
SAMSON Technology Demonstrator Detailed
Design Document
Phase IV SD004

Daniel Charlebois
DRDC-CSS

Prepared by: Bell Development Team,
Bell Canada 160 Elgin St. 17th Floor
Ottawa ON. K1S 5N4

CSA: W7714-08FE01

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do
not necessarily have the approval or endorsement of the Department of National Defence of Canada.

Contract Report
DRDC-RDDC-2013-C6
March 2013

IMPORTANT INFORMATIVE STATEMENTS

The information contained herein is proprietary to Her Majesty and is provided to the recipient on the
understanding that it will be used for information and evaluation purposes only. Any commercial use
including use for manufacture is prohibited.

© Her Majesty the Queen in Right of Canada (Department of National Defence), 2013

© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2013

Defence Research and
Development Canada

SAMSON Technology Demonstrator
Detailed Design Document

Phase IV
SD004

Bell Canada
160 Elgin Street

17th Floor
Ottawa, Ontario

K1S 5N4

August 13, 2013
Revision: 3.2.2 Final

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada ii

Confidentiality

This document is UNCLASSIFIED.

Disclaimer

The contents of this report do not constitute original work on behalf of the author. A number of
sections of the report are comprised of material contributed by multiple authors, most notably
members of the Bell SAMSON team.

Authors

Bell Development Team Role
Glen Henderson Lead System Architect
Brent Nordin Intermediate Programmer
Bill Pase Intermediate Programmer
Dan Seguin Intermediate Programmer

Bell Q&A Team Role
Alan Clason Testing Specialist
William Dziadyk Certification and Accreditation

Review

DRDC SAMSON Team Role
Bruce Carruthers Technical Advisor
Daniel Charlebois Scientific Authority
Darcy Simmelink Project Manager

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada iii

Table of Contents

1.0 INTRODUCTION ... 1
1.1 HISTORY ... 3
1.2 PROJECT SCOPE ... 3
1.3 ABOUT THIS DOCUMENT ... 5

2.0 THE SAMSON DESIGN PHILOSOPHY .. 7

3.0 THE SAMSON MODULAR ARCHITECTURE .. 10
3.1 ARCHITECTURAL SUMMARY .. 10
3.2 THE SECURE MESSAGING SERVICE BUS (SMSB) ... 12

3.2.1 SAMSON and XMPP .. 13
3.2.2 SAMSON Messaging and XMPP .. 15
3.2.3 XMPP Infrastructure .. 17

3.3 SECURITY SERVICES GATEWAYS (SSGS) ... 18
3.4 POLICY ENFORCEMENT POINTS (PEPS) ... 23

4.0 THE SAMSON SECURITY SERVICES ... 26
4.1 IDENTITY ATTRIBUTE SERVICE (IAS) ... 26

4.1.1 IAS Design Considerations / Configurations ... 27
4.1.2 IAS Messaging and Operations .. 29

4.2 AUTHORIZATION SERVICE (AS) .. 33
4.2.1 AS Design Considerations / Configurations .. 34
4.2.2 AS Messaging and Operation ... 34

4.3 KEY MANAGEMENT SERVICE (KMS) ... 41
4.3.1 KMS Design Considerations / Configurations ... 41
4.3.2 KMS Messaging and Operations .. 43

4.4 CRYPTOGRAPHIC TRANSFORMATION SERVICE (CTS) .. 46
4.4.1 CTS Design Considerations / Configurations ... 48
4.4.2 CTS Messaging and Operation ... 52

4.5 SECURE LABELLING SERVICE (SLS) ... 55
4.5.1 SLS Design Considerations / Configuration .. 57
4.5.2 SLS Messaging and Operation ... 59

4.6 TRUSTED AUDIT SERVICE (TAS) .. 61
4.6.1 TAS Design Considerations / Configuration ... 64
4.6.2 TAS Messaging and Operation ... 65

5.0 THE SAMSON DATA INTERCEPT STRATEGY .. 71
5.1 GENERIC DESIGN OF A POLICY ENFORCEMENT DATA INTERCEPT 72

5.1.1 PEP Data Assets .. 73
5.1.2 PEP Actions on Data .. 74
5.1.3 PEP Proxy Architecture .. 76
5.1.4 PEP User Community ... 78

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada iv

5.1.5 PEP Data Protection ... 79
5.2 GENERIC DESIGN OF A POLICY ENFORCEMENT MESSAGE CLIENT 81

5.2.1 PEMC Architecture ... 81
5.2.2 Information Protection Logic ... 84

5.3 PEP IMPLEMENTATIONS ... 87
5.3.1 File Sharing PEP ... 87
5.3.2 Email PEP ... 96
5.3.3 Instant Messaging PEP ... 106
5.3.4 Web Session PEP ... 123

6.0 SELF-PROTECTING SAMSON SERVICES ... 128
6.1 POLICY ADMINISTRATION INTERFACE (PAI) ... 128
6.2 IDENTITY ATTRIBUTE ADMINISTRATION INTERFACE (IAAI) .. 131

6.2.1 Identity Attribute Synchronization ... 135
6.3 AUDIT REVIEW INTERFACE (ARI) .. 136
6.4 AUDIT INTEGRITY CHECKER (AIC) .. 139
6.5 SAMSON SECURITY EVENT MANAGEMENT .. 142

ANNEX A: MESSAGE FORMATS .. 147
ANNEX A.1 IDENTITY ATTRIBUTE SERVICE MESSAGES .. 147
ANNEX A.2 AUTHORIZATION SERVICE MESSAGES ... 149
ANNEX A.3 KEY MANAGEMENT SERVICE MESSAGES... 150
ANNEX A.4 CRYPTOGRAPHIC TRANSFORMATION SERVICE MESSAGES 152
ANNEX A.5 SECURITY LABEL SERVICE MESSAGES .. 154
ANNEX A.6 AUDITXML SCHEMA ... 156

ANNEX B: CONFIGURATION OPTIONS ... 158
ANNEX B.1 IDENTITY ATTRIBUTE SERVICE CONFIGURATION .. 158
ANNEX B.2 AUTHORIZATION SERVICE CONFIGURATION ... 159
ANNEX B.3 KEY MANAGEMENT SERVICE CONFIGURATION .. 159
ANNEX B.4 CRYPTOGRAPHIC TRANSFORMATION SERVICE CONFIGURATION 160
ANNEX B.5 TRUSTED AUDIT SERVICE CONFIGURATION ... 160

ANNEX C: ACRONYMS AND ABBREVIATIONS .. 161

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada v

List of Figures

Figure 1: The SAMSON Defence-in-Depth Model .. 8
Figure 2: SAMSON Core Components ... 11
Figure 3: SAMSON SMSBs as XMPP Domains ... 14
Figure 4: SAMSON Modular Interface Design .. 19
Figure 5: A Common View of the General SSG Design ... 20
Figure 6: A SAMSON PEP Leveraging SSGs .. 23
Figure 7: PEP Components .. 24
Figure 8: Security Attribute Repositories .. 28
Figure 9: IAS Deployed Architecture and Information Flow .. 30
Figure 10: AS Deployed Architecture .. 34
Figure 11: PDP Policy Evaluation Logic (Stage 1) .. 37
Figure 12: PDP Policy Rule Evaluation Logic (Stage 2) ... 39
Figure 13: KMS Deployed Architecture ... 42
Figure 14: CTS Deployed Architecture for each PEP ... 48
Figure 15: SLS Deployed Architecture for Each PEP ... 57
Figure 16: TAS Deployed Architecture ... 63
Figure 17: Audit Processing Logic .. 67
Figure 18: Audit Record Digests ... 70
Figure 19: The Policy Enforcement Data Intercept ... 71
Figure 20: An Example of File Server Information Protection Logic ... 84
Figure 21: File PEP Architecture ... 88
Figure 22: File PEP - Directory Listing .. 90
Figure 23: File PEP - Storing a File at a SAMSON Protected File Server 92
Figure 24: File PEP - Retrieving a File from a SAMSON Protected File Server 94
Figure 25: Email PEP Architecture ... 98
Figure 26: Email PEP - Sending a SAMSON Protected Message .. 100
Figure 27: Email Policy Violation Message ... 103
Figure 28: Email PEP - Retrieving a SAMSON Protected Message ... 104
Figure 29: IM PEP Architecture .. 108
Figure 30: IM PEP - Chat Room Listing .. 111
Figure 31: IM PEP - Joining a SAMSON Protected Chat Room ... 113
Figure 32: IM PEP - Sending a Message within a SAMSON Protected Chat Room 114
Figure 33: IM PEP - Receiving a Message within a SAMSON Protected Chat Room 116
Figure 34: IM PEP - Sending a Marked Up Message ... 118
Figure 35: IM PEP - Receiving a Marked Up Message .. 121
Figure 36: Web Session PEP Architecture ... 124
Figure 37: Web PEP - Accessing a SAMSON Protected Web Service 126
Figure 38: Self-Protected Policy Administration Interface ... 129
Figure 39: PAI Web-based Interface ... 131
Figure 40: Self-Protected Identity Attribute Administration Interface .. 133
Figure 41: IAAI Web-based Interface .. 135
Figure 42: Synchronizing Security Attributes .. 136

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada vi

Figure 43: ARI Web-Based Interface .. 137
Figure 44: ARI Web-based Interface .. 139
Figure 46: AIC Verification Process .. 141
Figure 47: SAMSON Security Event Handling and Notifications .. 143
Figure 48: AlienVault Security Incidents ... 145
Figure 49: AlienVault Security Event Details .. 145
Figure 50: A Security Event Notification Email ... 146

List of Tables

Table 1: SAMSON XMPP Service Oriented Properties .. 12
Table 2: SAMSON Service Payload Protocols ... 16
Table 3: IAS User Attribute Request Data Elements .. 29
Table 4: Supported IAS User Security Attributes .. 31
Table 5: AS Policy Request Data Elements .. 35
Table 6: AS Policy Response Data Elements ... 40
Table 7: KMS Key Request Data Elements .. 43
Table 8: KMS Key Response Message Format .. 45
Table 9: Protected Data states and CTS actions on Data .. 46
Table 10: Types of Cryptographic Operations on SAMSON data ... 51
Table 11: CTS Request Message Content by Message Type .. 52
Table 12: CTS Response Messages by Cryptographic Operation ... 55
Table 13: SLS Request Message Content by Message Type .. 60
Table 14: SLS Response Message Content by Message Type ... 61
Table 15: AuditXML Elements .. 66
Table 16: PEP Operations in a Policy Context ... 75
Table 17: PEMCs versus Security Service Gateways (SSGs).. 83
Table 18: IAS Request Message Content ... 147
Table 19: IAS Response Message Content .. 148
Table 20: Security Attribute Value .. 149
Table 21: KMS Request Message Content by Message Type ... 151
Table 22: KMS Response Message Content by Message Type .. 152
Table 23: CTS Request Message Content by Message Type .. 153
Table 24: CTS Response Message Content by Message Type ... 154
Table 25: SLS Request Message Content by Message Type .. 155
Table 26: SLS Response Message Content by Message Type ... 155
Table 27: IAS Configuration Elements .. 158
Table 28: AS Configuration Elements ... 159
Table 29: KMS Configuration Elements .. 159
Table 30: CTS Configuration Elements .. 160
Table 31: KMS Configuration Elements .. 160

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 1

1.0 Introduction

The Secure Access Management for Single Operational Networks (SAMSON) Technical
Demonstrator (TD) implements a new architectural approach to provide data-centric
information protection in a multiple community network environment. Applications are
enabled for SAMSON information protection through the insertion of data protection security
services into the applications’ data handling routines. The focus of this Defence Research
and Development Canada (DRDC) Technical Demonstrator Program (TDP) was to develop
a capability that provides separation of Canadian Eyes Only (CEO) and Canadian-US
(CANUS) information caveats in a single network environment. However, the SAMSON TD
functionality supports the use of a broader set of security attributes so as to provide the
needed data-centric protection for a multiple community network environment.

The SAMSON TD system uses cryptographically bound security labels on information
assets and Attribute-Based Access Control (ABAC) to enforce the required need-to-know
security controls. Based on the policies required by the enterprise, the data is enhanced
with security metadata including relevant attributes such as: classification, releasability, and
membership in communities of interest. The system makes access control decisions by
evaluating the attributes of the data object and the attributes of the person subject
requesting access to the data. These access control decisions are then enforced at the
application level, permitting or denying access to information access in accordance with
policy.

The SAMSON TD system enables collapsing network-centric infrastructures and security
policy based enclaves. An enterprise infrastructure, with the SAMSON TD incorporated into
the architecture, will enforce adherence to policy across all applications and information
assets. SAMSON provides the capability to transform an enterprise’s multi-level (e.g.
different sensitivity classifications, caveat-separations, compartmentalized, releasable to,
community-of-interest need-to-know access controls) security architecture from a network-
centric (i.e. separate “system high” network segments, complex multi-tier defence-in-depth
network architectures, separate operational “enclaves”) implementation to a data-centric
implementation protection paradigm. The target deployment architectures can range from a
small “Entry Level” user community to larger user communities with “High Availability”
architectural requirements.

Data-centric security controls provide a foundation for intelligent networking and seamless
unified communications using a variety of communications methods where the operational
and business requirements may require that sensitive data be made broadly available to
end-users in operational environments located beyond the enterprise’s physical network
infrastructures (e.g. cloud technologies).

The ABAC in the SAMSON TD is instantiated as a Service Oriented Architecture (SOA) and
uses eXtensible Messaging and Presence Protocol (XMPP) based messaging services and
Policy Enforcement Points (PEPs) to securely and reliably enforce caveat protection of data

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 2

using the eXtensible Access Control Mark-up Language (XACML) for policy based
authorization.

The SAMSON TD provides the ability to use its information protection mechanisms to self-
protect its own administrative interfaces. These self-protection mechanisms include the
ability to prevent data assets from unauthorized access or modification. All SAMSON policy-
based transactions are recorded in a tamper-resistant audit trail to provide accountability for
authorized actions and establish a level of trust and integrity for the system as a whole.

The SAMSON TD relies on six independent core security services that provide:

1. Access to users’ identity and associated security attributes;

2. Authorization decisions to allow or prevent transactions on information assets;

3. The creation and retrieval of security attributes on information assets;

4. Cryptographic protection of information assets;

5. Symmetric key management in support of cryptographic operations; and

6. The generation of a tamper-resistant audit trail.

A core concept for the TD is that SAMSON is not a provider of security services; rather, it
connects existing security services that are present in the environment to achieve data-
centric security across information assets. System architects and security officers are able
to leverage their existing investment in security services by allowing them to be used in the
SAMSON architectural deployment. It is possible, therefore, to add a SAMSON deployment
to an existing network environment as a security overlay, that is, a new capability that
leverages existing tools and applications.

The following external services were included in the SAMSON TD architectural deployment:

1. Authentication services (Active Directory) to establish each user’s identity;

2. Endpoint security labelling of Microsoft Office information assets (Titus);

3. Key escrow services to provide reliable storage of cryptographic keys (StrongAuth);

4. Software cryptographic modules (RSA); and

5. Security information and event management (AlienVault)

It must be noted, however, that SAMSON is not dependent on any of these external
services, that is, any listed service could be replaced with a service that provides equivalent
functionality. The SAMSON TD is, therefore, a modular architecture.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 3

Data applications, such as file sharing, email, instant messaging, web services, and
databases, can be enabled for SAMSON TD data protection through the insertion of PEPs
in the applications’ data flow and data handling routines. When an information transaction is
intercepted by a PEP, the transaction can be made to adhere to policy through calls to the
SAMSON security interfaces, specifically, authorization, cryptographic protection and audit.

1.1 History

The Secure Access Management for Secret Operational Networks (SAMSON) technology
demonstrator (TD) project originated from a research concept developed at the Network
Information Operations (NIO) Section of DRDC (DRDC Ottawa). The NIO section initiated a
series of studies that produced a proposal for the creation of a new security architectural
approach to provide data-centric information protection in a multiple community network
environment. Further work developed plans for, and implemented, two Secure Access
Management Proof-of-Concept Demonstrators (SAMPOC I in 2002 and SAMPOC II in 2004)
based on an initial architectural design.

Although the SAMPOC demonstrations were successful in proving the technical capability of
the approach and generated substantial interest within the Department of National Defence
(DND), these implementations were not sufficiently robust, secure, or large enough to be
considered for operational deployment. The current SAMSON TD project seeks to:

 Address the deficiencies of the SAMPOC I & II demonstrators;
 Extend the capabilities of the original SAMPOC concept to encompass a complete

set of information protection services;
 Raise the Technology Readiness Level (TRL) of the SAMSON concept through a

more robust implementation of the extended SAMSON design; and
 Highlight, through a series of demonstrations and exercises, the technical

challenges, business transformation issues and process changes that would be
encountered in transitioning this technology from prototype stage to an operational
deployment.

The SAMSON TD target architecture also builds upon the following research initiatives,
promoted by DRDC:

 Trusted Audit Collection System (TACS) Design (2004) and Prototype (2005)
 Security Policy Engine Surveys (2002 and 2006)

1.2 Project Scope

The SAMSON TD project calls for the creation of a security enabling infrastructure that
leverages, through open protocol standards, six core security services: user attribute
management, security labelling of data, authorization, cryptographic services, key
management and trusted auditing. A specific set of applications has been enabled for
SAMSON data protection through the insertion of information protection security services

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 4

into the applications’ data handling routines. This set includes representative applications
that provide information protection for the following data services:

 File sharing,
 Email,
 Instant messaging,
 Web content delivery,
 Database protection, and
 Real-time command and control (C&C) information feeds.

The following aspects of the SAMSON TD are considered out of scope in terms of their
inclusion in this report:

 Certification & Accreditation - Certification and accreditation is not addressed within
this document. Readers interested in this subject are encouraged to consult the
SAMSON TD Certification and Accreditation Plan.

 Complementary Security Services – The SAMSON TD outlines six core security
services required for caveat separation. While these security services provide the
functionality required for caveat separation, they are not intended to address all
aspects of security. Consequently, there are other security services, most notably
threat detection and response, which are complementary to the six core SAMSON
security services. These complementary security services are considered outside the
scope of the report.

The SAMSON TD requirements are defined in the specification document SAMSON TD
Functional Specifications V2.2. Development activities for the demonstrator were defined
across three phases, with a functionally complete system to be delivered at the end of the
first phase. The Phase I capability target was extended in February 2010 to include specific
enhancements to support participation in the Empire Challenge 2010 exercise. The Phase
II capability target was delivered for and demonstrated at two military exercises:

 Empire Challenge 2011 (hosted at both DRDC Shirley’s Bay and Fort Huachuca,
Arizona); and

 Coalition Warrior Interoperability Demonstration 2011 (CWID).

The Phase III capability target was delivered for and integrated into the operational network
for the Coalition Attack Guidance Experiment II (November 2012), again hosted at the
Warfare Center at Shirley’s Bay, Ottawa.

The documentation set to which this Detailed Design belongs uses as its reference
architecture the SAMSON TD deployment that was utilized in the CAGE II operational

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 5

SECRET network environment1. The requirements set for this reference architecture was a
union of:

 A subset of the capabilities defined in the SAMSON TD functional specification that
defined the phase II target functionality; and

 Application support, robustness, stability and administration enhancements needed
to support CAGE II participation.

This documentation set includes the following:

 SD002 - the Architectural Design Document

 SD004 - the Detailed Design Document (this document)

A complete mapping of the SAMSON technical demonstrator capabilities to the project
functional specification is provided in the Requirements Traceability Matrix that is included
as a supplement to this documentation set.

Those readers interested in a more theoretical discussion of SAMSON design principles are
encouraged to consult Authorization: An Historical Perspective and The Bell SAMSON
Architecture & Backgrounder.

1.3 About this Document

This document is meant to serve the basis for understanding the SAMSON architecture in
support of ongoing development and deployment activities. Through an detailed description
of how the SAMSON infrastructure exchanges security messages, the mechanisms by
which security services are connected through the messaging infrastructure and the manner
in which policy is enforced within applications, the underlying trust model by which SAMSON
achieves its security objectives can be understood. Additionally, through an understanding
of the content of this document, security software development teams outside of the
technical demonstrator project can create new and complementary SAMSON components.

The primary goal of this document is to describe how the SAMSON TD architecture was
designed, configured and deployed in its instantiation at the CAGE II SECRET environment.
This instantiation formed the baseline architecture that was evaluated under the project’s
C&A testing and security assessment methodology. This architectural instantiation of the
SAMSON TD is proposed for future deployment to the GoC CSNI SECRET operations
network.

1 Within this document, the “SAMSON TD architectural deployment” represents the
instantiation of the SAMSON architecture that was deployed as part of the SAMSON
Technical Demonstrator Program as of March 2013. This is separate from “SAMSON” itself,
the generalized architectural specification which any COTS or third party solution provider
can use to create SAMSON compliant services.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 6

A secondary goal of this document is to specify the open protocol and messaging standards
that define the SAMSON architecture and the mechanism by which SAMSON leverages
those standards. With this information, independent software initiatives will be able to:

 Replace existing components in the demonstrator with equivalent services that
leverage new back end services or leverage the existing back end service in a more
appropriate manner for the target environment;

 Create new components that can be accessed through the existing protocol
messaging infrastructure and can be leveraged in application information protection
processing routines; and

 Add policy-based information protection to new applications.

The target audience for this document is security practitioners with a need to understand the
proposed deployment architecture and software development teams that have a
requirement to integrate security capabilities in the SAMSON information protection
architecture into existing data or security services. It is anticipated that the audience is
familiar with: policy-based security, service oriented architectures and security best
practices.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 7

2.0 The SAMSON Design Philosophy

The SAMSON design philosophy is best described in terms of:

1. The original stated purpose of the technical demonstrator,

2. The information protection problem that is addressed by the demonstrator and

3. The architectural approach that was taken for the demonstrator by the design team.

Each of these topics is summarized here, but it is recommended that the reader first be
familiar with the more detailed section the SAMSON TD Architectural Design Document
similarly titled: The SAMSON Design Philosophy.

The SAMSON concept is for a data-centric security solution. That is, SAMSON is an
information protection methodology that binds security policy down to the information asset
level. This idea is complementary to the similar concept of “smart data”, that is, data that
carries with it its own security policy in terms of access and acceptable use restrictions.

This project is examining the concept of data-centric security and its application to create
the next generation of secure networks though its ability to address four basic challenges in
information assurance.

1. How to enforce a unified and holistic security policy across all information assets.

2. How to restrict the operations that can be performed against information assets to
specific, segregated communities.

3. How to ensure that information assets that are released are released only to
individuals that have the policy right to access it.

4. How to maintain chain-of-custody audit records of this policy-based access control in
a tamper-resistant manner.

SAMSON has been designed to address these challenges in the form of a security overlay,
that is, a set of interconnected services that work through the exchange of messages on top
of an existing network deployment. In this way, any network security or application security
based environment can be enabled for data-centric protection without the need to remove or
de-emphasize existing security protections. As a security overlay, SAMSON uses the pre-
existing security software that is present in the environment; it is a secure communications
infrastructure that allows many different security solutions to be integrated in comprehensive
data-centric security architecture.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 8

Six core security services form the basis of the technical demonstrator architecture, although
the modular nature of the design allows for additional services to be added to the SAMSON
information protection environment. These core services include: identity attribute
management to manage user’s security attributes, secure labelling to manage the security
attributes on data assets, authorization to make access control decisions based on the
security policy, cryptographic transformation and key management services to protect
information assets and trusted audit capabilities to maintain a record of all SAMSON policy
related transactions.

When viewed in this context, the SAMSON infrastructure components work together to
support a defence-in-depth principle: a series of security components that provide a layered
approach to protecting information assets.

Figure 1: The SAMSON Defence-in-Depth Model

In summary, the SAMSON architecture can be examined using the NEAT model: a construct
that is used to define a high assurance system.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 9

SAMSON information protection components and processes are:

Non-bypassable: SAMSON intercepts traffic between the workstation and the target
data service. Information requests that comply with the security policy are allowed to
proceed. While traversing the interception point, data is cryptographically
transformed. Only valid requests can traverse the intercept and any attempt to
access the data directly will only disclose an encrypted object.

Evaluatable: Each SAMSON component is implemented as a well-designed, well
specified, well implemented, minimalist, low complexity module that is accessible
through a well-defined, open protocol. It is possible to do assurance testing against
each SAMSON interface through the use of validation and verification harnesses.

Always-invoked: Every SAMSON-relevant data request is checked by the
appropriate security monitors and information protection services. The selection of
what constitutes a SAMSON-relevant data request is entirely defined by the
implementation. SAMSON does not place restrictions on what actions can be made
subject to policy-based access control.

Tamperproof: The system generates an audit trail for all security relevant events that
is established through a chain-of-custody. This capability detects the addition,
deletion or modification of audit trail information. While this does not provide proof
against tampering, it does support the detection of unauthorized modification of the
audit records in support of incident handling and forensic activities.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 10

3.0 The SAMSON Modular Architecture

This section expands upon topics presented in the section in the Architectural Design
Document similarly titled The SAMSON Modular Architecture. It is recommended that the
reader first be familiar with the information presented in that document in order to better
understand the architectural decisions that were made during the development of the
demonstrator and are described below.

3.1 Architectural Summary

The SAMSON TD is a standards-based implementation of a Service Oriented Architecture
(SOA) where all security requirements are met by independent services that are accessible
through open, well-defined interfaces. The information exchange formats within this
architecture utilize industry accepted, open standards that are based on the eXtensible
Markup Language (XML). It provides a solution in accordance with the Attribute based
Access Control (ABAC) paradigm using eXtensible Access Control Mark-up Language
(XACML) for the expression of security policy. Together, XACML and ABAC form a
framework and a new standard for introducing data-centric information protection and
assurance principles within the Government of Canada (GoC).

It is important to recognize that the architectural goal of the SAMSON infrastructure is to
provide a common set of security interfaces and the ability for data handling applications to
leverage those services for a universal application of the domain’s security policy.
Conceptually, the SAMSON security services act as security gateways with the ability to
route an internally generated SAMSON security service information request to the actual
external service or process that will handle the request. SAMSON is, therefore, not tied to
any specific vendor solution and can replace any vendor solution with another product that
provides similar functionality.

In this way, all SAMSON security interfaces conform to a common set of design goals,
including:

 They can be made to work with any external vendor solution, product or
implementation;

 They can be extended to include any SAMSON-specific capabilities that are not
reflected in the chosen standard;

 They are appropriately secured in order to ensure the confidentiality and integrity of
these information exchanges; and

 New security services can be added to the architecture without the need to redesign
or redeploy the entire security overlay.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 11

The SAMSON architecture achieves its data protection requirements through the use of
three core architectural components:

1. Secure Messaging Service Busses (SMSBs): The ability for SAMSON
components to exchange data over a dedicated messaging infrastructure in a
manner that is secure, protocol agnostic, and reliable.

2. Security Services Gateways (SSGs): The ability to bridge between the SAMSON
security architecture and the back end (non-SAMSON) applications that provide the
needed security functionality. These services include authorization for adherence to
policy, cryptographic services for protection of data and audit for the creation of a
trusted chain of evidence.

3. Policy Enforcement Points (PEPs): The ability to link external application and
security services to the SAMSON infrastructure in a manner that adheres to the
SAMSON security protection principles.

An SMSB is the connecting infrastructure that allows PEPs to utilize the services offered by
SSGs and, similarly, allows SSGs to leverage the capabilities offered by other SSGs. These
components can be seen in their proper context in Figure 2: SAMSON Core Components.

Figure 2: SAMSON Core Components

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 12

The following sections will provide the design details for the three core architectural
components of SAMSON: the PEP, the SSG and the SMSB that connects these two classes
of SAMSON objects.

3.2 The Secure Messaging Service Bus (SMSB)

SAMSON is implemented as an SOA and provides a set of interconnected services that
work through the exchange of messages on two separate and isolated messaging
infrastructures:

1. A security messaging infrastructure that carries policy data, security attributes and
cryptographic information; and

2. An audit messaging infrastructure that carries audit information.

The information exchange formats in SAMSON utilize industry accepted, open standards
that are based on XML. It is the responsibility of the SAMSON messaging infrastructure to
provide the delivery of these messages between SAMSON components. Although the
specific protocol or format of the message content will depend on the nature of the entity or
service being leveraged, all messages are delivered through the same communications
mechanism. With the responsibility to ensure robust, secure and trusted delivery of security
messages between SAMSON components, the messaging infrastructure forms the critical
core of the SAMSON architecture.

XMPP is the delivery mechanism for exchanging SAMSON security messages between the
PEPs and the SSGs. Because web frameworks are the most familiar mechanism for
implementing SOAs, a discussion of the parallels between HTTP-based and XMPP-based
SOA frameworks is appropriate.

The following table identifies some core SOA elements, their traditional implementation
mechanism via web services and the XMPP analogue.

Table 1: SAMSON XMPP Service Oriented Properties

SOA Component Traditional Technology XMPP Equivalent

Service discovery WSDL/UDDI XMPP DISCO

Messaging encoding SOAP XMPP content

Messages transport HTTP XMPP delivery

MESSAGE Security WS-Security Transport Layer Security
(TLS)

Encryption WS-Encryption TLS

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 13

The XMPP DISCO protocol extension provides equivalent service discovery features to
those provided by WSDL/UDDI. Information exchange is provided by XMPP messages that
consist of an envelope for a delivery address and message content; much like SOAP.
However while both SOAP/HTTP and XMPP provide message transport, security and
encryption they diverge in a fundamental way.

HTTP systems are stateless and connectionless; each message, both a service request and
response, is independent. In this environment, secure, authenticated messaging requires
that each individual message be secured and authenticated, typically by using WS-
Encryption and WS-Security. This increases message overhead substantially and also
moves responsibility for secure message delivery up into higher levels of the protocol stack.

