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Abstract …….. 

This report describes development and implementation of an in-core database in the VAST finite 
element program. The database was developed based on the C++ Standard Template Library 
(STL) generic data structures and a set of Application Programming Interface (API) functions 
were provided to allow access from Fortran. The arguments of the API functions were designed 
to be of a generic format, to minimize the number of functions and permit easy future expansion. 
Implementation of the database required significant restructuring of VAST code. A pre-processor 
module, named PREPR1, was developed to import all the input data and store them into the 
database. During the VAST executions, the database was not only used as the source of the finite 
element model data, but also used as the temporary storage of many of the intermediate results. 
This treatment of data flow eliminated a large amount of I/O operations in the original VAST 
program and resulted in very significant savings on the computation time. The resulting version 
of VAST has been extensively verified and benchmarked using test problems of different sizes 
and the benchmark results have indicated that by combining the new database and the new sparse 
solver, the overall speed of VAST was increased by a factor of five for engineering problems. 
The current API version of VAST has some limitations, such as limited element types and 
analysis capabilities as well as a size limit on the finite element model. Further tasks are 
recommended for removing these limitations. 
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Executive summary  

Improving Computational Efficiency of VAST:  

Introduction: VAST is a general-purpose nonlinear finite element solver program developed and 
maintained by Martec over the past four decades under the sponsorship of DRDC Atlantic and 
has been adopted as the built-in default finite element solver in a number of structural analysis 
packages, such as Trident, SubSAS and CRS STRUC. In addition, the VAST has been used to 
support development of customized solutions, such as systems for analyzing the mast structure on 
naval vessels (MAST), propeller structural loading (PVAST) and ultimate strength analysis 
(UltSAS). VAST was originally developed in the early 1970s, and designed to solve large 
problems on small (low RAM) single CPU machines. In order to achieve this goal, VAST was 
purposely structured in modules which communicated through disk files, resulting in a very large 
volume of I/O operations which significantly degraded the computational efficiency. Two 
approaches can be taken to improve the computational efficiency. One is to implement the 
modern parallel techniques, and the other is to optimize the data flow by minimizing the I/O 
operations. The second approach was addressed in the present work. 

Results: An in-core database was developed and implemented in VAST. This database was 
developed based on the C++ Standard Template Library (STL) generic data structures and a set of 
Application Programming Interface (API) functions were provided to permit access from a 
Fortran program. The arguments of the API functions were designed to be of a generic format, to 
minimize the number of functions and permit easy future expansion. The VAST program was 
significantly restructured to accommodate the new database, including development of a pre-
processor module, named PREPR1. During the VAST executions, the database was not only used 
as the source of the finite element model data, but also used as the temporary storage of many of 
the intermediate results. The resulting version of VAST was extensively tested and benchmarked 
using problems of different sizes and the benchmark results have indicated that by combining the 
new database with the newly improved sparse solver, the overall speed of VAST was increased 
by a factor of five in practical engineering analyses. 

Significance: The benchmark results clearly demonstrated the potential for generating a highly 
efficient version of VAST in the future by adopting a properly designed database and using the 
improved sparse solver. These findings provide directions for future investigations on efficiency 
improvement. In particular, the current API version is ideal for use as a test bed for these 
explorations. 

Future plans: Although it has been demonstrated that the present API version of VAST was very 
efficient, it only provides limited capabilities and is only capable of solving relatively small 
problems. A number of tasks for future investigation have been recommended. These included 
expanding the database to include out-of-core processing; parallelizing modules such as element 
formulation, matrix assembly and stress calculations, and improving the robustness of the new 
sparse solver. Once these problems are resolved successfully, all the capabilities provided in the 
full version of VAST need to be imported to the highly efficient API version. 
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1 Introduction 

VAST is a general-purpose nonlinear finite element solver program developed and maintained by 
Martec over the past four decades under the sponsorship of DRDC Atlantic [1]. The current 
version of VAST provides a large selection of element formulations, material models and analysis 
options. These computational capabilities have been extensively verified and validated using 
analytical and experimental results and have been utilized successfully in numerous practical 
engineering analyses, such as plastic collapse of submarine pressure hulls and crack initiation and 
propagation in various naval structures. At the present time, VAST has been adopted as the built-
in default finite element solver in a number of structural analysis packages, such as Trident, 
SubSAS and CRS STRUC. In addition, the VAST program has been used to support development 
of customized solutions not possible with commercial codes. Examples include development of 
systems for analyzing the mast structure on naval vessels (MAST), propeller structural loading 
(PVAST) and ultimate strength analysis (UltSAS). 

