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Abstract

Herein find a proof of the theorem of asymptotic optimality of post-Doppler Space-Time
Adaptive Processing (STAP). The proof uses well known properties of block Toeplitz and
block circulant matrices.

Résumé

Nous démontrons le théorème de l’efficacité asymptotique du traitement adaptatif espace-
temps (STAP) post-Doppler au moyen des propriétés bien connues des matrices de Toeplitz
par blocs et des matrices circulantes par blocs.
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Executive summary

The optimality of post-Doppler STAP
Ishuwa Sikaneta, Joachim Ender; DRDC Ottawa TM 2013-014; Defence R&D

Canada – Ottawa; January 2014.

Although this memo contains a mathematical proof, it has practical importance with re-
gards to the computational complexity of STAP. In order to apply optimum STAP pro-
cessing to a measured signal containing many samples, a large matrix must be computed
and inverted. This matrix is referred to as the covariance matrix. Rather than computing
this matrix in the original domain in which the signal is measured (the time domain) it
has been common practice to transform the data into a different domain (the frequency or
Doppler domain) because, in this domain, the covariance matrix is “smaller” and easier to
invert, thus the entire operation can be executed more quickly. The idea that the matrix is
“smaller” and has a more ideal structure, however, is not quite right. Most practitioners
don’t see this as a problem, as they quote a theorem that states that as the number of sam-
ples under analysis becomes large, the matrix becomes more and more “well-behaved” and
the difference between not-quite-right and right becomes increasingly negligible. We refer
to this as the asymptotic optimality theorem.

It isn’t just the computation of the covariance matrix that is at issue, however, as post-
Doppler STAP performs matrix inversion in the frequency domain. Although proofs exist
concerning the covariance matrix in the frequency domain, the author is not aware of a
proof demonstrating that the entire STAP operation in the Doppler domain is asymptoti-
cally optimal. In particular, it is not clear that the inverse of the covariance matrix has the
appropriate asymptotic behavior required for the post-Doppler STAP prescription. Further,
it is of practical importance to quantitatively determine the error as a function of the size
of data under analysis. This memo thus provides a proof of the asymptotic optimality of
post-Doppler STAP.
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Sommaire

The optimality of post-Doppler STAP
Ishuwa Sikaneta, Joachim Ender ; DRDC Ottawa TM 2013-014 ; R & D pour la

défense Canada – Ottawa ; janvier 2014.

Bien que la présente note contienne une preuve mathématique, elle a une importance pra-
tique en ce qui concerne la complexité algorithmique du STAP. En vue d’appliquer un
STAP optimal à un signal mesuré contenant de nombreux échantillons, une vaste matrice
doit être calculée et inversée. Il s’agit de la matrice de covariance. Plutt que de calculer
cette matrice dans le domaine d’origine dans lequel le signal est mesuré (le domaine tem-
porel), il est de pratique courante de transformer les données dans un domaine différent (la
fréquence ou le domaine Doppler) parce que, dans ce domaine, la matrice de covariance est
“plus petite” et plus facile à inverser, de sorte que l’opération complète peut être exécutée
en moins de temps. L’idée selon laquelle la matrice est “plus petite” et a une structure
qui convient mieux n’est cependant pas tout à fait juste. La plupart des praticiens ne con-
sidèrent pas qu’il s’agisse d’un problème et citent à cet égard un théor ‘eme énonant qu’à
mesure que le nombre d’échantillons analysés s’accroı̂t, la matrice se comporte de mieux
en mieux, et la différence entre ce qui n’est pas très juste et ce qui est juste devient de plus
en plus négligeable. C’est le théorème de l’efficacité asymptotique.

Ce n’est pas seulement le calcul de la matrice de covariance qui est en cause, toutefois,
étant donné que le STAP post-Doppler exécute l’inversion de la matrice dans le domaine
de la fréquence. Bien qu’il existe des preuves à propos de la matrice de covariance dans
le domaine de la fréquence, l’auteur n’est au courant d’aucune preuve démontrant que
l’opération complète du STAP dans le domaine Doppler soit efficace asymptotiquement.
En particulier, on ne sait pas avec certitude si l’inverse de la matrice de covariance se
comporte de la façon asymptotique requise aux fins du STAP post-Doppler. De plus, il est
important du point de vue pratique de déterminer quantitativement l’erreur en tant que fonc-
tion de la taille des données analysées. Cette note présente donc une preuve de l’efficacité
asymptotique du STAP post-Doppler.
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1 Notation
Table 1: Notation

N Number of channels
fp Pulse repetition frequency for each channel
ςi Sampling delay of antenna i
va Radar platform velocity
κx Spatial sample spacing va/ fp

hi(x) Measurement function of SAR antenna i
(·)T Transpose operator
(·)† Conjugate transpose operator
gM(·; ·) Dirichlet function
δ(x− y) Delta function
δ(n,m) Kronecker-delta function
E{·} Expected value∑

l
∑∞

l=−∞

2 Introduction

This memo proves the following theorem:

Theorem 2.1. Post-Doppler STAP using an M-point DFT is asymptotically optimal for
increasing M.

Since the memo deals with data in the DFT domain, it also proves the following:

Theorem 2.2. At each frequency bin in the Doppler domain, the clutter covariance matrix
of an adequately sampled multi-channel SAR GMTI system is asymptotically rank 1 for
increasing M.

Both theorems are commonly quoted and used. A proof of the first theorem for a configu-
ration where the covariance matrix for the collected data assumes a banded block Toeplitz
structure is provided in [1]; however, a more general proof has proven elusive. The second
theorem has been proved in the literature and is included here only because it is somewhat
related.