XMPP-based systems on the other hand use persistent connections between clients and the
server. As long as the connection endpoints can be authenticated when the connection is
initiated, authentication does not need to be done again for each message. If the
connections are also encrypted, then there is no need to encrypt message content
separately. XMPP thus offers a SOA with much lower message overhead and a better
allocation of messaging delivery and protection functionality into the protocol stack.

The next section will provide more details about how SAMSON leverages XMPP as a
delivery mechanism.

3.2.1 SAMSON and XMPP

An XMPP message delivery system is a store-and-forward system, similar to email, but
operating in near real-time. The network is organized in a star configuration with all
endpoints connecting through a central XMPP server. SAMSON services first connect to the
XMPP server to set up a persistent connection or session (for message transport) and then
authenticate to the server. The XMPP server provides the message routing between the
SAMSON services, ensuring that messages are only delivered to their intended recipient.

SAMSON XMPP sessions leverage Transport Layer Security (TLS) to ensure that message
traffic is encrypted. SAMSON also requires authentication at the session layer so that the
identity of the participant in the XMPP domain is determined when the connection to the
domain is established. Achieving this level of trust is required prior to any exchange of
messages and offers a double layer of security:

1. Protection of the information at the transport layer connection; and

2. Authentication of the session that specifies the identity of the XMPP network
participant.

In the current implementation, PEPs and SSGs are identical in that manner in which they
connect to and use the XMPP messaging infrastructure. Each component’s XMPP identity
and credentials are specified in a local configuration file that is loaded at run time and used
to connect to the XMPP domain and access the messaging services of the SMSB. Once a

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 14

SAMSON component is connected to the XMPP domain, it is able to send and receive
messages to support its role within the SOA.

XMPP servers require a centralized repository to store the identity and provide
authentication for the participants in the XMPP domain. In the deployed architecture, this
service is an LDAP directory with a separate directory branch, or organization unit (OU), for
each of the XMPP servers that provide messaging for their respective SMSB. The LDAP
service is an instantiation of the OpenLDAP 4.2.3 server and is hosted on its own separate
machine and used exclusively by SAMSON. Both XMPP servers access this LDAP service
over the Management network using the standard LDAP protocol.

Figure 3: SAMSON SMSBs as XMPP Domains

This diagram illustrates the use of two separate XMPP domains to host security and audit
messages, respectively. The security services are participants on the security SMSB
whereas the PEPs exchange messages along both message busses. The SAMSON
deployment hosts XMPP domains on physically separate networks and the use of TLS
further protects the confidentiality and integrity of SAMSON messages.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 15

The SAMSON administrator is responsible for creating the identities in the repository and
providing the configuration information (identity and password) in the configuration file that is
used by each SAMSON PEP and SSG. This configuration file also specifies the identities of
all the other SSGs on in the SMSB so that each component knows where to route
messages to leverage a given SAMSON service.

With the multiple layers of identity and session protection, SAMSON services have a high
degree of confidence:

 That they are connected to the correct messaging server;

 That no rogue services are running to illicitly receive message traffic; and

 That there is, architecturally, built-in protection against man-in-the-middle attacks.

3.2.2 SAMSON Messaging and XMPP

The XMPP messages exchanged between SAMSON endpoints are simple XML documents
incorporating:

1. An envelope for message addressing; and

2. A message body to carry the substance of the communication.

The following example presents a typical XMPP envelope.

<iq to='test@samson.org/xmpp'
 id='ex1'
 type='get'>
</iq>

XMPP message payloads are also XML documents and, for SAMSON services, typical
message payloads are based on existing XML standards that are appropriately chosen to
support the type of service they are providing. For example, a request to the SAMSON
Identity Attribute Service (IAS) to request a user’s community of interest membership is
encoded using the XML Service Provisioning Markup Language (SPML) and Directory
Services Markup Language (DSML), resulting in an XML document in the following format.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 16

<spml:searchRequest
 xmlns:spml='urn:oasis:names:tc:SPML:1:0'
 xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core'
 requestID=''>
 <dsml:filter>
 <dsml:equalityMatch name='accountId'>
 <dsml:value>request_user</dsml:value>
 </dsml:equalityMatch>
 </dsml:filter>
 <spml:attributes>
 <dsml:attribute name='caveats'/>
 </spml:attributes>
</spml:searchRequest>

The following table lists the XML-based message formats that are used by each of the
SAMSON services.

Table 2: SAMSON Service Payload Protocols

SSG Request Message Format Response Message Format

Identity Attribute
Service

Service Provisioning markup
Language (SPML) SPML Response

Directory Services markup
Language (DSML) DSML Response

Authorization Service XACML Context Message XACML Content Message

Key Management
Service XACML Context Message SAMSON Service Response

Cryptographic
Transformation Service XACML Context Message SAMSON Service Response

Security Label Service XACML Context Message SAMSON Service Response

Trusted Audit Service AuditXML (Not Applicable)

Both the SAMSON Service Response (SSR) and AuditXML message formats are XML
documents and provide the means for exchanging necessary data between services where
no standard exists.

The complete XMPP message is a simple encapsulation of the payload message within the
transport (XMPP) envelope. For an IdM Service request such a combined payload and
transport message would take the following form:

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 17

<iq to='idm@samson /xmpp'
 id='ex1'
 type='get'>
 <spml:searchRequest
 xmlns:spml='urn:oasis:names:tc:SPML:1:0'
 xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core'
 requestID=''>
 <dsml:filter>
 <dsml:equalityMatch name='accountId'>
 <dsml:value>request_user</dsml:value>
 </dsml:equalityMatch>
 </dsml:filter>
 <spml:attributes>
 <dsml:attribute name='caveats'/>
 </spml:attributes>
 </spml:searchRequest>
</iq>

XML namespaces within the XMPP message body element ensure that XML element
names in the message body do not collide with any XMPP envelope element names.
As may be seen from this example, XMPP was designed from initial principles to support
XML messages and was an enabling technology for SAMSON insofar as SAMSON is based
entirely on XML messaging.

It is also worth noting that the XMPP message has minimal overhead; a fact that is a critical
advantage in bandwidth constrained environments. Most significantly, neither the XMPP
message envelope nor the message body needs to account for encryption or authentication
as those requirements are handled by the message transport. The message transport
security provided by the XMPP ensures that a consistent message payload protection
mechanism is applied identically across all SAMSON security services.

3.2.3 XMPP Infrastructure

There are a variety of XMPP servers available. These all run like any other software service
that sends and receives message over TCP/IP connections. From a SAMSON perspective,
the choice of server should be immaterial. Local infrastructure considerations will help guide
the server choice and the deployment architecture for the XMPP servers. When deploying
an XMPP infrastructure and selecting the server software to support the messaging, the
following issues should be considered:

Operating System Support: Is the XMPP server software supported on our target baseline
server operating system.

High Availability: Does the software support a HA architecture, including server clustering,
failover, load balancing and the leveraging of replicated databases?

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 18

User Community Sources: What technologies can be used as the repository for SAMSON
component XMPP identities? For example, directory servers such as Active Directory and
OpenLDAP or databases such as MSSQL or MySQL may be targeted services for supplying
XMPP user community data.

Transport Layer Security: Does the XMPP server have support for TLS-based connections
and mutually authenticated TLS-based session? To what degree does the server support
X.509 certificate standards and certificate revocation?

Administration Support: What administrative and reporting features are provided by the
server and to what degree can these integrate with local infrastructure?

As shown in Figure 3: SAMSON SMSBs as XMPP Domains, the deployed SAMSON
architecture uses two OpenFire 3.7.1 open source XMPP servers as the message servers
which provide the message exchange capabilities for the Security and Audit SMSBs. The
deployed architecture also uses an OpenLDAP 3.2.4 directory service as the repository for
the SAMSON PEP and SSG service identities.

The following section will describe the structure of the SSGs, the SAMSON components that
bridge between the Secure Messaging Bus and the external security services that are to be
connected to and leveraged by the SAMSON infrastructure. It is important to note that
these SSGs must connect, as clients, to the XMPP messaging infrastructure.

A language appropriate XMPP client library can provide a significant part of the complexity
of creating XMPP client process. At a minimum, the documentation for that library should
provide advice and guidance on how to write an XMPP client that can:

1. Connect to an XMPP server,

2. Authenticate to the server, and

3. Send and receive messages with other components within that XMPP message
domain.

When developing a SAMSON service, it is important to ensure that the trapping,
propagation and reporting of error conditions is performed so that overall system reliability
and security is not compromised.

3.3 Security Services Gateways (SSGs)

The SSGs act as security gateways with the ability to route an internally generated
SAMSON security service information request to the actual external service or process that
will handle the request. SAMSON is, therefore, not tied to any specific vendor solution and
allows any security solution in the deployment environment with to be replaced with another
product that provides similar capabilities without the need to reconfigure the entire security

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 19

overlay. In this way changes to security applications in the deployment environment are
localized to the SSG that interfaces with that solution.

All SAMSON security interfaces conform to a common set of design goals, including:

 They can be made to work with any external vendor solution, product or
implementation;

 They can be extended to include any SAMSON-specific capabilities that are not
reflected in the chosen standard;

 They are appropriately secured in order to ensure the confidentiality and integrity of
these information exchanges; and

 New security services can be added to the architecture without the need to redesign
or redeploy the entire security overlay.

The SAMSON architectural approach meets the design philosophy defined above through
the use of pluggable modules that interact though standard interfaces, both for application
and security service protection. SAMSON is an SOA in that all of the components that
support SAMSON capabilities, or leverage those capabilities for information protection, link
to the core framework via those standard interfaces. While the linking and communicating
interfaces provide a common mechanism by which these pluggable components join the
SAMSON infrastructure, the format of the messages that are transmitted through the
interface are geared specifically to the module's purpose. New modules are added, not
through a programmatic interface, but through this standards-based, message-oriented
pluggable architecture.

Figure 4: SAMSON Modular Interface Design

Figure 4: SAMSON Modular Interface Design shows a sample SSG instantiation. Extending
the sample interface described in section 3.2.2: SAMSON Messaging and XMPP, the

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 20

internal interface for this SSG receives SPML formatted payloads delivered over the SMSB
as XMPP formatted messages. On the external side of the SSG, the message is
retransmitted as SPML payloads encapsulated inside SOAP envelopes and transmitted to
the external security application over TLS protected HTTP.

Acting as the bridging component to link internal and external messages, the SSG performs
the needed processing to ensure that the messages exchanges are properly handled,
including:

 Protocol Translation of the message content from the internal SAMSON service
payload format to the external format used by the security application; this external
format may be of a non-standard or proprietary format;

 Data supplementation of missing information by calling other SAMSON interfaces;
and

 Error handling of any error conditions raised by the external security application and
mapping the external error to form that can be recorded as an audit event and,
potentially, raised as a security incident.

The creation of an SSG that integrates an external security application into the deployed
SAMSON architecture through the SMSB requires that certain common aspects of the
component’s design be addressed. The following diagram provides an abstracted view of
the functions and data flows that are common across all SSG implementation.

Figure 5: A Common View of the General SSG Design

Each stage in this process is described in detail below.

Step 1: Establish an XMPP connection: Typically, XMPP sessions will be established by the
SSG using a language specific XMPP library such as PyXMPP2 for Python or Gloox3 for

2 http://pyxmpp.jajcus.net/pyxmpp.html

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 21

C++. The XMPP connection will be established once at service start up and used through
the lifetime of the service process. The nature of the persistent session with the Secure
Messaging Service Bus can be leveraged to support service monitoring, presence
messaging and broadcast signalling to command specific or all SAMSON components. The
Security Service will need to be provided with a JID (XMPP identity and credentials) and
connection information to access the XMPP domain. Once a persistent connection is made
to the XMPP server, the SSG is a participant on the SMSB and can exchange messages
with other SAMSON components.

Step 2: Extract the Traffic and Message Payload: When a Security Service receives a
message from another SAMSON component; the first task is to extract the message
content. This means that the payload must be extracted from the XMPP message envelope
using a XML parser. The payload must then be interpreted, again using an XML parser,
based on the type of message that is being sent. For example, continuing with the example
of the Identity Attribute Service (IAS) that is responsible for querying a backend service to
supply SAMSON component with user attribute information, any SAMSON component that
requires user identity information will formulate an SPML/DSML message payload and
transmit that payload, over the SMSB, to the IAS and then wait for the IAS to return a query
response.

Step 3: Process the Message Content: When the SSG receives a message request it will
extract the message payload and transform the message as needed to create the
appropriate message query that can be, in turn, sent to the back end security service. For
example, the IAS will accept SPML/DSML formatted request from other SAMSON
component, but will transform these requests into their LDAP equivalent.
In some cases, transforming the data may require the sending and receiving of
supplemental messages to other SAMSON components. The service must be able to
manage these supplemental messages and ensure that the request / response cycle is
mapped back to the original service request. Section 4.0: The SAMSON Security Services
provides a more thorough description of the processing that is performed by each SSG on
the message requests they receive.

Step 4: Manage the Connection to the Back End Application: The nature of this connection
will depend heavily on the nature of the application being integrated into the SAMSON
environment. These connections may be persistent, established once when the service is
started, or created and destroyed on an as needed basis. There is no impact to the
SAMSON environment which back end connection type is made, although there may be a
performance impact if connections must be frequently established and are not reused.

Step 5: Submit the Request to the Back End Application: Once transformed and expanded
with supplemental information from other SAMSON services, this message is submitted to
the back end application. The request is encoded into the appropriate message format and
wrapped in a transport envelope such as SOAP within HTTP. In this form, the message can
be delivered to the target application using extended security protocols such as SSL/TLS to
ensure the integrity and confidentiality of the information.

3 http://camaya.net/gloox/

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 22

Step 6: Process Response Messages: The back end application will return a response that
includes response data and status information. This information will be reformatted into the
original message’s payload format and wrapped into an XMPP transport message for
delivery.

This general outline of ordered processing activates serves as a basis for the functioning of
all SAMSON Security Gateways.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 23

3.4 Policy Enforcement Points (PEPs)
A Policy Enforcement Point (PEP) is a component that is inserted into an application’s data
request/response cycle in order to add SAMSON-based information protection capabilities
through the leveraging of the core security services.

Figure 6: A SAMSON PEP Leveraging SSGs

The above diagram, illustrates how a PEP leverages SSGs in order to protect a back end
file server. A sample transaction, specifically a request to retrieve a file, is shown.

1. The user sends a request to the file server to retrieve a file and the request is
forwarded on by the PEP to the file server.

2. Prior to delivery, however, the PEP intercepts the file and calls upon SSGs to ensure
the transaction is in compliance with the security policy. Since the PEP is, itself, a
participant on the SMSB, it is able to formulate messages and transmit them to the
intended SSGs over the secure messaging infrastructure.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 24

3. The PEP queries the Security Label Service (SLS) to extract and verify the security
label on the target file.

4. The PEP submits a policy decision request to the Authorization Service (AS) and
receives, in response, a policy decision that conforms to the security policy.

5. The AS will itself query anther SSG, the Identity Attribute Service, to acquire security
attributes for the user that are relevant to making the policy decision;

6. If the policy decision is to allow the user to access the file, a request is made to the
Cryptographic Transformation Service (CTS) to decrypt the file for the user.

7. In order to obtain the necessary key fro the cryptographic operation, the CTS will
query the Key Management Service (KMS) to acquire the unique key that was
originally used to protect the file being retrieved.

8. Regardless of the policy decision, an audit record is created and sent to the Trusted
Audit Service (TAS) so that there is a permanent and tamper resistant record of this
transaction.

9. If permitted by the policy, the decrypted file is released to the user, otherwise, the
data request is rejected with an appropriate error for the user (e.g. unauthorized data
request).

This brief example demonstrates how the PEP leverages the six core SSGs in the
processing of a typical user information request.

At a minimum, any PEP that conforms to the SAMSON architecture will consist of two sub-
components or modules.

Figure 7: PEP Components

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 25

1. The Policy Enforcement Data Intercept (PEDI) is the sub-component that interrupts
the data request/response cycle to extract information related to the data request in
order to apply SAMSON policy enforcement; and

2. The Policy Enforcement Message Client (PEMC) is the sub-component that
connects to the Secure Messaging Service Bus and leverages the Security Service
Gateways to enforce Information Protection Logic (IPL).

These components are documented in detail in sections 5.1: Generic Design of a Policy
Enforcement Data Intercept and 5.2: Generic Design of a Policy Enforcement Message
Client, respectively.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 26

4.0 The SAMSON Security Services

With an understanding of the SAMSON modular architecture, the messaging infrastructure,
and the role of the SAMSON Service Gateways, this section describes each gateway
service in detail. Whereas Section 3.3: Security Services Gateways provides an overview of
the general SSG design, this section provides a description of each of the SSGs that form
the core of the SAMSON architectural deployment as shown in Figure 6: A SAMSON PEP
Leveraging SSGs. The list of security services deployed as part of the SAMSON
architecture includes:

 The Identity Attribute Service;
 The Authorization Service;
 The Cryptographic Transformation Service;
 The Key Management Service;
 The Security Label Service; and
 The Trusted Audit Service.

This section describes the overall purpose of each service, the service’s configuration for
the SAMSON deployment, a list of the inputs, outputs and processing activities for each
service and recommended practices for service design. The information presented in this
section is meant to provide a thorough understanding of how each SAMSON service
functions and also to be of benefit to security solution developers that want to provide
SAMSON-based information protection of applications through the use of the SSG general
design, the modular design and the common messaging infrastructure.

4.1 Identity Attribute Service (IAS)

As described in the Architectural Design Document, the Identity Attribute Service (IAS) is
one of the central SAMSON Security Services based on the SSG design. This service
provides supplemental security attribute information related to a SAMSON user. This
supplemental information can be requested through the service’s interface by any
component with a need to know user attribute information.

For the SAMSON architectural deployment the Authorization Service (AS) is the only
SAMSON component that leverages the IAS to retrieve security attribute information. The
Authorization Service requests security attributes for a given SAMSON user in the context of
evaluating a policy request. A user’s membership in communities of interest (COIs) is
relevant to the decision making process. For example, if a policy states that any user that is
a member of the CANUS community can access CANUS information, the Authorization
Service will need to query a user’s COI memberships to determine if that user is a member
of the CANUS community. Being a member allows that user to gain access to the
requested information, but the AS must query the IAS to determine if that user is part of that
community.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 27

4.1.1 IAS Design Considerations / Configurations

In the SAMSON TD architectural deployment, the SAMSON security attribute repository
stores three security attributes for each user: their nationality, their clearance level and the
communities of interest to which the user belongs. The architectural deployment
configuration includes an LDAP server (OpenLDAP version 4.2.3) using a dedicated
organizational unit (OU) that is reserved for the storage of these three security attributes for
each user. Within this OU, the common name (CN) matches the SAMSON user’s unique
name, as determined through the Window domain authentication mechanism and credential
acquisition process.

This LDAP-based repository is the authoritative source for SAMSON user security attribute
information. Because a user’s security attributes are a critical part of the SAMSON trust
model, it is important that the integrity is ensured through the solution architecture and
through appropriate safeguards.

SAMSON users have a need to access their security attribute information; for example, a list
of their assigned caveats should be provided when the user is applying a security label to a
document. However, the user community should not be able to modify their security
attributes nor should it be possible to tamper with these attributes while they are being
provided to the IAS.

Within the SAMSON TD architectural deployment, therefore, there are two separate
repositories for user information. The Windows Active Directory maintains account and
account credentials information for all users in the domain. The SAMSON security attribute
repository holds security attribute information for all SAMSON users in the domain. The
security attribute repository can then be protected against tampering through technical,
administrative and physical controls.

To protect the integrity of the security attribute information, the security attribute repository is
the authoritative source for user’s security attributes. Non-authoritative copies of these
attributes are pushed to the Active Directory to provide each user with access to their
attributes without the need to expose the repository to the user community. The location of
and access to security attributes is shown in the following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 28

Figure 8: Security Attribute Repositories

The IAS, the SAMSON SSG that serves requests for user security attributes, accesses the
user information in the repository by specifying the user for which attributes are needed and
which attributes are to be returned.

1. The SAMSON IAS queries the repository (1) for user security attribute information
and can forward this attribute information to any SAMSON component that requires
security attribute data (e.g. the Authorization Service). Because this information is
exchanged across the SAMSON security network, it is not exposed to the user
community on the data network and is, therefore, not at risk to tampering by
malicious users on the data network.

2. Security attribute information can only be set through the SAMSON protected Identity
Administration Interface and as a result, only authorized users (e.g. the IdM
administrator) has the policy right to alter security attributes. The Identity Attribute
Interface is further described in section 6.2: Identity Attribute Administration
Interface.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 29

3. Because SAMSON users have a need to access their security attributes, security
attribute information is pushed from the repository, the authoritative source, to the
Active Directory. In the SAMSON TD deployment architecture, this one-way
synchronization process is performed on a timed basis. The security attribute
synchronization process is documented in more detail in section 6.2.1 : Identity
Attribute Synchronization.

4. In this way, non-authoritative security attributes store in Active Directory can be
retrieved by security labelling software at the user’s endpoint.

In addition to being able to leverage an LDAP-based security service for identity attribute
information, the current IAS implementation also has the ability to leverage a COTS-based
Identity Management Solution, namely, the Sun One Identity Management Suite 8.1. Due to
performance considerations and ease of deployment, the LDAP-based architecture was
chosen as the prime deployment configuration.

4.1.2 IAS Messaging and Operations

Service Input

The SAMSON IAS Service uses two messaging standards to formulate the security attribute
query request/response cycle:

1. Service Provisioning Markup Language (SPML) is an XML-based framework for
exchanging user, resource and service provisioning information between cooperating
organizations; and

2. Directory Services Markup Language (DSML) is a representation of directory service
information in an XML syntax.

The IAS receives, over the Security SMSB, a message payload in form of an SPML/DSML
formatted search request. The following table describes the information that can be
provided to this service as part of an information request:

Table 3: IAS User Attribute Request Data Elements

Information Element Description Value

Account Name
This is the name that uniquely
identities the user for which
security attributes are
requested.

The value provided for this field
is the user’s unique identity as

determined through their
domain credentials.

Security Attribute
This is the list of attributes that
are requested from the security
attribute repository for the
specified user

Multiple attributes can be
specified from the following list:
nationality, clearance, caveats.
Caveats will return a comma

separated list of the
communities of which the user

is a member.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 30

The information elements are presented to the IAS over the SMSB interface according to
the formats specified in Annex A.1: Identity Attribute Service Messages.

Service Processing

The IAS follows the process flow described below.

Figure 9: IAS Deployed Architecture and Information Flow

The operational configuration parameters for the IAS are described in Annex B.1:Identity
Attribute Service Configuration.

1. When started, the IAS connects to the SMSB and is then ready to serve information
requests for user security attribute information.

2. When the IAS receives a message from another SAMSON component such as the
Authorization Service, information in the request is extracted including: the unique
account name of the user and the security attributes that are to be extracted. As
described in section 4.2: Authorization Service (AS), the AS receives user identity
information in a policy decision request that originates at a PEP. The AS will forward
on to the IAS the user identity information and a list of the security attributes required
to make the policy decision.

3. This identity attribute request information is reformatted into an equivalent LDAP
query format.

4. A connection is made to the LDAP server and the LDAP request is sent to the LDAP
server.

5. The response from the LDAP server is parsed to extract the returned information for
the queried user.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 31

6. This information is placed into an SPML/DSML message response, encapsulated
into an XMPP message and sent to the originating SAMSON component.

Service Output

When sending a response to a submitted query, the IAS sends a message payload in form
of an SPML/DSML formatted search response over the Security SMSB. The SPML/DSML
search response format includes the name of the requested user and individual specification
for each security attribute that was requested.

The following table describes, for each requested attribute, the name of the response
attribute and the format the value of that response attribute will take.

Table 4: Supported IAS User Security Attributes

Requested Attribute Response Element Value Example

nationality nationality Text representing
the user’s nationality CANADA

clearance clearance Text representing
the user’s clearance SECRET

caveats caveats

A comma separated
list containing all the

communities to
which the user

belongs

CEO,CANUS

The response elements and values are returned to the requesting component over the
SMSB interface according to Annex A.1: Identity Attribute Service Messages. Should the
user not exist or if any of the requested attributes is unspecified, a fully formed response
message will be returned to the user with an empty value.

Design Notes

The set of attributes that will be accessed through the IAS will be a function of the following
requirements:

 The nature of the policy expressions that will capture the security policy;
 The nature of the policy queries that will enforce the policy; and
 The information that is available through the externally provided IdM application.

The SAMSON architecture does not dictate what security attributes can or must be used in
policy evaluation and, as a result, the set of attributes that are to be provided through the
IAS is not bound to a specific set of attributes or data types.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 32

The deployed SAMSON architecture only uses community of interest membership since the
nationality and clearance level of all SAMSON users in known for the deployed target
environment (i.e. SECRET clearance, Canadian nationality)

When designing SAMSON, a core consideration is what information uniquely identifies a
SAMSON user. Where federated identity system are already in place, this choice of
attribute used to specify users will be clear. Where there are heterogeneous or loosely
coupled account structures, selecting the user account attribute from the information
available in the environment will be more challenging. The risk from a SAMSON perspective
is that it is not possible to safely make policy decision where there is ambiguity about the
identity of the user. The technical demonstrator has used Windows Domain identities to
uniquely identity the user community members, but this will not always be the most
appropriate choice. For example, consider the scenario where there are multiple Windows
domains with an account for John Smith in each domain. It is not clear if this is the same
user or a different user. This is an existing problem for federated identity solutions.

When developing the IAS, the following design decisions must be considered.

Location of the Security Attributes: The repository of the security attribute information may
be co-located with the user account or in a separate storage facility. For example, in
accordance with the SAMSON Architectural Design, Windows Active Directory holds user
accounts. The security attributes may be stored with that account through the use of
custom schema fields or existing extension attribute fields. Co-locating security attribute
data with account data is a simpler design since the user account and attributes can be
managed through a common interface. However, when co-locating this information, it
becomes more challenging to achieve separation of duties where user account
management and user security attribute are maintained by separate roles. Additionally,
since user security attributes are used as part of the policy decision process, it is
recommended that these attributes be stored in a facility with a higher degree of physical,
administrative and technical safeguards.

Provisioning: Where security attributes are stored separately from the user account as in our
design, the provisioning process is more complex. The assignment of security attributes to
users should be performed though interfaces that are themselves protected by SAMSON.
These interfaces are described in section 6.0:SAMSON Self-Protecting SAMSON Services
in the Architectural Design Document. Automated provisioning processes should be able to
establish a placeholder record for the user’s security attributes, but not able to assign or
modify the actual security attributes.

Securing Administrative Interfaces: The interface through which security attributes are
assigned to users must be, itself, a SAMSON policy-based data exchange. That is, the
interface that is used to maintain user security attributes must enforce the domain’s security
policy. As an example, the policy right to modify user security attributes could be assigned
to a specific community; only those users that belong to that community will have access to
the security attribute repository administrative interface. Use of this interface is subject to all
SAMSON protection from access control to auditing.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 33

As previously described, the deployed SAMSON IAS can also leverage a Sun One IdM
service as a user security attribute repository; however, this configuration has not been used
in the current target architecture. The Sun IdM Suite supports the SPML protocol; the
SAMSON IAS forwards the SPML messages without modification. The IAS retransmits
messages between the SAMSON XMPP transport protocol and the SOAP over HTTP
transmission protocol supported by the Sun solution.

4.2 Authorization Service (AS)

As described in the Architectural Design Document, the Authorization Service (AS) is one of
the central SAMSON security services and is based on the general SSG design. This
service provides policy decisions, as determined by an evaluation of the security domain’s
access control policy, to SAMSON PEPs that, in turn, enforce the application of the policy
decision.

Each of the PEPs in the deployed architecture, including the PEPs that protect information
assets such as: files, email messages, instant messages and web services, formulate a
policy request for each user information access transaction, such as: retrieving a file or
sending an email message. The resulting decision that is supplied by the AS is enforced by
the PEP to permit the transaction to take place or deny the user’s activity.

The SAMSON AS is a bridging component that will link policy requests from the PEPs to a
Policy Decision Point (PDP) in the target environment. The PDP is a processing function
that interprets a policy request and evaluates that request against the currently stated
security policy. The security policy is an expression of the access control rules for the
security domain and the policy engine, or PDP, is the processing component that evaluates
an access request in the context of the security policy to derive the correct access control
decision.

The nature of the policy requests that are submitted to the AS is a function of the following
requirements:

 The security policy specification, that is, the range of attributes that are represented
in the policy and/or available in the environment;

 The ability of the policy engine to process complex policy logic; and
 The granularity of access control that is needed at the application-centric PEPs

When viewed as a general architecture, SAMSON does not dictate the format of the policy
requests so long as the request/response cycle is well-formed XACML expressions. The
type of policy decisions that can be provided through the AS is not tied to a specific set of
policy query attributes or conditions.

In the deployed SAMSON architecture, PEPs submit policy requests that contain: the
requesting user’s identity, security attribute information of the desired information asset and
a statement of the operation that is being performed on the resource. In the XACML
specification, these three data elements are referred to as the subject, resource and action,

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 34

respectively. The AS also adheres to the XACML specification for the expression of policy
decision; typically “Permit” for a request that is allowed under the policy or “Deny” for
requests that cannot be allowed to take place.

4.2.1 AS Design Considerations / Configurations

Although the general SAMSON architecture supports the use of COTS-based PDPs that
exist as separate, pre-existing components in the target environment, the SAMSON
architectural deployment integrated the PDP into the AS as a software sub-component. In
this sense, the deployed AS not only has the ability to act as a policy decision interface to
the PEPs, it also contains, within its process space, the ability to evaluate policy requests
and make policy decisions.

Figure 10: AS Deployed Architecture

In this architecture, security policies are stored in a database that is queried by the PDP to
access the policies that are relevant in the evaluation of a policy request. Policies are
stored in the database as XACML 2.0 formatted policy expressions. Queries to the security
policy repository are made using SQL over the security network. While the security network
is the same network that hosts the SMSB, these SQL calls are not made using the XMPP
messaging infrastructure; they are made directly to the database service. The security
network remains, however, a segregated network that is isolated from the user community
and operational data services.

