ,

1
1, 1,

1
, ,

1
1, 1,

1
, ,

1

1

1

1

t t
x x

t t
K x K x t

Tt t
x x

t t
K x K x

t t
y y

t t
K y K y t

Tt t
y y

t t
K y K y

f f

f f
s x

f f

f f

f f

f f
s y

f f

f f

�

�

�

�

�

�

�

�

� ��
� �
� � � �� �� � � � �� 
� � � �� ��� � � �� �� �
� �

�� �� �
� ��
� �
� � � �� �� � � � �� 
� � � �� ��� � � �� �� �
� �

�� �� �

�
�
��

�
� � �t� �� �T� �� �t

Ts x��s xx�
��

����
�
��

�
�
��

�
� � �t� �� �Ty� �� �t

Ts y��s yy�
��

����
�
��

 (24)  

Note that generally this would result in a variance in the estimate of tx
  and ty
  that is half of 

the variance of using the single pair of frames.  The message here is that if the camera 
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trajectory is smooth then a significant reduction of the variance of the ego-motion variable 

estimation is possible.   

  An example of 1Dmotion of a translating square subjected to noise.  The first frame of the 

video is shown in Figure 5 together with the four tracked fp’s as green donuts and the LKP 

trajectory of each fp shown in blue.  White uniform noise is then added to each frame that is 

independent from frame to frame.  The image is then smoothed which gives the noise a blotchy 

texture.     

 
Figure 3-5 Tracked square with fp’s indicated and the LKP trajectories  

The plot in Figure 3-6 is the tracked fp’s which is very clean as the motion in x is 3 pixels/frame 

which is an integer.  Figure 3-7 shows the differentials of tx
  and ty
 . The velocity in x is 

changed to 2.5 pixels/frame. Figure 3-8 shows the differential of tx
  which now has a ripple due 

to the video quantizing effect.  To avoid this problem it is necessary to interpolate the video. 

Figure 9 shows tx
  and ty
  for vx=2.5 and vy=1.2 showing the quantization effects of the block 

pixel movement.  

   
Figure 6 Trajectories of fp’s 
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Figure 3-7 Recovered differentials of tx
  and ty
  with vx=3 

 

 
Figure 3-8 Recovered differentials of tx
  and ty
  with vx=2.5

 

 

 
Figure 3-9 Recovered differentials of tx
  and ty
  with vx=2.5 and vy=1.2 
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3-4.  Rotation of the World axis 
 

 

Next consider the camera at a fixed position such that 0t t
T Tx y� � . As before the height is fixed 

at t
Tz h� � .  The camera is rotated in a positive sense around the Wz  axis of � �za as illustrated 

in Figure 10 such that the affine transformation is 

� � � �
� � � �

0 cos sin 0
0 sin cos 0

c W c W z z

c W c W z z

X X X Y a a
s s

Y X Y Y a a
� ��� �

� � � �� �
� � � �

tA
��0W c WX X Y 0W c WW 0W c WW c W s�0X Y Y 0W c WX Y Y 0W c WW 0X Y Y 0

 (25)  

Note that we define the sense of rotation relative to the right hand but we assume a left hand 

coordinate system for both the camera and the world as before.   

 

 
Figure 3-10 Rotation of fp in camera FOV by za  

As before, we have 

, ,
,

, ,
, 1

W k xt
k x

W k yt
k y

f
f

f
f

� �
� � � ��� � � �
� �� � � �� �

tA  (26)  

As there is no translation this transformation can be simplified to  
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� � � �
� � � �

, , ,

, , ,

cos sin

sin cos

t tt
z zk x W k x

t t t
k y W k yz z

a af f
s

f fa a

� ��� � � �
� ��� � � �
� �� � � �� � � �� �

 (27)  

where t
za  is the azimuth rotation angle between the world and camera frame at time t which we 

cannot determine absolutely.  However, we can determine relative changes as  

� � � �
� � � �

� � � �
� � � �

� �

1

1
, , ,

11
, , ,

1
, ,

1
, ,

1 1 1
,

11 1
,

cos sin cos sin

sin cos sin cos

cos c

t
k x W k x
t

k y W k y

t t
k x k xT
t t

k y k y

t t t t t
z z z z k x

tt t t t
k yz z z z

t
z

f f
f f

f f
f f

a a a a f
fa a a a

a

�

�

��

�

�

� � �

�� �

� � � �
�� � � �

� � � �� � � �
� � � �

�� � � �
� � � �� � � �
� � � �� � �
� � � �� � �
� � � � � �� � �� � � �

�

t

t

t

A

A A

� � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � �
� � � �

1 1 1 1 1
,

11 1 1 1
,

1
,

1
,

os sin sin sin cos cos sin

sin cos cos sin cos cos sin sin

cos sin
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t t t t t t t t
z z z z z z z k x

tt t t t t t t t
k yz z z z z z z z

t t t
z z k x
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k yz z

a a a a a a a f
fa a a a a a a a

a a f
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� � � � �

�� � � �

�

�

� �� � � �
� � � �
� � � �� � � � �� �
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 � 
 � �
� �� � �
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 � �� �

1
,

1
,

t
k xt

t t
k y

f
f

�


 �

� �
� � �

� �� �
R

 

(28)  

where 
1t t t

z z za a a �
 � �  

For notational convenience write   

� �
� �

cos

sin

t
t z

t
t z

C a

S a

� 


� 

 (29)  

such that  

t tt
t

t t

C S
S C


�� �
� � �
� �

R  (30)  
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and then 1t t t
k t kf f �


�R  specifically for the kth fp.  Note that for pure differential rotation at a 

constant height the scaling factor cancels out.   Combining all of the K fp’s in a LS formulation to 

estimate t
za
 , it is most convenient to assume the redundant linear estimation of  

1 1
1, 1, 1,

1 1
1, 1, 1,

1 1
, , ,

1 1
, , ,

t t t
x x y

t t t
y y x

t

tt t t
K x K x K y
t t t

K y K y K x

f f f
f f f

C
S

f f f
f f f

� �

� �

� �

� �

� � � ��
� � � �
� � � � � �� � � �� � �� � � � � ��� � � �
� � � �
� � � �

� �tCt� � � � �
t

S
� �� �t

� � �
� � �� � � � �� �S

 (31)  

The total accumulated rotation can be inferred from the rotation matrix of  

0

1

t
t p

k t k
p

f f

�

��R  (32)  

Hence by multiplying the estimated differential rotation matrices we can determine the total 

azimuth rotation angle from the initial frame to the tth frame.  This is approximately equivalent to 

the processing of   

� �,

, ,
1

atan2 ,z t t t

t

z t z i
i

a C S

a a
�


 �

� 
)
 (33)  

In summary then, the K pairs of corresponding fp’s 1t t
k kf f �* are determined from which the 

linear 2K set of constraints are determined based on the parameters of  � �,t tS C  . The LS 

pseudo-inverse of the constraint matrix is determined resulting in the LS estimate of � �,t tS C

from which the differential azimuth rotation of ,z ta
 is determined.  From this the accumulated 

azimuth rotation from the first image is determined as ,z ta .   

  

  

3-5.  General affine transformations 
Next consider that the camera is rotated and translated simultaneously by arbitrary differential 

amounts.  This is represented by the affine transformation of the motion of the kth feature point 

from the � �1 tht � to the tht  frame is described by the affine transformation. Instead of stating the 
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affine transformation directly we start with the perspective transformation.  Begin by defining the 

perspective transformation between the static world fp’s as  

� �
� �

1
1 1

t W
t t

t W
t t

f f

f f

�
� �� �

� �

R T

R T
 (34)  

Then we have 

1
1 1

W T t
t tf f �
� �� �R T  (35)  

Then  

� �
� �� �

1
1 1

1
1 1 1

t T t
t t t t

T t
t t t t t

f f

f

�
� �

�
� � �

� � �

� � �

R R T T

R R R T T
 (36)  

We have   

� � � �
� � � �1

cos sin 0
sin cos 0

0 0 1

T
t t

az az
az az�

� � 
 
� �
� � � �� � � 
 
� � � �
� � � �� �� �

t t-1 t t-1 t t-1
c c c c c c
t t-1 t t-1 t t-1
c c c c c c
t t-1 t t-1 t t-1
c c c c c c

X X X Y X Z
R R Y X Y Y Y Z

Z X Z Y Z Z

� � cos
�
��
�
��

� � i�� � i�
��
� sin�sin�� sin

� �������
 (37)  

which is the incremental rotation from the camera coordinate in the t-1 frame to the world frame 

and then back to the camera coordinate in the tth frame.   � �1t t��T T  is the incremental 

translation between the t-1 and t frames relative to the world coordinates.  As 1t�R   rotates this 

vector into the camera frame at the (t-1)th frame, � �1 1t t t� ��R T T  is the incremental translation 

vector relative to the  (t-1)th frame. Hence  

 � � � �1 1 1 1
T

t t t t t t t t� � � �� � �R R R T T R T T  (38)  

is the translation vector relative to the tth frame. Hence  

� �1

0

t

t t t t

x
y�

�
� �
� �� � �
� �
� �� �

R T T  (39)  
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Now the perspective transformation 