VAST was originally developed in the early 1970s, and designed to solve large problems on 
small (low RAM) single CPU machines. In order to achieve this goal, VAST was purposely 
structured in modules. Each module performed a particular step in finite element analyses, such 
as element matrix formulation, assembly and decomposition of the global stiffness matrix, 
generation of load vectors, solution of displacement vectors and evaluation of element stresses. In 
order to permit restart between the modules, large volume of intermediate results from the finite 
element calculations were stored on disk files, resulting in huge amounts of I/O operations which 
significantly degraded the computational efficiency. With the advent of multi-core symmetric 
processor (SMP) machines and the significant increases in RAM, especially on the 64-bit 
architecture, it is now possible to modernize VAST to utilize this large increase in computing 
power to solve problems that are increasingly demanding. 

Two approaches can be taken to improve the computational efficiency of a finite element code, 
like VAST. One is to implement the modern parallel techniques, such as the OpenMP and MPI, to 
speed up the generation of element matrices, solution of linear algebraic equations and evaluation 
of stresses. These requirements have been partially addressed through parallelization of the direct 
sparse matrix solver [2,3]. 

The other modifications required for VAST include optimization of its data flow by minimizing 
the I/O operations. This requires development and implementation of a highly efficient database 
for VAST by taking advantage of the massive RAM space potentially available on computers 
running a 64-bit operation system. This data structure will hold the input information, the 
intermediate results and the solutions mostly in memory during finite element computations, so 
that the disk I/O operations are only performed when they are absolutely necessary. The 
elimination of unnecessary disk I/O is expected to significantly improve the efficiency of VAST, 
especially for nonlinear analyses where extensive I/O operations are used in current version of 
VAST to facilitate the Newton-Raphson iterations. The present contract is the first attempt to 
optimize the data flows in VAST for improved efficiency. 

Three objectives to be accomplished in the present contract are: 
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1. Develop an in-core data structure for VAST. This data structure will be highly efficient 
and fit naturally into the overall operations in the VAST program. In the meantime, it will be 
sufficiently general to support all element types, material models and analysis capabilities 
currently provided in VAST and will be expandable to permit future developments of new VAST 
capabilities. 

2. Implement the data structure into VAST. The database is accessible from the Fortran 
code though a set of API functions. In order to maximize benefit from the new data structure, the 
VAST program will be restructured. The initial implementation will focus on the most commonly 
used element types in ship structure analyses, including 2-noded beam and 4-noded quadrilateral 
shell elements. Both linear and nonlinear static analysis capabilities will be provided. 

3. Verify and benchmark the new version of VAST. Upon completion, the new version of 
VAST with the data structure will be extensively verified using the standard test cases from the 
VAST Autotester and larger finite element problems utilized in previous practical engineering 
analyses. The computational efficiency of the improved version will be benchmarked against that 
of the original version of VAST. 

In this report, the development of the database and its implementation in VAST will be discussed 
in the next chapter. The results of verification and benchmark of the new version of VAST are 
presented in Chapter 3. The conclusions and recommendations for future work are outlined in 
Chapter 4. 
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2 Development and Implementation of a Database for 
VAST 

2.1 Development of API functions 

During this phase of the project, work was undertaken to restructure the VAST source code so 
that all reading and writing of model data was directed through a single collection of subroutines.  
This collection of subroutines was termed the VAST Data Application Programming Interface 
(referred to as the API in the remainder of this document). The purpose of restructuring VAST 
and introducing the API was to collect and isolate the details concerning storage of model data 
behind a static subroutine interface so that changes could be made to the storage mechanism 
without affecting the rest of the VAST code beyond the API layer (see Figure 1). Primarily,  these 
changes to VAST separated data flow involved in finite element analyses from the actual 
computations. It not only eliminated a large number of I/O operations, but also permitted further 
optimization of algorithmic operations. Secondly, the work improved the modularity of VAST so 
that different parts could undergo major changes independently. Thirdly, it focused all data access 
to the API, thereby making it easier to add logging and instrumentation in a central location to 
track data access patterns and performance. 

The first part of this work comprised defining the API functions and their associated parameters. 
A complete list of the current API subroutines is given in Table 1. In order to keep the number of 
subroutines in the API low, it was decided that the subroutines would not be parameterized on 
specific types of model entities, but rather on overall categories of entities. For instance, rather 
than a variety of subroutines to set property data for each type of finite elements, there was one 
generic subroutine to set property data for all element types. To accommodate this strategy, the 
subroutines accepted most arguments as arrays of generic integer or floating point data. It was up 
to VAST to load/unload the values from these arrays and to establish/re-establish their intended 
meaning. Not only did this result in fewer generic subroutines comprising the API, but it also 
promoted consistency and reuse of generic data patterns for storing the data below the API layer.   

