

Improving Computational Efficiency of
VAST

Lei Jiang and Tom Macadam

Martec Limited

Prepared By:
Martec Limited
400-1800 Brunswick Street
Halifax, Nova Scotia
B3J 3J8 Canada

Contract Project Manager: Lei Jiang, 902-425-5101 Ext 228
Contract Number: W7707-125422/001/HAL CU09
CSA: Malcolm J Smith, 902-426-3100 Ext 383

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the
contents do not necessarily have the approval or endorsement of the Department of National Defence of Canada.

Contract Report

MARTEC TR-13-42
September 2013

DRDC-RDDC-2014-C34

Principal Author

Lei Jiang

Senior Research Engineer

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

MARTEC TR-13-42 i

Abstract ……..

This report describes development and implementation of an in-core database in the VAST finite
element program. The database was developed based on the C++ Standard Template Library
(STL) generic data structures and a set of Application Programming Interface (API) functions
were provided to allow access from Fortran. The arguments of the API functions were designed
to be of a generic format, to minimize the number of functions and permit easy future expansion.
Implementation of the database required significant restructuring of VAST code. A pre-processor
module, named PREPR1, was developed to import all the input data and store them into the
database. During the VAST executions, the database was not only used as the source of the finite
element model data, but also used as the temporary storage of many of the intermediate results.
This treatment of data flow eliminated a large amount of I/O operations in the original VAST
program and resulted in very significant savings on the computation time. The resulting version
of VAST has been extensively verified and benchmarked using test problems of different sizes
and the benchmark results have indicated that by combining the new database and the new sparse
solver, the overall speed of VAST was increased by a factor of five for engineering problems.
The current API version of VAST has some limitations, such as limited element types and
analysis capabilities as well as a size limit on the finite element model. Further tasks are
recommended for removing these limitations.

ii MARTEC TR-13-42

This page intentionally left blank.

MARTEC TR-13-42 iii

Executive summary

Improving Computational Efficiency of VAST:

Introduction: VAST is a general-purpose nonlinear finite element solver program developed and
maintained by Martec over the past four decades under the sponsorship of DRDC Atlantic and
has been adopted as the built-in default finite element solver in a number of structural analysis
packages, such as Trident, SubSAS and CRS STRUC. In addition, the VAST has been used to
support development of customized solutions, such as systems for analyzing the mast structure on
naval vessels (MAST), propeller structural loading (PVAST) and ultimate strength analysis
(UltSAS). VAST was originally developed in the early 1970s, and designed to solve large
problems on small (low RAM) single CPU machines. In order to achieve this goal, VAST was
purposely structured in modules which communicated through disk files, resulting in a very large
volume of I/O operations which significantly degraded the computational efficiency. Two
approaches can be taken to improve the computational efficiency. One is to implement the
modern parallel techniques, and the other is to optimize the data flow by minimizing the I/O
operations. The second approach was addressed in the present work.

Results: An in-core database was developed and implemented in VAST. This database was
developed based on the C++ Standard Template Library (STL) generic data structures and a set of
Application Programming Interface (API) functions were provided to permit access from a
Fortran program. The arguments of the API functions were designed to be of a generic format, to
minimize the number of functions and permit easy future expansion. The VAST program was
significantly restructured to accommodate the new database, including development of a pre-
processor module, named PREPR1. During the VAST executions, the database was not only used
as the source of the finite element model data, but also used as the temporary storage of many of
the intermediate results. The resulting version of VAST was extensively tested and benchmarked
using problems of different sizes and the benchmark results have indicated that by combining the
new database with the newly improved sparse solver, the overall speed of VAST was increased
by a factor of five in practical engineering analyses.

Significance: The benchmark results clearly demonstrated the potential for generating a highly
efficient version of VAST in the future by adopting a properly designed database and using the
improved sparse solver. These findings provide directions for future investigations on efficiency
improvement. In particular, the current API version is ideal for use as a test bed for these
explorations.

Future plans: Although it has been demonstrated that the present API version of VAST was very
efficient, it only provides limited capabilities and is only capable of solving relatively small
problems. A number of tasks for future investigation have been recommended. These included
expanding the database to include out-of-core processing; parallelizing modules such as element
formulation, matrix assembly and stress calculations, and improving the robustness of the new
sparse solver. Once these problems are resolved successfully, all the capabilities provided in the
full version of VAST need to be imported to the highly efficient API version.

iv MARTEC TR-13-42

This page intentionally left blank.

MARTEC TR-13-42 v

Table of contents

Abstract …….. ... i
Executive summary .. iii
Table of contents ... v
List of figures ... vi
List of tables .. vii
1 Introduction ... 1
2 Development and Implementation of a Database for VAST .. 3

2.1 Development of API functions .. 3
2.2 Implementation of API functions .. 7
2.3 Limitations of the present API version of VAST .. 9

3 Verification and Benmarking of API Version of VAST .. 10
3.1 Small test cases from VAST Autotester .. 10
3.2 Mid-sized test cases of stiffened panels .. 10
3.3 Larger test cases of submarine structures .. 11

4 Conclusions ... 25
References 26

vi MARTEC TR-13-42

List of figures

Figure 1: Model of data exchange between VAST and the database .. 4

Figure 2: Main structure of VAST with the new database .. 7

Figure 3: Original and deformed configurations for test case CS03B which involved snap-
through of a simply supported shallow arch subjected to a centre point load 13

Figure 4: Load-centre deflection curves obtained for test case CS03B using large and small
solution steps ... 13

Figure 5: Original and deformed configurations for test case CS05B which involved a hinged
shallow spherical shell subjected to a centre point load .. 14

Figure 6: Load-centre deflection curves obtained for test cases CS05B and CS05H which
involved bi-linear and multi-linear stress-strain behaviours, respectively 14

