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Abstract 
 
 

Since instances of criticality are ubiquitous in nature, the intensity of conflicts has been 
interpreted in terms of self-organized criticality. In this report, interest focused on the 
statistical properties of series of events in warfare; by investigating the fractal nature of these 
time series, it is possible in principle to characterize the underlying event-generating process.  

We applied three methods to explore the scale-invariant behaviour of the time series. With the 
first two, we examined the tail of each count distribution for evidence of fractal scaling.  First, 
we estimated the density of the logarithm of the counts, and estimated the slope of the graph 
of the log-counts versus the log-density; second, we fit a truncated power law distribution to 
the upper-tail cumulative distribution function of the count data using weighted non-linear 
least squares. Using the third method, we estimated the intermittency (a measure of the 
propensity of the time series to suddenly increase above typical values) of each time series. In 
all cases, we applied a bootstrap approach to correct bias and provide levels of confidence. 
We found that estimates of the scaling exponents of the count distributions were all close to 
minus one (-1), suggesting that these distributions have wide tails (possibly up to some upper 
cut-off). For 13 out of 15 data sets, the probability that the scaling exponent is compatible 
with that of a discrete stable process is 75% or more. In terms of intermittency, the results 
suggest that the time series are fairly intermittent (values between 0.06 and 0.16 on a scale 
from zero (0) to one (1); attempted bias correction widened the range to between zero (0.00) 
and 0.27.). However, reliable confidence intervals of intermittency could not be obtained 
using currently available statistical methods. 
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Executive summary 
 

 

Introduction 

Since instances of criticality are ubiquitous in nature, the intensity of conflicts has been 
interpreted in terms of self-organized criticality. In this report, interest focused on the 
statistical properties of series of events in warfare; by investigating the fractal nature of these 
time series, it is possible in principle to characterize the underlying event-generating process.  

 

Results 

We found that estimates of the scaling exponents of the count distributions were close to -1 
for all event data sets provided by the DRDC. For 13 out of 15 data sets, the probability that 
the scaling exponent is compatible with that of a discrete stable process is 75% or more. In 
terms of intermittency, the results suggest that the time series are fairly intermittent, taking 
values between 0.06 and 0.16 on a scale from 0 to 1; bias correction widened the range to 
between 0.00 and 0.27. 

 

Conclusions 

The time series show significant evidence of scale-invariant behaviour. The estimates of the 
scaling exponent of the count distribution and the intermittency indicate that these time series 
may be expected to show sudden, sharp increases above typical values. Thus, statistical 
methods that account for intermittency are expected to perform better in terms of predictive 
power than conventional methods of data analysis. 
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1. Introduction 
 

1.1. Background 
Self-organized criticality is thought to be a mechanism by which natural systems may develop 
scale-invariant behaviour. The phrase self-organized refers to the idea that the emergence of 
scale-invariance in such systems is robust to a wide range of conditions. In particular, the 
intensity of conflicts has been interpreted in terms of self-organized criticality (Roberts and 
Turcotte 1998). 

In this report, interest focused on the statistical properties of series of events in warfare. The 
occurrence of events can be modeled as a stochastic point process. Such processes may 
display fractal (i.e., scale-invariant) behaviour in a variety of statistical quantities over a range 
of time scales. The series of events in warfare are modeled as realizations of fractal-based 
stochastic point processes (Lowen and Teich 2005). By investigating the fractal nature of the 
process, it is possible to characterize the underlying event-generating process under the model 
assumptions. 

 

1.2. Aim 
The stochastic nature of the data is such that a deeper analysis of the deviation from expected 
values is required in order to determine the validity of the conclusions made from the data. In 
addition, the deviation from normalcy (intermittency) of the data needs to be determined due 
to its relationship with the nature of the underlying assessed system, the counterinsurgency 
campaign in Afghanistan. 

 

1.3. Objectives 
The objectives of the study were as follows: 

• Assess the nature of the data, in particular determine if the data 
exhibits fractal behaviour or is random (i.e. corresponding to a Poisson 
process). 

• Calculate intermittency of the data and provide implications of the 
findings for the statistical nature of the provided data.  

