

Malware memory analysis for non-
specialists
Investigating a publicly available memory image of the Zeus Trojan
horse

R. Carbone
Certified Forensic Hacking Investigator (EC-Council)
Certified Incident Handler (SANS)
DRDC Valcartier

Defence R&D Canada – Valcartier
Technical Memorandum
DRDC Valcartier TM 2013-018
April 2013

Principal Author

Richard Carbone

Forensic Investigator

Approved by

Guy Turcotte

Head/Mission Critical Cyber Security Section

Approved for release by

Christian Carrier

Chief Scientist

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

Abstract ……..

This technical memorandum examines how an investigator can analyse a Windows-based
computer memory dump infected with malware. The author investigates how to carry out such an
analysis using Volatility and other investigative tools, including data carving utilities and anti-
virus scanners. Volatility is a popular and evolving open source-based memory analysis
framework. The author has proposed a memory-specific methodology based on a simple
investigative process to help fellow novice memory analysts. Once evidence or indicators of
malware have been found, the author examines how Volatility can be used to undertake a given
memory investigation. This technical memorandum is the first of a series of reports that will be
written concerning Windows malware-based memory analysis using Volatility and various
malware scanners. This specific work examines a memory image infected with the Zeus Trojan
horse.

Résumé ….....

Le présent mémorandum technique examine comment un enquêteur peut analyser une image
mémoire Windows infectée par des logiciels malveillants. L'auteur étudie la façon d’effectuer une
telle analyse en utilisant Volatility ainsi que d’autres outils, y compris des utilitaires pour la
récupération de données et des scanneurs anti-virus. Volatility est un cadriciel à code source
ouvert populaire et en constante évolution pour l’analyse de mémoire. L’auteur propose une
méthodologie spécifique à l’analyse de mémoire basée sur un processus d'enquête simple afin
d’aider des collègues débutants. Une fois que des preuves ou des indicateurs de la présence de
logiciels malveillants ont été trouvés, l’auteur examine comment Volatility peut être utilisé pour
analyser la mémoire. Ce mémorandum technique est le premier d’une série de rapports qui seront
écrits au sujet de l’analyse de mémoire pour Windows en utilisant Volatility et d’autres scanneurs
de logiciels malveillants. Le présent ouvrage examine une image mémoire infectée par le cheval
de Troie Zeus.

DRDC Valcartier TM 2013-018 i

This page intentionally left blank.

ii DRDC Valcartier TM 2013-018

Executive summary

Malware memory analysis for non-specialists: Investigating a
publicly available memory image of the Zeus Trojan horse

R. Carbone; DRDC Valcartier TM 2013-018; Defence R&D Canada – Valcartier;
April 2013.

The author has decided to share his own investigative analysis concerning a publicly available
Windows-based infected memory image with the forensic community. While memory analysis
has largely been carried out by software reverse engineers and malware analysts, the advent of
memory analysis forensic frameworks such as Volatility, has made it possible for non-memory
specialists to engage in the forensic analysis of malware infected memory images. By combining
Volatility, data carving utilities and anti-virus scanners, novice analysts have all the necessary
tools required for conducting memory-based investigations.

The author’s primary objective is to demonstrate through concrete examples how investigators
can conduct meaningful memory-based investigations on their own. Moreover, the author has
provided a straightforward memory-specific investigative methodology to help novice memory
analysts with their own memory investigations.

This technical memorandum examines the Zeus Trojan horse and is the first of a series that will
examine various Windows-based malware infected memory images, in order to build a
compendium of examples that can be used by the Canadian Armed Forces as a basis for
conducting their own investigations. Thus, this document serves as a learning guide, for both the
author and the community. Using publicly available computer memory images infected with well-
known malware, investigators will be able to apply the concepts and memory-specific
methodology examined herein.

Although others have engaged in the analysis of these very same memory images, the author is of
the opinion that these analyses are insufficient as learning guides. Specifically, these analyses are
either too limited in their investigative scope or report too little information to be of much use.
Moreover, many of these analyses leave the reader asking more questions than when he began,
due to the overall lack of their having a comprehensive investigative context. Thus, the author has
strived to ensure that his investigative actions and lines of inquiry were documented herein, even
if some of them were unsuccessful, in order to ensure that the investigative context used was
coherent.

This work was carried out over a period of several months as part of the Live Computer Forensics
project, an agreement between DRDC Valcartier and the RCMP (SRE-09-015, 31XF20).

The results of this project will also be of great interest to the Canadian Forces Network
Operations Centre (CFNOC), the RCMP’s Integrated Technological Crime Unit (ITCU), the
Sûreté du Québec and other cyber investigation teams.

DRDC Valcartier TM 2013-018 iii

Sommaire

Malware memory analysis for non-specialists: Investigating a
publicly available memory image of the Zeus Trojan horse

R. Carbone ; DRDC Valcartier TM 2013-018 ; R & D pour la défense Canada –
Valcartier; avril 2013.

L'auteur a décidé de partager avec la communauté légale sa propre analyse d'enquête d’une image
mémoire Windows infectée et accessible au public. Bien que jusqu’à maintenant l'analyse de
mémoire ait été en grande partie réalisée par des rétro-ingénieurs et des analystes de logiciels
malveillants, l’avènement de cadriciels légaux pour l’analyse de mémoire tels que Volatility, ont
rendu possible pour des non-spécialistes l’analyse d’images infectées par des logiciels
malveillants. En combinant Volatility avec des utilitaires de récupération de données et des
scanneurs anti-virus, les analystes débutants ont tous les outils nécessaires pour mener des
enquêtes basées sur l’analyse de mémoire.

L’objectif principal de l'auteur est de démontrer par des exemples concrets comment des
enquêteurs peuvent mener des enquêtes significatives basées sur l’analyse de mémoire de leur
propre chef. Par ailleurs, l'auteur fourni une méthodologie simple et spécifique à l’analyse de
mémoire afin d’aider les analystes novices dans leur propres enquêtes.