The proof presented here is designed for the applied mathematician.

A model of the system and the geometry are first used to describe the measured signal.
The optimal STAP approach and the commonly used post-Doppler STAP approach are
then described. Section 6 steps back briefly to review/introduce the tools needed to prove

DRDC Ottawa TM 2013-014 1



optimality. Much of the material in section 6 is based on [2], which, in the author’s opinion,
is an excellent article. Some basic proofs of pertinent lemmas and theorems are repeated
from [2]; more often, however, this memorandum generalizes the mathematics from regular
Toeplitz matrices to block-Toeplitz matrices. With the tools in hand, the last part of section
6 constructs the proof of the asymptotic optimality of post-Doppler STAP. In the final
section, a proof is provided of the asymptotic rank 1 characteristic of the clutter covariance
matrix.

3 The measured signal

Assume that the SAR measures homogeneous terrain. The terrain is such that each scatterer
is statistically independent from its neighbour. Consult Figure 3 to visualize the measure-

Beamwidth

Antenna pattern

Reflectivity integrated

vat

x

y

z

along the curve C
C

Figure 1: Illustration measurement system.

ment at time t. The measured, baseband, signal is a CN vector given by

z(t) =

⎡
⎢⎢⎢⎣
∫

C h1(x)g(va(t − ς1)− x, t − ς1)dx+ν1(t − ς1)∫
C h2(x)g(va(t − ς2)− x, t − ς2)dx+ν2(t − ς2)

...∫
C hN(x)g(va(t − ςN)− x, t − ςN)dx+νN(t − ςN)

⎤
⎥⎥⎥⎦ (1)

where g(x, t) represents the stochastic process of scatterers on the ground and hl(x) rep-
resents the lth SAR channel function which depends on the range, the beamwidth and the

2 DRDC Ottawa TM 2013-014



geometry, and νl(t) is the additive Gaussian noise (thermal) that accompanies each mea-
surement. The SAR platform takes a noisy measurement of g(x, t) from position va(t + ςl
using the lth antenna represented by hl(x). Being a pulsed system, the mth measurement is
given by

z(m) =

⎡
⎢⎢⎢⎢⎣

∫
C h1(x)g(va(

m
fp
− ς1)− x, m

fp
− ς1)dx+ν1(

m
fp
− ς1)∫

C h2(x)g(va(
m
fp
− ς2)− x, m

fp
− ς2)dx+ν2(

m
fp
− ς2)

...∫
C hN(x)g(va(

m
fp
− ςN)− x, m

fp
− ςN)dx+νN(

m
fp
− ςN)

⎤
⎥⎥⎥⎥⎦ (2)

4 The time and frequency domain
covariance matrices

A good introduction and overview to the material in this section is provided in [1].

The covariance matrix elements are computed as

E{zi(m)z∗j(m
′)}= E

{[∫
C

hi(x)g
(

va
m
fp

− vaςi − x,
m
fp

− ςi

)
dx+νi(m/ fp − ςi)

]

·
[∫

C
h j(y)g

(
va

m′

fp
− vaς j − y,

m′

fp
− ς j

)
dy+ν j(m′/ fp − ς j)

]†}

=

∫
C

∫
C

hi(x)h∗j(y)E
{

g
(

va
m
fp

− vaςi − x,
m
fp

− ςi

)
g∗
(

va
m′

fp
− vaς j − y,

m′

fp
− ς j

)}
dxdy

+σ2
nδ(m,m′)δ(i, j)

(3)

Under the assumption that E{g(x, t)g∗(x′, t ′)}= δ(x−x′) (spatially white with no temporal
decorrelation)

=

∫
C

∫
C

hi(x)h∗j(y)σ
2
cδ
(

va(m−m′)
fp

− va(ςi − ς j)− x+ y
)

dxdy+σ2
nδ(m,m′)δ(i, j)

= σ2
c

∫
C

hi

(
y+

va(m−m′)
fp

− va(ςi − ς j)

)
h∗j(y)dy+σ2

nδ(m,m′)δ(i, j)

= σ2
c

∫
C

hi

(
y− vaςi +

va(m−m′)
fp

)
h∗j(y− vaς j)dy+σ2

nδ(m,m′)δ(i, j).

(4)

Let us write that
Hj(ξ) =

∫
h j(x− vaς j)exp(−2πıξx)dx. (5)

DRDC Ottawa TM 2013-014 3



These scalars can be aligned to form the vector H(ξ). One can then write that

E{z(m)z†(m′)}=Cm,m′ = σ2
c

∫
H(ξ)H†(ξ)e2πıξ(m−m′)κxdξ+σ2

nINδ(m−m′), (6)

where κx = va/ fp. Since the correlation matrix only depends on the difference k = m−m′,
the above can be written as

Ck = σ2
c

∫
CHH(ξ)e2πıξkκxdξ+σ2

nINδ(k), (7)

where CHH(ξ) = H(ξ)H†(ξ). The covariance matrix in the time domain has a block
Toeplitz matrix structure and is given by

CM =

⎡
⎢⎢⎢⎣
C0 C−1 . . . C−M
C1 C0 . . . C1−M
...

... . . . ...
CM CM−1 . . . C0

⎤
⎥⎥⎥⎦ (8)

After applying the DFT, the covariance matrix in the Doppler domain has a block structure
with N ×N blocks given by

Rk f ,k′f = E

{
1√
M

M−1∑
m=0

z(m)exp
(−ı2πk f m

M

)
1√
M

M−1∑
m′=0

z†(m′)exp

(
ı2πk′f m′

M

)}

=
1
M

M−1∑
m,m′=0

E{z(m)z†(m′)}exp

(−ı2π[k f m− k′f m′]
M

)
,

(9)

By using (6), the above evaluates to

Rk f ,k′f =
σ2

c
M

∫
CHH(ξ)gM

(
M;k f −Mξκx

)
g∗M

(
M;k′f −Mξκx

)
dξ

+
σ2

n
M

gM(M;k f − k′f )I,
(10)

where the Dirichlet function, gM(·; ·), is defined in section B.