� �
� �
� �

� � � �
� � � �

1 1 111 12 1

1 1 121 22 2

1 1 131 32 3

cos sin
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t
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t t t t t t t t
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� � �
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� �� � � � � ��� � � � � � 
 
 
� �� �
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� � � � � � � �� �
� �� � � �� � � � � ��� � � � � �� �

R R R R R T T

R R R R R T T
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From this the incremental affine transformation applied to the fp’s becomes 

1
, ,

1
, ,

1 0 0 1 1

t t
x k t t t x k
t t
y k t t t y k

f C S x f
f S C y f

�

�

� � � �
� �
� � � �� �� � 
� � � �� �
� � � �� �� �� � � �

 (40)  

From which the differential affine transformation is defined as  

0 0 1

t t t

t t t t

C S x
S C y


� �
� �� � 
� �
� �� �

ΔA  (41)  

Now consider the cascaded transformations of the first two frames.  We have  
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2 1 2 2 2 1 1 1
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 (42)  

Note that  

� �
� �
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(43)  

From this we can define the accumulated affine transformation as 

� � � �
� � � �

cos sin
sin cos

0 0 1

t t t

t t t t

az az x
az az y

� �
� �� �� �
� �� �

A  (44)  
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with the components related to the rotation and translation of the camera relative to the world 

reference at the tth frame such that 

� � � �
� � � �

cos sin 0
sin cos 0

0 0 1

t t t

t t t t t

az az x
az az y

h

�� � � �
� � � �� � � �� � � �
� � � ��� �� �

R T  (45)  

From this we have the accumulated affine transformation given as a recursive relation as 

1t t t��A ΔA A  (46)  

There are two approaches to estimating the differential affine transformation coefficients.  The 

first is to consider the 2K constraints based on  

1
, ,

1
, ,

1 0 0 1 1

t t
x k t t t x k
t t
y k t t t y k

f C S x f
f S C y f

�

�

� � � �
� �
� � � �� �� � 
� � � �� �
� � � �� �� �� � � �

 (47)  

That is we form for each fp a pair of constraints as 

1 1
, , ,

1 1
, , ,

1 0
0 1

t
t t t

tx k x k y k
t t t

ty k y k x k

t

C
Sf f f
xf f f
y

� �

� �

� �
� �� � � � � ��� � � � � �
�� � � �� � � � � �
� �

 (48)  

Due to changes in camera height, distortions and sources of measurement noise, in practice
2 2 1t tC S� + .  This discrepancy is removed by the atan2() processing in regards to determining 

the angle change. The deviation of 2 2
t tC S�   from 1 provides an estimate of the change in 

height relative to the current height.     

As an alternative to the LS solution of � �, , ,t t t tC S x y
 
  we can solve for the six affine 

coefficients directly as given by the fp update of  

1
, ,

1
, ,

1 0 0 1 1

t t
x k x k
t t
y k y k

f a b c f
f d e f f

�

�

� � � �� �
� � � �� ��� � � �� �
� � � �� �� �� � � �

 (49)  

Note that there are 6 unknowns whereas previously there were 4 unknowns. However, the extra 

degrees of freedom are not meaningful as there are additional constraints implied by the 
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� �, , ,t t t tC S x y
 
 system.  Note that the general affine transformation can accommodate rotation 

about any arbitrary center point whereas the � �, , ,t t t tC S x y
 
 system assumes rotation to be 

fixed about the camera center.  Also the scaling is the same in the ex  and ey  directions which 

accounts for the additional DOF.  To use this system it is necessary to account for the  rotation 

center and the different scaling factors when mapping back to the ground reference system.     

The coefficients of� �, , , , ,a b c d e f  are solved for with two sets of equations as in a previous 

chapter as   
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 (50)  
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� �f� � �
� �
� �� �

� � �
� � �� � �

� �� �
 (51)  

3.5 3D Perspective ego-motion based on a 2D marker and unknown 
fp`s 

Next consider that the camera undergoes 6 DOF motion change while viewing a known 2D 

poster marker on a wall as shown in Figure 11.  Here the marker is in the 0wZ �  plane at a 

known location.  Next consider the perspective  mapping of a 2D pattern on the 0wZ �  plane in 

the world coordinates that is imaged in the camera by projection onto the image plane.  Another 

illustration is given in Figure 3-12 where a set of fp’s is used to provide continuous 3D 

egomotion.  The concept is that there will always be several fp’s in the camera FOV which are 

sequentially self calibrating.  That is as a new fp enters the FOV the existing fp’s will be used to 

calibrate the position of the new fp’s.  This will give us the perspective coefficients which are 

related to � �,R T .  As 0wZ � we can write 
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� � � �
� � � �
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1 1R R
R R RT H
R R

 (52)  

where H  is a 3x3 matrix with elements defined as  

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

H H H
H H H
H H H

� �
� �� � �
� �� �

H  (53)  

 
 

Figure 3-11  Square poster viewed from a camera in the image plane can be restored to the 

undistorted square shape based on the perspective transformation.   
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Figure 3-12 Concept of 3D ego-motion based on viewing the floor surface with various fp’s in 

the current camera FOV 

 

Note  that the first two columns of H are the first two columns of R  and the third column of H is 

�RT  as before. Every fp of the marker that is distinguishable provides two constraints from 

which the 9 components of H can be determined.  We have    
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w w
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 (54)  

which is rearranged as 

11 12 13 31 32 33

21 22 23 31 32 33

0
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w w w w

w w w w

H X H Y H H xX H xY H x
H X H Y H H yX H yY H y
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� � � � � � �
 (55)  

This results in a pair of constraints expressed as 
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0
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 (56)  

where 

� �
� �
� �
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 (57)  

For a set of K fp’s that can be identified from the marker we have  
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� �
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��b �

�
��  (58)  

We then apply the singular value decomposition (svd) solution to determine the components of 

b based on using the right singular vector corresponding to the smallest singular value.  Once 

the components of H is determined then we can map these into the set of variables   

� �, , , , , ,x y z T T Ta a a x y z s from which the � �R,T matrices can be determined.  The additional 

variable of  s  is a scaling factor that is necessary as H will generally have an arbitrary scaling 

associated with it.  Hence  s  is a nuisance parameter but necessary in order to make the 

mapping of  � �, , , , ,x y z T T Ta a a x y z�H  possible.  The following Matlab routine shows the 

procedure of extracting � �, , , , ,x y z T T Ta a a x y z  from H .  

First we generate an H  matrix to work with. 
% Hmat 

function H = Hmat(ax,ay,az,T,s) 

  

% generate the RT matrix 

Cx = cos(ax);Sx = sin(ax); 

Cy = cos(ay);Sy = sin(ay); 

Cz = cos(az);Sz = sin(az); 

  

Rx = [[1,0,0];[0,Cx,Sx];[0,-Sx,Cx]]; 

Ry = [[Cy 0 Sy];[0 1 0];[-Sy 0 Cy]]; 
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Rz = [[Cz Sz 0];[-Sx Cz 0];[0 0 1]]; 

R = Rz*Ry*Rx; 

H = s*[R(:,1:2),-R*T]; 

 

The function to determine the error vector used in the nonlinear equation solver is given as 
function F=H2RTfun(H,x) 

ax = x(1); 

ay = x(2); 

az = x(3); 

T = x(4:6); 

s = x(7); 

e = H-Hmat(ax,ay,az,T,s); 

F=zeros(9,1); 

F(:) = e; 
 

Finally  the call to fsolve(), Matlab’s generic equation solver is  

  
options=optimset('Display','iter');   % Option to display output 

[aTc,fval,exitflag,output,jacobian] =  fsolve(@(x)H2RTfun(H,x),aT,options); 

 

The fsolve() routine has no issue with quickly converging on the correct values of the 

parameters. 

  

Next consider the more general problem of the markers unknown to the camera.  However, to 

simplify the scenario it will be assumed that the perspective transformation is known at the initial 

point where the camera begins it’s trajectory.  At this point it then begins to observe unknown 

markers.  It is also assumed that the initial known template and fp’s are all on the 0wZ � plane. 