Ce mémorandum technique analyse le cheval de Troie Zeus et est le premier d’une série qui
examinera plusieurs images mémoires Windows infectées par des logiciels malveillants. Le but
est de constituer un recueil d’exemples qui pourra être utilisé par les Forces armées canadiennes
comme base pour la conduite de leurs propres enquêtes. Ce document sert donc de guide
d’apprentissage à la fois à l’auteur et à la communauté. En utilisant des images mémoires
accessibles au public et infectées par des logiciels malveillants notoires, les enquêteurs seront en
mesure d’appliquer les concepts et la méthodologie spécifique à l’image mémoire examinée dans
le présent document.

Bien que d’autres se soient livrés à l’analyse de ces mêmes images mémoires, l’auteur est d’avis
que ces analyses sont insuffisantes pour être utilisée comme guides d’apprentissage. Plus
précisément, ces analyses sont soient trop limitées dans leur portée d’enquête ou fournissent trop
peu d’informations pour être d’une quelconque utilité. De plus, plusieurs de ces analyses laissent
le lecteur avec plus de questions que de réponses, en raison de l’absence générale d’un contexte
d’enquête détaillé. Par conséquent, l’auteur s’est assuré que ses actions et pistes de réflexion
soient documentées, même celles qui se sont avérées infructueuses, afin que le contexte d’enquête
utilisé soit cohérent.

Ce travail fut réalisé sur une période de plusieurs mois dans le cadre du projet "Live Computer
Forensics" qui est une entente entre RDDC Valcartier et la GRC (SRE-09-015, 31XF20).

Les résultats de ce projet seront également d'un grand intérêt pour le Centre d'opérations des
réseaux des Forces canadiennes (CORFC), le Groupe intégré de la criminalité technologique
(GICT) de la GRC, la Sûreté du Québec, ainsi que d’autres équipes d'enquêtes cybernétiques.

iv DRDC Valcartier TM 2013-018

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary .. iii
Sommaire iv
Table of contents ... v
List of tables .. vii
Acknowledgements .. viii
Disclaimer policy.. ix
Requirements, assumptions and exclusions ... x
Target audience .. xi
1 Background ... 1

1.1 Objective.. 1
1.2 Why write new tutorials? ... 1
1.3 Infected memory image information ... 1
1.4 Data carving... 2
1.5 Malware and anti-virus scanners ... 3

1.5.1 Specifics ... 3
1.5.2 Caveat .. 3

1.6 Detailed list of software tools used .. 4
1.6.1 Anti-virus scanners .. 4
1.6.2 Data carving ... 5
1.6.3 Volatility .. 6

1.7 Investigative methodology .. 6
2 Zeus memory investigation ... 10

2.1 Background.. 10
2.2 Preliminary investigative steps .. 10

2.2.1 Protect the memory image ... 10
2.2.2 Preliminary anti-virus scanning results .. 10
2.2.3 Data carving and file hashing .. 11
2.2.4 Anti-virus scanning and file hashing results for data carved files 11

2.3 Volatility memory analysis .. 13
2.3.1 Background .. 13
2.3.2 First analysis endeavour: wrong turn ... 13

2.3.2.1 Imageinfo plugin .. 13
2.3.2.2 Pslist plugin .. 14
2.3.2.3 Cmdscan and consoles plugins .. 16
2.3.2.4 Psscan plugin ... 17

DRDC Valcartier TM 2013-018 v

2.3.2.5 Differentiating the output between the pslist and psscan plugins 18
2.3.2.6 Connecting the dots with respect to VMip.exe .. 18
2.3.2.7 Psxview plugin ... 19
2.3.2.8 Threads plugin ... 20
2.3.2.9 Thrdscan plugin ... 24
2.3.2.10 Memdump, procexedump and procmemdump plugins 25
2.3.2.11 First analysis endeavour summary ... 26

2.3.3 Second analysis endeavour: hunting and finding the evidence 27
2.3.3.1 Connscan plugin... 27
2.3.3.2 Connections plugin .. 28
2.3.3.3 Sockets and sockscan plugins .. 28
2.3.3.4 Whois suspicious IP address .. 30
2.3.3.5 Malfind plugin ... 32
2.3.3.6 Dumping the suspicious process using Volatility and malfind 34
2.3.3.7 Virus scanning and hash verification of malfind-dumped PID 856 34
2.3.3.8 Filescan plugin ... 35
2.3.3.9 Summary .. 36

2.3.4 Pruning the registry for more information ... 37
2.3.4.1 Hivelist plugin .. 37
2.3.4.2 Printkey plugin ... 39
2.3.4.3 Output from the various printkey commands .. 40
2.3.4.4 Userassist plugin .. 42

3 Memory analysis issues .. 43
3.1 Memory analysis problems .. 43
3.2 The uses of memory analysis... 43

4 Conclusion .. 44
References 45

 Anti-virus scanner logs for data carved files ... 47 Annex A
A.1 Avast .. 47
A.2 AVG .. 47
A.3 BitDefender ... 48
A.4 ClamAV ... 48
A.5 F-Prot ... 51
A.6 McAfee .. 51

 Volatility Windows-based plugins .. 53 Annex B
 NSRL file hash matches for data carved files ... 57 Annex C
 Commonly used registry keys in a typical malware infection 61 Annex D

Bibliography .. 65
List of symbols/abbreviations/acronyms/initialisms ... 66

vi DRDC Valcartier TM 2013-018

List of tables

Table 1: Infected memory image metadata. .. 2

Table 2: List of anti-virus scanners and their command line parameters. 4

Table 3: Photorec data carving settings. .. 5

Table 4: Matching of carved executable files and their detection by anti-virus scanners. 11