Figure 7: Coarse finite element model of panel FB6 ... 17

Figure 8: Refined finite element model of panel FB6 ... 17

Figure 9: Further refined finite element model of panel FB6 .. 18

Figure 10: Final collapse mode of panel FB6 subjected to transverse compression 18

Figure 11: Transverse load-shortening curve of panel FB6 .. 19

Figure 12: Original un-deformed finite element model of panel L10 ... 19

Figure 13: Final collapse mode of panel L10 subjected to axial compression 20

Figure 14: Load-shortening curve of panel L10 subjected to axial load 20

Figure 15: Final collapse model of panel L10 subjected to combined normal pressure and
transverse compression ... 21

Figure 16: Transverse load-shortening curve obtained for combined pressure and transverse
compression. The initial displacement was due to the pressure load 21

Figure 17: Original un-deformed finite element model of a submarine compartment 23

Figure 18: Final collapse mode of the submarine compartment model ... 23

Figure 19: Load-displacement curve at a node in the middle of the buckled area 24

Figure 20: Full submarine model including pressure hull and internal structures 24

MARTEC TR-13-42 vii

List of tables

Table 1: List of API functions for VAST database ... 5

Table 2: Comparison of run times for test case CS03B... 12

Table 3: Comparison of run times for test case CS05B... 12

Table 4: Comparison of run times for test case CS05H .. 12

Table 5: Comparison of run times for coarse FE model of stiffened panel FB6 15

Table 6: Comparison of run times for refined FE model of panel FB6 ... 15

Table 7: Comparison of run times for further refined FE model of panel FB6 15

Table 8: Comparison of run times for nonlinear collapse analysis of panel FB6 subjected to
compression in the transverse direction .. 16

Table 9: Comparison of run times for nonlinear collapse analysis of panel L10 subjected to
compression in the axial direction ... 16

Table 10: Comparison of run times for nonlinear collapse analysis of panel L10 subjected to
combined normal pressure and transverse compression ... 16

Table 11: Comparison of run times for linear analysis of a submarine compartment model 22

Table 12: Comparison of run times for nonlinear collapse analysis of the submarine model 22

Table 13: Comparison of run times for linear analysis of a full submarine model 22

viii MARTEC TR-13-42

This page intentionally left blank.

MARTEC TR-13-42 1

1 Introduction

VAST is a general-purpose nonlinear finite element solver program developed and maintained by
Martec over the past four decades under the sponsorship of DRDC Atlantic [1]. The current
version of VAST provides a large selection of element formulations, material models and analysis
options. These computational capabilities have been extensively verified and validated using
analytical and experimental results and have been utilized successfully in numerous practical
engineering analyses, such as plastic collapse of submarine pressure hulls and crack initiation and
propagation in various naval structures. At the present time, VAST has been adopted as the built-
in default finite element solver in a number of structural analysis packages, such as Trident,
SubSAS and CRS STRUC. In addition, the VAST program has been used to support development
of customized solutions not possible with commercial codes. Examples include development of
systems for analyzing the mast structure on naval vessels (MAST), propeller structural loading
(PVAST) and ultimate strength analysis (UltSAS).

VAST was originally developed in the early 1970s, and designed to solve large problems on
small (low RAM) single CPU machines. In order to achieve this goal, VAST was purposely
structured in modules. Each module performed a particular step in finite element analyses, such
as element matrix formulation, assembly and decomposition of the global stiffness matrix,
generation of load vectors, solution of displacement vectors and evaluation of element stresses. In
order to permit restart between the modules, large volume of intermediate results from the finite
element calculations were stored on disk files, resulting in huge amounts of I/O operations which
significantly degraded the computational efficiency. With the advent of multi-core symmetric
processor (SMP) machines and the significant increases in RAM, especially on the 64-bit
architecture, it is now possible to modernize VAST to utilize this large increase in computing
power to solve problems that are increasingly demanding.

Two approaches can be taken to improve the computational efficiency of a finite element code,
like VAST. One is to implement the modern parallel techniques, such as the OpenMP and MPI, to
speed up the generation of element matrices, solution of linear algebraic equations and evaluation
of stresses. These requirements have been partially addressed through parallelization of the direct
sparse matrix solver [2,3].

The other modifications required for VAST include optimization of its data flow by minimizing
the I/O operations. This requires development and implementation of a highly efficient database
for VAST by taking advantage of the massive RAM space potentially available on computers
running a 64-bit operation system. This data structure will hold the input information, the
intermediate results and the solutions mostly in memory during finite element computations, so
that the disk I/O operations are only performed when they are absolutely necessary. The
elimination of unnecessary disk I/O is expected to significantly improve the efficiency of VAST,
especially for nonlinear analyses where extensive I/O operations are used in current version of
VAST to facilitate the Newton-Raphson iterations. The present contract is the first attempt to
optimize the data flows in VAST for improved efficiency.

Three objectives to be accomplished in the present contract are:

2 MARTEC TR-13-42

1. Develop an in-core data structure for VAST. This data structure will be highly efficient
and fit naturally into the overall operations in the VAST program. In the meantime, it will be
sufficiently general to support all element types, material models and analysis capabilities
currently provided in VAST and will be expandable to permit future developments of new VAST
capabilities.

2. Implement the data structure into VAST. The database is accessible from the Fortran
code though a set of API functions. In order to maximize benefit from the new data structure, the
VAST program will be restructured. The initial implementation will focus on the most commonly
used element types in ship structure analyses, including 2-noded beam and 4-noded quadrilateral
shell elements. Both linear and nonlinear static analysis capabilities will be provided.

3. Verify and benchmark the new version of VAST. Upon completion, the new version of
VAST with the data structure will be extensively verified using the standard test cases from the
VAST Autotester and larger finite element problems utilized in previous practical engineering
analyses. The computational efficiency of the improved version will be benchmarked against that
of the original version of VAST.