4.2.2 AS Messaging and Operation

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 35

Service Input

The AS expects all PEPs to express policy queries in the form of XACML 2.0 context
request messages and will, in turn, supply XAMCL context response messages when
returning a policy decision. All traffic between the PEPs and the AS is made over the SMSB
such that the XACML context messages are encapsulated within XMPP message structures
for delivery to the intended SAMSON component recipient.

The following table describes the information that can be provided to the AS within an
XACML context request message:

Table 5: AS Policy Request Data Elements

Information
Element

Description Value

Subject

This is the unique identifier of the
originator of the policy request. This
is the user that initiated the data
transaction that requires a policy
check. The PEP determines the
unique identity of the user and
encodes this information within a
Subject element of the XACML
expression

For the SAMSON deployment, the
user’s Windows unique domain
account is used to identify the user in
both security policies and policy
requests.

Resource

This is the caveat in the security label
on the information asset that is being
requested by the user. The PEP,
often leveraging the Security Label
Service, acquires the caveat from the
asset and encodes this information
within a Resource element of the
XACML expression.

The source of the caveat will depend
on the data asset being requested.

For example, a file will house caveat
information within a security label

whereas an IM chat room will have
the caveat stored as a property of

the room itself.

Action

This is the action that is being
performed against the data asset.
The action is encoded within an
Action element of the XACML
expression.

The action value can take any
alphanumeric textual form (e.g.

READ,WRITE).

It is possible to overload the application of the action policy, that is, it is possible to interpret
an action across multiple applications and, in this way, reduce the number of policies that
are required. For example, if the PEP that protects file shares interprets a “READ” action as
the retrieval of a file form a SAMSON protected file share and the PEP that protects email
message interprets a “READ” action the act of receiving an email message, then one policy
rule can be used to cover both file and email transactions. Overloading the use of actions
can help keep the list of policies more manageable. This topic is covered in more detail in
section: 5.1.2:PEP Actions on Data.

Service Processing

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 36

The AS messaging handling process is shown in Figure 10: AS Deployed Architecture and
can be described in terms of the following operations.

The operational configuration parameters for the AS are described in Annex
B.2:Authorization Service Configuration. When started, the AS connects to the SMSB and
is then ready to service requests for policy decisions.

1. SAMSON PEPs submit policy requests to the AS as XACML context messages.

2. The AS extracts the policy request from the payload and sends the request to its
PDP processing module. The PDP requests relevant policies from the security
policy repository over SQL.

3. The repository returns these policies to the PDP and the PDP evaluates the policy
request in the context of the retrieved policies.

4. Based on the submitted policy request, the relevant security policies and the PDP
decision logic, a policy decision is made.

5. This decision is returned to the PEP as a XACML context response message and is
enforced by the PEP.

For the SAMSON TD architectural deployment, the PDP decision logic evaluates policy
requests in two separate stages:

1. Policy Evaluation: The retrieval of policies from the policy storage repository and the
matching of the policy request against each policy to get the correct rule that applies
to that policy. After evaluation, each policy will have an associated rule to apply for
this request that is carried over to the second stage of the decision making process.

2. Policy Rule Evaluation: All the rules that were determined, based on the per-policy
evaluation in the first stage, are assessed to arrive at the final decision that is
returned to the PEP.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 37

Figure 11: PDP Policy Evaluation Logic (Stage 1)

This logic is described in detail below.

1. When the AS receives an XACML context request message, the AS extracts the
relevant policy request data from the message: the requesting subject (the user’s
unique identity), the requested resource and the requested action.

2. The AS provides the request information to its integrated PDP.

3. The PDP acquires the user’s security attributes through a call to the IAS over the
SMSB. Specifically, the PDP requests, for the requested subject, a list of the user’s
community of interest memberships. The IAS will respond with a list of COIs. For a
user with no memberships, this will be an empty list.

4. The PDP will retrieve from the policy database, via SQL over the security network,
the policies that are relevant to this decision-making process. Policies are deemed
relevant if they apply to the user explicitly or any of the COIs to which the user
belongs.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 38

5. The PDP will extract from the list of relevant policies: the policy subject, the policy
resource and the policy action and attempt to match the each policy to the original
policy request. This evaluation is performed, for each policy, in the following
manner:

a. The PDP evaluation process first ensures that the policy's subject matches
the requested user or any of the COIs to which the user belongs.

b. If there is a subject match, the PDP will then match the action in the policy to
the action in the request.

c. If there is an action match, the PDP will then proceed to match the resource
in the policy to the resource in the request.

d. If there is a resource match, the PDP will then extract the policy rule that
applies to this policy (e.g. “permit” or “deny”).

e. If any of the matching activities fail, this policy is not relevant to the decision
making process and the rule is deemed to be “not applicable”

6. Once all policies are reviewed, the result of each matching process is evaluated:

a. The presence of a single “deny” result will cause the policy decision to be
“deny”

b. If there are no “deny” results, and there is at least one “permit” result, the
policy decision is to “permit”

c. If there are no “permit” results and no “deny” results, the policy decision is to
“deny” (no applicable policies results in an implicit deny).

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 39

Figure 12: PDP Policy Rule Evaluation Logic (Stage 2)

It should be noted that in this PDP implementation, a security policy or policy request
resource field might be blank. These are treated as wildcards and will always be considered
a match. This also applies to the action entry in both the policy request and security policy.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 40

Service Output

When providing a policy decision, the AS sends, over the Security SMSB, a message
payload in form of an XACML context response message. This message includes an
XACML context decision element that can take the following values.

Table 6: AS Policy Response Data Elements

Information
Element

Description Value

Decision

This is the result of the
policy evaluation process
based on the submitted
policy request by the user
and the current security
policy. This decision is
encoded into a decision
element in the XACML
response message.

As per the XACML 2.0 standard, this field can
take one of three values:
“Permit” (action is permitted), “Deny” (action is
denied) or “Error”. When any error is
encountered by the AS (e.g. policy database is
offline) an “Error” decision is returned and it is
the responsibility of the PEP to handle this
situation. In the SAMSON deployment, the
PEP will deny the action and audit the error
condition.

The XACML context response message format is described in Annex A.2: Authorization
Service Messages.

In the course of serving its function, any SAMSON PEP that has requirement to perform a
policy-based access control check will obtain this information through a query to the AS.
This applies across a wide range of potential application data security handling; a sample
list is provided below:

 Checks against file operations, such as: listing, opening, saving;

 Checks on the sending and receiving of email messages and attachments;

 Checks on instant message / chat room activities including: joining a chat room,
sending covert messages; and

 Checks on accessing web-based services and content.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 41

4.3 Key Management Service (KMS)

As described in the Architectural Design Document, the Key Management Service (KMS) is
one of the central SAMSON security services and is based on the general SSG design.
This service provides cryptographic key generation and connects to a COTS key storage
facility in order to support the cryptographic transformations for the protection of information
assets.

The PEP, as part of its role to enforce policy, directs that data be cryptographically
transformed: encrypting data if it is being introduced to the protected environment and
decrypting the data if data is being released to a SAMSON user. The PEP ensures that
these transformations take place by calling upon the SAMSON core cryptographic service
as described in section 4.4: Cryptographic Transformation Service (CTS). The PEP will
direct the CTS to encrypt or decrypt a particular data asset as appropriate for the requested
action on the data. The CTS requires, in turn, access to appropriate keys in order to
perform the cryptographic operations.

In the SAMSON architecture, each protected data asset is individually encrypted with its
own unique symmetric key. This approach to information protection means that protected
information content is not disclosed to a user if the data asset has not been requested
though the PEP; the PEP being the only component that is able to direct the decryption of
previously encrypted data.

The CTS is the only client of the KMS since the CTS is the only service that requires
cryptographic keys for its operation. When encrypting an asset, a unique key must be
generated for use in the encryption process. The CTS also requires a key token, a unique
identifier that can be used to subsequently retrieve the key from the escrow system when
decrypting content.

The KMS is a bridging component that will link cryptographic key requests from the CTS to
two separate subcomponents in the target environment:

1. A key generation service that will create the needed keys; and

2. A key escrow system that will store the keys and allow them to be retrieved using the
key token to specify the key that is to be retrieved. The key token is supplied by the
escrow system and the format of the token is, therefore, specific to the key escrow
solution.

4.3.1 KMS Design Considerations / Configurations

In the deployed SAMSON architecture, the key generation is performed by a FIPS-compliant
cryptographic toolkit supplied by RSA, the BSAFE® Crypto-C Micro Edition 4.0.1, that
operates as a software module inside the KMS process space. The RSA libraries are used

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 42

in FIPS mode so that keys that are generated through the libraries adhere to the FIPS
standards for key creation.

The deployed architecture also uses a COTS key escrow system supplied by StrongAuth.
This system supports key storage and retrieval over a TLS protected connection.

Figure 13: KMS Deployed Architecture

1. As an SSG, the KMS connects and authenticates to the Security XMPP server in
order to become a participant on the Security SMSB.

2. Once connected to the SMSB, the KMS waits for key request messages. In the
deployed architecture, the sole client of the KMS is the CTS; when a key is needed,
the CTS sends an XACML context request message that contains the key operation
request (2). The XACML message format was re-purposed from its existing role of
expressing security policy requests to serve as a key request protocol since the
action and resource XACML elements can suitably be used to express the key
operation commands and key tokens, respectively.

3. Key storage and retrieval operations are performed by the KMS by reformulating the
key request as an XML-based query expression as required by StrongAuth (3). This
query is encapsulated in a SOAP envelope and is sent to the StrongAuth system
over the security network. While this security network is the same network that hosts
the SMSB, these key storage calls are not made using the XMPP messaging
infrastructure; they are made directly to the escrow system. The security network
remains, however, a segregated network that is isolated from the user community
and operational data services.

4. The response from the key escrow system is received by the KMS.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 43

5. The key and key token information is reformulated by the KMS as SAMSON Security
Response (SSR) message. The format of these context request and services
response messages is described in Annex A.3: Key Management Service Messages.

6. If the key operation includes the generation of a new key, the RSA cryptographic
software module is leveraged to create the new key. When a new key is created, the
escrow system is called to store the key for subsequent retrieval.

4.3.2 KMS Messaging and Operations

Service Input

The KMS expects the CTS to express key commands in the form of XACML 2.0 context
request messages and will, in turn, supply the requested key information in SSR format. All
traffic between the CTS and the KMS is made over the SMSB such that the XACML context
messages are encapsulated within XMPP message structures for delivery.

The following table describes the information that can be provided to the KMS within an
XACML context request message:

Table 7: KMS Key Request Data Elements

Information
Element

Description Value

Action
This is the action that is
being requested by the

CTS for the KMS.

Two actions are defined: GENERATE_STORE
which will create a key and store that key in the

key escrow system and RETRIEVE_KEY that will
retrieve an existing key from the key escrow

system. In both cases, a key is returned to the
CTS.

Resource

When the action is
RETRIVE_KEY, the

resource field holds the
key token for the
requested key.

A key token. For StrongAuth, a key token is a 16
digit unique identifier.

The format of the key token is implementation specific since it is the key escrow system that
creates the token and supplies it to the KMS. For the StrongAuth implementation, the key
token is a 64-bit pseudo random value that bears no commonality with the key to which it is
linked.

Service Processing

When the KMS is started, it reads the configuration information elements, defined in Annex
B.3:Key Management Service Configuration, to determine the location and access privileges
to connect to the key escrow system.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 44

The KMS calls the RSA supplied start-up function to initialize the cryptographic module. The
RSA start-up function will perform a self-check, including the verification of the module
software license. Only once the library has been initialized can it be used for cryptographic
functions like key generation.

Once the RSA library is successfully initialized, the KMS connects to the SMSB and waits
for key request messages from the CTS. When a key request message is received, the
content is extracted to determine the request type, as specified in the action element in the
XACML context message format.

If the message is a GENERATE_STORE command, the KMS performs the following
actions:

1. The KMS calls the RSA cryptographic library, to request a 256-bit key. Since the key
generation is performed by the RSA toolkit in FIPS mode, the key will have been
created according to the standards defined in the FIPS-140-2 specification. This is a
pseudo-random key based on entropic sources polled by the RSA library.

2. The KMS formulates a key storage request, encapsulates it within a SOAP envelope
and sends it to the key escrow system (StrongAuth) over a TLS protected session.

3. The key escrow system returns a response that contains a key token. The key token
generated by the StrongAuth service is a 16 digit unique identifier.

4. The KMS formulates an SSR message with the key token and the key and sends the
payload to the CTS over the SMSB.

If the message is a RETRIEVE_KEY command, the KMS performs the following actions:

1. The KMS extracts the supplied key token that was specified in the resource element
of the XACML context message.

2. The KMS formulates a key retrieval request that includes the key token,
encapsulates it within a SOAP envelope and sends it to the key escrow system
(StrongAuth) over a TLS protected session.

3. The key escrow system returns a response that contains the requested key..

4. The KMS formulates an SSR message with the key token and the key and sends the
payload to the CTS over the SMSB.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 45

Service Response

While KMS key requests use an XACML context message format, the KMS uses the SSR
message format for key responses. The SSR format is an XML-based message format with
name-value pairs to specify the returned values. All SSR messages are comprised of a list
element that contains the name-value pairs and a status element that reports the completion
state of the response: success or error.

Each SSG encodes the list element of the SSR message with a unique name to distinguish
between message usages. For the KMS, all SSR list messages are defined as “keyOP”
responses.

The following table describes the name-value pairs that are returned for each key command

Table 8: KMS Key Response Message Format

Key Command Named Value Value

GENERATE_STORE
key The newly generated key that was created

by the FIPS CME library.

token The key token that was provided by the key
escrow system when the key was stored.

RETRIEVE_KEY key
The key that was retrieved from the key

escrow system for the key token that was
supplied in the RETRIEVE_KEY call.

The KMS will return an error code to the caller if any of the following conditions are
encountered:

 Message cannot be parsed due to a malformed request;

 No action element was specified in the request or the action is unsupported;

 The key or token could not be extracted from the request; or

 An error occurred in one of the external components (RSA or StrongAuth).

Implementation Notes

An alternate implementation of the KMS was developed that uses a MySQL database
backend to store keys (rather than StrongAuth Key Escrow) and a locally deployed SOAP
based service to broker access to the database. This alternate implementation uses a
locally resident PRNG service for key creation rather than the RSA FIPS-compliant library.
The alternate KMS allows SAMSON to be used in environments that do not have a 3rd party
key escrow system or FIPS cryptographic modules, but is not recommended for operational
environments.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 46

4.4 Cryptographic Transformation Service (CTS)

As described in the Architectural Design Document, the Cryptographic Transformation
Service (CTS) is one of the central SAMSON security services and is based on the general
SSG design. This service provides:

 The encryption of information assets when they are protected by the SAMSON
environment; and

 The decryption of information assets when they are to be delivered to an authorized
SAMSON user.

The interpretation of what is means for an asset to be protected by SAMSON is dependent
on the type of asset being protected. The following table identifies, for each data type, when
and how information is stored in its encrypted form and the actions the CTS performs on the
data in order to protect it.

Table 9: Protected Data states and CTS actions on Data

Data Type Protected Form CTS Action

Files
All files that reside on a
SAMSON protected file
share are stored in an

encrypted form.

When a user attempts to upload a file to a
SAMSON protected file share and that action
is authorized according to the security policy,
the PEP will call the CTS to request that the
file be encrypted. When a user attempts to

retrieve a file and that action is authorized, the
PEP will call the CTS to request that the file be

decrypted prior to delivery to the user.

Email
Messages

All email messages are
stored as a SAMSON

encrypted attachment to an
email in the message

recipient’s mailbox while
awaiting delivery.

When a user sends an email message and the
message can be delivered according to the
security policy, the PEP will call the CTS to

encrypt the message (body and attachments).
A copy of the encrypted message will reside in

each recipient’s mailbox. When a user
retrieves messages via the PEP, each

authorized message is decrypted by the CTS
prior to delivery.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 47

Data Type Protected Form CTS Action

Instant
Messages

All persistent chat room
messages are stored as

encrypted, base64 encoded
messages at the IM

Message Server. Each
message is uniquely

encrypted using a common
key for the chat room as a

whole

When a user joins a chat room through a
SAMSON PEP, the IM server will deliver a
chat room history. The IM server delivers

each message separately and the PEP will, in
turn, send each message to the CTS for

decryption. When user sends a message to
the chat room, the PEP calls the CTS to

encrypt the message. That message stays
permanently encrypted at the IM server, but

any user that access the chat room will receive
a copy of the message that has been

decrypted by the CTS.

As described in section 4.3: Key Management Service, the CTS must acquire keys for the
cryptographic operations it provides.

In the course of serving its function, any SAMSON component that has requirement to
protect or unprotect an information asset will do so through a call to the CTS. This is
primarily seen in the PEP architecture where intercepted data must be protected for storage
or unprotected for delivery to an authorized SAMSON user:

 Files are encrypted when they are transferred from the user’s workstation to the
SAMSON protected file repository and decrypted when they are retrieved from the
repository for delivery to the authorized user.

 Email messages, including attachments, are encrypted when they are stored for
delivery and decrypted when a user connects to his mail service.

 IM messages are encrypted as they reside in the IM server chat room message
repository. Only when a user is permitted to enter a chat room are these message
unprotected and delivered. Note that the IM PEP also has a facility that allows
SAMSON users to assign separate caveats to individual messages. Each message
will have its own policy check and there is a unique key used for each chat
room/caveat level combination.

The decryption and delivery of SAMSON protected information is always predicated on the
successful policy call to the AS that grants the user access to the data

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 48

4.4.1 CTS Design Considerations / Configurations

Co-location of the CTS with the PEP

One important decision, when designing a CTS service is the mechanism by which data
assets that have been intercepted by the PEP will be transmitted to the CTS for protection.
There are two options: to transmit the file to the CTS over some trusted path or to move the
CTS service to the data. The SAMSON TD deployment architecture uses the latter design.

By moving the service to the data, both the PEP and the CTS can refer to absolute local
paths for the protection of data. However, this architecture means a separate CTS must be
deployed with every PEP that requires cryptographic transformations. Under the XMPP-
based architecture, however, it is a simple matter to create multiple instantiation of
SAMSON security services by assigning each CTS service a unique identity on the SMSB.

Figure 14: CTS Deployed Architecture for each PEP

The CTS is a bridging component that will link cryptographic action requests from the PEPs
to a FIPS-complaint software module for execution. In the deployed SAMSON architecture,
the cryptographic operations are performed by a FIPS-compliant cryptographic toolkit
supplied by RSA, the BSAFE® Crypto-C Micro Edition 4.0.1, that operates as a software
module inside the CTS process space. The RSA libraries are used in FIPS mode so that
keys that are generated through the libraries adhere to the FIPS standards for key creation.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 49

1. As an SSG, the CTS will connect and authenticate to the Security XMPP server in
order to become a participant on the Security SMSB. Once connected to the SMSB,
the CTS will wait for cryptographic operation requests.

2. In the deployed architecture, the sole client of the CTS is the co-located PEP; when
a cryptographic operation is needed against a data asset, the local PEP sends an
XACML context request message that contains the cryptographic operation request
to the CTS.

3. The CTS performs the action against the data asset referenced in the request.

4. The CTS sends a status response back to the calling PEP in a SAMSON Security
Response message. The formats of the context request and security response
messages are described in Annex A.4: Cryptographic Transformation Service
Messages.

Container versus Non-Container Assets

The SAMSON CTS operates on two types of assets: container assets and non-container
assets.

When the CTS protects a file, it has the ability to wrap the encrypted result inside a
SAMSON container: an envelope that allows some unprotected information to exist outside
of the protected (encrypted) payload. The format of the SAMSON container is a ZIP archive
and, in addition to the encrypted payload, includes:

 The key token that is used as a reference to the actual key (stored in the key escrow
system) that was used to protect the payload;

 A hash digest to detect tampering of the container contents;

 The original file name of the information asset; and

 A copy of the security label on the information asset as it existed when SAMSON
originally protected the asset: a copy of the original asset security label.

The SAMSON containers are protected against tampering in that:

 Any attempt to alter the contents will likely break the container formatting rendering
the archive invalid to SAMSON users;

 Any attempt to alter the contents where the attacker is able to reformat the container
will result in a modified digest that can be detected and flagged as a security event;

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 50

 Any attempt to alter the contents of the payload where the attacker can recalculate
the digest and reformat the envelope will result in a payload that will fail decryption;
and

 Any attempt to access the decrypted payload by altering the security label will fail
since the external (container) security label will not match the internal security label
that is attached to the original unprotected file.

SAMSON containers are used by the PEPs that are responsible for protecting files and
email messages. These PEPs work on individual assets: a separate policy check is done
on each file or message prior to delivery and, therefore, each asset needs its own security
label. When an asset need its own security label, a container form of the asset is
necessary.

Other PEPs do not require separately labelled assets. For example, the instant message
PEP sets a security level at the chat room; the chat room itself has a security label for all
messages it contains. Without the need for security labels on each message, the IM PEP
does not need to work on container assets and it can use simple encrypted objects. These
are non-container assets. While there is no digest of the encrypted file that can be used to
detect tampering, any encrypted messages that are illicitly modified will not produce the
original plaintext on decryption.

There is an implicit protection against tampering since re-encrypting a modified message (or
introducing a new illicit message to the chat room) would require the cryptographic key for
that chat room. Access to that key it not possible from IM server: the IM server is on the
DATA network whereas the key can only be acquired from the KMS on the Security SMSB
on the Security network.

Container Digests

All Samson containers include a digest that is calculated at creation time that is used to
detect tampering of the container upon decryption. The digest is calculated using the SHA-
512 hash algorithm. Digest calculation is dependent on the order in which the source
material is submitted for the calculation. For Samson containers, the digest is calculated as
follows:

1. The contents of the encrypted file;

2. The caveat for the original file;

3. The token for the key;

4. The filename of the original file; and

5. The key used to encrypt the original file.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 51

When a request to decrypt the file is received, the container is opened and the token is
extracted. This is then used to retrieve the key from the KMS. Once the key is received, the
crypto service will recalculate the digest, and compare it to the digest in the container. If
these don't match, the original file is not decrypted and a message is sent back to the
requesting service. If the container was modified, either it's contents modified, or the order
of its members, the digest calculation will show a variance, and fail the comparison.

CTS Operations

As previously stated, the CTS must be able to acquire a key in order to execute the
specified operation. The acquisition of the key is achieved through a call to the KMS over
the Security SMSB. The nature of this key acquisition activity is dependent on whether this
is an encryption call or a decryption call and whether the process that is calling the CTS has
supplied the token. Four possible conditions are possible:

Table 10: Types of Cryptographic Operations on SAMSON data

Asset Type /
Crypto operation CTS Encryption Function CTS Decryption Function

Non-container asset

(Token is supplied in
the call to the CTS)

CTS uses the token to lookup the
key using a RETRIEVE_KEY call

to the KMS. The key returned
from the KMS is used in the

encryption function.

CTS uses the token to lookup the
key using a RETRIEVE_KEY call

to the KMS. The key returned from
the KMS is used in the encryption

function

SAMSON container
asset

(Token is not
supplied in the call

to the CTS)

CTS acquires a new key from the
KMS using a

GENERATE_STORE call to
acquire the key and the

associated token. The key is
used in the encryption function

and a container is build that
includes the ciphertext and token.

CTS extracts the token from the
data asset’s container. CTS uses

this token to lookup the key using a
RETRIEVE_KEY call to the KMS.
The key returned from the KMS is

used in the encryption function

PEPs that have a data asset granularity at the file level expect those files to be in a
container, that is, to have security labels embedded within the file’s structure. For PEPs that
do not assign security labels to files, such as IM chat messages; the encryption of a data
asset does not require a container for the message to be built. Depending on the request
from the PEP, the CTS will place the encrypted asset into a container or not. This provides
the PEP with a high degree of flexibility on how it can manage the information assets it is
protecting. However, when the PEP requests a simple encryption operation with no
container being built, it is the responsibility of the PEP to specify an appropriate token so the
CTS can obtain the correct key from the KMS in order to perform the crypto operation.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 52

4.4.2 CTS Messaging and Operation

Service Input

The CTS expects the PEP to express cryptographic transformation commands in the form of
XACML 2.0 context request messages and will, in turn, supply the requested status
response information in SAMSON Service Response (SSR) format. All traffic between the
PEP and the CTS is made over the SMSB such that the XACML context messages are
encapsulated within XMPP message structures for delivery.

The following table describes the four types of operations that a PEP can request of the
CTS and the information that must be provided within the XACML context request protocol
for each operation type:

Table 11: CTS Request Message Content by Message Type

Operation
Type

Resource
Field 1

Resource
Field 2 Action Field Environment

Field
Encrypt to get

a container Plaintext file Container file COPY_ENCRYPT The label on
the data.

Decrypt a
container Container file Plaintext file COPY_DECRYPT The label on

the data.

Encrypt a file Plaintext file Encrypted file FILE_ENCRYPT_TOKEN The token for
the key to use.

Decrypt a file Encrypted file Plaintext file FILE_DECRYPT_TOKEN The token for
the key to use.

In the XACML context request message format, multiple resource elements are used to
express the absolute path to the plaintext and ciphertext. The order in which the resources
are specified depends on the operation to be executed: resource field 1 is always the file on
which the cryptographic operation is taking place and resource field 2 is always the resulting
object that is produced by the operation.

The environment element is used in two ways:

 When a PEP requests that a container be built for the encrypted object, the
environment element is the label information that should be placed as the security
label in the envelope.

 When a non-container asset is being requested, the environment element provides
the PEP-supplied token that can be used by the CTS to retrieve the key for the
operation.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 53

Service Processing

When a CTS is started (recall that there is a separate CTS co-located with each PEP) it calls
the RSA supplied start-up function to initialize the cryptographic module. The RSA start-up
function will perform a self-check, including the verification of the module software license.
Only once the library has been initialized can it be used for cryptographic functions like
encryption and decryption.

Once the RSA library is successfully initialized, the CTS connects to the SMSB and waits for
cryptographic request messages from the local PEPs. When a cryptographic request
message is received, the content is extracted to determine the request type, as specified in
the action element in the XACML context message format. Additionally, the CTS extracts
the resource elements where the first element is the cryptographic operation source and the
second element is the cryptographic operation target.

If the requested action is COPY_ENCRYPT the CTS will perform the following operations:

1. Extract the security label from the Environment element of the XACML message.

2. Formulate and send a GENERATE_STORE message to the KMS and receive a key
and token in response. Since the CTS is being requested to create a new encrypted
asset, a new unused key is required from the KMS.

3. Use this new key in a call to the RSA library to transform the source file into an
encrypted version of that file.

4. Generate a hash digest of the encrypted file using the methodology described in the
previous section.

5. Create a new container file (ZIP archive) with the name of the target file and add the
following data to the container: the encrypted payload, the hash digest, the original
filename of the file (taken from source) and the label.

Once the container has been successfully created, the CTS can return a status message to
the PEP indicating that the operation if complete. Any errors encountered in the encryption
process will be reflected in the response message to the PEP.

If the requested action is COPY_DECRYPT the CTS will perform the following operations:

1. Perform a digest hash of the contents of the container and compare the result to the
digest that is stored in the container to ensure that the container has not been
tampered with.

2. Retrieve the token from the container.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 54

3. Use this token in a RETRIEVE_KEY message and send this message to the KMS.
The KMS will return the associated key for this token.

4. Use this retrieve key in a call to the RSA library to transform the source file into a
decrypted version of that file.

Once the original file has been successfully decrypted, the CTS can return a status
message to the PEP indicating that the operation if complete. Any errors encountered in the
decryption process will be reflected in the response message to the PEP.

If the requested action is FILE_ENCRYPT_TOKEN the CTS will perform the following
operations:

1. Extract the token from the Environment element of the XAMCL message.

2. Use this token in a RETRIEVE_KEY message and send this message to the KMS.
The KMS will return the associated key for this token.

3. Use this retrieved key in a call to the RSA library to transform the source file into an
encrypted version of that file.

Once the encrypted file has been successfully created, the CTS can return a status
message to the PEP indicating that the operation if complete. Any errors encountered in the
encryption process will be reflected in the response message to the PEP.

If the requested action is FILE_DECRYPT_TOKEN the CTS will perform the following
operations:

1. Extract the token from the Environment element of the XAMCL message.

2. Use this token in a RETRIEVE_KEY message and send this message to the KMS.
The KMS will return the associated key for this token.

3. Use this retrieved key in a call to the RSA library to transform the source file into a
decrypted version of that file.

Once the decrypted file has been successfully created, the CTS can return a status
message to the PEP indicating that the operation if complete. Any errors encountered in the
decryption process will be reflected in the response message to the PEP.

Service Output

While CTS cryptographic operation requests uses an XACML context message format, the
CTS uses the SSR message format for cryptographic responses. The SSR format is an
XML-based message format with name-value pairs to specify the returned values. All SSR
messages are comprised of a list element that contains the name-value pairs and a status
element that reports the completion state of the response: success or error.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 55

Each SSG encodes the list element of the SSR message with a unique name to distinguish
between message usages. For the CTS, all SSR list messages are defined as “cryptoOP”
responses.

The following table describes the name-value pairs that are returned for each key
cryptographic operation:

Table 12: CTS Response Messages by Cryptographic Operation

Cryptographic Operation Named Value Value

COPY_ENCRYPT target Path to the Container File

COPY_DECRYPT target Path to the Plaintext File

FILE_ENCRYPT_TOKEN target Path to the Ciphertext File

FILE_DECRYPT_TOKEN target Path to the Plaintext File

The CTS will return an error code to the caller if any of the following conditions are
encountered:

 Message cannot be parsed due to a malformed request;

 No action element was specified in the request or the action is unsupported;

 The source file for the operation cannot be accessed; or

 An error occurred in the external RSA library.