Provide the results of the analysis in the form of a technical report including raw data and 
details of the methodology.      
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2. Methodology 
 

 
For each locale, the start of the time series was treated as the day before the earliest event in 
the all of the time series at that locale. These start dates are 2002-04-06, 2003-08-11, and 
2003-03-22, for the DATA, HELDATA, and KANDATA times series, respectively. To 
achieve a timescale appropriate for estimating the scaling exponent of the distribution tails, 
the counting time was increased from 1 day to 10 days, that is, the original daily count data 
were aggregated by taking blocks of 10 days and summing all counts within each block. Plots 
of the data may be found in Section 2.1. 

Three approaches were used to examine the fractal nature of the data. The first two methods 
estimate scaling in the tails of the count distributions, whereas the third method estimates the 
degree to which the underlying process is intermittent. First, an approach that combined log-
log plotting of the count probability density with a non-parametric kernel density estimator 
was used to investigate scale-invariant behaviour in the count probability densities (Section 
2.2). Second, the upper-tail cumulative probability distributions of the counts were fit to a 
truncated power law (Section 2.3). Third, the process intermittency was estimated (Section 
2.4). A bootstrap approach was used to correct estimator bias and quantify confidence in the 
inferences. 

2.1. Time series 

Here we present plots of the time series (Figures 1 to 3). Visual inspection of the data served 
to ensure that no errors have occurred while importing the data into the R environment. The 
visual inspection also revealed that the time series all show a substantial trend with time, 
whereas the homogeneous Poisson would make such trends extremely unlikely.  

In subsequent sections containing the analyses of count probability densities and distributions, 
we include the maximum-likelihood Poisson fits for comparison; in all cases the Poisson fits 
are inadequate. Table 1 gives the estimated parameter values, which correspond to the 
expected number of counts in 10 days under the Poisson model.  
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Table 1. Maximum-likelihood parameter estimates for the Poisson distribution  

Data set name Estimated mean number of events per 10 days 

DATA_allevents 286.4 
DATA_attevents 119.2 
DATA_devents 92.6 
DATA_idevents 21.9 
DATA_isevents 19.3 

HELDATA_allevents 63.7 
HELDATA_attevents 36.2 
HELDATA_devents 32.4 
HELDATA_idevents 5.0 
HELDATA_isevents 3.7 
KANDATA_allevents 42.5 
KANDATA_attevents 17.6 
KANDATA_devents 13.3 
KANDATA_idevents 4.8 
KANDATA_isevents 4.3 
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Figure 1. Time series for data sets with prefix DATA. 
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Figure 2. Time series for data sets with prefix HELDATA. 
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Figure 3. Time series for data sets with prefix KANDATA. 
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2.2. Count density fitting 
 
When a probability density has power-law behaviour over some range, a log-log plot of the 
density yields a straight line over that range. One method of detecting such behaviour in real 
data involves estimating the density in a way that does not constrain it to a particular 
parametric form. The histogram is a common non-parametric density estimator, but when the 
data set is small, the histogram is subject to high variance. In order to make more efficient use 
of the data, we used a kernel density estimator to estimate the count density. 

A kernel density estimator is defined by 

 

𝑓(𝑥; ℎ) =
1
𝑁ℎ

�𝐾�
𝑥 − 𝑥𝑖
ℎ

�
𝑁

𝑖=1

, 

 
in which 𝑥𝑖 are the 𝑁 observations, 𝐾(·) is a kernel function (a symmetric, real-valued 
function of total integral one), and ℎ is a bandwidth parameter that controls the smoothness of 
the resulting estimate. 

In the present application, we applied a kernel density estimate to the logarithm (base 10) of 
the count data. This transformation improved the performance of the kernel estimator, but 
note that the logarithm transformation changes the slope of the resulting log-log plot relative 
to the untransformed data: let 𝑥 denote the number of counts and suppose that  

𝑓(𝑥) ∝ 𝑥𝛼 

where 𝛼 is the scaling exponent. Let 𝑔(log10𝑥) denote the probability density of log10𝑥. Then 

𝑓(𝑥) = 𝑔(log10𝑥) �
𝑑log10𝑥
𝑑𝑑 �, 

𝑥𝛼 ∝ 𝑔(log10𝑥)
1

𝑥 ln10
, 

𝑔(log10𝑥) ∝ �𝑥(1+𝛼)�ln10, 

log10[𝑔(log10𝑥)] = 𝑘 + (1 + 𝛼)log10𝑥. 