5 Processing to detect an added
deterministic signal

Let the collection of M measurements (vectors) of the clutter and noise be concatenated
into the NM×1 vector

zM =

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(M−1)

⎤
⎥⎥⎥⎦ (11)
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Now assume that at each pulse, the radar also measures a target signal si. The target is
assumed to be deterministic and can also be concatenated into a NM×1 vector

sM =

⎡
⎢⎢⎢⎣

s(0)
s(1)

...
s(M−1)

⎤
⎥⎥⎥⎦ (12)

Before any processing, the signal-to clutter ratio is defined as

sM†sM

E{zM†zM} (13)

5.1 Optimum processing
The measured clutter plus target signal yM = zM +sM is processed by examining the norm-
squared value of a linear combination of the elements of yM via

|b†yM|2. (14)

It is known that the vector b that optimizes the signal to clutter ratio

|b†sM|2
E{|b†zM|2} (15)

is given by

b=
[CM]−1wM√
wM†[CM]−1wM

. (16)

The maximum occurs when w = sM and is given by sM†[CM]−1sM.

5.2 post-Doppler STAP
Because of the computational expense of computing [CM]−1, post-Doppler STAP trans-
forms the measured data into the Doppler Domain by using an M-point DFT

yM = zM + sM →YM = ZM +SM (17)

and then examines |b†
pdY

M|2, where

bpd =
[RM]−1wM√
wM†[RM]−1wM

, (18)

DRDC Ottawa TM 2013-014 5



and

RM =

⎡
⎢⎢⎢⎣
RM−1,M−1 0 0 . . .

0 RM−2,M−2 0 . . .
...

... . . . . . .
0 0 . . . R0,0

⎤
⎥⎥⎥⎦ . (19)

The matrices Rm,n are as defined in equation (9). The challenge of this document is to
show that the prescription for post-Doppler STAP approaches the signal processing gain
achieved by optimal processing as M → ∞.

6 Proof of asymptotic optimality

The objective of showing asymptotic optimality can be approached by using the theory of
Toeplitz and Circulant matrices. A engineers perspective on the topic is well presented in
[2] which provides the basis for this proof. In contrast to the material in [2], our application
deals with block Toeplitz and block circulant matrices. The approach is as follows:

1. Review the following material from [2]:

(a) Matrix norms (strong and weak).

(b) Asymptotic equivalence of two sequences of matrices An and Bn, and the re-
quirements for the asymptotic equivalance of A−1

n and B−1
n .

These concepts form the building blocks of the proof.

2. Show that a suitably chosen sequence of block circulant matrices is asymptotically
equivalent to the sequence of block Toeplitz matrices.

3. Show that the inverse of the sequence of block circulant matrix is asymptotically
equivalent to the inverse of the sequence of block Toeplitz matrices.

4. Show that the block circulant matrix implies the DFT.

5. Show that the prescription for post-Doppler STAP implies a sequence of matrices
that are asymptotically equivalent to the sequence of inverse block Toeplitz matrices.

6.1 Prerequisites
6.1.1 Matrix Norms

This material is contained of [2] where two norms are considered. Both norms obey the
usual rules

1. Norm(A) = 0 iff A= 0.

2. Norm(A+B)≤ Norm(A)+Norm(B)

3. For scalar c, Norm(cA) = |c|Norm(A).

6 DRDC Ottawa TM 2013-014



Definition 6.1. The strong norm of a N ×N matrix A is defined as

‖A‖= max
k

√
λk (20)

where λk are the eigenvalues of A†A.

Definition 6.2. The weak norm is defined as

|A|=
⎛
⎝ 1

N

N−1∑
j,k=0

|a jk|2
⎞
⎠

1
2

=

(
1
N

Tr
[
A†A

]) 1
2

=

(
1
N

N−1∑
k=0

λk

) 1
2

. (21)

The adjectives strong and weak stem from the fact that maxk{λk} ≥ average{λk}. Lemma
2.3 in [2] states and proves that

|GH| ≤ ‖G‖ |H|. (22)

6.1.2 Asymptotic equivalence of sequences of matrices

Again, from [2].

Definition 6.3. Two sequences of matrices, Am and Bm are said to be asymptotically equiv-
alent, denoted by Am ∼Bm, if

1. Am and Bm are uniformly bounded in strong norm

‖Am‖,‖Bm‖ ≤ K < ∞,m = 0,1,2, . . . (23)

2. Am −Bm =Dm goes to zero in weak norm as m → ∞

lim
m→∞

|Am −Bm|= lim
m→∞

|Dm|= 0 (24)

Most salient for this discussion is the following theorem and proof from [2]:

Theorem 6.1. Properties of asymptotic equivalence

1. If Am ∼Bm and Bm ∼Cm, then Am ∼Cm

2. if Am ∼Bm, and ‖A−1
m ‖,‖B−1

m ‖ ≤ Q < ∞ for all m, then A−1
m ∼B−1

m .

Proof. Proofs of equivalence properties

1. |Am−Cm|= |Am−Bm+Bm−Cm| ≤ |Am−Bm|+ |Bm−Cm|. The expression on
the right goes to zero as m → ∞.