Table 5: Volatility output for the pslist plugin. ... 14

Table 6: Volatility output for the psscan plugin. ... 17

Table 7: Volatility output for the psxview plugin. .. 19

Table 8: Volatility output for the thrdscan plugin. .. 24

Table 9: Volatility output for the connscan plugin. ... 27

Table 10: Volatility output for the sockets plugin. .. 28

Table 11: Volatility output for the sockscan plugin. ... 29

Table 12: Volatility output for the hivelist plugin. .. 37

Table 13: Association between registry hives and their corresponding registry keys
commonly used for registry-based infections as per the hivelist output. 38

Table B.1: List of Volatility 2.2 plugins. ... 53

Table C.1: Data carved file SHA1-filename matches as per the NSRL .. 57

DRDC Valcartier TM 2013-018 vii

Acknowledgements

The authors would like to thank Mr. Philippe Charland for peer reviewing this text and providing
helpful comments to improve it. Thanks are also extended to Mr. Sébastien Bourdon-Richard of
the RCMP’s Integrated Technological Crime Units for conducting a technical review of this
document.

viii DRDC Valcartier TM 2013-018

Disclaimer policy

It must be understood from the outset that this technical memorandum examines computer
malware and that handling virulent software is not without risk. As such, the reader should ensure
that he has taken all the necessary precautions to avoid infecting his own computer system and
those around him, whether at work on a corporate network or on an isolated system.

The reader should neither construe nor interpret the work described herein by the author as an
endorsement of the aforementioned techniques and capacities as suitable for any specific purpose,
construed, implied or otherwise. Moreover, the author does not endorse the specific use of one
specific anti-virus product, the use of Volatility or any data carving technology. Many similar
software tools, utilities and scanners exist beyond those used herein. They may be commercial,
free or open source in nature and as such, the onus is on the reader to determine which software
best suits his specific needs. While the author felt most comfortable working from within a Linux
environment, the author does not specifically recommend the use of such a system for the reader.
Instead, the reader should use the environment in which he is most comfortable.

Furthermore, the author of this technical memorandum absolves himself in all ways conceivable
with respect to how the reader may use, interpret or construe this technical memorandum. The
author assumes absolutely no liability or responsibility, implied or explicit. Moreover, the onus is
on the reader to be appropriately equipped and knowledgeable in the application of digital
forensics. Due to the offensive nature of computer malware, the author is no way responsible for
the reader using any malware, whether examined herein or otherwise, in any offensive or
defensive nature against any other entity, or even against the reader himself, for any purposes
whatsoever, for any construed reasons.

Finally, the author and the Government of Canada are henceforth absolved of all wrongdoing,
whether intentional, unintentional, construed or misunderstood on the part of the reader. If the
reader does not agree to these terms, then his copy of this technical memorandum should be
destroyed. Only if the reader agrees to these terms should he or she continue in reading it beyond
this point. It is further assumed by all participants that if the reader has not read the said
Disclaimer upon reading this technical memorandum and has acted upon its contents, then the
reader assumes all responsibility for any repercussions that may result from the information and
data contained herein.

DRDC Valcartier TM 2013-018 ix

Requirements, assumptions and exclusions

The author assumes that the reader is altogether familiar with digital forensics and the various
techniques and methodologies associated therein. This technical memorandum is not an
introduction to digital forensics or to said techniques and methodologies. However, this technical
memorandum will endeavour to ensure that the reader can carry out his own forensic analysis of
computer memory images suspected of malware infection.

The experimentation conducted throughout this technical memorandum has been carried out atop
a Fedora Core 17 64-bit Linux operating system. Six different anti-virus scanners were used
throughout this investigation. They include, in alphabetical order, the AVG, Avast, BitDefender,
ClamAV, FRISK F-Prot and McAfee command line scanners. As for data carving tools and
utilities, the author used Photorec, a part of the Testdisk suite of data recovery tools.

It is assumed that the reader successfully obtained the publicly available infected memory image
examined in Section 1.3. Moreover, it is assumed that the reader has permission to use these tools
on his computer system and network. Use of these tools and the analysis of virulent software
always carry some inherent risk that must be adequately managed and minimized.

An in-depth study of memory analysis techniques is outside the scope of this work, as it requires
a comprehensive study of Windows operating system internals and software reverse engineering
techniques, both of which are difficult subjects to approach. Instead, this work should be
considered as a guide to using the Volatility memory analysis framework.

x DRDC Valcartier TM 2013-018

Target audience

The targeted audience for this technical memorandum are computer forensic investigators who
must assess suspect computer memory dumps for malware infection. Although computer memory
analysis is a rather new topic within the field of digital forensics, there are those who have been
conducting malware analysis and software reverse engineering for years, long before this topic
became popular. Those seasoned veterans are aptly skilled. A framework such as Volatility, while
capable of providing great insight even by novices, is all the more capable in the hands of experts.

The author of this technical memorandum has written it for others who, like himself, are required
from time to time to conduct memory malware assessments and investigations. However, the
author, like many others, are not seasoned enough to take full advantage of Volatility’s
capabilities. As such, this technical memorandum combines both traditional forensic investigative
techniques, coupled with Volatility’s non-expert plugins, in order to develop an investigative
how-to for non-memory analysis experts.

DRDC Valcartier TM 2013-018 xi

This page intentionally left blank.

xii DRDC Valcartier TM 2013-018

1 Background

1.1 Objective

The objective of this technical memorandum is to examine how a computer forensic investigator,
without specialised computer memory or software reverse engineering knowledge, can
successfully investigate a suspected infected memory image. More specifically, this document
examines a methodological approach a novice memory analyst could use to investigate suspected
memory images.