In this report, the development of the database and its implementation in VAST will be discussed
in the next chapter. The results of verification and benchmark of the new version of VAST are
presented in Chapter 3. The conclusions and recommendations for future work are outlined in
Chapter 4.

MARTEC TR-13-42 3

2 Development and Implementation of a Database for
VAST

2.1 Development of API functions

During this phase of the project, work was undertaken to restructure the VAST source code so
that all reading and writing of model data was directed through a single collection of subroutines.
This collection of subroutines was termed the VAST Data Application Programming Interface
(referred to as the API in the remainder of this document). The purpose of restructuring VAST
and introducing the API was to collect and isolate the details concerning storage of model data
behind a static subroutine interface so that changes could be made to the storage mechanism
without affecting the rest of the VAST code beyond the API layer (see Figure 1). Primarily, these
changes to VAST separated data flow involved in finite element analyses from the actual
computations. It not only eliminated a large number of I/O operations, but also permitted further
optimization of algorithmic operations. Secondly, the work improved the modularity of VAST so
that different parts could undergo major changes independently. Thirdly, it focused all data access
to the API, thereby making it easier to add logging and instrumentation in a central location to
track data access patterns and performance.

The first part of this work comprised defining the API functions and their associated parameters.
A complete list of the current API subroutines is given in Table 1. In order to keep the number of
subroutines in the API low, it was decided that the subroutines would not be parameterized on
specific types of model entities, but rather on overall categories of entities. For instance, rather
than a variety of subroutines to set property data for each type of finite elements, there was one
generic subroutine to set property data for all element types. To accommodate this strategy, the
subroutines accepted most arguments as arrays of generic integer or floating point data. It was up
to VAST to load/unload the values from these arrays and to establish/re-establish their intended
meaning. Not only did this result in fewer generic subroutines comprising the API, but it also
promoted consistency and reuse of generic data patterns for storing the data below the API layer.

Once the API layer subroutines were fixed, a means to store the data being passed through the
subroutines had to be put in place. For this phase of the project, an entirely in-core storage system
was devised. A survey of reusable native Fortran data structures was undertaken, but yielded a
poor selection of options. As such, it was decided to use the C++ Standard Template Library
(STL) [4] generic data structures through an inter-language wrapper layer. Since most data could
be mapped to key-value pairs (integer keys, array values), the STL hash table container,
unordered_map<>, was used. Though mixing the languages in this way was recognized as not
ideal, it was felt that the flexibility and robustness benefits of the STL outweighed any small
overhead incurred calling through the wrapper layer.

Once the data being passed through the API was being stored and successfully retrieved, the
prototype API was effectively complete. All areas in VAST that had previously written and
retrieved data directly to/from files were updated to make use of the appropriate API subroutines.
The correctness of the API functions was confirmed by test problems to be discussed later in this
report. Because the storage system implemented in this Phase of the work was entirely in-core, it

4 MARTEC TR-13-42

exhibited comparatively high performance, but it was recognized this came at the cost of data
volatility and model size limitations.

The next phase of the API development proposes to replace the in-core data storage with an out-
of-core mechanism to allow for even larger model sizes and to provide for data persistence. Some
initial research into methods used to efficiently store and retrieve large-scale numerical data from
secondary storage (i.e. disk) has pointed towards the field of Scientific Data Formats. In short,
these data formats are purpose-built, mainly by scientists and researchers, to efficiently work with
vast volumes of dense numerical data. Various precedents have been set for using such data
formats for storage of finite element analysis data [5] [6]. Early indications pointed towards the
Hierarchical Data Format version 5 (HDF5) [7] as the most suitable format for consideration
owing to its generality, maturity and widespread adoption. Some initial work has been done in
parallel to this project to explore the format and try to identify an optimal storage arrangement to
support the API version of VAST [8]. It is proposed to continue this work and further explore
possible HDF5-based formats already tailored for FE data.

Figure 1: Model of data exchange between VAST and the database

Future WorkCurrent Work

VAST SOLVER

VAST Data API

Out-of-core
(persistent)

storage

In-core
(volatile)
storage

Cache

MARTEC TR-13-42 5

Table 1: List of API functions for VAST database

api_initialize(int& ierr);
api_terminate(int& ierr);
api_dumptocout(int& ierr);

get_node(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
get_node_e(int& eid_m, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr) { }
set_node(int& id_m, int& eid_m, int& ni, int* iarray, int& nr, double* rarray, int& ierr) { }

get_mat (int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_mat (int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_prop(int& id_p, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_prop(int& id_p, int& ni, int* iarray, int& nr, double* rarray) { }

get_elem_main(int& id_e, int& ni, int*& iarray, int& nr, double*& rarray) { }
get_elem_main_e(int& eid_e, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr) { }
set_elem_main(int& id_e, int& eid_e, int& ni, int* iarray, int& nr, double* rarray, int& ierr) { }

get_elem_aux (int& id_e, int& ni, int*& iarray, int& nr, double*& darray) { }
set_elem_aux (int& id_e, int& ni, int* iarray, int& nr, double* darray) { }

get_elem_strs(int& id_e, int& ni, int*& iarray, int& nr, double*& darray) { }
set_elem_strs(int& id_e, int& ni, int* iarray, int& nr, double* darray) { }

get_elem_strs_i(int& id_e, int& ni, int*& iarray, int& nr, double*& darray) { }
set_elem_strs_i(int& id_e, int& ni, int* iarray, int& nr, double* darray) { }

get_elem_temp(int& id_e, int& ni, int*& iarray, int& nr, double*& darray) { }
set_elem_temp(int& id_e, int& ni, int* iarray, int& nr, double* darray) { }

get_elem_intf(int& id_e, int& ni, int*& iarray, int& nr, double*& darray) { }
set_elem_intf(int& id_e, int& ni, int* iarray, int& nr, double* darray) { }

get_cons_spc (int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_cons_spc (int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_cons_mpc (int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_cons_mpc (int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_cons_rlnk(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_cons_rlnk(int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_cons_rbe3(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_cons_rbe3(int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_mass_lump(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_mass_lump(int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_strs(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_strs(int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