Once the API layer subroutines were fixed, a means to store the data being passed through the 
subroutines had to be put in place. For this phase of the project, an entirely in-core storage system 
was devised. A survey of reusable native Fortran data structures was undertaken, but yielded a 
poor selection of options. As such, it was decided to use the C++ Standard Template Library 
(STL) [4] generic data structures through an inter-language wrapper layer. Since most data could 
be mapped to key-value pairs (integer keys, array values), the STL hash table container, 
unordered_map<>, was used. Though mixing the languages in this way was recognized as not 
ideal, it was felt that the flexibility and robustness benefits of the STL outweighed any small 
overhead incurred calling through the wrapper layer. 

Once the data being passed through the API was being stored and successfully retrieved, the 
prototype API was effectively complete. All areas in VAST that had previously written and 
retrieved data directly to/from files were updated to make use of the appropriate API subroutines. 
The correctness of the API functions was confirmed by test problems to be discussed later in this 
report. Because the storage system implemented in this Phase of the work was entirely in-core, it 
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exhibited comparatively high performance, but it was recognized this came at the cost of data 
volatility and model size limitations. 

The next phase of the API development proposes to replace the in-core data storage with an out-
of-core mechanism to allow for even larger model sizes and to provide for data persistence. Some 
initial research into methods used to efficiently store and retrieve large-scale numerical data from 
secondary storage (i.e. disk) has pointed towards the field of Scientific Data Formats. In short, 
these data formats are purpose-built, mainly by scientists and researchers, to efficiently work with 
vast volumes of dense numerical data. Various precedents have been set for using such data 
formats for storage of finite element analysis data [5] [6]. Early indications pointed towards the 
Hierarchical Data Format version 5 (HDF5) [7] as the most suitable format for consideration 
owing to its generality, maturity and widespread adoption. Some initial work has been done in 
parallel to this project to explore the format and try to identify an optimal storage arrangement to 
support the API version of VAST [8]. It is proposed to continue this work and further explore 
possible HDF5-based formats already tailored for FE data. 

 

 

 

Figure 1: Model of data exchange between VAST and the database 
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Table 1: List of API functions for VAST database 

 
api_initialize(int& ierr); 
api_terminate(int& ierr); 
api_dumptocout(int& ierr); 
 
get_node( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
get_node_e( int& eid_m, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr ) { } 
set_node( int& id_m, int& eid_m, int& ni, int*  iarray, int& nr, double*  rarray, int& ierr ) { } 
 
get_mat ( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_mat ( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_prop( int& id_p, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_prop( int& id_p, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_elem_main( int& id_e, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
get_elem_main_e( int& eid_e, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr ) { } 
set_elem_main( int& id_e, int& eid_e, int& ni, int*  iarray, int& nr, double*  rarray, int& ierr ) { } 
 
get_elem_aux ( int& id_e, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_elem_aux ( int& id_e, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_elem_strs( int& id_e, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_elem_strs( int& id_e, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_elem_strs_i( int& id_e, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_elem_strs_i( int& id_e, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_elem_temp( int& id_e, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_elem_temp( int& id_e, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_elem_intf( int& id_e, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_elem_intf( int& id_e, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_cons_spc ( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_cons_spc ( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_cons_mpc ( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_cons_mpc ( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_cons_rlnk( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_cons_rlnk( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_cons_rbe3( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_cons_rbe3( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_mass_lump( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_mass_lump( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_strs( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_strs( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
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Table 1 (Cont’d): List of API functions for VAST database 
 
 
get_load_elem( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
get_load_elem_e_num( int& eid_m, int& num ) { } 
get_load_elem_e( int& eid_m, int& idx, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr ) { } 
set_load_elem( int& id_m, int& eid_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_load_conc( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
get_load_conc_e_num( int& eid_m, int& num ) { } 
get_load_conc_e( int& eid_m, int& idx, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr ) { } 
set_load_conc( int& id_m, int& eid_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_load_prdp( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
get_load_prdp_e_num( int& eid_m, int& num ) { } 
get_load_prdp_e( int& eid_m, int& idx, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr ) { } 
set_load_prdp( int& id_m, int& eid_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_load_glob( int& id_m, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_load_glob( int& id_m, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_load_thrm( int& id_m, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_load_thrm( int& id_m, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_load_intf( int& id_m, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_load_intf( int& id_m, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_load_timf( int& id_m, int& ni, int*& iarray, int& nr, double*& rarray ) { } 
set_load_timf( int& id_m, int& ni, int*  iarray, int& nr, double*  rarray ) { } 
 
get_disp( int& id_m, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_disp( int& id_m, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_disp_i( int& id_m, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_disp_i( int& id_m, int& ni, int*  iarray, int& nr, double*  darray ) { } 
 
get_mode( int& id_m, int& ni, int*& iarray, int& nr, double*& darray ) { } 
set_mode( int& id_m, int& ni, int*  iarray, int& nr, double*  darray ) { } 
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2.2 Implementation of API functions 

The flowchart in Figure 2 below shows the main structure of the version of VAST with the new 
database. In this figure, the blue lines and arrows indicate the sequence of execution of different 
computational modules in VAST, whereas the red lines and arrows indicate the data flow in and 
out of the memory-based database. For nonlinear analyses, the modules are executed repeatedly 
for each equilibrium iteration in each solution step, until the analysis is completed. 