4.5 Secure Labelling Service (SLS)

As described in the Architectural Design Document, the Security Label Service (SLS) is one
of the central SAMSON security services and is based on the general SSG design. At an
architectural level, the SLS is responsible for:

1. Extracting the security label from data assets; and

2. Validating the contents of a secured object to determine if the label is correct for the
asset it references.

When evaluating a user’s request for data, the PEPs must be able to submit a policy
decision request to the AS. This decision request must include the security label on the

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 56

asset being requested. The PEP, therefore, makes a call to the SLS that will extract
security label information from the information asset.

In the SAMSON TD deployment architecture, the SLS only operates on file assets. The
extraction of label information from other asset types, including email messages, chat rooms
and web sessions, is performed by the PEP for those assets. This topic is discussed in
more detail in section 5.1: Generic Design of a Policy Enforcement Data Intercept and in the
sections that describe the individual PEP architectures.

The SLS Service is a bridging component that will link SAMSON Security Label request
messages to software modules or external services that are able to interpret the security
attribute information that is bound with information assets. For the SAMSON TD deployed
architecture, the SLS includes, as part of its processing capabilities, file handling routines
that are embedded with the SLS and can interpret file formats and extract security label
information for the supported file types.

The SLS must be able to interpret two general classes of files:

 Files that are not currently protected by SAMSON and, therefore, are labelled using
a structure that it not specified by the SAMSON architecture; and

 Files that have been protected by SAMSON and have security attribute information
stored in a format that is defined by the SAMSON architecture.

SAMSON is able to process information assets that have been labelled by the user at the
endpoint using a COTS security labelling solution, but it is the role of the SLS to understand
and interpret that label information. Separate SLS implementations may therefore be
needed to handle different labelling formats. The SAMSON TD deployment architecture
includes file handling routines that can interpret the format of files that have been labelled
using the Titus suite of security labelling products. Other labelling solutions can be enabled
for SAMSON, but would require the creation of file handling routines that can interpret that
solution’s file label format.

While it is the role of the SAMSON SLS Service to retrieve the security label on a data
asset, the SLS also is the logical place where validation of the security label can be
performed. Validation, in the case, is an evaluation performed on the asset to ensure that
the security label properties accurately reflect the information content of the asset itself. For
example, a file with a community membership that included Canadian non-citizens should
not include information in the national interest. It is important to note that verification, the
process of ensuring that the security has not been altered, must always be done prior to
releasing information to the SAMSON user. Validation may also be a batch, or offline,
procedure that is performed against all information assets according to a defined schedule.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 57

4.5.1 SLS Design Considerations / Configuration

Co-location of the SLS with the PEP

Similar to the deployment architecture of the CTS, when designing an SLS service a
decision must be made to either move the data from the PEP to the SLS for processing or
move the SLS to the PEP so that both services are co-located and information can be
passed between these components as local absolute file references. The SAMSON TD
SLS deployment architecture uses the same deployment design as the CTS, namely,
separate SLS services are co-located with each PEP.

Figure 15: SLS Deployed Architecture for Each PEP

1. As an SSG, the SLS will connect and authenticate to the Security XMPP server in
order to become a participant on the Security SMSB. Once connected to the SMSB,
the SLS waits for security label operations requests.

2. In the deployed architecture, the sole client of each SLS is the co-located PEP; when
a security label operation is needed against a file, the local PEP sends an XACML
context request message that contains the security label operation request to the
SLS (2).

3. The SLS performs the action against the data asset referenced in the request.

4. The SLS sends a status response back to the calling PEP in a SAMSON Security
Response message (4). The format of the context request and security response
messages is described in Annex A.5: Security Label Service Messages.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 58

Based on this design, therefore, an individual PEP may be deployed with:

 A co-located SLS if the PEP requires security labels extracted from files; and

 A co-located CTS if the PEP must do cryptographic operations on data.

In the case of the SAMSON TD deployment architecture:

 File Share PEPs require labelling and cryptographic services and are deployed with
a co-located SLS and CTS;

 Instant Message PEPs require no labelling services (label extraction from the chat
room is performed within the PEP itself) but do require cryptographic services and
are deployed with a co-located CTS; and

 Web Session PEPs require no labelling services (again the PEP extracts the label)
and no cryptographic services; this class of PEP is deployed without co-located
supplemental services.

External Label File Format

When a PEP receives a file for storage in a SAMSON protected file share, the PEP must
make a policy decision to determine if the transaction can take place according to the
security policy. To formulate this policy decision request, the PEP must call the SLS to
extract the label from that file. This file must be properly labelled using the external label
file format.

For the SAMSON TD deployment, a file using the external label format is a ZIP archive that
includes a directory named docProps and a file in that directory called custom.xml. Within
this XML formatted file, the following properties are defined:

<Properties xmlns=http://schemas.openxmlformats.org/officeDocument/2006/custom-properties
xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes">
<property fmtid="{D5CDD505-2E9C-101B-9397-08002B2CF9AE}" pid="2" name="TitusGUID">
<vt:lpwstr>432af8d0-5dc5-4165-ae00-b66b25221490</vt:lpwstr></property>
<property fmtid="{D5CDD505-2E9C-101B-9397-08002B2CF9AE}" pid="3”
name="SAMSONDEMOCLASSIFICATION"><vt:lpwstr>CLASSIFICATION</vt:lpwstr></property>
<property fmtid="{D5CDD505-2E9C-101B-9397-08002B2CF9AE}" pid="4"
name="SAMSONDEMOCAVEATS"><vt:lpwstr>CAVEATS</vt:lpwstr></property>
</Properties>

The SAMSON deployed architecture, specifically the SLS, uses values stored in the
property with the name SAMSONDEMOCAVEATS as the caveats to be associated with the
file.

The Titus document classification plug-in for the Microsoft Office suite of products allows the
creation of labelled: Word, Excel and PowerPoint files that adhere to this file label format.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 59

The Titus file labelling software, therefore, is a facilitating component that should be
available to SAMSON users at the endpoint.

It is significant to note that this section describes files as having security labels. While this
label format includes classification information, the currently deployed SLS architecture only
uses caveat information on files. It is anticipated that SAMSON will reside on a SECRET
network where all labelled information will be at the SECRET level.

Internal Label File Format

While stored within the protected SAMSON space (e.g. stored on a file server protected by a
SAMSON PEP) files have the internal label file format. This file format is the format that
the CTS uses when it creates a container object. As specified in section 4.4:Cryptographic
Transformation Service, these containers are a ZIP archive and contain, in addition to the
encrypted object, a file called caveats that stores the caveat that was present on the file
when it was first encrypted. The contents of the caveats file is extracted by the SLS when
working on an internal labelled file.

Verification

In the current deployed architecture, it is the CTS that performs the verification activity. The
CTS ensures, through the creation of and subsequent testing of the hash digest on the file
to ensure that the container and label has not been tampered with. The SLS will be
expanded to include the ability to check the integrity of a security label, however, this
capability is not present in the SLS in the deployed architecture.

Validation

The SLS in the deployed architecture has the ability to plug-in additional processing
modules that can perform advanced reasoning on documents to ensure that the label on the
data is correct or to recommend a label for a document that is not labelled. One such plug-
in, a Naïve Bayesian Classifier, has been developed for this architecture, however, no plug-
ins are currently included in the SAMSON TD architectural deployment.

4.5.2 SLS Messaging and Operation

Service Input

The SLS expects the PEP to express security label request commands in the form of
XACML 2.0 context request messages and will, in turn, supply the requested security label
in SAMSON Service Response (SSR) format. All traffic between the PEP and the SLS is
made over the SMSB such that the XACML context messages are encapsulated within
XMPP message structures for delivery.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 60

Only one request message is currently supported, namely, a request to retrieve a label from
a specified file. The context message takes the following form:

Table 13: SLS Request Message Content by Message Type

Message Type Subject
Field

Resource
Field Action Field Environment

Field
Extract the security
label from the file N/A The target file

being queried FILE_GET_LABEL N/A

Within this XACML context message structure, the resource element is the absolute path to
the file whose label is being requested and the action element is FILE_GET_LABEL. When
received, this message instructs the SLS to retrieve the security label from the file. It is the
responsibility of the SLS to determine the file type and to engage the correct label parsing
routines to extract the label from the information asset. It is anticipated that additional
actions for the verification and validation of labels will be added in subsequent revisions of
the SLS.

Service Processing

When an SLS is started, it connects to the SMSB and waits for file label request messages
from the local PEPs. When a file label request message is received, the content of the
message is extracted to determine the request type, as specified in the action element in the
XACML context message format, and the target file for the operation as specified in the
resource element.

If the requested action is FILE_GET_LABEL the SLS will perform the following operations:

1. Determine the type of the target file.

2. If the file is an external file (Microsoft Office file with a security label) the SLS will
open the custom.xml file in the file’s archive format and retrieve the caveat list from
the SAMSONDEMOCAVEATS property.

3. If the file is an internal file (SAMSON protected file) the SLS will open the container
(archive file) and retrieve the caveat list from the caveats file.

Once the caveats have been successfully retrieved, the SLS can return a status message to
the PEP indicating that the operation if complete. Any errors encountered in the retrieval
process will be reflected in the response message to the PEP.

Service Output

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 61

While SLS label retrieval requests use an XACML context message format, the SLS uses
the SSR message format for the response. The SSR format is an XML-based message
format with name-value pairs to specify the returned values. All SSR messages are
comprised of a list element that contains the name-value pairs and a status element that
reports the completion state of the response: success or error.

Each SSG encodes the list element of the SSR message with a unique name to distinguish
between message usages. For the SLS, all SSR list messages are defined as
“assignedlabel” responses.

The following table describes the name-value pairs that are returned for each key label
retrieval operation:

Table 14: SLS Response Message Content by Message Type

Response to Request Message Response Type Response

GET_FILE_LABEL caveat Comma separated list of caveats on a file.

The SLS will return an error code to the PEP if any of the following conditions are
encountered:

 Message cannot be parsed due to a malformed request;

 No action element was specified in the request or the action is unsupported;

 The source file for the operation cannot be accessed; or

 There is no label present in the file.

4.6 Trusted Audit Service (TAS)

As described in the Architectural Design Document, the Trusted Audit Service (TAS) is one
of the central SAMSON Security Services based on the SSG design and is the key service
for maintaining and demonstrating the integrity of SAMSON information protection
processes. The TAS supports the integrity of the SAMSON trust model through the creation
of audit records that are linked via a chain-of-custody to ensure tampering has not occurred
within the audit trail. The audit records that are protected and stored though the TAS keep a
transactional history of the policy decisions and access control enforcement across all
SAMSON protected resources. Since all policy enforcement activities are recorded within
the TAS and the integrity of the TAS can be demonstrated, the TAS can be used to track
information access requests and the rationale for why information was disclosed to
SAMSON users.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 62

The TAS extends to other SAMSON components the ability to receive and store transaction
data associated with information requests. The information that is audited is intended to be
a trusted and tamper-resistant record of auditable actions that have taken place within the
SAMSON protected environment. Processing the incoming audit information and
augmenting individual records with supplemental information that allows the integrity of the
record to be asserted and the integrity of the stream of audit records to be similarly
maintained achieve the SAMSON design goals for a tamper-resistant audit trail. Tampering
of audit information, including the insertion, modification or deletion of audit records, can be
detected by integrity verification routines that provide:

 Real-time or scheduled checks of the audit store integrity;

 Complex audit store analysis to detect suspicious patterns of activity; and

 Incident management procedures, including notification capabilities when security
events are detected in the SAMSON environment.

The clients of the TAS are the SAMSON PEPs. The PEPs intercept data traffic and call
SAMSON security services to provide data-centric information protection. In this light, the
PEPs are the central coordinating point to drive the information protection logic and are the
best source for audit record information. A PEP that receives an information request will
generate an audit record to state whether the transaction was permitted or denied as per the
security policy, this transaction includes the ancillary meta data to support a complete audit
record (Annex A.6 : AuditXML Schema). The PEP will also create audit records for error
conditions that are reported from SAMSON security services. For example, if a file’s
security label cannot be extracted, SAMSON cannot make a policy decision regarding this
file and the transaction should be denied. Such a transaction is submitted to the TAS with
the error condition reported within the record.

All audit traffic is transmitted over the Audit SMSB. Since the PEPs are the only components
that submit audit records, the PEPs are the only components, other than the TAS itself, that
are participants on the Audit XMPP domain. This is shown in Figure 3: SAMSON SMSBs as
XMPP Domains.

It is significant to note that each PEP will connect to the Audit SMSB with its own unique
session; each PEP, therefore, becomes a trusted audit client (TAC) of the TAS. Each TAC
generates and submits audit records that can be distinguished from those of other TACs.
The sub-module code required to act as a TAC is embedded within the general PEP design.

Architecturally, the PEPs submit audit records to the TAS and the TAS stores the processed
(integrity protected) audit records in an independent repository. This architecture can be
seen in the following diagram:

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 63

Figure 16: TAS Deployed Architecture

The TAS leverages a database for the storage of audit records. The SAMSON TD
architectural deployment uses a MySQL based audit storage facility and audit records are
submitted to the audit store using SQL on the audit network. While this audit network is the
same network that hosts the audit SMSB, these SQL insertions are not made using the
XMPP messaging infrastructure; they are made directly to the database itself. The audit
network remains, however, a segregated network that is isolated from the user community
and operational data services.

1. As an SSG, the SLS will connect and authenticate to the Audit XMPP server in order
to become a participant on the Audit SMSB.

2. Once connected to the SMSB, the TAS waits for AuditXML formatted audit records
that are sent from the PEPs.

3. The TAS processes the audit record: extracting the audit record content, extending
the audit data to include chain-of-custody integrity protections and submits the record
to the audit repository for storage.

4. If the record contains information that should raise a security event (e.g. exceptional
policy violation, error conditions), a syslog record is created and sent to a syslog
service. In the SAMSON TD architectural deployment, AlienVault, an open source
SIEM solution, which will raise a security event from this syslog records and send a
notification email to the security officer.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 64

5. Audit integrity tools can then called on-demand or according to a scheduled basis to
periodically verify that the integrity of the audit chain has not been broken and that
audit records have not been illicitly modified.

Audit records are reviewed using an administrative interface documented in section 6.3:
Audit Review Interface (ARI). Similarly, the design of the integrity verification tools is
described in section 6.4: Audit Integrity Checker (AIC).

4.6.1 TAS Design Considerations / Configuration

The message flow from the PEP to the TAS leverages the trusted delivery mechanism
provided by the XMPP architecture. When a PEP sends a message on the Audit SMSB, the
XMPP server ensures that the message reaches the TAS so long as the TAS is present on
the XMPP domain. As with the Security SMSB, participants on the Audit SMSB use TLS
protection to ensure the confidentiality and integrity of their sessions. The use of TLS
between the PEP and the TAS adds to the chain of custody protection and integrity of the
audit records created within the SAMSON architecture.

The exchange between the PEP and the TAS is one-way; audit records are submitted to the
TAS, but the TAS does not send any receipt message. This “fire and forget” model for the
TAS is an intentional design decision for the following reasons:

1. Adding a response message will double the traffic on the audit network;

2. If a transaction cannot be audited, the only thing a PEP could do is deny the
transaction; this is seen as an unacceptable point of failure for SAMSON (if the TAS
is disabled, all SAMSON activity is disabled); and

3. The XMPP server can queue messages for delivery, holding those records until the
TAS is available without the loss of audit data.

If there is a need to disable all PEPs if the TAS is not available, a better approach would be
to have the PEPs acts on XMPP presence messages: announcements from the XMPP
server that the TAS is no longer present. The SAMSON TD currently does not provide this
behaviour.

Event Notification: The TAS supports security event notification. When an error condition is
encountered, the TAS will create and submit a TAS message to an appropriate facility within
the deployment environment. Error conditions are raised whenever a SAMSON component
fails to service a request (e.g. a back end database is offline) or when there is a violation of
implicit security logic. For example, the policy denial of the retrieval of a file from a
SAMSON file share should not happen and may be indicative of malicious activity. In such
a case, the TAS would submit a syslog message in addition to an audit record. The TAS
configuration specifies the target syslog service. In the SAMSON deployment architecture,
syslog messages are directed to an AlienVault 4.1 Open Source SIEM solution that accepts

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 65

TAS error conditions raises and alert about this condition and send an email message to the
security officer. These solution components are described in section 6.5: SAMSON Security
Event Management.

Protection of the Audit Storage: The TAS design does not place any restrictions on what
storage facility is used to house the audit records. Any chosen storage facility will need to
be configured before it can be used with TAS, for example, an audit repository database will
need a schema that maps to the AuditXML structure and the associated extended security
attributes. The selection of the facility and the security protections that SAMSON places on
the audit records, industry-best practices should be applied to the configuration, deployment
and operation of the storage repository to further ensure the confidentiality, integrity and
availability of the audit records.

Audit Administration: The interface through which audit records are review must be, itself, a
SAMSON policy-based data exchange. That is, the interface that is used to perform audit
analysis, audit review and forensic activities must enforce the domain’s security policy. As
an example, the policy right to access audit records could be assigned to a specific
community; only those users that belong to that community will have access to the audit
analysis interface. Use of this interface would then be subject to all SAMSON protection
from access control to auditing4. For the SAMSON TD deployment architecture, audit
records are reviewed using an administrative interface documented in section 6.3:Audit
Review Interface.

4.6.2 TAS Messaging and Operation

Service Input

Audit records are sent from the PEP to the TAS as AuditXML records. AuditXML is an XML-
based message format that has been designed for the submission of SAMSON audit
records. The full specification of the AuditXML schema is listed in Annex A.6: AuditXML
Schema, however, the following table provides a description of the significant data elements
that a PEP must populate into an AuditXML record before it is submitted to the TAS.

4 Note that in this case, access the audit interface is an auditable event, a clear case of
SAMSON protecting SAMSON that is part of the technical demonstrator architectural
objectives.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 66

Table 15: AuditXML Elements

AuditXML
Element

AuditXML
SubElement Description

Principal

userId
The identity of the SAMSON user that initiated the data

request associated with this audit record. Naturally, this is
the identity that was used in the policy check to the AS.

ipAddress The address of the PEP that submitted the audit record.

programName
An identifier of the type of PEP that submitted the audit
record. For example ‘fileshare’ for all PEPs that provide

file-based information protection.

Action

Operation
What action was performed on the data. In this context, the

action is the policy action (e.g. READ,WRITE) that was
submitted to the AS for a policy decision.

Target
The resource against which the policy decision was made.
In this context, the target is the security label of the asset

against which the policy decision was made.

tacOrigin A identifier that unique differentiates the audit record
created by this TAC from those of other TACs.

Notes A free form section in which per operation or per file type
data can be inserted into an audit record (see below)

Timestamp A timestamp on the audit record, referencing the time when
the audit record was created.

Of significant interest is the notes element. As new PEP are created and introduced to the
environment or new actions are made policy enforceable, new auditable information is
generated. For example, in a file share PEP it is desirable to audit the name of the file that
has been released to the user. This is a piece of audit information that is only relevant to file
sharing. Similarly, a decision to allow a user to join a chat room created audit information
that is only relevant to that action on that data type. The chain-of-custody audit protection
approach requires, however, that there be only one audit repository (database table) rather
than a separate repository for each type of audit record. To resolve this challenge, a free
form (name-pair) field was added to the AuditXML schema. Each audit record contains,
therefore, a section of mandatory fields that must be populated for each audit event and an
element comprised of freeform audit notes that contain audit information that is relevant to
that record type only. In this way, a balance between flexibility and standardization is
achieved for audit record expression.

Note that in the SAMSON TD deployment environment, the virtualization infrastructure is
time synchronized (all virtualization server use a common time source) and all virtual
machines inherit the time from their virtualization host. In this way, all components in the
SAMSON TD are time synchronized and the timestamp generated by the PEPs reflect the
time that the auditable transaction took place. In a deployment environment, the
virtualization components would leverage a trusted time source for time synchronization.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 67

Service Processing

Upon receiving an AuditXML record from a TAC (the auditing software module within a
PEP), a TAS will perform the following actions.

Figure 17: Audit Processing Logic

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 68

Step 1. Extract the audit information: The AuditXML structure is extracted and placed into a
local data structure that will be used to create a database record that can be inserted into
the audit store.

Step 2. Extend the local audit data to include the TAS relevant audit information: The audit
record that is inserted into the audit store is a combination of client information and audit
server information. The TAS data that is added to the audit record includes:

 An identifier for the TAS that accepted the audit record; the SAMSON TD design
supports the structure of many TACs submitting records to a TAS and multiple TAS
that submit audit records to the audit store. By adding the TAS identity to the audit
record it is clear which TAS submitted the audit record.

 A TAS timestamp is also added to the record to show when then record was added
to the store. If there are processing delays or buffering, the TAC timestamp and TAS
timestamp may be different.

 The TAS also enumerates the audit record with the currently active block sequence
and provides a unique block number for the record. Audit records are placed in
blocks and integrity is maintained on a per-block basis. Tampering of an audit record
will violate the integrity of a block, but not the entire audit trail.

Step 3. Evaluate the audit record to determine if it should be logged for notification:
Currently, the TAS logs for notification all audit records that reflect an error condition. If an
audit record contains an errorcode element within its notes element, a syslog message is
generated and sent to the syslog server as defined in the TAS configuration. The syslog
message is a comma-separate message that contains:

1. The SAMSON user that initiated the transaction that raised a notification.

2. The SAMSON protected resource that was requested in the transaction.

3. The action on the resource that was requested in the transaction.

4. The IP address of the PEP that submitted the audit record for this notification.

5. The PEP application that submitted the audit record for this notification.

6. The PEP command that was requested by the data intercept.

7. The error code that was sent in this audit record.

8. The error text associated with this audit record.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 69

The submission of a syslog message is a fire and forget protocol. Syslog records are sent,
but no response is expected from the syslog server. For the SAMSON TD architectural
deployment, the processing performed by the syslog service, the SIEM solution and the
generation of notification messages is described in section 6.5: SAMSON Security Event
Management.

Step 4. Create the digests and insert the audit record: The calculation of digest values to
add integrity to the record and the submission of the record to the audit store are performed
by a stored procedure. Messages are grouped into blocks so that integrity violation can be
contained. That is, if a record is tampered with the TAS is able to re-assert integrity by
restarting the chain after a certain number of records. The number of records in a block is
configurable. If the most recently added record completes a block, a block digest is created
and stored and a new audit block is initialized.

Each audit record contains a hash over the concatenation of its own fields following those of
the audit record before it (or “0” if there is no antecedent). The first record of an audit block
(after the first block) chains the last record of its preceding block. This approach protects the
integrity of each record, since any alteration of a record would break own hash and the hash
on the following record.

Each audit record is numbered in sequence, per audit block, and each audit block is
numbered in sequence, per TAS instance. This approach provides evidence of any insertion
of spurious records or deletion of audit records. Furthermore, any such malicious activity
would break the hash of the first record in the next block. This is shown in Figure 18: Audit
Record Digests.

Each audit record in the database contains two SHA-160 message integrity digests.

1. The TAS calculates the record digest over the concatenation of its own fields.

2. The TAS calculates the chain digest over the concatenation of its record digest and
the chain digest of the preceding record. The first record of an audit block uses “0”
for its chain digest: this design limits the cascade of any tampering event to (the
record and all subsequent records of) its own block. This approach protects the
integrity of each record, since any alteration of a record would break own record
digest and the chain digest on the following record.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 70

Figure 18: Audit Record Digests

3. Once the digests have been calculated, the record is inserted into the audit store (3).
The store procedure will return a status message that will indicate if a block has been
fully populated.

Step 5. Processing of a Completed Block: If, after the insertion of the most recent record, a
block contains its maximum number of records, the block is locked down a new block is
started. Creating a digest across all records in the block locks a block. The intent is to
provide a digital signature on the block digest; however, this is not currently in place within
the SAMSON TD architectural deployment. Once a block is locked, a new block is initiated
and audit records are added to this block.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 71

5.0 The SAMSON Data Intercept Strategy

The components previously described in this document form the core of the SAMSON
messaging infrastructure. This list of components includes:

1. A Secure Messaging Service Busses (SMSBs): The ability for SAMSON
components to exchange data in a manner that is secure, protocol agnostic, and
reliable.

2. Security Services Gateways (SSGs): The ability to bridge between the SAMSON
security architecture and the back end (non-SAMSON) applications that provide the
needed security functionality.

3. Policy Enforcement Points (PEPs): The ability to link external application and
security services to the SAMSON infrastructure in a manner that adheres to the
SAMSON security protection principles.

Figure 19: The Policy Enforcement Data Intercept

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 72

This section describes the PEP component architecture and provides design details for the
PEPs that have been included in the SAMSON TD architectural deployment. As a
preliminary observation on PEP design it should be noted that PEPs are defined by two
significant sub-components, also shown in Figure 19: The Policy Enforcement Data
Intercept:

4. The Policy Enforcement Data Intercept (PEDI) that intercepts traffic between the
user’s endpoint workstation application and the target data service; and

5. The Policy Enforcement Message Client (PEMC) that performs the exchange of
SAMSON security messages with other components over the SMSB.

These two sub-components, the components that are most closely linked to the user’s
session, user data requests and information assets to be protected, are described detail in
the following sections.

5.1 Generic Design of a Policy Enforcement Data Intercept

This section describes the generic design for a PEDI, identifying the required capabilities
that a PEDI would need in order to protect information assets by leveraging the SAMSON
security services via the PEMC.

The PEDI performs the following functions:

 Intercepts information requests that are sent from the workstation to the target data
server;

 Collects information that is needed to formulate a policy request;

 Sends the policy request data to the PEMC. The PEMC, as previously discussed,
implements the information protection logic to ensure that the data request is
handled correctly and exchanges the necessary messages with other components to
leverage SAMSON information protection services; and

 Based on the response from the PEMC, the PEDI will allow the information request
to proceed: allowing data to be sent to the back end server (i.e. a file upload) or
returning data back to the user (e.g. a directory listing).

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 73

From this description of PEDI operations, it is obvious that it is the sub-component that
works most closely with the data service itself. The nature of the PEDI architecture can be
described in terms of: the data asset profile, the data service security functions, security
operations on the data and the intercept network architecture. Each of these aspects of the
PEDI’s design is described in detail in the following sections.

5.1.1 PEP Data Assets

In order to be able to protect an application with SAMSON services, the granularity of the
data asset on which the security operations are performed must be determined. For file
sharing services, this granularity was chosen to be at the individual file level, but other file
sharing constructs, such as directories and paragraph-level, labelling could also be
considered when defining the list of data assets that are to be protected by the SAMSON file
sharing PEP. Similarly, a PEDI that is intercepting email messages would need to operate
not only on email messages, but also on all files that are attached to messages. A PEDI
that is protecting instant messages may work on individual IM messages or at a higher order
collection of messages, such as a protected chat room. The selection of the data asset
granularity and the selection of data asset types that are protected by the PEP will dictate
the nature of the data intercept that must be provided by the PEDI.

For SAMSON to be able to exercise policy enforcement on data assets, it must be possible
to associate a security label to each individual asset. In some cases, there are third party or
COTS solutions that will allow the user to apply a label at the endpoint. In other cases, the
data label may have to be applied at the server itself. For example, a SAMSON protected
data, accessed by users though a subscription, will have to be initially labelled at the source
since the end user it merely a consumer of the data. The label itself must be able to reflect
the nature of how the associated data is used and the policies that will apply to that data
asset. For example, there may be the need to apply multiple caveats within the security to
reflect that the asset is accessible to multiple communities. The approach taken by each
PEP in the SAMSON TD architectural deployment for the security labelling of data assets is
described in section 5.3: PEP Implementations.

In any event, the label applied to the data must be able to be determined either by:

 the SLS, the service that extracts, verifies and validates the security label on the data; or

 the PEDI itself.

For certain applications, such as IM chat rooms, the PEDI is better suited to determine the
label on the data assets being protected since the PEDI can query the IM server directly to
acquire the label on the chat room. In this case, the label is attached to chat room
properties at the server, rather than being combined with the data asset itself as is the case
with file and email protection.

If the information protection logic calls for a policy-based access check to be made on a file
before it is delivered to a client, the PEMC will need to obtain the label on that file in order to

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 74

formulate a policy request to be sent to the Authorization Service. The PEMC extracts the
security label on the file by calling the SLS.

In a similar vein, the security label must be cryptographically bound to the data that it
references. In the context of the SAMSON file sharing PEP, a file contains, within its
metadata structure, the security label of the file. Hence, when SAMSON encrypts a file, the
security label stored within that file is encrypted along with the file. It is, therefore, not
possible to modify the file or the security label since that are stored in a protected and bound
form at rest.

While it is the role of the SLS to verify and retrieve the security label on a data asset, the
SLS also is the logical place where validation of the security label can be performed.
Validation, in the case, is an evaluation performed on the asset to ensure that the security
label properties accurately reflect the information content of the asset itself. For example, a
file with a community membership that included Canadian non-citizens should not include
information in the national interest. It is important to note that verification, that is, ensuring
that the security has not been altered, must always be done prior to releasing information,
but validation may be a batch, or offline, procedure that is performed against all information
assets according to a schedule.

When an information asset fails a verification test, this is a condition that must be sent to the
security officer role, as it represents a potential attempt to infiltrate the security environment
and obtain illicit access to protected materials. Such a scenario may require the initiation of
an incident management process and, potentially, forensic analysis. A failed validation is
another security concern that should be flagged to either the data owner or the security
officer. This event does not denote an attack against the environment but does signal that
changes to data classification rules have resulted in the target files being improperly
classified. This is a situation that would require rectification before data is improperly
disclosed.

