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Executive Summary
This document is the summary of the final outcome of the research contract  w7714-
115195/A entitled  Research & development for Long Term Evolution (LTE) wireless 
location based on synthetic array.  The report is a compilation of the research activities 
and outcomes for the period of January 2012 to March 31 2014.

The final report consists of two parts whereas this is part B.  This document is primarily 
based on the PhD dissertation of Dr. Neda Moazen who did her doctoral research as 
part of this contract.
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Acronyms 

AN Access node (eNodeB) 

AP Anchor point 

ANan Access node that is an anchor node 

ANfp Access node that is feature point  

AWGN Additive White Gaussian Noise 

AOA Angle of Arrival 

BCRLB Bayesian Cramer-Rao Lower Bound

BF Bayesian Filter 

BFI Bayesian Fisher Information

BFIM Bayesian Fisher Information Matrix

CDMA Code Division Multiple Access

CML Concurrent Mapping and Localization 

CRLB Cramer-Rao Lower Bound

CV Computer Vision

EKF Extended Kalman Filter

FastSLAM Factorized Solution for Simultaneous Localization and Mapping

FI Fisher Information

FIM Fisher Information Matrix

FP Feature Point

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

i.i.d Independent and Identically Distributed 

IMM Interacting Multiple Model

IMU Inertial Measurement Unit
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IEEE Institute of Electrical and Electronics Engineers

KF Kalman Filter

KL Kullback-Leibler

LAMBDA Least-squares Ambiguity Decorrelation Adjustment

LJG Linear and Jointly Gaussian

LML Local Maximum Likelihood

LOS Line of Sight

LTE Long Term Evolution

MAP Maximum A Posterior 

MC Monte Carlo

M-CRLB Modified Cramer-Rao Lower Bound

MEMS Micro Electro-Mechanical Systems

MI Mutual Information 

MLE Maximum Likelihood Estimator

MM Multiple Model

MMSE Minimum Mean Square Error

MN Mobile Node

NEES Normalized Estimation Error Squared

OCXO Oven-Controlled Crystal Oscillator

OWLS Opportunistic Wireless Localization System

PDF Probability Density Function

PDOA Phase Difference of Arrival

PEB Position Error Bound 

PF Particle Filter

PRN Pseudo-Random Noise
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POA Phase of Arrival

RB Rao-Blackwellized

RBPF Rao-Blackwellized Particle Filter

RFID Radio Frequency Identification

RIM Research in Motion

RTOF Round-trip Time of Flight 

SLAM Simultaneous Localization and Mapping

SNR Signal-to-Noise Ratio 

SS Signal Strength

TCXO Temperature Compensated Crystal Oscillator

TDOA Time Difference of Arrival

TOA Time of Arrival

UWB Ultra Wideband 

WiFi Wireless Fidelity

WLAN Wireless Local Access Network

Variables used 

variable description 

� �0:tbel x  Posterior pdf of the particles over the complete time interval from 0 to stT  

tb range offset

sB signal bandwidth

c propagation velocity

1
i
me � 1 m� row vector whose elements are zero, except the i -th element which is 

equal to one.
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f carrier frequency

bf clock frequency bias

f clock frequency drift

( )rf t clock random frequency error

( , )I X Y mutual information between Y and X

J Fisher information matrix in general

totJ total Bayesian Fisher information matrix

ZJ measurement information matrix

PJ apriori information matrix

ANK vector of direction

m stacked vector of AN locations 

im state vector describing the location of the ith ANs

apm stacked vector of APs location

fpm stacked vector of FPs location

� �, ,,i x i ym m 2D location variables of an AN

ANN number of ANs

APN number of APs

FPN number of FPs

dN dimension of dynamic variable in state vector

sN dimension of stationary variable in state vector

pN number of particles

tp MN location vector

1:tp history of MN locations

tq state vector at time step t
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,d tq dynamic portion of state vector at time step t

sq stationary portion of state vector

dQ covariance matrix of dynamic variables update process

PQ motion process covariance matrix

( )r t geometric range between the AN and MN

� �s t bandpass signal

� �s t� lowpass signal

tu control vector

1:tu history of update control inputs

tv motion update process noise

,i tw measurement noise 

tz measurement vector received at time step t

,i tz observation vector from i-th AN at the time t

,1:i tz history of observation from i-th AN

,
1

i j
k� �

( 1) ( 1)k k� � � dimensional matrix whose elements are all zero except at the i -

th row and the j -th column which is one

MNt� MN clock bias

ANt� AN clock bias

MNt�� MN clock rate drift

ANt�� AN clock rate drift

( )t	
 carrier phase variation

�
�


T
� �  , second order derivative operator

	� carrier phase measurement noise

� normalizing constant
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� carrier wavelength

( , )N b B Gaussian process with the mean vector b and covariance matrix B

� overall transition matrix of sight states

i� transition matrix of the i-th AN’s sight state

2
b� ( bQ ) range offset variance (covariance matrix)

0	 carrier phase of AN transmitter at time of transmission

( )t	 partial carrier phase cycle measurement

2� chi-square distribution

dim(.) dimension function

��Re . real part

. Jacobian function
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Chapter 1   Introduction 

In recent years, new developments in wireless systems have combined mobility 

features with personal communication devices, such as laptops and cell phones. However, 

advances in embedded sensing and high speed processing have enabled location-aware 

services built into handset devices. The most popular developed positioning systems used by 

handset devices are based on the Global Positioning System (GPS) and cellular networks which 

are widely accessible for navigation in outdoor environments.

Each GPS satellite transmits a narrowband signal modulated with a unique pseudo-

random noise (PRN) sequence code that is known to the receiver. If the transmitter and 

receivers are synchronized, the corresponding receiver can correlate the received signal with a 

known PRN sequence to estimate the propagation delay between the transmitter and receiver 

antennas. The typical GPS navigation solution requires a minimum of 4 satellites that must be 

simultaneously visible to estimate the 3D location of the receiver and the time offset between 

receiver and transmitter clocks. However, in indoor and dense urban environments, satellite 

visibility is problematic. 

On the other hand, the position accuracy obtained by existing cellular–based methods 

using cell-ID or enhanced observed time difference of arrival (E-OTDOA) is generally low and 

insufficient for indoor environments. To this end, indoor localization systems rely on other 

technologies such as UWB, RFID, Bluetooth (IEEE 802.15), ultrasonic badges, and computer 

vision technology. However, these approaches require developing a signaling system and/or 

installing the network infrastructure which make them time-consuming and costly approaches 

for indoor localization.

Particularly, the project of “Google Maps” extension inside buildings has sparked a 

technology race among all smartphone manufacturers such as Apple, Nokia , Samsung, and 

RIM; and ASIC manufactures such as Qualcomm and Broadcom. This is augmented by the 
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concept of using any opportunistic wireless signal that may be present. In this work, the 

opportunistic wireless localization system (OWLS) is developed where the wireless signals 

utilized for positioning are received from opportunistic and poorly defined sources that perhaps 

are uncooperative with the mobile handset device. This means that the mobile node (MN) is not 

registered with the network and merely exploits received signals as signals of opportunity.

This research has focused on the OWLS using existing wireless network infrastructure 

such as locally generated WiFi, WLAN and 4G LTE wireless signals as an inexpensive solution 

for indoor and dense urban environments. In addition to cost-effectiveness, opportunistic 

wireless localization offers scalability, not only in the cost of required network infrastructure, but 

also in the number of mobile devices/nodes (MNs) subscribing to positioning services, since 

each mobile device is responsible for its sensing and processing. 

If the signal strength map is known, WiFi fingerprinting methods using signal of 

opportunity can achieve high localization accuracy in indoor environments [i], [ii i]. [ ] has 

obtained accuracy of 0.25 m using Monte Carlo localization based on a spatial discretized map 

of signal strength, combined with contact sensing. In [ii], the spatial discretized map of signal 

strength is fused with a low-cost image sensor to obtain a localization accuracy of 3 m. 

However, fingerprinting methods rely on expensive and time-consuming training phases to 

obtain the signal strength map. These methods require that the area must already have been 

surveyed and this makes them inefficient approaches for real time OWLS. 

An ideal OWLS does not rely on prior knowledge of a signal map, but builds its own 

database during operation. Nevertheless, in absence of pre-existing information about the 

environment and the signal strength map, an OWLS must deal with reception of a multitude of 

signals with a large number of unknown channel and source parameters. Opportunistic wireless 

localization introduces the simultaneous localization and mapping problem (SLAM) as a 

systematic approach to not only localize the MN but also to estimate and track the unknown 

parameters due to signal reception from unregistered networks, including the AN locations [iii],
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[iv]. SLAM, also known as Concurrent Mapping and localization (CML), is one of the most 

fundamental processing algorithms in robotics that has especially attracted immense attention in 

automation and control of the Mars Exploration Rover [v], [vi

An OWLS must be solved for a large number of constraints applied while the MN moves 

in an unknown trajectory and receives signal from unknown sources. The most significant 

concept from SLAM that can be applied to OWLS is the introduction of a systematic way of 

incorporating all of the disparate nonlinear constraints of the MN dynamic motion and 

observables. The constraints define correlation between environment map parameters and MN 

locations estimates. Correlation always increases in time as more constraints are defined while 

the MN moves and/or receives new observations. The SLAM behavior in an OWLS is 

analogous to a network of springs where each constraint corresponds to a spring between 

unknowns [

]. 

iii], as illustrated in Figure 0-1. An observation from an access node, at each time 

step, is analogous with a displacement in a spring network, and its correlation effect on its 

neighbors is proportional to their distances to other access nodes, i.e., the nearer they are, the 

greater is the effect. The minimum energy solution for this nonlinear network of springs self-

organize the map parameters and the MN trajectory. As the MN moves through the 

environments and receives more observation, the spring becomes stiffer and fixes the map 

parameters. 
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Additionally, ANs’ clocks may not necessarily be synchronized such as FDD LTE 

networks. The biased ranging issue is aggravated in a non-stationary multipath propagation 

environment where the signal is subject to spatial fading and signal attenuation due to 

shadowing and line-of sight (LOS) blockage [vii], [viii

Furthermore, unlike traditional wireless localization systems, the wireless source 

locations are not necessarily unknown when the MN tends to estimate its location based on the 

signal receptions from an unregistered wireless network. Hence, the AN location parameters 

need to be estimated, along with the MN position states, which degrade the MN position 

estimates due to the increase in the number of unknown variables, while observables are 

unchanged. Tracking algorithms must be transformed to a solution for a SLAM problem which 

the MN localization is dependent on the quality of estimation of AN locations [

]. 

iii], [iv]. 

The SLAM-based OWLS must deal with increase of unknown random variables such as 

the MN trajectory and the range error as the MN moves and receives new observations. 

P
P

P

P

P3

m1

m2

Map

MN

Constraint

Figure 0-1 SLAM as a network of springs problem
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Consequently, the large set of unknown variables will be unobservable since the number of 

unknowns increases faster than the number of known equations. It will be shown the OWLS 

algorithm converges and is practically robust if two rather benign assumptions can be made: 

1- The AN’s are stationary in terms of physical position.

2- The MN undergoes a smooth albeit random trajectory.

The assumption of smooth trajectory is significant because there is high correlation 

between the positions that can be used to filter out noisy and false location estimates due to the 

multipath and clock instability [ix

Second stage involves obtaining an error metric to assess the system performance, as 

addressed in Chapter 3. In estimation theory, minimum mean square error (MMSE), calculated 

through the covariance matrix of posterior PDF, is generally considered as a measure of 

estimation accuracy. However, information theory can provide a deep analytical perspective to 

assess the information of observables regarding state space. One of the main components of 

this research is dedicated to determining the envelope of reasonably robust operability of the 

SLAM algorithms for opportunistic wireless localization. The Bayesian Fisher information matrix 

is a key to the SLAM problem, representing a quantitative summary of all available information 

in one matrix. For the SLAM-based OWLS, the Bayesian Fisher information matrix (BFIM) is 

derived as a quantitative measure of all available information from observables, the MN motion 

process and prior knowledge regarding the unknowns. BFIM and its variants are utilized to 

analyze the proposed SLAM-based solutions for OWLS performance in terms of efficiency, 

observability and consistency. Even though, the estimation relation to quantifiable Fisher 

information is only valid for a jointly linear Gaussian problem; as long as the nonlinearity is mild 

]. The Bayesian-based filter solution is proposed to improve the 

MN position estimation as it can take advantage of correlated information from previous 

observations. However, localization performance relies on the knowledge of the network map, 

the MN trajectory and quality of measurements.
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and the measurement and state update noise are approximately Gaussian, it can still be 

regarded as a fundamental limit of accuracy [x

To understand how much information each unknown variable contributes to the problem, 

SLAM-based OWLS is studied by four system models according to ranging measurements, 

varying from a simple synchronized scenario with stationary known propagation to the worse 

case with unsynchronized reception from unregistered and unsynchronized network in a non-

stationary mixed LOS/NLOS propagation scenario. 

]. 

Input-output mutual information (MI) is another interesting measure of information which 

quantifies the mutual dependence between input and output variables. Guo et al., 2005, 

revealed an insightful relationship between mutual information and MMSE in the Gaussian 

channel, regardless of the input statistics, given by [xi

� � � �; 1
2

I X Y
MMSE �

�
�

�
�

]:

0-1

where � �;I X Y is the mutual information between input X , and output Y , in units of nats; and 

� is the signal-to-noise ratio. Guo’s theorem illustrates that mutual information as well as 

Fisher information are powerful metrics which can lead to different insight into the localization 

performance. In this regard, the application of MI for localization problems with special focus on 

our SLAM-based problem is investigated in Chapter 3. 

In a broad perspective, the SLAM-based OWLS can be viewed as a dynamic problem 

varying from mapping-only to tracking-only, or simultaneous localization and mapping, 

depending on the available knowledge from source locations and the MN trajectory, as depicted 

in Figure 0-2. However, as the number of unknown variables increases and they become more 

unpredictable, the SLAM accuracy, convergence, and hence robustness degrades.
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Consider a MN moving from left side of Figure 0-2 where the MN has access to LOS 

signals of at least 4 GPS satellites so that precise trajectory information is available. 

Opportunistic wireless localization can be solved for the estimation of the stationary ANs (for 

example, nearby LTE base stations) locations or the mapping problem. As the MN moves into a 

GPS-deprived environment such as an urban canyon area or an indoor building where the GPS 

signals are blocked, it has no access to the precise localization information but has prior 

knowledge about the ANs locations from the previous mapping step. The OWLS turns to the MN 

tracking problem using received signals of opportunity from wireless ANs with known locations. 

As the MN moves, it may lose sight of some or all of the ANs where there will be 

partial/no knowledge about their source locations, as depicted in the right side of Figure 0-2.

This is the worst case for the OWLS since it must not only map the source locations, but also 

track the MN trajectory. Four system models are suggested for this area, as addressed in 

Chapter 3 and Bayesian-based solutions are proposed as the final stage of designing the 

SAT01
SAT02

SAT03
SAT04

AN01

AN02

AN03

AN04

AN05

AN 06

AN07

Mapping Tracking 

SLAM with partial 
knowledge

SLAM

AN08

LOS

NLOS

Figure 0-2 Schematic scenarios of a SLAM problem in a broad prospective



16/154

tracking algorithm, as addresses in Chapter 4. In first system model, it is assumed that ANs are 

synchronized with MN and also all ANs are synchronized via a reference clock system (like 

GPS or a central hub). Moreover, multipath propagation is stationary or, if not, its condition is 

known to the MN. This means that for every AN-MN link, the propagation is either LOS or NLOS 

in the whole trajectory, or if the sight condition of ANs varies during trajectory as the MN moves, 

the ANs’ LOS/NLOS conditions are known by the MN via prior detection processing, and NLOS 

measurements are discarded from the observation set. 

Second system model considers the effect of MN clock drift where it is modeled by first-

order Markov process based on the random smooth trajectory assumption; and further, in third 

system model, it is assumed that MN is no longer synchronized with ANs and ANs are also not 

synchronized with each other. This assumption introduces a range offset variable for every MN-

AN link. For all four system models, both EKF-based and PF-based SLAM solutions, originally 

known as EKFSLAM and FastSLAM, are modified for newly-introduced nuisance parameters. 

Their performances are compared in terms of consistency and efficiency based on BFIM and 

other estimation and information metrics obtained in Chapter 3, and the strengths and 

weaknesses of each method are discussed. 

In the forth system model, the ultimate objective of this thesis is addressed that is to develop a 

SLAM-based OWLS for the scenario where not only the MN trajectory and AN locations are 

unknown, but also where LOS/NLOS conditions in AN-MN links are non-stationary and 

unknown. To deal with different propagation conditions, two measurement models are 

introduced for LOS and NLOS conditions, where the transition between the LOS and NLOS 

modeled with a Markov chain. The binary state of LOS/NLOS conditions turns the OWLS to a 

jump Markov non-linear system (JMNLS) [xii]. Four novel SLAM-based solutions for this 

nonlinear JMNLS are suggested combining local maximum likelihood (LML) and interacting 

multiple model estimators with EKF-based and PF-based SLAM solutions: LML-EKFSLAM, 

IMM-EKFSLAM, LML-FastSLAM and MM-FastSLAM. IMM-EKFSLAM is derived by extension of 
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the EKF for joint estimation of the discrete sight states and continuous variable states including 

the MN location, AN locations and range error using interactive multiple model (IMM) estimator. 

In MM-FastSLAM, the Rao-Blackewellized (RB) PF–based SLAM [xxxiii] is modified based on 

the multiple model Particle filter (MMPF) [xii], where the posterior PDF samples represent both 

MN location dynamic state and AN sight condition states. LML-FastSLAM and LML-EKFSLAM 

are obtained by combining modified FastSLAM or EKFSLAM proposed for system model 3 with 

LML criteria for detecting ANs sight discrete state. Finally, the performance of each method is 

evaluated with the related BFIM and is compared with previously developed methods when the 

NLOS effect and/or range error are ignored.

Chapter 2    OWLS Background Studies and Challenges

While the Global positioning system (GPS) is widely accessible, its position accuracy is 

compromised in dense urban areas and indoor environments due to low signal to noise ratio, 

LOS blockage and narrowband signaling [xiii

vii

]. Such factors are limiting when sub-meter 

accuracy is required. Taking advantage of opportunistic signals from the available local wireless 

networks, such as locally generated WiFi, WLAN or 4G LTE wireless signals of ample power 

and typically larger bandwidth can partially ameliorate these issues. The wireless signaling is 

assumed to be sourced from wireless network access nodes (ANs) which are primarily used for 

mobile data and voice communications [ ].

Similar to any wireless localization method, the opportunistic wireless localization 

exploits the received signal observables to extract the MN position information. In addition to 

unknown MN position variables in typical wireless localization methods, the tracking algorithm 

adopted for the opportunistic wireless localization must also deal with the estimation of unknown 

nuisance parameters of signals of opportunity from opportunistic sources [xiv iii], [ ]. Prior to 

design any tracking algorithm for an OWLS, it is required to present a fundamental study on 
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wireless localization methods, opportunistic wireless localization system parameters, and its 

challenges.

This chapter covers the required background studies for wireless localization based on 

signal of opportunity reception. Primarily, it explains the wireless positioning methods according 

to signal observables. However, the wireless signaling is assumed to be sourced from local 

wireless sources such as 4G LTE access nodes which are uncooperative with poorly defined 

source locations. In this thesis, the opportunistic sources are also referred as uncooperative or 

unregistered network; this means that the network location processing or assistance is not 

involved. The downlink signaling is specifically exploited, as the MN processing is desired to be 

capable of standalone localization. As mentioned earlier, since the MN receiver is not 

necessarily registered within wireless source networks; it must deal with the detection of a 

multitude of signals with unknown and random parameters including signal characteristics, such 

as bandwidth, the carrier frequency; or channel properties, such as shadowing, multipath and 

NLOS/LOS conditions; and network properties, such as the AN location and clock 

synchronization. In this regard, we also discuss the opportunistic wireless localization 

challenges due to signal, channel and network properties in more detail. Previous studies are 

also presented and recommended solutions are discussed. Finally, a systematic approach to 

formulate the opportunistic wireless localization problem is introduced including all nuisance 

parameters explained in former sections.

Signal characteristics used for positioning include the angle of arrival (AOA), the time of 

arrival (TOA) or the time difference of arrival (TDOA), the signal strength (SS), and the carrier 

phase or carrier phase difference (also known as the phase of arrival (POA/PDOA) ). Traditional 

positioning methods utilize triangulation algorithms that exploit the geometric properties of 

triangles to estimate the MN location through lateration or angulation.

Angulation estimates the location of a MN by computing the angle relative to multiple 

reference points via directive antennas or antenna arrays. The accuracy of the position 
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estimated by AOA methods is very sensitive on the distance, geometry, and multipath in the 

MN-AN link [xv

Figure 0-3

]. In angulation or AOA-based approaches, the location of the desired target can 

be found at the intersection of several AOA direction measurements, which are in the form of 

ray emanating from the AN. As shown in .a, this method may use at least two 

reference points for 2D position information. For AOA estimation, no synchronization is required 

between transmitters.  However, the application of directional antennas or antenna arrays in a 

handheld receiver is limited due to the complexity and size of antenna arrays. One of the 

disadvantages of AOA-based positioning methods is that their performance is very sensitive to 

accuracy of angle measurements. However, high accuracy angle measurements in indoor 

environments is limited by shadowing and multipath reflections arriving from misleading 

directions that may be as strong as LOS component or even stronger, or by the directivity of the 

measuring aperture.

Figure 0-3 Geometric locus of the MN location estimate in wireless positioning 
methods
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Lateration methods (also known as range-based methods) estimate the MN position by 

measuring the range from multiple ANs. Range-based methods utilize the SS, TOA/TDOA, 

round-trip time of flight (RTOF) or POA/PDOA measurements of the received signal. TOA-

based algorithms are based on the fact that the distance from the AN to the MN is directly 

proportional to the propagation time. As shown in Figure 0-3.c, the position is computed by the 

intersection point of the circles of TOA measurements. One of the disadvantages of these 

methods is that all of the ANs and the MN must be time synchronized. In contrast, TDOA-based 

algorithms compute the relative position of the MN by examining the difference in TOAs from 

various ANs. Here, the MN location lies on a hyperboloid with a constant range difference 

between two ANs, as depicted in Figure 0-3.d. Unlike TOA-based methods, they only requires 

ANs to be synchronized.