The work carried out herein is based on a publicly available memory image containing a well-
known malware, the Zeus Trojan horse. This document, the first in a series of many, examines the
investigative techniques necessary for a novice to conduct such memory analyses on his own.
Ultimately, these reports will provide a methodological and foundational framework that novice
memory analysts and experienced investigators alike can rely as a memory analysis guide or
tutorial.

1.2 Why write new tutorials?

Although various online tutorials exist in various locations concerning these and other infected
memory images, the tutorials are generally written for a highly technical audience already
familiar with software reverse engineering and memory forensics.

It could be argued that these currently available tutorials are altogether insufficient in aiding
budding memory investigators in learning the necessary techniques required to apply the
techniques of digital forensics to memory analysis. The author instead asserts that by re-
examining and thoroughly documenting the steps and procedures necessary to unravel these
publicly available malware infected memory images, one at a time that a compendium of
information would become available to the novices within the forensic community to serve as
learning guides and tutorials.

The author has made all efforts to ensure that this document and the investigation of the Zeus
Trojan horse is comprehensible to general computer forensic practitioner, in the hopes of reaching
as wide an audience as possible, in order to have a more significant impact.

1.3 Infected memory image information

The infected Zeus memory dump file examined herein has been procured from the following
location: http://code.google.com/p/volatility/wiki/PublicMemoryImages. Its SHA1 hash in its
uncompressed form is as follows:

DRDC Valcartier TM 2013-018 1

http://code.google.com/p/volatility/wiki/PublicMemoryImages

Table 1: Infected memory image metadata.

Memory image name Size (MiB) SHA1 hash value

zeus.vmem 128 (exactly) e67f018663089c05a2ad8dd8d5a2d7c53c35c4ca

1.4 Data carving

Data carving software are specific tools and utilities whose primary objective is to recover data
from damaged or corrupted filesystems, partitions or from unallocated disk and filesystem space.
However, this software can also be used to coax the data recovery and extraction of deleted or
damaged data from raw filesystems and damaged disks or devices.

Although a variety of data carving software exists in the commercial and open source
marketplace, the capabilities of several open source tools rival the best commercial tools.
Specifically, Photorec, part of Testdisk suite of data recovery tools is, in the opinion of the author,
superior to all other open source data carving tools, as it uses advanced pattern detection
techniques and supports many hundreds of commonly used file formats. Moreover, since the
work carried out herein must be reproducible, the use of open source software makes sense, as the
software’s configuration and functionalities can be fine-tuned and understood through code
analysis, respectively. [1, 16]

Data carving should not generally be carried out against intact filesystems, as undamaged and
accessible data therein will be needlessly recovered, thereby complicating the recovery and
extraction of deleted or lost data and files. Instead, data recovery through data carving should
only be conducted against a filesystem’s unallocated space. Data carving-based recovery can also
be conducted against raw or damaged filesystems where no discernible filesystem or logical
access mechanism can be readily determined.

Although computer memory images may have a discernible structure, they are not easy to work
with and manipulate without an appropriate memory analysis framework. These frameworks
include but are not limited to Volatility. Even then, these frameworks are only of use against
processes and threads which were in the midst of running or had been paused (or that turned into
a zombie process). Other processes that had died or terminated may nevertheless remain
relatively intact within a given memory image and can sometimes provide additional information
to a memory analysis framework. However, many of the data files in use at the time of acquisition
are not generally available through such a framework and using a data recovery and carving tools
may help to retrieve these data from a given memory image. Moreover, data recovery and carving
tools used against memory images can often recover individual processes and threads, which can
then be analysed using malware scanning technology for indicators of infection.

Thus, in the author’s opinion, data carvers can be used to help perform “quick and dirty” triage-
based forensics in order to determine whether a given memory image should be analysed using a
memory analysis framework.

Of course, data carving is not foolproof and can be highly error prone, as the success of data
carving is highly dependent on the contents of the memory and the extent to which its various
contents may have been paged out to the underlying suspect system’s pagefile. Even if a given

2 DRDC Valcartier TM 2013-018

process or its data has not been paged out, it may not have been allocated in a contiguous block of
memory and may therefore be fragmented. Thus, data carving a given memory image will often
result in partially recovered executable and data files. Nevertheless, this is often a good starting
point for commencing an investigation and with multiple anti-virus scanners, the odds increase of
correlating aggregated anti-virus scanner detections.

1.5 Malware and anti-virus scanners

1.5.1 Specifics

Prior to conducting any memory analysis, it is prudent to use at least several scanners to
determine, from a preliminary standpoint, whether a given memory image may in fact be infected.
Some scanners are highly sensitive, while others are not. As such, some scanners can be directly
passed suspected memory images for immediate analysis, while others are altogether incapable of
processing such images. Of course, even after the initial analysis of a given raw memory image,
multiple scanners should be used against the data recovered against said memory image using a
data recovery and carving tools. The use of multiple scanners is highly beneficial as each scanner
uses different detection techniques that are either signature or heuristic-based, and sometimes
both.

When performing the initial scan against a raw memory image, it is unlikely that most scanners
will pick up anything. Instead, it is likely that the scanners will turn up evidence of infection only
after the dismemberment of a memory image using a data carving or recovery tool. However,
tearing memory dumps apart using a data carver and scanning the resultant data files with anti-
virus scanners will often product many false positives. This is why multiple scanners must be
used and their results aggregated. Thus, if a file is detected by multiple scanners, the likelihood of
infection increases. Thus, this increase in detection and identification will help the investigator
decide whether additional analysis against a given memory image is warranted.

Memory fragmentation, which is largely responsible for incomplete processes and threads
residing within a given memory at the time of its acquisition, is due to the manner in which
memory is allocated to programs and swapped out to disk by the operating system’s virtual
memory manager. The swapping out of data, processes and threads only complicates malware
detection of recovered data using data recovery tools. Of course, a variety of factors including the
amount of physical memory (RAM), pagefile size, the number of programs and applications
concurrently running and the amount of memory occupied by various data files will certainly
have an effect on memory fragmentation. Moreover, since memory pages on x86-based systems
are typically allocated in 4 KiB blocks, rarely do entirely programs fit therein. Instead, they are
generally allocated multiple blocks of contiguous memory.