5.1.2 PEP Actions on Data

Once the scope of the data asset has been determined, the next step is to determine, from a
policy perspective, what constitutes the range of actions that can be performed against the
data. Specifically, this set of actions represents the actions that require a policy-based
authorization check before the operation is performed against the data. For example, in a
file sharing PEP, the set of actions against files that could require a policy check include:
create, open, copy, save, rename, delete, or update. When designing a PEP, a security
architect must consider the following concerns:

 Granularity: If a high degree of control is needed on the operations against data, then
more ‘unique’ actions are required. For example, UPDATE, CREATE, RENAME and
DELETE may all be considered separate, policy enforceable actions. This would
allow a policy author to create very specific policy rights across the community.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 75

 Complexity: More actions result in very complex policies that become challenging to
author and maintain.

In operational practice, a balance must be struck between these two conflicting demands:
simple policy expression versus sufficiently granular access checks.

The SAMSON TD architectural deployment has expressed all data operations in terms of
the policy action of “READ” and “WRITE”. In this interpretation, accessing content is a
READ operation whereas creating; updating or removing content is always a WRITE
operation. For example, the PEP designed to protect email messages equates the sending
of an email message as a policy WRITE operation and the receiving of an email message
as a policy READ operation.

Table 16: PEP Operations in a Policy Context

PEP Data Asset READ Operations WRITE

File
Sharing

Individual Files
Open a file hosted on a

SAMSON file share.
Copy a file to the endpoint.

Save or copy a file to a
SAMSON protected file share

Directory Listings List files hosted on a
SAMSON protected file share N/A

Email Email Message Receiving an email message. Sending an email message.

IM Chat Room N/A Joining a chat room

IM Individual
Messages

Receive an individually
labeled IM message

Send an individually labeled IM
message

Web Web Service
Access web content hosted at

a SAMSON protected web
service

N/A

It is also significant to note that a sophisticated set of policy enforceable actions may only be
of use in cases where there is an equally sophisticated policy request/response language to
submit complex policy expressions and a policy engine that is able to process these
sophisticated policy expressions. Policy decisions can be extended but not to include such
environment attributes as: roles, dates, times and locations.

An additional consideration when planning PEP enforceable policy actions is audit. There
are situations where a PEP will be called upon to perform an operation many times and the
auditing of such actions may not produce useful audit records. For example, execution of a
listing of files in a directory will require policy check to be performed on each file in order to
allow the file to be deployed to the user or omitted from the returned list. In a directory
listing of hundreds of files, with each file being evaluated in the policy, a large number of
audit records would be generated. The value of the audit data being created must be
considered when defining which operations on data should result in the creation of an audit
record. Section 4.6:Trusted Audit Service (TAS) provides a detailed description of the
auditing strategy for SAMSON information protection operations. Additionally, Table 15:

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 76

AuditXML Elements provides a list of data elements that are always part of a properly
formatted audit record. It is important to note that individual SAMSON security services can
add context-specific audit information that is relevant to that service. For example, the
absence of a security label on a data object is a labelling specific error condition that can be
included as part of the more general audit record format.

5.1.3 PEP Proxy Architecture

The most fundamental aspect of PEDI design is the manner in which information requests
are intercepted so that:

 Information regarding the request can be collected, including:

o Who is requesting the data,

o What asset is being requested, and

o What action is being performed on the data; and

 The decision from the PEMC can be enforced.

In the majority of cases, the data intercept strategy requires that the PEP must adhere to a
proxy architecture where there are two discrete connections: from the client to the PEDI and
then from the PEDI to the back end data service. This architecture assumes that SAMSON
is able to intercept the data transport protocol (e.g. HTTP) and interpret the data protocol
that is used by the application. SAMSON can support other architectural designs such as
multi-tiered web architectures. In such architectures, the middleware acts as a broker
between user requests and data services. SAMSON can be made to integrate with this
middle layer, applying: policy, protection and auditing services at this central processing
point. Architectures of this nature are only possible where the middleware layer supports
the leveraging of external processing or security components.

The PEP design will have an impact on the SAMSON deployment architecture. As part of
the defence-in-depth approach to security architecture, the concept-of-operations for a
SAMSON deployment calls for cryptographic and keying operations to take place in a
physically secured environment, that is, an environment separate from operational data
processing. A PEP design has data protection operations taking place at the location where
it has been intercepted would mean that the PEP must itself reside inside that secured
environment. In such cases, the PEDI must be able to support intercept isolation,
specifically it must be able to be hosted in a separate zone from either the client application
or the data service it is protecting.

One of the basic tenets of the SAMSON concept is the fact that “open” protocols, expressed
though RFC, W3C or OASIS specifications for information exchange, both in transmission
and in expression of data, can be more easily intercepted and interpreted. More
importantly, however, working to an open standard means that a single SAMSON PEP can

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 77

be used to protect any number of client applications. For example, SAMSON PEPs that are
written to intercept proprietary protocols like SMB and MAPI can only be used with
proprietary client applications. Equivalent protocols, such as WebDAV and SMTP, are more
universally used and, as a result, provide a greater range of support for applications that can
leverage SAMSON information protection. SAMSON is intended as a solution to provide
information protection to back end data services; leveraging open standards provides
SAMSON with a degree of application or intercept independence that supports that
concept.

A similar perspective can be seen from the workstation application’s view on the PEP. A
PEDI should be able to provide a client with a completely agnostic intercept. That is, it
should be possible for the endpoint applications to experience SAMSON protection in a
completely transparent manner. Where a PEDI is providing a proxy-style service, it is
possible that the only change at the application is the specification of new connection
address information. The fundamental architecture of other services, such as instant
messaging, require that the client applications specify the real connection address of the
data server, but do support the configuration of proxied connections.

Generally speaking, a completely transparent proxy is possible as long as the following
conditions are met.

1. The client application supports proxies connections and can specify a connection
information in its own configuration settings;

2. The proxy architecture allows the entire data asset to be transmitted as a complete
entity; proxies that forward portions of an asset require that the PEP buffer
information as it passed through the PEP. For example, a PEP that supports file
sharing must operate on the entire file in order to create an encrypted version of the
file. If the proxy architecture only transmits a portion of a file at a time, the PEP will
have to buffer the contents until the entire file is received.

3. The back end service does not have proprietary protocol dependencies for the
client/server connection.

Complete transparency or the ability to work with applications’ configuration options should
remain a goal of any PEDI design.

Web service application frameworks are good candidates for hosting PEP capabilities.
Where a data service can be supported through a web session, web modules can be
specifically written to support SAMSON style protection for that service. These web-based
services typically benefit from Windows Domain authentication and TLS-based session
security. There is also an advantage of using a common API for PEP functionality; a single
instance of PEP code can be used to support multiple, similar data services. The Apache
Programmatic Runtime and Microsoft ISAPI modules are examples of web frameworks that
can host implementations of PEP services for many data types. For example, the file
sharing and web session PEPs are both implementations of Apache modules that supply
SAMSON information protection of files and web services, respectively.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 78

5.1.4 PEP User Community

A PEDI must be able to know which user has submitted an information request. The
determination of the user’s identity is necessary for:

 Retrieving security attributes for that user from the SAMSON IdM Service;

 Performing policy-based queried to the SAMSON Authorization Service; and

 Recording the user’s activity in the SAMSON Trusted Audit Service.

The SAMSON concept includes the creation of an Authentication Service (a separate
service from the Authorization Service), which would authenticate the user’s identity over the
Security SMSB. This Authentication Service would connect to a back end authentication
solution and supply any SAMSON component with a trusted statement of a user’s identity.
This Authentication Service would be able to leverage any authentication source and extend
a common authentication model to all endpoints (e.g. Windows or Linux)

The SAMSON TD architectural deployment, however, only targets Windows endpoints; as a
result a modular Authentication Service has not deployed with the SAMSON TD. Instead,
the Windows Active Directory has been used directly as the repository of the user’s domain
identity and the Windows Domain Controller performs the authentication of the user at the
workstation. User security attribute, such as nationality, clearance and caveat
membership are not stored with the user account, rather, they are stored in the security
attribute repository that is accessed through the SAMSON IAS.

Given that there are two locations for user attributes: AD for the user account properties and
the security attribute repository for SAMSON specific user attributes, there must be a
method by which user accounts can be mapped to the equivalent security repository user
entry. For example, the AD SAMAccountName property could map to the common name of
the security attribute organizational unit within the LDAP server. The significance of this
mapping is that this one property that defines a user’s identity becomes universally used not
only in its data access context at the PEDI, but also across all SAMSON Security Service
messages, such as policy checks and audit records.

If the PEDI is using the user’s domain identity as their identity within SAMSON Security
Service messages, it is essential that the PEDI is able to determine the domain identity in a
trusted manner. In other words, SAMSON must be able to authenticate the user’s identity
so that all subsequent SAMSON operations inherit that same level of trust and
accountability. The PEDI must therefore be able to perform domain authentication against
the domain controller or obtain and interpret Windows credentials that were acquired at the

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 79

workstation at login5. If the PEDI is able to obtain and use Windows domain credentials, the
PEDI will have achieved a single sign on capability that further presents SAMSON as a
transparent security solution.

There remains one final point in PEDI design as it pertains to the user community. If the
PEDI design calls for two discrete connections: between the endpoint application and the
PEDI and then from the PEDI and the back end data service, then the domain
authentication will be taken from application side of the PEDI, since that is where the
credentials were obtained. Depending on the nature of the PEDI design it may be
necessary for the PEP to provide identity pass-through, that is, the propagation of the
user’s identity or credentials to the back end data service. Without identity pass-through, a
connection to the back end service may not be possible or there may be a loss of
functionality such as discretionary access controls.

5.1.5 PEP Data Protection

The PEDI must be able to transform data as it traverses the PEP with the most significant
transformation being cryptographic protection of data. It is the CTS, operating on files
that performs these transformations. As a result, the PEDI will write incoming data to a file
and request, through the PEMC, that a cryptographic transformation be applied to the data.
To reiterate, when a PEP applies information protection to a file:

1. The PEDI sub-component of the PEP writes the data to a working location;

2. The PEMC sub-component of the PEP calls upon the CTS to transform the file into
an encrypted form; and

3. If successful, the newly created object is read in by the PEDI and used as the data
object in subsequent operations.

Using the SAMSON email PEP as an example, when the PEDI intercepts an email message
being sent, the message is written to a temporary location, a request is made to protect the
file, and the resulting encrypted message is read by the PEDI and sent to the message
server. The PEDI must be able to support this modification of the incoming data and
delivery of a modified payload. After processing the request, all temporary files are
removed. It is the fact that the plaintext data, keying information and transformation
activities are being performed on the machine on which the PEDI is hosted that requires that
machine to have a higher degree of physical and administrative protection.

5 Note that the acquisition of Windows domain credentials can be enhanced with PKI
smartcards and/or biometrics, providing strong authentication that is inherited by SAMSON
processes.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 80

Transformation of data by the PEP forms part of the information protection strategy for an
application protected by SAMSON. This strategy includes the following elements.

1. SSL/TLS protection of the session between the client and the PEDI. SAMSON is a
back end protection solution and while the data asset encryption is applied and
removed at the PEDI, the environment security architecture can dictate that all
communications with the endpoint must be encrypted using session-based security.6

2. Once the PEP has encrypted the data asset, it cannot be disclosed unless it passes
back through this or another similar PEP where the original key that was used to
protect the asset is retrieved and applied to the cipher text.

3. The delivery of the data from the PEDI to the data service is optionally protected in
SSL/TLS session, but this is an additional layer of security since the data asset is
already encrypted.

4. At the data server, the data asset can be stored safely in its native format since it
remains in an encrypted state.

5. System administrators can work on the data asset in its encrypted form (e.g. backup,
move, copy) without ever have access to the information contained in the data
artefact.

Based on this general PEDI design, SAMSON ensures that information is protected against
disclosure for two reasons:

1. It is not possible to by-pass SAMSON security protections. Once SAMSON has
protected a data asset, with each data asset being protected by a unique key, it is
not accessible to anyone that has not requested access to the asset through the
PEDI. Only the PEDI, which calls upon SAMSON through the PEMC, can initiate the
actions on the data that will transform it into an object that can be disclosed.

2. When the PEDI receives a request to disclose a data asset, it calls upon SAMSON
services which force policy checking and auditing to be performed before the data is
release. When the PEDI delivers data to a user, it is only because a policy check
has allowed the disclosure and there is an immutable record in the TAS that provides
the details of the request and subsequent decision.

6 An enhancement to SAMSON to leverage PKI to encrypt the data that is delivered to the
endpoint is in early stages of design but is not part of the SAMSON TD target.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 81

5.2 Generic Design of a Policy Enforcement Message Client

The Policy Enforcement Message Client (PEMC) is the second significant sub-component of
the PEP design. It is responsible for the exchange of SAMSON security messages with
other SAMSON components (SSGs) over the SMSB. It works in close coordination with the
PEDI to ensure that information requests are handled in accordance with information
handling rules by exchanging the necessary security service request messages with other
components to leverage the full set of SAMSON information protection capabilities.

Any PEMC implementation can be described in terms of a set of common design elements
that will be shared by all PEMC implementations; these elements include:

1. The message client architecture: the manner by which the PEMC communicates with
the SAMSON security services over the SMSB; and

2. The information protection logic: the ordered set of security messages that the
PEMC must send in order to enforce the SAMSON information protection policy in
accordance with the SAMSON concept of operations.

5.2.1 PEMC Architecture

When contrasting the PEDI and the PEMC subcomponents of the PEP architecture it is
clear that:

1. The PEDI works closely with the applications to be protected, the user community
and the information assets that are to be protected. As a result, the PEDI
implementation will vary considerably from instance to instance. For example, a
SAMSON protected file share, email server and web-based data feed will be
protected using unique PEDI implementations. Since each application will have
different data constructs, different connection mechanisms, different protocols and
different ways of maintaining user sessions, each PEDI is as unique as the data
service it protects.

2. The PEMC, on the other hand, does not need to vary from one PEP instance to
another. The role of the PEMC is much more consistent across all PEMC
implementations, since the PEMC is interfacing with a known network and service
environment, namely, the SAMSON Security Service on the SMSB.

Integrating any new security service, such as dirty word search, into the SAMSON
information protection strategy merely requires extending the existing PEMC to make calls
to the new service and interpreting that service’s responses. Each PEMC, as the
component of the PEP that interfaces with other SAMSON components, must support the
following functions.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 82

Connecting to the SAMSON infrastructure: The PEMC is required to connect to the SMSB in
order to exchange messages with other SAMSON components. The PEMC must either be
provided with or acquire the connection information, including:

 Connection information relating to the location of the core SMSB services, namely,
the XMPP server;

 Any certificate information that is needed to establish TLS and, potentially, mutually
authenticated network sessions;

 The PEP’s XMPP identity, or JID, and credentials to establish the XMPP session;
and

 The identities of other SAMSON components on the SMSB to which the PEMC will
communicate, for example, the identity of the SAMSON Authorization Service.

Similarly to the Service Gateway components, as described in 3.3: Security Services
Gateways, the XMPP functionality is best implemented by leveraging a 3rd party XMPP
library, such as Gloox, Swiften or PyXMPP. Once the PEMC is connected to the SMSB, it
can use the standard SAMSON message protocols, as defined in section 4.0: The SAMSON
Security Services, to send and receive messages to the SSGs.

Wait for SAMSON application events: The PEDI, in its role of intercepting traffic to apply
policy-based information protection, provides the PEMC with the details of a user
information request. The nature of the policy check and the nature of the information that is
supplied to the PEMC will depend on the application, the transaction and the information
type. For example, when requesting a file from a SAMSON-protected file share, the PEDI
will submit to the PEMC such details as: the user that originated the request, the file that
was requested and the action that the PEDI attributes to this operation (e.g. READ). The
supported SAMSON operations on data are described in detail in section 5.3: PEP
Implementations.

Exercise the Information Protection Logic (IPL): With the data request in hand, the PEMC
will make a series of calls to various SAMSON Security Services. The exact sequence of
messages will depend not only on the information type but also the approved procedures, as
stated in the concept-of-operations for the target domain. For example, the IPL determines
if a particular transaction should generate an audit record and will direct the creation and
submission of the audit information should a record be required. Similarly, the IPL monitors
the results returned from calls to SAMSON Security Services and will handle errors or
exceptions as appropriate. For example, if a file object has no security label, further
processing on that file must be suspended. The IPL will direct that an audit record be sent
to the TAS and an error message returned to the PEDI.

This topic is covered in more detail in the following section.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 83

Return a Policy Decision for Enforcement by the PEDI: The IPL will almost always include
an access control decision. The result of this decision, as determined by the PEMC call to
the AS, must be returned to the PEDI so that the user’s access request is either honoured or
denied. It is the role of the PEDI to enforce this decision.

As a side note, the design of the PEMC must take into account the fact that in multi-process
and multi-threaded applications, there may be multiple information requests that are in
process or pending at a given time. The PEMC must ensure that IPL-based policy decisions
are returned to the correct PEDI routine so that policy requests from the PEDI are always
matched with the correct policy decision from the PEMC.

Wait for SAMSON security events: The XMPP infrastructure can also be used to monitor
and control the behaviour of all the SAMSON components. The PEMC, just as the Service
Gateways, should listen not only for application service requests and messages from other
security services on the SMSB, but also for command messages from an administration
process that could issue commands across the infrastructure, such as:

 Clear out any cache information;

 Re-read their configuration data;

 Shut down;

 Temporarily halt the processing of SAMSON security messages; or

 Provide a status of their current operating condition.

At this stage, it may be useful to contrast the role of the PEMC with that of the SSGs.

Table 17: PEMCs versus Security Service Gateways (SSGs)

Policy Enforcement Message Client Security Service Gateways

Role
To enable SAMSON information
protection of the data
request/response cycle

To enable the use of external
security application by connecting
them to the SMSB

Locations Bridging data application intercepts
to the SMSB

Bringing external security
applications to the SMSB

XMPP connection Has a unique XMPP identity on the
SMSB

Has a unique identity on the
SMSB

Messaging
Sends messages to service
gateways to obtain a specific security
capability

Responds to messages from all
PEMCs to deliver a specific
security capability

Auditing Generates audit messages Provides information that will be
audited by the PEMC

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 84

5.2.2 Information Protection Logic

Whereas the PEDI sends a single request to the PEMC with a specific SAMSON policy-
based request, the PEMC may have to call out to many SAMSON services in order to fulfill
that request. The set, order and processing of SAMSON service messages that the PEMC
uses to fulfill its function is referred to as Information Protection Logic (IPL). The set of
messages that the PEMC can draw upon includes all the messages supported by the
SAMSON Service Gateways, as documented in section 4.0: The SAMSON Security
Services.

While there is no standard or specification on how IPL needs to be implemented within a
PEMC, the following example will illustrate the function of the IPL. This example extends
the previous example of the PEDI requesting a policy-based decision when a user attempts
to access a SAMSON protected file.

Figure 20: An Example of File Server Information Protection Logic

When the PEDI requests the policy decision from the PEMC, with the request including the
user’s identity, the full path to the file and the action that the application attributes to this
operation, the PEDI will execute the following sequence of messages.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 85

1. A call is made to the SLS using the GET_FILE_LABEL message type and specifying
the location of the file. If successful, the SLS will respond with the security label on
that file.

2. A call is made to the AS using an XACML message structure that includes the user’s
identity as the target, the file as the resource and the action as the XACML action. If
successful the AS will return a policy decision

3. Assuming the decision is Permit, the PEMC will make a call to the CTS using the
COPY_DECRYPT message type. The path to the encrypted file and the path to the
desired location of the plaintext file is supplied in this message. Note that the CTS
will make supplemental service calls to the KMS to obtain the key to decrypt this file.
If successful, the CTS will indicate to the PEMC that the plaintext file is available for
delivery to the user

4. A second call to the SLS using the GET_FILE_LABEL message type and specifying
the location of the plaintext file. If successful, the two labels are compared to ensure
that there has not been any tampering of either security label.

5. At this point the PEMC will return a message to the PEDI that the requested
operation is permitted and that the file is available for delivery to the user. As a final
step, an AuditXML message, as described in section 4.6: Trusted Audit Service, is
created and sent to the TAS to create a tamper-resistant record of this transaction.

The IPL, therefore, is the logic applied by the PEMC to properly process an information
request using SAMSON services. It is significant to note that IPL logic is expressed in terms
of:

 The set and order of security messages that are sent to SAMSON SSGs

 The handling of responses from those services to detect the conditions under which
the user’s transaction should be denied (e.g. an error was received from a
component or a decision to deny the request was sent from the AS)

 Logic within the IPL itself, such as the verification check to ensure that security labels
on the resource are congruent and have not been altered.

It must be re-iterated that IPL within a PEMC is coded specifically for its role in protecting
certain applications and data types. The example given above pertains to a file sharing
scenario, but a PEMC that is protecting a different kind of information asset, such as chat
room messages, would implement a different profile of IPL in terms of the security
messages that are exchanged with SAMSON components. It suffices to say that while
some IPL functions are mandatory in most cases: almost all PEMC requests will require a
policy check from the AS and an audit message sent to the TAS, there will variability in how
IPL is implemented within the PEMC. The IPL for each supported application type is
described in detail in the following section.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 86

Even for a given application, two environments may opt for different IPL in their PEMC: one
environment may opt to opt to omit some security checks that are not as relevant according
to their risk profile.

Additionally, PEMC IPL may be adjusted over time to include calls to new security services
that are introduced into the SAMSON information protection space. SAMSON, as an SOA
and committed to the development of data-centric security, has been designed to encourage
the development and introduction of new security capabilities that will further enable
protection and sharing of information assets. A PEP can leverage these services by
updating to the IPL at the PEMC to take advantage of these new SSG capabilities.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 87

5.3 PEP Implementations

The SAMSON TD architectural deployment includes four distinct implementations of PEP:

1. A File Sharing PEP to mediate access and protect individual files as they are stored
on a SAMSON protected file server;

2. An Email PEP to mediate access and provide information protection of email
messages, and associated attachments, when those message are sent and
received;

3. An IM PEP to mediate access to chat rooms and protect those messages as they
reside at IM server; and

4. A Web Session PEP to mediate access of web services.

Each PEP implementation is described in detail in the following sections.

5.3.1 File Sharing PEP

This PEP is intended to provide information protection for individual files as they are hosted
on a SAMSON protected file share. As with all PEPs, the intent is for SAMSON information
protection to be added to an existing network infrastructure as a security overlay; the
introduction of SAMSON data-centric security practices should not necessitate modifications
to either the client endpoint or the back end file server.

The File Sharing PEP requires that files have a security label. Therefore, the user must
ensure that any files sent to the File Sharing PEP are labelled: either by manually applying a
label or by leveraging a 3rd party file labelling solution such as the Titus labelling solution for
Microsoft Office documents. The security labels that are applied to files must be compatible
with the label format expected by the SLS.

For the File Sharing PEP, the granularity of the data centric security model is taken to the
individual file level. When users place a file on a SAMSON protected file share via the PEP:

1. The security label on the file is used for policy checks against the AS; and

2. If permitted by policy, the file is individually encrypted with its own unique symmetric
key and placed within a SAMSON container file.

As described in section 4.4.1: CTS Design Considerations / Configurations, the container file
is the form taken by a SAMSON protected file while is it resident on a SAMSON protected
file share. The contents of the container file can only be disclosed if the file is accessed
through the File Sharing PEP. The PEP, being a SAMSON component, is able to retrieve

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 88

the original, single use symmetric key that was used to encrypt the file when it was stored
and the decryption process will only take place if the requesting user has the policy right to
see that file’s contents. Since the PEP audits all file transactions, a permanent, trusted
record of all data creation and disclosure events is maintained. In addition, files re-saved to
the file server are re-encrypted with a new, single use symmetric key.

5.3.1.1 File Sharing PEP Architecture

In the SAMSON TD deployment architecture, the File Sharing PEP is implemented as an
indirect proxy. That is, the file share location that is to be protected by the File Sharing PEP
is mounted in a staging area on the PEP’s host file system.

1. The PEP thus has the ability to store files to and retrieve files from the unmodified
back end file server.

Figure 21: File PEP Architecture

2. The PEP itself provides a WebDAV interface to SAMSON users, allowing the staging
location to be accessed this web interface. Since endpoint clients such as Windows
7 Explorer natively support WebDAV sessions, a user can mount the SAMSON PEP
and will see the files that are present on the back end file server.

3. At the PEP, the deployed WebDAV server is enhanced with SAMSON processing
logic to ensure that operations on files adhere to the protection mechanisms that are
required for SAMSON’s data-centric security. The File Sharing PEP is a participant
on the Security SMSB so that it can leverage SSGs to access services such as
policy decisions from the AS and encryption services from the CTS.

4. The File Sharing PEP is also a participant on the Audit SMSB for access to auditing
services.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 89

As detailed in section 5.2.1:PEMC Architecture, the PEP leverages SAMSON SSGs by
having a messaging client sub-component in the PEP architecture that is responsible for all
XMPP-based SMSB communications.

Because the actions the user performs against the WebDAV interface are forwarded (via the
underlying file system mount) to the back end file server and the results can be manipulated
as they transit the PEP, file sharing security is applied transparently to the user. The only
requirement on the user is that access to the SAMSON protected file server must be made
through the PEP itself, not directly to the back end file server. If a user accesses the back
end file server directly, any files delivered to the user will remain encrypted since the PEP
was not in the transaction path to decrypt the contents of the container.

5.3.1.2 File PEP Operations on Data

Connecting to the File Sharing PEP is not a SAMSON protected operation. When a user
requests to mount the WebDAV service where the File Sharing PEP resides, SAMSON does
not interrupt this processing and the mount action is always allowed to proceed. The first
action that Windows Explorer takes after a successful mount is to request a listing of the
files at the mounted location. Listing a directory is one of the three file operations that the
File Sharing PEP intercepts so that information protection logic can be applied to the
transaction. Each of these operations is described below.

Directory Listing

When the user’s Windows Explorer requests a directory listing of the current directory (either
automatically or directly by the user), the client software formulates a WebDAV listing
request and sends it to the File Sharing PEP. The WebDAV proxy within the PEP allows
this request to be forwarded to the backend server, but intercepts (1) the listing as it is
returned. At this stage, the File Sharing PEP has a complete list of the files in the target
directory stored in a WebDAV data structure. The PEP examines each of the files in the list
in sequence to determine if the presence of the file can be disclosed to the user. This
process is shown in the following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 90

Figure 22: File PEP - Directory Listing

1. The File Sharing PEP intercepts the file listing from returned from the file server.

The PEP then repeats steps 2 through 4 for each file in that listing.

2. The PEP calls the SLS, using the message format specified in section 4.5.2: SLS
Messaging and Operation, to extract the security attributes on the target file. Since
the PEP and the SLS are co-located on the same system, the absolute path to the
file can be specified.

3. The PEP calls the AS, using the message format specified in section 4.2.2: AS
Messaging and Operation, with the user’s identity, the security attributes of the file
and the policy action to get a policy decision as to whether the user should be able to
see the target file. For file listings, the policy action is “READ”, that is, only users
with the policy right to READ files can see those files in a directory listing. Also of
note, in the SAMSON TD deployed architecture, the WebDAV service is configured
to utilize Windows Domain credentials for authentication, hence, the user’s account
that is used for the policy check is the user’s Windows Domain account. Depending
on the policy decision, the PEP takes the following action:

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 91

a. If the AS states that the policy decision is to permit the user to see the file,
the target file is allowed to stay in the WebDAV directory listing data
structure.

b. If the policy decision is to deny the action, the target file is removed from the
WebDAV directory listing data structure.

4. An audit record, based on the message format specified in 4.6.2: TAS Messaging
and Operation, is generated by the PEP and sent to the TAS. As described in that
section, the TAS will process the audit record, extend the record details and submit
the record to the audit store.

5. Once all files in the directory structure have been processed, the SAMSON PEP
allows the (possibly reduced) WebDAV structure to be returned to the user’s
Explorer session. The user will be unaware if any files have been scrubbed from the
listing since the listing is filtered prior to delivery. This means that two different users
will see different contents in a directory depending on each user’s COI membership
and the security policy that was used to authorize the action.

Storing a File

When a user stores a file to the back end file share, either by copying the file or saving an
active file to that location, the File Sharing PEP will execute the process shown in the
following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 92

Figure 23: File PEP - Storing a File at a SAMSON Protected File Server

1. The file data is allowed to be uploaded through the WebDAV session but rather than
being stored at the back end file server, the PEP places the file in a local staging
area.

2. The PEP calls the SLS, using the message format specified in section 4.5.2: SLS
Messaging and Operation, to acquire the security attributes on this local file. Note
that this means that the file must be properly labelled at the endpoint before it is sent
to the PEP. For the SAMSON TD architectural deployment, the Titus Document
Labelling for Microsoft Office product was used at the endpoint to label files. The
format for file labels is described in section 4.5.1: SLS Design Considerations /
Configuration.

3. The PEP determines if the user has the policy right to create SAMSON protected
content using the security attributes on the file. The user’s identity, the security
attributes from the file and the policy action of “WRITE” are sent to the AS in a policy
request message using the format defined in section 4.2.2: AS Messaging and
Operation.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 93

a. The AS itself sends the IAS a user security attribute request as defined in
section 4.1.2:IAS Messaging and Operations to acquire the user’s COI
membership list from the user security attribute repository. This information
is used as part of the policy decision-making process.

4. If the policy decision is to allow the file to be stored, the PEP calls the CTS, using the
message format described in 4.4.2: CTS Messaging and Operation, to encrypt the
file. The CTS will leverage the KMS to obtain a new symmetric key for the operation
and store this key in the escrow system. With this new key, the file is encrypted and
placed in a container. The container is also populated with the other data elements
as described in section 4.4.1: CTS Design Considerations / Configurations, namely,
the caveat, the digest and the token.

5. The PEP will then create an AuditXML formatted audit record, based on the
message format specified in 4.6.2: TAS Messaging and Operation, that specifies the
file store transaction details and send the record to the TAS to create a permanent
record of the transaction.