The implementation of the database required substantial restructuring of the VAST program. The 
very first step for implementing the new database was to develop a pre-processor module, named 
PREPR1, which read all the VAST input files and stored the information in the database. These 
VAST files included the finite element model geometry (GOM), the boundary conditions (SMD), 
the load definitions (LOD), the lumped masses (MAS) and the solution control data (USE) file. 
The API functions started with set_ were utilized to pass data to the database. All the solution 
control parameters were treated as global variables and kept in a central common block. Once the 
database was populated, the text input data files were no longer required and all further operations 
of VAST were performed based on the database. 

 

 

 

Figure 2: Main structure of VAST with the new database 
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In element module ELEMS1, element matrices were generated using the nodal coordinates, 
material properties and geometric properties extracted from the database. These were achieved by 
using API functions get_node, get_elem_main, get_mat and get_prop. The element matrices 
were then passed to the sparse solver through the Fortran/C++ interface as in the previous version 
of VAST. It should be noted that in the new database, nodes and elements can be accessed 
through either internal or external IDs. This arrangement provides a convenient means for VAST 
to perform analyses using models for other finite element programs, such as NASTRAN, where 
the external node and element IDs were normally used. For nonlinear analyses, geometric 
stiffness matrix and interface vector for each element were generated by using the most recently 
updated stresses and the other material variables extracted from the database via get_elem_strs. 
For the first iteration in each solution step, these stresses and material variables were stored back 
onto the database through set_elem_strs_i as they were required in subsequent iterations of the 
current load step. In addition, some intermediate results that were formulated during element 
generation and also required later in stress calculations were also saved on the database using 
set_elem_aux. 

In assembly and decomposition module DECOM5, the boundary conditions and other constraint 
equations, such as the multi-point constraints and rigid links were retrieved from the database. 
This was accomplished by calling API functions get_cons_spc, get_cons_mpc and cons_rlnk. 
These constraint equations resulted in additional stiffness terms for the global stiffness matrix and 
these terms were passed to the sparse solver as in the previous version of VAST. Matrix assembly 
and factorization were then performed by the sparse solver. There was no information to be 
written back onto the database from this module. 

In the load module LOAD1, equivalent nodal force vectors were formulated using the 
concentrated forces, element pressures and prescribed displacements stored in the database. This 
load information was retrieved using functions get_load_conc, get_load_elem and 
get_load_prdp. Similar to the storage for nodes and elements in the database, the load entries 
were also associated with internal and external IDs. This permitted efficient search of the load 
data for a given set of load cases through the application of hash functions. Once the global nodal 
force vectors were created, they were stored back onto the database via set_load_glob. 

The displacement module DISP1 computed nodal displacements using the equivalent global 
nodal force vectors extracted from the database using get_load_glob. These load vectors were 
passed to the sparse solver through the Fortran/C++ interface and the sparse solver returned the 
corresponding displacement vectors. These displacements were then stored in the database using 
set_disp for stress calculations. For nonlinear analyses, the most recent global internal force 
vector was formed by first extracting the element internal force vectors using get_elem_intf and 
then assembling them into a global vector. This global internal force vector was also stored in the 
database using set_load_intf. In order to make the original and modified arc-length methods 
operational, the incremental displacements in the current solution step and current iteration must 
be saved in the database. These were achieved by using API functions set_disp and set_disp_i, 
respectively. In the meantime, the displacement vectors were also permanently stored on disk file 
Prefx.V52. 

In the STRESS module, both the displacement vectors and the element information, such as node 
coordinates, element connectivity, material and geometric properties, were extracted from the 
database. The element stress matrices were then formulated and the stresses were calculated. The 
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calculated stresses were stored in the database through set_elem_strs and on disk file Prefx.V53 
as a user option. Some matrices which were generated as intermediate results in element matrix 
formulations were also imported from the database through get_elem_aux and used in stress 
calculations. For nonlinear analyses involving elastic-plastic material behaviour, the stresses and 
plastic variables at the beginning of the current step were required for properly integrating the 
constitutive relation. In this case, these initial stresses and initial values of the plastic variables 
were obtained from the database by calling get_elem_strs_i. 

Due to the implementation of the database, almost all of the intermediate binary files required by 
VAST were eliminated. The benchmark results to be presented later in this report indicated that 
the elimination of the I/O operations resulted in dramatic improvement on the computational 
efficiency of VAST. 