DRDC Ottawa TM 2013-014 7



2.

lim
m→∞

|A−1
m −B−1

m |= lim
m→∞

|B−1
m BmA

−1
m −B−1

m AmA
−1
m |

≤ lim
m→∞

‖A−1
m ‖ ‖B−1

m ‖ |Am −Bm|
= 0.

(25)

We will also use the following lemmas concerning the asymptotic equivalence of Hermitian
matrices to construct the proof

Lemma 6.1. Let An,Bn be Hermitian with ordered eigenvalues {αn,k}k=0...n−1,{βn,k}k=0...n−1
such that An =Undiag(αn,k)U

†
n, and Bn =Vndiag(βn,k)V

†
n. Then,

1. diag(αn,k)∼ diag(βn,k),

2. and An ∼Vndiag(αn,k)V
†
n.

The second point says that, asymptotically, the diagonalizing matrix of Bn also diagonal-
izes the matrix An.

Proof. By the Wielandt-Hoffman theorem (see, for example [2], Theorem 2.5),

|diag(αn,k)−diag(βn,k)| ≤ |An −Bn|, (26)

hence, if An ∼Bn, then diag(αn,k) ∼ diag(βn,k). Since multiplication by a unitary matrix
does not change the weak norm,

|diag(αn,k)−diag(βn,k)|= |Vndiag(αn,k)V
†
n −Vndiag(βn,k)V

†
n|

= |Vndiag(αn,k)V
†
n −Bn|

≤ |An −Bn|.
(27)

Therefore, Vndiag(αn,k)V
†
n ∼Bn and An ∼Bn so by Theorem 6.1, An ∼Vndiag(αn,k)V

†
n

8 DRDC Ottawa TM 2013-014



6.1.3 The block Toeplitz matrix for multi-channel SAR-GMTI

By using (7), we define the matrix function

Φ(α) =
∞∑

k=−∞

Ck exp(ıαk)

= σ2
c

∫
CHH(ξ)

∞∑
k=−∞

eık(α+2πρxξ)dξ+σ2
nIN

= 2πσ2
c

∫
CHH(ξ)

∑
l

δ(α+2πρxξ+2πl)dξ+σ2
nIN

=
σ2

c
ρx

∑
l

CHH

(
− 1

ρx

[ α
2π

+ l
])

+σ2
nIN .

(28)

By definition

Ck =
1

2π

∫ 2π

0
Φ(α)e−ıkαdα. (29)

If Φ(α) = Φ(α)† for all α, then Ck = C†
−k and CM is Hermitian and, therefore, has real

eigenvalues.

The block Toeplitz matrix defined in (8), CM, is completely defined by the matrix of func-
tions Φ(α). We thus denote the block Toeplitz matrix as CM(Φ[α]).

6.1.4 Bounds on the eigenvalues of the block Toeplitz matrix

In order to apply definition 6.3, one must first analyze the strong norm of the sequence
of block Toeplitz matrices. Following in the same vein as [2], let us examine the nature
of the minimum and maximum eigenvalues of CM(Φ[α]). The minimum and maximum
eigenvalues are given by

λm = min
x

x†CM(Φ[α])x
x†x

λM = max
x

x†CM(Φ[α])x
x†x

Let the vector x be given by

x=

⎡
⎢⎢⎢⎣

x0
x1
...

xM−1

⎤
⎥⎥⎥⎦ (30)

DRDC Ottawa TM 2013-014 9



where each xi is a N ×1 vector 1. Then

x†CM(Φ[α])x=

M−1∑
n=0

M−1∑
m=0

x†
mCm−nxn

=
M−1∑
n=0

M−1∑
m=0

x†
m

1
2π

∫ 2π

0
Φ(α)e−ı(m−n)αdαxn

=
1

2π

∫ 2π

0

M−1∑
n=0

M−1∑
m=0

x†
me−ımαΦ(α)xneınαdα

=
1

2π

∫ 2π

0

[
M−1∑
m=0

xmeımα

]†

Φ(α)

[
M−1∑
n=0

xneınα

]
dα.

(31)

Also,

x†x=
1

2π

∫ 2π

0

[
M−1∑
m=0

xmeımα

]†

IN

[
M−1∑
n=0

xneınα

]
dα

=
1

2π

∫ 2π

0

∣∣∣∣∣
M−1∑
n=0

xneınα

∣∣∣∣∣
2

dα.

(32)

Let us write the eigen-decomposition of Φ(α) as

Φ(α) =
N∑

n=1

λn(α)un(α)u†
n(α). (33)

Then, since the orthonormal eigenvectors at each point α span CN , one can write

M−1∑
m=0

xmeımα =

N∑
n=1

an(α)un(α), (34)

hence

min
n,α

λn(α)≤ x†CM(Φ[α])x
x†x

=

∫ 2π
0
∑N

n=1|an(α)|2λn(α)dα∫ 2π
0
∑N

n=1|an(α)|2dα
≤ max

n,α
λn(α). (35)

and, therefore,

λm ≥ min
n,α

λn(α) = eΦ ≥ σ2
n (36)

λM ≤ max
n,α

λn(α) = EΦ < ∞ (37)

1. This is a slight change in notation - previously we have used the superscript M for such vectors, and
we had used x(0) rather than x0. It is thought that the new notation is more aesthetically pleasing.
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By (37), one sees that ∥∥CM(Φ[α])
∥∥< ∞, (38)

and by (36) ∥∥[CM(Φ[α])]−1∥∥< ∞. (39)

6.2 A candidate block circulant matrix for asymptotic
equivalence

Define the NM×NM block circulant matrix

DM =

⎡
⎢⎢⎢⎣

DM
0 DM

1 . . . DM
M−1

DM
M−1 DM

0 . . . DM
M−2

...
... . . . ...