RTOF-based methods, similar to radar, determine the time of flight of signal traveling 

from the AN to the MN and back, as illustrated in Figure 0-3.b. For these methods, a more 

moderate relative synchronization system is required in comparison with TOA methods. 

However, the exact delay/processing time caused by the reference/responder is unknown which 

cannot be ignored in short range indoor applications.

SS-based or signal attenuation-based methods try to compute the signal path loss due 

to propagation and then translate it into the range estimate. Due to the dynamic and 

unpredictable characteristics of indoor environment propagation, an explicit formulation between 

distance and path loss does not always hold. For this reason, SS-based positioning algorithms 

are mostly used in site-specific applications using fingerprinting and scene analysis methods. 

Similar to time-based methods, carrier phase-based positioning methods are considered 

as range-based positioning methods. However, they provide better position accuracy compared 

to other time-based ranging methods, since the carrier phase can be measured with the 

precision of a 0.01-0.05 cycle. Assuming the transmitting signal is a pure sinusoid, the delay can 

be expressed as a fraction of wavelength. As long as the phase is in interval [0, 2 )� , the range 
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estimate is unambiguous; otherwise, it is necessary to deal with ambiguity. GPS receivers 

acquire the phase lock with the transmitter signal, measure the initial partial phase difference 

between the received and transmitter signals (generated at the receiver), and then track 

changes in phase difference (i.e. counting full cycles and keeping track of the partial phase). In 

an ideal LOS condition, the integer full cycle numbers cannot be measured and have to be 

estimated; however, they remain constant as long as the carrier phase tracking loop is locked. 

Generally, for absolute positioning based on the phase measurement, two receivers are 

required; one is the reference receiver at the stationary known location and the other is the MN 

receiver. This architecture is required for resolving ambiguity and initialization. After initialization, 

the MN receiver is expected to track the phase continuously. The integer ambiguity can be 

resolved using the least-squares ambiguity decorrelation adjustment (LAMBDA) method, carrier 

phase measurements, or multiple epochs from several transmitters.  Since the integer ambiguity 

solution is not the main focus of this thesis, this information suffices for this research objective, 

and the interested reader is referred to [xvi

The mathematical model for the carrier phase measurement in units of cycle in an 

opportunistic signal reception at the MN receiver is described as

].

0
1( ) ( ) ( )MN ANt r t f t t N 		 � � 	 �
�

� � � � � �                                                            0-2

where ( )t	 is the partial carrier phase cycle measured by the receiver, 	� models the 

measurement noise, and 0	 is the unknown carrier phase of the AN transmitter at the time of 

transmission. The � and f are the carrier wavelength and the carrier frequency, respectively. 

( )r t is the geometric range between the AN and MN at time t . The MN receiver and AN 

transmitter clock biases are represented as MNt� and ANt� , both in units of second. N is the 

integer ambiguity, which is the total number of full carrier cycles between the AN and the MN. It 

must be noted that since the range measurement from the carrier phase is ambiguous, it is 
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referred to as the pseudo range in many contexts. The pseudo-range measurement is defined 

as a function of the true range measurement which usually differs by an unknown offset. 

The MN is not necessarily registered in the network, thus the ANs do not provide any 

synchronization information for the MN. Consequently, we are only interested in carrier phase 

changes in time that are independent of the initial carrier phase at the AN and the ambiguous 

integer number of cycles. Without the loss of generality, we assume that ( 0)t	 � is zero that 

the MN tracking is initialized at the coordinate origin, so the Eq.(0-1) for carrier phase variation, 

( )t	
 , as a function of time, is modified by

1( ) ( ) 0 [ ( ) ( 0 )] . ( )MN ANt t r t r t f t t t 		 	 � � �
�


 � � � � � � � �� � �                                                     0-3

where MNt�� and ANt�� are the MN and the AN clock rate drifts , respectively. The unknown clock 

bias term, due to initial non-synchronization, is eliminated, since it is considered unchanged in 

time interval [0, ]t . It is also assumed that, in the time interval [0, ]t , the integer number of 

cycles is constant and there is no cycle slip in the tracking loop. Figure 0-4 shows general 

carrier phase relation with the AN-MN distance in LOS propagation, as defined in Eq. (0-2). 

( 0)r t �
( )r t

( )r t


AN

MN 

Figure 0-4 Ranging based on the carrier phase measurement
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Consider a small portion of the MN trajectory where the signal is collected between M 

sampled positions, 0 1[ , ,..., ]TM�p p p p , within the trajectory. If the trajectory length is within the 

spatial coherence interval of the channel and also much shorter than the AN-MN distance ( )r t ,

the plane wave propagation over the M sampled locations of the MN trajectory is justified. In this 

regard, the signal received at the M spatial sampling points, 0 1 1[ , ,..., ]TM ��p p p p ,  is denoted as 

� �
� �

� �

0

1

,
,

, M

s t
t

s t �

� �
� �� � �
� �� �

p
s p

p
�

0-4

Consider the coordinate system origin at the initial location of the MN, Eq. (0-3) in terms 

of time delay, is written as

� �
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( )M

s t
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� ��� �

s p �
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where AN
m c
� �

T
mK .p

. ANK is the unity vector of direction in a LOS propagation between the 

AN transmitter and the MN receiver, defined by

2 2 2

1 AN

AN AN

AN AN AN
AN

x
y

x y z z

� �
� �� � � �� � � �� �

K

0-6

Assuming that � �s t is a bandpass signal, we have 

� � � �� �2 Re , 0,..., 1cj ts t s t e m M � � ��

0-7

where � �s t� is the lowpass band limited complex envelope of the received signal, and 2c cf ��

is the carrier frequency in radians. Similarly, the signal at the m th

� � � � � �� �( ), 2 Re , 0,..., 1c mj t
m m ms t s t s t e m M �� � �� � � � � �p �

spatial sampling point is 

modified in the complex envelop representation by 

0-8
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If it can be assumed that incoming signals are narrowband, implying that the reciprocal 

of a maximum propagation delay across M MN locations is much greater than the signal 

bandwidth,

max

1
sB T

�

0-9

where sB is the bandwidth of the complex envelope and maxT
 is the maximum propagation 

delay between each two MN locations [xvii

� � � � , 0,1,..., 1ms t s t m M�� � �� ��

], the narrowband assumption justifies as

0-10

Hence, in the narrowband case, Eq.(0-7) reduces to

� � � �� �, 2 Re , 0,..., 1c c mj t j
ms t s t e e m M  ��� � �p �

0-11

In a narrowband signal model, the sensor wise propagation delay is approximated by a 

phase shift as a function of the propagation direction, signal wavelength , MN position (here, the 

MN displacement) 

2 T
c m AN

� �
�

� mk p

0-12

On the other hand, the carrier phase measurement in units of cycle for positioning 

purpose is modified as

1( ) ( )T
AN clkt t 		 	 �

�
� � �k p

0-13

where clk	 is clock instability due to free running clocks in receiver (here, the MN) and 

transmitter (here, the ANs), 	� models the phase error due to both variation of antenna phase 

center along with the propagation direction and phase discriminator noise.
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Figure 0-5 Ranging based on carrier phase measurement in a plane wave propagation

The performance of OWLS is highly dependent on both the quality of measurements and 

unknown characteristics of the signal which interfere as nuisance parameters in the position 

estimation problem. In this regard, it is important to explore the diverse set of factors that can 

affect localization accuracy. In summary, the main deficiency factors in the opportunistic 

wireless localization are classified as unsynchronized reception from an uncooperative network, 

non-stationary wireless propagation, lack of knowledge about source locations, and noise and 

interference from unwanted sources. The following sections discuss in more detail these four 

typical sources of error in opportunistic wireless localization. 

Indoor localization requires precise timing measurement in at least nano-seconds since 

the accuracy level of several decimeter is desired. For this reason, clock synchronization is an 

important factor in the ranging and positioning performance. The carrier phase and time-based 

positioning methods require the receiver and transmitter nodes to be equipped with a stable 

oscillator from which an internal clock reference is derived to measure the true time with high 
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accuracy. However, various physical effects cause oscillators to experience frequency and 

phase drift, leading to large errors in phase and time measurements, and therefore in the 

position estimate. In a disciplined oscillator, the frequency is controlled by the internal 

microprocessor based on the measurement of its frequency relative to the received GPS or 

other wireless signals. Any interruption in signal reception may degrade the clock frequency.

In an opportunistic signal reception, while the MN receiver is not locked to the 

synchronization signal sent from the AN, an improved long-term and short-term stabilized 

oscillator is of great importance. The clock instability characteristics are defined by two terms, 

holdover accuracy, and short-term stability. Holdover accuracy refers to the time error 

accumulation during a free-running clock operation in a long term observation that is typically 1 

day. For example, a medium-stability OCXO accumulates 100 microseconds of time error in 24 

hours after the reference signal (like GPS or CDMA signal) is lost. Short-term stability refers to 

the frequency deviation relative to a reference frequency standard, measured over an 

observation time of one second or less. When measured in units of time, it is known as jitter,

and when measured in units of phase, in a 1 Hz bandwidth at specific frequencies, is defined as 

phase noise [xviii]. It implies that short-

The local time of a clock can be expressed as 

term instability characteristics of the receiver/ transmitter 

clocks mainly affect positioning performance rather than holdover accuracy. 

( )C t as a function of real time t . The 

oscillator frequency determines the rate at which the clock runs. In a perfect clock, the rate 

denoted as ( ) /dC t dt would be equal to 1, or ( )C t t� . However, all clocks are subject to clock 

drift due to various physical sources which result in uncertainty between the MN and the rest of 

the ANs network, as shown in Figure 0-6.
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Figure 0-6 Illustration of ideal time and local clock time (short term instability)

A reasonable assumption that will be made here is that the ANs network is tightly 

synchronized perhaps locked to a central synchronizing clock or individually to a GPS source. 

This is a rather benign assumption to make as each AN will have a backhaul connection to a 

communication hub of sorts. However, the actual signal delay from this central hub to ANs is 

difficult to actually control and maintain. Regardless, it will be assumed that the AN clocks are 

perfectly stable and that the clock instability resides with the MN clock. As an example, the LTE 

hub is likely based on a higher quality clock than the consumer grade MN clock of a handset 

device. 

For the MN free-running clock node without any synchronization scheme, one solution is 

that the MN receiver can adequately model the behavior of its own clock. The time reading error 

of a clock can be obtained as a function of oscillator quartz frequency given by

0

0 0
0

1( ) ( )
t

t

C t t f t dt
f

� � "
0-14

( )C t , local time

t , ideal time

( )C t t�

( ) dC t t��

( ) d bC t t� �� �

Drift
Bias
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where 0t and 0( )C t are the reference time epoch and clock reading at the reference epoch; 

and ( )if t and 0f are the frequency of the oscillator and nominal oscillator frequency, 

respectively. The oscillator frequency shows deterministic linear variations as well as random 

errors [xix

0 0( ) ( ( ) ) ( )b rf t f f C t t f t� � � �

]. A standard model for the frequency of an oscillator is defined as

0-15

where both bf and f , as frequency bias and frequency drift, model the linear deterministic 

portion, and ( )rf t represents the unmodelled random frequency errors. 

The standard approach to deal with clock frequency deviation is to model the 

deterministic part by an explicit polynomial-like function and model the random part by its 

sample variance known as Allen variance [vii], [xx], [xxi], [xxii

0

( )( ) rf ty t
f

�

]. Allen variance is defined as the 

sample variance of , given by

� �
2

2
1

1

1( , )
2( 1)

M

y m m
m

M y y
M

� � �
�

� �
� #

0-16

where 
1 ( )

m

m

t

m
t

y y t dt
�

�

�

� "

Allen deviation is the square root of Allen variance that is regarded as an indication of 

the overall clock stability [xxiii], [xxiv], [xxv Figure 0-7]. depicts the clock stability of several clock 

sources in term of Allen deviation. The clock stability is defined as a function of observation time 

of a particular clock. If it is assumed that, at the start of observation time, the clock is 

synchronized with a true time scale, the RMS value by which the clock has deviated after a 

certain time interval � is stated by . ( )y� � � .



29/154

Figure 0-7 Square-root of the Allan variance of typical oscillators (from 
http://www.endruntechnologies.com/pdf/OscOptions.pdf, [xxvi])

As an example, the Allen variance of 10-9

However, mainstream published research on clock instability error has mostly focused 

on identifying models and their parameters from plots of Allen variance or of power spectral 

densities; whereas, the clock stability models based on the autocorrelation function of phase 

noise also show that the variation of clock deviation can be fitted as a Markov process. [xxvii

for a TCXO oscillator implies instability of 

about 0.6 nsec per second which roughly equates to 20 cm per second in range measurements. 

This means that if a localization scenario consists of a single MN and AN, and the location is 

perfectly known at t=0, then that location will randomly drift as a random walk at a deviation of 

about 20 cm per second. However, as it is a random walk, the deviation proportionally increases 

to the square root of the time lapse in seconds, and not linearly with time. From the Allen 

deviation, it is possible to estimate instability in terms of physical distance by a Markovian 

process. 

]

presents a clock deviation modeling based on a second order random process where the model 

parameters are obtained by its autocorrelation function. The Markovian process of clock drift 
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helps the clock deviation parameters to be modeled along with the dynamic MN trajectory state-

space vector. Consequently, an optimum solution for the OWLS has to not only localize the MN 

position as it undergoes random motion, but also to track the clock deviation to mitigate the 

localization errors due to clock instability. 

The main source of error in any wireless localization system is derived from multipath 

fading, shadowing and LOS blockage. In indoor environments, due to reflection, defraction, and 

scattering of radio waves by structures inside a building, several copies of transmitted signal 

reach the receiver; this phenomenon is called multipath. In narrowband signaling, different 

propagation paths are added constructively (in-phase) or deconstructively (out-of-phase) within 

signal propagation time, and cannot be resolved. The multipath delay spreading increases 

significantly the uncertainty of TOA measurements which leads to large bias error in the range 

estimate. The increased bandwidth partially ameliorates this situation because the channel acts 

more frequency selective, and the multipath components become resolvable. Therefore, the 

leading edge of received signal, corresponding to the LOS component is not biased with the 

resolvable multipath returns. As an example, the currently deployable LTE sources are limited to 

20 MHz in terms of bandwidth. This is significantly better than the GPS or IS2000 signals which 

are typically limited to about 1 MHz; even though, this is not sufficient to provide accurate TOA 

measurements for indoor localization. 

LOS propagation may also be obstructed completely or partially so that the transmitted 

signal, before receiving at the MN, is reflected by structures or travels through different 

obstacles like walls in a building. Both of these phenomena lead into a positive random excess 

delay in time measurements that render traditional methods of localization virtually ineffective. In 

other words, combating the effects of multipath is the most significant challenge in providing 

adequately accurate position estimates, and hence new methods are required. 

In this regard, many research works have focused on LOS/NLOS identification as prior 

processing of any localization algorithm. The proposed methods to mitigate the NLOS effect are 
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categorized in two groups. In the first group, the NLOS/LOS conditions are detected in a prior 

processing to localization. Whenever the LOS/NLOS conditions are identified, NLOS 

measurements can simply be ignored or the measurement model is adopted based on the 

range error to improve accuracy. In a mixed scenario, the carrier phase of the AN transmission 

will be used when LOS conditions are evident; in NLOS situations, the code phase is used with 

multipath delay averaging. 

In the second group, sight condition and/or its related parameters are jointly estimated 

and tracked along with location states. In a Jump-Markov system, the algorithm must solve for 

both discrete (here, binary state regarding NLOS/LOS conditions), and continuous (here, 

position variables) states at the same time. Jump Markov or switching Markov model is also 

extended for time-based systems where the range measurements in NLOS condition is 

modeled by jump in variance and mean of measurement noise [xlix-li], [lv]. In NLOS situations, 

the MN motion can be used to accumulate a number of TOA measurements from the AN, and 

hence averaging out the effects of multipath. This is essentially handled by the Bayesian 

processing which has enhanced indoor positioning performance in NLOS situations. 

While the MN receiver must deal with detection and tracking of the signal of opportunity 

from a local wireless network, it has to combat the interference of unwanted signals from other 

coexisting devices using the same frequency band. The OWLS is expected to operate in the 

presence of both interferences from narrowband interferes such as Bluetooth devices and 

cordless phones and wideband interferers such as microwave ovens and WiFi devices. 

Beamforming methods [xxviii

xxxii]. However, 

the effect of interference on OWLS and its mitigation techniques is out of the scope of this thesis 

and in the proposed OWLS modeling, the interference is simply treated as a part of system 

noise into a spread spectrum MN device.

], [xxix] and nonlinear filtering are considered as effective 

approaches to mitigate the effect of interference on localization [xxx], [xxxi], [
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The overall objective of a tracking problem is to generate the belief map of the MN 

location as the trajectory unfolds. The belief map will provide a posterior estimate of the MN 

location that is iterated at each time step based on all available data up to the current time. The 

Bayesian filtering methods such as PF and KF/EKF provide an incremental estimate of the 

posterior PDF based on the accumulation of the MN trajectory estimate and the measurements 

made up to current time with knowledge of AN locations. 

However, in an opportunistic signal reception, it is not guaranteed that the location of 

ANs are known to the MN. This gives the impetus to employ the SLAM techniques for the 

OWLS as a systematic approach to take into account all available constraints regarding the 

large set of unknowns such as the MN trajectory and AN locations. The following sections 

provide a short history of the SLAM problem as well as its classifications and proposed 

solutions. Later, observability of the SLAM-based OWLS is discussed.

Origin of SLAM

Simultaneous Localization and Mapping, which is also known as Concurrent Mapping 

and Localization (CML), addresses problems where the MN does not have access to the map of 

the environment, nor does it know its own location. SLAM will search for the possible tracking 

solution for a MN, if placed at an unknown location in an unknown environment, as it 

consistently builds the map of environment; while simultaneously, estimates its location within 

the map.

The roots of SLAM date back to 1986 IEEE Robotics and Automation Conference in San 

Francisco when probabilistic mapping as a fundamental robotic problem is addressed and 

discussed by Peter Cheeseman, Jim Crowley, and Hugh Durrant-Whyte, Raja Chatila, Oliver 

Faugeras, Randal Smith [xxxiii]. These discussions were mainly focused on application of 
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estimation-theoretic methods in Artificial Intelligence and Robotics. Subsequently, many 

research papers have come out on related problems such as Smith and Cheesman and 

Durrant-Whyte [xxxiv] Ayache and Faugeras [ xxxvi] and Chatila and Laumond 

xxxvii]. The key result of these research studies proved that there is a high degree of 

correlation between the estimates of different landmarks locations in a map, which increase with 

future observations [xxxviii

xxxv] , Crowley [

[

]. 

Later in 1990s, a key research on convergence issues was developed by Csorba [xxxix]

and, then specifically, on Kaman-filter-based SLAM methods and the probabilistic localization 

and mapping methods by Thrun [xl

Today, the SLAM is introduced for many applications in a number of different domains 

from indoor robots to outdoor, underwater, and airborne systems. It has been formulated and 

solved as a theoretical problem in many different forms. The SLAM problem is a continuous and 

discrete estimation problem. Generally, the continuous estimation part pertains to both the 

location of the object in the map and the mobile node’s own location, and the discrete nature is 

related with correspondences. When an object is detected, a SLAM algorithm must distinguish 

the relation of this object to the previously detected objects. 

]. The conceptual breakthrough in SLAM research was found 

that the combined mapping and localization problem, once formulated as a single estimation 

problem, is actually convergent. Most importantly, it was recognized that the correlations 

between landmarks were actually the critical part of the problem. In other words, the higher 

these correlations, the better the solution.

Consider a MN, such as a vehicle or a person carrying a handset device moving through 

an unknown environment and taking observations from opportunistic sources. Lets define the 

following variables in regards to the OWLS formulation:

tp : the state vector describing the location of the MN at time t .
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tu : the control vector, if available, applied at time 1t � to drive the MN location to tp at 

time t ; or observation vector that can model the MN motion state process such as computer 

vision outputs.

im : the state vector describing the location of the ith ANs whose true location is 

assumed to be time invariant.

m : the stacked vector of AN locations, � �, 1,..,i ANi N� �m m where ANN is the number 

of ANs.

apm : the stacked vector of ANs location whose locations are known to the MN, referred 

by anchor points (APs), � �, 1,...,ap i APi N� �m m , where APN is the number of APs

fpm : the stacked vector of ANs location whose location are unknown to the MN, referred 

by feature points (FPs), � �, 1,...,fp i AP AP FPi N N N� � � �m m , where FPN is the number of FPs.

,i tz : the observation vector received by the MN from ith AN at the time t .

� �, , 1,...,t i t ANi N�z z� ; the stacked vector of observations received by the MN from all 

ANs at the time t .

In addition, the following sets are also defined:
� � � �1: 1 2 1: 1t t t t��p p p p p p� � ; the history of the MN locations.

� � � �1: 1 2 1: 1t t t t�� �u u u u u u� ; the history of update control inputs.

� � � �,1: ,1 ,2 , ,1: 1 ,i t i i i t i t i t��z z z z z z� � ; the history of observation received by the MN 

from i-th AN. 

It must be noted that AN AP FPN N N� � . The optimum solution for a SLAM-based OWLS 

must develop a systematic way of accounting for the all observations to compute the posterior 

belief map of state variables including the MN location, FP locations, and nuisance parameters 
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(if available). According to posterior PDF computation process, the SLAM techniques are 

classified into two categories: Online SLAM and full SLAM. The online SLAM problem includes 

estimating the posterior PDF over the current MN location, tp , along with the unknown source 

location fpm (and other nuisance parameters, if available) represented as 1: 1:( , | , )t fp t tp p m z u

[xxxiii]. Online SLAM algorithms are incremental, and they discard past measurements and 

update controls that have been processed. The second category is known as the full SLAM. The 

full SLAM involves calculating the posterior PDF over the entire path 1:tp along with the FP 

locations fpm , 1: 1: 1:( , | , )t fp t tp p m z u .