2.3 Limitations of the present API version of VAST 

The present API version of VAST contained two element types, 2-noded general beam and 4-
noded quad shell elements. These elements were selected because they were the most commonly 
used elements in submarine modelling and were supported by SubSAS. Once fully verified, this 
highly efficiency API version of VAST would be ready for being used to replace the existing 
version of VAST in SubSAS. 

In addition to the limited element library, the present API version of VAST was also restricted to 
linear and nonlinear quasi-static analyses. However, it permitted the full line of nonlinear material 
types, such as the elastic-plastic material models with bi-linear and piecewise linear stress-strain 
curves. All the nonlinear solution algorithms, including the orthogonal trajectory and modified 
arc-length methods, were supported. Some useful features for nonlinear collapse analyses, such as 
automatic restart and automatic adjustment of solution step, were also maintained. However, 
other analysis capabilities supported by the full version of VAST would have to be implemented 
in the future. 

Besides the implementation of the database, the recently improved sparse direct matrix solver 
based on the super-node technology [2] was also incorporated. The improved sparse solver could 
be invoked by a new solution control parameter, IPARL. When IPARL>1, the new sparse solver 
would be activated. If IPARL=1, the original sparse solver would be utilized. 

Although the present API version of VAST only provides limited capabilities, it is ideally suitable 
for use as a test-bed to explore various approaches for further speeding up its execution. This is 
partially due to the simplicity of its current code structure. The subjects of exploration should 
include parallelization of element generation, matrix assembly, load calculation and stress 
evaluation. In addition, in order to solve larger problems, the database needs to be expanded to 
use combined in-core and out-of-core operations. These issues will be discussed in more detail in 
the final chapter of the report. 
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3 Verification and Benmarking of API Version of VAST 

3.1 Small test cases from VAST Autotester 

The first set of test cases contained three small test problems chosen from the VAST Autotester 
[9]. Among them, CS03B involved nonlinear collapse of a simply-supported shallow arch under a 
centre concentrated force, whereas CS05B and CS05H dealt with collapse of a hinged shallow 
spherical shell subjected to a load at the pole. All three test cases involved elastic-plastic material 
model, but CS05B used a bi-linear stress-strain relation and both CS03B and CS05H used piece-
wise stress-strain curves. Both the displacement control and the orthogonal trajectory methods 
were employed to obtain the complete nonlinear solutions. 

The run times summarized in Tables 2-4 suggested that the combination of the new database and 
the improved sparse solver resulted in a consistent 20% reduction of the total run time for these 
small problems. However, due to their small sizes, these problems were not suitable for 
benchmarking the speed, but ensuring the correctness of the nonlinear solutions. In the present 
work, the results from the API version of VAST were carefully compared with those generated by 
the full version of VAST. The results were found to be identical. The deformed configurations 
and load-displacement curves obtained for these test cases are presented in Figures 3-6. 

3.2 Mid-sized test cases of stiffened panels 

The second group of test cases involved stiffened panel structures subjected to various load cases. 
These panels were analyzed previously in a number of LR internal projects [10,11], so the sizes 
of the finite element models were consistent with those utilized in practical collapse analyses. In 
the present study, we first performed a series of linear elastic analyses of panel FB6 using models 
of different levels of refinement shown in Figures 7-9. The results presented in Tables 5-7 clearly 
indicate that use of the new database and the improved sparse solver result in more significant 
savings on larger models. For models of 4,000 to 50,000 nodes, 50% to 70% reduction of total 
run time was obtained which corresponded to speed-up by factors of 2 to 3. Once again, the 
results from all versions of VAST were identical. 

Following the linear elastic analyses, the plastic collapse behaviour of panel FB6 under uniform 
compression in the transverse direction was computed. The final deformed configuration and the 
transverse load-shortening curve are presented in Figures 10 and 11, respectively. The results 
from all VAST analyses were identical. The time results in Table 8 indicated a 50% saving on 
total run time which was consistent with the figure observed in linear elastic analysis (in Table 5). 

