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Abstract ……..

This project is motivated by the need for improved protection of Canadian critical infrastructure 
from solar disturbances.  The feasibility study examines the possibility of using measurements of 
muons produced by cosmic rays (CR) to provide advanced warning of approaching solar 
disturbances. A literature review and workshops with invited specialists were an essential part of 
the work. These identified the need for a Canadian muon detector to fill the coverage gap existing 
in the current, global network. 
 
Two types of tasks were undertaken: theoretical investigations performed by the Lead 
Department, NRCan of the interaction of cosmic rays with solar disturbances; and review of the 
existing technology and development of the test detector, done by the Physics Department of 
Carleton University.  
 
The study identified two types of precursors associated with the interaction of CR with solar 
disturbance. The physics-based transport equation for CR has been analysed and the diffusion 
model was validated.  Two types of technology for building detectors were assessed. This 
included building a prototype muon telescope and analyzing its data.  
 
The detailed design specifications and recommendations (roadmap) for a proto-operational 
system are provided in this document. 

 

Résumé ….....

Ce projet a été lancé pour aider les spécialistes à mieux protéger l’infrastructure canadienne 
essentielle des perturbations solaires. L’étude de faisabilité examine la possibilité de se baser sur 
la mesure des muons produits par le rayonnement cosmique pour donner aux personnes 
intéressées un préavis de l’approche de perturbations solaires.  Les travaux ont consisté 
principalement en une analyse documentaire et en la tenue d’ateliers auxquels des spécialistes ont 
été invités. Ces travaux ont permis de relever la nécessité de doter le Canada d’un détecteur de 
muons afin de combler la lacune relevée dans la couverture du réseau international. 
 
Deux types de tâches ont été entreprises : des recherches théoriques sur l’interaction entre le 
rayonnement cosmique et les perturbations solaires, effectuées par Ressources naturelles Canada 
à titre de ministère responsable, et une étude de la technologie existante ainsi que la conception 
d’un détecteur d’essai, tâches confiées à au département de physique de l’Université Carleton à 
titre d’entrepreneur.  
 
Les recherches ont permis d’identifier deux types de précurseurs associés aux interactions entre le 
rayonnement cosmique et les perturbations solaires. L’équation du transport fondée sur la 
physique pour le rayonnement cosmique a été analysée, et le modèle de diffusion a été validé.  
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Deux types de technologies ont été évaluées en vue de la construction de détecteurs. Un détecteur 
de muons d’essai a été conçu et les données produites par le prototype ont été analysées.  
 
Les spécifications de conception et des recommandations détaillées (feuille de route) ont été 
fournies en vue de la conception proto-opérationnelle. 
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Executive summary

Efficacy of Muon Detection for Solar Flare Early Warning: PSTP 
03-412 CIP

L. Trichtchenko, G. Kalugin; J. Armitage; K. Boudjemline; D. Waller; DRDC 
Ottawa TR 2013-128; Defence Research and Development Canada – Ottawa; 
December 2013. 

Introduction: All of modern society, including the Canadian Armed Forces, is becoming more 
and more dependent on technological systems which could be harmfully impacted by extreme 
space weather events resulting from solar disturbances: for example, the electrical power grid, the 
Global Position System (GPS), and satellite communications, to name a few. Sufficient early 
warning of an approaching disturbance would allow critical infrastructure operators to take 
protective measures. Unfortunately, the existing observations of the Sun can provide up to three 
days warning but with extremely poor reliability; errors can be as large as 12 hours and the rate of 
false alarms is high. 
 
The primary objective of this study is to determine the feasibility of obtaining timely warning of 
extreme space weather conditions by using ground-based measurements of cosmic-ray-induced 
muons. It is based on the recent scientific evidence that precursors could be seen in changes of the 
flux of muons produced in the Earth’s atmosphere by galactic cosmic rays (CR). 
 
A literature review and workshops with invited specialists were essential parts of this work and 
helped in identifying two types of tasks. One task is to increase knowledge by theoretical 
investigations of the interaction of cosmic rays with solar disturbances. This has been performed 
by the Space Weather Forecast Centre of Natural Resources Canada. The other task is 
experimental:  assessing the need for a Canadian muon detector in the Global Muon Detector 
Network (GMDN), reviewing the existing muon detection technology, and developing a 
prototype muon telescope. This task was carried out by the Physics Department of Carleton 
University.  
 
Results: It has been found that two types of muon precursors are available for early warning, both 
associated with variations of the flux of cosmic rays due to interactions with propagating solar 
disturbance. The physics-based transport equation was analysed based on data from an existing 
muon telescope in Nagoya and solar disturbance measurements. The validity of the diffusion 
model for CR interaction with solar disturbance has been verified. The prototype muon telescope 
was also successfully built and operated so that muon data were collected over the course of 
many months. 
 
Significance:  It has been identified that the existing GMDN  has a coverage gap over North 
America, thus it is important to have a muon detector in Canada to close this gap. The data from 
the prototype muon telescope have been analysed. This confirmed that the technology readiness 
level is high. Detailed design specifications and recommendations for future work are provided. 

Development of an operational muon detector in Canada will fill the gap in global coverage and 
therefore make an important contribution towards muon measurements. This could improve the 
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advanced forecast of extreme space weather. Improved, advanced forecasts would improve the 
situational awareness of the Canadian Armed Forces, especially with respect to the possible 
degradation of navigational and communications capabilities, or loss of electrical power. 

Future plans: Analysis of the state-of-the-art of muon detection for extreme space weather 
forecasting and progress made in this research area show that both the knowledge and technology 
readiness levels are high enough that it may be feasible to use a global muon detector network for 
providing improved space weather forecasting. 
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Efficacy of Muon Detection for Solar Flare Early Warning: PSTP 
03-412 CIP

L. Trichtchenko, G. Kalugin; J. Armitage; K. Boudjemline; D. Waller ; DRDC 
Ottawa TR 2013-128 ;  Recherche et développement pour la défense Canada – 
Ottawa; décembre 2013. 

Introduction : La société moderne dépend de plus en plus d’une infrastructure technique susceptible 
de subir les effets néfastes de conditions spatiométéorologiques extrêmes causées par des 
perturbations solaires. S’ils étaient avertis suffisamment tôt d’une perturbation à venir, les exploitants 
de réseaux électriques pourraient prendre des mesures de protection. Malheureusement, les méthodes 
actuelles d’observation du soleil ne donnent que trois jours de préavis et leur fiabilité est extrêmement 
faible : un décalage de 12 heures peut se produire entre la prévision et la réalité, et le taux de fausses 
alertes est élevé. 
 
L’objectif principal de cette étude est d’établir s’il est possible d’obtenir des alertes rapides des 
conditions spatiométéorologiques extrêmes en se basant sur la mesure au sol des muons produits par le 
rayonnement cosmique. En effet, on a récemment obtenu la preuve scientifique qu’un changement du 
flux des muons produits dans l’atmosphère terrestre par le rayonnement cosmique galactique peut 
indiquer une perturbation à venir. 
  
Les travaux ont consisté principalement en une analyse documentaire et en la tenue d’ateliers auxquels 
des spécialistes ont été invités, ce qui a permis de relever deux types de tâches à faire. Le premier type 
consistait à approfondir les connaissances en procédant à des recherches théoriques sur l’interaction 
entre le rayonnement cosmique et les perturbations solaires. Cette tâche a été prise en charge par le 
ministère responsable (boursier postdoctoral et personnel du Centre canadien de météo spatiale de 
Ressources naturelles Canada). L’autre partie du projet était expérimentale et consistait à évaluer la 
nécessité de doter le Canada d’un détecteur de muons, à étudier la technologie existante et à concevoir 
un détecteur d’essai. Cette tâche a été confiée à un entrepreneur, c.-à-d. le groupe d’étudiants, de 
boursiers postdoctoraux et de professeurs du département de physique de l’Université Carleton.  
 
Résultats : Les recherches ont permis de décrire deux types de précurseurs, tous deux associés à une 
variation du flux du rayonnement cosmique due aux interactions avec les perturbations solaires en 
propagation. L’équation du transport fondée sur la physique a été analysée en se basant sur des 
données obtenues au moyen du télescope à muons de Nagoya et sur les mesures de la perturbation 
solaire. La validité du modèle de diffusion pour l’interaction entre le rayonnement cosmique et les 
perturbations solaires a été vérifiée.     
 
Il a été établi que le réseau international de détecteurs de muons en place comporte une lacune dans sa 
couverture de la région nord-américaine. Il est donc important de doter le Canada d’un détecteur de 
muons. La technologie existante a été évaluée et un détecteur de muons a été construit à l’essai. Les 
données fournies par ce détecteur ont été analysées. Cela a permis de confirmer le stade avancé de 
préparation de cette technologie ainsi que de fournir des spécifications de conception et des 
recommandations détaillées pour de futurs travaux. 
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Importance : La conception d’un détecteur de muons proto-opérationnel au Canada permettra de 
combler la lacune dans la couverture internationale et donc d’apporter une contribution de premier 
plan à l’utilisation proto-opérationnelle de la mesure des muons. Cela améliorera les prévisions 
éloignées des conditions spatiométéorologiques extrêmes. 