Figure 0-8 illustrates the graphical schemes for states dependency of a general SLAM 

problem and also the difference between the full SLAM and online SLAM. The arrows define the 

dependency between processes and dark grey boxes show the unknown states which must be 

estimated at time step t . The arrows connectivity between kp ’s  shows that given the control 

data at time t , tu (if available), the MN location at time step t is only dependent to MN location 

at previous time 1t � . In other words, the MN location variables kp are dependent is a specific 

way that the past and future are dependent only through the present. Moreover, it is seen that 

even though, state-dependent measurement process tz evolves independently of each other 

and are only dependent on random process tp , since the FP map fpm is unknown, estimate of 

tp and fpm are not independent. Consequently, the joint posterior PDF tp and fpm cannot be 

separated. The online SLAM and full SLAM are fundamentally different algorithms as the set of 

variables to be estimated is different in each algorithm as illustrated in Figure 0-8. However, 

online SLAM can be modified as the integration of the full SLAM over past locations.  
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(a)                                                                                        (b)

Figure 0-8 Graphical schemes of the a) online SLAM in comparison with the b) full 
SLAM

Estimation error correlation effect on SLAM 

One of the important aspects of SLAM is to understand the correlation between estimate 

of the MN trajectory and the estimate(s) of unknown parameters of environment map. For 

OWLS with no nuisance parameters except FP locations, Figure 0-9 shows the estimates of the 

MN trajectory and the FP locations compared to the actual MN trajectory and FP locations. It 

illustrates that the estimation error for the FP locations is highly correlated with the MN locations 

estimation error. This is because the main source of the estimation error originates from the 

uncertainty about the MN position where the observations are made [xl]. This common source of 

error makes estimation error of the feature points highly correlated as it shapes the joint 

probability density of feature points to be highly peaked, even if the marginal density of each 

individual FP’s PDF has a skewed shape. 
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Figure 0-9 Correlation between the estimation error of the MN trajectoryand FP locations 
compared with the true MN trajectory and the FP locations

The interesting point is that the correlation between the estimates of FP locations 

increases in time and makes the peak of the joint PDF sharper as more observations are 

received. As discussed earlier, this correlation effect originates from the constraints defined by 

disparate sources of information in OWLS such as MN motion process and observables from 

unknown or known source locations. As already illustrated in Figure 0-1, the effect of correlation 

between the MN trajectory estimates and FP locations cast the SLAM-based OWLS as a 

network of springs where minimum energy solution of this spring system solves for the MN 

trajectory and FP locations (and other nuisance parameters, if available). An observation at 

each time step is analogous with a displacement in the spring network, and its correlation effect 

on its neighbors is proportional to their distances to other feature points, i.e., the nearer they 

are, the greater is the effect, as shown in Figure 0-10. As the MN moves, and receives more 
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observations from feature points, the correlation between the estimates of feature points 

increases and the spring becomes stiffer. The thicker link in Figure 0-10 denotes more stiffness 

and thus higher correlation. 

FP

FP

FP

MN

Figure 0-10 Analogy of the estimation error correlation in a SLAM problem with a spring 
network

In theoretical limit, the rigid or accurate relative map of ANs’ location is obtained and the 

relative MN location accuracy becomes equal with the MN location accuracy achievable with a 

given map. The minimum energy solution for this spring network is the function of origin of 

coordinate systems and its unit vector. If there is no constraint to an absolute point or coordinate 

system, as illustrated in Figure 0-11.a, there is only constraints to the origin of the coordinate 

system but not the unit vectors, as illustrated in Figure 0-11.b, there are a family of lowest 

energy solutions which gives rise to the ambiguity relative to absolute space. The correlation is 

a result of the minimum energy solution mapping to such a family of solutions that are 

ambiguous as far as an affine transformation. That is the family of minimum energy solutions is 

a set of solutions, wherein an arbitrary affine transformation exists between its members. 

In other words, the location accuracy of the MN, relative to the map, is bounded only by 

the quality of the map and the relating measurement sensors, whereas in the theoretical limit, it 

can be claimed that the MN relative location accuracy becomes equal to the localization 

accuracy achievable with a given map. 
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Consider a MN that moves with an unknown trajectory and receives N measurements 

at each time step from N FPs, recalling that a FP is an AN with an unknown location to the MN. 

For a minimal 2D OWLS where there is no nuisance parameters except FP locations, there is at 

least 2 2N� unknown variables, which is less than the number of the known constraints, N .

Under no assumption on ANs or MN trajectory, after K time steps, the number of unknown 

variables increases to 2 2K K N� � , while there are only K N� known equations, leading to 

an unobservable SLAM problem. The first assumption to make a SLAM problem observable is 

stationary ANs, meaning that there will be enough time steps like K , where 2 2K N NK� $ or 

a)

True FP

b)

Estimate FP

True MN

AP

Estimate MN

Figure 0-11 Effect of coordinate system constraint on a SLAM problem
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%

�
. The effect of stationary ANs assumption for a two-time step SLAM problem with 

two ANs is depicted in Figure 0-12. It can be seen that under stationary ANs assumption, four 

unknown AN location states are merged to two, decreasing the number of unknowns to 8 for 2D 

localization problem. 

If the MN moves in an agile way or the distance between measurements is so far that 

there is no correlation between the MN positions, no information related to the previous MN 

location estimate is transformed for the next time step estimation. The problem becomes worse 

when the SLAM problem also includes an estimation of random nuisance variables such as 

range errors. After K time steps, the number of unknowns is increased to 2 2K KN N� � ,

since, at each time step, a new bias variable is added for every AN-MN link, while there are only 

K N� measurements available. In this case, the SLAM problem becomes unobservable unless 

we can assume a smooth trajectory for the MN motion. The smooth trajectory assumption 

proposes correlation between subsequent dynamic states such as the MN position and range 

biases, i.e., the previous or future states estimate can add information for the current state 

estimate, in addition to the current measurement. This information is conveyed by the update 

x

MN at � �,t tx y
MN at � �1 1,t tx y� �

y AN 01

� �,1 ,1,x ym m

AN 02

� �,2 ,2,x ym m

Figure 0-12 Stationary ANs in a SLAM problem
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information from previous states in the online SLAM, or from previous and future states in the 

full SLAM. 

Bayesian based SLAM

In probabilistic form, the optimum estimate for an online SLAM problem is obtained by 

evaluating the posterior PDF 1: 1: 0( | , , )t t tp q z u q , where ,[ ]Tt d t s�q q q is the vector of unknown 

variables including dynamic variables ,d tq , such as the MN location at time t , tp , and random 

nuisance parameters, such as range error, and stationary variables sq , such as the FP 

location, fpm . Joint posterior densities of FP locations, MN location and other nuisance 

parameters embodies all the statistical information that can be extracted from observables 1:tz ,

control data 1:tu , and prior knowledge 0q about the state tq . A recursive solution for the SLAM 

problem is obtained using Bayes’ rule, given by

1: 1: 1 1: 1 1: 0
1: 1: 0

1: 1 1:

( | , , ) ( | , , )( | , , )
( | , )

t t t t t t t
t t t

t t t

p pp
p

� �

�

�
z q u z q z u qq z u q

z z u
0-17

Based on the first Markov assumption, as shown in Figure 0-6, given tq , tz is

dependent on previous measurements and control data; hence Eq. 0-16 can be re-written as

1: 1 1: 0
1: 1: 0

1: 1 1:

( | ) ( | , , )( | , , , )
( | , )

t t t t t
t t t

t t t

p pp
p

�

�

�
z q q z u qq z u q

z z u
0-18

( | )t tp z q is the likelihood PDF that describes the probability of making an observation 

when FP locations, current MN location and nuisance parameters are known. Based on smooth 

random trajectory assumption, the dynamic state transition is considered as a first-order hidden 

Markov process, thus the prior PDF 1: 1 1: 0( | , , )t t tp �q z u q can be calculated by 

1: 1 1: 0 , , 1 , 1 1: 1 1: 1 0 , 1( | , , ) ( | , ) ( , | , , )t t t d t d t t d t s t t d tp p p d� � � � � �� "q z u q q q u q q z u q q
0-19
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Eq. (0-17) and (0-18) provide a recursive procedure for calculating the joint posterior 

PDF based on history of observations and control data up to time step t . Since the denominator 

1: 1 1:( | , )t t tp �z z u in Eq. (0-17) is independent of tq , it can be replaced by a normalizing constant, 

� , and posterior PDF can be only modified in terms of prior and likelihood PDF: 

1: 1: 0 1: 1 1: 0

1: 1 1: 0

( | , , , ) ( | ) ( | , , )
( | ) ( | , , )

t t t t t t t t

t t t t t

p p p
p p
� �

�

�
&

q z u q z q q z u q
z q q z u q
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The optimal Bayesian estimate of the state tq can be obtained from 1:( , | )t fp tp p m z by 

using the maximum a posterior (MAP) or the minimum mean-square error (MMSE) criterion. 

However, in the general case of nonlinear dynamic systems, as the SLAM-based OWLS 

problem, the posterior PDF cannot be determined analytically from Eq. (0-17) and (0-18). 

Particularly, it must be noted that the dynamic portion of the state vector (including the MN 

location) and the stationary portion of the state vector (including FP locations) are correlated

through measurements, and it worth nothing to compute the conditional density of the stationary 

states 1: 1: 0( | , , )s t tp q z u q , or the MN location , 1: 1: 0( | , , )d t t tp q z u q , separately, since both are 

conditioned on the deterministic knowledge of other. 

Suboptimal solution to the SLAM problem requires appropriate presentations of the 

measurement and transition processes based on reasonable assumptions that allow the 

evaluation of the posterior PDF with efficient computation. The EKF-SLAM and FastSLAM, as 

suboptimal Bayesian filters for SLAM problems, are proposed, whereby the former 

approximates the posterior PDF with a Gaussian PDF, and the latter describes the MN states as 

set of samples (known as particles) with a general non-Gaussian PDF.

Extended Kalman Based SLAM

The most common solution to a SLAM problem in the form of a state-space model with 

additive noise is known as the extended Kalman SLAM (EKFSLAM). The first element and the 
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basis of EKFSLAM is to describe the evolution of the dynamic states as a first-order Markov 

process, in form of 

, , 1( , )d t d t t tf �� �q q u v
0-21

where (*)f is a known deterministic, possibly a nonlinear function of previous states , 1d t�q ,

and , , 1( | , )t d t d t tp �v q q u� is additive, zero mean ,and uncorrelated Gaussian process with 

covariance tQ .
The second element in the EKF-SLAM is the observation model, which defines the 

relation between observables and unknown state variables, given by

,

( )
( , )

t t t

d t s t

h
h

� �
� �

z q w
q q w
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where (*)h is a known deterministic, possibly nonlinear observation function, and 

,( | , )t t d t sw p z q q� is an additive, zero mean, and uncorrelated Gaussian observation noise 

with covariance matrix tR .

The standard EKF-SLAM algorithm computes the estimation based on the mean of the 

conditional posterior PDF � �, 1: 1:, | ,d t s t tp q q z u as

, | ,
1: 1:

ˆ
| ,

ˆ
d t t d t

t t
s s

� � � �
�� � � �

� � � �

q q
z u

q q
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and covariance matrix of estimation is defined by the posterior PDF covariance matrix :

, | , | , , , ,
| 1: 1:

, | , |

ˆ ˆ
| ,

ˆ ˆ
d d d s

d s s s

T
q q t t q q t t d t d t d t d t

t t t tT
s s s sq q t t q q t t

E
� �# #� � � �' (' (

# � � �� � ) *) *� �# # � �� � + ,+ ,� � � �

q q q q
z u

q q q q
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The first stage of EKF-SLAM is the time-update of dynamic states or prediction stage. 

, , 1

, | 1 , 1| 1

ˆ ˆ( , )

d d d d

d t d t t

T
q q t t q q t t t

f

f f Q
�

� � �

�

# �  #  �

q q u 0-25

where f is the Jacobian of (*)f evaluated at the previous estimate . 
The second stage is the observation –update stage: 

, | , |
, | ,

, ,

| | 1

ˆ ˆ
ˆ ˆ( , )ˆ ˆ

d t t d t t
t t d t t s t

s t s t

T
t t t t t t t

z h

�

� � � �
� �� � �� � � � � �

� � � �
# � # �

q q
K q q

q q

K D K
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where 
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H is the Jacobian of h , evaluated at the predicted state | 1 , | 1 , | 1ˆ ˆ ˆ[ , ]Tt t d t t s t t� � ��q q q . In a 

EKF-SLAM, if the determinant of covariance matrix monotonically converges to zero, it is 

defined that EKFSLAM is convergent in stationary states. However, the convergence is only 

guaranteed in a jointly linear Gaussian system. It must be noted that standard deviation of an 

individual FP estimate converges toward a lower bound imposed by initial uncertainties of the 

MN location and observations.

Similar to EKF, EKFSLAM employs a linearized approximation of the nonlinear motion 

and observation models; this inherits many caveats. Nonlinearity can be a significant problem in 

EKFSLAM, which leads to inevitable and sometimes drastic inconsistency in solutions [xxxiii],

[xliv].

FastSLAM

Online SLAM methods based on EKF can handle the large number of variables as the 

update of the posterior PDF only involves the mean vector and the covariance matrix. However, 

some of the state variables, notably the MN location variables are poorly approximated by a 

joint Gaussian PDF where the measurement function represents a highly nonlinear relation with 

the state vectors. Moreover, non-Gaussian prior belief maps cannot be accurately incorporated. 

PFs or sequential Monte Carlo (SMC) methods is suggested as an alternative implementation of 

Bayesian filters, where EKF fails, since it allows for a general PDF of the state variables 

conditioned on non-Gaussian nonlinear observables. In a SLAM–based OWLS, the PF needs to 

represent all state space variables such as the MN trajectory and the feature point locations, by 

particles. The high dimensional state-space of the SLAM problem makes the complete 

application of particles infeasible due to the high computational complexity. 
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An effective solution for this problem is the Rao-Blackwellized particle filters (RBPF). 

Rao-Blackwellization which is also known as variance reduction methods are based on  

partitioning the state vector so that one component of the partition is conditionally linear 

Gaussian state-space model [xli

xii

]. For this component, analytical solution can be found by 

exploiting the KF while the PF is only used for non-linear non-Gaussian portion of state-vector 

[ ].

A key feature to apply Rao-Blackwellization theorem in a SLAM problem is that the FP 

constraints become mutually independent when the MN trajectory variables are given. More 

precisely, when all of the mutually shared variables are given, then the remaining FP variables 

are independent. In this way, an EKF can be applied to each of the FP variable sets. For better

understanding of FastSLAM implication, we limit dynamic states to MN location variables and 

stationary states to FPs location variables, where [ ]Tt t fp�q p m , however the partitioning 

does not preclude the possible augmentation of additional variables.

In other words, the i -th FP location vector, , ,[ ]Ti i x i ym m�m , is independent of other 

FPs location variables, when the mutually shared variables including the MN position are given. 

Hence, the joint posterior PDF conditioned on the set of measurements and deterministic 

updates can be factorized as follows: 

� � � � � �1: 1: 1: 1: 1: 1: 1: 1:
1

, | , | , | ,
AN

AP

N

t fp t t t t t i t t
i N

p p
� �

� �p m z u p z u m z u
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The product term indicates the independence of FP state variables, when conditioned on 

the MN position state variables, which are the part of the particles. There are a total of pN

particles, with each particle consisting of the complete MN trajectory and a potential 

arrangement of the FPs. For m -th particle, we have the trajectory variables of � �[ ][ ]
1: 1:

, mm
t t

x y�p ,

and the Gaussian FP parameters of � �[ ] [ ] [ ] [ ]
1, 1, , ,,...,

FP FP

m m m m
t t N t N t- -. . . For each particle, a separate 

EKF is applied for each FP location state. Therefore, multiple possible MN trajectory solutions 
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are tracked instead of only the most probable one. The FastSLAM algorithm stages can be 

described as 

Retrieval – obtain the MN location of the previous time step from [ ]
1: 1
m
t�p

Prediction – draw new MN location variables based on the proposal distribution 

� �[ ] [ ] [ ]
1 , 1| , ,m m m

t t t fp t tp � �p p p m u�

Measurement update – update FP location estimate conditioned on the MN location. 

For each particle, an EKF update is performed over the observed ANs as a simple mapping 

operation under known MN location assumption. The outputs of this stage are � �[ ] [ ]
, ,,m m
i t i t- . for all 

particles and FPs locations. 

PF weight update – calculate the importance weight [ ]m
tw , which is based on the 

conditional probability of � �[ ] [ ]| ,m m
t t tp z p m where tz is the set of measurements from all ANs.

Resampling - sample with the replacement of PN particles, from the set � �[ ]
0: 1

pNm
t m�

p ,

including their associated maps, considering each particle has probability proportional to [ ]m
tw .

Given PN particles and FPN conditionally independent FPs, there will be P FPN N EKFs, 

each with a small cluster of variables pertaining to the specific FP. Consider the details for the 

EKF of the m -th particle and the i -th FP. The output of this stage is � �[ ] [ ]
, ,,m m
i t i t- . , defined by

[ ] [ ] [ ] [ ] [ ]
, , | 1 , 1

[ ] [ ] [ ] [ ] [ ],
, , | 1

( ( , ))m m m m m
i t i t t t t i i t t

m m m m m T
i t i t t t t t

K z h

K D K

- - -� �

�

� � �

. � . �

p 0-29

where, for i -th FP,

[ ] [ ]
, | 1 , 1

[ ] [ ]
, | 1 , 1

m m
i t t i t

m m
i t t i t

- -� �

� �

�

. � .

0-30

and
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| 1 ,

1[ ] [ ] [ ], [ ]
| 1

m m m m T
t t t t t i t

m m m T m
t t t t t

D H H R

K H D

�

�

�

� # �

� �� # � �
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where ,i tR is the covariance matrix of the measurement set ,i tz from the ith FP. 

Once the EKF is finished updating, the particle weights can be determined. The set of 

each FP measurement is assumed to be independent and the likelihood probability is 

determined. The likelihoods of the set of measurements can be multiplied, forming the overall 

weight of the particle. In the current version of FastSLAM, the particles are updated at each 

iteration such that the carryover of the previous weights is not done. The particle weight [ ]
,
m
i tw is

calculated by

� �[ ] [ ] [ ]
, , | ,m m m
i t i t t tw p�� z p m

0-32

where the constant � which can be ignored since the set of weights is normalized such that the 

sum of weights is unity after each iteration.

Comparison between EKFSLAM and FastSLAM performances

The two standard Bayesian approaches are explained for a SLAM-based OWLS. It is 

shown that the EKFSLAM linearizes the state transition and observation functions and 

represents the joint probability with a single high-dimensional Gaussian; however, FastSLAM, 

represents the MN trajectory using a set of particles and conditions the map on the MN 

trajectory. In particular, the EKF is subject to failure where significant MN uncertainty induces 

linearization errors. EKFSLAM represents the joint state posterior PDF by an approximate mean 

and variance. This can be problematic from two aspects. First, due to linearization error, these 

moments are approximate and may not accurately represent the true first and second moments. 

Secondly, where the true probability distribution is non-Gaussian, even the true mean and 
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variance may not be an adequate representation of the PDF. Particularly, the iterative nature of 

this algorithm leads the approximation errors to accumulate as time progresses [ xliiixlii], [ ].

In contrast to the EKF, FastSLAM is much more robust against linearization error as the 

MN location can have an arbitrary PDF, and the update is constrained to be neither Gaussian 

nor linear. However, as more observations are received, particles which made poor association 

decisions in the past tend to be removed in the resampling process; hence, the majority of 

particles tend to converge onto the correct set of associations. 

For the purposes of data association, FastSLAM automatically allows information to be 

integrated between online SLAM and full SLAM, as each particle is carrying a history of the MN 

path with an exponential forgetting memory. Furthermore, FastSLAM is simple to implement 

relative to complicated batch processing algorithms. The important feature of the FastSLAM 

algorithm is that each particle does not represent the current MN state, but the entire MN 

trajectory and associated ANs map. This can have important effects on consistency since it 

enables the filter to accurately estimate uncertainty. 

However, the FastSLAM particle filter is really operating in a very high-dimensional 

space: the space of the MN trajectories (as opposed to the MN location at a specific time 

instance). Therefore, the required number of particles increases exponentially in the length of 

the trajectory. Using a smaller number of particles may result in underestimation of total 

uncertainty, and eventually an inconsistent solution, especially for the case whereby the full 

uncertainty is required such as when large loops need to be closed. Whenever resampling is 

performed, for each annihilated particle, the entire MN trajectory and map hypothesis is not 

represented in subsequent conditional PDF updates. This implies that the random ANs location

estimates conditioned on these past locations (particles) are not sufficiently statistically sampled 

and the eventual state estimate based on the evolution of the conditional mean becomes 

inaccurate. For remembering long-term uncertainty, the EKF-SLAM performs in a far superior 

manner in comparison with FastSLAM since it uses a continuous Gaussian representation (the 
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mean vector and covariance matrix) for the posterior PDF, which does not degrade as a 

function of trajectory length [xliii], [xlii]. However, EKFSLAM is only applicable where all of the 

PDF’s involved are near Gaussian. 

This chapter presented an overview of wireless observables from local wireless sources 

which can be utilized for an OWLS. Taking advantage of the signals of opportunity was 

suggested as a solution for the indoor environment of dense urban areas, where the GPS 

cannot provide sufficient accuracy. To this reason, the deficiencies and problems of 

opportunistic wireless localization were discussed. In summary, the wireless localization 

algorithm, which exploits from an opportunistic signal from an unregistered local network, must 

combat the following challenges:

1- The downlink signals from the ANs may or may not be accurately time synchronized. 

2- The MN clock is not synchronized with the ANs clock. Moreover, its clock may drift in 

time due to clock instability.

3- Time/range measurements from wireless sources are subject to excess delay/range 

error due to multipath fading. Moreover, the range error is not stationary due to the 

dynamic feature of sight conditions. 