The second stiffener panel considered was the L10 panel which involved L-shaped stiffeners as 
shown in Figure 12. Nonlinear collapse analysis of this panel under axial load was performed 
using different versions of VAST and the predicted final collapse mode and the load-shortening 
curve are presented in Figures 13 and 14, respectively. Due to the extremely strong nonlinearity 
in this problem, the nonlinear algorithm failed to converge near the limit load, but the automatic 
restart capability was invoked to continuously reduce the solution step until convergence was 
achieved successfully. The results from all versions of VAST were identical and times taken by 
these runs are compared in Table 9, where a 50% reduction on total run time is also obtained. 
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The final test case of stiffener panel also involved panel L10, but this time, a pressure was first 
applied to the structure to generate initial deformations. While this pressure was maintained at a 
constant level, a uniform transverse compressive stress was applied. This transverse stress was 
then increased gradually until the panel collapsed. In order to accurately represent the loading 
sequence, the applied pressure load and transverse stress must be arranged into different load 
cases and were controlled by independent load parameters. At the beginning of the nonlinear run, 
the pressure was activated and the load parameter was increased to the desired value. The active 
load case was then switched to the transverse stress and the nonlinear analysis was restarted. The 
purpose of this particular test case was utilized to verify the capability of the API version of 
VAST for dealing with such a complicated loading history that involved multiple load cases. 
Once again, the results from all versions of VAST were found to be identical. The final collapse 
mode and the transverse load-displacement curve are presented in Figures 15 and 16. It should be 
noticed that the flat part at the beginning of the load-displacement was due to the deformations 
caused by the pressure which was applied prior to the application of the transverse stress. The 
times taken by each of the VAST runs are compared in Table 10, where a reduction of 55% was 
observed. 

3.3 Larger test cases of submarine structures 

In order to benchmark the performance of the various versions of VAST for large finite element 
problems, linear and nonlinear analyses of a submarine compartment was conducted. The model 
utilized in these analyses was generated by using SubSAS in a previous DRDC contract [12] and 
composed of 4-noded shell and 2-noded beam elements as shown in Figure 17. The times taken 
by the various versions of VAST for linear elastic and nonlinear plastic collapse analyses are 
summarized in Tables 11 and 12, respectively. These results indicate that for models used in 
practical analyses of submarine structures, use of the new database alone resulted in over 66% 
savings in element and stress modulus and an 80% reduction on total run time could be achieved 
by using the new database and the improvement sparse solver. This corresponded to a speed-up 
by factor of five. The final collapse mode of the pressure hull and the load-radial displacement 
curve obtained by VAST are displayed in Figures 18 and 19, respectively. The solutions from all 
VAST analyses were carefully compared and found to be identical. 

For the purpose of identifying the upper limit of the problem size for the present API version of 
VAST, we considered the full submarine model shown in Figure 20. This model included the 
entire pressure hull and the major internal structures and contained over 100,000 nodes and over 
130,000 elements. For finite element models of this size, the analysis using the original version of 
VAST completed without any difficulty. However, when the API version was executed with the 
original sparse solver, the run crashed in the displacement module when the sparse solver tried to 
allocate memory for the global load vectors. The API VAST run using the improved sparse solver 
crashed at the decomposition stage due to insufficient memory. This was because that improved 
sparse solver operates purely in-core at the present time, so it cannot solve problems having more 
than 70,000 nodes. The run times shown in Table 13 indicated that for the computation modules 
successfully completed by the improved VAST, very substantial savings were observed for 
modules that were completed successfully. For instance, the element formulation module was 
speeded up by a factor of ten. 
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Table 2: Comparison of run times for test case CS03B 

Prefix: CS03B (NL) Model Size: Node=21, Element=20 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 1.747 1.514 13.337 1.217 30.338 
Assembly & Decomposition 0.499 0.818 -63.928 0.452 9.419 
Load Vector Generation 0.031 0.022 29.032 0.000 100.000 
Displacement Solution 0.780 0.683 12.436 0.624 20.000 
Stress Calculation 1.139 0.756 33.626 0.577 49.342 
Total 4.649 4.451 4.259 3.323 28.522 

 

Table 3: Comparison of run times for test case CS05B 

Prefix: CS05B (NL) Model Size: Node=91, Element=75 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 4.633 3.326 28.211 3.713 19.858 
Assembly & Decomposition 1.045 1.077 -3.062 1.170 -11.962 
Load Vector Generation 0.031 0.013 58.065 0.016 48.387 
Displacement Solution 1.513 1.032 31.791 1.108 26.768 
Stress Calculation 2.356 2.139 9.211 1.888 19.864 
Total 10.795 8.642 19.944 8.892 17.629 

 

Table 4: Comparison of run times for test case CS05H 

Prefix: CS05H (NL) Model Size: Node=91, Element=75 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 8.725 5.582 36.023 6.162 29.375 
Assembly & Decomposition 2.017 1.717 14.874 1.825 9.519 
Load Vector Generation 0.023 0.008 65.217 0.000 100.000 
Displacement Solution 2.606 1.481 43.170 1.934 25.787 
Stress Calculation 5.966 4.457 25.293 5.070 15.018 
Total 21.222 14.837 30.087 16.645 21.567 
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Figure 3: Original and deformed configurations for test case CS03B which involved snap-

through of a simply supported shallow arch subjected to a centre point load 

 
Figure 4: Load-centre deflection curves obtained for test case CS03B using large and small 

solution steps 
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Figure 5: Original and deformed configurations for test case CS05B which involved a hinged 

shallow spherical shell subjected to a centre point load 

 
Figure 6: Load-centre deflection curves obtained for test cases CS05B and CS05H which 

involved bi-linear and multi-linear stress-strain behaviours, respectively 

-1

0

1

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Lo
ad

 P
ar

am
et

er

Centre Deflection

CS05B, bi-linear SS curve

CS05H, multi-linear SS curve



 
 