Recherches futures : L’analyse faite des techniques de pointe d’utilisation des détecteurs de muons 
pour la prévision des conditions spatiométéorologiques extrêmes ainsi que les progrès réalisés dans ce 
domaine de recherche montrent que notre niveau de connaissances de même que la préparation 
technologique sont suffisamment élevés pour qu’il soit possible d’élaborer un prototype de système de 
prévision des conditions spatiométéorologiques au moyen d’un réseau de détecteurs de muons 
couvrant tout le ciel. 
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Modern society becomes more and more dependent on technological systems which could be 
harmfully affected by extreme space weather events [2: Trichtchenko et al., 2012]. Sufficient 
early warning of an approaching disturbance would allow CI operators (e.g. power grid operators, 
Hydro One, Hydro Quebec, Telesat, etc) to take protective measures (e.g. put spare generating 
capacity online to counter GICs). Unfortunately, reliable warning is not currently available. 
Observations of the Sun's surface (images in different wavelengths) can provide up to three days 
warning, but with extremely poor reliability; errors can be as large as 12 hours and the rate of 
false alarms is high. The NASA ACE satellite can provide more detailed data on the approaching 
solar disturbance and up to 30 minutes warning due to its location close to the Earth, but this time 
is generally insufficient for CI operators.  
 
The primary objective of the study is to improve the protection of Canadian CI from solar 
disturbances.  It determines the feasibility of obtaining timely warning of extreme space 
weather conditions by using ground-based measurements of cosmic-ray-induced muons.  
 
The feasibility study is based on recent scientific evidence that the signatures of the approaching 
solar disturbance could be seen in the characteristics of the flux of muons produced in the Earth`s 
atmosphere by Galactic Cosmic Rays (GCRs).  It is currently accepted that GCRs are deflected 
away from the Earth by the magnetic field of a solar disturbance, so a sudden decrease in the 
normal flux of neutrons and muons on the ground can indicate that a solar disturbance is 
approaching Earth. A ground-based Muon Telescope (MT) precisely measures trajectories of 
muons that are produced from GCR interactions in the Earth's upper atmosphere; thus, could 
possibly provide data for development of the early warning of an approaching solar disturbance. 

1.2 Scope 
The purpose of this study is to determine the efficacy of using ground-based measurements of 
cosmic-ray-produced muons to provide reliable, timely warning of extreme space weather 
conditions that can have severe impacts on Canada's CI.  
 
The early warning requirements were determined as a result of discussion with CI operators and 
users. This information will help in the development of early warning systems that CI operators 
can use to maintain safe operations during extreme space weather events. 
 
This efficacy study includes a literature review, meeting with leading international experts, 
analysis of the available muon data, modelling and simulation of the behaviour of the primary 
cosmic rays during their interaction with the solar disturbances, and guidelines for future work.  
The study provides recommendations for developing ground-based muon telescopes and their 
supporting systems. 
 
A capability roadmap describes the steps needed to develop the muon detector technology to 
produce reliable muon data and recommendations on the steps needed to develop the numerical 
model for forecasting. In addition, the benefits of incorporating data from Canadian sites into the 
nascent Global Muon Detector Network (GMDN) are discussed. 
 
For this project the specifications for MT were determined through a combination of modeling, 
simulation, testing and evaluation by the authors at Carleton University. The theoretical work, 
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including analysis of the data available from currently operating muon telescopes, has been 
performed by the authors from the Canadian Space Weather Forecast Centre (CSWFC) of Natural 
Resources Canada (NRCan).  

1.3 Included work and deliverables 
The project was divided into six work packages (WPs).  
 
WP 1 includes a survey of critical infrastructure representatives to assess the understanding of the 
impacts and readiness for extreme space weather, and to quantify their needs and requirements for 
early warning. The result of this package is summarized in Section 2. 
  
WP 2 was aimed at reviewing the current situation with the use of muon telescopes for space 
weather applications [3: Kalugin et al., 2013]. This was achieved through a discussion with 
experts during Canadian Muon workshop and a literature review. The results are described in 
Sections 3 and 5. 
 
Two work packages were associated with theoretical work: WP 3 and WP 6. The first has been 
focused on investigations towards the possibility to use muon data for early warning of extreme 
space weather. After reviewing the most up-to-date models in Section 3 for (a) CME propagation, 
(b) GCR interactions with CMEs, (c) GCR-muon production, and (d) muon detection, the best 
candidate mechanism to evaluate the interaction of the primary GCRs with solar disturbance has 
been chosen. Work Package 6 provides results of the applicability of the obtained theoretical 
model. This includes obtaining the muon and solar disturbance (solar wind) parameters during 
extreme events for the last solar cycle. These parameters were used to test the chosen model of 
interaction of different parts of solar disturbances (CMEs) with galactic cosmic rays in order to 
evaluate the applicability and expected results of the models. The output of this work is described 
in Section 4. 
 
Experimental part of the work (WP 4) was performed by a contractor, group of students, a 
postdoctoral fellow and Professors of Physics Department, Carleton University. Here we made an 
assessment of different muon detector systems and their performance requirements for possible 
use in an Extreme Space Weather Events (ESW) early warning system. The small scale test 
telescope has been designed based on computer simulations. The system has been constructed, 
tested and the short experiments were performed. The experience obtained by operating a small 
muon telescope is an important input into the technology assessment. The output from this work 
is described in Section 6. 
 
 
WP 5 developed a roadmap (steps) for the development of Canadian muon detectors for 
operational use as a component of an early warning system for space weather disturbances. The 
Roadmap includes recommendations for the algorithms that analyze the muon telescope data and 
the communications systems that support the telescopes so that the muon data can be sent to 
space weather forecasters who will fuse the muon data with other data streams to provide the best 
possible space weather forecasts to CI operators. This Roadmap also recommends how to achieve 
integration of Canadian muon detectors into the GMDN.  There are currently no North American 
sites in the GMDN and it is expected that the addition of one or more Canadian sites would 
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significantly improve the reliability and timeliness of the early warning from the GMDN. The 
output is described in Section 7.   
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The harmonics produced by GIC can interfere with operation of transformer differential relays. 
Differential relays are designed to detect a departure from the normal ratio of input and output 
currents, which is usually indicative of a fault in the transformer. However different currents also 
occur during transformer energization and relay operation is not wanted at this time. 
 
The power delivered to customers usually has the AC current in phase with the AC voltage and is 
termed “real” power. In contrast the AC magnetising current drawn by the transformers is out of 
phase with the AC voltage and this combination is termed “reactive power” (also referred to as 
VAR standing for Volts multiplied by Amps Reactive). Reactive power has to be supplied to the 
system in order for the transformers to operate correctly. This can be done either by dedicated 
generators or by Static VAR Compensators (SVC) that convert real power to reactive power. 
When there is insufficient reactive power to maintain voltage stability, voltage collapse may 
occur causing system outages and interruption of service to customers. 
 
Saturation of a transformer during space weather event increases magnetising current and, by 
association, increases the reactive power demand. Because of the widespread nature of GIC many 
transformers on a power system can be going into saturation simultaneously, creating a 
significant increase in the total reactive power demand on the system.  
 
During the March 1989 magnetic storm GIC in the Hydro-Quebec system caused transformer 
saturation and increased reactive power demand. At the same time harmonics caused SVCs relays 
to trip removing a source of reactive power, leading to voltage collapse and the system-wide 
blackout. 

2.2 User requirements  
 
The impact of space weather on the power grid can be reduced by several engineering solutions, 
such as DC blocking capacitors, and special transformer design. These are not only very costly, 
but also cannot completely eliminate the unwanted impacts.  
 
In addition to the engineering solutions, special operating procedures can be used to maintain 
system operation during geomagnetic disturbances. The Northeast Power Coordinating Council 
procedures [6: NPCC, 2000] list a range of actions that may be taken by system operators 
including: discontinuing maintenance work and restoring out of service lines, reducing the load 
on critical transmission links to 90% of their normal safe limit, reduce loading on generators to 
provide reserve power capacity, and increase the reserve capacity for reactive power.  
 
These operating procedures involve a penalty, either in terms of compromised safety margins, or 
because of lost revenue because of power transfer limits. Thus, their implementation requires 
timely and accurate notification of space weather conditions likely to cause large impacts. 
 
In the aftermath of the March 1989, Hydro Quebec blackout studies have been done and alerting 
requirements were defined by the IEEE Working Group on Geomagnetic Disturbance in 1993 [7: 
Molinsky, 2002]. The fact that reliable data on disturbances of a solar origin can only be acquired 
from the ACE satellite, which is only one hour or less prior to the geomagnetic disturbance on 
Earth, has limited the requirements to accurate advanced warnings of 1 hour (or more). This 
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warning should include the following parameters of the disturbance: start time, maximum 
severity, regions affected, end time and level of uncertainty.  
 