6. Once the container has been successfully created, the PEP will move the container
from the working area to the staging area where it is stored at the backend file server
via NFS.

The PEP will cancel the file storage transaction and send a WebDAV compliant HTTP 403
Forbidden status code back to the user’s Explorer session if any of the following conditions
are encountered:

 The AS states that the policy decision is to deny the action;

 Any of the SSGs return error codes to indicate that they could not process the
request (e.g. the SLS return an error that there is no label on the file); or

 There is any error associated with storing the file to the back end file server.

Audit records are generated in each case with the error status code reflected in the notes
sections of the AuditXML message. As described in section 4.6.1: TAS Design
Considerations / Configuration, when the TAS encounters an AuditXML message that
includes references an error encountered by the SSGs, it triggers a security event. When a
security event is raised, the SIEM solution included as part of the SAMSON TD architectural
deployment will generate a notification email message for the security officer.

The temporary files that are created as part of this action are deleted once the action is
complete, regardless or whether the action completed successfully, was denied or
encountered an error.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 94

Retrieving a File

When a user requests a file from a SAMSON protected file share, the File Sharing PEP will
execute the information protection logic in accordance with the following time sequence
diagram.

Figure 24: File PEP - Retrieving a File from a SAMSON Protected File Server

The significant data exchanges that take place in the processing of this request are
described below.

1. When a user requests a file from the back end server, the file is retrieved but is
placed in a local staging area on the PEP machine.

2. Through a call to the SLS, using the message format specified in section 4.5.2: SLS
Messaging and Operation, the PEP acquires the security attributes on this working
file. Since this is a SAMSON protected file, it will be in a SAMSON container that is
readable by the SLS.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 95

3. The PEP determines if the user has the policy right to access a protected data asset
that is labelled with those security attributes. The user’s identity, the security
attribute from the file and the policy action of “READ” are sent to the AS in a policy
request message using the format defined in section 4.2.2: AS Messaging and
Operation.

a. The AS itself sends the IAS a user security attribute request as defined in
section 4.1.2: IAS Messaging and Operations to acquire the user’s COI
membership list from the user security attribute repository. This information
is used as part of the policy decision-making process.

4. If the policy decision is to allow the file to be disclosed to the user, the PEP calls the
CTS to decrypt the file, using the message format described in 4.4.2: CTS
Messaging and Operation. The CTS, working on the temporary file, will perform the
following actions:

a. By comparing the digest in the file container against the container’s contents,
validate that the file has not been altered.

b. Using the token in the container, call the KMS to retrieve the symmetric key
that was used to encrypt the file. A key request message using the format
specified in section 4.3.2: KMS Messaging and Operations.

c. Decrypt the encrypted file stored in the container to get the original file.

5. Through a second call to the SLS, the PEP acquires the security attributes on the
decrypted file. Since the security attributes in the container were taken from the
security attributes from the original file when the container was created, the file’s
attributes and the container’s copy of the attributes should match. If there is a mis-
match, the container has been tampered with and the file should not be disclosed to
the user. At this point additional security measures may be inserted into the SLS
information protection logic such as additional security scans, virus scanning, and/or
data loss protection. Alternatively, these data integrity solutions can be implemented
as separate SSGs and called directly by extending the information protection logic at
the PEP. If the SLS confirms that the file that was decrypted has not been altered
while on the file server, the PEP places the file in the staging area where it can be
delivered to the user that requested it.

6. The PEP will then create an AuditXML formatted audit record, based on the
message format specified in 4.6.2: TAS Messaging and Operation, that specifies the
file disclosure transaction details and send the record to the TAS to create a
permanent record of the transaction.

7. If the file has been authorized for disclosure (the security policy permits the release
of the information and there have been no errors in processing the request), the file
is delivered to the user’s workstation over WebDAV.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 96

The PEP will cancel the file retrieval transaction and send a WebDAV compliant HTTP 403
Forbidden status code back to the user’s Explorer session if any of the following conditions
are encountered:

 The AS states that the policy decision is to deny the action;

 Any of the SSGs return error codes to indicate that they could not process the
request (e.g. there was a mismatch between the file and the container); or

 There is any error associated with retrieving the file from the back end file server.

Audit records are generated in each case with the error status code reflected in the notes
sections of the AuditXML message, as shown in Table 15: AuditXML Elements.

The temporary files that are created as part of this action are deleted once the action is
complete, regardless or whether the action completed successfully, was denied or
encountered an error.

5.3.1.3 File PEP Trust Model

The File Sharing PEP contains many levels of protections that prevent information from
being disclosed to unauthorized individuals. On the front end, the Windows Explorer to
WebDAV sessions are TLS protected. On the back end, the files that are exchanged
between the PEP and the file server are encrypted with unique symmetric keys. Files can
only be disclosed when they are accessed through the File Sharing PEP and this disclosure
only occurs after a policy check permits the transaction to take place. The policy check that
takes place is based on the user’s identity that is taken from their Windows credentials. The
actions taken by the PEP are performed on a hardened appliance. Finally, all transactions
are audited so that there is a tamper-resistant record of all user activity where information
has been disclosed to the SAMSON user community.

5.3.2 Email PEP

The Email PEP is intended to provide information protection of email messages as they are
sent to, stored at and retrieved from an existing mail server in the target environment. As
with all PEPs, the intent of SAMSON based email protection is for the Email PEP to be
added to an existing network infrastructure as a security overlay. The Email PEP is,
therefore, implemented as a proxy architecture where email traffic is directed through the
proxy and SAMSON information protection logic is applied during the sending and receiving
of email messages.

For the Email PEP, the granularity of the data centric model is taken to the individual email
message. Specifically, both the message body and all the attachments within that message
are individually evaluated against the security policy. In other words, when an email
message is sent, the security policy is enforced, for both sender and receivers, not only

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 97

against the message body, but also against all files that are attached to that message.
While the message is stored at the mail server awaiting delivery to the recipients, the entire
message (body and attachments) is protected as a single encrypted container object.

In order for the security policy to be applied to a email message, the message body must
also have a security label that contains the attributes that will be used in the policy check.
The endpoint, therefore, must have a security labelling software solution that can apply
security labels to email messages. For the SAMSON TD architectural deployment, this
labelling solution is the Titus Message Classification plug-in for Microsoft Outlook. When a
user composes and sends an email message, the Titus software adds a security label to the
message that contains security attributes that apply to the message body.

Additionally, each file attached to the message must have its own security label. The
format used by file attachments in the Email PEP solution is the same format used for the
File Sharing PEP. The same SLS is used, therefore, for both the File Sharing and Email
PEPs. In other words, whether users are storing Office documents on a SAMSON protected
file share or sending Office documents as email attachments, the same SLS service is used
to extract the security attributes from those files. As described in section 4.5.1:SLS Design
Considerations / Configuration, although the same SLS implementation is used for both
PEPs, a separate SLS is deployed with each PEP. Each PEP must have its own co-located
SLS so that files can be evaluated locally.

The PEP leverages the CTS to:

1. Generate a new key for the email object;

2. Encrypt the message into a protected data object;

3. Place the encrypted object inside a SAMSON container, as detailed in section
4.4.1:CTS Design Considerations / Configurations.

The resulting container is in the same format as those containers created by the CTS for the
File Sharing PEP.

If the sender has the policy right to create and send the email message, a copy of the
encrypted message is placed in each recipient’s mailbox.

This Email PEP implementation supports email traffic that uses the SMTP/POP3 mail
protocols. It is expected, therefore, that the back end mail server has been enabled for
SMTP/POP3 email support. SMTP/POP3 support is included as part of the Microsoft
Exchange product but is not enabled by default.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 98

5.3.2.1 Email PEP Architecture

In the SAMSON TD deployment architecture, the Email PEP is implemented using proxy
style architecture. That is, the PEP:

 Supports the message protocol format used by the user’s email client;

 Allows those clients to connect; and

 Forwards protocol messages on to the back end mail server.

It is while brokering the message communications between the endpoint and the back end
email server that the PEP is able to insert SAMSON information protection logic.

For the SAMSON TD architectural deployment, two separate proxies are used:

1. One for the sending of email messages that uses the SMTP protocol; and
2. One for the receiving of email messages that uses the POP3 protocol.

This architecture can be seen in the following diagram.

Figure 25: Email PEP Architecture

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 99

The Email PEP SMTP proxy is implemented using the ProxSMTP7 email proxy software
package. ProxSMTP is a re-purposed virus scanner that allows 3rd parties to add validation
logic to its email scanning routines.

1. When the user sends an email message, the email client connects to the SMTP
proxy. The proxy software receives the email message and places the contents in a
staging area. The proxy software then calls the Email PEP information protection
logic, that is, the software validation routine that evaluates the message to ensure it
meets policy and information protection requirements.

2. As is common to the design of all PEPs, the Email PEP has a messaging sub-
component that is a participant on the Security SMSB and the Audit SMSB. Through
this messaging client, the PEP makes calls out to the necessary SSGs to evaluate
and transform the message. For example, the Email PEP will call:

a) The SLS to get the security attributes from any files that were attached to the
message;

b) The AS to ensure the message can be sent (and received) according to the
domain’s security policy; and

c) The CTS to protect the message and format it as a SAMSON container.

3. The PEP’s messaging client will also submit an event transaction record to the TAS.

4. Once it is determined that the message can be sent and the message has been
properly protected, it is forwarded on to the mail server for delivery.

The POP3 proxy is also implemented using a re-purposed virus scanner, in this case, the
P3Scan8 open source POP3 mail scanner is used. The processing logic for receiving an
email message is similar to the send process.

5. Users connect to the POP3 proxy and request that messages be retrieved from the
back end mail server. Before the proxy returns mail message to the user they are
written to a staging area where the PEP can again apply SAMSON information
protection logic. The security attributes from the encrypted message’s container are
used to determine if the security policy allows the user to receive the email message.
If permitted, the CTS decrypts the message for the user and creates an audit event
of the transaction.

6. The email message is then returned to the user’s email client.

7 http://thewalter.net/stef/software/proxsmtp
8 http://p3scan.sourceforge.net

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 100

5.3.2.2 Email PEP Operations on Messages

In order for a user’s email client to work with the Email PEP, the connection settings for the
client must be altered to point to the SMTP and POP3 services hosted by the Email PEP.
The two PEP proxies do not perform authentication directly, rather, they forward login
information to the back end service for authentication. It is only when an email message is
sent (or received) that the Email PEP logic for protecting messages is invoked.

Sending a Message

When a user creates and submits an email message to the Email PEP, the PEP must be
able to apply the security policy to all file attachments and ensure that the policy is applied
to not only the sender of the message, but each of the recipients as well. This includes
users specified as “TO”, “CC” and “BCC” recipients.

When a user sends an email, the Email PEP will execute the information protection logic in
accordance with the following time sequence diagram.

Figure 26: Email PEP - Sending a SAMSON Protected Message

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 101

1. The PEP receives the entire message from the email client and stores it in a local
staging area for processing. The message is decoded if necessary (e.g. base64
decoded) and any MIME attachments are extracted from the message. At the end of
this interception activity, the message body and copies of the original attached files
are present in the staging area.

2. The security labels on the attached files are extracted through calls to the SLS using
the message format specified in section 4.5.2: SLS Messaging and Operation. Since
the Email PEP and the SLS are co-located on the same system, the absolute path to
the files can be specified. Additionally, the security label on the message body is
extracted from the message. The COTS endpoint labelling and visual marking
software, Titus Message Classification Plug-in for Microsoft Outlook, places the
security label for the message in a dedicated message header that is read from the
message body. At the end of this step, the Email PEP has a unique set of security
attributes that have been attached to the message and its attachments.

3. The message is evaluated against the security policy. For this step, the Email PEP
sends multiple policy request messages to the AS using the message format
specified in section 4.2.2: AS Messaging and Operation. The policy checks that are
made include the following:

a. A set of policy checks are made to ensure that the message sender is
allowed to send data using the COIs on the message and the attachments.
The message’s FROM header is used to determine the identity the sender of
the message. The action value for these policy checks is WRITE since, for
the SAMSON TS architectural deployment, sending an email message is a
WRITE policy operation. A separate policy check is made for each unique
COI found in the security label for the attachments and the message body.

b. A second sequence of policy checks, this time to determine if the recipients
are allowed to receive the email message, are made using the user identities
found in the “TO”, “CC” and “BCC” headers within the message. Each user is
individually evaluated against same COI set from the previous sender check.
In this case, however, the policy action for these checks is READ. That is,
the check verifies that each recipient can receive the data assets in the
message.

As with the File Sharing PEP, the AS will include the users’ security attributes as part
of the policy decision-making process. The user security attributes are retrieved
from the IAS via a security attribute request, as defined in section 4.1.2: IAS
Messaging and Operations.

4. If all policy checks result in a “permit” decision, the PEP calls the CTS to encrypt the
originally intercepted base64 encoded message (which includes all MIME
attachments). The PEP calls the CTS using the message format described in 4.4.2:
CTS Messaging and Operation, to encrypt the file. The CTS will leverage the KMS,

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 102

using the format specified in section 4.3.2: KMS Messaging and Operations, to
obtain a new symmetric key for the operation and store this key in the escrow
system. With this new key, the file is encrypted and placed in a container.

5. The PEP will then create an AuditXML formatted audit record, based on the
message format specified in 4.6.2: TAS Messaging and Operation, that specifies the
email transaction details and send the record to the TAS to create a permanent
record of the transaction.

6. The Email PEP will encode the newly created encrypted container so that it is in
compliance with the mail server’s message format specification. The PEP then
transmits the container (as a MIME compliant email message) to the mail server with
the original source and destination routing information.

In summary, the logic flow for making a policy decision about an email message is as
follows. Assuming that we have the identity of the sender, the complete list of the message
recipients and the set of all the COIs on the message body and attachments:

 For each COI in the set, does the sender have the policy right to WRITE data assets
with these COI values?

 For each of the recipients:
o For each COI in the set, does the recipient have the policy right to READ data

assets with these COI values?

This means that for a message with m recipients and n attachments (each with a different
COI) and where the message body also has a unique COI, there will be (n+1) x (m+1)
separate policy checks made. It is significant to note that the Email PEP deployed for the
SAMSON TD architectural deployment attempts to minimize the number of policy checks
that must be made; the PEP will create a unique set of all COIs found in the message body
and attachments so as not to repeat the same policy check. For example, if an email
message has three attachments with the same COI in their security label, the Email PEP will
only perform one policy check to cover all three attachments.

In the course of evaluating these policy checks, if there is a single “deny” decision returned
from the AS, the message is not sent to any of the recipients. When an email message is
prevented from being sent due to a policy violation, an informational email message is sent
to the originator to indicate that the message was not delivered and exactly what policy
issues prevented the message from being sent, as shown in Figure 27: Email Policy
Violation Message.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 103

Figure 27: Email Policy Violation Message

The Email PEP does not abort a set of policy checks when a deny is encountered, rather, it
continues to perform policy checks so that the informational message sent to the originator
provides a complete list of why the message is not compliant with policy. The sender then
has the option to resend the message by:

 Dropping recipients from the message;

 Dropping attachments from the message; or

 Changing the caveats on the message body or attachments.

The temporary staging files that are created as part of this action are deleted once the
transaction is complete, regardless of whether the action completed successfully, was
denied or encountered an error.

Receiving a Message

When a user connects to the mail server to retrieve email messages, the Email POP3 proxy
allows the message retrieval commands to be sent to the back end mail server. When
messages are returned through the proxy, however, the proxy intercepts the messages and

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 104

stores them in a local staging area. For each message, the Email PEP applies SAMSON
information protection logic as shown in the following diagram.

Figure 28: Email PEP - Retrieving a SAMSON Protected Message

1. When email messages are retrieved (via POP3) through the proxy, each email is first
written to a local staging area on the PEP machine.

2. When the email message was sent, the Email PEP encrypted the message as a
SAMSON container. Therefore, once the message is stored locally and decoded
(base64 decoding) the security attributes on the email can be extracted from that
container. Through a call to the SLS, using the message format specified in section
4.5.2: SLS Messaging and Operation, the PEP acquires the security attributes from
this container.

3. Using the information in the message’s “TO” header to identify the intended recipient,
a policy check is requested from the AS using the message format specified in
section 4.2.2: AS Messaging and Operation. The action value for these checks is
READ since, for the SAMSON TS architectural deployment, receiving an email
message is a READ policy operation. The resource for this policy check is the COI

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 105

for the message, as stated in the security label on the container. If the policy
decision is to deny the recipient the message, the container is not decrypted.

4. If the policy check determines that the recipient can receive the message, the PEP
calls the CTS to decrypt the file, using the message format described in 4.4.2: CTS
Messaging and Operation. The CTS, working on the container, will perform the
following actions:

a. By comparing the digest in the container against the container’s contents,
validate that the container has not been altered.

b. Using the token in the container, call the KMS to retrieve the symmetric key
that was used to encrypt the file. A key request message using the format
specified in section 4.3.2: KMS Messaging and Operations.

c. Decrypt the encrypted file stored in the container to get the original encoded,
email message.

The resulting decrypted file is the original email message as the SMTP proxy
received it. The Email PEP extracts all MIME encoded attachments from this
message to obtain the files that were attached to this message.

5. The security labels on the attached files are retrieved through calls to the SLS using
the message format specified in section 4.5.2: SLS Messaging and Operation. Since
the Email PEP and the SLS are co-located on the same system, the absolute path to
the files can be specified.

6. Using the information in the message’s “TO” header to identify the intended recipient,
a series of policy checks are made to the AS: one for each unique COI in the
message and attachments. The action value for these checks is READ since, for
the SAMSON TS architectural deployment, receiving an attachment on an email
message is a READ policy operation. The resources values for these policy checks
are the unique set of COIs in the security labels on each of the attached files.

7. The PEP will then create an AuditXML formatted audit record, based on the
message format specified in 4.6.2: TAS Messaging and Operation, that specifies the
email transaction details and send the record to the TAS to create a permanent
record of the transaction.

8. The Email PEP will encode the decrypted message and signal the POP3 proxy to
deliver the message to the user’s email client.

It is significant to note why policy checks are needed when an email message is received.
When the message was originally sent, policy checks were made to ensure that all
recipients were allowed to receive the email. Why then is another set of policy checks
needed when a user retrieves email? The reason is because of the delay between when a
message is sent and when it is received. During that interim, the security policy may have

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 106

changed or the recipient may have been excluded from a COI. While the user was allowed
to receive the email message when that message was sent, under the new, updated policy,
the user may no longer be permitted to receive the message and the email should not be
delivered to the user.

5.3.2.3 Email PEP Trust Model

The Email PEP contains many levels of protections that prevent information from being
disclosed to unauthorized individuals. While an email message is stored at the mail server,
it exists as an encrypted object inside a SAMSON container. Privileged users, such as the
mail administrator, are not able to disclose messages that are stored at the server since the
message must be decrypted using keys that are only available to the Email PEP. The policy
and cryptographic actions taken by the Email PEP are performed on a hardened appliance.
Finally, all transactions are audited so that there is a tamper-resistant record of all user
activity where information has been disclosed to the SAMSON user community.

In the SAMSON TD architectural deployment, the front-end communications between the
user’s email client and the PEP are not encrypted. However, this solution is compatible with
TLS/SSL tunnelling tools that could be used to protect the front-end session.

5.3.3 Instant Messaging PEP

The Instant Message (IM) PEP is intended to limit access to chat rooms and protect chat
room messages that are stored at the IM server. In order to gain access to the message
content within a chat room, users must go through the IM PEP so that the messages can be
decrypted for the user. However, prior to being given access to a chat room, the IM PEP will
validate the user’s request to join a room, matching the user’s security attributes and the
security attributes on the chat room against the security policy. Only if a user is permitted to
view the COI reflected in the chat room messages will the user be allowed to enter the room,
at which time any messages that are sent or received by the user will be encrypted or
decrypted, respectively. Users that attempt to access the back end IM server may be able
to bypass the SAMSON access control check, but the messages that are received will not
be decrypted and the information stored at the IM server will not be disclosed.

The IM PEP is implemented as a proxy architecture:

 Users connect with their IM clients to the IM PEP;

 The IM PEP establishes a connection to the back end IM server; and

 The IM PEP forwards messages between the client and the server, inserting
SAMSON information protection logic as messages pass through the proxy.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 107

In normal operations, the granularity of the IM data-centric model is taken to the chat room
level. That is, each chat room is assigned security attributes and it is those attributes that
are used in the access control checks. For the IM PEP, security attributes are stored as part
of the chat room’s room description and are stored at the IM server’s database.

User’s also have the option to “mark-up” specific messages within the chat room. That is,
the user can apply security attributes (COIs) to individual messages. Marked-up messages
are handled slightly differently that normal chat room messages. When the IM PEP receives
a marked up message, the message must be individually checked against the policy. Users
must have the policy right to create content using the specified attribute, or COI, for the IM
PEP to allow the message to be added to the history of chat room messages. Similarly,
when a user is receives IM messages, individual marked up messages must be evaluated
against the security policy to ensure that they have the right to receive the message.

Marked up messages, therefore, can only be delivered to a subset of the users that have
already been granted access to the chat room. For example, consider a chat room that is
available to the CANUS community and within that chat room a user marks up a specific
message for the CEO community. Canadian users will see all messages since they belong
to both the CEO and CANUS communities but American users will only see CANUS
messages. Messages that cannot be disclosed due to policy restrictions are filtered such
that the chat room participants are not aware that there are additional messages that they
have been prevented from receiving.

Each combination of chat room and security attribute uses a unique key for encryption. For
the previous example, there will be separate keys used for the CANUS messages and the
CEO messages in the chat room. The chat room’s security attributes, stored as part of the
description for the chat room at the IM server, including the following:

1. The default security attribute (COI) for the chat room: used in the initial access
control check to gain entry to the chat room;

2. Any other security attributes (COIs) used to mark up individual chat room messages;
and

3. For each unique COI in the chat room, the key token that can be used to retrieve the
key that protects that COI’s messages.

Because the security label for the chat room, and associated key token, are stored at the IM
server, there is no need to place encrypted messages inside a SAMSON container.

The SAMSON TD architectural deployment uses an unmodified Transverse IM client
(version 1.5.3) and an unmodified OpenFire 3.7.1 IM server. The connection between the
IM client and the IM PEP uses a TLS protected XMPP protocol and the IM PEP redirects
traffic through to the back end IM server over a TLS protected XMPP link. The back end IM
server is configured to authenticate users with their Windows domain credentials. The IM
PEP, being in the middle of the IM client to IM server communication is able to utilize the
authenticated user identity for security policy checks.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 108

5.3.3.1 IM PEP Architecture

In the SAMSON TD deployment, the IM PEP is implemented in the form of an application
proxy. That is, the PEP:

 Supports the message protocol format used by the user’s IM client;

 Allows those clients to connect; and

 Forwards protocol messages on to the back end IM server.

It is while brokering the message communications between the endpoint and the back end
IM server that the PEP is able to insert SAMSON information protection logic.

The core of the IM PEP is a modified Spectrum29 IM proxy/gateway. Spectrum is a generic
proxy that brokers communication between many messaging protocols. For the SAMSON
TD, Spectrum2 is being used in its trivial configuration, specifically, connecting an XMPP
front end to an XMPP backend. However, this configuration is what allows the IM PEP to
insert SAMSON information protection into the message handling process. The IM PEP
architecture can be seen in the following diagram.

Figure 29: IM PEP Architecture

9 http://spectrum.im

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 109

1. Users connect to the IM PEP using their IM client application

2. The PEP forwards the connection on to the back end IM server. XMPP session
establishment messages are passed to the IM server so that the user’s session is
authenticated with the user’s Windows domain login information. When a message
is sent from or is to be sent to the user’s IM client, the IM PEP first applies SAMSON
information protection logic, including performing authorization checks prior to
granting access to a protected chat room, encrypting and decrypting individual IM
messages and creating an audit record of each transaction.

3. To leverage SAMSON security services, the IM PEP is a participant on the Security
SMSB to access policy decisions from the Authorization Service and encryption
services from the Cryptographic Transformation Service.

4. The IM PEP is also a participant on the Audit SMSB for access to auditing services.

As detailed in section 5.2.1:PEMC Architecture, the PEP leverages SAMSON SSGs by
having a messaging client sub-component in the PEP architecture that is responsible for all
XMPP-based SMSB communications.

The IM PEP protects and forwards messages transparently to the user. The only
requirement on the user is that access to the SAMSON protected IM server must be made
through the IM PEP itself, not directly to the back end IM server. If a user accesses the
back end IM server directly, any messages delivered to the user will remain encrypted since
the PEP was not in the transaction path to decrypt the message.

Out-Of-Band Messaging

For certain transactions, the IM PEP must get or set information at the IM Server directly.
This situation will occur in two situations:

1. On start-up when the IM PEP retrieves from the IM server the list of chat rooms, the
list of COI’s in use within the chat room and the key token (used to acquire the actual
key) for each chat room/COI combination.

2. When a new COI is used in an existing chat room, the IM PEP will acquire a new key
for these messages and a key token that can be used to reacquire the key for
subsequent operations. In order for this key token to be accessible in the future (e.g.
after the IM PEP is restarted) this key token must be written back out to the IM
server. When the IM PEP is restarted (as described in the previous situation) this
new chat room/COI key token will again be obtained from the IM Server.

It is important to note that these OOB IM communications are between the IM PEP and the
IM server alone. The user does not take part in these sidebar communications nor is there
any manual action required on the part of the user. These data exchange only take place
when the IM PEP itself requires information or service from the IM server in order to fulfil its

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 110

role as an IM information protection proxy. The IM PEP takes care of the establishment and
closing of these sidebar sessions automatically.

OOB messaging is also used to create SAMSON protected chat room, although this is done
through a utility rather than by the IM PEP itself. Chat rooms must be initialized before they
can be made available to SAMSON users. The initialization process is performed using a
jointly deployed SAMSON utility at the IM PEP: the chat room labeller (item 5 in Figure 29:
IM PEP Architecture). When there is the need for a new chat room for a specific community,
the Security Officer uses this utility to:

1. Create the new chat room;

2. Assigning the new chat room to a COI (the default community); and

3. Acquiring a new cryptographic key that will be used to protect messages in the chat
room.

The utility places the default COI and key token within the description field for the chat room
as it is defined at the IM server.

5.3.3.2 IM PEP Operation on Data

The IM PEP has three main categories of operations that involve SAMSON information
protection:

1. Listing and joining chat rooms;

2. Sending or receiving a normal chat room message; and

3. Sending or receiving a marked up message within an existing chat room.

Each operation is described in detail below. For each operation, the user’s identity is taken
from the IM session properties; the IM server authenticates users when the session is
established. This authentication is based on the user’s Windows domain login10.

Additionally, since the COI and key token information assigned to a chat room do not
change over time, there is no need to continuously re-query the IM server for these chat
room security attributes. When the IM PEP is started, the PEP queries the IM server (over
an OOB message exchange described above) for a list of available chat rooms and each
chat room’s security attributes. To obtain this information, the IM PEP uses it own separate
connection to the XMPP server to request chat room security information. This information
is retrieved using standard XMPP protocol IQ messages11 to retrieve the chat room’s

10 For the Transverse client, the supported authentication is username/password based on
the user’s Windows domain account. Other IM client can leverage Windows domain
credentials for SSO operation.
11 XEP-0045: Multi User Chat, an XMPP protocol extension

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 111

description. This XMPP session is transient; once the chat room information has been
acquired, the PEP closes the OOB connection with the IM server.

The security attributes for each chat room, therefore, is represented in a local cache on the
PEP and can be referenced when formulating SMSB message requests to leverage the
SSG services.

Each IM operation where the PEP applies information protection logic is described in detail
below.

Listing Available Chat Rooms

A user can request a list of available chat rooms. In keeping with the SAMSON information
protection philosophy, users should only see those chat rooms for which they have a policy
right to access. The list of available chat rooms should therefore be filtered based on the
result of a policy decision by the AS. In this way, filtering a list of chat rooms is similar to
filtering a directory listing as described in the File Sharing PEP.

After a user connects to the IM server via the IM PEP, the IM client can request a list of the
available chat rooms.

Figure 30: IM PEP - Chat Room Listing

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 112

1. The IM client sends an XMPP DISCO (discovery) message that requests the list of
available MUC rooms (multi-user chat). The IM PEP forwards this request
(unmodified) on to the back end IM server. The IM server returns the list of chat
rooms to the PEP where the PEP will filter the list according to the security policy.

2. For each chat room in the list, the PEP calls the AS to determine if the user has the
policy right to see that room. The PEP formulates and sends a policy request
message to the AS, using the message format specified in section 4.2.2: AS
Messaging and Operation. In this message, the user’s identity is taken from the IM
session and the resource is the default COI for the chat room as specified in the local
data structure (cache) for chat room security attributes. The action is “READ” since
in the SAMSON TD architectural deployment, viewing a chat room is deemed to be a
READ operation. If the policy decision is to permit the user to see the chat room, the
chat room is allowed to remain in the chat room list that is returned to the user’s IM
client, otherwise, the chat room is removed from the list.

3. For each policy decision, the IM PEP will create an AuditXML formatted audit record,
based on the message format specified in 4.6.2: TAS Messaging and Operation, that
specifies the IM chat room list operation details and send the record to the TAS to
create a permanent record of the transaction.

4. The filtered list of available chat rooms that the user has a policy right to see is
returned to the user’s IM client.

Joining a Chat Room

Once a user has connected to the XMPP domain, via the IM PEP, they can request to join a
SAMSON protected chat room.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 113

Figure 31: IM PEP - Joining a SAMSON Protected Chat Room

1. The user sends a request to join a chat room and the IM PEP intercepts this join
request.

2. The PEP calls the AS to determine if the user has the policy right to join that room.
The PEP formulates and sends a policy request message to the AS, using the
message format specified in section 4.2.2: AS Messaging and Operation. In this
message, the user’s identity is taken from the IM session and the resource is the
default COI for the chat room as specified in the local data structure for chat room
security attributes. The action is “WRITE”; in the SAMSON TD architectural
deployment entering a chat room is a WRITE operation.