MARTEC TR-13-42 15 
 

 
 
 

 

Table 5: Comparison of run times for coarse FE model of stiffened panel FB6 

Prefx: panel_FB6 (L) Model Size: Node=3484, Element=3366 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 0.515 0.250 51.456 0.250 51.456 
Assembly & Decomposition 1.186 1.139 3.963 0.577 51.349 
Load Vector Generation 0.484 0.016 96.694 0.016 96.694 
Displacement Solution 0.343 0.296 13.703 0.390 -13.703 
Stress Calculation 0.390 0.343 12.051 0.343 12.051 
Total 2.948 2.044 30.665 1.591 46.031 

 

Table 6: Comparison of run times for refined FE model of panel FB6 

Prefix: panel_FB6-f1 (L) Model Size: Node=13699, Element=13464 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 2.028 0.874 56.903 0.874 56.903 
Assembly & Decomposition 7.675 7.129 7.114 2.590 66.254 
Load Vector Generation 1.966 0.047 97.609 0.047 97.609 
Displacement Solution 1.498 1.201 19.826 1.435 4.206 
Stress Calculation 1.544 1.513 2.008 1.357 12.111 
Total 14.726 10.780 26.796 6.334 56.988 

 

Table 7: Comparison of run times for further refined FE model of panel FB6 

Prefix: panel_FB6-f2 (L) Model Size: Node=54325, Element=53856 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 9.001 3.463 61.526 3.463 61.526 
Assembly & Decomposition 52.089 50.591 2.876 11.107 78.677 
Load Vector Generation 8.642 0.172 98.010 0.187 97.836 
Displacement Solution 5.928 5.616 5.263 6.271 -5.786 
Stress Calculation 6.256 5.382 13.971 5.460 12.724 
Total 82.025 65.271 20.425 26.536 67.649 
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Table 8: Comparison of run times for nonlinear collapse analysis of panel FB6 subjected to 
compression in the transverse direction 

Prefix: panel_FB6 (NL) Model Size: Node=3484, Element=3366 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 224.168 147.473 34.213 146.738 34.541 
Assembly & Decomposition 362.429 330.496 8.811 152.638 57.885 
Load Vector Generation 0.500 0.016 96.800 0.018 96.400 
Displacement Solution 24.257 11.285 53.477 13.866 42.837 
Stress Calculation 156.696 68.116 56.530 78.559 49.865 
Total 786.436 560.869 28.682 395.046 49.768 

 

Table 9: Comparison of run times for nonlinear collapse analysis of panel L10 subjected to 
compression in the axial direction 

Prefix: panel_01_NL (NL) Model Size: Node=4503, Element=4368 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 323.356 189.698 41.335 203.186 37.163 
Assembly & Decomposition 583.432 513.854 11.926 242.086 58.507 
Load Vector Generation 0.060 0.001 98.333 0.016 73.333 
Displacement Solution 25.861 12.737 50.748 19.021 26.449 
Stress Calculation 231.530 116.070 49.868 128.755 44.389 
Total 1191.619 836.059 29.838 596.445 49.947 

 

Table 10: Comparison of run times for nonlinear collapse analysis of panel L10 subjected to 
combined normal pressure and transverse compression 

Prefix: panel_01_2LC Model Size: Node=4503, Element=4368 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 239.638 152.220 36.479 148.306 38.112 
Assembly & Decomposition 457.505 400.314 12.501 161.739 64.648 
Load Vector Generation 0.800 0.018 97.750 0.016 98.000 
Displacement Solution 25.299 10.814 57.255 13.493 46.666 
Stress Calculation 146.893 69.689 52.558 78.238 46.738 
Total 890.375 635.769 28.595 404.216 54.602 
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Figure 7: Coarse finite element model of panel FB6 

 

 
Figure 8: Refined finite element model of panel FB6 
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Figure 9: Further refined finite element model of panel FB6 

 

 
Figure 10: Final collapse mode of panel FB6 subjected to transverse compression 
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Figure 11: Transverse load-shortening curve of panel FB6 

 

 
Figure 12: Original un-deformed finite element model of panel L10 
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Figure 13: Final collapse mode of panel L10 subjected to axial compression 

 

 
Figure 14: Load-shortening curve of panel L10 subjected to axial load 
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Figure 15: Final collapse model of panel L10 subjected to combined normal pressure and 

transverse compression 

 
Figure 16: Transverse load-shortening curve obtained for combined pressure and transverse 

compression. The initial displacement was due to the pressure load 
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Table 11: Comparison of run times for linear analysis of a submarine compartment model 