4- The AN locations are not completely known by the MN. 

It was shown that the opportunistic wireless localization, in general, is an unobservable 

problem due to the inflation of unknown variables, unless certain conditions can be assumed: 

stationary ANs (or if mobile, they move in a deterministic way) and the MN smooth trajectory. 

The first assumption turns OWLS into an observable SLAM problem as the SLAM can take 

advantage of the correlation between subsequent measurements whenever the same AN is re-

seen. The second assumption modeled the dynamic states including the MN position, range 

error, and sight conditions as a Markov process. The Markovian behavior of variables can be 

systematically captured by Bayesian-based methods. It was shown that the optimal joint 
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posterior belief map of system states cannot be calculated analytically in a closed form due to 

nonlinear dynamic nature of the OWLS. To this end, two suboptimal Bayesian solutions for the 

SLAM-based OWLS, EKFSLAM and FastSLAM, were introduced, and their benefits and 

deficiencies were discussed. 

Information and Estimation Bounds on OWLS

The main objective of this chapter is to derive the fundamental limits of OWLS 

performance in terms of both information and estimation metrics. This chapter illuminates 

connection between information theory and estimation theory with special focus on the SLAM-

based OWLS. This gives an understanding of what a specific measurement is worth, based on 

the metric of quantifying its information content, which appears as an overly abstract quantity 

but is surprisingly practical. For instance, suppose the issue of whether a MEMS IMU can be 

added to the MN receiver. This will provide additional information regarding the update of the 

position of the MN in the SLAM algorithm. Is this worthwhile?  How much additional information 

does the IMU provide? A component of this thesis is the consideration of information in regards 

to the constraints of the SLAM formulation in the context of the OWLS.

In estimation theory, the MMSE and CRLB are considered as the most fundamental 

estimation measures to illustrate how accurately each individual parameter can be recovered 

from channel observables. Estimation theory is tightly coupled with the averaged squared error 

of estimation, regardless of whether the unknown state q is a deterministic parameter (as in 

classical approaches), or whether the unknown state q is a random variable (as in Bayesian 

approaches) [xliv], [xlv

2

2
,

ˆ ˆ: var( ( )) [[ ( ) ] ]
ˆ ˆ: ( ( )) [[ ( ) ] ]

z

z q

Unbiased Classical Estimator E
BayesianEstimator MSE E

� �

� �

q z q z q
q z q z q

], given by
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However, to unify the concept of estimation error in classical and Bayesian philosophies, 

we use MSE as a general term for the averaged squared error of estimation for both classical 

and Bayesian methods, accepting the difference that the averaging is with respect to 

observation PDF (since there is no prior information available about non-random parameter) in 

classical philosophy, while the averaging is with respect to joint PDF of observations and 

random parameter in Bayesian philosophy.

Cramer Rao Lower Bound (CRLB) theorem says that the MSE corresponding to a 

unbiased estimator, ˆ ( )q z , of a non-random  parameter q , given the observation vector z , can 

be lower bounded [xlv], [xlvi

� �� � 1ˆ ˆ( ) ( ( ) )TE J �� � %q z q q z q

], as follows:

0-34

where J is the FIM of non-random parameter q , obtained as 

� �ln ( | ) ln ( | )
T

J E p p� � � � � � � �z q z|q q z|qz q z q�
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However, the extended CRLB theorem for random parameters (also known as Bayesian 

CRLB, posterior CRLB, and Van Trees inequality) indicates that the MSE of an unbiased 

estimator ˆ ( )q z can also be lower-bounded [xlvi], [xlvii], as follows,

� �� �� � 1ˆ ˆ T
totE J �� � %q q q q

0-36

where totJ is total Bayesian FIM (BFIM) of the random parameter q , defined by 

tot Z PJ J J��
0-37

and ZJ is the measurement information matrix, representing the information data obtained from 
the observables, tz , stated as 

� �| |ln ( | ) ln ( | )
T

Z q qJ E p p� � � � � � � �z, q z q q zz q z q�
0-38

The expectation is taken under the joint PDF of measurements and states. The matrix 

PJ denotes the apriori information about tq , whose elements are defined as
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where dim( )tK � q stands for the state space dimension. It must be noted that Bayesian 

CRLB theorem holds under some mild regularity conditions, implying that the joint PDF does not 

have infinite moments. 

Information theory provides a deep analytical approach to assess tracking performance 

based on the available information. Information theory application in tracking problems is 

traditionally known by Fisher information (FI) regarding the CRLB calculation. Fisher information 

is recognized as a way to measure the amount of information that an observable carries about 

the parameters to be estimated upon either their joint (for random parameters) or likelihood (for 

non-random parameters) probability density functions. 

Another important metric in information theory is the input–output mutual information 

(MI) that is used as an indicator of how much coded information can be pumped through a 

channel reliably given a certain input signaling. However, the main application of MI has been 

generally known in coding operations, Guo’s theorem [xi] shows that MI can also represents a 

powerful measure to provide a deep insight into the performance of estimation problems such 

as the SLAM. Mutual information ( , )I X Y can be considered as a global measure of available 

information in channel observable Y, about state variable to be estimated X , since it does not 

make any assumptions regarding the receiver processing of Y . However, the minimum MSE 

(MMSE) criterion is obtained according to the quadratic cost function of error; this implies that 

posterior probability function needs to be of an exponential (Gaussian) type to reveal all related 

information about estimation error from the second order moment. As a consequence, CRLB or 

BCRLB may not fully characterize the accuracy of localization from a non-Gaussian posterior 

PDF which requires higher order moments, in addition to the mean and the covariance. 

Nevertheless, BCRLB/CRLB and BFIM/FIM is regarded as a useful metric not only to assess 
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the performance of implemented algorithms but also to predict the best achievable performance 

as a system design tool. 

This chapter introduces both the information and the estimation metrics and their 

relations to evaluate OWLS performance in terms of efficiency, consistency and observability. 

Information matrix is introduced as a quantitative and visual benchmark for all the disparate 

sources of information utilized in OWLS. In this regard, the contribution of every source of 

information in a SLAM-based OWLS is explained by some basic cases. Based on the system 

parameters introduced for a range-based OWLS in Chapter 2, four system models are proposed 

to present a complete set of system state. BFIM is derived for each proposed system model as 

a fundamental limit of accuracy for a range-based OWLS. Later, the relation between FI and 

other estimation metrics is explained which can be exploited as useful tools to assess the SLAM 

algorithms in terms of consistency and localization accuracy. Finally, an applicable example of 

MI for a SLAM-based OWLS is provided through introduction of insightful connection between 

MI in information theory and MMSE in estimation theory from Guo’s theorem.

Fisher information and BCRLB application in a SLAM problem

The concept of the Bayesian information matrix, denoted by J , is key to SLAM 

algorithms. The SLAM filter efficiency can be investigated by comparing the extracted 

information with the existing information, quantified as J . It is loosely regarded as a 

quantitative summary of all information regarding the unknowns in one matrix. The relation to 

quantifiable information is only valid for the case where the problem is linear and jointly 

Gaussian (LJG); however, for problems where the nonlinearity is mild and the measurement 

and state update noise are approximately Gaussian, it is still applicable. 

The MLE of the unknown variable vector q can be typically approximated as being 

jointly Gaussian represented by � �1,N J �q . Here, represents the actual value of the state q
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variable vector. For typical problems that are not jointly Gaussian, the PDF approximation of the 

MLE as � �1,N J �q is still generally valid. Regardless, J is the information matrix and is the 

inverse of the covariance matrix of the MLE estimators for . In the OWLS, whenever the LJG 

assumption is justified, the Fisher information matrix can be derived as the fundamental limit of 

localization and mapping accuracy for the OWLS problem. 

Information sources for a SLAM problem is generally derived from the MN motion 

process, measurements from ANs, and the prior knowledge about the MN initial state and AN 

locations. To understand the contribution of each information source on the SLAM problem, the 

FIM calculation process is explained by 6 simple linear Gaussian cases while the problem 

complexity is eventually increased for next case. 

In the first case, consider the MN undergoes random motion in the x direction according 

to the first-order Markov (random walk) model. Assuming that the initial state is distributed as 

� �2
0 00,x N �� , that represents the prior PDF. The update step from 0x to 1x is illustrated in 

Figure 0-13

Figure 0-13 One-step state update in a 1D linear problem

The update model is defined by

1 0x x u� �
0-40

where the process noise is distributed by � �20, uu N �� . The joint posterior PDF of � �0 1,x x is
given by a normal PDF with the zero mean and the covariance matrix of 

2 2
0 0
2 2 2
0 0 u

Q
� �
� � �
� �

� � ��� �

0-41

Note that the covariance of 1x given 0x is denoted as 2
1|0� , determined by

q

0x 1x
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� �
4

2 2 2 20
1|0 0 2

0
u u

�� � � �
�
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Likewise, the covariance of 0 1|x x is given by

4 2 2
2 2 0 0
0|1 0 2 2 2 2

0 0

u

u u

� � �� �
� � � �

� � �
� �
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which for the case where 2 2
0 u� �� , is approximately 2

u� . If there is no measurement then the 

variance of the estimate of 1x is 2 2
0 u� �� . The Fisher information matrix is obtained by

2 2
20

1 2 2
0

2 2

u
u

u

u u

J Q
� � �
� �
� �

�
�

� �

� ��
�� �� � � �

� ��� �
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It is notable that diagonal elements of the information matrix are equal with the inverse of 

conditional covariances as follows,

/ 0
/ 0

2
0|111

2
1|022

J

J

�

�

�

�

�

�
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Now, in the second case, consider another problem where only the measurement 

associated with the anchor point, 1m , is available, as illustrated in 

Figure 0-14.

0x

1m

Figure 0-14 Single measurement at a single point trajectory

With the assumption of 2
1 0( , )zz N x �� , the covariance of 0x given the measurement is stated 

as
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In the third case, consider the measurement as an amendment to the prior one step 

update problem, as shown in Figure 0-15. Similarly, the covariance of 0x , given the previous 

state and measurement, is computed by

2 2
2 2 2 20
1|0, 0| 2 2

0

z
z z u u

z

� �� � � �
� �

� � � �
�

0-47

0x

1m

1x

Figure 0-15 Single update step with a single measurement

The FI calculation procedure can be viewed differently with the procedure based on the 

state vector of / 00 1
Tx x�q . Calculation of total information involved for the above cases can 

be determined by the following steps: 

1. First, start with the covariance matrix of the state update:

2 2
0 0
2 2 2
0 0 u

Q
� �
� � �
� �

� � ��� �

0-48

2. The information matrix from the measurement is given by

2 0
0 0
z

zJ
� �� �

� � �
� �

0-49

as it refers to the 0x position state. 

3. Compute the total information as the sum of prior information 1
PJ Q�� and

measurement information zJ , expressed by
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z
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4. Determine the inverse

1
tot totQ J ��

0-51

For the current case, the posterior PDF covariance matrix is determined as

2 2
0 2 2 2 2 2 2

2 2 0 0
0 2 2

0

1 1

1
z

tot z z u u
z

z

Q � �
� � � � � �

� �
� �

� �
� �� � �� ��
� �� �
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Note that the second diagonal term of totQ defines the estimation variance of 1x given 0x and

z as :

/ 0
2 2 2 2 2 2 2 2

2 20 0 0
1|0,2 2 2 222

0 0

z z u u z
tot u z

z z

Q � � � � � � � � � �
� � � �
� �

� � � �
� �
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Incrementing the information matrix, J , with a new incremental entity of information 

such as a measurement, is shown in this example. The only processing problem is that J has

to be eventually inverted to extract the actual variances of the state variables. Of course, the 

other issue is that of the underlying assumption of the problem being jointly Gaussian. Note that 

if the measurement provides no information, i.e. 2
z� 12 , then 2 2 2

1|0, 0z u� � �1 � as in the 

previous example.

Now, in fourth case, it is assumed that the AP independent measurements are available 

from both 0x and 1x , as illustrated in Figure 0-16.

0x

1m

1x

Figure 0-16 Two independent measurements of two subsequent states
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The information matrix for the two independent measurements is given as 

2

2

0
0
z

z
z

J
�

�

�

�

� �
� � �
� �
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The total covariance can be computed similarly as 

12 21 2 202
1 1 2 2

02
2 2 2

2 2 2

2 2
2 2 2 2 2 20

2 2 2 20 0 2 2
2 2 2 2 0
0 0

0
0

1

u
z uz

tot tot u
z

u u z

u z u

u
u u u z

u z z z u
u u

Q J Q
� � � ��
� �

�
� � �

� � �

� �� � � � � �� � � � � �� � � �

�
� � ��

� �
�

� � �

� � �

� �
� � � �

� ��' ( � �� � � �� � � �) *� � � �) *� �+ , � �� �� �
� ��
� �� �� �� � �� �� � � �

0-55

In an estimation problem, a parameter is said to be observable if there is sufficient 

information to estimate it without ambiguity.  FIM can also be used to investigate system 

observability. In order to have an observable system, the FIM must be invertible. If the FIM (or 

BFIM) is singular or  very ill-conditioned then CRLB (or BCRLB) does not meaningfully exist. 

As shown in Eq.(0-48), the single observation of an AN results in a singular FI matrix; it means 

that the amount of information is insufficient for the estimation problem. However, 

unobservability can be resolved if the MN moves, as shown in Eq. 0-49, and/or the AN is 

observed in more than a single MN state, as shown in Eq. (0-53).

In the fifth case, the previous localization problem is transformed to the SLAM problem 

where the measurement is obtained from a feature point with initially unknown location, as 

illustrated in Figure 0-16. The state vector is modified as / 00 1
Tx x m�q , where the 

covariance matrix of the updates is given by
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2 2
0 0
2 2 2
0 0

2

0
0

0 0
u

m

Q
� �
� � �

�

� �
� �� �� �
� �� �
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The information added by the measurement between m and 0x is captured in the 

information matrix as

2 2

,0

2 2

1 10

0 0 0
1 10

z z

z

z z

J
� �

� �

� ��� �
� �

� � �
� �
� ��
� �� �
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where the component of the matrix is calculated by

/ 0 � �� �
2

2
0ln ,z zij

i j

J E N m x
q q

�
� ��

� � �� �
� �� �� �
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In a /similar way, the information added by the measurement between m and 1x is given 

by

,1 2 2

2 2

0 0 0
1 10

1 10

z
z z

z z

J
� �

� �

� �
� �
� �
� �

� �� �
� �
� �

�� �
� �
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Hence, the overall covariance matrix is obtained by

1

2 212 2
0 0
2 2 2
0 0 2 2

2

2 2 2

1 10
0

1 10 0
0 0

1 1 2

z z

tot u
z z

m

z z z

Q

� �
� �
� � �

� �
�

� � �

�

�

' (� �
�) *� �

) *� �� �
) *� �� �� � � �) *� �� �
) *� �� �� �) *� �

� �) *� �) *� �+ ,
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An interesting point in this example is that however, the observation information matrix of 

each state , , 1, 2z iJ i � , is a singular matrix, the multiple observation of a FP in a correlated 

trajectory makes the estimation problem observable. It must be noted that a single FP 

measurement that is only connected to one state variable does not convey information.

By now, a systematic approach to calculate information connectivity of FPs and the 

motion update from one time step to the next is established. It is shown that the information 

conveyed is therefore minimal if each FP is assumed to have only two associated observations; 

hence, the information matrix is sparse. 

The final case complicates the SLAM problem to bring up the localization problem in 

cooperative networks where the mobile nodes can help each other by sharing their information. 

Although cooperative SLAM problems are out of scope of the current research, a simple 

illustrative example is given, as illustrated in Figure 0-17. The FIM calculation procedure, as 

systematic way of accounting for the diverse set of constraints, is extended for two MN 

cooperative tracking problem which two MNs meet a single FP. 

0x

1m

1x

0y 1y

Figure 0-17 Two cooperative MN localization problem
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The update covariance matrix is calculated by

(2 2)

2 22 2
0, 0,0, 0,
2 2 22 2 2
0, 0, ,0, 0, ,

;

m

y yx x
ux uy

y y u yx x u x

Q
�

� �� �
� � �� � �

�

3

� �
� �� � �
� �� �

� �� �
� � � �� � �� � �� � � �

ux

ux

Q 0 0
0 Q 0
0 0

Q Q
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Similar to previous example, the measurement information matrix is given by

2 2

2 2

0, 1,

2 22 2

2 2
0, 1,

2 2

0 0 0 0 00 0 0
0 0 00 0 0 0 0

; ;0 0 0 0 00 0 0 0 0
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The total covariance matrix and so the information is computed as follows
12 2

2 2

1 2 2

2 2

2 2 2 2 2

2 2
0, ,2 2 2

,2 2
0, ,
2 2 2 2
, ,

2 2
0, ,2

2
0, ,

0 0 0
0 0 0
0 0 0
0 0 0

4

0 0

0 0

0 0

z z

z z

tot z z

z z

z z z z z

x u x
z u x z

x u x

u x z u x z

tot y u y
z

y u

Q Q

Q

� �
� �

� �
� �

� � � � �

� �
� � �

� �

� � � �

� �
�

� �

�
� �

� �

� � �

� �

� � � � �

� � �

� � � �

�

� �� �
� �� �
� �� �
� �� �� �
� �� �
� �� �
� �� �� �� �

�
�

�
� �

�

1

2 2
,2

2 2 2 2
, ,

2 2 2 2 2 2

1

0 0
4

u y z
y

u y z u y z

z z z z z m

tot totJ Q

� �

� � � �
� � � � � �

�

� �

� � � �

� � � � � �

�

� �
� �
� �
� �
� �
� �
� �
� �
� ��
� �

�� �� �
�

0-63



62/154

The diagonal elements of totQ are defined by

/ 0
/ 0
/ 0
/ 0
/ 0

0 1 0 1

1 0 0 1

0 0 1 1

1 0 1 0

0 1 1 0

2
| , , , 11

2
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2
| , , , 33

2
| , , , 44
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| , , , 55

x x y y m tot
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m x x y y tot

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

�
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In a dense obstacle environment, the opportunistic sources may not be able to provide 

sufficient localization information to the MN because of radio blockage and limited range. In 

such situations, cooperation between MNs can significantly improve opportunistic localization 

performance. Cooperative OWLS can be investigated by the case where the FPs are also 

moving and have their own update motion models, as shown in Figure 0-18. In this case, the 

new states associated with FPs will be augmented to the state space as 

/ 00 1 0 1
Ty x x m m� . For each time step, the covariance matrix for the update state will be 

defined as 

2 2 2 2
0, 0, 0, 0,
2 2 2 2 2 2
0, 0, , 0, 0, ,

;

;x x m m
ux um

x x u x m m u m

Q

Q Q
� � � �
� � � � � �

� �
� � �
� �
� � � �

� �� � � �� �� � � �

ux

um

Q 0
0 Q
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0x 1x

0m 1m

Figure 0-18 Cooperative SLAM with moving FPs
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In similar way, the measurement information matrix is shown as
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0, 1,
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A systematic approach to calculate FI elements and unify all information from different 

sources of information into one single matrix is explained with some simple linear Gaussian 

cases. In the next subsection, the FI concept is generalized for the nonlinear OWLS problem in 

a SLAM framework. 

Opportunistic wireless localization system models

Consider a single MN moving smoothly through a 2D space in a random trajectory and 

receiving signals from an opportunistic wireless network that consists of an arbitrary number, 

ANN , of stationary ANs. The location of ANs may not be known to the MN; however, their 

correspondence is not an issue; therefore, the additional mapping variables associated with 

mapping do not have to be carried in the state vector. Figure 0-19 shows a 2D illustration of an 

OWLS scenario, where blue lines represent the continuous MN trajectory, and red circles on the 

MN trajectory represent the MN locations where the measurements are taken and state 

estimates are updated. FPs and APs are shown by red and green squares, respectively, and 

LOS blockage is created by a wall shown by a light green rectangular.  

The MN location tp is modeled as a random walk process ruled by the system equation

1t t t�� �p p v , where the 2
t 4v � is the motion driving process with the known zero mean 

Gaussian distribution, ( )v tf v , or ( , )t pN Qv 0� . The first-order Markov model for motion is the 

most non-informative model for the smooth MN trajectory assumption, which considers the 
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velocity to be zero and ( )v tf v to describe the velocity variation. Higher-order motion 

parameters such as velocity and acceleration can also be modeled for the MN motion process 

for a smoother and more informative trajectory assumption. Moreover, the motion control data 

or trajectory estimation from CV or IMU sources can be replaced by the random walk model to 

insert more information in tracking algorithms, whenever available.

Figure 0-19 MN tracking in mixed LOS/NLOS conditions

Let APN denote the number of all APs whose locations, represented by 

� �, ,, , 1:i x i y APm m i N� , are precisely known to the MN , and FPN denote the number of FPs 

whose locations � �, ,, , 1:i x i y AP FP APm m i N N N� � � are unknown to the MN. The range 

measurements obtained from opportunistic signal reception from ANs can be subject to range 

offset error due to non-synchronization, multipath, and NLOS/LOS effects.

In this research, the SLAM-based opportunistic localization problem is investigated in 

four system models. In the first case, it is assumed that the MN receives a synchronized signal 

from a synchronized network of ANs. In addition, ANs provide LOS measurements, or if not, 
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ANs sight conditions are known to the MN, and NLOS measurements are discarded from the 

measurement data set.

The pseudo range measurement, obtained at the t th time instant from the i th AN, is 

explicitly presented by 

� � � �
, ,

22
, , , , 1, 2,...,

i t t i i t

i x t i y t i t AN

z w

m x m y w i N

� � �

� � � � � �

p m 0-67

where / 0, T
t t tx y�p is the MN location vector at time step t , and , ,,

T

i i x i ym m� �� � �m is the i -th 

AN location vector. ,i tw is an additive white Gaussian noise with a mean power � �2 2
, ,i t z iE w �� .

In this case, the state vector is denoted by 
T

t t fp� �� � �q p m , where 

1 1, , , ,AP AP AN AN

T

fp N x N y N x N ym m m m
� �

� �� � �m � is the stacked vector of the FP locations. Since 

the ANs are stationary, the transition PDF from the MN position- ANs position state 

1 1

T

t t fp� �� �� � �q p m to the next one 
T

t t fp� �� � �q p m is defined only by the MN motion update, 

1 1( | ) ( | )t t t tp p� ��q q p p .