1.5.2 Caveat

The author uses and suggests that instead of relying on online malware scanning resources
including VirusTotal and others, investigators should use locally installed anti-virus and other
malware scanning technology. The primary reason for this recommendation is that while
investigating a malware-related incident within a government or corporate network, infiltration or

DRDC Valcartier TM 2013-018 3

partial control of a network may already have occurred. Moreover, an investigator using one of
these networks to submit malware samples to an online resource may inadvertently tip off the
attacker, who may already be monitoring the network, that signs or suspicion of an attack may
have been uncovered.

Today’s government, corporate and industrial networks are commonly infected with malware,
some of which is virtually undetectable and may have been sponsored by state-based actors. This
is no longer the realm of fiction. All too commonly, advanced malware with command and
control behaviour are able to not only permit a remote attacker to carry out various actions against
a target network, but can even monitor for signs of it having been discovered.

The level of trust in an underlying network is a contentious issue and readers may be of the
opinion that their network is not under any foreign influence. However, how sure can the reader
be about this? The reader must consider and question who potentially stands to benefit from
control of the network or some of its computing resources if they are compromised.

It is for these reasons that the author suggests that the investigator uses a standalone computer
system. Moreover, it is recommended that if the analysis system must remain on the network, it
should implement a form of Mandatory Access Control (MAC) in order to reduce the likelihood
of an attacker compromising it. The use of a MAC-based Linux or UNIX system will only help to
further reduce the possibility that a given malware sample may infect the system and since most
malware the investigator will encounter will be Windows-based, using non-Windows systems for
analysis will only further reduce the likelihood of infecting the analysis system. Thus, such a
system, used in conjunction with locally based anti-virus and malware detection software, will
further reduce the prospect of tipping off the attacker, as that system is likely to be more
trustworthy and free on infection itself. [3]

Finally, major vendors of malware detection software provide Linux and UNIX versions of their
software, sometimes free, although usually they are available for a nominal charge.

1.6 Detailed list of software tools used

1.6.1 Anti-virus scanners

This memorandum makes use of six anti-virus scanners, listed in the following table.

Table 2: List of anti-virus scanners and their command line parameters.

Anti-virus scanner Command line parameters

AVG 2012 command line scanner -H -P -p

Avast v.1.3.0 command line scanner -c

BitDefender for Unices v7.90123
Linux-amd64 scanner command line No parameters used

ClamAV 0.97.6/15618/Thus Nov 22
19:07:00 2012 command line

--detect-pua=yes --detect-broken=yes
-r

4 DRDC Valcartier TM 2013-018

Anti-virus scanner Command line parameters

FRISK F-Prot version 6.3.3.5015
command line scanner -u 4 -s 4 -z 10 --adware --applications

McAfee VirusScan for Linux64
Version 6.0.3.356 command line
scanner

--RECURSIVE --ANALYZE --MANALYZE
--MIME --PANALYZE --UNZIP
--VERBOSE

The assortment of scanners used herein is sufficiently diverse to represent an adequate cross-
section of various detection mechanisms necessary to detect varying malware. Each scanner was
last updated on January 22, 2012, the date upon which the analysis was carried out herein.

1.6.2 Data carving

For data carving, Photorec was used. It is part of the Testdisk suite of data recovery tools,
developed by Christophe Grenier. Written entirely in C, the current stable version, released
November 2011, is 6.13. Originally written to recover deleted photos from disk-based media, it
has since been expanded to support several hundred file formats. Moreover, it is filesystem
agnostic and can be run against disk images without any discernible filesystem such as
unallocated disk clusters and memory dump files.

Photorec’s data carving options were set to the following:

Table 3: Photorec data carving settings.

Options Value

Paranoid Yes (Brute for enabled)

Allow partial last cylinder Yes

Keep corrupted files No

Expert Mode Yes
 Options Value

Low Memory No
 File Options Value

Type Default
 Search (settings) Value

Filesystem type Other

Block size 512 bytes

Support for the Photorec’s file formats were left to the program’s default settings.

DRDC Valcartier TM 2013-018 5

1.6.3 Volatility

Volatility 2.2 is used throughout this work for the analysis of the memory image suspected of
infection by the Zeus Trojan horse. The version of this framework, at the time of this writing, is
considered the stable public release and is suitable for general use by both the public and
investigators alike, although it may not necessarily have the most recent or cutting-edge plugins.
It was released for public use October 2012.

Originally written by Aaron Walters of Volatile Systems, Volatility has become a full-fledged
memory analysis framework. It is written entirely in Python and can therefore be run atop
Windows, Linux and other operating systems supporting Python. Moreover, it has begun to
support Linux-based memory analysis, although its Windows-based support should be considered
more reliable. Currently, it is developed by a variety of contributors, although the most well
known of these are Michael Ligh, Jamie Levy, Brendan Dolan-Gavitt, Michael Cohen, Andrew
Case and Mike Auty. Furthermore, each of these individuals has made significant contributions to
the digital forensic community over the last few years.

The Windows plugins currently supported by this version Volatility are described in Annex B.

1.7 Investigative methodology

The overall investigative methodology used throughout this report is simple. It can be
summarised as follows:

Part 1:

– Ensure that the memory image has been set as read-only using the underlying
filesystem’s immutable flag to prevent accidental changes or modifications to the
image.

Part 2:

– Analyse the raw suspect memory image with multiple anti-virus scanners:

1. Some scanners1 can perform in-depth analysis of seemingly raw data files and in
many instances, determine the nature of the underlying infection. Avast is one
such scanner.