 

Consider that the camera undergoes an arbitrary translation and rotation relative to the world 

reference such that at the time that the tth frame is available from the camera the perspective 

rotation matrix and translation vector are denoted as � �,t tR T .  The objective is that given 

� �1 1,t t� �R T  for the (t-1)th frame then determine � �,t tR T  for the tth frame based on the movement 

of the fp’s in the image plane as recorded by the camera.  As derived before, the transformation 

between the two camera positions is given as  

� �� �1
1 1 1

t T t
c t t c t t t

�
� � �� � �P R R P R T T  (59)  
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where 1t
c
�P  and t

cP  are the position vectors of the fp in the camera reference in the (t-1)th and tth 

frame.   Define 

1
t T

t t
 ��R R R  (60)  

as the rotation matrix between the two camera coordinates from frame t-1 to frame t.  That is  

1 1 1

1 1 1

1 1 1

t

� � �

� � �



� � �

� �
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c c c c c c
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c c c c c c
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c c c c c c

X X X Y X Z
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Z X Z Y Z Z
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��1 111 111�1 111

�1
�
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�1
���

11 111 111�1 1111 111

 (61)  

Also define 

� �1 1
t

t t t
 � �� �T R T T  (62)  

as the translation vector between the two camera positions relative to the camera frame at t-1.  

Then the transformation is given as  

� �
1

1

1

t
t t t t t t t c
c c

�
�


 
 
 
 


� �
� �� � � � � �� �

� �

P
P R P T R R T  (63)  

Note that 1t
c
�P  is known as � �1 1,t t� �R T

 

as well as the image coordinates of the fp from the (t-1)th 

frame are known. We can demonstrate this as we have the following equations 
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1
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�
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(64)  

which represents 5 equations and 5 unknowns as � �1 1 1
, , , , ,, , , ,t t t

c x c y c z W x W yP P P P P� � � .  s is a known 

scaling factor. 

Define H  as a 3x4 matrix as  
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1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

t t t

h h h h
h h h h
h h h h


 
 


� �
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H R R T  (65)  

The non-homogeneous image coordinates of the tth frame are 

,

,

,

,

t
c xt

c t
c z

t
c yt

c t
c z

x s

y s

�

�

P
P

P
P

 (66)  

Let ,1 ,2 ,3 ,4i i i i ih h h h h� �� � �  denote the ith row of H  and let 1 1 1
, , , 1t t t

c x c y c zf � � �� �� � �P P P  denote 

the homogeneous fp coordinates such that 

3 1

3 2

t
c
t
c

h fx h f
h fy h f

�

�
 (67)  

This results in a pair of homogeneous equations for each fp expressed as 

1

2

3

00 0 0 0
00 0 0 0

T
t

Tc
t

Tc

h
f fx

h
f fy

h

� �
� �� � �� � �� � � �� �� � �� � � �� �

 (68)  

From this a pair of constraints are formed for each fp correspondence which can be expressed 

as a homogeneous solution of the unknown values of  ijh .  First a 1x12vector of ijh denoted as 

h is defined as 

� �
� �

1 2 3

11 12 13 14 21 22 23 24 31 32 33 34

T

T

h h h h

h h h h h h h h h h h h

�

�
 (69)  

Set up the matrix component for the kth fp as 

, ,

, ,

0 0 0 0
0 0 0 0

t t
k k c k x k

t t
k k c k x k

f f x a
f f y a

� � � ��
�� � � ��� � � �  

(70)  
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where 1 1 1
, , , , , , 1t t t

k c k x c k y c k zf � � �� �� � �P P P .   

Note we start with the assumption that we have 1
,

t
c k
�P .  Then from the corresponding fp’s that we 

observe in frame t we can solve for the matrix  H .  From the matrix H we get t

R and t


T . Then 

we can solve for the rotation matrix as 

1
t

t t
 ��R R R  (71)  

and  

1 1
T t

t t t� 
 �� �T R T T  (72)  

Then we have 

� �1t t t t
c c

�

 
� �P R P T  (73)  

and we are set for another iteration.  

The overall algorithm can be described as follows.  First the known marker is observed in the 

camera at the known location for which we fix the world reference.  From this the initial 0 0{ , }R T  

is established.  Next the camera also observes some fp’s of opportunity at unknown location 

except for the assumption that the fp’s are located also on the 0wZ � plane.  Through multiple 

consecutive frames, while both the known marker and fp’s are in the camera FOV, the location 

of the fp’s is determined in the world reference in the 0wZ � plane.  As the camera is moved, 

the known marker will eventually drift out of the FOV and we have only the fp’s of opportunity.  

However, as the location of these have been established, then we can determine the 

perspective transformation to the camera and also { , }t tR T .  As the trajectory progresses, new 

fp’s are going to enter the FOV with positions estimated based on the older set of fp’s  and 

hence the process of extracting { , }t tR T can continue indefinitely as long as the fp’s are all on 

the 0wZ � plane.  

In a practical scenario there will be limitations and complications with this method.  Due to noise 

and lens distortion of the camera there will be a drift issue.  That is as the trajectory progresses 

and new fp’s are added to the mix then the errors will accumulate.  Also the camera will pick up 

fp’s that are not on the 0wZ � plane.  These will have to be processed based on determining the 

plane in the world reference where they reside.  
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3.7 Alternative 3D Method 
While the previous method works in general 3D as will be shown experimentally, it is subject to 

drift as it is necessary to base { , }t tR T  on the previous step of 1 1{ , }t t� �R T .  Additionally it is 

necessary that the initial pose of the camera is known as eventually 0R  is assumed to be 

known.  Generally 3D egomotion of this type is based on epipolar geometry.  However, to 

determine the essential matrix for the epipolar update, it is necessary to have fp’s that are not 

on a plane. At the same time the powerful constraint of the fp’s residing on the plane is not 

utilized.  Hence another approach is considered which specifically takes advantage of the 

0wZ �  constraint.  Consider that we have two images from two camera positions.  For a given 

fp we have the position vector from camera 1 given as 

1 1 1

0

x

y

f
X R f T

� �
� �� �� �
� �� �

 

where 1R  is the rotation from the planar world to the camera in position 1 and 1T  is the translation 

from the world to camera 1 referenced to the camera coordinate.  We have the image plane 

coordinates of the camera in position 1 such that the observable is   

1 1,
1,

1 1,
1,

c
x

z

c
y

z

sx X
X
sy X

X

�

�
 (28)  

where cs is the scaling factor.  Likewise we have for camera position 2 

2 2 2

0

x

y

f
X R f T

� �
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� �� �

 

where 2R  is the rotation from the planar world to the camera in position 2 and 2T  is the 

translation from the world to camera 2 referenced to the camera 2 coordinates. Image 

coordinates are given as 
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2 2,
2,

2 2,
2,

c
x

z

c
y

z

sx X
X
sy X

X

�

�
 (29)  

Next consider the transformation of camera in position 2 relative to camera position 1 given as  

2 1

1 1

0

r r

x

r y r r

X R X T
f

R R f R T T

� �

� �
� �� � �� �
� �� �

 (30)  

rR  is the rotation from camera frame 1 to camera frame 2 in frame 2.  rT is the translation from 

camera 1 to camera 2 in the frame of camera 2.  That is relation 

 � � 2, 1,,
T

r i ji j
R X X�  (31)  

where ,k iX represents the ith basis vector of camera position k.  Also
 

1 2rT o o� �  

where ko is the camera center of the kth position relative to the camera position 2 frame.  Now 

we define d is the perpendicular distance from the plane to 1o (camera position 1) and N is the 

normal to the plane of 0WZ � relative to camera frame 1 such that 1
Td N X� . Note that there is 

an ambiguity as the normal to the world  plane N can have two ambiguous directions.  This is 

resolved by stipulating that 0d , .  A trick is to set 11 TN X d� such that 
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 (32)  
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(Note the order of the vectors can be changed as they are dotted to a scalar.)  Then we have a 

matrix that relates these two positions as 

2 1

1 T
r r

X HX

H R T N
d

�

�r
1R T1

r

 (33)  

As observed, we have the ratio T d which is dimensionless.  Hence we cannot determine both 

the height of the camera and the translation simultaneously but only the ratio.  Next scale the 

position vectors by normalizing to form the 2D homogeneous vectors as 

1

1 1 1

2

2 2 2 2

1

1

x
X y

x
X y

�

�

� �
� �� � � �
� �� �
� �
� �� � � �
� �� �

1x

x

 (34)  

We can then write 2 1X HX�  relating the 2D homogeneous vectors as 

H��2 1x x  (35)  

Note that the scaling constant �  is irrelevant as it cannot be determined anyways since H will 

only be known to within a scaling constant.  Now consider that 0� � �2 2 2 2x x x x  such that  

0H �2 1x x  (36)  

which is a set of homogeneous relations.  Note that 2x
 
can be expressed as a skew symmetric 

matrix operator as 

0
0

0

z y
z x
y x

�� �
� �� �� �
� ��� �

x  

To solve for the elements of H within a scaling constant the following procedure is used 
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 (37)  

Solve the SVD of  

0sAH �  (38)  

where sH is the stacked version of H corresponding to the right singular vector with the smallest 

singular value.  The second singular value of H should be 1 which gives a way of normalizing H. 