Therefore, as with the usual log-log plots, a plot of the log-density estimated in terms of the 
log-counts will be linear in regions where scale-invariant behaviour occurs, but the slope is 
equal to the scaling exponent plus one. 

Figure 4 to Figure 6 show logarithmic plots of kernel density estimates of the density of the 
log-counts. The kernel density estimates were calculated using R’s default kernel (Gaussian) 
and bandwidth parameter (ℎ = 0.282). The data themselves are plotted as points at the top of 
each plot. The least-squares regression line is plotted in black; only the interval of the density 
estimate from one-twentieth of the maximum datum to the maximum datum (shown by the 
gray vertical lines) was used for the fit. As discussed in Section 2.1, the maximum-likelihood 
Poisson distributions are also plotted, in red. 

In all plots, the estimated densities plots do not show downward trends with increasing log-
counts, even in cases where the linear fit has a negative slope. The count densities are 
apparently roughly inversely proportional to counts over a large range of the data. This effect 
dominates the estimation of the scaling exponent. We could not improve the fit even when 
decreasing the bandwidth of the kernel estimator to as small as 0.02. 
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Figure 4. Logarithmic plots of kernel density estimates of the log-counts for data sets with prefix DATA. 
A least-squares linear fit to the region within the gray vertical lines are plotted in black. The maximum-
likelihood Poisson distribution is plotted in red. 
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Figure 5. Logarithmic plots of kernel density estimates of the log-counts for data sets with prefix 
HELDATA. A least-squares linear fit to the region within the gray vertical lines are plotted in black. The 
maximum-likelihood Poisson distribution is plotted in red. 
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Figure 6.Logarithmic plots of kernel density estimates of the log-counts for data sets with prefix 
KANDATA.A least-squares linear fit to the region within the gray vertical lines are plotted in black. The 
maximum-likelihood Poisson distribution is plotted in red. 
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We used the non-parametric bootstrap (Shao and Tu 1995) to provide bias correction and 
confidence distributions (Singh, Xie and Strawderman 2007) for the parameter. By encoding 
confidence intervals at all levels of confidence, confidence distributions enable assigning a 
level of confidence to a given hypothesis, a property that we exploit to compute the 
probability that the scaling exponent is compatible with a certain stochastic process found in 
critical systems. In this approach, replicate data sets are generated by independently 
resampling the original data with replacement. The estimation procedure is applied to the 
replicate data, providing information about the estimators’ sampling distributions which can 
then be used to correct bias and generate confidence distributions. We applied the bias-
corrected bootstrap percentile method to the intermittency estimates without transformation, 
but further research would be required to verify that the resulting confidence distributions are 
valid in the sense that they generate confidence intervals that cover the true parameter value at 
a rate equal to the stated probability. 

 In Table 2 we report uncorrected and bias-corrected point estimates of the scaling exponent 
(equal to the slope in Figure 4 to Figure 6 minus 1). In the last column we report a confidence-
distribution-based probability that the scaling exponent is in the interval (-2, -1), this interval 
corresponding to the discrete stable distribution. The stable processes underlying the discrete 
stable processes (Lee, Hopcraft and Jakeman 2008) are stationary solutions to a 
renormalization group equation (West, Bologna and Grigolini 2003) and thus can prove useful 
as descriptions of systems in a critical state. Probabilities reported in the last column are based 
on the non-Bayesian posterior distribution (Bickel 2009) as approximated by the 
bootstrapping method mentioned above. 

Table 2. Estimated slopes for linear fits of log-counts versus log-density. Densities were estimated 
using kernel density estimation. Due to the higher variance of nonparametric estimation compared to 
parametric estimation, these values are less reliable than those of Table 3. 