The second system model assumes that synchronized ANs are in the MN’s line of sight 

but are not synchronized with the MN. The range measurement obtained at the t -th time step, 

from the i -th AN, is explicitly presented by the pseudo-range biased due to the random MN-AN 

clock offset as

� � � �22
, , , ,

1, 2,...,
i t i x t i y t t i t

AN

m x m y b w

i N

� � � � � �

�

z
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where tb is the random range offset which takes into account both the deterministic clock time 

offset between the ANs and MN and random MN receiver clock instability properties. The 

random range offset is modeled by an independent random walk from the MN motion process 

as 2
1( | ) (0, )t t bp b b N �� � where 2

b� is commensurate with Allen variance of the MN clock. In this 
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case, the state vector is defined by 
T

t t t fpb� �� � �q p m . If the ANs are not synchronized, the 

bias variable for each AN will be different and the state vector is modified by 

T

t t t fp
� �� � �q p b m , where 1, ,AN

T

t t N tb b� �� � �b � is the vector of ANs range offsets; this will 

be studied as the third system model, given by

� � � �22
, , , , ,

1, 2,...,
i t i x t i y t i t i t

AN

m x m y b w

i N

� � � � � �

�

z
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The clock drift process of each AN evolves independently from the clock drift processes 

of other ANs, so the transition PDF of range offset variables is given by 1( | ) (0, )t t bp N Q�b b � ,

where � �1 2

2 2 2
NANb b b bQ diag � � �� �

The fourth system model considers a general multipath scenario where the 

measurement is also affected by non-stationary channel behavior. Multipath and LOS blockage 

are the most penalizing error sources in wireless localization. It can be classically modeled by a 

white noise in the signal bandwidth. NLOS measurements are detected as an abrupt change in 

mean and/or variance of a Gaussian noise [xlviii]. However, if the NLOS condition is left 

undetected, it substantially degrades localization accuracy. One approach to deal with the 

NLOS conditions is to introduce a noise model for LOS propagation and a noise model for 

NLOS propagation, where the transition between the LOS and NLOS mode is modeled with a 

Markov chain. In this case, the state vector is characterized by the MN position, FP locations, 

range offset vector, and ANs’ sight conditions 1, ,AN

T

t t N ts s� �� � �s � , given by

/ 0Tt t t t�q p b s m
0-70

where each AN sight condition, ,i ts , is modeled by a binary Markov Chain, with the value , 0i ts �

is assigned to the LOS event, and , 1i ts � is assigned to the NLOS event. As earlier discussed,

in mixed NLOS/LOS conditions, the suggested range measurement model is characterized by 
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introducing sight state-dependent measurement noise distributions for fourth system model, 

given by

� � � �22
, , , , ,

1, 2,...,
i t i x t i y t i t i t

AN

m x m y b w

i N
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�

z
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where 

2
, ,

, 2
, , ,

(0, ) 0

( , ) 1
i lo s i t

i t
i nlos i nlos i t

N if s
w

N if s

�

- �

5 �6
7

�68
�
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Under LOS condition, the measurement is only corrupted by additive receiver noise, 

which is described by a zero-mean Gaussian distribution with a variance of 2
,i los� . The NLOS 

excess delay is modeled by the abrupt jump in the mean and variance of measurement noise, 

where 2 2
, ,i nlos i los� �9 and , 0i nlos- 9 [xlix], [l], [li ,i nlos-]. We assume that the , 2

,i nlos� , and 2
,i los� are 

known from prior information about the room size and the calibration stage.

The ANN Markov chains are combined into a single, augmented Markov chain, denoted 

by ts which have 2 ANN possible states. As long as the range measurements are collected from 

ANs at different locations, the LOS/NLOS transition can be assumed to be independent. 

Therefore, the transition probability matrix � of the augmented Markov chain can be expressed 

in terms of the transition probability matrices of , 1,...,i ANi N� � of each AN, according to 

1 2 ...
ANN� �� :� : :� , where : denotes the Kronecker product. The description of four 

proposed system models is summarized in Table 0-1.

Table 0-1 System models’ description
System Model 

scenario
ANs location MN clock instability ANs

synchronization
NLOS conditions

1 Unknown The MN are synchronized 
with ANs

ANs are 
synchronized

Sight conditions are known 
and NLOS measurements 

are discardedSolution: ANs unknown 
locations are treated as 

FP’s of unknown 
location.

2 Unknown The MN are not synchronized 
with ANs

ANs are 
synchronized

Sight conditions are known 
and NLOS measurements 
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Solution: similar to the 
system model 1

Solution: MN clock 
instability is treated as 

random first-order Markov 
process.

are discarded

3 Unknown The MN are not synchronized 
with ANs

ANs are not 
synchronized

Sight conditions are known 
and NLOS measurements 

are discarded
Solution: similar to the 

system model 1
Solution For every MN-AN link, the clock drift is 

treated as a random first-order Markov process

4 Unknown The MN are not synchronized 
with ANs

ANs are not 
synchronized

Sight conditions are 
unknown

Solution: similar to the 
system model 1

Solution: similar to the system model 3 Solution: Sight conditions 
are modeled by Boolean 

switch.

Fisher information for a SLAM-based OWLS

A direct approach to quantify the potential accuracy of a trajectory estimation based on 

the observed data samples is formulated by the Fisher information matrix. However, as stated 

earlier, the quantifiable information is only valid where the problem is linear and jointly Gaussian 

or at least nonlinearity is mild and the measurement and state update noise are approximately 

Gaussian. FI determines a fundamental limit for localization accuracy by using information 

inequality through the CRLB theorem. This information bound predicts the best achievable 

performance even before the OWLS is built, so that it can be utilized as a system design tool.

For the SLAM-based OWLS, where 0:tq represents the history of unknown system state 

vector, the BCRLB as a lower bound on the MSE matrix of any unbiased estimator 0: 1:ˆ ( )t tq z is

obtained by substituting 0:tq by q and 1:tz by z in Eq. (0-35)-(0-38), yielding

� �� �� � 1
0: 0: 0: 0: 0:ˆ ˆ ( )T
t t t t to ttE J �� � %q q q q q

0-73

where 0:( )tot tJ q denotes the BFIM in regards with history of state vector. 0:( )tot tJ q is quantifiable 

information associated with full SLAM processing; however, in OWLS, the current system state 

tq is of particular interest. It can be easily proved [lii tq] that BCRLB for is given by the K K�
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lower right submatrix of 1
0:( )tot tJ � q , where dim( )tK � q . Let decompose tq as 0: 1[ , ]T T T

t t�q q ,

0:( )tot tJ q can be written by
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where �
�
 is the operator of the second order derivative and is also defined versus the first-

order gradient as T�
� � �
 �   . Given Eq. (0-73) decomposition, the Fisher information matrix 

regarding the current state tq , ( )tot tJ q , is obtained by 

1( ) T
tot t t t t tJ C B A B�� �q

0-75

Generally, there are two types of algorithms that calculate the Fisher information for 

online processing. The first type avoids inversion of the large matrix of 0:( )tot tJ q and calculates 

the ( )tot tJ q recursively based on Eq. (0-93) [xii], [lii] as 

22 21 11 1 12
1( ) ( ( ))tot k k k k tot k kJ D D D J D�
�� �q q�

0-76
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For a LJG case, the recursion for ( )tot tJ q is identical to inverse of the posterior PDF 

covariance matrix calculated from the Kalman filter. However, in a nonlinear SLAM problem, 

due to correlation between state vector estimates, as earlier discussed, the recursive methods 

partially discard the correlated information between the current state and older states. 
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The second types of methods focus on calculating full SLAM BFIM 0:( )tot tJ q numerically 

[lv] or based on reasonable approximations [liv]. For the problem at hand, we utilized the second 

approach since the inversion of 0:( )tot tJ q is not an issue for the dimension of the simulated 

problem; otherwise the recursive methods need to be used. Except the forth system model 

which is described by a hybrid discrete and continuous state space and must be treated 

differently, the proposed system models for the SLAM-based OWLS can be described by a 

linear model for state update and a nonlinear model for the measurement function, yielding

1 ,

, ,( ) , 1, 2,...,

T
t t d t

i t i t i t AN

F
z h w i N

�� �

� � �

q q v
q
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where 

1 0 0 0 0
0 1 0 0

0
0 0 1 0 0

d sL L
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dL and sL denote the dimension of dynamic variables and stationary variables of state 

vector, respectively. The noise vectors are mutually independent white process distributed as 

, (0, )d t dN Qv � and 2
, ,(0, )i t i zw N �� . dQ is a nonsingular covariance matrix of joint dynamic 

variables process where for the system model 1 , d pQ Q� ; for the system model 2, 

� �2,d p bQ diag Q �� and for the system model 3 and 4, � �,d p bQ diag Q Q� . It is assumed that 

the MN clock instability process evolves independently from the MN motion process. From Eq. 

(0-91), the BFIM 0:( )tot tJ q for a SLAM-based OWLS is given by 

� �0:

0:0: , 1: 0:( ) ln ( , )t

tto tt t tJ E p� �
q
q z qq z q
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According to Eq. (0-35)-(0-38), the total BFIM is decomposed using Bayes’ rule, stated 

as
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0: 0: 0:( ) ( ) ( )tot t Z t P tJ J J� �q q q
0-81

where 0:( )Z tJ q denotes the BFIM of measurement data, defined as

� �0:

1: 0: 0:0: , | 1: 0:( ) ln ( | )t

t t tZ t t tJ E p� �
q
z q q z qq z q
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and where 0:( )P tJ q denotes the BFIM of prior data, defined as

� �0:

0: 0:0: 0:( ) ln ( )t

t tP t tJ E p� �
q
q q qq q

0-83

The evaluation of BFIM of the measurement data involved the computation of 

expectation, which is difficult to express analytically for the nonlinear model given in Eq. (0-77)

unless some reasonable approximations can be assumed. We utilize first-order Taylor 

expansion to construct a linear approximation of (.)ih around ˆ tq which is the most likely system 

state deemed at the time of linearization:

,ˆ ˆ( ) ( ) ( )i t i t i t t th h H! � �q q q q
0-84

with 
� �

,
i t

i t
t

h
H

�
�

�
q

q
, the gradient of (.)ih . Therefore, the Gaussian approximation of the 

liberalized measurement process is given by

� �2
, ,

| 22
,,

ˆ ˆ( ) ( )1 1( | ) exp
22

i t i t i t t t
t t

i zi z

z h H
p

���

5 ;� � �6 6� �7 <
6 68 =

z q

q q q
z q
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Using the linearized measurement model approximation, the BFIM from measurement 

data can be expressed by
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where ,
1

i j
k� � denotes a ( 1) ( 1)k k� � � dimensional matrix whose elements are all zero except at 

the i -th row and the j -th column which is one, and ( )Z kJ q denotes the BFIM portion from the 

measurement data at the k -th time step. It must be noted that the FPs are stationary, so unlike 

dynamic state variables such as MN location variables, there is no need to define a new state 

vector portion regarding to FP location variables at each time step. To unify the information 

regarding FP location variables from all time steps, the state vector variables are divided in two 

dynamic and stationary portions as , ,
T

k d k s� �� � �q q q and the history of state vectors is re-sorted 

as 0: ,0: ,
T

k d k s� �� � �q q q . In this regard, the BFIM for mixed stationary and dynamic states from 

measurement data is modified by
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To calculate the prior information, we need to consider the update model of dynamic 

state variables as well as initial conditions. Since the FPs are assumed to be stationary, the 

update information is only applied for dynamic variables. The initial conditions are divided into 

two portions: the stationary portion which is later added to the measurement information to 

calculate the total information, and the dynamic portion which is combined with the update 
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information. According to the LJG model of the state update process, and assuming that initial 

state 0q is Gaussian distributed as 0 0(0, )N Qq � which is composed of initial condition for 

dynamic variables, 0, ,0(0, )d dN Qq � , and stationary variables, 0, ,0(0, )s sN Qq � , the prior 

information about dynamic states ,0dq and ,1dq with the update state model 

,1 ,0 ( , )d d dN Q�q q 0� is given by

1
,0:1 ,0:1

11
,0

,0:1

( ) ( )
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P d u d

d
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Q J
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�
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q q

0
q

0 0
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where
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Q Q
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� � ��� �
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The prior information of the state vector after two time steps, 0:1 ,0:1,
T

d s� �� � �q q q , is 

calculated by inserting initial information from stationary states as follows

1
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q
q 0
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Generalizing Eq. (0-104)- Eq. (0-106), for t time steps, the BFIM from prior data, 

0:( )P tJ q can analytically be computed by 
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The BFIM elements for each proposed model are different as the proposed system 

models vary in terms of state variables and measurement and state update models. In this 
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regard, the following subsections explain the calculation of BFIM elements for all four proposed 

models in more detail. The BFIM calculation is described in particular for the fourth system 

model as its state space includes both discrete and continuous variables.

MODEL 1: SYNCHRONIZED ANS, MN SYNCHRONIZED WITH ANS, KNOWN SIGHT 
CONDITIONS 

Given � �� �2
, ,,i k i k i zz N h �q� , the Fisher information obtained from a single measurement 

from the i -th AN is obtained by

� � � � � �2
, ,

T
i k i k

Z i k z i
k k

h h
J � � � �

�
� �

q q
q

q q
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where � � � � � �22
, ,i k i x k i y kh m x m y� � � �q , as described in Eq. (0-66). The gradient of 

measurement/likelihood PDF is calculated by
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where � � � �22
, , ,i k i x k i y kr m x m y� � � � and 1

i
me � is the 1 m� row vector whose elements are 

zero, except the i -th element which is equal to one. Then, the measurement Fisher information 

matrix from a single measurement available at time step t from the i -th AN is calculated by



75/154

� �

� � � �� �

� �� � � �

2
, ,,

1 22 2
, ,

2

, , ,2
, , 1 22 2

, ,

2 1 2 1 2 2

1, 2,...

FP

FP

FP FP FP FP

i x k i y ki x k
N

i k i k

i x k i y k i y k
Z i k z i N

i k i k

N N N N

AP

m x m ym x
r r

m x m y m y
J

r r

for i N

�

�

�
�

� � �

� �� ��
� �
� �
� �
� �� � �

� � �
� �
� �
� �
� �
� �� �

�

0

q 0

0 0 0

0-95
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The measurements from different ANs are assumed to be independent. This is 

reasonable as the measurement noise comes from two sources which are the receiver noise 

and the multipath. The propagation paths from the ANs to the MN are statistically independent

provided that the ANs are sufficiently separated spatially (which may be violated in the MIMO 

cases), and there is no tunneling propagation or keyhole effect at the receiver. However, in 
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some cases, the multipath occurs close to the MN receiver; hence, if two ANs are at similar 

bearings relative to the MN, then the multipath will be correlated. However, this correlation is not 

considered in the current analysis. Based on the assumption that the noise in the receiver is 

uncorrelated as the synchronization signals from the ANs have different spreading codes; 

hence, the noise subspaces are orthogonal. Consequently, the BFIMs from additional 

statistically-independent AN signals can simply be added as 
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1 1

AN AN
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i i k k

h h
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� �# #
q q

q q
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To comply with the re-sorted state history vector, 0: ,0:

T
t d t s� �� � �q q q , the elements of 

Eq. (0-102) is described as ,

,
ln ( | )d k

d k k kp
q
q z q is the upper left d dL L� submatrix of � �Z kJ q ,

,
ln ( | )s

d k k kp
q
q z q is the the upper right d sL L� submatrix of � �Z kJ q , , ln ( | )d k

s k kp
q
q z q is the 

lower left s dL L� submatrix of � �Z kJ q , and ln ( | )s

s k kp
q
q z q is the lower left s sL L� submatrix 

of � �Z kJ q .

To calculate the BFIM from prior information, as shown in Eq. (0-107), 0Q and dQ must 

be defined based on the state space and the state update process for each system model. In 

the system model 1, the vector of dynamic states ,d kq is only described by MN location 

variables as / 0,
T

d k k kx y�q with the dimension ,dim( ) 2d d tL � �q . Subsequently, the update 

process for dynamic states ,0dq and ,1dq is described by ,1 ,0 2 1( , )d d PN Q��q q 0� , and the prior 

PDF at the initial point is defined by  

0 0(0, )N Qq �
0-99

where � �1 1

2 2 2 2 2 2
0 ,0 ,0 ,0 ,0 ,0 ,0N NFP FPx y mx my mx myQ diag � � � � � �� � . 0Q is decomposed into the 

stationary and dynamic portions as 
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MODEL 2: SYNCHRONIZED ANS, MN NOT SYNCHRONIZED WITH ANS, KNOWN SIGHT 
CONDITIONS

For this system model, the Fisher information from the measurement of i -th AN is 

calculated as 
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where � � � � � �22
, ,i k i x k i y k kh m x m y b� � � � �q .

          Similarly, the measurement BFIM from all MN-AN links is calculated by the sum of the 

FIM from each MN-AN link as stated in Eq. (0-97). It must be noted the elements of FIM from 

measurement data for re-sorted state history in Eq. (0-85) are obtained in a similar way to the 

procedure explained for the system model 1.

To calculate prior information, the initial information must be modified by adding the 

initial condition of the range offset, given by

0 0(0, )N Qq �
0-103

where � �1 1

2 2 2 2 2 2 2
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0N NFP FPx y b mx my mx myQ diag � � � � � � �� �
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The initial condition for the stationary portion remains the same; however, dynamic 

portion is modified as � �2 2 2
,0 ,0 ,0 ,0d x y bQ diag � � �� . The dynamic portion of state vector is 

defined by  / 0,
T

d k k k kx y b�q with a dimension of 3dL � . The update information is 

calculated similar to Eq. (0-97)-(0-107) where dQ is modified for newly added range offset 

variables as � �2d P bQ diag Q �� .

MODEL 3: UNSYNCHRONIZED ANS, MN NOT SYNCHRONIZED WITH ANS, KNOWN 
SIGHT CONDITIONS

The measurement Fisher information is calculated similar to system model 1, as stated 

in Eq. (0-91), except for each AN-MN link, a single range offset variable is added to the state 

space, and � �i kh q is modified by, � � � � � �22
, , ,i k i x k i y k i kh m x m y b� � � � �q . Therefore, 
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Consequently, the measurement FIM is obtained by
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where 
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Similarly, the measurement BFIM from all MN-AN links is calculated by the sum of the 

FIM from each MN-AN link as stated in Eq. (0-97). It must be noted the elements of FIM from 

measurement data for re-sorted state history in Eq. (0-85) are obtained in a similar way to the 

procedure explained for the system model 1.

The range offset terms make the rank ZJof equal to one, so the portion of Fisher 

information that relates to observation is not invertible. The smooth spatial assumption of the 

MN movement is necessary to make the FIM invertible and the SLAM problem observable. To 

describe the prior information transformed by the update model, the initial information needs to 

be modified by

0 0(0, )N Qq �
0-109

where � �1 1 1

2 2 2 2 2 2 2 2
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0i N NFP FPx y b b mx my mx myQ diag � � � � � � � �� � � . The initial 

condition for the stationary portion remains the same as the system model; whereas the 

dynamic portion is modified by � �1

2 2 2 2
,0 ,0 ,0 ,0 ,0id x y b bQ diag � � � �� � . In this case, the 

dynamic state vector / 0,
T

d k k k kx y�q b has a dimension of 2d ANL N� � . The update 
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information is calculated similar to Eq. (0-97)-(0-90) where dQ is modified for newly added 

range offset variables as � �d P bQ diag Q Q� .

MODEL 4: UNSYNCHRONIZED ANS, MN NOT SYNCHRONIZED WITH ANS, UNKNOWN 
SIGHT CONDITIONS

As mentioned earlier, one approach to deal with mixed NLOS/LOS propagation is to 

introduce two different noise models for LOS and NLOS propagation conditions, whereby the 

transition between the LOS and NLOS states is modeled with a binary Markov chain. This

modeling turns the OWLS to a jump Markov nonlinear Gaussian system (JMNLGS). Since the 

FI calculation involves taking derivative with respect to all state variables, it cannot handle 

discrete values parameters such as binary sight conditions. Therefore, the discrete parameters 

need to be marginalized from all probability densities. 

In [liii xii], [ ], an enumeration method is proposed to approximate the desired BCRLB as 

the expected value over all the discrete state sequences, referred as the Enumer-BCRLB. The 

method initially obtains a lower bound on the MSE matrix for any conditional estimator for the 

continuous-valued portion of tq , denoted by c
tq , based on the calculation of the conditional 

MSE matrix, given by

� �
� �

1: 1:
1: 1: 1: 1: 1:( , | )

1

1:

ˆ ˆ ˆ( | ) ( | ) ( | )

|

i
t t t

Ti c i c c i c
t t t t t t t t t tp s

c i
t t

MSE s s s

J s
�

� � � �> � �� � � �

%

q z
q q z q q z q

q

�
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where 1: 1:ˆ ( | )c i
t t tsq z denotes the conditional estimator for a particular sight state sequence 1:

i
ts

and � �1:|c i
t tJ sq denotes the conditional BFIM for c

tq which is the K K� lower right submatrix of 

� �1
0: 1:|c i

tot t tJ s� q . Similar to the procedure explained previously, � �1:|c i
t tJ sq can be calculated 

recursively as shown in Eq. (0-75) as or based on linearization approximations as shown in Eq. 

(0-83). Then, to evaluate the unconditional MSE lower bound, the conditional CRLB is averaged 

over all possible discrete state sequences.
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Therefore, the total BFIM is obtained by the inverse of the Enumer-CRLB. It can be seen 

that calculation complexity of Enumer-CRLB algorithm increases tremendously with time, 

yielding a complexity order of ( .2 )tt? for a binary sight state model since this requires the 

calculation of conditional FIMs for all possible discrete state sequences. In addition to 

computational complexity, it is stated in [xii], [liv], [lv], [[lvi

To obtain a tighter bound, [

] that the Enumer-BCRLB can be an 

overly optimistic bound. 

liv]-[lvi] proposed a new method for jump Markov linear 

Gaussian systems where the Enumer-BCRLB is modified based on Monte Carlo (MC) methods. 