In 2012, the North American Electricity Reliability Council (NERC) has developed a more 
comprehensive and general set of operating procedures to mitigate GIC. These requirements are 
based on analysis of previous cases of recorded effects of space weather events on power grids.  
In order to enhance the resilience of critical infrastructure, analysis of a “100-year” hypothetical 
extreme event has been included as a Design Basis Credible Threat (DBCT). 
 
The recommendations were addressed to multiple organisations and are divided into four 
different classes:  
 
1. Improve tools for industry planners to develop mitigation strategies, such as vulnerability 
assessments for different components of the power grid; produce a set of reference storms; 
develop tools to model GIC flow; develop transformer specification to be able to withstand 
“large” GIC. 
 
2. Improve tools for system operators to manage GMD impacts, such as guidelines to monitor and 
mitigate GIC and get improved warnings and alerts from the National Oceanographic and 
Atmospheric Administration (United States) and NRCan in order to enhance GMD notification 
procedures. 
 
3. Education and information exchange between researchers and industry. 
 
4. Review the need to enhance the NERC reliability standards.  
 
With regard to the functional areas of situational awareness and forecasting, the recommendation 
was “Forecasting and early warning of GMD are vital components of system defense against 
severe GMD. ….Maintaining and enhancing this capability is important to system 
operators…”[8: NERC, 2012]. 
 

in enhancing resilience to an 
event, warnings are major enablers.  Whereas a major earthquake can strike without warning, an 
extreme space weather event is detectable hours or days before its most widespread effects strike 
the earth. This raises the possibility of implementing mitigation actions.  
 
Although a number of our critical infrastructure sectors—such as transportation, finance, 
communications and energy—are improving the resiliency of their infrastructure, it is still not 
assured that such measures will sufficiently offset the effects of a major space weather event.  
The ability to be prepared in advance is directly dependent on the ability to provide 
advance warnings and reliable forecasts. To increase the level of preparedness, reliable 
forecasts of several hours or days ahead on the start, duration and severity of the impacts 
will significantly increase the abilities to cope with these impacts for potentially protracted 
periods. 
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55]. Therefore the rigidities of primary CR particles responsible for the counting rates registered 
at ground level should have values larger than the so-called cut-off rigidity which describes the 
magnetic shielding provided by the geomagnetic field against the arrival of charged CR particles 
[10: Humble et al., 1985]. In addition, owing to the particle motion in the geomagnetic field, each 
ground level detector is capable of recording particles produced by primaries originating from a 
limited set of directions in space, which is called the asymptotic cone of viewing  [11: Plainaki et 
al., 2009]; the directions themselves are called asymptotic directions [12: Duldig, 2001] (for 
details, see Section 5). One more characteristic of the motion of charged particle in magnetic field 
is so-called pitch-angle; this is the angle between the vector of particle velocity and the direction 
of the magnetic field. 

3.2 Variations in the cosmic ray flux 
Most primary and secondary particles are absorbed in the atmosphere, where the flux builds to a 
maximum at an atmospheric depth of around 200 g/cm2, around 15km, before dropping off until it 
reaches the surface at around a 1000 g/cm2.  Muons, produced in pion decays around 15 km, form 
the bulk of the particle species detected at the surface, ~70%, with the rest being mainly electrons. 
The energy spectrum at the surface is flat up to about 3 GeV, and then drops off at a faster rate 
than the primary spectrum i.e. at ~ E-3.7. The muons then have an average momentum of around 2 
to 4 GeV/c and show a cos2  variation around the vertical. 

This flux is fairly constant at a particular height above sea level and magnetic latitude.  
Throughout the day it displays a 1% diurnal variation and a variation of similar magnitude with 
the rotation of the Sun (27 days variations). Larger local effects can be due to variations of local 
atmospheric pressure and temperature (determining the density of the atmosphere) or cloud cover. 
Changes on a longer timescale include the 11 year solar cycle, which can change the flux by up to 
15%, and the reversal of the sun’s magnetic field every 22 years. 

In addition to the periodic variations noted above, shorter term non-periodic variations ranging 
from a few hours to a few days have been observed.  One of the noticeable results of the 
interaction of CRs with solar disturbances is a Forbush Decrease (FD), which is characterized by 
reductions of near-earth flux up to 25-30% over a few days. These decreases in the cosmic ray 
flux were first observed by S.E. Forbush in the 1930’s [13: Forbush, 1938].  
 
Solar eruptions from the solar corona, named Coronal Mass Ejections (CME, see the Glossary, on 
p.93), propagate outward and interact with the interplanetary media (solar wind) forming so-
called Interplanetary Coronal Mass Ejections (ICME). These can consist of several distinctive 
parts differing in their magnetic and particle composition and parameters. The main parts of 
ICME are the sheath (area of fast magnetic field variations), the magnetic cloud or ejecta 
(depleted density and increased magnetic field), and the preceding interplanetary shocks (IP). 
There can be many IP and the one which is most closely followed by a geomagnetic storm is 
traditionally called the Storm Sudden Commencement (SSC). 
  
It is now understood that the FDs and strong geomagnetic storms are produced by the interaction 
of ICME with solar wind and the magnetosphere of the Earth. 
 
In three papers in the late ‘40’s and early ‘50’s [14: Forbush, 1946; 15: Forbush, 1950; 16: 
Forbush, 1959;], Scott Forbush reported on several unusual increases and decreases to the cosmic 
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it  is the local time at the location of the i-th detector and 12/ .  The coupling coefficients 
1

,1 jic , 1
,1 jis  and 0

,1 jic  relate the observed muon intensity to the primary CR intensity in free space 
[28: Kuwabara et al., 2004]; they are calculated by assuming a rigidity independent anisotropy. 
 
The best-fit parameters )(tGEO

x , )(tGEO
y  and )(tGEO

z  denote three components of the 
anisotropy which are defined in a local geographical coordinate system (GEO), in which the z-
axis is directed toward geographic north, the x-axis is in the equatorial plane and directed to the 
zenith of a point on the Earth equator at 00:00 local time, and the y-axis completes the right-
handed coordinate set. Thus, for example, )(tGEO

z  represents the north-south anisotropy [27: 

Okazaki et al., 2008]. These best-fit parameters along with )(0
, tI ji  are determined by minimizing 

S defined, for example, in the case of one detector with two viewing directions, as  
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where )( mts  is the hourly residual of the best fit at the time mtt , M is the total number of 

hours used for the best fit calculations and ji ,  is the count rate error for the (i,j) directional 
channel.  
 
Now we define a part of )(, tI obs

ji , associated with the DA, as follows [24: Rockenbach et al., 
2011] 
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The best-fit parameters in Eq. (2) are defined as the 12-hours Trailing Moving Averages (TMAs), 
i.e.  
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Comparisons between the 12-hours and the 24-hours TMA of the best-fit parameters show that 
the former are better than the latter for observation of the LC effect [24: Rockenbach et al., 2011]. 
 
To remove the contribution of the DA from the data for precise analysis of the LC precursor, we 
subtract )(, tI DA

ji , defined by Eq. (2), from the observed intensity )(, tI obs
ji  

 
)()()( ,,, tItItI DA

ji
obs

ji
cal

ji .                                                (3) 

 
As a result we obtain the directional intensity distribution free from the DA.  Moreover, to 
visualize the precursor signatures more clearly, we suppress the statistical fluctuations which are 
larger in the inclined channels. For this purpose, instead of )(, tI cal

ji , we use the “significance” 
defined as [24: Rockenbach et al., 2011] 
 

ji

DA
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ji

tItItI
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,

,
,

)()()(
)(  . 

 
Remark 1. Since the difference )(, tI cal

ji  is calculated using TMAs, it is not affected by the 
variation occurring after time t [26: Fushishita et al., 2010]. This is important for real time 
predictions in space weather forecasting [24: Rockenbach et al., 2011]. 
Remark 2. In some works, to avoid spurious diurnal variation, instead of )(, tI obs

ji , the following is 
used with the 24hr TMAs [27: Okazaki et al., 2008; 28: Kuwabara et al., 2004]: 
 

)(
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tI
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ji

obs
obs

ji
obs
ji  . 