After determining H then 
1 T

r rH R T N
d

� � determine rR and 
1

rT
d

 .   Note that we can only get a 

scaled version of rT d  such that the height is required or some measure of distance for 

calibration.  Another complication is that N is in the camera position 1 frame.   

Example - Consider the simplest example of a simple translation of xt to the right where the 

plane of the fp’s is a distance d from the camera positions and the normal to the plane is 

� �0 0 1 TN � .  (Note that � �0 0 1 TN + �  as 1
TN X d� ).  We have  � �0 0 T

r xT t� �  and 

3rR I� .  Hence, 

� �
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t d
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From H��2 1x x we have 

2 1 1

2 1 1

1 0
0 1 0

1 0 0 1 1 1

x xx t d x x t d
y y y� �

� �� � � � � � � �
� � � � � � � �� �� � � � � � � �
� � � � � � � �� � � � � � � �

 

 which makes sense. 

Next consider a simulation of determining H arbitrary rotation angles and translation.  Again we 

consider a set of random feature points distributed in the world plane around the origin.  Note 



 

 

 

  90/143 

 

that care has to be taken that the translation vector is referenced to the correct coordinate 

system. 

First define the parameters.  d is the height of the camera 1 position, (tx,ty,tz)  are the 

components of the translation vector in the coordinates of  position 1, sc is the scaling of the 

camera to pixel index, and (ax,ay,az) are the rotation angles of position 2 relative to position 1. 

Provided that sc is the same in the x and y directions it has not impact on the estimation of H. 
d = 10; % height of camera for position 1 
tx = 1;ty=0.5;tz=0;  % relative motion between positions 1 and 2 
ax = 0.1;ay = 0.2;az = 0.1; 
sc = 1; % scaling of camera 
K = 10; % number of random points 

 

Next we generate the relative rotation and translation matrices denoted as Rr and Tr 

respectively. 
Cx = cos(ax);Sx = sin(ax); 
Cy = cos(ay);Sy = sin(ay); 
Cz = cos(az);Sz = sin(az); 
Rx = [[1,0,0];[0,Cx,Sx];[0,-Sx,Cx]]; 
Ry = [[Cy 0 Sy];[0 1 0];[-Sy 0 Cy]]; 
Rz = [[Cz Sz 0];[-Sz Cz 0];[0 0 1]]; 
Rr = Rz*Ry*Rx; 
Tr = [tx;ty;tz]; 

 

The position 1 is given the translation of T_1 and R_1 relative to the position 1 frame 
T_1=R_1 * [0;0;d]; 
R_1 =eye(3); 
H_1 = [[sc 0 0];[0 sc 0];[0 0 1]] * [R_1(:,1:2),R_1*T_1]; 

 

The position 2 is given the translation of T_2 and R_2 relative to the position 2 frame 
T_2 = R_2*(T_1 + Tr); 
R_2 =Rr*R_1; 
H_2 = [[sc 0 0];[0 sc 0];[0 0 1]] * [R_2(:,1:2),T_2]; 

 

Generate a set of random feature points and map these into position 1 and position 2 images. 

 
px = 3*randn(K,1); 
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py = 3*randn(K,1); 

 

% Determine the images as seen in camera 1 and camera 2 positions 
x1 = zeros(K,1);x2 = zeros(K,1);y1 = zeros(K,1);y2 = zeros(K,1); 
for k=1:K 
    g1 = H_1*[px(k);py(k);1]; 
    x1(k) = sc*g1(1)/g1(3); 
    y1(k) = sc*g1(2)/g1(3); 
    g1 = H_2*[px(k);py(k);1]; 
    x2(k) = sc*g1(1)/g1(3); 
    y2(k) = sc*g1(2)/g1(3); 
end 

 

Generate the 1 2
j j ja x x� . components and put them into the matrix  1 TKA a a� �� � �

T
�K
���

Ka   

A = zeros(3*K,9); 
for k=1:K 
    a=kron([x1(k);y1(k);1],[[0 -1 y2(k)];[1 0 -x2(k)];[-y2(k) x2(k) 0]]); 
    A(((k-1)*3+1):k*3,:)=a'; 
end 

 

Solve the SVD of  

0sAH �  (39)  

as 
[V,L,U] = svd(A); 
H = zeros(3); 
H(:) = U(:,9); 
g1 = svd(H); 
H = sign(H(3,3))*H/g1(2) 

 

Extraction of rR and 1
rT

d
  

Use fsolve() to determine rR and 
1

rT
d

 from H given� �,d N .  
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options=optimset('Display','iter');   % Option to display output 
% initial guess set to first location 
x = [0;0;0;Tr;1]; 
[x,fval,exitflag,output,jacobian] =  

fsolve(@(xx)Hr2RrTrfun(H,xx,d,[0;0;1]),x,options); 
D=x; 
a_est = x(1:3) 
Tr_est = R_2'*x(4:6) 

 

function F=Hr2RrTrfun(Hr,x,d,N) 
ax = x(1);ay = x(2);az = x(3); 
Tr = x(4:6);s = x(7); 
e = Hr-Hrmat(ax,ay,az,Tr,s,d,N); 
F=zeros(9,1); 
F(:) = e; 
function H = Hrmat(ax,ay,az,Tr,s,d,N) 
 % d  is the perpendicular distance from ZW=0 plane to position 1 
 % N is the normal vector of the plane ZW=0 in pos 1 frame 
% generate the RT matrix 
Cx = cos(ax);Sx = sin(ax); 
Cy = cos(ay);Sy = sin(ay); 
Cz = cos(az);Sz = sin(az); 

   

Rx = [[1,0,0];[0,Cx,Sx];[0,-Sx,Cx]]; 
Ry = [[Cy 0 Sy];[0 1 0];[-Sy 0 Cy]]; 
Rz = [[Cz Sz 0];[-Sx Cz 0];[0 0 1]]; 
Rr = Rz*Ry*Rx; 
H = s*(Rr+Tr*N'/d); 

 

3.8 Experimental results of 3D ego-motion based on Tracking fiducial markers 
In this section some of the experimental results will be given that are based on the tracking of 

fiducial markers.  The concept is illustrated in a smaller scale in the photo.  The handheld 

naviagation device (HND) observes some fiducial markers in its FOV.  It can generate the 

perspective matrix of the relative 3D position of the camera with respect to the fiducial marker.  
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Figure 3.12  Figure depicting the camera and world coordinate system  

 

As the camera is moved, the initial fiducial will leave the FOV but other fp’s on the same surface 

will be observed as illustrated in Figure 3.13.  The perspective transformation determined based 

on the first fiducial can be used to locate the fp’s of opportunity seen in the FOV at the same 

time.  The fp’s located are then used as an equivalent fiducial marker and so forth.  Eventually 

another calibrated fiducial marker known to the camera will emerge in the FOV and the drift can 

be corrected.  
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Figure 3.13  Camera is translating illustrating a continual selection of fp’s in the FOV 

 

Figure 14 shows an image of a fiducial marker that is seen in perspective and corrected after 

the transformation has been determined and applied.  The projective transformation that is 

determined is then used to infer the ego-motion of the camera itself relative to the fiducial 

marker.  
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Figure 3.14  Top image is fiducial in perspective from which the projective transformation is 

determined and applied resulting in the transformed orthographic view 

 The setup for the trial with the sequence of fiducial markers and posed fp’s of opportunity is 

shown in the photo of Figure 3.15.   

 
Figure 3.15  Experimental setup for the sequence of fiducial markers and fp’s of opportunity 

The results of this trial is shown in Figure 3.16 for one of the runs.  The results show some drift 

that occurs as well as the issue with the small discontinuities in the solution as the fiducial 

markers enter and leave the FOV.  The drift is an annoyance but it is not large and hence is 

manageable.  When other markers are added, the drift will correct itself.  Also the CV method is 

not intended as the only source of navigation measurements.  Wireless sources, as explained in 

the previous chapters are less accurate over the short trajectory but do not suffer from the same 

drift issue.   
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Figure 3.16  Experimental outcome  

 

Outcome of a longer length trial is shown in Figure 3.17 in the same hallway setting.  Drift is still 

present but the positioning from the 3D projective is useably accurate.   

 

 
 

Figure 3.17  Experimental outcome  

 

A least squares fit is applied to the trial results of Fig.3-17 and are given in Figure 3-18.  The 

least squares is fit to each segment with the same set of fiducial markers and features.  The 

overall least squares shows very little drift.  As the camera was mounted on a cart of constant 
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height from the floor surface, the height should ideally be constant which it is approximately with 

very little drift with respect to this variable.  