Since the state update process is described by a LJG model and is not a function of discrete 

states, the prior information for continuous-valued state vector can be calculated analytically as 

described in Eq. (0-90). However, the BFIM from measurement data, 0:( )c
Z tJ q is numerically 

approximated by [lv-lvi],

� � � � � � � �
0: 1: 1: 0: 1: 1:

0: 1: 1: 1: 1:| |
1

1( ) ln ( | ) ln ( | )c c c c
t t t t t t

N Tn nn nc c c
Z t t t t t

n
J p p

N �

5 ;� � � �!  7 <� � � �� � � �8 =
# q z q q z q

q z q z q
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where � �1:

nc
tq and � �1:

n
tz are the independent and identically distributed vectors generated from

1: 1:( , )c
t tp q z for N Monte Carlo simulation runs. The algorithm to compute 1:( )cz tJ q

approximately is adopted from [lvi]. It is reminded that for the problem at hand, c
tq is defined by 

joint vector of location of MN, AN locations and range offsets as [ ]c T
t t t�q p b m .

Unlike the Enumer-CRLB , this later bound does not require explicit calculation of all 

possible discrete state sequences which reduce the complexity to the order of (2. . )N t? .

However, [lvi] shows that for 20000N � , the method has obtained a tighter bound than Enumer-



83/154

CRLB for an tracking example; for an nonlinear SLAM-based OWLS with the high dimensional 

state space, the required number of MC runs is unknown and much higher. 

Another approach for calculating BCRLB for jump Markov systems is suggested in [xii]

that is based on deterministic trajectory of discrete states *
1:ts . However, it can be overly 

optimistic as it assumes the knowledge of discrete state; practically, it has sufficed requirements 

for error assessment in most tracking problems [xii], [xlv]. In chapter 4, it will be shown that the 

BCRLB obtained based on the knowledge discrete state sequence still provides a reasonable 

bound to evaluate the result of the proposed algorithms for the OWLS.

Other estimation metrics in terms of the BFIM

An accuracy metric is important in that it gives an indication of confidence in OWLS 

solution and if the tracking algorithm works successfully. In previous section, the BFIM is

obtained as a quantitative metric of all available information in a SLAM-based OWLS. The BFIM 

comprises all information regarding the parameters of interest including the MN trajectory and 

nuisance parameters including AN locations, range offsets, and/or sight conditions. Since the 

main purpose of OWLS is MN localization, a concise accuracy metric which only focuses on 

positioning accuracy can be more useful than a high dimensional BFIM. In this regard, Position 

Error Bound (PEB) is introduced which interprets the BFIM in terms of localization accuracy. 

Moreover, a quantitative confidence metric can be extracted from BFIM known as confidence 

region of state vector. Not only in terms of accuracy and confidence, the BFIM introduces an 

useful tool, known as Normalized Estimation Error Squared (NEES), to evaluate OWLS 

solutions in terms of consistency. In following subsection, the relation of these three important 

metrics with the BFIM is explained in more detail. 
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In terms of localization accuracy, the error variance of the MN position � �ˆ ˆ,t tx y is of 

interest, which is the upper left 2by2 submatrix of � � 1
tot tJ �q ,

� �� � � � 1

2 2
ˆ ˆ( )Tt t t t to ttE J �

�
� �� � % � �p p p p q
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or 

� � � �� � � �� �2 2 1

2 2
ˆ ˆt t t t tot tE x x y y tr J �

�
� �� � � % � �q
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where � �� �1

2 2
ttr J �

�
� �
� �q is known as Position Error Bound (PEB).

The Normalized Estimation Error Squared (NEES) for the state tq is defined as [xlv]

� � � �ˆ ˆ( )T
q t t t t tJ� � � �q q q q q

0-115

and is chi-square distributed , 2� , with dim( )tq degrees of freedom under the hypothesis that 

the filter is consistent and approximately linear-Gaussian. In an estimation problem, particularly 

SLAM, NEES is used as a measure of filter consistency by the examination of average NEES 

over N Monte Carlo runs of filters [xliii], [xlv]; [lvii

1

1 N

q q
iN

� �
�

� #

]. Given N simulation runs, the average NEES 

is obtained by

0-116

The quantity of qN� is chi-squared distributed with dim( )tN q degrees of freedom under 

consistent filter hypothesis. The 95% probability concentration region for q� can be used to test 

whether the SLAM filter is optimistic if the error rises significantly higher than bound, or is 

pessimistic, if it tends below the lower bound. Moreover, q� can be asymptotically estimated by 

dim( )tN q .
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Confidence Region for the state vector

When is the unknown parameter to be estimated, one can say that ˆ tq must be within 

some neighborhood of . This neighborhood is determined by the confidence region of the 

state vector , as defined by the inside of “g-sigma” ellipsoid, 

� � � � 2ˆ ˆ( )T
q t t t t tJ g� � � � �q q q q q

0-117

This is actually a hyper-ellipsoid of dimension where the semi-axes are g

times of the square roots of the Eigen values of � � 1
tJ

�
� �� �q . For an efficient estimator, the 

normalized error q� must follow 

� �2Pr 1q g Q� $ � �
0-118

where Q represents the small tail probabilities. For a one-sided probability region of 95%, the 

ellipsoid boundary will be used to assess the SLAM algorithm error performance in comparison 

with the efficient estimator.

Mutual information (MI), ( , )I X Y , measures the mutual dependence of two random 

variables, X and Y . If X and Y are the input and output of a channel, respectively, ( , )I X Y

does not make any assumptions regarding the receiver processing of Y , but requires the 

source entropy. It can be shown that if the signal to noise of each degree of freedom (DOF) is 

small, then ( , )I X Y is independent of the source distribution [lviii], [lix], [lx

X

]. Hence, an 

asymptotic assessment of the tracking performance based on the mutual information is possible 

for any source distribution. We can select a source distribution of that facilitates the 

mathematics and results in the most convenient expressions. Assuming a low SNR per signal 

DOF, such that the source distribution becomes asymptotically irrelevant, then it is possible to 

consider the symmetry of the problem such that the mutual information can be assessed for a 

specific value of X . However, instead of determining the overall ( , )I X Y , where the probability 

tq

tq

tq

dim( )tq
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structure of X needs to be specified, we can consider the simpler problem of determining

( , | )I X Y X A� or just ( , )I Y A . Mutual information quantifies how much information of a specific 

value of A is contained in Y . In other words, determine the statistics of the optimum estimator 

of A based on the data in Y which is expressed as ˆ( )A Y . The quantity of information 

regarding the parameter A that is contained in Y is also given by the Fisher information 

denoted in this case as ( ; )J A Y . Hence, the quantity that is used to assess the estimation and 

tracking performance is the effective signal to noise given as 2 ( ; )A J A Y .

Guo et al [xi] revealed an interesting relation between the mutual information and the 

MMSE. Guo theorem says that regardless of the input statistics the relation between mutual 

information and MMSE in an additive Gaussian channel can be described by

� � � �, ; 1
2

I X Y SNR
MMSE SNR

SNR
�

�
�
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where SNR is the signal-to-noise ratio of the channel; � �;I X Y is the input-output mutual 

information in nats, and the MMSE is the minimum mean square error of input estimation given 

output as a function of SNR. Eq. 0-118) reflects a strong relevance of mutual information to

estimation and filtering which can provide a non-coding operational application. The input-output 

mutual information demonstrates how much information can be transferred through a channel 

reliably given a certain input signaling, while the MMSE quantifies how efficiently each input 

sample can be recovered using the channel output. The significance of this relation is that this is 

not only simple and intriguing but is also independent of input distribution which holds under 

arbitrary signaling conditions and the broadest setting of the Gaussian channel, including both 

discrete-time and continuous-time channels in both scalar and vector versions. Two explanatory 

proofs for Guo’s theorem are presented in Appendix A where the first proof is inspired by 

independence of MI from input distribution in low SNRs and incremental channel concept and 
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the second proof uses the relation between FI and differential entropy in de Bruijn’s identity [xi],

[lxii].

The intuitive Guo’s theorem introduces a novel application of another information metric, 

that is mutual information, in tracking and estimation problems [lxi

We define a SLAM-based wireless localization problem where the MN moves within an 

unregistered network and receives wireless observables from a mixture of stationary ANs with 

unknown or known positions. The MN trajectory is assumed to be random but smooth in the 

way that the motion dynamical process is modeled by a Markovian process. At any discrete time 

instant 

]. However, the Guo theorem 

only proposed a MI application in a linear Gaussian problem for random stationary parameter. In 

this section, it is explained how the mutual information concept can be applied for a SLAM-

based OWLS which includes not only random stationary parameters such as FP locations but 

also random dynamic variables such as the MN location. The elements of MI, their contribution 

to stationary and dynamic parameter estimation are depicted via a Venn diagram based on a 

Markovian structure of OWLS.

t4� , the state variable tq includes stationary parameters such as FP locations fpm ,

and dynamic variables, such as the MN location, and other nuisance parameters such as range 

offset / 0,
T

d t t t�q p b , is denoted as

,

T

t d t fp� �� � �q q m
0-120

Mutual information, ˆ( , )t tI q q is a measure of information which the sufficient statistic or 

estimator , ˆ tq , can provide for estimating tq in terms of shared entropy [lxii

fpm

]. The first element of 

MI is defined by Markovian process between subsequent dynamic states. Note that the 

stationary portion of state vector can be also considered as a dynamic variable with a zero 

mean and variance Markov process. Figure 0-20 shows a Venn diagram of entropy change in 

two and three-step Markov process. The entropy of states are shown by color-filled ellipse areas 
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and their common information or MI shown by overlapped areas between entropies. For 

example, the green left area in left-side depicts the maximum-decreased entropy of ,d tq if the 

previous state is known as a result of filtering in a online processing, while green area in right 

side diagram shown the maximum-decreased entropy of ,d tq if previous and next states are 

known as a result of smoothing in a batch processing. 

Since the underlying Markov process ( , 1 , , 1d t d t d t� �1 1q q q ) evolves unaware of the 

observations, when at the time instant t , the observation tz depends only on the state at time 

instant t . This means, given ,d tq , the observation at the time instant t , tz and , 1d t�q are 

independent so that ,d tq , tz and , 1d t�q form a Markov Chain as , 1 ,d t d t t� 1 1q q z or 

, , 1t d t d t�1 1z q q that is equivalent with , 1 ,( ; | ) 0d t t d tI � �q z q . Note that this independency is also 

applied to the whole state vector tq , since the stationary portion of state vector can also be 

treated as dynamic variable as earlier discussed. Therefore, the second element of MI is 

defined by measurement data; however, this independency property must be considered when 
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Figure 0-20 Venn diagram of entropy change in a Markov process
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combining the MI elements. Figure 0-21 shows entropy change in presence of measurement 

data and MI dependency in this Markov process.

With Markovian chain assumption between states and also state-measurement, two 

important points is taken into account in plotting Venn diagrams. First 1( ; | ) 0t t tI � �q z q , then

1 1( ; ) ( ; | )t t t t th h� ��q z q z q
0-121

where (.)h denotes the entropy. It means that not only 1 1( ; ) ( ; )t t t tI I� �@q z q q but also 

1 1( ) ( )t t t t� �A B Aq z q q .

Second, since 1 1 1( | , ) ( | )t t t t tp p� � ��q q z q q , it is inferred that given the previous states, 

previous measurement doesn’t add new information for the current and future states, which 

complies with Markovian assumption. 
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Figure 0-21 Venn diagram of the entropy change in presence of measurement data
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Therefore, the maximum mutual information for state estimate at time step t in terms of 

nats or bits is obtained by combining the MI elements with considering the Markov properties , 

given by

1 1 1 1

1

ˆ( , ) ( ; , ) ( ; ) ( ; ) ( ; )

( ; ) ( ; | )
t t t t t t t t t t t

t t t t t

I I I I I
I I

� � � �

�

$ � � �

� �

q q q q z q z q q q z
q z q q z
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Finally, the entropy reduction and total MI increase procedure of three subsequent states 

in a SLAM problem is illustrated in Figure 0-22 which fulfills these two criteria. In an online 

SLAM problem, Eq. (0-121) determines the upper bound of information for tq ; while in the full 

SLAM problem, the added information from future states must be considered, as shown Figure 

0-20, where the decreased entropy of tq after taking into account the information from is 1t�q

and 1t�z illustrated by the pure green area. However, the MI calculation for state variables given 

in Eq. 0-121) can be difficult in comparison to MMSE calculation; it gives a global criterion for 

any state statistics and channel noise distributions in units of bits or nats. The more detailed 
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Figure 0-22 Venn diagram of the MI and entropy change in a Bayesian problem
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pros and cons of MI application in estimation problems will be discussed in next subsection by 

some examples.

Guo’s theorem applications and its limitation for the SLAM-based 
OWLS

The main advantages of MI application to estimation problems in comparison with FI or 

Bayesian CRLB is that it provides a global measure of shared information between the state 

vector and observables and prior information regardless of linearity or Gaussianity of the 

problem. The Guo’s theorem has built the bridge between estimation theory in terms of MMSE 

and information theory in terms of MI under certain conditions. However, Guo’s theorem and MI 

calculation have their own disadvantages which lead us to mainly focus on the FIM for our 

SLAM-based wireless localization problem. Following example are designed to illustrate the MI 

and Guo’s theorem limitations for OWLS application in more detail.

Example 01: Linear Gaussian random input in additive Gaussian channel

Consider a simple channel model with continuous-valued input and noise process

y x n�� �
0-123

where , (0,1)n x N� . Therefore, the output distribution is given by

(0, 1)y N � ��
0-124

For a Gaussian channel with linear Gaussian input, the input-output mutual information 

in terms of nats is derived as

1 1 1( ; ) ( ) ( | ) ln(2 ( 1)) ln(2 ) ln( 1)
2 2 2

I x y H y H y x e e� � � �� � � � � � �
0-125

Figure 0-23 shows the mutual information calculated numerically from entropy and 

analytical result in Eq. (0-124). Although the MI calculation from entropy is trivial when the 

closed form is obtainable, both plots are presented in order to observe possible errors of 

numerical integration. From Guo’s theorem, it is inferred that the mutual information of a 
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Gaussian channel is concave function of SNR as shown in Figure 0-21. Moreover, the mutual 

information can be bounded as

� � 2 ( ) (0) var( )mmse SNR I SNR mmse X
SNR

$ $ �
0-126

a. linear scale SNR                                                 b. SNR in dB

Figure 0-23 Mutual information versus SNR in a linear Gaussian channel with a Gaussian 
input 

The MMSE of the input estimate given the output is computed as the averaged mean of 

the posterior PDF :
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Since the variance of posterior PDF is constant for all value of y , the MMSE is given by

1ˆ( | , )
1

mmse x y�
�

�
�

0-128
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GUO’s theorem is confirmed not only by analytical results in Eq. 0-128) for both 

continuous Gaussian signal and noise in a linear system but also by numerical calculation as 

shown in Figure 0-22:

( ; ) 1 1ˆ( | , )
2 1

I x y mmse x y�
� �

�
� �

� �

0-129

Small difference between analytical and numerical results for SNR<10dB in Figure 0-24

is mainly due to numerical error in MI first derivative calculation. However, it is not mentioned in 

[xi], Eq. (0-128) is only valid when the variance of x is normalized to 1. 

Figure 0-24 MMSE and MI versus SNR in linear Gaussian channel with Gaussian input

Example 02 : Nonlinear discrete random input in an additive Gaussian channel 

Range and TOA measurements provide observables for tracking algorithms that have 

nonlinear relation with state space. In this case, the verification of Guo’s theorem for nonlinear 

system is investigated. Even if the input x is Gaussian , the output PDF through nonlinear 

function is not Gaussian. One of main disadvantages of MI application in tracking problems will 

be the difficulty in generating the PDF for a general nonlinear process with some correlation. In 

this regard, numerical calculation is generally solution such as approximation of the continuous 

PDF of input by a discrete PDF. Consider a input-output nonlinear system with additive 

Gaussian noise channel: 
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( )y f x n�� �
0-130

where (0,1)n N� and � �
1

M

i i
i

x p x x�
�

�#� as
1

1
M

i
i
p

�

�# .

In this example, a Gaussian PDF of input x is approximated by a discretized version of 

Gaussian PDF with cell width 
 . To apply Guo’s theorem, it is also required to normalized the 

variance of ( )f x , fx� ; therefore the total SNR is stated by fx�� where 

( )
fx

fx

f xy n��
�

� �
0-131

Lets define fxsnr ��� and.
( )( )
fx

f xg x
�

� ; the output distribution is given by
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The posterior PDF is calculated as 
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and the conditional mean estimate is given by 
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The averaged variance of posterior PDF which is equal to MMSE is given by
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SLAM-Based Opportunistic Wireless Localization 

OWLS is proposed as a solution for localization in environments where GPS fails or the 

local wireless network signaling is not intended for positioning purposes. It is shown that the 

SLAM can introduce a systematic approach of accounting for the various disparate sources of 

information to track MN trajectory in an unknown environments. The significance of SLAM 

application in an OWLS problem is that it can incorporate all available information from the 

motion process, observables and prior knowledge to track the MN trajectory while jointly 

estimates the unknown environment map parameters including FP locations and other nuisance 

parameters such as range offset due to unsynchronized reception and multipath effects. 

Chapter 2 introduced the OWLS system parameters which based on, Chapter 3 presented four 

system models for an OWLS according to range measurements data. It is shown in Chapter 2 

that optimal recursive Bayesian solution for an OWLS requires the complete posterior PDF of 

the system state to be determined as a function of time. However, a closed form solution for an 

OWLS cannot be formulated due to system nonlinearity. Despite the absence of closed form 

analytical solution, Bayesian FIM was formulated for all four proposed system models as the 

best achievable performance of the OWLS in Chapter 3.

This chapter presents two suboptimal Bayesian solutions for an OWLS based on EKF 

and PF, known as EKF-SLAM and FastSLAM. The proposed suboptimal EKF-based and PF-

based solutions are implemented for four proposed OWLS models ranging from a synchronized 

scenario with known sight conditions, as in system model 1, to where there is no knowledge 

about the MN trajectory, AN locations in a non-stationary multipath situation. Figure 0-25

illustrates a flow chart of how proposed algorithms interacts with system models. This step-by-

step modeling provides a deep understanding of how much information each additional variable 

contributes to solution. BFIM and its derivatives’ bounds (BCRLB, NEES, PEB and confidence 

region), formulated in Chapter 3, are used as benchmarks for comparison of implemented 

suboptimal algorithms and assessment of the effect of introduced system parameters. 
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Performance bounds are also used to investigate the effect of introduced approximation in 

suboptimal solutions in terms of consistency and efficiency.

An interactive Matlab toolbox is developed to simulate OWLS and the proposed EKF-

based and PF-based solutions for an arbitrary trajectory of a single MN in a rectangular room. 

Figure 0-26 illustrates the Matlab-based user interface to simulate an OWLS scenario. Initially, 

an arbitrary MN trajectory is generated by choosing the spline points shown by yellow squares 

in Figure 0-26. The MN trajectory is depicted by blue line and the MN locations where it receives 
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Figure 0-25 Flowchart of OWLS algorithms according to system models
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new measurements and updates its position is shown by red dots. The number and the location 

of FPs (shown by a red square box) and APs (shown by a green square box) can be chosen by 

user visually over the trajectory plot. To generate both NLOS and LOS conditions along the 

simulated trajectory, a wall is simulated which can be created and moved by user, depicted 

green rectangular in Figure 0-26

Figure 0-26 User interface to simulate MN trajectory and locations of FPs and APs

In next stage, the toolbox generates measurements according to the selected system 

model and simulates EKF-based and PF-based solutions simultaneously as illustrated in Figure 

0-25. The 95% confidence regions obtained by approximated posterior PDF by tracking 

algorithm and BFIM formulation from Chapter 3 are generated; where the former is shown by 

ellipsoids with solid line (red for FP location estimate and blue for the MN location estimate), 

and the latter is shown by ellipses with dashed line. The figure also compares the true MN 

trajectory with the estimated MN trajectory, shown by black thick line with yellow dots 

representing the MN location estimates, and FP location estimates trajectory are illustrated by 

green dots. The MN localization errors can be appreciated by looking at the black lines that 

connect the true and the estimated MN positions. The final estimates of MN location and FP 

locations are shown by purple donuts where the initial estimates are shown by black stars. The 
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start point of the MN trajectory can be detected in EKF-based results as the red point which is 

centered by two blue solid ellipsoids where the larger one represents the 95% confidence region 

obtained from initial conditions. A listing of figure legend descriptions is summarized in Table 

0-2.

a)                                                                        b)

Figure 0-27 Example of EKFSLAM/FastSLAM tracking results
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Table 0-2 Figures’ legend guideline

Legend Description

Blue line The MN true trajectory

Red dots on blue line MN estimate update

Yellow square Spline points for simulating the MN trajectory

Green box AP location

Red box FP location

Green/blue rectangular Wall

Black star Initial estimate

Purple donut Final estimate

Green dot FP estimate

Yellow dots MN location estimates

Red dots Particle-conditioned FP estimates

Black dots MN location particles

Red ellipse with solid line 95% confidence region from posterior PDF for the FP 
estimates

Blue ellipse with solid line 95% confidence region from posterior PDF for the MN 
estimates

Red ellipse with dashed line 95% confidence region from BFIM for the FP estimates

Blue ellipse with dashed 
line

95% confidence region from BFIM for the MN estimates

System model 1: synchronized ANs, MN synchronized with ANs, known sight conditions

In the first case, the MN receives signal from an arbitrary number of stationary and 

synchronized ANs including both FPs and APs. The MN clock drift from ANs clock is not an 

issue since the MN is synchronized with ANs initially in calibration stage and then via a global 

reference clock such as GPS clock as the MN moves. As earlier described in Section 0 , the 

location state MN / 0, T
t t tx y�p is modeled as a first-order Markov process ruled by 

1t t t�� �p p v , where the (0, )t pN Qv � . Covariance matrix of motion process, pQ , can be 

chosen commensurate with the velocity variance of the mobile user. However, a more 
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informative motion model can be replaced from output CV or IMU sensors, whenever available. 