Data set name Estimated scaling 
exponent 

Bias-corrected  
Estimate 

Probability that parameter is 
in discrete stable region 

DATA_allevents -0.78 -0.74 4% 
DATA_attevents -1.08 -1.07 92% 
DATA_devents -0.97 -0.96 43% 
DATA_idevents -0.97 -0.96 40% 
DATA_isevents -1.21 -1.19 99% 

HELDATA_allevents -0.89 -0.77 41% 
HELDATA_attevents -0.78 -0.62 35% 
HELDATA_devents -0.73 -0.53 41% 
HELDATA_idevents -0.97 -0.95 47% 
HELDATA_isevents -1.23 -1.15 98% 
KANDATA_allevents -0.94 -0.84 50% 
KANDATA_attevents -1.22 -1.15 99% 
KANDATA_devents -1.20 -1.18 99% 
KANDATA_idevents -1.39 -1.19 94% 
KANDATA_isevents -1.24 -1.18 100% 
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2.3. Upper-tail cumulative distribution fitting 
 
Another way to inspect the data for evidence of scale-invariant behaviour is through its upper-
tail cumulative distribution function (CDF), defined as 

𝑃(𝑋 > 𝑥) = 𝐹(𝑥) = � 𝑝𝑋(𝑥′)𝑑𝑑′
∞

𝑥

, 

in which 𝑋 is the random variable, 𝑥 is the realized value, and 𝑥′ is a dummy variable. An 
unbiased estimator of its value at the observed data is 

𝐹�(𝑥𝑖) =
1

𝑁 + 1
�𝐼�𝑥𝑗  ≥ 𝑥𝑖 �
𝑁

𝑗=1

, 

in which 𝐼(∙ ) is the indicator function that yields 1 if its argument is true and 0 otherwise. 

Relative to the density estimation method, this approach has the advantage of requiring fewer 
data for stable estimation. However, log-log plots of the CDF are not sufficient to detect scale 
invariance because in real data such invariance generally has an upper cut-off, reflecting the 
fact that the time between events has some physical upper bound. As a result, the expression 
for 𝐹(𝑥) does not give a line after taking logarithms. For example, if  

𝑝𝑋(𝑥) = �
𝑔(𝑥),
𝐶𝑥𝛼,

0,
  

𝑥 < 𝑥1
𝑥1 ≤ 𝑥 < 𝑥2
𝑥 ≥ 𝑥2

 

 Then, for 𝑥 ≥ 𝑥1, 

𝐹(𝑥) = � 𝑝𝑋(𝑥′)𝑑𝑑′
∞

𝑥

, 

𝐹(𝑥) =
𝐶

1 + 𝛼
(𝑥21+𝛼 − 𝑥1+𝛼). 

Therefore, we selected a three-parameter method that proved useful in application to a scale-
free network (Bickel 2005). 

We used R’s non-linear least-squares fitting function, nls(), to fit the truncated power-law 
distribution (given above) to the estimated upper-tail CDF of the count data; results are shown 
in Figure 7 to Figure 9. As before, only data between one-twentieth of the maximum number 
of counts and the maximum number of counts were used in the fits; the gray vertical lines 
show these limits on the plots. Weights were applied to the data to emphasize the tails: the 
range of the fitted data was divided into five bins whose lengths were a geometric sequence, 
each bin (except the left-most) being half the size of the bin to its left. Data points in the left-
most bin were given weight one, and data in all other bins were given weight such that each 
bin contained as much total weight as the left-most bin.  