2. Save the output from the various scanners.

Part 3:

– Using at least one advanced data carving utility, carve out all potential data and files
from the suspect image:

1. It is best to use one highly capable data-carving tool rather than several mediocre
tools2.

1 The number of scanners capable of this is rare.

6 DRDC Valcartier TM 2013-018

2. Perform a SHA1 hash against all carved files and ensure that they are not a match
against known good files hash-sets (e.g. known good hashes from the NSRL3).
Those that match known good hashes are to be deleted in order to remove them
from further analysis. Save the hashes in a data file for possible future use.

3. Consider using a CTPH4 hash as well against the extracted data files. This
information will be used in the next step.

Part 4:

– Run the anti-virus scanners against all carved data and files, with attention focused on
cross-AV scanner correlation:

1. When multiple scanners indicate that the same data files carved from a given
suspect memory image contains the same or similar malware, it is likely that
these files do in fact contain a significantly detectable amount of the infection.

2. Only files picked up by more than one scanner are to be considered as possibly
infected, as those detected only once are likely false positives.

3. Save the output from the various scanners and correlate the results. Save this
second analysis and associate fuzzy hashes to correlated scanner results (CTPH
hashes are done using ssdeep).

Part 5:

– If a given memory image continues to remain suspect, e.g., evidence or indications of
infection have been found, then use the Volatility memory analysis framework to better
determine its state and if possible, how the system has come to be infected:

1. Various investigative endeavours using Volatility may not yield tangible results
(e.g., the memory image is corrupt, current plugins are not able to detect anything
abnormal, etc.). Nevertheless, document these as they may serve as a lessons
learned.

2. This requires extracting as much information as possible about the underlying
system, processes and threads that were running, communications, registry
settings (if applicable), open files, etc.

3. There are many plugins to choose from and it is unlikely they will all be used to
determine more information about a given infection. Start by using plugins that
are likely to be of immediate use (e.g., imageinfo, pslist, psxview, etc.) before
using more esoteric plugins.

2 The author is of the opinion that Photorec is one of the best available data carvers currently in use, even if
it is free.
3 The National Software Reference List is a list of software hashes maintained by NIST. The NSRL is the
premier source of known hashes and represents many hundreds of popular software packages, tools and
operating systems.
4 CTPH is better known as fuzzy hashing. This is carried out using the ssdeep tool.

DRDC Valcartier TM 2013-018 7

4. Once a suspected malware thread, process, DLL or data file has been found, hash
and verify it using locally installed anti-virus scanners.

a) If no other malware can be found, cease further analysis and ensure
that all work, analyses and results are documented so that results can
be reproduced by others. Save all work.

b) If the malware is disk-resident, having since removed itself from
memory and cannot be found therein, cease further analysis and
recover the data file from a forensically acquired disk image
corresponding to the given memory image. Ensure that all work,
analyses and results are documented so that results can be
reproduced by others. Save all work.

c) Correlate the extracted malware with that discovered in 4-3.
Determine if the SHA1 or CTPH hashes are the same or similar,
respectively.

5. The malware may not even be in the memory image anymore, as it may have
been removed from memory.

a) This can occur if the malware is swapped out to pagefile.

b) This can also occur if the malware detects an anomalous situation or
environment for itself. For example, some malware continuously
scan for a network connection and it the connection goes down, the
malware unloads itself from memory.

c) However, even if the malware is not in memory anymore, sometimes
the cross-correlation of information from the various Volatility
plugins may lead the investigator to suspect or determine that one or
more disk-based files or network connections may have been
responsible for the infection (or at least involved to some varying
extent).

Part 6:

– In a worst case scenario, where little to no useful information can be determined about a
given infection using Volatility:

1. Begin by dumping processes and DLLs using the appropriate Volatility plugins
(procexedump, procmemdump and dlldump).

2. Use the various scanners to determine if any of the dumped executables were
infected. Note any executable that has received more than one positive
confirmation from more than one scanner.

8 DRDC Valcartier TM 2013-018

3. Determine if any of the executables scanned above that received more than one
positive confirmation for infection match against those data files carved out in
Part 4-3, which also received more than one positive confirmation for infection
against their respective SHA1 or CTPH hashes.

DRDC Valcartier TM 2013-018 9

2 Zeus memory investigation

2.1 Background

The investigation of the memory image suspected of harbouring the Zeus Trojan horse is
examined in this section, as based on the methodology as put forward in Section 1.7. Additional
information concerning the malware can be found in [7, 8, 9, 10, 11, 12, 13, 14, 15, 17 and 18].

2.2 Preliminary investigative steps

The steps examined in this subsection should be considered as the preliminary investigative steps
necessary for examining a potentially infected memory image.

2.2.1 Protect the memory image

The memory image zeus.vmem was set to immutable (attribute + i) atop an Ext4-based filesystem.
The command used to perform this, carried out as the root user, was:

 $ sudo chattr +i zeus.vmem

This results in the fact that the memory image can no longer be modified without resetting the
file’s immutable attribute, not even by the root user. This is to prevent accidental modifications
from occurring to this file.

2.2.2 Preliminary anti-virus scanning results

The results of the preliminary anti-virus scanning using the six scanners outlined in Section 1.6.1
are examined herein.

The only scanner that identified the memory image zeus.vmem as infected was Avast. Its output is
as follows:

zeus.vmem [infected by: Win32:Zbot-BCW [Trj]]

Statistics:

scanned files: 1
scanned directories: 0
infected files: 1
total file size: 128.0 MB
virus database: 121122-1 22.11.2012
test elapsed: 0s 346ms

10 DRDC Valcartier TM 2013-018

Preliminary anti-virus scanner examination indicates that this memory image is in fact infected
with the Zeus Trojan horse. Avast was the only scanner capable of accurately examining the
image’s internal structures. All anti-virus results were recorded and stored in appropriate text-
based files.