DM
1 DM

2 . . . DM
0

⎤
⎥⎥⎥⎦ , (40)

as DM(Φ[α]) with a top row of blocks given by

DM
k =

1
M

M−1∑
n=0

Φ
(

2πn
M

)
e2πı nk

M . (41)

One notes that
lim

M→∞
DM

k =C−k, (42)

if the integral in (29) can be written as a Riemann sum.

Also, if Φ(α) is Hermitian for all α, then one sees that

Dk =D†
M−k. (43)

Finally, from (28), one notes that putting α = 2πn
M yields

Φ
(

2πn
M

)
=

∞∑
l=−∞

Cle2πı nl
M (44)
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which, when substituted into (41) gives

DM
k =

1
M

M−1∑
n=0

∞∑
l=−∞

Cle2πı nl
M e2πı nk

M

=
∞∑

l=−∞

Cl
1
M

M−1∑
n=0

e2πı n(l+k)
M

=
∞∑

l=−∞

Clδ[modM(l + k)]

=

∞∑
l=−∞

C−k+lM

(45)

Theorem 6.2. Suppose that

Φ
(

2πl
M

)
v = λv,

i.e. v is an eigenvector of Φ
(2πl

M

)
with eigenvalue λ. Then λ is also an eigenvalue of the

block circulant matrix DM(Φ[α]) with eigenvector

u(v, l) =
1√
M

⎡
⎢⎢⎢⎢⎣

ve−2πı l·0
M

ve−2πı l·1
M

...

ve−2πı l·(M−1)
M

⎤
⎥⎥⎥⎥⎦ , (46)

Proof.

DM(Φ[α])u(v, l) =

⎡
⎢⎣

DM
0 DM

1 . . . DM
M−1

DM
M−1 DM

0 . . . DM
M−2

...
... . . . ...

⎤
⎥⎦u(v, l). (47)
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The N ×1 block (times
√

M) in the (p−1)th row of the above is given by

M−1∑
k=0

DM
k ve−2πı l(k+p)

M =

M−1∑
k=0

1
M

M−1∑
n=0

Φ
(

2πn
M

)
e2πı nk

M ve−2πı l(k+p)
M

=

M−1∑
n=0

Φ
(

2πn
M

)
ve−2πı l p

M
1
M

M−1∑
k=0

e−2πı k(l−n)
M

=
M−1∑
n=0

Φ
(

2πn
M

)
ve−2πı l p

M δ(l,n)

= Φ
(

2πl
M

)
ve−2πı l p

M

= λve−2πı l p
M

(48)

One thus sees that u(v, l) is an eigenvector of DM(Φ[α]) with eigenvalue λ.

Note that since EΦ < ∞ ∥∥[DM(Φ[α])]
∥∥≤ EΦ < ∞, (49)

and, since λ ≥ eΦ > 0 ∥∥[DM(Φ[α])]−1∥∥≤ e−1
Φ < ∞. (50)

Also, [DM(Φ[α])]−1 has eigenvalues given by 1/λ, and has the same eigenvectors as
[DM(Φ[α])].

6.3 Asymptotic equivalence of DM(Φ[α]) and CM(Φ[α])
Denote ΔM =DM(Φ[α])−CM(Φ[α]), then

|ΔM|2 = 1
M

[
M|D0 −C0|2

+(M−1)|D1 −C−1|2 +(M−2)|D2 −C−2|2 + . . .+ |DM−1 −C−(M−1)|2

+(M−1)|DM−1 −C1|2 +(M−2)|DM−2 −C2|2 + . . .+ |D1 −C(M−1)|2
]

=
1
M

[
M|D0 −C0|2

+(M−1)|D1 −C−1|2 +(M−2)|D2 −C−2|2 + . . .+ |DM−1 −C−(M−1)|2

+(M−1)|D†
1 −C†

−1|2 +(M−2)|D†
2 −C†

−2|2 + . . .+ |D†
M−1 −C†

−(M−1)|2
]

=
1
M

[
M|D0 −C0|2 +2

M−1∑
k=1

(M− k)|Dk −C−k|2
]
.

(51)
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By (45), this can be written as

|ΔM|2 =
∣∣∣∣∑

l �=0

ClM

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∣∣∣∣∑
l �=0

C−k+lM

∣∣∣∣
2

≤
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∑
l �=0

∣∣∣∣C−k+lM

∣∣∣∣
2

≤
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∞∑
l=1

∣∣∣∣C−k+lM

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∞∑
l=1

∣∣∣∣C−k−lM

∣∣∣∣
2

=
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∞∑
l=1

∣∣∣∣Ck+(l−1)M

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∞∑
l=1

∣∣∣∣C−k−lM

∣∣∣∣
2

=
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∣∣∣∣Ck

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∞∑
l=1

∣∣∣∣Ck+lM

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∞∑
l=1

∣∣∣∣C−k−lM

∣∣∣∣
2

(52)

In the case where Ck =C†
−k, the above evaluates to

|ΔM|2 ≤
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∣∣∣∣Ck

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∞∑
l=1

∣∣∣∣Ck+lM

∣∣∣∣
2

+2
M−1∑
k=1

M− k
M

∞∑
l=1

∣∣∣∣Ck+lM

∣∣∣∣
2

=
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∣∣∣∣Ck

∣∣∣∣
2

+2
M−1∑
k=1

∞∑
l=1

∣∣∣∣Ck+lM

∣∣∣∣
2

≤ 2
∑
l �=0

∣∣∣∣ClM

∣∣∣∣
2

+2
M−1∑
k=1

k
M

∣∣∣∣Ck

∣∣∣∣
2

+2
M−1∑
k=1

∞∑
l=1

∣∣∣∣Ck+lM

∣∣∣∣
2

= 2
M−1∑
k=0

k
M

∣∣∣∣Ck

∣∣∣∣
2

+2
∞∑

k=M

∣∣∣∣Ck

∣∣∣∣
2

(53)