In almost all cases, the plots of the upper-tail CDFs show that the largest counts are well 
separated from the bulk of counts, as would be expected for a distribution with wide tails. In 
many cases, the model overestimates probability mass in the tails of the CDFs; this lack of fit 
will tend to cause the scaling exponent to be overestimated. Table 1 shows the parameter 
estimates; as in the previous section, we report uncorrected and bias-corrected point estimates 
for the scaling parameter and the confidence-based probability that the true value lies between 
-2 and -1.  
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Figure 7. Upper-tail CDFs of counts for data sets with prefix DATA. A least-squares weighted nonlinear 
fit to the region within the gray vertical lines are plotted in black. The maximum-likelihood Poisson 
distribution is plotted in red. 
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Figure 8. Upper-tail CDFs of counts for data sets with prefix HELDATA. A least-squares weighted 
nonlinear fit to the region within the gray vertical lines are plotted in black. The maximum-likelihood 
Poisson distribution is plotted in red. 
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Figure 9. Upper-tail CDFs of counts for data sets with prefix KANDATA. A least-squares weighted 
nonlinear fit to the region within the gray vertical lines are plotted in black. The maximum-likelihood 
Poisson distribution is plotted in red. 
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Table 3. Estimated scaling exponents for truncated power-law fits to the upper-tail CDFs of the 
counts. 

Data set name Estimated scaling 
parameter 

Bias-corrected 
estimate 

Probability that parameter is 
in discrete stable region 

DATA_allevents -1.10 -1.05 97% 
DATA_attevents -1.18 -1.16 100% 
DATA_devents -1.02 -0.99 70% 
DATA_idevents -1.24 -1.24 100% 
DATA_isevents -1.38 -1.36 100% 

HELDATA_allevents -1.21 -1.04 96% 
HELDATA_attevents -1.28 -1.05 88% 
HELDATA_devents -1.26 -0.99 85% 
HELDATA_idevents -0.89 -0.83 38% 
HELDATA_isevents -1.31 -1.27 100% 
KANDATA_allevents -1.16 -1.08 100% 
KANDATA_attevents -1.22 -1.20 100% 
KANDATA_devents -1.19 -1.18 99% 
KANDATA_idevents -1.38 -1.28 100% 
KANDATA_isevents -1.35 -1.30 100% 

 

 

2.4. Intermittency  estimation 
 
The count distribution is expected to provide evidence of scale-invariant intermittency if it is 
present, but fitting the count density makes no use of temporal structure of the data. 
Therefore, we estimated the intermittency of each times series, using the definition and 
methods described in (Bickel 1999). Roughly speaking, the intermittency parameter measures 
the propensity of the counting process to suddenly deviate from typical values. 

Let 𝑁(𝑇) be the counting process associated with a stationary point process; a realization of  
𝑁(𝑇) is the number of events that occur within a time period 𝑇. It has a distribution that 
depends on the underlying point process and on the length of the counting time. In particular, 
we can examine how the second moment of the distribution varies with 𝑇. If the underlying 
point process is scale-invariant, then it has been shown that  

〈𝑁2(𝑇)〉~𝑇2−𝐶2, 

in which 𝐶2 is known technically as the correlation codimension, which measures the 
intermittency of the point process on a scale from 0 (no intermittency) to 1 (completely 
intermittent) (Bickel 1999).  

The second moment of the counting process can be estimated from the series of the observed 
counts as follows. Let {𝑍1, 𝑍2, … , 𝑍𝑛} be the count time series, with counting time 𝑇0. 
Construct the counting process as the cumulative sum of the count process: 

𝑁𝑘 = �𝑍𝑖

𝑘

𝑖=1

, 𝑘 = 1,2, … , 𝑛 

Then, for 𝑘 = 1,2,4,8, … , 𝑘max ≤ 𝑛, set 
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𝑆𝑘 =
1

𝑛 − 𝑘 + 1
� �𝑁𝑗+𝑘 − 𝑁𝑗�

2
𝑛−𝑘+1

𝑗=1

 

 

𝑆𝑘 is an estimate of 〈𝑁2(𝑘𝑇0)〉; for point processes with scale-invariant behaviour, a log-log 
plot of 𝑘𝑇0 versus 𝑆𝑘 will have a linear region with slope 2 − 𝐶2.  

To generate confidence distributions, we used a parametric bootstrap approach. In that 
approach, the estimated parameters are plugged into a parametric model from which replicates 
of the data are sampled. The nonparametric, IID bootstrap used in the above two methods of 
estimating the exponent in the distribution tails cannot be applied to the estimation of 
intermittency because it would destroy the temporal structure of the time series. 