 

 
Figure 3.17  Experimental outcome after least squares line fit  

 

Having the camera determine the various projective transformations the observations after each 

frame will be entered into the EKF based on a linear model for the camera trajectory as outlined 

in the previous chapter.   The processing block diagram is given in Figure 3.18. 
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Figure 3-18  Kalman filter processing used to determine the least squares trajectory of the HND 

 

3.9 Extracting Lines with Hough Transforms  
In addition to the fp’s of the wall or floor surface and fiducial markers it is convenient to use 

rectangular structures such as windows, doors and picture frames as well as lines that exist in 

every room.  As projective transformations of lines in 3D are lines in the image plane such 

structures are preserved.  Figure 3-19 illustrates some of the features and lines that are 

available in a 3D scenario.   
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Figure 3-19  Typical indoor setting has extensive instances of lines and feature points.  

 
Geometric structures such as lines, rectangles and circles can be found in a camera image 

using the general Hough transform  It is essentially a transform that determines the likelihood  of 

the geometric construct appearing in the image over the range of the unknown variables.  For 

instance, consider a line which is defined by two parameters, the slope angle and skew distance 

from the origin.  The Hough transform would map the image in x-y to the two dimensional 

uknown parameter space of slope angle/  and skew distance 0 .  A transform point of � �,0 /  

then is an indication of the likelihood that a line with the parameters of � �,0 /  exists in the 

image.   For a Hough ellipse transform, there are five parameters.  Usually the transform is a 

construction of two of these parameters such that the other three are given.  For instance the 

two parameters could be the center of the ellipse with the major and minor axis given as well as 

the orientation angle. This is better shown with worked examples of the line and the circle.  

 
As shown in the figure below, any line segment that is extended into an infinite line can be 

described by two variables: 

0 - skew distance from the origin to the line 

/  - angle of the skew line 

For each point in the intensity field plot a contour of all the potential � �,0 /  combinations or lines 

that the intensity point could belong to.  This line is weighted by the intensity of the point. In this 

way when sweeping over an intensity field, the points corresponding to a bright line of 

parameters � �,0 /  will add up to form a peak in the 2D intensity field of � �,0 / .  This intensity 

plot is then thresholded to yield the estimate of the � �,0 /  of the line segment.  Note that the 

longer and more intense this line is, the higher the peak will be.   
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Figure 3-20  Hough line detection (taken from Learning OpenCV Bradlie) 
 
An example of using the Hough transform for lines based on the image in Figure 3-21 is given.  
First the image is converted to grey scale and then the Canny edge detector is applied (taken 
from Matlab, Image processing toolbox user guide. 
 
 

 
Figure 3-21  Image of gantry section 
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Figure 3-22  Edge detection of gantry section 
 
Next take the Hough line transform of the edge image which is shown in Figure 15.   
[H,T,R] = hough(BW); 
figure(4);imshow(H,[],'XData',T,'YData',R,... 
            'InitialMagnification','fit'); 
xlabel('\theta'), ylabel('\rho'); 
axis on, axis normal; 
 
H is the likelihood as a function of 0  and / .  It can be plotted as a mesh or contour which 
sometimes provides greater clarity.  The highest peaks of H which correspond to the most 
probable lines are given by houghpeaks which can be added to the image using 
hold on; 
P  = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:)))); 
x = T(P(:,2)); y = R(P(:,1)); 
plot(x,y,'s','color','white');hold off; 
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Figure 3-23  Hough transform of edge image with highlighted peaks around 50o/ �   
 
 
 
Now find the lines and map them onto the figure 
% Find lines and plot them 
lines = houghlines(Ic,T,R,P,'FillGap',5,'MinLength',7); 
figure, imshow(I), hold on 
max_len = 0; 
for k = 1:length(lines) 
   xy = [lines(k).point1; lines(k).point2]; 
   plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); 
  
   % Plot beginnings and ends of lines 
   plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); 
   plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); 
  
   % Determine the endpoints of the longest line segment 
   len = norm(lines(k).point1 - lines(k).point2); 
   if ( len > max_len) 
      max_len = len; 
      xy_long = xy; 
   end 
end 
  
% highlight the longest line segment 
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','blue'); 
 

 
 
Figure 3-24  Hough lines mapped back into image with starting and stopping positions 
 
Note that there are five lines but that each line consists of multiple segments.  Hence hough lines 
finds the line segments  within the line.  The segmented line is an additional step beyond the 
Hough transform.  Line segments are based on the intensity of the edge detection of the image 
itself.     
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Figure 3-25  Hough Lines applied to the building image 
 
An interesting development for indoor navigation is based on tracking floor tiles using Hough 

transform and projective transformations.  Initially try the features of opportunity in the video 

which is not successful as seen in Figure 3-26.   

 
Figure 3-26  Tiled floor surface with corners() applied to determine features of opportunity 

 

There is an obvious difficulty in establishing the movement of features.  After some careful 

manual adjustment of the threshold gives us some hope of using a better set of feature points 

that can be used for differential movement as shown in Figure 3-27 where the green and red 
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fp’s indicated are for two consecutive image frames.  Clearly it is not a robust solution, 

especially as manual search for the optimum threshold is required. 

 

  
Figure 3-27  Tiled floor with fp’s of two consecutive frames 

 

With Gaussian spatial filtering and tweaking of quality threshold we can get fp’s from the corners 

of the grout lines. A problem is that the fp’s jump around as the metric for the fp’s has a saddle 

point in each grout line intersection making the location of the fp very sensitive to any noise or 

neighbourhood clutter.     

  

 
Figure 3-28  Tiled floor feature points after Gaussian filtering applied 

 

Next we try the Hough line transform  and we get the plot of the transform in Figure 3-29 and an 

overlay spatial image as in Figure 3-30. 
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Figure 3-29  Hough line transform output for tiled floor image showing sets of peaks indicating 

the vertical and  horizontal lines 

 

 
 

Figure 3-30  Hough line transform output for tiled floor image  

 

Next we want to extract the infinite lines.  This works well if we can assume that the camera is 

well calibrated and that the tiling is accurate.  Note that the Hough line output is P which are 

indices of T and R.  and T are  

 
figure(4), imshow(tile_vid(:,:,1)), hold on 
NL = length(P); 
Nx = 640;Ny = 480; 
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for j=1:NL 
theta = T(P(j,2))*pi/180; roe = R(P(j,1)); 
xo = roe*cos(theta);yo = roe*sin(theta);x1 = -sin(theta);y1 = cos(theta); 
pp = zeros(4,3); 
% Solve for x=1 intercept 
t = (1-xo)/x1; 
ya = yo+t*y1; 
if ya>0 & ya < Ny 
    pp(1,:) = [1,ya,1]; 
else 
    pp(1,:) = [1,ya,0]; 
end 
  
% Solve for x=Nx intercept 
t = (Nx-xo)/x1; 
yb = yo+t*y1; 
if yb>0 & yb < Ny 
    pp(2,:) = [Nx,yb,1]; 
else 
    pp(2,:) = [Nx,yb,0]; 
end 
  
% Solve for y=1 intercept 
t = (1-yo)/y1; 
xa = xo+t*x1; 
if xa>0 & xa < Nx 
    pp(3,:) = [xa,1,1]; 
else 
    pp(3,:) = [xa,1,0]; 
end 
  
% Solve for y=Ny intercept 
t = (Ny-yo)/y1; 
xb = xo+t*x1; 
if xb>0 & xb < Nx 
    pp(4,:) = [xb,Ny,1]; 
else 
    pp(4,:) = [xb,Ny,0]; 
end 
  
  
% Plot the line 
ppp = []; 
for jj = 1:4 
    if pp(jj,3) == 1; 
        ppp = [ppp;pp(jj,1:2)]; 
    end 
end 
  
plot(ppp(:,1),ppp(:,2),'LineWidth',2,'Color','green'); 
end 
hold off; 
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Figure 3-31  Hough line transform output for tiled floor image showing grid of infinite lines  

 

With the Hough lines the intersection points can be calculated for the grid of tiles.  Note that 

each Hough line is an average of all of the points that have a higher likelihood of belonging to 

the line.  Hence the method is much more robust than searching for fp’s of the grout line 

intersections.   

The robustness of the hough line method is observed in the following where a rectangular paper 

is imaged with it’s corners removed.  Hough line transform has no issue with determining the 

virtual corners of the rectangle that would otherwise have been present.   