 
 
 
For the analysis of muon intensity distributions, the calculated values of )(, tI cal

ji
 can be 

represented in two ways. One of them is to show the results for all of the directional channels in 
the form of a two-dimensional color contour map where the latitude of incident direction 
spanning from the north (upper) and south (lower) directions in the field of view is scaled along 
the vertical axis, while the longitude from the east (right) and west (left) directions is on the 
horizontal axis. Additionally, in the map there are contour lines of pitch angle measured from the 
observed IMF direction; the pitch angle is calculated for CRs incident on each directional channel 
with the median primary energy appropriate to that channel [29: Munakata et al., 2005]. As an 
example, intensity distributions observed in 121 directional channels with a muon hodoscope at 
Mt. Noricura (Japan) over 6 hours preceding the SSC are shown in Figure 8 [25: Munakata et al., 
2005] where the LC precursor can be identified by a region of the deficit intensity (displayed by 
blue color) localized around small pitch angles. Similar intensity distributions were analyzed in 
[30: Nonaka et al., 2003] and [26: Fushishita et al., 2010]. 
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Another way to represent muon intensity relative to the omnidirectional intensity is to use a two-
dimensional map with measurements along two coordinate axes of time and pitch angle. An 
implementation of this technique is illustrated in Figure 9, which shows the pitch angle 
distribution of CR intensity vs. time observed by São Martinho da Serra’s muon telescope during 
the geomagnetic storm on April 28, 2003 [23: Rockenbach et al., 2009] and on December 14, 
2006 [31: Schuch et al., 2009; 24: Rockenbach et al., 2011] at the top and the bottom 
respectively. The pitch angle of each direction of viewing is defined as the angle between the 
sunward IMF direction and the viewing direction of j-th directional telescope in i-th muon 
detector of the GMDN [18: Munakata et al., 2000]. The open and solid circles represent, 
respectively, an excess and deficit of CR intensity relative to the DA intensity in accordance with 
Eq. (3), and the diameter of each circle is proportional to the magnitude of deficit or excess. In the 
top figure, the LC effect can be seen clearly approximately 7 hours before the SSC shown by the 
vertical line and can serve as a precursor of the storm. At the bottom, additionally, is shown the 
intensity recorded with five single channels. One can see that the LC has a 3 hour duration 
implying about 45o width and onsets first in the eastward viewing channel, then in the vertical and 
westward channels, as expected for an anisotropic depression of the CR intensity [31: Schuch et 
al., 2009].  

3.4.2 Analysis of LC precursors for recent geomagnetic storms  
Observations of galactic CR intensity during an LC precursor period related to an IP shock arrival 
on October 28, 2003 were obtained in [29: Munakata, et al., 2005]. The authors used a large 
single muon hodoscope on the top of Mt. Norikura (Japan) and analyzed 121 directional channels 
which cover 360o of the azimuth angle and 0o to 55o of the zenith angle. The estimated median 
energy of CR is in the range from 48 GeV (for the vertical channel) to 80 GeV (for the most 
inclined channel).  
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should be regarded as preliminary as the number of strong storms considered is not sufficient for 
a statistical treatment (because strong storms are infrequent). 
 
Figure 13 shows the pitch angle distributions of muon intensity in time calculated by Eq. (3) for 
the storms listed in Table 1 [24: Rockenbach et al., 2011]. The event on December 14, 2006 is 
also considered in [26: Fushishita et al., 2010] and described above.  A pitch angle of 0o 
corresponds to the sunward IMF direction. SSC occurrence is shown by a vertical line. Open and 
solid circles represent, respectively, an excess and deficit of CR intensity relative to the average, 
and the diameter of each circle is proportional to the magnitude of deficit or excess. Figure 14 
shows the pitch angle distribution of the CR intensity on November 9, 2004 ten hours prior to the 
SSC at t = 314.583 indicated by arrow in the top panel of Figure 13. 
 

Table 1: Distribution of storms accompanied by LC precursors. 
Types of storms by 

their intensity (number 
of storms) 

 
Moderate Storms  

(89) 
 

 
Intense Storms  

(37) 

 
Super Storms  

(7) 
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where t is time, VSW is the solar wind speed, Vd is the drift velocity, and p is the momentum of a 
particle. The drift velocity of a particle with charge q, momentum p, and speed v in a magnetic 
field B can be written as [42: Jokipii, Levy & Hubbard, 1977] 

 . 

Thus, to solve the transport equation for the simulation of CR particles one needs to know the 
diffusion tensor . Below, we consider an isotropic diffusion model, where  is a scalar, and 
verify the validity of the model on the basis of analysis of data from the Nagoya muon telescope, 
McMurdo station and Advanced Composition Explorer (ACE), described in subsection 4.2. 

4.2 Sources of data 

4.2.1 Nagoya muon telescope  
 

The small detector built at Carleton University and described in Section 6 has a small detection 
area which does not allow one to obtain statistically reliable data, although it does demonstrate 
using a muon drift chamber detector for measurements of cosmic ray fluxes in principle. 
Therefore, to analyze FD events, in this report the GMDN telescope in Nagoya, Japan was used. 
Its hourly data were corrected for the local atmospheric pressure.  
 
The Nagoya telescope is geographically located at 35o09’ N and 136o58’ E at 77 m above sea 
level. It has an average count rate of 61076.2  particles per hour, a cut-off rigidity of 11.5 GV 
and the median rigidity is 60 GV for the vertical directional channel [43: Fujii, 2011]. The high 
counting rate of the telescope naturally reduces the statistical fluctuations due to the finite 
counting rates. As a result of the high statistical precision, the change of counting rate due to 
other reasons such as a change of the pulse height distribution has an important effect on the 
stability of the observed rate. Instrumental fluctuations in short time interval (less than a day) can 
originate from a change of the room temperature. In order to reduce this cause, the temperature of 
the observation room is air-conditioned to 20±1°C and the temperature variation in the 
thermostatic chamber containing the telescope is maintained within ±0.1°C throughout the year. 
By this regulation of the temperature change, the observed intensity has an overall stability of 
±0.01% for durations of a few days. The stability over a longer time interval is mainly dependent 
on the variation in the pulse height distribution due to fatigue of the phototube as well as 
degradation of the scintillation efficiency. As no compensation was made for these effects, a 
decrease of less than 1% per year in the counting rate was observed. 
 

4.2.2 McMurdo neutron station  
To confirm FD effects registered by the muon telescope in Nagoya, pressure corrected data from 
the McMurdo neutron station were used. McMurdo neutron station is geographically located in 
Antarctica (77°51' S, 166°40' E) at an altitude of 48 m above sea level and a distance of 1,360 km 
(850 miles) north of the South Pole. Due its proximity to the magnetic pole, the cut-off rigidity of 
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the station is 0.3 GV. The accuracy of the measurements with the neutron monitor is not 
available. 

4.2.3 Advanced Composition Explorer 

The solar wind parameters and IMF data used in the study are taken from observations with the 
Advanced Composition Explorer (ACE), managed by NASA. The ACE orbits about 1.5 million 
km from Earth and 148.5 million km from the Sun (the L1 libration point). For this project, 4-min 
data were used for IMF in the Geocentric Solar Magnetospheric System (GSM), while 
computation of the variance of the magnitude of IMF was performed with 16-second averages as 
input. 

4.3 Identification of large events 

The plot in Figure 18 shows a relative count rate of cosmic-ray produced muons registered in the 
vertical view direction for the 14-year period from 1998 up to early 2012 [44: Kalugin, 2012]. 
One can clearly see seasonal (periodic) variations with the local minima during summer seasons 
and the local maxima during winter seasons. This observation, along with Figure 19, where it 
shows the sunspot cycle for the same period (data are taken from [45: NASA]), tells us that the 
solar activity and CR intensity are in opposite phase. This is due to the fact that a more active 
solar wind and stronger magnetic field during a higher solar activity reduces the flux of cosmic 
rays striking the Earth's atmosphere. 

The FD effect can be characterized by the amplitude, AFD, shown in Figure 20. Since AFD can be 
measured in different ways, an uncertainty  is introduced and shown in the same figures. In 
cases where an event has a many-step decrease, only the first step is taken into account. In Figure 
18, the seven largest Forbush decreases are indicated. Figure 21 shows a distribution of the FD 
amplitudes exceeding 1.5%, as large FD events are of most interest. One can see that small 
amplitude events occur more frequently and large amplitude events are much less common.  

Table 2 lists the largest FD events, selected by visual inspection of the intensity plotted in Figure 
18 [46: Kalugin et al., 2012]. Two criteria were applied: (a) an event should not be a part of a 
chain of events unless it is the first one in it; (b) an event also should be observed at the McMurdo 
neutron station. The table includes events with FD magnitude AFD > 2.5%, the rest of data are 
given for illustrative purposes. In the table, (v1 + v2) / 2 is an average of the solar wind speed 
values immediately in front of and behind the shock respectively, registered at ACE at times t1 
and t2; tstart is the moment when FD starts. The events are listed from largest to smallest AFD 
values. 

By the ratio  /AFD the events listed in Table 2 are conditionally broken into three groups: events 
with the ratio less than 7% (small uncertainty), between 7% and 22% (medium uncertainty) and 
larger than 22% (large uncertainty).  In figures 22 and 23 we represent each event by its value of 
AFD (  is shown as an error bar) and average v of values v1 and v2 from Table 2; dashed lines 
relate to multiple events in the decrease phase to show a total decrease (also shown in brackets in 
Table 2). The average speed v = v1 + (v2 - v1)/2 is chosen as it depends both on the shock (v1) and 
the jump at the front (v2-v1).  
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Table 2: List of the largest FD events. 