6 MARTEC TR-13-42

Table 1 (Cont’d): List of API functions for VAST database

get_load_elem(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
get_load_elem_e_num(int& eid_m, int& num) { }
get_load_elem_e(int& eid_m, int& idx, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr) { }
set_load_elem(int& id_m, int& eid_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_load_conc(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
get_load_conc_e_num(int& eid_m, int& num) { }
get_load_conc_e(int& eid_m, int& idx, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr) { }
set_load_conc(int& id_m, int& eid_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_load_prdp(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
get_load_prdp_e_num(int& eid_m, int& num) { }
get_load_prdp_e(int& eid_m, int& idx, int& ni, int*& iarray, int& nr, double*& rarray, int& ierr) { }
set_load_prdp(int& id_m, int& eid_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_load_glob(int& id_m, int& ni, int*& iarray, int& nr, double*& darray) { }
set_load_glob(int& id_m, int& ni, int* iarray, int& nr, double* darray) { }

get_load_thrm(int& id_m, int& ni, int*& iarray, int& nr, double*& darray) { }
set_load_thrm(int& id_m, int& ni, int* iarray, int& nr, double* darray) { }

get_load_intf(int& id_m, int& ni, int*& iarray, int& nr, double*& darray) { }
set_load_intf(int& id_m, int& ni, int* iarray, int& nr, double* darray) { }

get_load_timf(int& id_m, int& ni, int*& iarray, int& nr, double*& rarray) { }
set_load_timf(int& id_m, int& ni, int* iarray, int& nr, double* rarray) { }

get_disp(int& id_m, int& ni, int*& iarray, int& nr, double*& darray) { }
set_disp(int& id_m, int& ni, int* iarray, int& nr, double* darray) { }

get_disp_i(int& id_m, int& ni, int*& iarray, int& nr, double*& darray) { }
set_disp_i(int& id_m, int& ni, int* iarray, int& nr, double* darray) { }

get_mode(int& id_m, int& ni, int*& iarray, int& nr, double*& darray) { }
set_mode(int& id_m, int& ni, int* iarray, int& nr, double* darray) { }

MARTEC TR-13-42 7

2.2 Implementation of API functions

The flowchart in Figure 2 below shows the main structure of the version of VAST with the new
database. In this figure, the blue lines and arrows indicate the sequence of execution of different
computational modules in VAST, whereas the red lines and arrows indicate the data flow in and
out of the memory-based database. For nonlinear analyses, the modules are executed repeatedly
for each equilibrium iteration in each solution step, until the analysis is completed.

The implementation of the database required substantial restructuring of the VAST program. The
very first step for implementing the new database was to develop a pre-processor module, named
PREPR1, which read all the VAST input files and stored the information in the database. These
VAST files included the finite element model geometry (GOM), the boundary conditions (SMD),
the load definitions (LOD), the lumped masses (MAS) and the solution control data (USE) file.
The API functions started with set_ were utilized to pass data to the database. All the solution
control parameters were treated as global variables and kept in a central common block. Once the
database was populated, the text input data files were no longer required and all further operations
of VAST were performed based on the database.

Figure 2: Main structure of VAST with the new database

PREPR1

ELEMS1

DECOM5

LOAD1

DISP1

STRESS

END

DATABASE

Ite
ra

tio
n

lo
op

So
lu

tio
n

st
ep

 lo
op

8 MARTEC TR-13-42

In element module ELEMS1, element matrices were generated using the nodal coordinates,
material properties and geometric properties extracted from the database. These were achieved by
using API functions get_node, get_elem_main, get_mat and get_prop. The element matrices
were then passed to the sparse solver through the Fortran/C++ interface as in the previous version
of VAST. It should be noted that in the new database, nodes and elements can be accessed
through either internal or external IDs. This arrangement provides a convenient means for VAST
to perform analyses using models for other finite element programs, such as NASTRAN, where
the external node and element IDs were normally used. For nonlinear analyses, geometric
stiffness matrix and interface vector for each element were generated by using the most recently
updated stresses and the other material variables extracted from the database via get_elem_strs.
For the first iteration in each solution step, these stresses and material variables were stored back
onto the database through set_elem_strs_i as they were required in subsequent iterations of the
current load step. In addition, some intermediate results that were formulated during element
generation and also required later in stress calculations were also saved on the database using
set_elem_aux.

In assembly and decomposition module DECOM5, the boundary conditions and other constraint
equations, such as the multi-point constraints and rigid links were retrieved from the database.
This was accomplished by calling API functions get_cons_spc, get_cons_mpc and cons_rlnk.
These constraint equations resulted in additional stiffness terms for the global stiffness matrix and
these terms were passed to the sparse solver as in the previous version of VAST. Matrix assembly
and factorization were then performed by the sparse solver. There was no information to be
written back onto the database from this module.

In the load module LOAD1, equivalent nodal force vectors were formulated using the
concentrated forces, element pressures and prescribed displacements stored in the database. This
load information was retrieved using functions get_load_conc, get_load_elem and
get_load_prdp. Similar to the storage for nodes and elements in the database, the load entries
were also associated with internal and external IDs. This permitted efficient search of the load
data for a given set of load cases through the application of hash functions. Once the global nodal
force vectors were created, they were stored back onto the database via set_load_glob.