 

 
Figure 3-32  Hough line transform and infinite line intersection applied to a rectangle with 

corners missing.  
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4. SGL Experimental Apparatus 
4.1 Overview  

As described in the previous chapter, simulation of the SGL with the SA is limited due to the 

difficultly of justifying the propagation model in a multipath environment.   Essentially the 

performance results of the SA are readily predictable given a specific multipath model.  

However, to access the actual performance of the implemented SA based SGL it is necessary 

to have a set of statistical measurements.   

Measurements based on spread spectrum modulated signals will be made with chipping rates 

of up to 20 Mcps.  From these the channel impulse response (CIR) can be measured.  Having 

up to four transmitter antennas in various locations, the simultaneous multipath propagation 

channels can be represented which are difficult to model justifiably.  The other main objective of 

the measurement system is that of the LOS detection and LOS processing which get’s to the 

main contribution of the SA.   

A wireless system consisting of several transmit antennas and a receiver that can be moved 

while taking measurements has been created and is used for the experimental component of 

this contract.  This wireless system can emulate the transmission, reception and processing of 

the LTE downlink signal reference signals that the SGL.  The carrier frequency can be tuned  

within the operating range of 700 MHz to 2.2 GHz with various modulation options from a simple 

tone to a full 20 MHz bandwidth modulation.  In phase III the objective will be to expand this 

bandwidth further to 100 MHz that will account for the evolution of the LTE standard.  

Modifications can be made to the existing hardware system to provide this.  This will involve the 

receiver and transmitter using a step frequency such that the 100 MHz is covered by multiple 

bands each of 20 MHz instantaneous bandwidth.  Figure 5.1 shows a typical configuration in the 

experimental room of ENA401 at the University of Calgary. The idea is to locate the 4 antennas 

such that they have a variable amount of multipath and in some cases, as the trajectory is 

changed that the propagation will vary from LOS to NLOS. 
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Figure 4-1  Floor plan layout of the LTE propagation room ENA401 at the University of Calgary 

The wireless measurement system that was developed will be described in section 4.2.  Section 

4.3 describes the processing of the single receiver channel with a reference antenna channel.  

Section 4.4 describes the multi-antenna setup and the overall test environment.   Section 4.5 

provides experimental results and Section 4.6 an overall summary and some conclusions. 

 

4.2  Wireless measurement system 
The wireless measurement system developed essentially consists of a set of four AN’s and a 

UE.  Each AN consists of an RF amplifier and antenna that is mounted to the wall in the test 

area.  The UE consists of a small antenna and LNA for receiving the AN transmitted signal.  It is 

also bundled with a webcam for the associated CV measurements.  The transmit signal is 

generated by a National Instrument software radio transceiver, denoted as the USRP.  A similar 

matching USRP is used in the receiver to facilitate the processing.    A block diagram of the 

overall architecture of the system is given in Figure 4.2.   
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Figure 4.2  Overall block diagram of the LTESA hardware system 

 

The USRP’s for the transmitter and receiver functions are programmed via LabView.  This 

provides maximum flexibility for the various experimental setups that must be implemented.  As 

LabView is a rather cumbersome software development environment with discovered 

limitations, it will only be used for the signal modulation for the transmitter and the sample 

extraction in the receiver.  The SA processing as well as the general SGL processing will be 

done off line via Matlab and C.  In Figure 4.1 it is observed that the receiver has two antennas.  

One is used as an optional reference antenna and the other antenna is main SA receiver 

antenna.  The receiver has a separate laptop that is used to run labview to collect the data from 

the USRP receiver and to collect the CV data.  The transmitter is run from a separate laptop and 

USRP.  The reason for this is that the receive and the transmitter can be physically separated 

without the inconvenience of having to tie them together with data connections.  Also there is a 

10 MHz synchronizing signal that is used to frequency lock the receiver and the transmitter.  

This is so that the frequency instability of the receiver can be removed in some experiments to 

study impacts. An additional laptop may be required for the CV processing of the webcam 

output.  The issue is that if a single PC services boththe webcam and the USRP then the 

connections are a bottleneck resulting in issues of irregular sampling such that the camera and 

wireless data are not easily synchronized.  Additional components for the system are the 
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precision turntable which is used to move the antenna as an alternative to hand motion.  The 

precision turntable motion implies that the webcam is not needed as the antenna trajectory is 

easily calibrated.  This turntable is driven by the PC used for the receiver. Additionally, the 

receiver PC controls the selection of up to four transmit antennas as shown in Figure 4.3.  

Shown is the Digital Input Output (DIO) interface block connected to the receiver PC via a USB 

that provides the output digital signals for sequencing the antenna, turntable stepper motor and 

receives inputs from the trigger switch. 

 

 
 

Figure 4-3  Block diagram of the antenna selection, trigger and turntable  

A block diagram of the USRP is given in Figure 4.4.  It consists of a transmitter and a receiver 

channel that can be switched to the antenna ports.  In the transmitter, generic quadrature 

modulation is used with a complex sampling rate of up to 33 MHz.   Likewise in the receiver 

quadrature demodulation is used with a sampling rate of up to 33 MHz and 16 bits of 

quantization.  A gigabit Ethernet connection is used for all of the data exchange between the 

host PC and the USRP.  This is a limitation as the full modulation bandwidth at 16 bits I and Q in 

addition to the Ethernet protocol overhead exceeds the 1 Gbps capacity of the connection.  

Hence if higher IQ sampling rates are used then it is necessary to limit the sampling block size.  

The USRP has internal buffering such that high rate burst sampling can be accommodated 

provided that the average data traffic required is within the 1 Gbps limitation. The limitations of 
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the Ethernet connectivity is also the reason why two PC’s are used, one dedicated for the 

transmitter and the other for the receiver.   

 

 
 

Figure 4.4  Block diagram of the USRP 

The Labview programming of the receiver USRP is a simple state machine.  Unfortunately due 

to the buffering of the data it is not possible to precisely control measurement segments of the 

USRP.  Rather it samples for the 4.5 seconds at a rate of 200,000 samples per second which 

are then transferred to the hard-drive of the receiver PC.  Hence the turntable and receiver 

antenna sampling are driven by a separate process.  The USRP and turntable/antenna switch 

are run as two separate processing threads. The states of the LabView program for gathering 

the USRP data is simply an initialization phase, sampling phase, data storage phase and a 

termination phase that are run in sequence.  An issue with the USRP is that every new 

measurement interval implies a new initiation with causes the LO to re-lock.  This uncontrolled 

phase cannot be tolerated in the SA.    

Prior to starting the sampling, the frequency needs to be adjusted.  If the rx is offset by 100ppm  

then the result is 51575.42 10 16MHz kHz�� � .  This offset is reduced by adding an offset to the 

receiver signal.  It is reasonable to assume that this can be hardwired in bringing the uncertainty 

down to about 1 kHz.  The minimum sampling rate is about 200 kHz. Hence there is obviously 
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no issue with aliasing and the input signal can be low pass filtered to 4 kHz and decimated by  a 

factor of 20 to 10 kHz effective sampling rate prior to storage.     

There are various hard wired variables used as listed in the following table: 

variable description 
samp_rate Sampling rate set to the minimum of 200k for a CW signal and up to 33 

MHz for a spread spectrum signal 

fLO LO frequency set to 1.57542 GHz for the GPS related sampling but can 

be anywhere from 700 MHz to 2.2 GHz 

channel RX2 is used primarily.   

Number of 

samples 

Can be set arbitrarily high.  Typical for the CW SA analysis a million 

samples are used for a 5 second SA epoch. 

 

A brief description of the LabView programs will be given.  The LV panel for the stepper 

for the turntable as well as the receiver antenna is given in Figure 5.5.   Note that it is 

necessary to run these operations from a separated processing thread so that it does 

not interfere with the USRP sampling operations.  Settable controls are the number of 

events which are essentially steps of the turntable stepper.  Every step is set at 8 msec 

and after four steps (32 msec) the antenna is switched.  The turntable direction can be 

toggled as clockwise or counter clockwise.  Finally the turntable can be disabled such 

that only antenna toggling is used.  Figure 5.6 gives the LV block diagram which 

consists of a single for loop that is incremented every 8 msec.  A formula block is used 

to give the digital outputs to the DIO for the antenna switch and the stepper sequencing.     

 
Figure 4.5  Panel of stepper/RF receiver antenna switch control 
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Figure 4.6  LV block diagram of the stepper/antenna switch control 

The formula for the stepper sequencing is given by 

X2*(mod(X1,4)+4*mod(X1,4)+4+8*X3) 

Here X1 is the integer index of the loop, X2 is the boolean variable enabling the turntable to 

move and X3 is the direction.  The four least significant bits are used by the stepper driver.    

The panel for the USRP control is shown in Figure 5.7.  There are no user controls to set.  The 

panel only indicates when the sampling is taking place and the coerced USRP variables.  Also 

shown is the display of the samples which provides an indication of the quality of the sampling. 