2.2.3 Data carving and file hashing

Photorec succeeded in recovering 509 files carved from memory as per the author’s
recommended Photorec settings put forward in Section 1.6.2. Of those files recovered, 360 were
PE-based files. Of those, 184 were identified as Windows 32-bit DLLs, while 176 were identified
as standard Windows 32-bit PEs and device drivers. Other file types were also detected but they
had no immediate use. However, their types were recorded and saved for possible future use
within this analysis.

The recovered files were hashed and validated against the latest NSRL hash-set (September
2012). SHA1 hashes were obtained for all the data carved files and stored for future use. Eleven
unique SHA1 hashes were confirmed as matches for the NSRL hash-set. A full listing of the
NSRL filename matches as per the SHA1 hashes can be found in Annex C.

CTPH-based hashing was conducted using the ssdeep (fuzzy hashing) tool and stored for future
use.

2.2.4 Anti-virus scanning and file hashing results for data carved files

Using the six scanners and combining their output through UNIX command line processing tools
(e.g. cat, sort, find, tr, strings, awk, grep, uniq, etc.), the following matches were made. In order
to reduce the incidence of false positives, only those detected using two or more scanners have
been included. Specific logs for each scanner can be found in Annex A.1. Those filenames with
three or more anti-virus matches have been bolded in the table below.

Table 4: Matching of carved executable files and their detection by anti-virus scanners.

Carved data
filename

Matches
found Anti-virus scanner matches

Detected as Zbot

f0026720.dll 2 Avast, ClamAV Yes

f0031840.dll 2 Avast, ClamAV Yes

f0068952.dll 2 Avast, ClamAV Yes

f0069472.dll 2 Avast, ClamAV Yes

f0078696.exe 5 Avast, AVG, BitDefender, ClamAV,
FRISK

Yes

f0083472.exe 3 Avast, AVG, BitDefender No

f0096936.exe 2 AVG, ClamAV No

f0104608.exe 2 AVG, ClamAV No

DRDC Valcartier TM 2013-018 11

Carved data
filename

Matches
found Anti-virus scanner matches

Detected as Zbot

f0108688.dll 2 Avast, ClamAV Yes

f0122376.dll 2 Avast, ClamAV Yes

f0123288.exe 2 Avast, AVG Yes

f0126048.exe 3 AVG, BitDefender, FRISK Yes

f0126936.exe 2 Avast, AVG Yes

f0135928.dll 2 AVG, ClamAV No

f0136384.dll 2 Avast, ClamAV Yes

f0144008.exe 2 AVG, ClamAV No

f0152824.exe 2 AVG, BitDefender No

f0169216.dll 2 AVG, ClamAV No

f0169264.dll 2 Avast, ClamAV Yes

f0176824.exe 3 AVG, BitDefender, ClamAV No

f0179776.dll 2 Avast, ClamAV Yes

f0186296.dll 2 Avast, ClamAV Yes

f0189184.exe 2 AVG, ClamAV No

f0198048.dll 3 Avast, AVG, ClamAV Yes

f0198744.exe 3 Avast, AVG, BitDefender No

f0202808.exe 2 AVG, BitDefender No

f0206136.exe 2 AVG, ClamAV No

f0215816.exe 3 AVG, BitDefender, ClamAV No

Only those carved executables that were detected by three or more scanners are of particular
interest, as they are statistically less likely to be false positives. These were found to be, as shown
in the above table, f0078696.exe, f0083472.exe, f0126048.exe, f0176824.exe, f0198048.dll,
f0198744.exe and f0215816.exe.

Of the aforementioned detected files, only two scanners picked up that some of the suspected files
were infected with Zeus, detected as Zbot, specifically FRISK and Avast.

Using the previously generated fuzzy hashes (see Section 2.2.3), matches between scanner-
correlated malware and the fuzzy hashes were established. Specifically, scanner identified
malware f0198744.exe was correlated as having a 21% similarity with scanner identified malware
f0135928.exe. Due to the limited similarity between these potential malware, no foregone
conclusions should be drawn at this time.

12 DRDC Valcartier TM 2013-018

Although similarities had been established between other executables, none of them had been
established as warranting further consideration, since they had not been detected by two or more
scanners. Thus, they can be safely ignored.

2.3 Volatility memory analysis

This subsection carries out the actual Volatility memory image analysis.

2.3.1 Background

In order to investigate this specific memory image suspected of infection by the Zeus Trojan
horse, the author examines the use and output of various Volatility plugins that are likely to be of
assistance in this particular case.

The Volatility plugins used throughout this section must support Windows XP. However, not all
of the plugins support this specific operating system, although Windows XP remains the most
supported operating system by Volatility [2]. The first plugin used in this investigation, found in
the next subsection, determines some of the underlying information about the memory image (see
Section 2.3.2.1).

The analysis carried out in the subsection is broken up by endeavours, where each endeavour is a
distinct investigative path analysed using Volatility. If a given endeavour proves ineffective, then
another investigative path is taken, whereby a productive end may be obtained.

While using certain plugins, it was possible to confirm their results by using additional plugins.
For example, consider that when the pslist plugin was used, its results could not only be
corroborated but also expanded upon by using additional process listing and process analysis
plugins including psscan and psxview. Similarly, the thrdscan plugin was used to validate the
results of the threads plugin.

2.3.2 First analysis endeavour: wrong turn

The investigator should begin the Volatility-based analysis using basic plugins including those
that provide background information about the memory image and process listings. Using them
will allow the investigator to move towards a more precise line of inquiry. These plugins can
include, but are not limited to, image process listing, thread listing, background-based memory
image information and process dumping.

2.3.2.1 Imageinfo plugin

This Volatility plugin is used to provide basic contextual information about a suspect memory
image.