The displacement module DISP1 computed nodal displacements using the equivalent global
nodal force vectors extracted from the database using get_load_glob. These load vectors were
passed to the sparse solver through the Fortran/C++ interface and the sparse solver returned the
corresponding displacement vectors. These displacements were then stored in the database using
set_disp for stress calculations. For nonlinear analyses, the most recent global internal force
vector was formed by first extracting the element internal force vectors using get_elem_intf and
then assembling them into a global vector. This global internal force vector was also stored in the
database using set_load_intf. In order to make the original and modified arc-length methods
operational, the incremental displacements in the current solution step and current iteration must
be saved in the database. These were achieved by using API functions set_disp and set_disp_i,
respectively. In the meantime, the displacement vectors were also permanently stored on disk file
Prefx.V52.

In the STRESS module, both the displacement vectors and the element information, such as node
coordinates, element connectivity, material and geometric properties, were extracted from the
database. The element stress matrices were then formulated and the stresses were calculated. The

MARTEC TR-13-42 9

calculated stresses were stored in the database through set_elem_strs and on disk file Prefx.V53
as a user option. Some matrices which were generated as intermediate results in element matrix
formulations were also imported from the database through get_elem_aux and used in stress
calculations. For nonlinear analyses involving elastic-plastic material behaviour, the stresses and
plastic variables at the beginning of the current step were required for properly integrating the
constitutive relation. In this case, these initial stresses and initial values of the plastic variables
were obtained from the database by calling get_elem_strs_i.

Due to the implementation of the database, almost all of the intermediate binary files required by
VAST were eliminated. The benchmark results to be presented later in this report indicated that
the elimination of the I/O operations resulted in dramatic improvement on the computational
efficiency of VAST.

2.3 Limitations of the present API version of VAST

The present API version of VAST contained two element types, 2-noded general beam and 4-
noded quad shell elements. These elements were selected because they were the most commonly
used elements in submarine modelling and were supported by SubSAS. Once fully verified, this
highly efficiency API version of VAST would be ready for being used to replace the existing
version of VAST in SubSAS.

In addition to the limited element library, the present API version of VAST was also restricted to
linear and nonlinear quasi-static analyses. However, it permitted the full line of nonlinear material
types, such as the elastic-plastic material models with bi-linear and piecewise linear stress-strain
curves. All the nonlinear solution algorithms, including the orthogonal trajectory and modified
arc-length methods, were supported. Some useful features for nonlinear collapse analyses, such as
automatic restart and automatic adjustment of solution step, were also maintained. However,
other analysis capabilities supported by the full version of VAST would have to be implemented
in the future.

Besides the implementation of the database, the recently improved sparse direct matrix solver
based on the super-node technology [2] was also incorporated. The improved sparse solver could
be invoked by a new solution control parameter, IPARL. When IPARL>1, the new sparse solver
would be activated. If IPARL=1, the original sparse solver would be utilized.

Although the present API version of VAST only provides limited capabilities, it is ideally suitable
for use as a test-bed to explore various approaches for further speeding up its execution. This is
partially due to the simplicity of its current code structure. The subjects of exploration should
include parallelization of element generation, matrix assembly, load calculation and stress
evaluation. In addition, in order to solve larger problems, the database needs to be expanded to
use combined in-core and out-of-core operations. These issues will be discussed in more detail in
the final chapter of the report.

10 MARTEC TR-13-42

3 Verification and Benmarking of API Version of VAST

3.1 Small test cases from VAST Autotester

The first set of test cases contained three small test problems chosen from the VAST Autotester
[9]. Among them, CS03B involved nonlinear collapse of a simply-supported shallow arch under a
centre concentrated force, whereas CS05B and CS05H dealt with collapse of a hinged shallow
spherical shell subjected to a load at the pole. All three test cases involved elastic-plastic material
model, but CS05B used a bi-linear stress-strain relation and both CS03B and CS05H used piece-
wise stress-strain curves. Both the displacement control and the orthogonal trajectory methods
were employed to obtain the complete nonlinear solutions.

The run times summarized in Tables 2-4 suggested that the combination of the new database and
the improved sparse solver resulted in a consistent 20% reduction of the total run time for these
small problems. However, due to their small sizes, these problems were not suitable for
benchmarking the speed, but ensuring the correctness of the nonlinear solutions. In the present
work, the results from the API version of VAST were carefully compared with those generated by
the full version of VAST. The results were found to be identical. The deformed configurations
and load-displacement curves obtained for these test cases are presented in Figures 3-6.

3.2 Mid-sized test cases of stiffened panels

The second group of test cases involved stiffened panel structures subjected to various load cases.
These panels were analyzed previously in a number of LR internal projects [10,11], so the sizes
of the finite element models were consistent with those utilized in practical collapse analyses. In
the present study, we first performed a series of linear elastic analyses of panel FB6 using models
of different levels of refinement shown in Figures 7-9. The results presented in Tables 5-7 clearly
indicate that use of the new database and the improved sparse solver result in more significant
savings on larger models. For models of 4,000 to 50,000 nodes, 50% to 70% reduction of total
run time was obtained which corresponded to speed-up by factors of 2 to 3. Once again, the
results from all versions of VAST were identical.

Following the linear elastic analyses, the plastic collapse behaviour of panel FB6 under uniform
compression in the transverse direction was computed. The final deformed configuration and the
transverse load-shortening curve are presented in Figures 10 and 11, respectively. The results
from all VAST analyses were identical. The time results in Table 8 indicated a 50% saving on
total run time which was consistent with the figure observed in linear elastic analysis (in Table 5).

The second stiffener panel considered was the L10 panel which involved L-shaped stiffeners as
shown in Figure 12. Nonlinear collapse analysis of this panel under axial load was performed
using different versions of VAST and the predicted final collapse mode and the load-shortening
curve are presented in Figures 13 and 14, respectively. Due to the extremely strong nonlinearity
in this problem, the nonlinear algorithm failed to converge near the limit load, but the automatic
restart capability was invoked to continuously reduce the solution step until convergence was
achieved successfully. The results from all versions of VAST were identical and times taken by
these runs are compared in Table 9, where a 50% reduction on total run time is also obtained.