In this instance, the sampling of the reference and the receiver antenna can be seen in the 

graph.  The reference should be the first to start and should be fairly uniform in amplitude.  The 

receiver antenna in this case shows a multipath faded signal as the antenna is moved.   
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 Figure 4.7  USRP Control panel 

 
 

Figure 4.8  USRP Control block diagram for the initialization state.   

Figure 4.8 shows part of the initialization of the USRP with the hardwired variables of 

LO frequency, receiver gain in dB and sampling rate as well as the receiver channel 

RX2.  The actual sampling occurs in this state.  Figure 4.9 shows the state for writing 

the I and Q waveforms to files on the hard drive.   

 
Figure 4.9  USRP Control block diagram for the initialization 

 

Figure 4-10 shows the block diagram of the two receiver antennas, switch and turn table 

stepper. Figure 4-11 is a picture of the receiver antenna on the turntable.  
.    



 

 

  116/143 

 

  
 

Figure 4-10  Block diagram of antenna switch and stepper  

 
Figure 4-11  Photo of receiver antenna and reference antenna setup on turntable 

 

 

Figure 4-12 shows a close-up of the receiver antenna and the web-cam.  The antenna 

is magnetically mounted so that it can be moved such that it’s phase center can 

coincide with the webcam image center. 
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Figure 4-12 Close-up of the receiver antenna and the web-cam 

 

4.3 Processing of received wireless signal 
As discussed in the previous section the USRP samples the I and Q signals of the antenna 

output as a contiguous block.  The reference antenna and the receiver antenna outputs are 

commutated by a switch into the USRP.  The file of typically 800k samples will be stored on disk 

and then read into Matlab for offline processing.   This processing will be described in this 

section. The complete Matlab program is listed at the end of the chapter.   

Initially the IQ data is read into the matlab workspace and combined into a set of complex 

samples r.  A plot of | |r is shown in Figure 4-13.  The transitions are  due to the switching 

between the two antennas which in the present configuration occurs every 32 msec.  The slow 

variation is due to the antenna being moved by the turntable in an environment where there is 

multipath.      
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Figure 4-13 Plot of | |r  showing the variations of the two multiplexed antenna responses  

The first task is to determine the decomposition of the samples of r such that the reference and 

received channels can be separated.  While the timing is not perfect, it is known that the dwell 

time of the sampling is 32 msec for each antenna.  Typically, as in the example shown in 5-13,  

| |r  will be quite different for the two antennas.  Hence the processing is to slide a  template 

across with intervals of 32 msec of samples each.  The best alignment is when the variance of 

| |r  is the smallest in each interval.  Note that if the intervals contain the switch transition then 

| |r  will change abruptly within the interval resulting in a large variance.  The average interval 

variance  is denoted by G and is plotted in Figure 4-14 as a function of the offset of the template 

pattern.  There is a well defined minimum which is then used to give the offset required.   
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Figure 4-14  Plot of the average interval variance of | |r  as a function of the offset 

With this offset the data can then be segregated into the two antenna responses.  In the current 

example which is plotted in Figure 4-15 the red samples are for the receiver antenna and the 

green samples are for the reference antenna.   Note that the green reference samples show 

less variation as expected.   

 
Figure 4-15  Plot of segregated data 

As it is undesirable to have to control the timing of the sampling it may not be obvious which is 

the reference channel.  However, this is generally clear from the variations of | |r  Also for 

whatever reason (to be investigated) the first interval is sometimes too short and hence there is 

a switching transition that occurs within the interval.  This results in an interval of samples of 

high variance that should be discarded.  This is shown in Figure 5-16.  Figure 5-17 shows a plot 

of the real and imag components of each sample after they have been derotated in phase 
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based on an approximate estimate  of the offset frequency.  Note that only the reference signal 

samples are used for the estimate of the offset frequency.   

 

 
Figure 4-16 Sample of incomplete interval having a high variance of | |r  

 
 

Figure 4-17  Typical example of a FFT of the sample segments indicating the estimation of the 

offset frequency 
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Figure 4-18  Plot of the real and imaginary components of each sample. Green and blue 

correspond to the reference frequency and red and black to the receiver components 

Initially an approximate phase shift between the reference and the receiver channels can be 

determined by multiplying the signal in a reference channel by the conjugate of the interval of 

samples in the adjacent receiver channel.  The angle of the complex valued signal provides an 

estimate of the difference phase that unfolds as the antenna is moved. Unwrapping is applied to 

the phase angle of these samples.  The phase trajectory is plotted in Figure 5-19. 

 
Figure 4-19 Approximate phase excursion as the antenna is moved.   
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Clearly the phase excursion in Figure 5-19 is not overly accurate but it does provide the 

experimenter a quick assessment of the quality of the data.   Other checks can be done  such 

as stability of the signal s when the turntable is not moved.  This is shown in Figure 4-20. 

 
Figure 4-20 Response when the antenna is held constant position 

Fig 4-21 shows the partitioning of the sampling with the red and green as the portions of the 

samples that for the reference and receiver channels.  The blue samples are discarded as they 

correspond to the transition regions.   

  
Fig 4-21 Detail of Figure 4-20 

 

 

4.4  Simultaneous CV and LTE outputs and processing 
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Unfortunately, the USRP operation consumes significant bandwidth of the USB interface to the 

laptop.  Likewise the webcam demands a near maximum transfer rate when the webcam is 

streaming video at the rate of more than 20 frames per second.  The Windows operating system 

cannot accommodate two simultaneous USB streaming sources and therefore if the units are 

run at the same time then the operation will be jerky with unpredictable delays.  While the CV 

can accommodate interruptions to handle the USRP operation, the USRP needs to be reset 

every time which causes excessive delays and the phase coherency will not be maintained.   

 

Therefore it is necessary to use two laptops to accommodate both the webcam input and the 

USRP.  The labtops are time synchronized with a common HW switch that is triggered at the 

start and end of the sampling.  Once the raw samples have been stored they will be processed 

in parallel on the two laptops.  An Ethernet connection between the two computers combines 

the processed CV and USRP data on  a single computer.  This is then fed into the overall SLAM 

algorithm. 

 

At this stage, due to the interfacing issue, it is not possible to run the HSA hardware completely 

in real time.  However, the processing of the raw samples is relatively fast such that the SLAM 

processing starts essentially as soon as the sampling is completed.  

 
Fig 4-22  Overall flow of the data sampling and processing algorithm 
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4.5 Upgraded Experimental system based on NI RF PXI  
An upgraded indoor localization experimental system based on wireless RF signal 

measurements is established. The hardware of the system mainly consists of NI RF PXI 

system, NI USRP, antennae, turntable, and switches. The software, based on LABVIEW, 

implements the configuration of the NI PXI system and USRP, control of the external devices, 

and synchronization of the overall system. RF signal measurements are acquired and streamed 

to the PXI system, where they are stored and can be used to apply the data post-processing. 

The following resources are needed for the system setup: 

� Hardware 

� NI PXIe-1075 (18-Slot 3U PXI Express Chassis with AC - Up to 4 GB/s) 

� NI PXI-8135 (PXI Express Embedded Controller) 

� NI PXIe-5663E (6.6 GHz Vector Signal Analyzer (VSA) With RF List Mode) 

� NI PXIe-6555 (200 MHz Digital Waveform Generator, High Speed Digital IO (HSDIO)) 

with NI CB/SCB – 2162 single-ended digital I/O accessory 

Generally, we call the combination of the above devices as PXI system, which is shown in 

figure 4-23. 

 
Figure 4-23: PXI system 

� NI USRP-2920 (50 MHz to 2.2 GHz Software Radio) 

� Turntable and controller 
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� Dipole LTE Antenna  

� Coaxial SP4T switch 

� Software 

� LabVIEW 2012 

� MathWorks MATLAB 2013a 

 
The application of this experimental system is to do indoor wireless localization based on 

synthetic array (SA). Basically, in the experiment we need a receiver moving along a known 

trajectory while receiving wireless signals from access nodes (AN) and find its position relative 

to the AN. 
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Figure 4-24: Overview of the indoor localization experimental system 
Figure 24 shows the overview of the experimental system. The experimental room is at ENA401 

at the University of Calgary. Basically, a transmitter is placed in a turntable moving in a circle. 4 

receiving antennae are located at each corner of the room to receive signal from the transmitter. 