No. Year Day (DOY) t1 t2
(v1+v2)/2, 

km/s tstart AFD, % /AFD,
%

1 2003 Oct 29 (302) 1:00 
(302) 

7:05 
(302) 1263 6:29 

(302) 11.02 7.0 

2 2004 Jul 26 (208) 22:24
(208) 

22:28
(208) 764 0:53

(209) 6.01 10.7 

3 2005 May 15 (135) 2:10 
(135) 

3:49 
(135) 643 3:29

(135) 4.09 10.3 

4 1998 Sep 24 (267) 23:13 
(267) 

23:19 
(267) 526.5 3:27

(268) 3.85 22.3 

5 2005 Sep 10 (253) 15:59 
(253) 

0:59
(254) 879 3:02

(254) 
3.76

(6.97) 28.7 

6 2004 Jan 22 (22) 1:03
(22) 

1: 07 
(22) 566 4:03

(22) 3.30 19.1 

7 2000 Jul 13 (195) 9:00
(195) 

9:37
(195) 600.5 9:00

(195) 3.22 0 

8 2005 Jan 21 (21) 16:42 
(21) 

16:54 
(21) 756.5 18:14 

(21) 3.03 8.9 

9 2000 Jun 8 (160) 8:39
(160) 

8:43
(160) 631.5 8:39

(160) 2.98 0 

10 1999 Jan 22 (22) 19:45 
(22) 

19:49 
(22) 575.5 5:02 

 (23) 2.95 6.4 

11 2001 Nov 5 (309) 21:52 
(309) 

1:52
(310) 573 5:39

(310) 2.68 5.6 

12 2001 Mar 27 (86) 1:16 
 (86) 

1:18 
 (86) 468.5 6:33

(86) 2.67 19.8 

13 2001 Sep 25 (268) 18:20 
(268) 

21:20 
(268) 530 20:20 

(268) 2.64 6.1 

14 2004 Jul 24 (206) 5:36
(206) 

5:39
(206) 535.5 7:60

(206) 2.62 1.9 

15 2001 Aug 17 (229) 10:15 
(229) 

10:18 
(229) 413.49 10:48 

(229) 2.54 33.1 

16 2001 Sep 29 (272) 9: 03 
(272) 

9: 09 
(272) 595 19:12 

(272) 2.52 20.6 

17 2011 Jun 17 (168) 1:59
(168) 

2:04
(168) 515 4:01

(168) 2.07 21.7 

18 1998 Nov 8 (312) 4:18
(312) 

4:23
(312) 546.5 6:14

(312) 1.90 53.7 

19 2001 Apr 11 (101) 13:07 
(101) 

13:15 
(101) 553 0:30

(102) 1.64 20.7 

20 2001 Apr 28 (118) 4:29
(118) 

4:32
(118) 622.5 8:20

(118) 
1.38
(3.3) 50.7 

21 2006 Dec 14 (348) 13:52 
(348) 

14:02 
(348) 763.5 14:02 

(348) 
1.30

(2.36) 0

22 2000 Sep 17 (261) 16:55 
(261) 

16:59 
(261) 663 17:02 

(261) 
0.73

(1.92) 0

23 2001 Apr 4 (94) 14:20 
(94) 

14:27 
(94) 554.5 14:31  

(94) 
0.70
(2.1) 0
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.                                                                 (4) 

 
The correlation length, c , is the distance over which the random magnetic field still 
“remembers” its neighbour value; the gyroradius is the radius of the circular component of the 
motion of a charged particle in the magnetic field. The above described effects of waves are more 
essential for particles with intermediate and low energies. However, to understand the connection 
between the diffusion coefficient and a model for the power spectrum of fluctuations used below, 
one must include all particle energies, not just those near the high-energy limit [52: Klimas & 
Sandri, 1973]. In addition, one needs to set limits of applicability of the diffusion model under 
consideration.  
 
To apply a diffusion model developed in [51: Klimas & Sandri, 1971] and [53: Fisk et al., 1974], 
in addition to the condition (4), we assume that 
 

1
)( 2 ,                                                            (5) 

 
where )6/( sc L , Ls = 1 a.u. (astronomical unit) is a size of the system containing the 

particles and .|| BBB  Then, in the high-energy limit, the diffusion coefficient is a 
scalar given by [51: Klimas & Sandri, 1971] 
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2v
3
1

c

gr
 .                                                          (6) 

 
Since the magnetic rigidity R of a charged particle in the mean field is grBR || , Equation (6) 

is in agreement with the rigidity dependence 2)/v(~ Rc  given in [54: Jokipii, 1971; 55: Volk, 
1975] for particles with R > 10 GV. However, in [56: Kachelrieß, 2007] a different expression for 
the diffusion coefficient is given, which is connected with Equation (6) as gc r/  . Under 
condition (4), this is a significantly reduced estimate of the diffusion coefficient compared to 
Equation (6).  
 
It is also interesting to compare Equation (6) with the diffusion coefficient in a turbulent magnetic 
field which is, under the assumption that it is isotropic, given by [57: Urch, 1977] (after 
correcting misprinting) 
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To compute the transverse component of IMF fluctuations we rotate the original coordinate 
system xyz (blue color in Figure 33) about the axis passing through the origin and perpendicular 
to the plane of vector <B> and the z-axis (the plane of the figure) on an angle such that the vector 
<B> lies in a new xy-plane (green color). Then, in the new coordinate system, <Bz>=0 and 

BBz
ˆˆ,0,0 . 

4.7 Power spectrum estimation 
To estimate the power spectrum a spectrogram was used for the transverse component of IMF 
fluctuations computed for 4-min averages of the ACE IMF data (level 2). The spectrograms were 
built as a time-frequency representation for a 12-day period bracketing an event under study using 
the discrete, short-time Fourier transform normalized by the peak signal gain of a window [58: 
Harris, 1999] 

2

1

0

1

0

/2

)(
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where )(ˆ)( mz tBmb  is the value of the transverse component of the magnetic field at time t = tm 
and w(n) is the Gaussian window of length L defined as [59: Haykin & Liu, 2009; 60: 
Stergiopoulos, 2009]     
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with 5.0 . The Gaussian window was chosen as it has optimal resolution [61: Boashash, 2003; 
62: Hale, 2006]. In particular, the Gaussian window provides a joint time and frequency 
resolution superior to all other window functions such as Hanning, Hamming, Kaiser, Bartlett, 
and so on [63: Allen & Mills, 2004]. The parameter  controls the width of Gaussian window so 
that a larger value of  leads to a narrower main-lobe and larger side-lobes [58: Harris, 1999]. To 
get the maximum frequency resolution, the maximum value of 5.0 was chosen. The length of 
the window L=256 was chosen because the value Hz1063.1min)4256/(1 5

 corresponds to 
the values of the characteristic frequency (see values for fc in Table 3 below). In addition, this 
value of L is the maximum among integer powers of two when the dependence of the power 
spectrum on time has not been changed significantly by increasing L. A similar analysis with 
different values of L is given in [64: Ikelle & Amundsen, 2005]. 

4.8 Results 
The approach was reported in [65: Kalugin & Trichtchenko, 2013]. Here we demonstrate it by 
taking into consideration events No. 3, 10 and 11 considered in section 4.5. The spectrograms for 
these events are shown in figures 34-36. In all the figures, the top panel shows a profile P(f) 
obtained as a horizontal cut of a spectrogram at the moment when the power spectrum has its 
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4.2.1). After retrieving values of fc from the spectrograms shown above, we are able to fill the last 
three columns by computing the values of the dimensionless parameters  and  introduced in 
(4) and (5). Table 3, composed of the values for events No. 3, 10 and 11, gives typical values of 
parameters  and  for other events in Table 2. It follows from Table 3 that one can regard 
conditions (4) and (5) as satisfied, and therefore the diffusion approximation in the high-energy 
limit is valid, so the model is acceptable.   
 

Table 3: Analysis of diffusion model. 

 
Event 
No. 

 
|<VSW>|,  

km/s 

 
|<B>|,  

nT 

 
 

 
rg,  
a.u. 

 
fc, 

 Hz 

 
c ,  

a.u. 

 
 

 
 

3 519.79 2.93 6.83 0.45 12.4 0.044 0.098 0.029 
10 409.43 4.74 5.58 0.28 19.5 0.022 0.079 0.033 
11 411.75 1.98 8.14 0.67 16.0 0.027 0.040 0.075 

 
 
The results of the analysis of the diffusion process performed in the report allow us to come to the 
next step in modeling CR modulation, i.e. to solve the CR transport equation for particle 
concentration ),,( prtN  [66: Langner & Potgieter, 2005]  

, 

where t is time, p is the particle momentum, VSW is the solar wind speed, and Vd is the drift 
velocity expressed in terms of particle velocity v, the charge q and the magnetic field  

. 