The current state vector of unknown variables is denoted by 
T

t t fp� �� � �q p m , where fpm is the 

stacked vector of the FP locations, defined by 
1 1, , , ,AP AP AN AN

T

N x N y N x N ym m m m
� �

� �� �� . The 

estimate of tq must be extracted from the history of measurements by the time step t ,

� �1: 1 2t tz z z z� � . � �1, 2, , , 1,...,
ANk k k N kz z z k t� �z � , denotes range measurements 

at the time step k from all ANs in line of sight with the MN. It is assumed that the ANs provides 

LOS measurements or if not, the sight condition are known to the MN and NLOS measurements 

are discarded from the measurement set. The suboptimal estimate of tq is obtained by 

evaluation of the posterior PDF, 1:( | )t tp q z , using EKFSLAM and FastSLAM.

EKFSLAM solution for case 1

Based on system model 1 outlined in Section 0, EKFSLAM for this case approximates 

the posterior PDF, 1: 1:( | ) ( , | )t t t fp tp p�q z p m z , by a joint Gaussian PDF whose the mean vector 

and the covariance matrix are given by

| | 1
| | 1 , 1

, , 1

| | 1

ˆ ˆ
ˆ ˆ ˆ( , )ˆ ˆ

t t t t
t t t t t t fp t

fp t fp t

T
t t t t t t t

�
� � �

�

�

� � � �
� �� � �� � � � � �

� � � �
# � # �

p p
q K z h p m

m m

K D K
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where | 1 | 1 , 1ˆ ˆ ˆt t t t fp t� � �� �� � �q p m and | 1t t�# are the mean and covariance matrix of apriori PDF, 

stated by

| 1 1| 1

| 1 | 1 1| 1

, 1 , 1

| 1 1| 1 ,

ˆ ˆ
ˆ ˆˆ

ˆ ˆ

t t t t

t t t t t t

fp t fp t

T
t t t t p tF Q F

� � �

� � � �

� �

� � �

� � � �
� � � �

� �� � � �
� � � �
� � � �

# � # �

p p

q b b
m m

and
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where H is the Jacobian of range measurement function, evaluated at | 1 | 1 1ˆ ˆ ˆ[ , ]Tt t t t t� � ��q p m ,

previously defined in Eq. (0-92)-(0-93). 

FastSLAM solution for case 1

The FastSLAM solution is based on the Rao-Blackwellization theorem where the joint 

posterior PDF can be factored into the MN location components and a conditional ANs location 

component as described in Eq. (0-27). It approximates the posterior PDF by set of particles 

where each particle of posterior PDF represents the history of MN locations which additionally 

contains the Gaussian parameters (i.e. the mean and covariance matrix) of FP locations 

estimates. The FastSLAM for system model 1 adopts the same procedure explained previously,

Eq. (0-27)-(0-31) where the measurement function (.,.)ih is described by the range 

measurement function stated in Eq. (0-66).

The performance of the SLAM algorithms is assessed by a simulated localization 

scenario shown in Figure 0-28. The MN, while moving within a environment of 10m by 10m , 

localizes itself and maps FPs using the range measurement obtained from all ANs in the LOS 

condition. A smooth MN trajectory � �
1

L

t t�
p is simulated within the allowed 2-D space (walls and 

the AN locations are not permitted). Sight conditions are generated by accessing the 

LOS/NLOS map, as shown in Figure 0-28 for four ANs, according to the simulated MN 

trajectory. It can be noticed that most of the area is always covered by at least 2 ANs which their 

locations are not necessary known to the MN. This makes the localization task particularly 

complicated and requires MN tracking in order to avoid large errors due to poor network 
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cooperation. Nevertheless, it will be shown that the Bayesian-based SLAM algorithms will 

provide good localization performances.
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a) AN 01 sight condition                                                          b) AN 02 sight condition

c) AN 03 sight condition                                                         d) AN 04 sight condition

Figure 0-28 Sight condition map for 4 ANs along with the MN trajectory in a 2D 10m by 
10m room: NLOS propagation area for every AN is illustrated by gray color

Measurements are simulated according to Eq. (0-66) and EKF-SLAM and FastSLAM 

algorithm are implemented for different scenarios: 4 APs, 3 FPs-1 AP, and 4 FPs to investigate 

the effect of knowledge of the AN location(s) over localization accuracy.

A single Monte Carlo simulation is carried out for the tracking example illustrated in 

Figure 0-29 based on system model 1, referred as case 1. For better visual purposes, the MN 

path has been generated smoother and shorter for only 100 points and the two sided 95% 

confidence region ellipse for the MN location estimate is plotted for every 10 time step. This 

figure compares the true trajectory (blue line with red square representing the sampled actual 
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MN location) with the estimated one (black thick line with yellow dots representing the MN 

location estimates) obtained by EKF-SLAM in left side and FastSLAM in right side. The MN 

localization errors can be appreciated by looking at the lines that connect the true and the 

estimated MN positions in Figure 0-29(a)–(e). It must be noted in all simulations the true MN 

location is inserted as initial condition of MN trajectory which can fix the origin of coordinate 

system; however, the coordinate system still has rotational DOF unless another known-located 

point fixes the coordinate system such an AP or a FP can be located with good approximation 

before the algorithm diverges. The number of ANs in NLOS conditions are plotted in Figure 0-30

for each position of the MN along the path. It can be seen that for time interval / 022,31 , half of 

ANs are blocked by the wall and FP locations estimates still have high uncertainty, leading to 

large MN localization errors. 
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Figure 0-29 Example of MN tracking and ANs mapping for system model 1
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Figure 0-30 Number of ANs (APs/FPs) in NLOS condition

The 95% confidence region for the MN location and FP locations calculated based on 

corresponding submatrixes of � � 1
1:tot tJ

�
� �� �q to their state variables. The semiaxes of the 

confidence region ellipse is g times of square roots of the Eigen values of this corresponding 

submatrix. For example, the ellipse formula for the MN location estimate is calculated as

� � � � 2ˆ ˆ( )T
t t to tt t tJ g� � �p p p p p
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MN

tot tJ �

�
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� �q is the corresponding submatrix of 

� � 1
1:tot tJ

�
� �� �q to the MN location variables. For a single run MC and 2D location variable 

1
2 (0.95) 2.447g F�
�� � , where 1

2F�
� is the inverse function of second order chi-square CDF. The 

confidence region obtained by the BFIM is also compared with the confidence region provided 

by the covariance matrix of the approximated posterior PDF from EKFSLAM or FastSLAM. For 

FastSLAM, the posterior PDF covariance matrix of the MN location estimate is approximated 

from distribution of particles, and for the AN location estimate, is approximated by spread of pN

FP estimates obtained in each EKF run. 
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For a single MC run, it can be seen that FastSLAM and EKFSLAM performance in terms 

of MN/FP location estimates are comparable for 4-FP scenario. However, the concentrated 

estimates of FP locations in red dots illustrates that FastSLAM becomes overconfident. This is 

also observed from the large difference between the confidence region obtained from BFIM and 

estimated FP covariance matrix. This is due to inability of FastSLAM to maintain particle 

diversity over long periods of time. The effect of single AN location knowledge over EKFSLAM 

and FastSLAM performance can be observed by comparing Figure 0-29 (a)-(b) to Figure 0-29

(c)-(d). Finally, in Figure 0-29 (e)-(f) where it is assumed that there is no ambiguity about FP

location, the EKF performed far superior regarding uncertainty estimation; however, in 

FastSLAM, uncertainty estimation degrades as a function of trajectory length. 

For all ANs, Figure 0-31 shows the actual MN-AN distance and the corresponding 

estimates by EKFSLAM and FastSLAM. For the NLOS area, the distance is estimated based on 

the last FP location estimate and current MN location estimate. It can be seen that however the 

MN localization error can reach to 2 meters, the ranging error remains lower than 1 meter, 

except NLOS areas of AN 03 and AN 04 where the FP is occluded while its uncertainty is 

moderate. EKFSLAM and FastSLAM have almost similar ranging accuracy; however, EKF have 

slightly better performance in NLOS areas. EKFSLAM allows FP locations’ uncertainty to be 

remembered as it saves and keeps the track of their information in terms of the covariance 

matrix. Moreover, the correlation between states in the covariance matrix allows the FP location 

estimate to be updated in its NLOS area. Whenever they reappear, this information is re-called 

and the estimate can also be highly improved due to its correlation with MN location and other 

FP estimates specially if other FP locations’ estimates have obtained good accuracy. However, 

in the FastSLAM method, whenever a FP goes out of sight, the resampling may discard most of 

the particles relating to that FP, so eventually the entire FP location history map is lost and 

cannot be recovered if the FP reappears. 
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Figure 0-31 MN-ANs actual and estimated distances for case 1

The position error bound (PEB), obtained by trace of the corresponding submatrix of the 

BFIM can be utilized to evaluate the localization result error instead of the whole BFIM which 

also includes nuisance parameters information. As an extension of Eq. (0-113) for OWLS, we 

modified this bound for both the MN location estimate and FP locations estimates, given by 
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where � � 1
1:

2 2

MN

tot tJ �

�
� �
� �q and � �

,1
1:

2 2

FP i

tot tJ �

�
� �
� �q are the 2 2� submatrixes of inverse FIM 

corresponding to the MN location and i th FP location variables, respectively. Since the true joint 

a) AN 01 b) AN 02 

c) AN 03 d) AN 04 
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probability density function is not available; to calculate the left side, the expectation is 

approximated by averaging over N=50 Monte Carlo simulation runs,

� � � �� � � � � �� �2 2 2 2

1

1ˆ ˆ ˆ ˆ
N

t t t t t t t t
n n

E x x y y x x y y
N �

� � � ! � � �#
0-140

The 50-run average position error plots for the MN location and FP locations are shown 

in Figure 0-30 for both EKF-SLAM and FastSLAM estimates. It can be seen that FastSLAM, 

unlike its overconfident uncertainty, outperforms EKFSLAM in terms of MN location error, 

except in interval [80,100] when the information from re-seen AN01 and AN02 must be restored. 

In loop closure, when the MN moves through unknown trajectory, and at some points 

encounters FPs which are not seen for a long time, maintaining the correlation between 

estimates is very essential in a SLAM algorithm. In EKFSLAM, it is maintained directly in the 

covariance matrix while in FastSLAM, it is maintained through particles diversity. Unfortunately, 

in FastSLAM, new observations cannot improve the FP location estimates observed prior to this 

point, thus their correlation to the particles degrades and corresponding particles are discarded 

eventually through resampling. Moreover, PEB plots can reveal how much new information can 

improve the localization accuracy and if it worth to use it. Comparing PEB results for 4-FP and 3 

FP- 1 AP scenarios in Figure 0-32, it can be inferred that for the given example, the knowledge 

of a single FP location improves position error MN location estimate approx. by 0.2 meters.

Figure 0-32 MN position error in meters for case 1
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Figure 0-33 shows the FP04 position error and PEB obtained from the BFIM. It is 

illustrated that in a Gaussian linear system, FP PEB will converge to zero; however, as 

FastSLAM or EKFSLAM cannot guarantee this convergence due to system nonlinearity. 

Another interesting observation from comparison between Figure 0-33 and Figure 0-32, both 

EKFSLAM and FastSLAM can achieve PEB for the MN location with good approximation but 

not for the FP location estimates. Therefore, the total Euclidian distance between true state 

vector and estimated state vector is dominated by the FP location error as shown in Figure 

0-31. It must be mentioned that effect of initial conditions is not considered in MC simulation and 

the results is averaged for 50 realizations of measurement model with constant initial condition 

for MN/FP locations.

Figure 0-33 FP04 position error in meters for case 1
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Figure 0-34 Total MN/FPs location error in meters for case 1

Another measure to characterize the SLAM performances is known by NEES q� , earlier 

outlined in Eq. (0-114). Nonlinearity nature of SLAM prevents it to find an efficient solution by 

FastSLAM or EKFSLAM. However, averaged NEES, q� , as defined in Eq. (0-115) over N runs 

can still be used to evaluate the SLAM performance for inconsistency. It is due to the fact that 

since the error sequence is correlated, a single run NEES cannot follow the chi-square 

distribution. Given N=50 runs, the consistency of both solutions are evaluated by averaged 

NEES as given in Eq. (0-114) and (0-115) for the MN location, ANs location, and the whole 

state vector. Given the hypothesis of a consistent linear-Gaussian filter, averaged NEES has a 

chi-squared density with dim( )tN q degrees of freedom

Thus, with N =50, the two sided 95% probability confidence region for the 2-dimensional 

location (for the MN or any FP), is bounded by the interval [1.48,2.59], for the 2 2 fpN� -

dimensional state vector is bound by the interval [6.93,9.15]. If q� rises significantly higher than 

the upper bound, the filter is optimistic, if it tends below the lower bound, the filter is 

conservative. As shown in Figure 0-35 and Figure 0-36, there is a discernible difference 

between EKFSLAM and FastSLAM in terms of NEES. The measure of performance obtained by 
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EKFSLAM for MN location and FP locations, corresponding marginal posterior PDF covariance 

matrix, is far superior since the calculated NEES stays within consistency bounds and close to 

the dimensionality of state space (2, here for the FP location or MN location). NEES statistics 

indicated that FastSLAM underestimates the covariance matrix due to loss of particles diversity. 

However, EKFSLAM performance is consistent in state space of MN location and FP location 

separately; it underestimates the posterior covariance matrix for overall state space as shown in 

Figure 0-37.

Figure 0-35 MN location averaged NEES from EKFSLAM and FastSLAM for case 1

Figure 0-36 FP04 location NEES from EKFSLAM and FastSLAM for case 1
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Figure 0-37 Total state NEES from EKFSLAM and FastSLAM for case 1

System model 2: synchronized ANs, MN not synchronized with ANs, known sight 
conditions

The previous case modeled an idealistic SLAM problem where the MN-ANs links are 

synchronized. In practical situation, the MN clock is subject to drift, leading to bias error in TOA 

or range measurements. As earlier explained in chapter 03, the random effect of MN clock drift 

is modeled as a random walk process which can be estimated to mitigate its effect on the MN 

location estimate and FP mapping. The effect of new augmented nuisance variable is 

investigated and the result is compared with the case where it is ignored. 

EKFSLAM solution for case 2

For the expanded state vector, [ ]
t

T
t t fp�q p b m , the Gaussian posterior PDF is 

approximated by
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where | 1ˆ t t�p and , | 1pp t t�# are the mean and covariance matrix of apriori PDF, stated by
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H is the Jacobian matrix of range measurement function, evaluated at 

| 1 | 1 | 1 , 1
ˆˆ ˆ ˆ[ ]

t t

T
t t t t fp t� � � ��q p b m , where the elements are defined in Eq. (0-100) and (0-101).

FastSLAM solution for case 2

Since the range offset is common between all ANs measurement, the joint posterior PDF 

is factorized based on Rao-Blackwellizied theorem for case 2 as follows

1: 1: 1: 1: 1: 1: , 1: 1: 1:
1

( , , | ) ( , | ) ( | , , )
FPN

t t fp t t t t fp i t t t
i

p b p b p b
�

� �p m z p z m p z
0-143

The trajectory of MN locations and range offsets is represented by weightening samples 

and the map is computed analytically using the EKF algorithm. The m th

t

particle of the posterior 

PDF, at time step , represents not only the history of MN locations but also the history on 

range offsets.

The apriori PDF is approximated by pN independent and identically distributed (i.i.d) 

samples (particles) , 

� � � �[ ] [ ]
1: 1: 1: 1 1: 1: 1: 1:

1

1( , | )
pN

m m
t t t t t t t

mp

p b b b
N

� ��
�

! � �#p z p p
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which is drawn from proposal distribution, 
[ ] [ ] [ ]

1 1( , | , , )m m m
t t t t fpp b b� �p p m . Then similar to previous 

case, for each particle, an EKF update is performed over the observed ANs as a simple 

mapping operation under the known MN location and range offset assumption.

For the same trajectory used for case 1, the proposed EKFSLAM and FastSLAM 

solution are applied for a single Monte Carlo simulation run of system model 1. The initial 

conditions, measurement noise, and process noise parameters have kept the same as the ones 

used in case 01 for comparison purposes, except the measurement with range offset model 

according to Eq. (0-67) is used for generating range measurement data. 

Figure 0-38 (a)-(d) compare the EKFSLAM and FastSLAM performance in a single run 

MC for 4 FPs and 3 FPs-1 AP scenarios where the range offset is tracked along with other 

location parameters, and Figure 0-38 (e)-(f) illustrates their performance where the range offset 

effect is not ignored. For the 4 FPs scenario, the FastSLAM shows a slightly better performance 

than the EKFSLAM, as shown in Figure 0-38 (a)-(b), while their performance is comparable in 

the 3 FPs- 1 AP scenario, as shown in Figure 0-38(c)-(d). Since the FastSLAM tracks its 

solutions in a wide area of room through particles, it shows higher robustness to ambiguous and 

uncertain situation in comparison to the EKFSLAM such as 4 FPs case when there is no 

knowledge about source locations. The effect of range offset is observed in Figure 0-38(e)-(f), 

where MN localization error is increased to more than 1 meter for most of the MN trajectory 

while it is less than 1 meter in average when the range offset is modeled, as illustrated Figure 

0-38(a)-(b). The range offset estimates along trajectory for both EKFSLAM and FastSLAM are 

shown in Figure 0-37.
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Figure 0-38 Example of MN tracking and ANs mapping for system model 2
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Figure 0-39 Bias tracking for case 2

For case model 2, Figure 0-40 shows the actual MN-ANs distances and the 

corresponding estimates obtained by EKFSLAM and FastSLAM. For the NLOS area, the 

ranging information is blocked with a grey rectangular. It is shown range estimation is exact 

(with error less than 0.5 meter) for all methods even when bias effect is ignored, while the MN 

localization error reaches to 2 meters. 

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time Step

B
ia

s(
m

et
er

s)
EKFSLAM, 4FP case 02

Actual Bias
Estimate Bias

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time Step

B
ia

s(
m

et
er

s)

FASTSLAM, 4FP case 02

Actual Bias
Estimate Bias

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time Step

B
ia

s(
m

et
er

s)

EKFSLAM, 3FP1AP case 02

Actual Bias
Estimate Bias

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time Step

B
ia

s(
m

et
er

s)

FASTSLAM, 3FP1AP case 02

Actual Bias
Estimate Bias

a) b) 

c) d) 



119/154

Figure 0-40 MN-ANs actual and estimated distances for case 2

The 50-run average position errors for the MN location, FP 04 location and total state is 

shown in Figure 0-41, Figure 0-42, Figure 0-43, for both EKF-SLAM and FastSLAM estimates. 

Unlike the expectation from single MC run results, MN position error obtained by FastSLAM is 

higher than position error obtained by EKFSLAM. This is because FastSLAM performance is not 

consistent, as also observed in case 1, due to particle diversity loss. FastSLAM particles does 

not represent a momentary MN location and/or range offset; they represent the entire MN 

trajectory and range offset history. The dimension of state space increases with time while the 

number of particles representing this large state-space dimension become insufficient. This is 

observed as the degradation of FastSLAM performance in the case 2 in comparison with its 

performance in the case 1 where it outperformed EKFSLAM in term of MN location error 

a) AN01 b) AN02 

c) AN03 d) AN04 
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(excluding loop closure areas). The results comply with consistency test obtained by NEES test 

shown in Figure 0-44, Figure 0-45, and Figure 0-46.

Figure 0-41 MN position error in meters for case 2

Figure 0-42 FP04 position error in meters for case 2
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Figure 0-43 Total state error in meters for case 2

Figure 0-44 MN location averaged NEES from EKFSLAM and FastSLAM for case 02
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Figure 0-45 FP04 location NEES from EKFSLAM and FastSLAM for case 02

Figure 0-46 Total state NEES from EKFSLAM and FastSLAM

System model 3: unsynchronized ANs, MN not synchronized with ANs, known sight 
condition

In the third case, the system model is extended to when the MN free running clock is not 

synchronized with ANs, and ANs are not time synchronized with each other. To model the range 

measurement data, a single bias for each MN-AN link can model both MN and ANs clock drifts. 

As earlier described in Section 0, the MN location state tp is modeled as a first-order Markov 

process ruled by 1t t t�� �p p v , where the (0, )t pN Qv � . Based on smooth trajectory 

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Time Step

NE
ES

Single FP NEES (FP04), 4FP case 02

95% upper bound
95% lower bound
EKFSLAM, 4FP
FASTSLAM, 4FP

0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

20

Time Step

N
E

E
S

Total NEES, 4FP case 02

95% upper bound
95% lower bound
EKFSLAM, 4FP
FASTSLAM, 4FP



123/154

assumption, the range offset vector, 1, ,AN

T

t t N tb b� �� � �b � can also be modeled as ANN

independent first-order Markov processes, given by 1 ,t t b t�� �b b v , where , (0, )b t bN Qv � and

� �2 2
1, ,ANb b N bQ diag � �� � . The range offset evolves independently from MN location states. 

The current state vector of unknown variables is denoted by 
T

t t t fp� �� � �q p b m , where fpm

is the stacked vector of the FP locations, defined by 
1 1, , , ,AP AP AN AN

T

N x N y N x N ym m m m
� �

� �� �� .

Modified version of EKF-SLAM and FastSLAM as suboptimal solutions for this system model 

are proposed based on reasonable assumptions that allow the evaluation of posterior PDF with 

efficient computation. 

EKF-SLAM solution for case 3

For the defined state vector, [ ]
t

T
t t fp�q p b m , the EKFSLAM approximates the 

posterior PDF by multivariate Gaussian PDF where it means and covariance are given by 
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where | 1 | 1 | 1 , 1
ˆˆ ˆ ˆt t t t t t fp t� � � �

� �� � �q p b m and | 1t t�# are the mean and covariance matrix of apriori 

PDF, stated by

| 1 1| 1

| 1 | 1 1| 1
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and
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H is the Jacobian of range measurement function, evaluated at 
| 1 | 1 | 1 , 1

ˆˆ ˆ ˆ[ ]
t t

T
t t t t fp t� � � ��q p b m ,

previously defined in Eq. (0-103) and (0-104). 