Now apply Kronecker’s lemma 7.1 to see that the first term above goes to zero. Since the
second term also goes to zero as M → ∞ since, by assumption, Ck represents a Fourier
series, one finds that

lim
M→∞

|ΔM|2 = 0. (54)

6.4 Putting it all together
Equations (38), (49) and (54) satisfy definition 6.3, therefore, DM(Φ[α])∼CM(Φ[α]). The
equivalence, DM(Φ[α])∼CM(Φ[α]), along with equations (39) and (50) satisfy the condi-
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tions of theorem 6.1; hence, [DM(Φ[α])]−1 ∼ [CM(Φ[α])]−1. The asymptotic equivalence
leads to the following theorem

Theorem 6.3. For asymptotically increasing M, the covariance matrix of the DFT of the
vector

zM =

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(M−1)

⎤
⎥⎥⎥⎦ (55)

is asymptotically block-diagonal.

Proof. The DFT of zM is given by

⎡
⎢⎢⎢⎣

Z(0)
Z(1)

...
Z(M−1)

⎤
⎥⎥⎥⎦=

1√
M

⎡
⎢⎢⎢⎢⎢⎢⎣

[
INe−2πı 0·0

M

] [
INe−2πı 0·1

M

]
. . .

[
INe−2πı 0·(M−1)

M

]
[
INe−2πı 1·0

M

] [
INe−2πı 1·1

M

]
. . .

[
INe−2πı 1·(M−1)

M

]
...

...
...

...[
INe−2πı (M−1)·0

M

] [
INe−2πı (M−1)·1

M

]
. . .

[
INe−2πı (M−1)·(M−1)

M

]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(M−1)

⎤
⎥⎥⎥⎦

= EM

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(M−1)

⎤
⎥⎥⎥⎦

(56)

so ⎡
⎢⎢⎢⎣

Z(0)
Z(−1)

...
Z(−[M−1])

⎤
⎥⎥⎥⎦= [EM]∗

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(M−1)

⎤
⎥⎥⎥⎦ (57)

Pre-multiply [EM]∗ by the block-diagonal matrix

V† =

⎡
⎢⎢⎢⎣
V†

0 0 . . . 0

0 V†
1 . . . 0

...
... . . . ...

0 0 . . . V†
M−1

⎤
⎥⎥⎥⎦ (58)
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to see that

V†[EM]∗ =
1√
M

⎡
⎢⎢⎢⎢⎢⎢⎣

[
V†

0e2πı 0·0
M

] [
V†

0e2πı 0·1
M

]
. . .

[
V†

0e2πı 0·(M−1)
M

]
[
V†

1e2πı 1·0
M

] [
V†

1e2πı 1·1
M

]
. . .

[
V†

1e2πı 1·(M−1)
M

]
...

...
...

...[
V†

M−1e2πı (M−1)·0
M

] [
V†

M−1e2πı (M−1)·1
M

]
. . .

[
V†

M−1e2πı (M−1)·(M−1)
M

]

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(59)
and, hence

EMV =
1√
M

⎡
⎢⎢⎢⎢⎢⎢⎣

[
V0e−2πı 0·0

M

] [
V1e−2πı 1·0

M

]
. . .

[
VM−1e−2πı (M−1)·0

M

]
[
V0e−2πı 0·1

M

] [
V1e−2πı 1·1

M

]
. . .

[
VM−1e−2πı (M−1)·1

M

]
...

...
...

...[
V0e−2πı 0·(M−1)

M

] [
V1e−2πı 1·(M−1)

M

]
. . .

[
VM−1e−2πı (M−1)·(M−1)

M

]

⎤
⎥⎥⎥⎥⎥⎥⎦
, (60)

Now recognize that

V†CZZV =V†E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

Z(0)
Z(−1)

...
Z(−[M−1])

⎤
⎥⎥⎥⎦[Z†(0) Z†(−1) . . . Z†(−[M−1])

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

V

=V†[EM]∗E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(M−1)

⎤
⎥⎥⎥⎦
[
z†(0) z†(1)

... z†(M−1)
]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

EMV

=V†[EM]∗CM(Φ[α])EMV

(61)

In the limit M →∞, the eigenvectors of DM(Φ[α]) are those of CM(Φ[α]), (by Lemma 6.1),
therefore, since one recognizes, for appropriately chosen V, that the columns of EMV are
the eigenvectors in theorem 6.2 the entire right becomes diagonal in the limit M →∞. Since
V is block diagonal with N ×N blocks, CZZ = [EM]∗CM(Φ[α])EM is also block diagonal
with N ×N blocks by lemma 7.2.

The prescription for post-Doppler STAP is to invert the covariance matrix at each Doppler
bin. We use the following theorem and the corollaries to prove that post Doppler STAP is
asymtotically optimal

Theorem 6.4.
lim

M→∞
RM−k f ,M−k f = Φ

(
2πk f

M

)
(62)
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Proof. By equation (9), the block-diagonal elements of covariance matrix in the Doppler
domain are given by

Rk f k f =
1
M

M−1∑
m,m′=0

E{z(m)z†(m′)}exp
(−ı2π[k f (m−m′)]

M

)

=
1
M

M−1∑
m,m′=0

Cm−m′ exp
(−ı2π[k f (m−m′)]

M

)
.