Here q = e, cv , cEccmEp p //422 , where c is the speed of light, mp is the mass of 

proton and E is the total energy of particle. The quantities VSW and  are taken from ACE data. 
The coefficient of diffusion is  

2

2v
3
1

c

gr
, 

 

where , , , c  is the correlation length of 'B . 
The boundary conditions for solving the transport equation are chosen depending on a particular 
geometry and computational domain.  
 
Methods for analysis of muon and ACE data, combined with theoretical and numerical models, 
allow us to study effects of solar disturbances on the cosmic ray intensity. A similar approach can 
be applied to the neutron component but with a different expression for the diffusion coefficient. 
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5 Overview of current situation in muon detection for 
space weather applications 

To be sensitive to the type of particle that acts as a precursor to magnetic storms, the detector 
should be able to provide some energy discrimination and directional information.  The 
hypothesis is that the precursor particles will display differences in the momentum spectrum or 
differences in the direction of arrival compared to the regular secondaries produced by GCR.  
 

5.1 Viewing directions of muon detectors  
 
CR particles approaching the Earth encounter the geomagnetic field and are deflected by it so that 
the highest energy particles experience the least deflection. Therefore, if the particles are 
sufficiently energetic (such as cosmic ray particles), they propagate through the magnetosphere 
and interact with the Earth’s atmosphere producing neutrons and muons. In principle it should be 
possible to trace the path of such a particle until it reaches the ground, as long as we have a 
sufficiently accurate mathematical description of the field. Such an approach would require 
particles from all space directions to be traced to the ground to determine the response. It is more 
practical to trace particles with the same rigidity (which is momentum per unit charge) from the 
location of the detector station through the field to free space because they will follow the same 
path as particles arriving from the Sun [12: Duldig, 2001]. When calculated in this way it is found 
that for a given rigidity there may be some trajectories that remain forever within the geomagnetic 
field or intersect the Earth’s surface. These trajectories are termed “forbidden” as they indicate 
that the site is not accessible from space for that rigidity and arrival direction at the station. The 
particle trajectories that escape to free space are called “allowed” and are associated with the 
accessible directions, which are known as asymptotic directions of approach [67: McCracken et 
al., 1962; 68: McCracken et al., 1968; 69: Shea et al., 1965; 70: Smart et al., 2000]. The set of 
accessible directions, dependent on rigidity, defines the asymptotic cone of view (or the 
asymptotic cone of acceptance) for a given station. On the other hand, for a given arrival direction 
at the station, there is a minimum rigidity below which particles cannot gain access. This is 
termed the geomagnetic cut-off for that direction at that location and time [12: Duldig, 2001]. 
Above the minimum cut-off rigidity for a given arrival direction, there may be a series of 
accessible and inaccessible rigidity windows known as the penumbral region [71: Cooke et al. 
1991]. The penumbral region ends at the rigidity above which all particles gain access for that 
arrival direction. It is worth noting that cut-off rigidity of CRs dependence on geomagnetic field 
decreases with increasing geomagnetic disturbance level [72: Danilova et al., 1999]. 
 
A conceptual illustration of an asymptotic cone of acceptance is presented in Figure 37 [73: Shea 
& Smart, 1982]. The tracing of the allowed trajectories from the station through the Earth’s 
magnetic field to IP space results in a family of trajectories that define an asymptotic cone of 
acceptance. The increased geomagnetic bending that lower rigidity particles undergo is illustrated 
by increased bending of the trajectories curving to the right. The direction of the trajectory at a 
distant surface, such as the magnetopause boundary, is the asymptotic direction of approach. The 
locus of points formed by the individual trajectory asymptotic directions (depicted by the dotted 
line) is used to illustrate the asymptotic cone acceptance [73: Shea & Smart, 1982].  
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particles. Each layer comprises an array of 1m2 unit detectors, each with a 1 m x 1 m plastic 
scintillator viewed by a 12.7 cm diameter photomultiplier tube. The Kuwait University detector is 
different from the other three systems as it consists of four horizontal layers of 30 gas-filled 
proportional counter tubes (PCTs). Each PCT is a 5 m long cylinder with 10 cm diameter, having 
a 50 m thick tungsten anode wire along the cylinder axis. A 5 cm layer of lead is installed above 
the detector to absorb the soft component. It is a hodoscope designed specifically for measuring 
the ‘‘loss cone’’ anisotropy, which is observed as a precursor to the arrival of interplanetary 
shocks at Earth and is characterized by an intensity deficit confined to a narrow pitch angle 
region.  
  

Table 4: Information on GMDN detectors. 

 
Station 

Detection 
area,  
m2 

Number of 
viewing 

directions 

Geographic 
Latitude 

Geographic 
Longitude 

 
Altitude, m 

Nagoya  
(Japan) 

 

 
36 

 
17 

 
35.1o N 

 
137.0 o E 

 
77 

Hobart1  
(Australia) 

 

 
9 / 16 

 
25 

 
42.9 o S 

 
147.4 o E 

 
65 

São Martinho 
(Brazil) 

 
28 

 
21 x 21 

 
29.4 o S 

 
308.2 o E 

 
488 

Kuwait 
(Kuwait) 

 

 
9 

 
23 x 23 

 
29.4 o N 

 
48.0 o E 

 
50 

1) Two values for detection area are shown to indicate the detector was enlarged from 9 m2 to 
16 m2 in December 2010. 

 
 
The GMDN began in December 1992 for two-hemisphere observations using the two muon 
detectors at Nagoya (Japan) and Hobart (Australia), which had detection areas of 36 m2 and 9 m2, 
respectively. Each of these detectors is multidirectional, allowing the recording of intensities in 
various directions of viewing. Another small (4 m2) prototype detector in São Martinho (Brazil), 
was added to the network in March 2001 to fill a gap in directional coverage of the network over 
the Atlantic and Europe and then was upgraded in December 2005 by expanding its detection area 
to 28 m2. In March 2006, the last addition to the GMDN was made by the installation of the new 
detector at Kuwait University. 

The GMDN covers almost the entire globe, though it still has gaps remaining in its directional 
coverage over North America and the southern Indian Ocean (Figure 39). Detection and tracking 
of a CME using muon detectors requires full coverage of the globe, as the earth rotates and 
different regions have a field of view that changes through the day. The gap over North America 
is particularly concerning and is an area where Canada could make a major contribution.  
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The lower panels illustrate the same effect but with measurements taken from a few stations only. 
As a result, at a fixed time we do not have information about the particle intensity on all latitudes 
and so it is hard to analyse such data. Thus the sky coverage in the asymptotic directions of the 
stations should be as full as possible. 

 

5.4 Canadian Muon Workshop  
 
A workshop of international muon and space weather experts was held on 17-19 October 2011. 
This was located in the resort of Petite Rouge at St Emile de Suffolk in Quebec. This provided a 
distraction-free venue allowing all participants to focus on the questions in hand. There were 19 
participants including 2 from Carleton, 1 from DRDC and 6 from NRCan. Several international 
experts were invited to give talks including:  
 
John W. Bieber of the Bartol Research Institute, University of Delaware, USA.  
Professor Bieber is the Principal Investigator of the University of Delaware Neutron Monitor 
program which operates cosmic ray neutron detectors at several locations around the world 
including Inuvik, Nain, Fort Smith and Peawanuck. They generate an automatic alarm when a 
Ground Level Enhancement (GLE) of neutrons starts. Professor Bieber has published extensively 
in this field.  
 
Frank Jansen of the DLR German Aerospace Centre, Institute of Space Systems, Bremen, 
Germany. Dr. Jansen has written on the effects of space weather on aviation and communications 
and is an expert on European Space weather activities. He has participated in MUSTANG, a 
Bremen-based cosmic ray detector using 2m x2m scintillation counters coupled to PMT’s with 
wavelength shifting fibres.  
 
Lev Dorman of the Israel Cosmic Ray and Space Weather Centre and Emilio Segre Observatory. 
Professor Dorman is the author of a book titled "Cosmic Rays in the Earth's Atmosphere and 
Underground", and a respected authority on cosmic rays.  
 
Kazuoki Munakata of Shinshu University, Matsumoto, Japan. Professor Munakata is the Co-
ordinator of the Global Muon Detector Network (GMDN), an international collaboration which 
consists of nine institutions in seven countries: Japan, USA, Brazil, Australia, Kuwait, Armenia 
and Germany.  
 
Victor Yanke of the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation 
(IZMIRAN), 142092, Troitsk, Moscow, Russia. Dr. Yanke is director of the lab, and team leader 
on the Moscow ST Muon Multi-Directional Telescope.  
 