MARTEC TR-13-42 11

The final test case of stiffener panel also involved panel L10, but this time, a pressure was first
applied to the structure to generate initial deformations. While this pressure was maintained at a
constant level, a uniform transverse compressive stress was applied. This transverse stress was
then increased gradually until the panel collapsed. In order to accurately represent the loading
sequence, the applied pressure load and transverse stress must be arranged into different load
cases and were controlled by independent load parameters. At the beginning of the nonlinear run,
the pressure was activated and the load parameter was increased to the desired value. The active
load case was then switched to the transverse stress and the nonlinear analysis was restarted. The
purpose of this particular test case was utilized to verify the capability of the API version of
VAST for dealing with such a complicated loading history that involved multiple load cases.
Once again, the results from all versions of VAST were found to be identical. The final collapse
mode and the transverse load-displacement curve are presented in Figures 15 and 16. It should be
noticed that the flat part at the beginning of the load-displacement was due to the deformations
caused by the pressure which was applied prior to the application of the transverse stress. The
times taken by each of the VAST runs are compared in Table 10, where a reduction of 55% was
observed.

3.3 Larger test cases of submarine structures

In order to benchmark the performance of the various versions of VAST for large finite element
problems, linear and nonlinear analyses of a submarine compartment was conducted. The model
utilized in these analyses was generated by using SubSAS in a previous DRDC contract [12] and
composed of 4-noded shell and 2-noded beam elements as shown in Figure 17. The times taken
by the various versions of VAST for linear elastic and nonlinear plastic collapse analyses are
summarized in Tables 11 and 12, respectively. These results indicate that for models used in
practical analyses of submarine structures, use of the new database alone resulted in over 66%
savings in element and stress modulus and an 80% reduction on total run time could be achieved
by using the new database and the improvement sparse solver. This corresponded to a speed-up
by factor of five. The final collapse mode of the pressure hull and the load-radial displacement
curve obtained by VAST are displayed in Figures 18 and 19, respectively. The solutions from all
VAST analyses were carefully compared and found to be identical.

For the purpose of identifying the upper limit of the problem size for the present API version of
VAST, we considered the full submarine model shown in Figure 20. This model included the
entire pressure hull and the major internal structures and contained over 100,000 nodes and over
130,000 elements. For finite element models of this size, the analysis using the original version of
VAST completed without any difficulty. However, when the API version was executed with the
original sparse solver, the run crashed in the displacement module when the sparse solver tried to
allocate memory for the global load vectors. The API VAST run using the improved sparse solver
crashed at the decomposition stage due to insufficient memory. This was because that improved
sparse solver operates purely in-core at the present time, so it cannot solve problems having more
than 70,000 nodes. The run times shown in Table 13 indicated that for the computation modules
successfully completed by the improved VAST, very substantial savings were observed for
modules that were completed successfully. For instance, the element formulation module was
speeded up by a factor of ten.

12 MARTEC TR-13-42

Table 2: Comparison of run times for test case CS03B

Prefix: CS03B (NL) Model Size: Node=21, Element=20

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 1.747 1.514 13.337 1.217 30.338
Assembly & Decomposition 0.499 0.818 -63.928 0.452 9.419
Load Vector Generation 0.031 0.022 29.032 0.000 100.000
Displacement Solution 0.780 0.683 12.436 0.624 20.000
Stress Calculation 1.139 0.756 33.626 0.577 49.342
Total 4.649 4.451 4.259 3.323 28.522

Table 3: Comparison of run times for test case CS05B

Prefix: CS05B (NL) Model Size: Node=91, Element=75

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 4.633 3.326 28.211 3.713 19.858
Assembly & Decomposition 1.045 1.077 -3.062 1.170 -11.962
Load Vector Generation 0.031 0.013 58.065 0.016 48.387
Displacement Solution 1.513 1.032 31.791 1.108 26.768
Stress Calculation 2.356 2.139 9.211 1.888 19.864
Total 10.795 8.642 19.944 8.892 17.629

Table 4: Comparison of run times for test case CS05H

Prefix: CS05H (NL) Model Size: Node=91, Element=75

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 8.725 5.582 36.023 6.162 29.375
Assembly & Decomposition 2.017 1.717 14.874 1.825 9.519
Load Vector Generation 0.023 0.008 65.217 0.000 100.000
Displacement Solution 2.606 1.481 43.170 1.934 25.787
Stress Calculation 5.966 4.457 25.293 5.070 15.018
Total 21.222 14.837 30.087 16.645 21.567

MARTEC TR-13-42 13

Figure 3: Original and deformed configurations for test case CS03B which involved snap-

through of a simply supported shallow arch subjected to a centre point load

Figure 4: Load-centre deflection curves obtained for test case CS03B using large and small

solution steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.5 1.0 1.5 2.0 2.5

Lo
ad

 P
ar

am
et

er

Centre Deflection (mm)

CS03B (du=0.25)

CS03B (du=0.025)

14 MARTEC TR-13-42

Figure 5: Original and deformed configurations for test case CS05B which involved a hinged

shallow spherical shell subjected to a centre point load

Figure 6: Load-centre deflection curves obtained for test cases CS05B and CS05H which

involved bi-linear and multi-linear stress-strain behaviours, respectively

-1

0

1

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Lo
ad

 P
ar

am
et

er

Centre Deflection

CS05B, bi-linear SS curve

CS05H, multi-linear SS curve

MARTEC TR-13-42 15

Table 5: Comparison of run times for coarse FE model of stiffened panel FB6

Prefx: panel_FB6 (L) Model Size: Node=3484, Element=3366

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 0.515 0.250 51.456 0.250 51.456
Assembly & Decomposition 1.186 1.139 3.963 0.577 51.349
Load Vector Generation 0.484 0.016 96.694 0.016 96.694
Displacement Solution 0.343 0.296 13.703 0.390 -13.703
Stress Calculation 0.390 0.343 12.051 0.343 12.051
Total 2.948 2.044 30.665 1.591 46.031