3. For each policy decision, the IM PEP will create an AuditXML formatted audit record,
based on the message format specified in 4.6.2: TAS Messaging and Operation, that
specifies the IM chat room join operation details and send the record to the TAS to
create a permanent record of the transaction.

4. If the policy decision was “permit”, the user is allowed to enter the chat room,
otherwise, the messaging session with the chat room is not established and the user
cannot send messages to or receive messages from the chat room.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 114

Sending an IM message to a Chat Room

In order for a user to be able to send a message to a chat room, that user must already
have joined the chat room. Joining a chat room through the IM PEP implies that the user
was granted access to the chat room after a security policy check was made to ensure that
the user has the policy right to access the chat room’s content. Therefore, it is not
necessary to perform a policy check on individual messages since the user’s participation in
the chat room already implies that they have the policy right to send messages through the
chat room.

Figure 32: IM PEP - Sending a Message within a SAMSON Protected Chat Room

1. User sends a message to the IM server; the IM PEP intercepts the message. The IM
PEP writes the message content out to a working file in the local staging area on the
PEP machine.

2. The PEP calls the CTS using the message format described in 4.4.2: CTS
Messaging and Operation, to encrypt the message in the working file. When the IM
PEP was started, the PEP retrieved the security attributes for the chat room,

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 115

including the key token that references the key that is to be used to encrypt this chat
room’s messages. The CTS will leverage the KMS, using the format specified in
section 4.3.2: KMS Messaging and Operations, to retrieve the key for this chat room.
The CTS encrypts the working file to create an encrypted version of the working file.

3. The PEP reads in the encrypted working file and base64 encodes the data (the
encryption process will create characters that cannot be processed by the IM server
unless the resulting object is encoded). The PEP replaces the plaintext text in the
message with the encrypted and encoded text.

4. The PEP transmits this newly protected message to the IM server.

It is significant to note that there is no audit record generated for this operation. Since there
is no policy decision being made, there is little information to record in an audit record (other
than the fact that a message was sent).

Receiving a Message from a Chat Room

Messages are delivered to all participants in the chat room in two cases:

1. When a user enters a chat room, a set of recent messages are sent to the user (this
number of messages that are sent to a user is configurable at the IM server); and

2. When a user sends a new message to the chat room, this message is then sent to all
participants in the chat room.

Messages are stored in encrypted form at the IM server. Therefore, when the message
traverses the IM PEP on the way to the user’s IM client the IM PEP will decrypt the message
for the user. Since each user has a separate connection to the IM server, separate copies
of the message are sent to each user and each message must be individually decrypted.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 116

Figure 33: IM PEP - Receiving a Message within a SAMSON Protected Chat Room

1. The IM server sends a message to the user’s IM client; the IM PEP intercepts the
message. The IM PEP writes the message content out to a working file in the local
staging area on the PEP machine. The PEP will decode the message to restore the
object as it was encrypted by the PEP when it was sent.

2. The PEP calls the CTS using the message format described in 4.4.2: CTS
Messaging and Operation, to decrypt the message in the working file. When the IM
PEP was started, the PEP retrieved the security attributes for the chat room,
including the key token that references the key that is to be used to encrypt this chat
room’s messages. The CTS will leverage the KMS, using the format specified in
section 4.3.2: KMS Messaging and Operations, to retrieve the key for this chat room.
The CTS decrypts the working file to create a decrypted version of the working file.

3. The PEP reads in the decrypted working file and replaces the plaintext text in the
message with the decrypted text. The PEP transmits this newly released message
to the user’s IM client.

As with the message send operation, there is no audit record generated for this operation.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 117

Sending a Marked Up Message

In the SAMSON TD architectural deployment, the IM PEP provides for the protection
messages that are individually labelled with their own COI information. These “marked up”
messages are specified by placing a COI (enclosed in brackets) in the message’s initial
characters. For example, the message “(CEO) This is for Canada only” is a marked up
message for the CEO community. Marked up messages are handled differently that non
marked up messages, specifically:

1. Each marked up message is checked against the security policy to ensure the
sender has the policy right to create a message for this community;

2. Each marked up message is encrypted with a key that is unique for that chat
room/COI combination; and

3. Since a marked up message requires a policy check, the creation of these messages
is an auditable event.

Recall that when the IM PEP is started, it retrieves chat room security attributes for each
chat room, including the key tokens for the keys that were used to protect the chat room’s
messages (both marked up and non-marked up). If, during the course of a chat room
session, a user requests to mark up a message with a new COI, a new key must be
generated to protect this new chat room/COI combination. Also, the chat room’s security
attributes must be pushed back to the IM server.

The handling of a chat room marked up message is shown in the following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 118

Figure 34: IM PEP - Sending a Marked Up Message

1. The user sends a marked-up message to the IM Server and the IM PEP intercepts
the message. The PEP detects that this is a marked up message by parsing the
message and determining the COI that should be applied to this message. The IM
PEP writes the message content out (including the marked up text) to a working file
in the local staging area on the PEP machine.

2. The PEP calls the AS to determine if the user has the policy right to send a message
that has been marked up with that COI. The PEP formulates and sends a policy
request message to the AS, using the message format specified in section 4.2.2: AS
Messaging and Operation. In this message, the user’s identity is taken from the IM
session, the resource is the marked up COI in the message and the action is
“WRITE”. In the SAMSON TD architectural deployment, marking up a message is a
WRITE operation.

3. The IM PEP checks the local cache to see if there is a key token for this chat
room/COI combination. If no such key exists, this is the first time this COI will have
been used in this chat room and a new key must be generated to protect these
messages. The PEP requests a new key from the KMS, using the format specified
in section 4.3.2: KMS Messaging and Operations to generate a new key. In this

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 119

exchange, the KMS will create a new key, store the key in the escrow system and
return the key token to the IM PEP. At the end of this exchange, there is now a key
available to protect the message.

a. This key token, however, must be stored at the IM Server so that there is a
permanent record of the chat room / COI key token. Recall that when the IM
PEP starts, it reads (in an OOB message exchange) the security attributes for
all SAMSON protected chat rooms. If a new key has been generated by the
PEP, the associated key token must be sent to the IM Server so that the
mapping of chat room / COI to key token can be retrieved the next time the
IM PEP is started12. The updated security attributes for the chat room is sent
to the IM Server in an OOB message exchange as described in the previous
section.

4. At this stage, a key will be available in the key escrow system (referenced through
the key toke identified) that can be used to protect the marked up message. The
PEP calls the CTS using the message format described in 4.4.2: CTS Messaging
and Operation, to encrypt the message in the working file. The operation requested
from the CTS is to encrypt the working file using the key token supplied in the
request (FILE_ENCRYPT_TOKEN). The CTS, in turn, will leverage the KMS, using
the format specified in section 4.3.2: KMS Messaging and Operations, to retrieve the
key associated with this key token. The CTS then encrypts the working file.

5. The IM PEP will create an AuditXML formatted audit record, based on the message
format specified in 4.6.2: TAS Messaging and Operation, that specifies the marked
up message operation details and send the record to the TAS to create a permanent
record of the transaction.

6. The PEP reads in the decrypted working file and replaces the plaintext text in the
message with the following elements concatenated together:

a. the COI of the marked up message (in brackets); and

b. a base64 encoded version of the contents of the working file where the
encrypted message was created by the CTS

 The PEP transmits this newly protected message to the user’s IM client.

Note in this last step, the encrypted message is sent to the IM server with the COI data
prepended (unencrypted) to the message. This mean that the marked up message the IM
server received takes the form:

12 Note that security attributes of chat rooms are not stored at the PEP itself. Every effort
has been made to keep the PEPs stateless. As appliances that do not store security
information, PEPs can be load balanced, hardened and maintained in a more controlled
manner.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 120

(COI data)h8f26hfg3rggw5hw9fwhf2fh74g2f

Note that the COI information, the security attribute for the message, is not encrypted. The
COI data is prepended to the message so that when the message is delivered to participant
in the chat room, the IM PEP recognizes this as a marked up message and provides the IM
PEP with the COI to which this message belongs. The manner by which the IM PEP
transmits encrypted marked up messages to chat room participants is discussed in the next
section. However, since the entire message was encrypted, the marked up text will exists in
two places:

1. Inside the encrypted message text; and

2. Prepended to the encrypted message.

Having the COI data both inside and outside the encrypted message is necessary to support
the process when users receive the marked up message.

Receiving a Marked up Message

When a chat room message is sent from the IM server to a chat room participant, the IM
PEP examines the message to determine if it is a marked up message. As described in the
previous section, a message that has COI information prepended to it is deemed to be a
marked up message. If the message is not marked up, the IM PEP will treat the message
as a normal encrypted message and execute the procedure described in the section above
Receiving a Message From a Chat Room. If the message is a marked up message,
however, the process described in the following diagram is followed:

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 121

Figure 35: IM PEP - Receiving a Marked Up Message

1. The IM PEP intercepts the chat room message as it is sent from the IM Server to the
chat room participant. The IM PEP examines the message to see if it is marked up
and, if so, extracts the COI from the message. The PEP writes out the encrypted
portion of the message, that is, everything after the prepended COI information and
base 64 decodes the message to get the originally encrypted content from when the
message was sent.

2. The PEP calls the AS to determine if the user has the policy right to receive a
message that has been marked up with that COI. The PEP formulates and sends a
policy request message to the AS, using the message format specified in section
4.2.2: AS Messaging and Operation. In this message, the user’s identity is taken
from the IM session, the resource is the marked up COI in the message and the
action is “READ”. In the SAMSON TD architectural deployment, reading a marked
up message is a READ operation.

3. Using the local cache of chat room security attributes, the key token for this chat
room/COI combination is used in a call to the CTS to decrypt the protected message.
The PEP calls the CTS using the message format described in 4.4.2: CTS

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 122

Messaging and Operation, to decrypt the message in the working file. This call to
the CTS includes the key token for the message so that the CTS can request the
appropriate key from the KMS with which to apply the cryptographic transformation.

4. The IM PEP will create an AuditXML formatted audit record, based on the message
format specified in 4.6.2: TAS Messaging and Operation, that specifies the marked
up message operation details and send the record to the TAS to create a permanent
record of the transaction.

5. The PEP reads in the decrypted working file and replaces the plaintext text in the
message with the decrypted text. The PEP transmits this newly released message
to the user’s IM client.

Note that since marked up messages are encrypted in their entirety (the marked up COI and
the message content), the IM user will see the prepended COI information and recognize
this as a marked up message that was sent to a restricted community. Many IM clients can
be tailored to detect when strings of characters have been used, such as “(CEO)”. To
enhance the user experience at the endpoint, the SAMSON TD architectural deployment
configured the Transverse chat software to use of flag icons to identify when CEO and
CANUS marked up messages were received. The endpoint chat software should be
configured to clearly indicate caveat level and classification in the visual markings in the
chat message / room.

5.3.3.3 IM PEP Trust Model

The IM PEP contains many levels of protections that prevent information from being
disclosed to unauthorized individuals. Both the front-end (IM client to IM PEP) and back end
(IM PEP to IM Server) communications are TLS encrypted so that messages cannot be
disclosed in transit.

While an IM chat room message is stored at the IM server, it exists as an encrypted object
that is uniquely keyed to the chat room / COI combination. Privileged users, such as the IM
administrator, are not able to disclose messages that are stored at the IM server since the
message must be decrypted using keys that are only available to the IM PEP. The policy
and cryptographic actions taken by the IM PEP are performed on a hardened appliance.
Finally, policy-based transactions are audited so that there is a tamper-resistant record of all
user activity where information has been disclosed to the SAMSON user community. Policy-
based transactions are transactions that require a security policy check prior to execution
and, for IM information protection, consists of the following actions:

 Joining a chat room
 Marking up a new message; and
 Receiving a marked up message.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 123

5.3.4 Web Session PEP

The Web Session PEP (Web PEP) is one variety of PEP that operates on web data. This
PEP limits access to only those users that have a policy right to use the web services
protected by the PEP. For the SAMSON TD architectural deployment, this PEP does not
currently provide cryptographic protection; rather, only access to the back end web service
is subject to policy access restrictions. As with all PEPs, the intent is for SAMSON
information protection to be added to an existing network infrastructure as a security
overlay; the introduction of SAMSON data-centric security practices should not necessitate
modifications to either the client endpoint or the back end web server.

5.3.4.1 Web PEP Architecture

Deployment of the Web PEP requires that the PEP be configured as a proxy for the back
end web server. That is, when users connect to the Web PEP the information requests are
forwarded on the back end web service. The proxying behaviour of the Web PEP is
achieved using the open source mod_proxy module that is part of the Apache 2 Web
Server. With the proxy module in place and properly configured, the Web PEP intercepts
information request that are destined for the back end web server.

The PEP logic itself is implemented as a separate Apache module within the same Apache
deployment that is supplying the proxy behaviour. The PEP module is referenced before
the proxy module in the call stack so that users must first pass the SAMSON security policy
check before their information request is proxied through to the target web service.

The Web PEP is fully compatible with the concept of virtual hosts: the idea that a single web
server can service multiple FQDNs at the same time. A user can request information from
three separate FQDNs not realizing that it is the same web server handling the processing
for all three requests. This architecture is shown in the following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 124

Figure 36: Web Session PEP Architecture

1. In this scenario, a user connects, via HTTPS, to the FQDN of the first Apache virtual
host on the DATA network.

2. If the PEP information processing logic determines that the user has the policy right
to access the back end web server, the information request is forwarded on the to
associated back end web service.

3. Since the architecture of the Web PEP follows the general PEP design, the Web
PEP has a messaging client that is a participant on the Security SMSB. Through this
messaging infrastructure, the Web PEP leverages the AS to obtain the security
policy decision as to whether the user should be allowed access to the back end web
service.

4. The Web PEP is also a participant on the Audit SMSB so that an audit record of the
user’s access to the protected web service can be stored at the TAS.

As with all other PEPs, the policy decision to grant a user access to protected data requires
the user’s identity and the security label on the protected resource. For the SAMSON
architectural deployment, the user’s identity is determined though an Apache-based login
capability that prompts the user to supply their Windows domain account and associated
password. When the Apache server receives this information, the server performs an LDAP
authentication against the Windows Active Directory to verify the user’s credentials. Once

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 125

authenticated, the Apache server will know the user’s identity for the duration of that web
session.

The security label for each web service is set at the Web PEP. The SSL certificate that is
used to protect the session between the user’s workstation and the PEP includes, as one of
the certificate attributes, the COI for the back end web service. For the SAMSON TD
deployment, the SSL certificates that were used at the PEP included Netscape certificate
extensions and the web service’s COI was allocated to the NS_COMMENT field within that
certificate extension. A separate certificate is used for each virtual host.

When the Web PEP Apache2 server is started, it reads and caches the COI information
from the hosting certificated for each virtual host so that when a user connects to a virtual
host, the PEP has the appropriate COI to apply for the policy check to see if the user has
the right to access the back end service.

5.3.4.2 Web PEP Messaging and Operation

When a user requests access to a web service via the Web PEP, the PEP will first ensure
that the user’s session is authenticated. As previously described, if the session is not
authenticated, the Apache server will prompt the user for a username/password and then
authenticate the user through the Windows Active Directory. Once authenticated, the Web
PEP will know the identity of the user and the COI that applies to the web service being
accessed.

The information processing logic to handle the request is shown in the following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 126

Figure 37: Web PEP - Accessing a SAMSON Protected Web Service

1. The user’s information request is sent to the Web PEP over TLS/SSL. The PEP has
the COI for the requested virtual host from the SSL certificate for the virtual host.
The PEP also has the user’s identity for this web session.

2. The PEP calls the AS to determine if the user has the policy right to access this Web
Service, given the COI to which it belongs. The PEP formulates and sends a policy
request message to the AS, using the message format specified in section 4.2.2:AS
Messaging and Operation. In this message, the user’s identity is taken from the web
session, the resource is the COI from the certificate and the action is “READ”. In the
SAMSON TD architectural deployment, accessing a web service is a READ
operation.

3. The Web PEP will create an AuditXML formatted audit record, based on the
message format specified in 4.6.2:TAS Messaging and Operation, that specifies the
web service access operation details and send the record to the TAS to create a
permanent record of the transaction.

4. If the policy decision was to allow the user access to the web service, the PEP allows
the message to be forwarded to the destination by the Apache proxy module.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 127

If the policy decision denies the user access to the back end service, an HTTP error code
403 (Not Authorized) is returned to the user’s web session.

5.3.4.3 Web PEP Trust Model

The front-end connection between the user’s workstation and the Web PEP and back end
connection between the Web PEP and the web service are protected using TLS/SSL. While
not configured for the SAMSON TD architectural deployment. It is recommended that the
back end connection between the Web PEP and the web service be either:

 Hosted on its own network so that the only way to access the back end service is
through the Web PEP; and/or

 Limited with host-based firewall at the web service so that only the Web PEP is the
only machine allowed establishing a connection with the web service.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 128

6.0 Self-Protecting SAMSON Services

Whereas section 4.0: The SAMSON Security Services describes the SSGs and section 5.0:
The SAMSON Data Intercept Strategy describes how the PEPs leverage the SSGs to
provide data centric security to applications, this section presents the SAMSON self-
protection mechanisms that are present in the SAMSON TD architectural deployment.
These self-protection mechanisms include the use of SAMSON PEPs to protect SAMSON
administrative interfaces. This section also presents SAMSON’s use of operational security
tools for monitoring system integrity.

There are three administrative interfaces that are protected by SAMSON:

1. The administrative interface to edit the security policy;

2. The administrative interface to edit user security attributes; and

3. The audit review interface.

A description of the architecture of each interface and the manner by which the interfaces
are protected by SAMSON is provided in the following sections.

6.1 Policy Administration Interface (PAI)

The Policy Administration Interface (PAI) allows the Security Officer to create, modify and
delete the security policies that are used by the AS. In the SAMSON TD architectural
deployment, the PAI is a service that:

1. Provides a web-based interface to the security officer on the front end; and

2. Includes database connectivity that can be used to retrieve and set policies at the
security policy repository.

Since the PAI is a web interface, access to the service can be controlled through the use of
a SAMSON Web PEP, as documented in section 5.3.4: Web Session PEP.

The architecture of the PAI, therefore, can be viewed in the following diagram.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 129

Figure 38: Self-Protected Policy Administration Interface

The Security Policy Administrator connects to the Web PEP that has been configured to
gate access to the PAI. Access to the Web PEP is made over the Data network.

1) This connection is accordance with the Web PEP design, that is, the connection is over
a TLS protected link and the server certificate used to protect this web host contains an
attribute that defines the COI for the PAI. As previously described, the Web PEP in the
SAMSON TD architectural deployment uses the NS_COMMENT attribute in the
Netscape certificate extension in the server certificate to house COI data.

2) Additionally, as previously stated, the Web PEP requires that a user authenticate to the
Windows domain to establish their identity. The Web PEP accepts the user’s credentials
and verifies them with Windows Active Directory using LDAP authentication.

3) At this stage, the Web PEP has the user’s identity and the COI for the resource being
requested. As described in section 5.3.4: Web Session PEP, the Web PEP has the
information necessary to submit an authorization request to the AS. If the user has the
policy right to access this resource, the information request is proxied to the PAI. If the
access request is denied, an HTTP 403 Forbidden message is returned to the user. In
either case, an audit record is written to the TAS.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 130

4) An audit record of the attempt to access the Policy Administration Interface is stored
through the Trusted Audit Service.

5) Access to the PAI is limited in two ways:

a) The proxied request is sent over the SECURITY network to which users have no
direct access; and

b) The PAI is configured (host-based firewall) to only allow access from the Web PEP.

As such, only authorized users will get access to the PAI. Through this interface, current
policies are displayed, new policies can be created and existing policies can be deleted.
The PAI interface is shown in Figure 39: PAI Web-based Interface.

6) In the SAMSON TD architectural deployment the Security Policy Repository is a MySQL
database. The PAI data exchanges with the Security Policy repository are made using
SQL over the SECURITY network. The PAI holds, within its configuration, the
necessary database account access to write policies.

Once the Security Policy Repository has been updated, any policies are immediately
enforced. Since for every policy request the AS retrieves all applicable policies, the AS is
always referencing the latest set of policies.

To grant access to the PAI, therefore, there must be a rule that grants the SO (user, group
or role) READ access to the PAI’s COI. It is significant to note that the PAI is used to alter
the very security policies that are used to gate access to the PAI. As a result, it is possible
to lock the Security Officer out of the PAI entirely by deleting the policy rule that allows
access to the PAI. Re-instatement of such a policy rule must be manually entered at the AS
command line. An example of such a rule is shown below.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 131

Figure 39: PAI Web-based Interface

In this sample policy list, users that are members of the POLICY_ADMIN community have
the policy right to access (READ) resources that are assigned to the POLICY_ADMIN
community. A Security Officer would need to be part of the POLICY_ADMIN COI to be
granted access to the PAI.

It is assumed that the target environment generates the certificates that are used to label the
Web PEP virtual hosts. Since the HTTPS interface is on the DATA network, that is, the
target environment’s operational network, the certificates that protect those services should
link into the target environment’s CA.

6.2 Identity Attribute Administration Interface (IAAI)

The Identity Attribute Administration Interface (IAAI) allows the Identity Administrator to set
the security attributes for SAMSON users. For the SAMSON TD architectural deployment,
the management of user security attributes (the attributes used by SAMSON for policy
decision) is governed by the following workflow:

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 132

 The Windows domain (Active Directory) is the authoritative source for the user’s
account and credentials (not managed through SAMSON)

 The Security Attribute Repository, on the SECURITY network, is the authoritative
source for users’ security attributes, including nationality, clearance level and
membership in communities of interest.

 The IA must manually enter the entries for user’s security attributes; there is currently
no mechanism to automatically load a list of users from Active Directory into the
repository.

 To ensure the integrity of the architecture, the IAS and the security attribute
repository are not directly accessible to the user community. However, a user’s
security attributes must be available at the endpoint in order to support labelling
solution (labelling solution must be able to display those attributes that are available
to the user). As a result, attributes from the authoritative source (the security
attribute repository) are pushed to the non-authoritative source (Active Directory)
where they can be accessed from the DATA network. The attributes that are read
from Active Directory do not require strong integrity since they are only used for
labelling; when policy decisions are performed on data assets, the security attributes
from the authoritative source (high integrity) are used.

In the SAMSON TD architectural deployment, the IAAI is a service that:

1. Provides a web-based interface to the identity administrator on the front end; and

2. Includes LDAP connectivity that can be used to retrieve and set user security
attributes at the security policy repository.

For this deployment, the IAAI uses phpLDAPadmin13: an open source, web-based LDAP
client that provides basic administration for LDAP servers.

Similarly to the PAI, the IAAI is a web interface and access to the service can be controlled
through the use of a SAMSON Web PEP. The architecture of the IAAI, therefore, can be
viewed in the following diagram.

13 http://phpldapadmin.sourceforge.net/wiki/index.php/Main_Page

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 133

Figure 40: Self-Protected Identity Attribute Administration Interface

The IA connects to the Web PEP that has been configured to gate access to the IAAI.
Access to the Web PEP is made over the Data network.

1) This connection is accordance with the Web PEP design, that is, the connection is over
a TLS protected link and the server certificate used to protect this web host contains an
attribute that defines the COI for the IAAI. As previously described, the Web PEP in the
SAMSON TD architectural deployment uses the NS_COMMENT attribute in the
Netscape certificate extension in the server certificate to house COI data.

2) Additionally, as previously stated, the Web PEP requires that a user authenticate to the
Windows domain to establish their identity. The Web PEP accepts the user’s credentials
and verifies them with Windows Active Directory using LDAP authentication.

3) At this stage, the Web PEP has the user’s identity and the COI for the resource being
requested. As described in section 5.3.4: Web Session PEP, the Web PEP has the
information necessary to submit an authorization request to the AS. If the user has the
policy right to access this resource, the information request is proxied to the IAAI. If the
access request is denied, an HTTP 403 Forbidden message is returned to the user. In
either case, an audit record is written to the TAS.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 134

4) As described in section 4.2.2: AS Messaging and Operation, the AS retrieves user’s
security attributes from the IAS and uses these attributes in the evaluation of policy
decisions.

5) An audit record of the attempt to access the Identity Attribute Administration Interface is
stored through the Trusted Audit Service.

6) Access to the IAAI is restricted in two ways:

a) The proxied request is sent over the SECURITY network to which users have no
direct access; and

b) The IAAI is configured (host-based firewall) to only allow access from the Web PEP.

As such, only authorized users will get access to the IAAI. Through this interface,
current policies are displayed, new policies can be created and existing policies can be
deleted. The IAAI interface is shown in Figure 40: Self-Protected Identity Attribute
Administration Interface.

7) In the SAMSON TD architectural deployment the Security Attribute Repository is an
LDAP directory. The IAAI data exchanges with the Security Attribute Repository are
made using LDAP over the SECURITY network. The IAAI holds, within its configuration,
the necessary LDAP account access to write and modify directory entries.

Once the security attribute repository has been updated, users’ new security attributes are
reflected in any subsequent policy checks. That is, when the AS queries the IAS for users’
security attributes, the latest security attributes are retrieved from the security attribute
repository.

To grant access to the IAAI, therefore, there must be a rule that grants the IA (user, group or
role) READ access to the IAAI’s COI. It is significant to note that the IAAI is used to alter the
very user security attributes that are used to gate access to the IAAI. As a result, it is
possible to lock the Identity Administrator out of the IAAI entirely by deleting the user
security attributes that allows access to the IAAI.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 135

Figure 41: IAAI Web-based Interface

In this sample security attribute list, users that are members of the IDM_ADMIN community
have the policy right to access (READ) resources that are assigned to the IDM_ADMIN
community. An Identity Administrator would need to be part of the IDM_ADMIN COI to be
granted access to the IAAI.

6.2.1 Identity Attribute Synchronization

The previous section described the use of authoritative and non-authoritative sources of
user security attributes. The authoritative source, used in policy decisions, is the Security
Attribute Repository. The non-authoritative source, used to provide end points with security
attribute information for purposes such a labelling, is Active Directory. It was stated that
attributes are pushed from the authoritative source to the non-authoritative source. This
process is described in this section.

The pushing, or one-way synchronizing, of security attributes is done by a SAMSON support
process: the Identity Attribute Synchronization Utility. This utility is typically deployed on the
IAS system itself although it is not dependant on being co-located with any other SAMSON
component. Once started, the process will periodically perform the synchronization
activities.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 136

The synchronization activity is shown in the following diagram.

Figure 42: Synchronizing Security Attributes

1) The utility connects to the Security Attribute Repository on the SECURITY network and
retrieves the security attributes for each user.

2) The utility connects to Active Directory on the DATA network and updates each user’s
AD entry with their security attributes.

The mapping between the LDAP and AD schema equates each user’s LDAP common name
with their Active Directory SAMAccountName.

For the SAMSON TD deployment architecture, only the COI information is synchronized.
This COI data is stored in an extensionAttribute: a set of free-to-use locations within the AD
user schema.

When launches, the utility requires the operator to enter appropriate account credentials for
both the LDAP and AD connections. Once successfully started, the utility will continue to
synchronize the security attribute repository with Active Directory.

With security attributes synchronized and available on the DATA network, endpoint software
products such as the Titus suite of labelling solutions can retrieve attribute data by querying
the chosen extensionAttribute. This information can be accessed through a variety of AD
supported communication protocols including LDAP or, as is the case with Titus, the AD
Scripting Interface (ADSI).

6.3 Audit Review Interface (ARI)

The Audit Review Interface (ARI) allows the Audit Reviewer to examine audit records that
have been placed in the Trusted Audit Store by the Trusted Audit Service. In the SAMSON
TD architectural deployment, the ARI is a service that:

1. Provides a web-based interface to the Audit Reviewer on the front end; and

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 137

2. Includes database connectivity that can be used to retrieve audit records from the
TAS.

Since the ARI is a web interface, access to the service can be controlled through the use of
a SAMSON Web PEP, as documented in section 5.3.4: Web Session PEP.

The architecture of the ARI, therefore, can be viewed in the following diagram.

Figure 43: ARI Web-Based Interface

The Audit Reviewer connects to the Web PEP that has been configured to gate access to
the ARI. Access to the Web PEP is made over the Data network.

1) This connection is accordance with the Web PEP design, that is, the connection is over
a TLS protected link and the server certificate used to protect this web host contains an
attribute that defines the COI for the ARI. As previously described, the Web PEP in the
SAMSON TD architectural deployment uses the NS_COMMENT attribute in the
Netscape certificate extension in the server certificate to house COI data.

2) As previously stated, the Web PEP requires that a user authenticate to the Windows
domain to establish their identity. The Web PEP accepts the Audit Reviewer’s
credentials and verifies them with Windows Active Directory using LDAP authentication.

3) At this stage, the Web PEP has the user’s identity and the COI for the resource being
requested and an policy check is made to the AS to determine if the user has the policy

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 138

right to access the ARI. If the user has the policy right to access this resource, the
information request is proxied to the ARI. If the access request is denied, an HTTP 403
Forbidden message is returned to the user. In both cases, the Web PEP sends an audit
record of the transaction to the TAS.

4) An audit record of the attempt to access the Audit Review Interface is stored through the
Trusted Audit Service. As described in section 4.6.2: TAS Messaging and Operation,
the TAS will process the audit record, amend the record with chain-of-custody
information and submit the records to the Trusted Audit Store.

5) Access to the ARI is restricted in two ways:

a) The proxied request is sent over the AUDIT network to which users have no direct
access; and

b) The ARI is configured (host-based firewall) to only allow access from the Web PEP.

As such, only authorized users will get access to the ARI. Through this interface, the Audit
Reviewer can view and search for audit records as part of a forensic or monitoring process.
The ARI interface is shown in Figure 43: ARI Web-Based Interface.