Eugenia Eroshenko of the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave 
Propagation (IZMIRAN), 142092, Troitsk, Moscow, Russia. Dr. Eroshenko works on the 
Moscow detector and also maintains the data repository for cosmic ray events. 
 
The workshop was most useful in establishing several critical points:  

Ground based detection of neutrons will not provide as good an early warning as muons, 
since their origin is the lower-energy cosmic rays.  
Ground based neutron detection is useful in confirming the arrival of a GLE. 
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We emphasize that filling the North American gap with a proposed muon telescope in Ottawa 
would be of great importance as the interpretation of most cosmic ray modulation phenomena 
requires good latitude coverage. The prototype development has been done at Carleton University 
and is described in Section 6. 
 
It should also be noted that Canada has extensive experience in using ground-based CR detectors, 
e.g. in Ontario (Ottawa and Deep River), in British Columbia (Victoria), and in Alberta (Calgary) 
[85: Bercovitch & Davidson, 2012]. Unfortunately, most of these are no longer operating. In 
October 12, 2012 NRCan organized a meeting [86: Knudsen et al., 2012] to discuss ways to bring 
the neutron monitor in Calgary back into operation. It ceased operations in 2011. 
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6 Experimental development 

6.1 Technology choices for muon detection  
The GMDN is composed of several detectors, one of which is based on gas-filled detectors (at 
Kuwait University) while the others are based of scintillation detectors. Both of these 
technologies were evaluated.  
 
Gas-filled detectors rely on the deposition of ionization as a charged particle moves through an 
enclosed gas volume. A high voltage is used to sweep the electrons created towards a thin anode 
wire where they are amplified in a very high electric field, causing an avalanche. Unfortunately 
many of these processes depend on the pressure: the initial ionization deposition, the drift velocity 
of the electrons and finally the amplification on the electron avalanche. The first two processes 
have a linear dependence which is quite small; the latter has an exponential dependence which 
can be quite large. It is therefore quite difficult to provide enough gain to overcome the electronic 
thresholds in all situations, and at the same time avoid saturation of the electronics, which reduces 
the overall accuracy of the devices.  
 

Another option is to use the scintillation detectors. These are fairly immune to pressure variations 
and with careful design can avoid temperature effects. From the point of view of maintaining a 
long term monitoring facility, they offer many advantages over gas-filled detectors. However they 
tend to be more expensive than gas-filled detectors for the same technical specifications, for 
example, for positional accuracy. As a result, a prototype gas-filled detector (named 
FOREWARN) was constructed which started taking data in February 2012 [87: Boudjemline, 
2012].  

The muon tracking system built at Carleton University used devices constructed for a different 
experiment studying muon tomography [88: Boudjemline, 2011; 89: Boudjemline, 2010]. This 
provided the project with inexpensive, ready-made apparatus which was of great importance due 
to the limited project duration and budget. The goal was to track cosmic-ray muons by providing 
two hit positions in space and consequenty the angular distributions in two directions (zenith and 
azimuthal angles). The research group at Carleton University had to perform all stages of this 
work, from the evaluation of the system performance, and prototype design, to the data collection 
and analysis in order to understand CR muon variations. The detector was not originally designed 
for contributing to the GMDN, so consequently had a more limited angular range than ideal. The 
positional accuracy was also two orders of magnitude better than required. However it provided 
experience in the type of pressure, temperature and diurnal corrections that are required in order 
to be sensitive to the initiation of solar storms. 
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Table 7: Drift chamber materials used for GEANT4 simulation. The numbers are shown for a           
single drift chamber. 

 Material # Thickness Density (g/cm3) 

Active Argon gas 1 1.5 cm 1.78 x 10-3 

Electrodes/ 
shielding 

Copper 4 60 mm 8.96 

G10 skin SiO2 4 3.1 mm 1.91 

Styrofoam Polystyrene 2 2.5 cm 0.03 
 
The main secondary cosmic ray particles include electrons, muons and protons. The particles 
have been generated using the CRY software [90: CRY software] interfaced with GEANT4. The 
physical processes for each type of particles taken into account in the simulation are listed in 
Table 8. 
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Table 8: Physics processes used for each particle in the GEANT4 simulation. 

Particle Multiple 
scattering 

Ionization Bremsstrahlung Pair production 

Proton x x   

Electron x x x  

Muon x x x x 
 
 
As a demonstration, a GEANT4 simulation of a 0.5 GeV/c muon track is presented in Figure 54.  

The interactions of muons, electrons and protons during their propagation through the different 
layers of the FOREWARN detector are modelled and shown in Figure 55. It presents the 
interaction of each particle with different materials of the detector. Most of muons traverse the 
whole system. Because of their rapid energy loss, electrons can make it up to second stage only. 
Most of them are stopped in the first and second stage. In the case of protons, some of them are 
absorbed in the first lead layer and some in the second lead layer. Only a small fraction of them 
can make it to the last stage.  The energy loss for each trigger stage is shown in Figure 56.  

A summary of the expected number of events for each trigger stage is presented in Figure 57: 
from top to bottom, stages 1, 2 and 3. In each plot (each stage), the solid lines are the generated 
fluxes. The dashed lines are the surviving events after geometrical acceptance and energy loss in 
different materials. Three columns presented at the top left corner of each figure are (from left to 
right): 

- Fraction (in %) of each particle to the total number of events. 

- Fraction (in %) of each particle to the generated number of events for the same particle type. 

- Fraction (in %) of each particle type to all particles surviving in stage 1. 

The last fraction is the most important. It allows us to compare the detected number of events in 
each stage. It follows from Figure 57 that the number of muons in the second and third stages will 
be reduced by 5% and 17%, respectively, compared to the main stage (stage 1). The minimum 
muon momentum is around 0.2 and 0.4 GeV/c in these stages, which is in good agreement with 
previous calculations [90: CRY software]. 
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as a valid scintillator trigger event plus a pulse from each chamber (above a certain threshold). 
The details about the drift chamber data analysis are given in [89: Boudjemline, 2010]. The 
inefficiency of both scintillators stages is corrected as follows:  
 
  - performing a linear fit between the event hit positions in the drift chambers;  
 
  - extrapolating the vertical position of each stage;  
 
  - reweighting each event according to the combined efficiency plot shown in Figure 61. 

6.4.2 Pressure correction 
Many parameters can affect the muon count rate, such as low statistics (random fluctations), 
atmospheric parameters (pressure, temperature, humidity, clouds etc.), solar cycle (primary 
cosmic ray flux), solar activity (ICME propagation) and others.  
 
In addition to that, the response of the drift chamber is sensitive to the pressure. The primary 
ionization increases with the pressure, but the avalanche gain decreases. The avalanche gain has 
to be high enough to avoid the chamber becoming inefficient for some events.  
 
The pressure has the largest effect on the flux with the absence of any solar activity. In this 
analysis, only the atmospheric pressure effect is corrected for the muon count rate; a linear 
regression method is used, as follows [95: Dorman, 1972]: 
 

)( PPIII Pc  ,                                                         (8) 

where I , cI  and  I are measured, corrected and average muon counts respectively, P is the 

atmospheric pressure, P  is an average atmospheric pressure (taken as 1000.0 hPa), and P  is 
the pressure coefficient in %/hPa. Each correction is usually performed separately for a given 
directional channel. Due to the effect of the absorption in the atmosphere, the pressure coefficient 
is negative, indicating an anti-correlation between the observed flux and the atmospheric pressure 
[96: Famoso et al., 2005]. The pressure coefficient p  is obtained using the correlation factor CF 

from  
 

PIp CFI /  , 

 
where 
 

PI

N

i
ii PPII

NCF 1
))((1

 ,  
N
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iI II

N 1

2)(1
,  

N
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iP PP

N 1
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, 

 

iI  and Pi are the measured muon count and atmospheric pressure for a time bin i. The 
atmospheric temperature correction could also be made by a formula similar to Eq. (8) where the 
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6.5 Proposed detector of new type  

There are many applications where a large area detector is required. In ground-based cosmic ray 
studies, large area (5 m × 5 m) arrays are required to provide sufficient statistics for detailed 
analysis within a short data-taking period of an hour or less, given the fairly low cosmic ray muon 
rate of 1 cm-2 min-1. In designing detectors to cover this area, one can either set the detector 
dimensions equal to the array dimensions, or construct many smaller devices and locate them 
adjacent to each other. In the former arrangement, the challenge is working with large heavy 
objects that are fairly delicate – either plastic scintillator or large area drift chambers. These 
require special lifting techniques and many precautions to avoid damage to the sensitive 
equipment. The other approach is to make many smaller units, which are easier to work with and 
defective units can be easily replaced. The challenge then, is to provide a calibration method, so 
that each detector’s response can be tracked and balanced with neighbouring detectors to provide 
an overall uniform response.  