FastSLAM solution for case 3 

The traditional FastSLAM method is based RB factorization where the EKFs used for 

FPs location is only conditioned on MN trajectory which is represented by particles. The 

simulation results from case 02 showed that FastSLAM performance is very sensitive to the 

dimension of state space which is represented by particles. The FastSLAM degradation due to 

loss of particle diversity is observed for case 3 where the particle space’s dimension is 

increased to ANN t� + 2 t� where is the dimension of range offset sequence 1:tb and 2 t� is

the dimension MN trajectory 1:tp . In this regard, we have modified the assumption of FastSLAM 

in such a way that the particle dimension can stays the same as original version (as in case 1), 

2 t� , but the conditioned EKF part of FastSLAM is modified to jointly estimates the low 

dimension FP location and its range offset recursively. Therefore, The Rao-Blackwellization 

factorization for joint posterior PDF is modified as

1

1: 1: 1: 1: 1: , ,1: 1: 1:( , , | ) ( | ) ( , | , )
AN

AP

N

t t fp t t t fp i i t t t
i N

p p p b
��

� �p b m z p z m p z
0-148

The m th tparticle of posterior PDF, at time , represents the history of MN locations 

denoted as [ ]
1:
m
tp , which additionally contains the Gaussian parameters (the mean and 
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covariance matrix) of � �[ ] [ ] [ ] [ ]
1, 1, , ,,...,

FP FP

m m m m
t t N t N t- -. . of jointly FPs location and its range offset

� �1:,i i
k tw p .

First, the FastSLAM extend the MN trajectory by drawing new sample according to the 

motion statistics as 

[ ] [ ]
1( | )m m

t t tp �p p p�
0-149

Next, for each particle, an EKF is implemented to update FP estimates and range 

offsets. The output of this stage is � �[ ] [ ]
, ,,m m
i t i t- . , defined by

[ ] [ ] [ ] [ ] [ ]
, , | 1 , 1

[ ] [ ] [ ] [ ] [ ],
, , | 1

( ( , ))m m m m m
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where, for observed FPs, 1,...,AP ANi N N�� ,
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for observed APs, 1,..., APi N�
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and
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| 1 ,
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| 1
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m m m T m
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D H H
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Next, the samples weights [ ]m
tw are calculated according to importance function which is 

based on the conditional probability of � �[ ]| m
t tp z p . Finally, resampling is accomplished with 

replacement from the set � �[ ]
0: 1

pNm
t m�

p , including their associated AN locations’ and range offsets’ 

estimates considering each particle has probability proportional to [ ]m
tw .
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For the same trajectory used for case 1 and 2, the proposed EKFSLAM and FastSLAM 

solutions are applied for a single Monte Carlo simulation run of system model 03. The initial 

conditions, measurement noise, and process noise are similar to case 01 for comparison 

purposes, except the measurement data is generated based on the system model 3.

Figure 0-45 (a)-(d) compare the EKFSLAM and FastSLAM performance for a single run 

MC for 4 FPs, and 3 FPs-1 AP scenarios where the range offsets are tracked along with other 

location parameters; whereas Figure 0-47 (e)-(f) illustrates their performance where the range 

offset effect is ignored. For 4 FPs scenario, modified FastSLAM and EKFSLAM shows a similar 

performance, as shown in Figure 0-47 (a)-(b), while the EKFSLAM have slightly better 

performance for 3 FPs- 1AP , as shown in Figure 0-47 (c)-(d). The effect of range offset is 

observed in Figure 0-47 (e)-(f); MN localization error increases to 4 meters, EKFSLAM and 

modified FastSLAM which model and track range offsets provide less than 1 meter localization 

error. The range offset estimates within trajectory for both EKFSLAM and FastSLAM is shown in 

Figure 0-48.
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Figure 0-47 Example of MN tracking and ANs mapping for system model 3
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Figure 0-48 Bias tracking for case 3

For case 3, Figure 0-49 shows the actual MN-ANs distances and the corresponding 

estimates obtained by EKFSLAM and FastSLAM. It is shown range estimation is exact (with 

error less than 0.5 meter) for all methods even when range offset is ignored. Both EKFSLAM 

and FastSLAM have comparable performance in ranging accuracy. 

The 50-run average position error results for the MN location, FP 04 location and total 

state vectors are shown in Figure 0-50, Figure 0-51, and Figure 0-52, for both EKF-SLAM and 

FastSLAM estimates. MN position errors obtained by both the FastSLAM and EKFSLAM are 

comparable and approximately near the optimal PEB bound obtained by BFIM, except loop 

closure area where the FastSLAM fails. In terms of FP position error, the EKFSLAM not only 

outperforms FastSLAM but also can reach the PEB. NEES results obtained for the modified 
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FastSLAM and EKFSLAM shown in Figure 0-53,Figure 0-54,Figure 0-55 evaluates the 

consistency of both methods.

Figure 0-49 MN-ANs actual and estimated distances for case 3

The FastSLAM performance is not consistent because of the same reasons already 

explained for case 1 and 2. On the other hand, EKFSLAM consistency is degraded due to 

expansion of state space in comparison with previous cases, where the multivariate Gaussian 

PDF will no longer can represent joint MN location, FP location and AN range offsets state 

space. The uncertainty obtained from EKFSLAM is underestimated since the NEES is near the 

lower bound for FP 04 location and completely under lower bound for overall state space. 

a) AN01 b) AN02

c) AN03 d) AN04 
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Figure 0-50 MN position error in meters for case 3

Figure 0-51 FP04 position error in meters for case 3

Figure 0-52 Total state error in meters for case 3
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Figure 0-53 MN location NEES from EKFSLAM and modified FastSLAM for case 3

Figure 0-54 FP04 NEES from EKFSLAM and modified FastSLAM for case 3

Figure 0-55 Total state NEES from EKFSLAM and modified FastSLAM for case 3
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System model 4: unsynchronized ANs, MN not synchronized with ANs, unknown sight 
conditions

In the system model 4, it is assumed that the MN receives signal of opportunity from 

unsynchronized network in a non-stationary mixed LOS/NLOS propagation. The statistic of the 

observables tz changes over the time due to random variation of clock drift and the AN sight 

conditions. In such a scenario, optimal tracking algorithm requires the definition of additional 

dynamic models that describe the evolution of range bias as well as ANs sight state. This leads 

to a composite dynamic model where the state is composed of the joint MN position, AN 

location , range bias and sight state variables / 0Tt t t t�q p b s m where 

1, 2, ,AN

T

t t t N ts s s� �� � �s � is the vector of ANs’ sight states at time step t .

This composite localization system is described by a nonlinear jump Markov system 

where the state and/or the measurement model depend on a driving Markov chain. Following 

our assumptions, in the particular case herein considered, only the range measurement model 

tz depends on the jumping feature ts . In fact, the PDF of measurement tz is driven by a the 

discrete process ts , while the state tp is assumed to be independent of ts . Once the JMS is 

defined, the evolution of joint state tq can be tracked by a Bayesian filter. 

As outlined in Section 0 for the system model 4, the MN location tp is modeled as a 

first-order Markov process ruled by 1t t t�� �p p v , where (0, )t pN Qv � . Based on the smooth 

trajectory assumption, the range offset vector, 1, ,AN

T

t t N tb b� �� � �b � is described by ANN

independent first-order Markov processes, given by 1 ,t t b t�� �b b v , where , (0, )b t bN Qv � and

� �2 2
1, ,ANb b N bQ diag � �� � . The range offset evolves independently from MN location states. 
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In the same manner, each AN sight state variable ,i ts is modeled as a binary Markov chain. The 

Markov chain process is described by a 2 2� transition probability matrix D which is 

completely defined by the transition probabilities , , 1 0( 0 | 0)i t i tP s s p�� � � and

, , 1 1( 1| 1)i t i tP s s p�� � � . Under the independence assumption between the MN–AN links, the 

whole sight state vector ts is determined by a first-order Markov chain with transition 

probabilities 1 , , 1
1

( | ) ( | )
ANN

t t i t i i t i
i

P P s c s d� �
�

� � � � ��s c s d for 1 ANNc c� �� � �c � ,

1 ANNd d� �� � �d � where � �, 0,1i id c B .

The overall state vector of unknown variables is denoted by 
T

t t t t fp� �� � �q p b s m ,

where fpm is the stacked vector of the FP locations, defined by 

1 1, , , ,AP AP AN AN

T

N x N y N x N ym m m m
� �

� �� �� . The transition PDF from previous state 

/ 01 1 1 1
T

t t t t� � � ��q p b s m to the next one / 0Tt t t t�q p b s m is given by 

1 1 1 1( | ) ( | ) ( | ) ( | )t t t t t t t tp p p p� � � ��q q p p b b s s under the assumption that MN trajectory evolves 

independently from both clock drift and ANs’ sight state processes. The JMS state tq is hidden 

into the ANN -link observation vector tz composed by the conditionally independent 

measurements ,
1

( | ) ( | )
ANN

t t i t t
i

p p z
�

��z q q where each ,( | )i t tp z q has to be evaluated according 

to the observation model defined in Eq. (0-70) and (0-71)

An optimal estimate of tq can be extracted from the whole set of available measurement 

by time t , � �1: 1 2t tz z z z� � where � �1, 2, ,ANk k k N kz z z�z � denotes range 

measurements at time step k from all ANs in NLOS or LOS with the MN, where the AN sight 
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conditions are unknown to the MN. The estimate is obtained by evaluating the a posterior pdf 

1:( | )t tp q z which can be expressed as a

1: 1: 1: 1: 1:
1

( , | ) ( , | , ) ( | )
Nst

l l
t fp t t fp t t t t

l
p p p

�

�#p m z p m s z s z
0-154

where 1: 1:( | )l
t tp s z is the probability of a particular sight state sequence, 1:

l
ts , given the 

measurement. 2 ANN
sN � is the total number of all possible ANs sight state combinations at each 

time step. Each possible ANs sight state combination is also referred as sight mode. As earlier 

discussed, the optimal solution for 1:( , | )t fp tp p m z cannot be found analytically in a closed form 

due to nonlinear feature of measurements. Moreover, the number of mixture components in the 

PDF sum of Eq. (0-153) grows exponentially with time. Hence, a practical solution has to be 

suboptimal. Following, two solutions for this jump Markov SLAM problem based on EKF and PF 

are proposed. 

IMM-EKFSLAM

A practical implementation of JMS solution is to limit the growth of number of mixture 

components by merging of the sight state mixture components. This type of algorithm is 

generally known as interactive multiple model (IMM) estimator. The proposed IMM-EKFSLAM 

algorithm employs the EKF to linearize the nonlinear system and filter every mode and then 

uses the nonlinear IMM algorithm to fuse the estimated state of the filtering for each mode, and 

finally to get an overall estimated state. We define the state vector for each sight mode as 

/ 0,
T

s t t t�q p b m . Before filtering for each sight mode, the IMM obtains a hybrid prior 

estimate by mixing of modes where the mean and covariance of Gaussian posterior PDF at time 

step 1t � for sight mode j are defined by
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( ) ( , ) ( )
, 1| 1 1| 1 , 1| 1

1

( ) ( , ) ( ) ( ) ( ) ( ) ( )
, 1| 1 1| 1 , 1| 1 , 1| 1 , 1| 1 , 1| 1 , 1| 1

1

ˆ̂ ˆ

ˆ ˆ ˆ ˆ ˆ( )( )

s

s

N
j i j i
s t t t t s t t

i
N

j i j i i j i j T
s t t t t s t t s t t s t t s t t s t t

i

-

-

� � � � � �
�

� � � � � � � � � � � � � �
�

�

� �. � . � � �� �

#

#

q q

q q q q
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It is easier to address sight modes by an integer number instead of a binary vector. In this 

regard, we define � �1,...,t sr NB as an integer index for the binary vector of ANs’ sight state ts .

With this definition, the weights ( , )
1| 1
i j
t t- � � as the mixing probabilities are given by

( )
, 1( , )

1| 1 1 1 1:
( )

, 1
1

( | , )
s

j
i j ti j

t t t t t N
i

i j t
i

p r i r j
-

-
-

�
� � � �

�
�

D
� � �

D#
z�
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where 1 ... ANND � D : :D and ( )
1
j
t- � is the j -th mode probability which obtained after filtering at 

previous time step. The next phase is extended Kalman filtering based on each sight mode, 

where the prediction and update stages are stated as

Filter predict stage:

( )
1| 1| 1

( )
| 1 | 1 1| 1

, 1
, 1

( ) ( )
| 1 1| 1

ˆ̂ˆ
ˆˆ ˆˆ

ˆ ˆ̂

ˆ

i
t tt t

i
t t t t t t

fp t
fp t

i i T
t t t t F QF

� ��

� � � �

�
�

� � �

� �� � � �� � � �� �� � � �� � � �� � � �

# � # �

pp

q b b
m m

Filter update stage:

( ) ( ) ( ) ( ) ( )
| 1

1( ) ( ) ( ) ( )
| 1

( ) ( )
| | 1

( ) ( ) ( )
, | , | 1| | 1

, , 1

( ) ( ) ( ) ( )
| | 1

( )

( )

ˆ ˆ
ˆ ˆˆ ˆ( ( )
ˆ ˆ

(

i i i i T i
t t t t

i i i T i
t t t t

i i
t t t t

i i i
s t t t t s t tt t t t

fp t fp t

i i i i
t t t t t t

H H R

H

h

�

�

�

�

� ��

�

�

� # �

� �� # � �

� � � �
� � � �

� �� � �� � � � � �
� � � �
� � � �

# � # �

D

K D

p p

q K z qb b
m m

K D K ( ) )i T
t
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Finally, the output of IMM-EKFSLAM filter is calculated as the mean and the covariance 

of the Gaussian mixture of a mode-based posterior PDF as follows
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( )
, | , |

1

( ) ( )
| | , | , | , | , |

1

ˆ ˆ

ˆ ˆ ˆ ˆ( )( )

s

s

N
i i

s t t t s t t
i
N

i i i i T
t t t t t s t t s t t s t t s t t

i

-

-

�

�

�

� �# � # � � �� �

#

#

q q

q q q q
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where the mode probabilities are calculate using the Bayes rule as

( )
, 1

( ) 1

( )
, 1

1 1

s

s s

N
j i
t i j t

j i
t N N

j i
t i j t

j i

-
-

-

�
�

�
� �

E D

E D

#

# #
�
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where ( ) ( )
1: , | 1ˆ( | , ) (( ( ), )i i i

t t t t t s t t tp r i N h �E � � �z z z q D� . Moreover, the sight mode is estimated by

� �( )ˆ arg max , 1,...,i
t t s

i
r i N-� � 0-160

IMM-FASTSLAM

The IMM-FastSLAM is proposed as an extension of jump Markov PF (also known as 

MM-PF) for SLAM problem with switching dynamic models. However, the RB factorization for 

posterior PDF is modified by

1

0: 0: 0: 1: 0: 0: 1: , ,0: 0: 0: 1:( , , , | ) ( , | ) ( , | , , )
AN

AP

N

t t t fp t t t t fp i i t t t t
i N

p p p b
��

� �p s b m z p s z m p s z
0-161

In first stage, the algorithm generates a random set � �[ ]

1

PNm
t m
s

�
based on � �[ ]

1 1

PNm
t m
s � �

and the 

state mode transitional probability matrix D . Next, IMM-Fast SLAM performs a PF filtering 

conditioned by mode particles. For each particle, the EKF is applied to update the estimation of 

range offsets and FP locations. Finally, particle weights are updated based on EKF estimates 

and the resampling is done as before. The state vector can be calculated through the weighted 

means:
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where the FPs location estimates [ ]
,ˆ m
i tm and range offset estimate [ ]

,
ˆ m
i tb is obtained from the 

mean of the EKF solution for m th

A similar MN trajectory and ANs map used for the previous case is considered for 

evaluating the proposed methods for case 4. The initial conditions, measurements and transition 

model parameters are kept the same as before except the measurement data is generated 

according to Eq. (

particle.

0-70) and (0-71) where 

,
,

,

(0,0.2) 0
(0,2) 1

i t
i t

i t

N if s
w

N if s
�56

7 �68
�

0-163

Figure 0-56(a)-(b) compare the EKFSLAM and modified FastSLAM performance for a 

single run MC for 4 FPs scenario when the ANs sight mode is detected by local maximum 

likelihood (LML) criteria 

1: 1

1 1

ˆ arg max ( | , )arg max

1 ˆ ˆ2 ex p( ) ( )
2

i
t t t t t

i

i i T i i
t t t t t t

r p r i

�

�

� �

� E � �

5 ;� �� � �7 <� �8 =

z z

D z z D z z
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where ˆ itz is range estimate obtained based on i -th sight mode. Then MN location and FP 

locations estimates are chosen based on the detected sight mode. For the same measurement 

data set, the proposed IMM-EKFSLAM and IMM-FastSLAM are implemented. It can be 

observed that localization accuracy is improved for both in comparison with LML-EKFSLAM and 

LML-FastSLAM. In particular, the confidence region obtained by IMM-EKFSLAM reaches the 

confidence region obtained by BFIM. 
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Figure 0-56 Example of MN tracking and ANs mapping for system model 4
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Figure 0-54 (e)-(f) illustrates the performance of EKFSLAM and FastSLAM (as explained 

in case 1) where the range offset effect is not ignored and the MN has no knowledge about ANs 

sight conditions. It can be seen that for the area that ANs are shadowed by the wall, bias delay 

effect leads to large MN localization error. For this MC simulation, PF-based methods (IMM-

FastSLAM and LML-FastSLAM) have better performance in terms of MN localization accuracy; 

however, EKFSLAM outperforms in terms of FP locations and their uncertainty estimation. 

Actual ANs sight state and their estimates from LML-EKFSLAM, LML-FastSLAM, IMM-

EKFSLAM, and IMM-FastSLAM are depicted in Figure 0-57, Figure 0-58,Figure 0-59, andFigure 

0-60. It is shown that IMM-based methods outperform LML-based methods since they can take 

advantage of Markovian process between sight states to incorporate the information from 

previous measurements. 

Figure 0-57 Sight state tracking according to LML-EKFSLAM
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Figure 0-58 Sight state tracking according to LML-FastSLAM

Figure 0-59 Sight state tracking according to IMM-EKFSLAM
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Figure 0-60 Sight state tracking according to IMM-FastSLAM

Figure 0-61 MN position error in meters for case 4
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Figure 0-62 FP04 position error in meters for case 4

Figure 0-63 Total state vector error in meters for case 4
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all proposed methods varies very close to this optimistic PEB. Unlike expectation from the single 

MC simulation results, EKF-based methods have better performance than PF-based methods. 

Specially, in terms of FP location error and overall state error, EKF-based methods are far 

superior to IMM-FastSLAM and LML FastSLAM.

Figure 0-64,Figure 0-65 andFigure 0-66 illustrate averaged NEES test results obtained 

for all four proposed methods to evaluate the consistency of solutions. MN location estimates 

are consistent more than 60% of trajectory in PF-based methods. However, EKF –based 

methods have overestimated the uncertainty while they have shown better performance in 

terms of position error. In contrast, PF-based methods are, as explained earlier, underestimates 

the FP locations uncertainty that has a dominant effect on overall estate uncertainty. 

Figure 0-64 MN location NEES for case 4
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Figure 0-65 FP04 location NEES for case 4

Figure 0-66 Total state vector NEES for case 4
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Discussion of results

In this chapter, novel Bayesian approaches based on PF and EKF has been 

successfully implemented and analysed for OWLS according to four system models defined in 

Chapter 3. Range measurements were used by the Bayesian localization framework to jointly 

estimate the MN location, stationary FP locations, range bias and ANs sight conditions. The 

simulation results of each proposed methods were evaluated based on localization error on a 

single MC run , PEB obtained from the BFIM, and averaged NEES test for filter consistency and 

accuracy.

In the first case model, EKFSLAM and FastSLAM were applied to jointly estimate the 

MN locations and FP locations. EKFSLAM showed comparable localization performances to 

FastSLAM method in terms of MN/FP position error; however FastSLAM performance were not 

consistent since it underestimates the FP locations uncertainty. 

In the second model, FastSLAM and EKFSLAM were extended to jointly track the MN 

and FPs location variables as well as single range offset. For the same number of particles as 

previous case, FastSLAM performance degraded in terms of consistency due to loss of particle 

diversity. However, both FastSLAM and EKFSLAM performances outperformed in comparison 

with the first case solution when the range offset is ignored. 

In the third model, EKFSLAM and FastSLAM were generalized to jointly track location 

variables and range offsets from ANs. To limit the dimension of state space which particles 

represent, the range offsets were tracked jointly with FP location in the filtering stage. Unlike 

previous methods, EKFSLAM consistency degraded where it overestimated the FP locations 

and overall state uncertainty, however, its performance was still superior to modified FastSLAM.

Finally, the last system model were considered where the MN receives measurements 

from unknown sources in a non-stationary LOS/NLOS environment. The system model was 

defined by JMNLS where sight conditions were modeled by a binary state. EKFSLAM and 

FastSLAM were modified based on two sight state process assumptions. In first assumption, it
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was considered that sight state process evolves based on Markov chain; in this case, two novel 

Bayesian approaches using IMM estimator were proposed: IMM-EKFSLAM and IMM-

FastSLAM. In second assumption, sight states at each time step are independent where

EKFSLAM and FastSLAM were modified to detect the sight state using LML criteria, called 

LML-EKFSLAM, LML-FastSLAM. All four algorithms showed better performance in non-

stationary mixed NLOS/LOS propagation in an opportunistic unsynchronized reception in 

comparison with original FastSLAM and EKFSLAM. In terms of consistency and position error, 

proposed EKF-based methods outperforms PF-based methods. However, the LML-EKFSLAM 

provided better localization error in terms of FP locations and MN position error; while IMM-

EKFSLAM and IMM-FastSLAM had better performance in terms of sight state tracking.
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