 We instead modeled the data as a finite-time realization of a fractal renewal process. In the 
fractal renewal process (FRP), inter-event intervals are independent and identically distributed 
with a truncated power law distribution. The FRP is thus defined by the three parameters of 
the truncated power law distribution: the scaling exponent, the lower cut-off, and the upper 
cut-off. The scaling exponent is estimated by the slope of the linear region of a log-log plot of 
𝑘𝑇0 versus 𝑆𝑘, but no estimates for the cut-offs are available.  

We therefore performed a sensitivity analysis in which the bias of the estimator was estimated 
using simulations from the FRP. We fixed the lower cut-off to 1 hour, used the maximum and 
minimum intermittencies estimated in the actual data (0.06 and 0.16, respectively, as reported 
in Table 5) as the true intermittency of the simulation, and estimated the bias as a function of 
the ratio of the upper cut-off to the lower cut-off, R, for each of the six values in 
{101, 102, 103, 104, 105, 106}. For each condition, 100 simulated FRP samples were 
generated.  

Table 4 presents the results of the simulation. The second column provides a human-readable 
interpretation of the R value by stating the upper cut-off (i.e., the maximum possible time 
period between events, within the context of the FRP model) in decipherable units. The third 
and fourth columns report the bias. When the upper cut-off is small, the bias is essentially 
equal to the negative of the true intermittency. Under these conditions, no intermittency can 
be detected because the intermittency is occurring on time scales much smaller than the time 
window used to summarize of the underlying point process into a time series of counts. When 
the upper cut-off is large, the bias is strongly positive. Under these conditions, the FRP will 
tend to generate inter-event intervals on the same order of magnitude as the length of the time 
series, creating large gaps in the simulated count time series that  essentially “run out the 
clock”. This gives the appearance of greater intermittency than is actually present; a longer 
time series would ameliorate this effect. These results highlight the need for either an accurate 
estimator of R or an estimator of intermittency which is insensitive to R. 

The bias-corrected estimates of intermittency are presented in Table 5 for values of R in 
{103, 104, 105, 106}. In Table 4, the R = 103 row showed extreme negative bias and the R = 
106 row showed strong positive bias. Thus, at least one of the corresponding columns in Table 
5 contains over-corrected estimates.  
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Table 4. Estimated bias of intermittency estimates as a function of the ratio of the highest possible 
time between events to the lowest possible time between events. 

R upper cut-off 
bias 

true intermittency = 0.06 true intermittency = 0.16 

101 10 hours -0.06 -0.16 
102 4 days, 4 hours -0.06 -0.16 
103 42 days -0.06 -0.15 
104 1 year, 52 days -0.04 -0.13 
105 11 years, 5 months 0.07 0.01 
106 114 years 0.09 0.08 

 

 

Table 5. Estimated intermittencies and bias-corrected estimates. 

Data set name Estimated 
intermittency 

Bias-corrected intermittency estimate 

R =103 R =104 R =105 R =106 

DATA_allevents 0.08 0.15 0.12 0.02 -0.01 
DATA_attevents 0.12 0.23 0.20 0.08 0.04 
DATA_devents 0.10 0.18 0.16 0.04 0.01 
DATA_idevents 0.13 0.26 0.23 0.10 0.06 
DATA_isevents 0.16 0.32 0.28 0.13 0.09 

HELDATA_allevents 0.06 0.12 0.10 0.00 -0.04 
HELDATA_attevents 0.07 0.12 0.10 0.00 -0.03 
HELDATA_devents 0.06 0.12 0.10 0.00 -0.04 
HELDATA_idevents 0.07 0.14 0.12 0.01 -0.03 
HELDATA_isevents 0.13 0.25 0.22 0.08 0.03 
KANDATA_allevents 0.09 0.18 0.13 0.04 0.00 
KANDATA_attevents 0.13 0.25 0.21 0.09 0.05 
KANDATA_devents 0.14 0.27 0.23 0.10 0.06 
KANDATA_idevents 0.13 0.25 0.20 0.09 0.05 
KANDATA_isevents 0.14 0.27 0.23 0.10 0.06 
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Figure 10. Log-log plots of estimated counting process second moment versus for data sets with prefix 
DATA. 
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Figure 11. Log-log plots of estimated counting process second moment versus for data sets with prefix 
HELDATA. 
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Figure 12. Log-log plots of estimated counting process second moment versus for data sets with prefix 
KANDATA. 
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3. Summary  
 