Prefix: Comp2_hull_lin (L) Model Size: Node=20965, Element=24281 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 3.274 1.240 62.126 1.248 61.881 
Assembly & Decomposition 41.302 40.340 2.329 6.833 83.456 
Load Vector Generation 1.623 0.035 97.843 0.047 97.104 
Displacement Solution 1.220 0.951 22.049 1.061 13.033 
Stress Calculation 1.395 0.927 33.548 1.186 14.982 
Total 48.851 43.524 10.905 10.405 78.701 

 

Table 12: Comparison of run times for nonlinear collapse analysis of the submarine model 

Prefix: Comp2_hull (NL) Model Size: Node=20965, Element=24281 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 2375.122 807.289 66.011 796.111 66.481 
Assembly & Decomposition 11737.926 11575.470 1.384 1789.394 84.755 
Load Vector Generation 1.716 0.034 98.019 0.047 97.261 
Displacement Solution 135.345 93.140 31.183 90.904 32.835 
Stress Calculation 2030.488 667.721 67.115 664.836 67.257 
Total 16382.465 13148.370 19.741 3344.927 79.582 

 

Table 13: Comparison of run times for linear analysis of a full submarine model 

Prefix: Comp1234_LS (L) Model Size: Node=101893, Element=133529 
 
Module 

Original 
VAST 

Improved 
Database only 

Improved 
Database & Solver 

Time (s) Time (s) Red (%) Time (s) Red (%) 
Element Generation 55.782 5.725 89.737 5.567 90.020 
Assembly & Decomposition 344.468 345.306 -0.243 Stopped  
Load Vector Generation 10.233 2.231 78.198   
Displacement Solution 3.994 Stopped    
Stress Calculation 6.100     
Total 421.295     
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Figure 17: Original un-deformed finite element model of a submarine compartment 

 

 
Figure 18: Final collapse mode of the submarine compartment model 
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Figure 19: Load-displacement curve at a node in the middle of the buckled area 

 
Figure 20: Full submarine model including pressure hull and internal structures 
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4 Conclusions 

The report described recent development and implementation of an in-core database for VAST. 
The database was developed based on the C++ Standard Template Library (STL) generic data 
structures and contained a set of Application Programming Interface (API) functions that allowed 
the database to be accessed from a Fortran program, like VAST. In order to minimize the number 
of the API functions and to allow easy expansion of the database in the future, the arguments of 
the API functions have been designed to simply contain integer and real arrays, rather than more 
specific data types related to certain element formulations or material/geometric properties. 

Implementation of the database in VAST has required significant restructuring of the program. In 
particular, a pre-processor module, named PREPR1, was developed to read all the input data and 
store them into the database through the use of the API functions. During the VAST calculations, 
all the finite element model information, such as nodes, elements, material/geometric properties, 
boundary conditions and loads, and the intermediate results, such as the current displacement and 
stresses, are repeatedly stored and retrieved to and from the database. This treatment of data flow 
eliminated a large amount of I/O operations in the original version of VAST and resulted in a 
large savings on computation time. In order to demonstrate the full potential for speeding up 
VAST, the newly improved sparse solver was also incorporated. 

At the present time, this new version of VAST contained two most commonly used elements in 
VAST, namely 2-noded general beam and 4-noded quad shell elements. However, all linear and 
nonlinear static analyses options were operational. It has been verified and benchmarked using 
test problems of different sizes, ranging from small test models taken from the standard VAST 
Autotester to relatively large models previously utilized for practical nonlinear collapse analyses 
of submarine pressure hull. The benchmark results indicated that by combining the new database 
and the new sparse solver, the overall speed of VAST was increased by a factor of five for 
practical engineering problems. 

This work clearly demonstrates the potential for making VAST highly efficient by using a 
database and improved sparse solver. However, the current API version of VAST only provides 
limited capabilities and is capable of solving relatively small problems because both the database 
and the new sparse solver operated purely in memory on a 32-bit operating system. Significant 
efforts are still required to generate a fully functional version of VAST. These may include efforts 
for exploring the methods for further efficiency improvements, removing the limit on model size, 
and to providing all computational capabilities currently supported by VAST. The current API 
version of VAST is ideal for being used as a test bed for many of these investigations. 

In order to achieve this goal, the following tasks are recommended: 

 Expand the database to include out-of-core processing using the Hierarchical Data 
Format version 5 (HDF5) or other suitable technology and benchmark the performance. 

 Parallelize element formulation, global matrix assembly and stress calculation using 
OpenMP. 

 Complete the improved sparse solver by expanding it to 64-bit, providing an out-of-core 
option and speeding up forward reduction and backward substitution. 
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