6) In the SAMSON TD architectural deployment the Trusted Audit Store is a MySQL
database. The ARI data exchanges with this repository are made using SQL over the
AUDIT network. The ARI holds, within its configuration, the necessary database
account access to read audit records.

For the SAMSON TD architectural deployment, a 3-tier web service was created using the
Xataface14, a web application framework that can generate forms and processing logic for
MySQL hosted data stores. Under this framework, the deployed ARI presents the following
interface.

14 http://xataface.com

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 139

Figure 44: ARI Web-based Interface

To grant access to the ARI, therefore, there must be a policy rule that grants the Audit
Reviewer (user, group or role) READ access to the ARI’s COI. It is significant to note that
since audit records are viewed immediately after they have been posted to the Trusted Audit
Store, one of the most recent audit records the Audit Reviewer will see is the audit record for
the transaction that granted the Audit Reviewer access to the ARI itself. This is another
clear demonstration of SAMSON services protecting SAMSON interfaces.

The AuditXML schema is presented in Annex A.6:AuditXML Schema.

6.4 Audit Integrity Checker (AIC)

Section 4.6.2: TAS Messaging and Operation describes the auditing strategy for the creation
of chained records that are resistant to tampering. The chain-of-custody protection of the
audit records provides integrity for the system as a whole. If all SAMSON transactions are
audited and audit records cannot be illicitly altered, then the audit trail becomes the
authoritative source of SAMSON activities and can be used in incident management and
forensic analysis.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 140

SAMSON protection of audit records is not reliant on the access control over the audit store
(although hardening and access management are part of the deployment strategy for all
SAMSON components including audit), rather it is the generation of record and block level
digests that ensure that any tampering of audit records can be detected. When audit
records are accepted at the TAS, they are amended to include calculated digest values that
become part of the transactional audit record, as shown in Figure 18: Audit Record Digests.

Figure 16: TAS Deployed Architecture demonstrates the role of audit integrity tools, tools
that can re-evaluate audit records to ensure that the audit chain has not been modified after
being posted to the audit store. The SAMSON TD architectural deployment includes one
such tool: the Audit Integrity Checker (AIC). The AIC, co-located with the TAS, is a utility
that performs a complete review of the entire audit chain from the first record of the first
audit block to the most recently added audit record. The AIC is executed from the TAS
system command line when the Security Officer requires a verification of the integrity of the
audit records and, therefore, the system as a whole. In an operational setting, the AIC can
be scheduled to run autonomously through system maintenance facility such as cron where
the Security Officer can set the frequency of the integrity check.

The AIC repeats the digest calculation that was used to generate the original digests on the
audit records. As previously described, these digests are calculated as follows.

The Audit Record Digest is a SHA1 hash digest of the concatenation of the following data
elements that were taken from the original audit record and are now expressed in the audit
store database:

 The unique identifier for the TAS (the tasID);
 The block number and block sequence number;
 The quality of service identifier (the qosID is not used in the architectural

deployment);
 The TAS timestamp;
 The original auditXML audit record;
 The user’s identity
 The ipAddress of the system that generated the record;
 The name of the program that generated the record;
 The operation on the data;
 The resource requested in the transaction (target);
 The policy decision;
 The identity of the client that generated the audit record;
 The sequence number of the audit record generated at the client; and
 The timestamp of the audit record generated at the client.

The SHA1 function calculates an SHA1 160-bit checksum for the string, as described in
RFC 3174 (Secure Hash Algorithm). The value is returned as a string of 40 hex digits. This
calculated value is compared to the originally calculated digest that was stored with the
record in the trusted audit store.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 141

The Audit Chain Digest is a SHA1 hash digest of the concatenation of the current records’
record digest and the previous record’s chain digest. This calculated value is compared to
the originally calculated chain digest that was stored with the record in the trusted audit
store.

The Block Digest is a SHA1 hash digest of all the record digests in the block and is
compared with the block digest value stored with the audit block.

When verifying the integrity of a series of audit records, the AIC performed the following
operations:

Figure 45: AIC Verification Process

1. Each record is examined individually, although the verification of a record requires
the verification of the audit block to which the record belongs.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 142

2. To verify a block of audit records, each record in that block must be individually
checked and the block chain verified. As a result, each record in the block is verified
to ensure that the block itself maintains its integrity.

3. For each record in the block, the audit record digest and the audit chain digest is
calculated. If the integrity of any records in the block cannot be asserted (i.e. the
record has been modified) then the block level verification process is deemed to
have failed and no records in that block can be trusted. If the digests for all record in
the block are correct, the block is deemed to have maintained its integrity and all
records in that block have not been altered.

4. The Audit Block Digest is then calculated and compared against the digest of the
block itself. The calculated record, chain and block level digests are subsequently
used for all other audit records in the current block.

Once the record, chain and block level digests have been calculated for one record, these
digests can be used to validate any record in that block. If the span of records goes beyond
the current block and into the next block, there digests for the next block will have to be
calculated.

Once a block is deemed to have been tampered with:

 All processing on that block stops;

 All audit records in that block are deemed to be untrusted; and

 A security event is raised through the SAMSON Security Event Management
process and a notification alert is sent to the Security Officer 6.5 SAMSON Security
Event Management.

6.5 SAMSON Security Event Management

As described in section 4.6.2: TAS Messaging and Operation, the TAS can bridge to a SIEM
solution so that security violations and SAMSON error conditions can be collected,
managed, and sent to the designated security and/or administrative person to respond, as a
notification message. The SAMSON TD architectural deployment includes two components
that enable this capability:

1. The TAS creates and forwards syslog messages to a syslogd server based on
specific conditions and;

2. A COTS SIEM solution has been deployed in the target environment to read TAS
generated syslog messages, process them to generate security alerts and forward
notification messages via an email server.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 143

The COTS SIEM solution for the SAMSON TD architectural deployment is AlienVault
version 4.1. The SIEM deployment is configured to read in syslog messages stored by the
co-located syslogd server. (CentOS 6.3 ksyslogd daemon). The AlienVault SIEM solution
processes each syslog event to determine if it should be raised as a security event.
Security events are sent to the Security Officer as email messages via the Microsoft
Exchange server.

The processing sequence for raising security events and notifications is shown in the
following diagram.

Figure 46: SAMSON Security Event Handling and Notifications

1. SAMSON User performs a SAMSON transaction that is processed by a PEP.

2. During the course of processing the transaction, the PEP generates an audit records
that is sent to the TAS 4.6.2: TAS Messaging and Operation.

3. The TAS will extend the audit record to include integrity digests and store the record
at the audit store.

4. If the audit record is for an auditable event (i.e. represents a security incident or
includes a processing error code), the TAS generates a syslog record. The syslog
record is described using the following format (10 elements, comma separated):

a. The time that the event record was generated (the TAC timestamp);
b. The IP address of the TAS that processed the audit record;
c. The identity of the user that created the audit record;

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 144

d. The resource that was requested as part of the transaction;
e. The requested policy action on the resource (e.g. READ/WRITE);
f. The IP address of the PEP that created the audit record;
g. The program name (PEP) that generated the audit record;
h. The requested SAMSON operation on the resource (e.g. file policy check);
i. The error code associated with the transaction; and
j. The text for the error condition associated with the transaction.

A sample syslog message, generated for a request for a file that does not exist,
would be as follows:

Mar 14 22:40:52 10.10.10.87
catester1,/usr/local/apache2/htdocs/data/CEO
document.docx,WRITE,10.10.10.95,filesystem,POLICY_FILE,40111,N
o such file or directory : /usr/local/apache2/htdocs/data/CEO
document.docx

In this case, user catest1 has requested a file “CEO document.docx” and the
SAMSON PEP was not able to process the request, as the file does not exist.

The configuration of the SAMSON TAS includes the specification of the target
syslogd server and the logging facility level to use for SAMSON log events. The TAS
uses this information to submit the syslog message to the target syslogd server.

5. For the SAMSON TD deployment architecture, the syslogd server is configured to
write SAMSON syslog messages to a separate file. AlienVault uses this syslog file
as a event source, reads records from this file as they are appended and processes
the events reflected in each record.

6. AlienVault allows specific actions to take place depending on the kind of event
messages that are read from the event sources. All SMASON events are handled
the same way:

a. Raise an alert (a local ticket managed through the interface); and

b. Generate an email message and send it to a target user, typically the
Security Officer, via SMTP though the domain exchange server.

7. The Security Officer is then able to retrieve the Security Event notifications and
respond to the event appropriately.

When viewed though the AlienVault SIEM web interface, security alerts are presented as
follows. Figure 47: AlienVault Security Incidents shows the general list of recent security
events and Figure 48: AlienVault Security Event Details shows specific information for an
individual security event.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 145

Figure 47: AlienVault Security Incidents

Figure 48: AlienVault Security Event Details

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 146

When AlienVault raises a security event, a notification email using a specific message
structure is sent to the Security Officer.

Figure 49: A Security Event Notification Email

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 147

Annex A: Message Formats

This annex provides details for the messages that are received from and responded to by
the six core SAMSON services. For each message type, the message format is presented
and the role of individual attributes within the message is explained.

Annex A.1 Identity Attribute Service Messages

The formats described in the following message request/response cycle represent the SSG
interface API presented by the IAS.

IAS Request Message

The message request format is as follows:

<spml:searchRequest
 xmlns:spml='urn:oasis:names:tc:SPML:1:0'
 xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core'
 requestID='REQUEST_IDENTIFIER'>

 <dsml:filter>
 <dsml:equalityMatch name='LOOKUP_VALUE'>
 <dsml:value>ACCOUNT</dsml:value>
 </dsml:equalityMatch>
 </dsml:filter>
 <spml:attributes>
 <dsml:attribute name='ATTRIBUTE'/>
 </spml:attributes>
</spml:searchRequest>

The individual message attributes that can be set by the calling process are presented
below.

Table 18: IAS Request Message Content

Information Element Description Value

Request Identifier
A Unique identifier for this

request which allows multiple
requests to be processed

simultaneously.

Alphanumeric value

Lookup Value
This is the name that uniquely

identities the user for which
security attributes are

requested.

The value provided for this field
is the user’s unique identity as

determined through their
domain credentials.

Account
This is the name that uniquely

identities the user for which
security attributes are

requested.

The value provided for this field
is the user’s unique identity as

determined through their
domain credentials.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 148

Information Element Description Value

Attribute
This is the list of attributes that
are requested from the security

attribute repository for the
specified user

Multiple attributes can be
specified from the following list:
nationality, clearance, caveats.
Caveats will return a comma

separated list of the
communities of which the user

is a member.

IAS Response Message

The message response format is as follows:

<spml:searchResponse
 xmlns:spml='urn:oasis:names:tc:SPML:1:0'
 xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core'
 result='urn:oasis:names:tc:SPML:1:0#success'>
 <spml:searchResultEntry>
 <spml:identifier
 type='urn:oasis:names:tc:SPML:1:0#GenericString'>
 <spml:id>USERNAME</spml:id>
 </spml:identifier>
 <spml:attributes>
 <dsml:attr name='ATTRIBUTE'>
 <dsml:value>VALUE</dsml:value>
 </dsml:attr>
 </spml:attributes>
 </spml:searchResultEntry>
</spml:searchResponse>

The IAS will send the above response message after populating the requested data into the
following attributes.

Table 19: IAS Response Message Content

Information Element Description Value

UserName
This is the name that uniquely

identities the user for which
security attributes are

requested.

The value provided for this field
is the user’s unique identity as

determined through their
domain credentials.

Attribute
This is the list of attributes that
are requested from the security

attribute repository for the
specified user

Multiple attributes can be
specified from the following list:
nationality, clearance, caveats.
Caveats will return a comma

separated list of the
communities of which the user

is a member.

Value See table below See table below

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 149

The SAMSON TD architectural deployment supports the request for the following user
attributes. These attributes are present in the user attribute repository and represent the
data elements (per user) that are requested through the IAS.

Table 20: Security Attribute Value

Requested Attribute Response Element Value Example

nationality nationality Text representing
the user’s nationality CANADA

clearance clearance Text representing
the user’s clearance SECRET

caveats caveats

A comma separated
list containing all the

communities to
which the user

belongs

CEO,CANUS

Annex A.2 Authorization Service Messages

The formats described in the following message request/response cycle represent the SSG
interface API presented by the AS.

AS Request Message

<xacml-context:Request
 xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04"
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
<xacml-context:Subject>
 <xacml-context:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
 <xacml-context:AttributeValue>ACCOUNT</xacml-context:AttributeValue>
 </xacml-context:Attribute>
 </xacml-context:Subject>
 <xacml-context:Resource>
 <xacml-context:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <xacml-context:AttributeValue>RESOURCE</xacml-context:AttributeValue>
 </xacml-context:Attribute>
 </xacml-context:Resource>
 <xacml-context:Action>
 <xacml-context:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <xacml-context:AttributeValue>ACTION</xacml-context:AttributeValue>
 </xacml-context:Attribute>
 </xacml-context:Action>
 <xacml-context:Environment/>
</xacml-context:Request>

The individual message attributes that can be set by the calling process are presented
below.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 150

Information Element Description Value

ACCOUNT

The user account for which the
policy check is being made; for
application PEPs this is usually
the user account under which
the security operation is taking

place.

The value provided for this field
is the user’s unique identity as

determined through their
domain credentials.

RESOURCE

The data artifact that is being
evaluated for an access control
check; this may be a high-level
construct such as a community
of interest or a low-level artifact

such as a filename.

The value provided for this field
is the security attribute on the

information asset being
requested

ACTION
The operation that is being

requested against the
RESOURCE.

The value provided by the PEP
that corresponds to the action

against the data. For example,
the File PEP will equate a
directory listing as a policy

READ action.

AS Response Message

The AS response to an XACML formatted policy request is an XACML formatted response
message.

<xacml-context:Response
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os">
 <xacml-context:Result>
 <xacml-context:Decision>DECISION</xacml-context:Decision>
 </xacml-context:Result>
</xacml-context:Response>

The AS will send the above response message after populating the requested data into the
following attribute.

Information Element Description Value

DECISION
This is the policy decision

returned by the PDP accessed
through the AS

One of Permit, Deny or Error

Annex A.3 Key Management Service Messages

The formats described in the following message request/response cycle represent the SSG
interface API presented by the KMS.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 151

KMS Request Message

<ssr:Request
 xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04"
 xmlns:ssr="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:Samson.sqml.0.1 https://samsontd.ca/schema/sqml.01.xsd">
 <ssr:Subject>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
 <ssr:AttributeValue>SUBJECT FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Subject>
 <ssr:Resource>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <ssr:AttributeValue>RESOURCE FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Resource>
 <ssr:Action>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <ssr:AttributeValue>ACTION FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Action>
 <ssr:Environment>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:environment:environment-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <ssr:AttributeValue>ENVIRONMENT FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Environment>
</ssr:Request>

The individual message attributes that can be set by the calling process are presented
below.

Table 21: KMS Request Message Content by Message Type

Message Type Subject Resource Action Environment

Generate a key N/A N/A GENERATE_KEY N/A

Generate and Store a key N/A N/A GENERATE_STORE N/A

Store a supplied key N/A The key to be
stored STORE_KEY N/A

Retrieve an existing key N/A The key’s token RETRIEVE_KEY N/A

KMS Response Message

The message response format is as follows:

<ssr:SAMSONSvcResponse xmlns:ssr="SAMSONSvcResponse">
 <ssr:List name="kesOP">
 <ssr:Value key="RESPONSE_TYPE">RESPONSE</ssr:Value>
 </ssr:List>

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 152

 <ssr:Status code=ERROR_CODE>ERROR_TEXT</ssr:Status>
</ssr:SAMSONSvcResponse>

The KMS will send the above response message after populating the requested data into
the following attributes. Note that the KMS uses XACML context messages for key action
requests and the SAMSON Service Response (SSR) format for key action responses. The
ssr:List name attribute for KMS service responses is “kesOP”.

Table 22: KMS Response Message Content by Message Type

Response Field Requested Action Response
Type Response Data

RESPONSE_TYPE

GENERATE_KEY “key”
The returned key
from the escrow

system.

GENERATE_STORE “keytoken”
The retuned key and

token from the
escrow.

STORE_KEY “token” The returned token
from the escrow.

RETRIEVE_KEY “key” The returned key
from the escrow.

ERROR_CODE ALL Integer
“0” if success, error
code if a processing
error has occurred.

ERROR_TEXT ALL Text Error Description

Annex A.4 Cryptographic Transformation Service Messages

The formats described in the following message request/response cycle represent the SSG
interface API presented by the CTS.

CTS Request Message

The message request format is as follows:

<ssr:Request
 xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04"
 xmlns:ssr="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:Samson.sqml.0.1 https://samsontd.ca/schema/sqml.01.xsd">
 <ssr:Subject />
 <ssr:Resource>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <ssr:AttributeValue>RESOURCE FIELD 1</ssr:AttributeValue>
 <ssr:AttributeValue>RESOURCE FIELD 2</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Resource>
 <ssr:Action>
 <ssr:Attribute

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 153

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <ssr:AttributeValue>ACTION FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Action>
 <ssr:Environment>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:environment:environment-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <ssr:AttributeValue>ENVIRONMENT FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Environment>
</ssr:Request>

The individual message attributes that can be set by the calling process are presented
below.

Table 23: CTS Request Message Content by Message Type

Message Type Resource
Field 1

Resource
Field 2 Action Field Environment

Field

Encrypt to get
a container Plaintext file Container file COPY_ENCRYPT The label on

the data.

Decrypt a
container Container file Plaintext file COPY_DECRYPT The label on

the data.

Encrypt a file Plaintext file Encrypted file FILE_ENCRYPT_TOKEN The token for
the key to use.

Decrypt a file Encrypted file Plaintext file FILE_DECRYPT_TOKEN The token for
the key to use.

CTS Response Message

The message response format is as follows:

<ssr:SAMSONSvcResponse xmlns:ssr="SAMSONSvcResponse">
 <ssr:List name="cryptoOP">
 <ssr:Value key="RESPONSE_TYPE">RESPONSE</ssr:Value>
 </ssr:List>
 <ssr:Status code=ERROR_CODE>ERROR_TEXT</ssr:Status>
</ssr:SAMSONSvcResponse>

The CTS will send the above response message after populating the requested data into the
following attributes. Note that the CTS uses XACML context messages for cryptographic
action requests and the SAMSON Service Response (SSR) format for cryptographic action
responses. The ssr:List name attribute for KMS service responses is “cryptoOP”.

<ssr:SAMSONSvcResponse xmlns:ssr="SAMSONSvcResponse">
 <ssr:List name="cryptoOP">
 <ssr:Value key="RESPONSE_TYPE">RESPONSE</ssr:Value>
 </ssr:List>

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 154

 <ssr:Status code=ERROR_CODE>ERROR_TEXT</ssr:Status>
</ssr:SAMSONSvcResponse>

Table 24: CTS Response Message Content by Message Type

Response Field Requested Action Response Type Response Data

List

COPY_ENCRYPT target Container File

COPY_DECRYPT target Plaintext File

FILE_ENCRYPT_TOKEN target Ciphertext File

FILE_DECRYPT_TOKEN target Plaintext File

Status
All ERROR_CODE

“0” is operation is
successful and error code
if an error is encountered
during the processing of

the request

All ERROR_TEXT Textual description of the
error

Annex A.5 Security Label Service Messages

The formats described in the following message request/response cycle represent the SSG
interface API presented by the SLS.

SLS Request Message

The message request format is as follows:

<ssr:Request
 xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04"
 xmlns:ssr="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:Samson.sqml.0.1 https://samsontd.ca/schema/sqml.01.xsd">
 <ssr:Subject />
 <ssr:Resource>
 <ssr:Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <ssr:AttributeValue>RESOURCE FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Resource>
 <ssr:Action>
 <ssr:Attribute

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 155

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <ssr:AttributeValue>ACTION FIELD</ssr:AttributeValue>
 </ssr:Attribute>
 </ssr:Action>
 <ssr:Environment />
</ssr:Request>

The individual message attributes that can be set by the calling process are presented
below.

Table 25: SLS Request Message Content by Message Type

Message Type Subject
Field

Resource
Field Action Field Environment

Field
Extract the security
label from the file N/A The target file

being queried FILE_GET_LABEL N/A

SLS Response Message

The message response format is as follows:

<ssr:SAMSONSvcResponse xmlns:ssr="SAMSONSvcResponse">
 <ssr:List name="assignedlabel">
 <ssr:Value key=”caveat”>SECURITY_LABEL</ssr:Value>
 </ssr:List>
 <ssr:Status code=ERROR_CODE>ERROR_TEXT</ssr:Status>
</ssr:SAMSONSvcResponse>

The SLS will send the above response message after populating the requested data into the
following attributes. Note that the SLS uses XACML context messages for labelling action
requests and the SAMSON Service Response (SSR) format for labelling action responses.
The ssr:List name attribute for KMS service responses is “assignedlabel”.

Table 26: SLS Response Message Content by Message Type

Response Field Requested Action Response Type Response Data

Ssr:List GET_FILE_LABEL caveat Comma separated list of
caveats on a file.

Ssr:Status

All ERROR_CODE

“0” is operation is
successful and error code
if an error is encountered
during the processing of

the request

All ERROR_TEXT Textual description of the
error

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 156

Annex A.6 AuditXML Schema

Audit messages are represented using the following schema.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ta="jabber:iq:samson:trustedaudit"
 targetNamespace="jabber:iq:samson:trustedaudit"
 version="0.1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="auditRecord" type="ta:auditRecordType" />
 <xs:complexType name="auditRecordType">
 <xs:sequence>
 <xs:element name="principal" type="ta:principalType" />
 <xs:element name="action" type="ta:actionType" />
 <xs:element name="tacOrigin" >
 <xs:complexType>
 <xs:attribute name="tacId"
 type="xs:NMTOKEN" use="required" />
 <xs:attribute name="tacSeqNum"
 type="xs:integer" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="notes"
 type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="tacTimestamp" type="ta:timestampType" />
 </xs:sequence>
 <xs:attribute name="xauditVersion"
 type="xs:string" use="required" fixed="0.1" />
 </xs:complexType>
 <xs:complexType name="principalType">
 <xs:choice>
 <xs:sequence>
 <xs:element name="userId" type="xs:string" />
 <xs:element name="ipAddress" type="ta:ipAddressType"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="programName" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:sequence>
 <xs:element name="ipAddress" type="ta:ipAddressType" />
 <xs:element name="programName" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:sequence>
 <xs:element name="programName" type="xs:string" />
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="actionType">
 <xs:sequence>
 <xs:element name="operation" type="xs:string"/>
 <xs:element name="target" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="state" type="ta:stateType" use="required" />
 </xs:complexType>
 <xs:simpleType name="ipAddressType">
 <xs:restriction base="xs:string">
 <xs:pattern value="(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-
4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-
4][0-9]|[01]?[0-9][0-9]?)" />
 </xs:restriction>

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 157

 </xs:simpleType>
 <xs:simpleType name="stateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="success" />
 <xs:enumeration value="failure" />
 <xs:enumeration value="denied" />
 <xs:enumeration value="unknown" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="timestampType">
 <xs:attribute name="timestamp" type="ta:epochType" use="required" />
 </xs:complexType>
 <xs:simpleType name="epochType">
 <xs:restriction base="xs:string">
 <xs:pattern value="(0|[1-9][0-9]*)" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 158

Annex B: Configuration Options

Annex B.1 Identity Attribute Service Configuration

The SAMSON deployment includes a configuration file that specifies the connection
information that is used to query the identity attribute repository. Those configuration details
are described in the following table.

Table 27: IAS Configuration Elements

Configuration Attribute Description Format

LDAP Address
This is the network address
where the LDAP-based security
attribute repository can be
queried.

An IP address

LDAP port
This is the port on which the
LDAP server listens for
connections

An Integer (0 to 65535)

SSL States whether TLS/SSL
sessions should be used Yes/No

binddn
An account that can bind to the
LDAP server to perform queries
against the directory

FQDN

bindpw The password for the binddn
account Text

users_ou
The organizational unit where
SAMSON user’s security
attributes are stored

Distinguished Name

caveats
The name of the attribute in the
OU scope that stores COI
memberships for the user

Text

clearance
The name of the attribute in the
OU scope that stores the user’s
clearance.

Text

nationality
The name of the attribute in the
OU scope that stores the user’s
nationality.

Text

userObjectClass
The class of the objects stored
at the OU scope. This is
necessary to state for querying
the LDAP server.

Text

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 159

Annex B.2 Authorization Service Configuration

The SAMSON deployment includes a configuration file that specifies the connection
information that is used to query the security policy repository. Those configuration details
are described in the following table.

Table 28: AS Configuration Elements

Configuration Attribute Description Format

PAP Address The network location of the
backend policy storage facility An IP address

PAP Port The port on which the storage
facility is listening An Integer (0 to 65535)

PAP DB Name The name of the database
where the policies are stored Text

PAP Table The name of the table where
the policies are stored Text

PAP Account Name The database account that can
retrieve security policies Text

PAP Account Password The password for the PAP
Account Text

When the AS starts, this information is retrieved from the configuration and used to
communicate with the security policy storage facility.

Annex B.3 Key Management Service Configuration

The SAMSON deployment includes a configuration file that specifies the connection
information that is used to query the StrongAuth key escrow system. Those configuration
details are described in the following table.

Table 29: KMS Configuration Elements

Configuration Attribute Description Format

Handler The type of KMS used in this
deployment

“SA” for StrongAuth
“SAMSON” for a database key

escrow system

SA_address
The full address of the
StrongAuth Key Escrow‘s
SOAP based interface

URL

SA_decrypt_user The name of the SA user with
decrypt privileges Text

SA_encrypt_user The name of the SA user with
encrypt privileges Text

SA_password The password for both users Text

Kgs_source The crypto library to use for key
generation

“RSA” for RSA crypto module
(FIPS compliant) “SAMSON” for

local crypto libraries.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 160

When the KMS starts, this information is retrieved from the configuration and used to
communicate with the key escrow system.

Annex B.4 Cryptographic Transformation Service Configuration

The SAMSON deployment includes a configuration file that specifies the libraries to use for
cryptographic operations. Those configuration details are described in the following table.

Table 30: CTS Configuration Elements

Configuration Attribute Description Format

Crypto_module The crypto library to use.
“RSA” for RSA crypto module

(FIPS compliant) “SAMSON” for
local crypto libraries.

Rsa_library_path The location of the crypto
libraries on the CTS system

Absolute path to the RSA
runtime crypto libraries. (RSA

only)

When the CTS starts, this information is retrieved from the configuration and used to
leverage the specified crypto library.

Annex B.5 Trusted Audit Service Configuration

The SAMSON deployment includes a configuration file that specifies the connection
information that is used to access the back end audit store. Those configuration details are
described in the following table.

Table 31: KMS Configuration Elements

Attribute Section Sub Attribute Description Format
TAS Database type The type of database

used as the Audit Store “MySQL”

host The location of the Audit
Store IP address

port The port on which the
Audit Store is listening Port number

schema The specification of the
auditXML schema

Absolute path to the
schema definition on

the TAS.
TAS Actuator tasId The identifier for this

instance of the TAS Alphanumeric

dbUser The account used to
access the audit store Alphanumeric

dbPassword The password for the
dbUser account Alphanumeric

When the TAS starts, this information is retrieved from the configuration and used to
communicate with the Audit Store.

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 161

Annex C: Acronyms and Abbreviations

ABAC

ADSI

API

Attribute-based Access Control

Active Directory Scripting Interface

Application Programming Interface

AS Authorization Service

C&C Command and Control

CAGE Coalition Attack Guidance Experiment

CANUS (rel to) Canada-United States

CEO Canadian Eyes Only

CF Canadian Forces

CFD

COI

Chief of Force Development

Community of Interest

COTS Commercial Off The Shelf

CTS Cryptographic Transformation Service

CWID Coalition Warrior Interoperability Demonstration

DB Database

DISCO Discovery

DND Department of National Defence

DRDC Defence Research & Development Canada

DSML

FIPS

FQDN

Directory Services Markup Language

Federal Information Processing Standard

Fully Qualified Domain Name

HA High Availability

HTTP

IAAI

IAS

Hypertext Transfer Protocol

Identity Attribute Administration Interface

Identity Attribute Service

IdM Identity Management

IM Instant Messaging

IPL

IQ

Information Protection Logic

Information Query

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 162

JID Jabber Identity

KMS Key Management Service

LDAP Lightweight Directory Access Protocol

MAPI

MIME

Messaging Application Programming Interface

Multipurpose Internet Mail Extensions

OASIS

OOB

PAI

Organization for the Advancement of Structured Information Standards

Out of Band

Policy Administration Interface

PDP Policy Decision Point

PEDI Policy Enforcement Data Intercept

PEMC Policy Enforcement Message Client

PEP Policy Enforcement Point

PKI

POP3

Public Key Infrastructure

Post Office Protocol (3)

R&D Research & Development

RFC Request for Comment

SAMSON Secure Access Management for Secure Operational Networks

SAMPOC Secure Access Management Proof Of Concept

SD Supporting Deliverable

SIEM Security Information and Event Management

SLS Secure Labeling Service

SMB Server Message Block

SMSB Secure Messaging Service Bus

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SMTP Simple Mail Transfer Protocol

SPML Service Provisioning Markup Language

SQL Structured Query Language

SSG Samson Service Gateway

SSL/TLS Secure Sockets Layer / Transport Layer Security

TAC Trusted Audit Client

TAS Trusted Audit Service

SAMSON Technology Demonstrator –
 Detailed Design Document

Revision: 3.2.2 Final

August 13, 2013 Bell Canada 163

TD Technology Demonstrator

TDP Technology Demonstrator Program

TLS Transport Layer Security

UDDI Universal Description, Discovery and Integration

W3C World Wide Web Consortium

WebDAV Web Distributed Authoring and Versioning

WSDL Web Services Description Language

WS-Encryption Web Services Encryption

WS-Security Web Services Security

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