This section describes the second approach, and proposes a small modular detector, 2 feet by 2 
feet, which can be mass-produced to form the basis of a much larger detector. This document 
describes the base unit, describes noise mitigation techniques, and discusses calibration 
procedures which will allow a large detector, made up of many such units, to perform with a 
uniform response [98: Armitage, 2011]. 

6.5.1 Physical Dimensions 

In pursuing the idea of using many smaller detector units and assembling them next to each other 
to cover a large area, one has to minimize the cost per unit otherwise the total cost will be 
prohibitive. For any detector, a large proportion of the cost is in the electronics used to read it out, 
therefore the DAQ needs to be kept as simple as possible. A scintillating tile detector achieves 
this as it does not require a flash analogue to digital converter (ADC) or sensitive time to digital 
converters (TDCs), it only requires a discriminator and pattern unit bit to record which channel 
has ‘fired’.  

While this keeps the electronics simple, the size of the unit detector then determines the 
granularity (i.e. the spatial and angular resolution). Looking at other detectors used for monitoring 
cosmic ray muons, there are six muon detectors that each cover an area of  9 m2: scintillator 
muon telescopes in Nagoya, São Martinho, Hobart; muon hodoscopes in Kuwait, Russia, and 
Ooty, India. The typical angular resolution of these detectors is ±10 degrees. In order to match 
this specification, a 1 foot (30.5cm) square tile would need to be placed 2 m above a similar sized 
tile. With this as a base, four tiles can then be packed together making a 2 foot by 2 foot (61cm x 
61cm) unit, see Figure 71.    

6.5.2 The Readout Fiber 
Provisions are made for the readout fiber to be located in a groove that is machined into the top 
face of the scintillator tile. The tile itself can be 5 cm thick, and a groove of 2 mm depth by 2 mm 
width, is machined into the upper surface. The wavelength shifting (WLS) fibre (manufactured by 
the KURARAY company) has an outer dimension of 1.2 mm and can be glued into the groove  
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7 General conclusions  and capability roadmap 

The impacts of space weather storms on electric power grids can result in wide-spread and 
sustained power grid damage. The most severe case to date is the Hydro Quebec blackout in 
1989. The report prepared by the National Science Foundation (USA) in 2008 has pointed out 
that the impacts can be much more severe, especially with power grids that are more heavily 
loaded and interconnected.  
 
Space weather events resulting from solar eruptions produce geomagnetic storms which can drive 
geomagnetically induced currents in high voltage transmission lines. These could cause severe 
damage to critical components of the electrical power grid. Canada is more exposed to the space 
weather effects than US due to its northern geographic location. 
 
The extreme space weather events are driven by CMEs and are often preceded by interplanetary 
shocks. In turn, these are typically accompanied by strong enhancements of the cosmic ray 
anisotropy. Such anisotropies represent a key mechanism by which information about the 
presence of a severe disturbance can be transmitted to remote locations, including upstream of the 
shock. Since CRs are fast (near the speed of light) and have large scattering mean free paths in the 
solar wind (~ 1 AU), this information may prove useful for space weather forecasting. Muons, 
being easy-to-detect, high energy particles, are good candidates to provide useful early-warning 
information about approaching solar disturbances.  
 
The aim of this feasibility study was to understand the physical mechanisms of the cosmic ray 
precursors and to build a prototype muon telescope. Thus, the project was divided into theoretical 
(knowledge development) and experimental (technology development) parts. The theoretical part 
was performed by researchers at Natural Resources Canada, and the experimental part was led by 
Carleton University’s Physics Department.  
  
Conclusions from the theoretical part are as follows: 
 
1. Review of the literature shows that in many cases the precursors of the strong disturbance can 
be identified in post-analysis. 
 
2. The most reliable precursor is the Loss-Cone (LC) precursor which is associated with the 
deficit of the CR flux in the disturbed interplanetary media. 
 
3. An analysis of muon data for one of the storms shows a possibility of observing LC precursors 
up to 25 hours in advance. 
 
4. In order to build a physical model of propagation and modulation of CRs, in particular the 
Forbush Decrease, one should solve the CR transport equation.  
 
The most challenging task was to define the unknown diffusion term in the CR transport 
equation; this has been obtained during the execution of the project. An evaluation of a diffusion 
model for CR transport has showed that  
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During large FD events the diffusion approximation in high-energy limit is valid for CRs 
of ~ 50 GeV and higher energy. 

 
The derived diffusion coefficient can be used in numerical modeling for estimations of 
terms in the transport equation and to find a relation between the FD amplitude and 
parameters of solar wind and IMF.  

 
 A similar approach can be applied to the neutron component but with a different 
expression for the diffusion coefficient. 

 
Roadmap: 

The next level in knowledge advancement is to solve the CR transport equation based on the 
results of the analysis of the diffusion process performed in this report. 
 
In order to gain more predictive power we need to monitor the propagation of solar disturbances 
between the Sun and the Earth. The way to do this is to monitor the CR flux using ground-based 
muon detectors.  
 
The Canadian Muon Workshop has shown that the Global Muon Detector Network (GMDN) 
performs this function around the globe successfully, but there are gaps in the GMDN’s viewing 
directions: one of them is located in North America.  
 
It has been concluded that placing an additional muon detector in Eastern Canada, Western 
Canada or the Canadian North will provide complete coverage of the whole sky and therefore will 
provide more information on approaching solar disturbances. Thus, a proposed muon telescope in 
Ottawa would provide critically needed coverage for a study of CR modulation phenomena 
observed with GMDN. 
 
The second, important part of this project was to create a prototype muon telescope in 
Canada; this has been done by the team at the Department of Physics at Carleton University. 
 
During the course of project, the prototype, gas-filled muon telescope was designed, assembled 
and successfully operated.  
 
The methods of removing the effects of non-solar modulations (e.g. atmospheric pressure and 
temperature) on the data obtained by this prototype telescope were investigated. 
 
In addition to the prototype muon telescope, a new tile-detector has been proposed and its 
conceptual design was provided.  
 
The next step in technology advancement is the construction, of a full-scale, operational muon 
telescope. 
 
Summarising the results of the work in brief, the following can be pointed out: 
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1. A methodology to use muon detectors for space weather forecasting has been developed. These 
methods should be further developed for operational use. This would lead Canadian scientists to 
contribute to solving a problem of great, global importance. 
 
2. A study of the prototype muon detector at Carleton University confirmed that ground-based 
muon telescopes can provide reliable monitoring of CR intensity. 
 
3. To provide more reliable early warning of solar storms with impacts to terrestrial critical 
infrastructure, one needs to provide full-sky coverage. This can be done by adding in a muon 
detector location in Ottawa and participating in the Global Muon Detector Network. 
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Glossary .....

Coronal Mass Ejection (CME) 

A particularly large release of charged particles from the Sun. 

Cosmic Rays (CRs) 

Highly energized charged particles in space with the main constituent being protons (about 
90%), mainly originating outside the solar system. 

Muon Telescope  

A detector of muons, particles produced as a result of interactions of cosmic rays with gas 
molecules in the Earth’s atmosphere. 

Advanced Composition Explorer (ACE) 

A NASA solar and space exploration mission to study matter comprising energetic particles 
from the solar wind, the interplanetary medium, and other sources. The ACE spacecraft is 
currently operating in a Lissajous orbit close to the L1 Lagrange point (which lies between 
the Sun and the Earth at a distance of 1.5 million km from the latter). 

Extreme Space Weather 

Space weather conditions following large solar flares.  

Geomagnetically Induced Currents (GICs) 

Currents induced in conductors, especially pipelines, by the geomagnetic field. 

Global Muon Detector Network 

International muon detector network composed of four muon telescopes at Nagoya (Japan), 
Hobart (Australia), Kuwait (Kuwait), and São Martinho (Brazil). 

Forbush Decrease (FD) 

A rapid decrease in cosmic ray intensity associated with solar disturbances. 

Proportional Counter Tubes 

A counter tube whose output pulse is proportional to number of ions produced by ionizing 
radiation. 

Storm Sudden Commencement (SSC) 

The moment when a geomagnetic storm starts. 

Loss-Cone anisotropy 

Effect of intensity deficits confined to a small pitch-angle region around the sunward 
direction along the interplanetary magnetic field. 
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Interplanetary Magnetic Field (IMF) 

The solar magnetic field carried by the solar wind among the planets of the solar system. 

Pitch angle 

The angle between the sunward interplanetary magnetic field direction and the viewing 
direction of the station or directional channel. 

Diurnal Anisotropy 

Anisotropy of cosmic rays, which is attributed to the bulk streaming of the cosmic ray gas 
caused by the co-rotating interplanetary magnetic field. 

International Geomagnetic Reference Field 

A standard mathematical description of the Earth's main magnetic field. 

Solar & Heliospheric Observatory (SOHO) 

A space-based observatory, viewing and investigating the Sun from its deep core, through its 
outer atmosphere - the corona - and the domain of the solar wind, out to a distance ten times 
beyond the Earth's orbit. 
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