Then the 4 received signals will be scanned by a switch alternatively and fed to a receiver, 

where the signal is proceed to obtain the measurements for localization. 
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Figure 24 also shows the implementation of the system. Specifically, the receiver is 

implemented by USRP. Figure 3 shows the USRP and the transmitting antenna on 

 
Figure 4-25: URSP and transmitting antenna on the turntable 

 

the turntable. Shown in figure 26 is the receiving antenna in the corner of the room.  
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Figure 4-26: Receiving antenna placed in the corner of the room 

 
Figure 4-27: Switch used to scan signals from receiving antennae 
The switch is controlled by HSDIO and the accessory board as shown in figure 4-28. 

Receiving 
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Figure 4-28: HSDIO and accessory board to control switch 
The receiver is implemented using VSA in PXI system, as shown in figure 4-23. 
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Figure 4-29: Signal processing functional blocks of the experimental system 
Figure 4-29 describes the signal processing functional blocks of the experimental system. 

Generally, a bandlimited pseudorandom-noise (PN) code is generated and stored in a file using 

MATLAB. USRP reads the file to fetch baseband waveform, and up-converts, interpolates, low 

pass filters, and mixes the signal to RF for transmitting.  In the receiver part, the VSA receives 

the RF signal, then down-converts, band pass filters and digitizes the signal. Decimation is then 

applied to the signal and the received baseband waveform is stored in a file for further 

processing. In the post-processing, the received signal is dispread using the local PN code, 

from which the amplitude, phase, time of arrival (TOA) measurements can be obtained for the 

localization algorithm. 
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Unlike the devices realised by NI which can be control by LABVIEW directly, the way to control 

the switch and turntable need to be given more thoughts, so as to make the system integration 

easier and more efficient. The HSDIO provides flexible software define way to generate digital 

waveform. Along with accessory board, HSDIO can control the switch through LABVIEW. Figure 

8 shows the HSDIO accessory board and switch as well as the connection  

 
Figure 4-30: HSDIO accessory board and switch 
between them. For the turntable, its controller can be programed using LABVIEW based driver, 

 
Figure 4-31: Turntable LABVIEW based drive 
as shown in figure 4-31. 

 

To sum up, all the hardware involved in the system can be control by LABVIEW, which makes 

the integration of the system using one single host program possible. Figure 4-32 shows the 



 

 

  130/143 

 

 
Figure 4-32: Overview of the block diagram of the host program  
overview of the block diagram of the host program. Figure 11 shows the Front panel of the host  
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Figure 4-33: Front panel of the host program  
program. In the experiment, we just need to configure the setting of each module in the program 

front panel, and simply press start button. Then the turntable, switch and receiver will start 

working in a synchronized way, and the received baseband waveform will be recorded in a file 

specified by the program for further processing. 

 

FREQUENCY SYNCHRONIZATION OF TRANSMITTER, RECEIVER AND SWITCH 

CONTROLLER 
Frequency synchronization plays an essential role in the integration of such a system involving 

multiple hardwires. Figure 4-34 explain the frequency synchronization scheme of the system.  

 

 
Figure 4-34: Frequency synchronization scheme of the system  
As shown, USRP, VSA and HDSIO share a same reference clock of 10MHz in VSA, and 

generate the respective system clock using respective PLL. Then each system clocks will be 

used to generate other clocks to drive the modules in this device. The synchronization of 

transmitter and receiver in a hardwired connection way is an option to make the synchronization 

easier in the first place, and will be replaced by some other algorithm in the receiver later. 

 

To implement above scheme, features of VSA, USRP and HSDIO are utilized in the design. 

Generally, VSA can export internal reference clock to the ports in its panel. As shown in figure 
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Figure 4-35: VSA reference clock outputs and configuration  
13, through the configuration in the program, the internal reference clock of VSA are available in 

the 2 ports highlighted in the figure. USRP and HSDIO can accept external clock source as 

reference clock, as shown in figure 14 and figure 15. So we can simply connect their reference 

 
Figure 4-36: USRP reference clock input and configuration  
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Figure 4-37: HSDIO reference clock input and configuration  
clock input port to the clock source port in VSA panel and finish the setting for frequency 

synchronization. 

EVENT SYNCHRONIZATION OF RECEIVER AND SWITCH CONTROLLER 
Event synchronization of the receiver and switch controller must be performed to identify the 

signal from different channels. Figure 38 gives the event synchronization scheme.  

 
Figure 16: Event synchronization scheme of receiver and switch controller  
Basically, HSDIO uses its sample clock to generate synchronized switch control signal and 

event trigger signal. While the switch control signal is fed to the switch, the event trigger signal 

is routed to the VSA to trigger VSA start recording data. 
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Features of HSDIO and VSA are used to implement the scheme above. HSDIO is able to 

generate digital I/O waveforms and events signal (called marker event) in specified patterns by 

script, as shown in figure 39.  

 

 
Figure 4-39: Configuration of HSDIO to generate digital I/O waveform and event trigger 

signal  
The digital I/O waveforms then will be exported to I/O at the accessory board to control the 

switch, while event signal will be export to the port in HSDIO panel shown in figure 4-40.  
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Figure 4-40: HSDIO event signal output and configuration 
Since VSA is able to accept external event trigger input, as shown in figure 4-41, to trigger the 

data recording, we can simply connect this input port to the event trigger source in HDSIO port 

and finish the event synchronization setting. 

 
Figure 4-41: VSA event trigger input and configuration 
Figure 20 shows the generated switch control signal and VSA event trigger signal capture by 

logic analyzer. As can be seen, the VSA event trigger signal can mark the beginning of the  
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Figure 4-42: Switch control signal and VSA event trigger signal generated 
channel 0 data recording. Figure 21 shows the baseband waveforms recorded in file. Obviously, 

we can separate the date of each channel very easily because the beginning of the date record 

corresponds to that of the first channel. 

 
Figure 4-42: Waveform record of 4 channels 

 

Experimental results 
Figure 4-43 shows the measurements and location results of an experiment. In this experiment, 

only 1 receiving antenna is used and is placed in the position highlighted by the red star, while 

VSA event trigger signal (triggers VSA to start recording data) 

Switch control signal (active-low) 
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Figure 4-43: Waveform record of 4 channels 
the transmitter is moved along a circle represented by green circle in right graph. The phase 

measurements, after removing circle clip, are shown in the left graph with green dots. We then 

apply localization algorithm to phase measurements, and the blue circles in the right graph 

show how the position estimate converges, which tells that the position estimated by receiver is 

very close to the actual position.  
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5.  Discussion 
The initial objective of this research was to develop elements of a system that could use the LTE 

wireless signals of opportunity for self geo-location (SGL) of a handheld navigation device 

(HND).  This implied that the HND was not registered with the wireless system.  The issues of 

not being able to assume that the LTE sources were in known locations or time synchronized 

implied that some form of SLAM processing was necessary.  It was determined that provided 

that it could be assumed that the LTE access nodes were stationary and frequency synchronized 

(not code or offset synchronized) then SLAM processing would be able to simultaneously 

determine where the LTE access nodes are and their offsets in time delay as well as the 

trajectory of the HND relative to the LTE network of access points.   SLAM also provided the 

most general framework for implementing the synthetic array component.  Extensive details of 

the SLAM algorithm implementation and analysis is contained in part B of this final report.   

 

While the multipath of the LTE emissions can be modelled such that the SLAM algorithm can to 

some degree average out the variances of the errors of the HND trajectory, this is shown to be 

the difficult component of achieving a sub-meter accuracy.  Hence CV observables were added 

into the mix of measurement constraints.  These were shown to be significant in terms of the 

overall SLAM in that CV positioning is highly accurate over short trajectory lengths but subject 

to drift.  Contrary wireless with multipath is rather inaccurate due to multipath but not subject 

to the same drift as with the CV.  Hence CV and wireless observables are complementary.  Of 

course other observables can be used such as inertial but this was beyond the scope.  Inertial 

will have the same issues as CV in terms of drift.  However, as inertial drifts with time and 

spatial movements, CV only drifts as a result of nonlperfect calibration of the camera, image 

noise, non-ideal features and imager discretization.  CV is not affected by time lapse.  Again 

inertial can be construed as being complementary to both CV and wireless.  It should therefore 

be included in the mix of observables.  

 

An emerging development that we did not have bandwidth to cover is that of cooperative 

positioning (CP) which fits very nicely within the overall SLAM framework.    This is the joint 



 

 

 

  139/143 

 

location of several mobile nodes simultaneously which share information.  CP requires some 

form of messaging between the mobile nodes or messaging to a central node.  It is easily 

demonstrated in the SLAM formation given in part B that CP can significantly multiply the 

positioning information that is mutually available reducing the variance of the desired variables 

associated with the trajectory of the mobile units. 

 

Future work would focus on the combining of the three sensor types, wireless, CV and inertial 

into a single instrumented experimental testbed.  While experimental apparatus was developed 

for the wireless and CV, these need to be combined in a more unified way such that the relative 

significance of the measurement modalities can be assessed.   
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