(63)

Re-index the sum (sum along the diagonals) to see that

Rk f k f =
1
M

M−1∑
k=−(M−1)

(M−|k|)Ck exp
(−ı2πkk f

M

)

=

M−1∑
k=−(M−1)

Ck exp
(−ı2πkk f

M

)
−

M−1∑
k=−(M−1)

|k|
M

Ck exp
(−ı2πkk f

M

)
.

(64)

By lemma 7.1, the second term goes to zero as M →∞. Hence, by the definition in equation
(28)

lim
M→∞

RM−k f ,M−k f = lim
M→∞

M−1∑
k=−(M−1)

Ck exp
(

ı2πkk f

M

)

= Φ
(

2πk f

M

) (65)

Corollary 6.1. The matrix

RM =

⎡
⎢⎢⎢⎣
RM−1,M−1 0 0 . . .

0 RM−2,M−2 0 . . .
...

... . . . . . .
0 0 . . . R0,0

⎤
⎥⎥⎥⎦ . (66)

is such that RM ∼ [EM]∗DM(Φ[α])]EM

Proof. The matrix RM has a finite maximum eigenvalue since its eigenvalues are those of
Rk f ,k f . Also is has a minimum lowest eigenvalue since all eigenvalues of Rk f ,k f are greater
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than or equal to σ2
n. Now, since [EM]∗DM(Φ[α])]EM is a block diagonal matrix with block

elements given by Φ
(

2πk f
M

)
, then

∣∣RM − [EM]∗DM(Φ[α])]EM∣∣2 = 1
M

∣∣∣∣∣∣
M−1∑
k f=0

⎧⎨
⎩Φ

(
2πk f

M

)
−

M−1∑
k=−(M−1)

Ck exp
(

ı2πkk f

M

)⎫⎬
⎭
∣∣∣∣∣∣
2

=
1
M

∣∣∣∣∣∣
M−1∑
k f=0

⎧⎨
⎩

∞∑
k=−∞

Ck exp
(

ı2πkk f

M

)
−

M−1∑
k=−(M−1)

Ck exp
(

ı2πkk f

M

)⎫⎬
⎭
∣∣∣∣∣∣
2

=
1
M

∣∣∣∣∣∣
M−1∑
k f=0

{ −M∑
k=−∞

Ck exp
(

ı2πkk f

M

)
+

∞∑
k=M

Ck exp
(

ı2πkk f

M

)}∣∣∣∣∣∣
2

≤ 1
M

M−1∑
k f=0

−M∑
k=−∞

|Ck|2 + 1
M

M−1∑
k f=0

∞∑
k=M

|Ck|2

=
−M∑

k=−∞

|Ck|2 +
∞∑

k=M

|Ck|2

(67)

By assumption of the absolute summability of Ck the above is seen to go to zero as M →
∞.

Corollary 6.2. DM(Φ[α])]∼ EMRM[EM]∗

Proof. Since EM is unitary, the eigenvalues of EMRM[EM]∗ are the eigenvalues of RM,
and the bounds on the eigenvalues of RM satisfy definition 6.3. Also,∣∣EMRM[EM]∗ −DM(Φ[α])

∣∣= ∣∣EM (
RM − [EM]∗DM(Φ[α])]EM) [EM]∗

∣∣
≤ ‖EM‖ · ∣∣RM − [EM]∗DM(Φ[α])]EM∣∣ · ‖[EM]∗‖. (68)

Since ‖EM‖ = ‖[EM]∗‖ = 1, and since the right side goes to zero as M → ∞ by corollary
6.4, the left side also goes to zero as M → ∞.

Corollary 6.3. CM ∼ EMRM[EM]∗

Proof. This follows from the law of associativity of asymptotic equivalence: CM ∼DM(Φ[α])]
and DM(Φ[α])]∼ EMRM[EM]∗, hence CM ∼ EMRM[EM]∗.

Corollary 6.4. [CM]−1 ∼ EM[RM]−1[EM]∗

Proof. This follows from theorem 6.1 and the facts that
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– [EMRM[EM]∗]−1 = EM[RM]−1[EM]∗
– ‖[CM]−1‖< ∞ by 39, and
– ‖[RM]−1‖ ≤ 1

σ2
n
< ∞.

This last corollary proves that the prescription of post-Doppler STAP is asymptotically
optimal.

6.5 How good is post-Doppler STAP compared to the
optimum?

It is practical to consider how post-Doppler STAP approaches the optimum so that one can
choose an appropriate number of samples to process for the application in mind. In the
following, it is assumed the processing gain is used as a measure.

[CM −ΔM]−1 ≈ [CM]−1 +[CM]−1ΔM[CM]−1 +O([[CM]−1ΔM]2)[CM]−1 (69)

We’ll drop the second and higher order terms in the following. Now the optimum process-
ing gain for a target s is achieved by the filter s†[CM]−1. What is applied in post-Doppler
STAP, however, is

s†[DM(Φ[α])]−1 = s†[CM −ΔM]−1

≈ s†[CM]−1 + s†[CM]−1ΔM[CM]−1 (70)

The resulting processed signal to clutter ratio is, approximately, given by

SCNR =
|s†[CM]−1s+ s†[CM]−1ΔM[CM]−1s|2(

s†[CM]−1 + s†[CM]−1ΔM[CM]−1
)
CM

(
[CM]−1s+[CM]−1ΔM[CM]−1s

)
≈ |s†[CM]−1s+ s†[CM]−1ΔM[CM]−1s|2

s†[CM]−1s

·
(

1− s†[CM]−1[2ΔM −ΔM[CM]−1ΔM][CM]−1s

s†[CM]−1s

)
≈ s†[CM]−1s− s†[CM]−1ΔM[CM]−1ΔM[CM]−1s

(71)