Table 6: Comparison of run times for refined FE model of panel FB6

Prefix: panel_FB6-f1 (L) Model Size: Node=13699, Element=13464

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 2.028 0.874 56.903 0.874 56.903
Assembly & Decomposition 7.675 7.129 7.114 2.590 66.254
Load Vector Generation 1.966 0.047 97.609 0.047 97.609
Displacement Solution 1.498 1.201 19.826 1.435 4.206
Stress Calculation 1.544 1.513 2.008 1.357 12.111
Total 14.726 10.780 26.796 6.334 56.988

Table 7: Comparison of run times for further refined FE model of panel FB6

Prefix: panel_FB6-f2 (L) Model Size: Node=54325, Element=53856

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 9.001 3.463 61.526 3.463 61.526
Assembly & Decomposition 52.089 50.591 2.876 11.107 78.677
Load Vector Generation 8.642 0.172 98.010 0.187 97.836
Displacement Solution 5.928 5.616 5.263 6.271 -5.786
Stress Calculation 6.256 5.382 13.971 5.460 12.724
Total 82.025 65.271 20.425 26.536 67.649

16 MARTEC TR-13-42

Table 8: Comparison of run times for nonlinear collapse analysis of panel FB6 subjected to
compression in the transverse direction

Prefix: panel_FB6 (NL) Model Size: Node=3484, Element=3366

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 224.168 147.473 34.213 146.738 34.541
Assembly & Decomposition 362.429 330.496 8.811 152.638 57.885
Load Vector Generation 0.500 0.016 96.800 0.018 96.400
Displacement Solution 24.257 11.285 53.477 13.866 42.837
Stress Calculation 156.696 68.116 56.530 78.559 49.865
Total 786.436 560.869 28.682 395.046 49.768

Table 9: Comparison of run times for nonlinear collapse analysis of panel L10 subjected to
compression in the axial direction

Prefix: panel_01_NL (NL) Model Size: Node=4503, Element=4368

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 323.356 189.698 41.335 203.186 37.163
Assembly & Decomposition 583.432 513.854 11.926 242.086 58.507
Load Vector Generation 0.060 0.001 98.333 0.016 73.333
Displacement Solution 25.861 12.737 50.748 19.021 26.449
Stress Calculation 231.530 116.070 49.868 128.755 44.389
Total 1191.619 836.059 29.838 596.445 49.947

Table 10: Comparison of run times for nonlinear collapse analysis of panel L10 subjected to
combined normal pressure and transverse compression

Prefix: panel_01_2LC Model Size: Node=4503, Element=4368

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 239.638 152.220 36.479 148.306 38.112
Assembly & Decomposition 457.505 400.314 12.501 161.739 64.648
Load Vector Generation 0.800 0.018 97.750 0.016 98.000
Displacement Solution 25.299 10.814 57.255 13.493 46.666
Stress Calculation 146.893 69.689 52.558 78.238 46.738
Total 890.375 635.769 28.595 404.216 54.602

MARTEC TR-13-42 17

Figure 7: Coarse finite element model of panel FB6

Figure 8: Refined finite element model of panel FB6

18 MARTEC TR-13-42

Figure 9: Further refined finite element model of panel FB6

Figure 10: Final collapse mode of panel FB6 subjected to transverse compression

MARTEC TR-13-42 19

Figure 11: Transverse load-shortening curve of panel FB6

Figure 12: Original un-deformed finite element model of panel L10

0

20

40

60

80

100

120

0 5 10 15 20 25

vo
n

M
is

es
 E

ffe
ct

iv
e

St
re

ss
 (M

Pa
)

Transverse Shortening (mm)

panel_FB6, trans load

20 MARTEC TR-13-42

Figure 13: Final collapse mode of panel L10 subjected to axial compression

Figure 14: Load-shortening curve of panel L10 subjected to axial load

0

25

50

75

100

125

150

175

200

225

0 5 10 15 20 25

vo
n

M
is

es
 E

ffe
ct

iv
e

St
re

ss
 (M

Pa
)

End Shortening (mm)

panel_01_NL

MARTEC TR-13-42 21

Figure 15: Final collapse model of panel L10 subjected to combined normal pressure and

transverse compression

Figure 16: Transverse load-shortening curve obtained for combined pressure and transverse

compression. The initial displacement was due to the pressure load

0

10

20

30

40

50

60

70

0 5 10 15 20 25

vo
n

M
is

es
 E

ffe
ct

iv
e

St
re

ss
 (M

Pa
)

Transverse Shortening (mm)

panel_L10, trans + pres

22 MARTEC TR-13-42

Table 11: Comparison of run times for linear analysis of a submarine compartment model

Prefix: Comp2_hull_lin (L) Model Size: Node=20965, Element=24281

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 3.274 1.240 62.126 1.248 61.881
Assembly & Decomposition 41.302 40.340 2.329 6.833 83.456
Load Vector Generation 1.623 0.035 97.843 0.047 97.104
Displacement Solution 1.220 0.951 22.049 1.061 13.033
Stress Calculation 1.395 0.927 33.548 1.186 14.982
Total 48.851 43.524 10.905 10.405 78.701

Table 12: Comparison of run times for nonlinear collapse analysis of the submarine model