Series of events in warfare were modeled as discrete count processes derived from underlying 
stochastic point processes. The scaling exponent of the tail of each count distribution was 
estimated in two ways: first, the scale invariance of the count density was estimated using a 
linear fit to kernel density estimate of the log-density of the log-counts; second, a parametric 
model was fit by weighted non-linear least squares to the upper-tail CDF of the count data. In 
both cases, plots of the fits included the maximum-likelihood Poisson distribution for 
comparison. Finally, the temporal structure of the times series was investigated by the 
estimation of the process intermittency. In all three analyses, bootstrapping was used to 
correct estimator bias and to obtain confidence levels. 

In the first analysis (Section 2.2), the log-densities were roughly flat, leading to slope that 
were close to zero and scaling exponents around -1. This suggests that in the bulk of the data, 
the count densities are nearly inversely proportional to counts. In the second analysis (Section 
2.3), the fit imposed an upper cut-off to reflect the fact that the time between events has some 
physical upper bound and was weighted to emphasize data at the tails. The fitted curves 
tended to overestimate the probability mass in the tails, likely causing overestimation of the 
scaling exponents (negative estimates may be closer to 0 than they should be). Again, the 
estimated scaling exponents were very close to -1, and in some cases even exceeded -1. For 
13 out of 15 data sets, the probability that the scaling exponent is compatible with that of a 
discrete stable process is 75% or more. 
 
In the third analysis (Section 2.4), the intermittencies of the series of events in warfare were 
estimated. For this analysis, the bootstrap approach required an unknown parameter (the upper 
cut-off of the assumed inter-event interval distribution), so the bootstrap bias correction used a 
set of six possible values. Intermittencies were estimated to be between 0.06 and 0.16; bias 
correction widened the range to between 0.00 and 0.27.  
 

 



 

24 
 

This page intentionally left blank. 
 

  



 

25 
 

4. References 
 
 

1. Bickel, David R. "Probabilities of spurious connections in gene networks: application to 
expression time series." Bioinformatics 21, no. 7 (2005): 1121-1128. 
 

2. Bickel, David R. "Coherent frequentism." 2009, http://arxiv.org/abs/0907.0139v3. 
 

3. Bickel, David R. "Estimating the intermittency of point processes with applications to 
human activity and viral DNA." Physica A 265 (1999): 634-648. 
 

4. Lee, W.H., K.I. Hopcraft, and E. Jakeman. "Continuous and discrete stable processes." 
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 77, no. 1 (2008): 
011109. 
 

5. Lowen, S.B., and M. C. Teich. Fractal-Based Point Processes. Hoboken, New Jersey: 
Wiley-Interscience , 2005. 
 

6. Roberts, D. C., and D. L. Turcotte. "Fractality and Self-Organized Criticality of Wars." 
Fractals 6, no. 4 (1998): 351-357. 
 

7. Shao, Jun, and Dongsheng Tu. The Jackknife and the Bootstrap. New York: Springer-
Verlag New York Inc., 1995. 
 

8. Singh, Kesar, Minge Xie, and William E Strawderman. "Confidence distribution (CD) – 
distribution estimator of a parameter." IMS Lecture Notes-Monograph Series – Complex 
Datasets and Inverse Problems: Tomography, Networks and Beyond 54 (2007): 132-
150. 
 

9. West, B.J., M. Bologna, and P. Grigolini. Physics of Fractal Operators. New York: 
Springer, 2003. 
 

 

 



 

26 
 

This page intentionally left blank. 
 



 

27 
 

List of symbols/abbreviations/acronyms 
 
 

CDF Cumulative distribution function 
CORA Centre for Operational Research and Analysis 
DND Department of National Defence 
DRDC Defence Research and Development Canada 
FRP Fractal renewal process 
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