The first term is the optimum processing gain while the second is the first order approxi-
mation to the error introduced by using post-Doppler STAP.
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7 The correlation matrix at a given frequency
bin

Consider the case where k f = k′f . One then finds that

Rk f ,k f =
σ2

c
M

∫
H(ξ)H†(ξ)

∣∣gM
(
M;k f −Mξκx

)∣∣2 dξ+σ2
nI. (72)

The first term in the above matrix can have rank 1 since as M → ∞ since

lim
M→∞

gM(M;x)
M

=
∑

l

δ(x− lM), l ∈ Z. (73)

If the matrix H(ξ)H†(ξ) is such that its support only intersects with one value in the set
ξ = κ−1

x (
k f
M − l), ∀l (the data are adequately sampled) then the matrix will have rank 1. If

the data are not adequately sampled, but have spectral regions where the clutter is unam-
biguous, then values of k f corresponding to this region will still, asymptotically, have rank
1.

For finite M, it is instructive to examine how the matrix approaches rank 1 with increasing
M. The Doppler domain clutter-only covariance matrix has a term given by

Rc
k f ,k f

=
∑

l

Rc(k f , l), (74)

where

Rc(k f , l) =
σ2

c
M

∫ κ

−κ
H(ξ+ξ0(l))H†(ξ+ξ0(l))|gM(M;Mκxξ)|2dξ, (75)

where

ξ0(l) = κ−1
x

(
k f

M
− l

)
, (76)

and

κ =
κ−1

x
2

(77)

Let us assume that the (i, j)th element of H(ξ+ ξ0(l))H†(ξ+ ξ0(l)) has a phase given by
exp(ı(ξ+ ξ0(l))Δi, j) (Δi,i = 0) and an amplitude, d[ξ0(l)], that remains constant over the
small integration region picked out by the function |gM(M;Mκxξ)|2. We thus make the
approximation

Rc
i, j(k f , l) ∝

d[ξ0(l)]exp(ıξ0(l)Δi, j)

M

∫ κ

κ
exp(ıξΔi, j)|gM(M;Mκxξ)|2dξ. (78)
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Next, let us make the approximation

|gM(M;x)|2 = M2
∣∣∣∣sinπx

πx

∣∣∣∣
2

. (79)

While the function on the left has equal multiple peaks, the sinc function on the right only
has one dominant peak at zero. we can thus pass to infinite limits for the integration.
Equation 78 becomes

Rc
i, j(k f , l) ∝ exp(ıξ0Δi, j)M

∫
exp(ıξΔi, j)

∣∣∣∣sinπMκxξ
πMκxξ

∣∣∣∣
2

dξ. (80)

The above inverse Fourier transform is represented in the time domain as the autocorrela-
tion of the function

F −1
{

sinπMκxξ
πMκxξ

}
=

1
Mκx

rectMκxx, (81)

evaluated at Δi, j, where

rectX(x) =

{
1 |x|< X/2
0 otherwise.

(82)

The convolution of the rectangular function is a triangular function. Thus we arrive at the
conclusion that

Ri, j(k f , l) ∝
1
κx

− 2|Δi, j|
Mκ2

x
. (83)

The correlation coefficient of the above matrix element is then, to good approximation,

ρi, j(k f , l) = 1− 2|Δi, j|
Mκx

. (84)

The rank 1 property will depend on two factors. In the first place, there should only be
one value for l that contributes to the covariance matrix at R(k f ). Additionally, correlation
coefficients that are significantly different from 1 will destroy the rank 1 property of the
matrix. For example, in the 2 channel case, the ratio of the small to the large eigenvalue
becomes, approximately,

λ2

λ1
≈ |Δi, j|

Mκx
. (85)
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Annex A: Various lemmas

The following text is repeated from [3], lemma 3.1.4

Lemma 7.1 (Kroneckers lemma). If the sequence {ak} is such that

lim
n→∞

n∑
k=0

|ak|= A < ∞

then

lim
n→∞

n∑
k=0

k
n
|ak|= 0.

Proof. Because A is finite, there exists Na such that

∞∑
k=Na+1

|ak|< ε (A.1)

for any ε. Thus, for n > Na
n∑

k=0

k
n
|ak|< 1

n

Na∑
k=0

|ak|+ ε (A.2)

In the limit n → ∞, the first term goes to zero. The fact that ε can be made arbitrarily small
proves the lemma.

Lemma 7.2. The product of two block-diagonal matrices with N×N sized blocks is block-
diagonal with N ×N blocks

Proof. C =AB, where A and B are block-diagonal with N ×N blocks has N ×N block
element in position α,β given by

Cαβ =
∑

γ
AαγBγβ

=AααBαβ

= 0 unless α = β.

(A.3)
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Annex B: Dirichlet function

Occasions will arise that make use of the function defined by

gM(l;k) =
l−1∑
n=0

exp
(
−2πı

nk
N

)
, l ≤ N. (B.1)

By reorganizing the summation in gM(l;k), one finds that

gM(N −M;k) = gM(N;k)− exp
(
−2πık

N −M
N

)
gM(M;k)

= gM(N;k)− exp
(

2πık
M
N

)
gM(M;k), if k ∈ Z.

(B.2)

This function has the property that,

gM(N;k) =

{
N If k is some multiple of N including k = 0
0 otherwise.

(B.3)

The sum can be explicitly computed as

gM(l;k) = exp
(
−πık

l −1
N

)
sin

(πkl
N

)
sin

(πk
N

) . (B.4)
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