Prefix: Comp2_hull (NL) Model Size: Node=20965, Element=24281

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 2375.122 807.289 66.011 796.111 66.481
Assembly & Decomposition 11737.926 11575.470 1.384 1789.394 84.755
Load Vector Generation 1.716 0.034 98.019 0.047 97.261
Displacement Solution 135.345 93.140 31.183 90.904 32.835
Stress Calculation 2030.488 667.721 67.115 664.836 67.257
Total 16382.465 13148.370 19.741 3344.927 79.582

Table 13: Comparison of run times for linear analysis of a full submarine model

Prefix: Comp1234_LS (L) Model Size: Node=101893, Element=133529

Module

Original
VAST

Improved
Database only

Improved
Database & Solver

Time (s) Time (s) Red (%) Time (s) Red (%)
Element Generation 55.782 5.725 89.737 5.567 90.020
Assembly & Decomposition 344.468 345.306 -0.243 Stopped
Load Vector Generation 10.233 2.231 78.198
Displacement Solution 3.994 Stopped
Stress Calculation 6.100
Total 421.295

MARTEC TR-13-42 23

Figure 17: Original un-deformed finite element model of a submarine compartment

Figure 18: Final collapse mode of the submarine compartment model

24 MARTEC TR-13-42

Figure 19: Load-displacement curve at a node in the middle of the buckled area

Figure 20: Full submarine model including pressure hull and internal structures

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 P
re

ss
ur

e

Radial Displacement (mm)

Comp2_hull

MARTEC TR-13-42 25

4 Conclusions

The report described recent development and implementation of an in-core database for VAST.
The database was developed based on the C++ Standard Template Library (STL) generic data
structures and contained a set of Application Programming Interface (API) functions that allowed
the database to be accessed from a Fortran program, like VAST. In order to minimize the number
of the API functions and to allow easy expansion of the database in the future, the arguments of
the API functions have been designed to simply contain integer and real arrays, rather than more
specific data types related to certain element formulations or material/geometric properties.

Implementation of the database in VAST has required significant restructuring of the program. In
particular, a pre-processor module, named PREPR1, was developed to read all the input data and
store them into the database through the use of the API functions. During the VAST calculations,
all the finite element model information, such as nodes, elements, material/geometric properties,
boundary conditions and loads, and the intermediate results, such as the current displacement and
stresses, are repeatedly stored and retrieved to and from the database. This treatment of data flow
eliminated a large amount of I/O operations in the original version of VAST and resulted in a
large savings on computation time. In order to demonstrate the full potential for speeding up
VAST, the newly improved sparse solver was also incorporated.

At the present time, this new version of VAST contained two most commonly used elements in
VAST, namely 2-noded general beam and 4-noded quad shell elements. However, all linear and
nonlinear static analyses options were operational. It has been verified and benchmarked using
test problems of different sizes, ranging from small test models taken from the standard VAST
Autotester to relatively large models previously utilized for practical nonlinear collapse analyses
of submarine pressure hull. The benchmark results indicated that by combining the new database
and the new sparse solver, the overall speed of VAST was increased by a factor of five for
practical engineering problems.

This work clearly demonstrates the potential for making VAST highly efficient by using a
database and improved sparse solver. However, the current API version of VAST only provides
limited capabilities and is capable of solving relatively small problems because both the database
and the new sparse solver operated purely in memory on a 32-bit operating system. Significant
efforts are still required to generate a fully functional version of VAST. These may include efforts
for exploring the methods for further efficiency improvements, removing the limit on model size,
and to providing all computational capabilities currently supported by VAST. The current API
version of VAST is ideal for being used as a test bed for many of these investigations.

In order to achieve this goal, the following tasks are recommended:

 Expand the database to include out-of-core processing using the Hierarchical Data
Format version 5 (HDF5) or other suitable technology and benchmark the performance.

 Parallelize element formulation, global matrix assembly and stress calculation using
OpenMP.

 Complete the improved sparse solver by expanding it to 64-bit, providing an out-of-core
option and speeding up forward reduction and backward substitution.

26 MARTEC TR-13-42

References

[1] VAST User’s Manual, Version 9.1. Martec Limited, Halifax, 2012.

[2] Link, R. “Parallelization of Sparse Solver - Phase 1”, Martec Technical Report TR-12-17,
Martec Limited, Halifax, May 2012.

[3] Link, R. “VAST Parallel Sparse Solver”, Martec Technical Report TR-13-39, Martec
Limited, Halifax, August 2013.

[4] Stepanov, A. and Lee, M., The Standard Template Library. HP Laboratories Technical
Report 95-11(R.1), November 1995.

[5] The eXtensible Data Model and Format (XDMF). http://www.xdmf.org

[6] Tautges, T. J. et. al., MOAB: A Mesh-Oriented Database, Sandia National Laboratories
Report SAND2004-1592, April 2004.

[7] The HDF Group. Hierarchical data format version 5, 2000-2010.
http://www.hdfgroup.org/HDF5.

[8] Doyle, C., “HDF5 File System for the VAST API”, Martec Technical Report TN-13-40,
Martec Limited, Halifax, September 2013.

[9] Jiang, L. Trident FEA 2011 – List of Test Cases in Autotester for VAST91, Martec
Limited. Halifax, March 2011.

[10] Jiang, L., Link, R. and Wallace, J. “Nonlinear Finite Element Collapse Analyses of
Stiffened Panels”, Martec Technical Report TR-11-02, February, 2011.

[11] Jiang, L., “Nonlinear Finite Element Collapse Analyses of Stiffened Panels - Phase 2”,
Martec Technical Report TR-11-10, March, 2011.

[12] Tobin, S., Wallace, J., Jiang, L. MacAdam, T. and Norwood, M. “Submarine Structure
Modeling and Analysis for Life-Cycle Management - Phase 3”, DRDC CR 2008-085,
Martec Limited, Halifax, June 2008.