Output from the plugin, using command “volatility imageinfo -f zeus.vmem,” is as follows:

DRDC Valcartier TM 2013-018 13

Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace (/volatility/memimgs/zeus.vmem)
 PAE type : PAE
 DTB : 0x319000L
 KDBG : 0x80544ce0
 Number of Processors : 1
 Image Type (Service Pack) : 2
 KPCR for CPU 0 : 0xffdff000
 KUSER_SHARED_DATA : 0xffdf0000
 Image date and time : 2010-08-15 19:17:56 UTC+0000
 Image local date and time : 2010-08-15 15:17:56 -0400

This memory image appears to be running atop a Windows XP computer system with Service
Pack 2. It is running with one processor and the memory image is 128 MiB in size (based on the
memory image’s size determined using ls -l). It was captured atop a system supporting a 32-bit
PAE x86-based processor, on August 15, 2010 at 15:17:56 EDT.

2.3.2.2 Pslist plugin

The next step is to determine which processes were running within the memory image in order to
determine if anything was out of the ordinary. The pslist plugin does precisely as its name
implies. It provides a detailed process listing of the detected processes. It makes use of virtual
memory addresses and offsets, whereas the psscan plugin (see Section 2.3.2.4) makes use of
physical addresses and offsets.

Output from the pslist plugin, using command “volatility pslist -f zeus.vmem,” is as follows:

Table 5: Volatility output for the pslist plugin.

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x810b1660 System 4 0 58 379 ------ 0
 0xff2ab020 smss.exe 544 4 3 21 ------ 0 8/11/2010 6:06:21

0xff1ecda0 csrss.exe 608 544 10 410 0 0 8/11/2010 6:06:23

0xff1ec978 winlogon.exe 632 544 24 536 0 0 8/11/2010 6:06:23

0xff247020 services.exe 676 632 16 288 0 0 8/11/2010 6:06:24

0xff255020 lsass.exe 688 632 21 405 0 0 8/11/2010 6:06:24

0xff218230 vmacthlp.exe 844 676 1 37 0 0 8/11/2010 6:06:24

 0x80ff88d8 svchost.exe 856 676 29 336 0 0 8/11/2010 6:06:24

0xff217560 svchost.exe 936 676 11 288 0 0 8/11/2010 6:06:24

0x80fbf910 svchost.exe 1028 676 88 1424 0 0 8/11/2010 6:06:24

0xff22d558 svchost.exe 1088 676 7 93 0 0 8/11/2010 6:06:25

0xff203b80 svchost.exe 1148 676 15 217 0 0 8/11/2010 6:06:26

14 DRDC Valcartier TM 2013-018

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0xff1d7da0 spoolsv.exe 1432 676 14 145 0 0 8/11/2010 6:06:26

0xff1b8b28 vmtoolsd.exe 1668 676 5 225 0 0 8/11/2010 6:06:35

0xff1fdc88 VMUpgradeHelper 1788 676 5 112 0 0 8/11/2010 6:06:38
 0xff143b28 TPAutoConnSvc.e 1968 676 5 106 0 0 8/11/2010 6:06:39

0xff25a7e0 alg.exe 216 676 8 120 0 0 8/11/2010 6:06:39

0xff364310 wscntfy.exe 888 1028 1 40 0 0 8/11/2010 6:06:49

0xff38b5f8 TPAutoConnect.e 1084 1968 1 68 0 0 8/11/2010 6:06:52

0x80f60da0 wuauclt.exe 1732 1028 7 189 0 0 8/11/2010 6:07:44

0xff3865d0 explorer.exe 1724 1708 13 326 0 0 8/11/2010 6:09:29
 0xff3667e8 VMwareTray.exe 432 1724 1 60 0 0 8/11/2010 6:09:31

0xff374980 VMwareUser.exe 452 1724 8 207 0 0 8/11/2010 6:09:32

0x80f94588 wuauclt.exe 468 1028 4 142 0 0 8/11/2010 6:09:37

0xff224020 cmd.exe 124 1668 0 ------- 0 0
8/15/2010

19:17:55
2010-08-15

19:17:56

Looking at the above process listing, it can be readily determined that memory image zeus.vmem
was running within a VMware virtual machine. Moreover, a study of the process listing yields no
readily recognizable suspicious processes. Thus, additional plugins will be required to further
analyse this memory image.

Based on the time indicated for the memory image’s acquisition, listed as August 15, 2010 at
15:17:56 EDT by plugin imageinfo (see Section 2.3.2.1), this date and time coincides with the
data and time that cmd.exe (PID 124) terminated. It is interesting to note that in the above process
listing, PID 124 is a child process of PID 1668 (vmtoolsd.exe). This information has been
highlighted in the table. With this information, it is possible to assume that the individual who
acquired this memory image attempted to query the name of the host system from within the
virtual machine. To do this, the individual may have used the following command:

C:\Program Files\VMware\VMware Tools\> vmtoolsd.exe --cmd “info-get
guestinfo.hypervisor.hostname”

If no command shell history can be found relating to this process (vmtoolsd.exe or cmd.exe from
where it may be have launched), then it is likely that the process was launched from the Start ->
Run. This will be confirmed in the upcoming steps.

Additional information that can be found in the above process listing is that the virtual machine
appears to have been running since August 11, 2010 at 6:06:00 EDT.

The next step an investigator could undertake might be to determine if the aforementioned
command shell, or any other command shells previously run but that have gone undetected by the
pslist plugin, have left behind a command shell history. Moreover, the connection between
cmd.exe and vmtoolsd.exe should be further investigated.

DRDC Valcartier TM 2013-018 15

2.3.2.3 Cmdscan and consoles plugins

The plugins cmdscan and consoles may reveal more information about commands typed into a
command shell. Querying a memory image using the cmdscan plugin is carried out by executing
the command “volatility cmdscan -f zeus.vmem.” This yields the following output:

**
CommandProcess: csrss.exe Pid: 608
CommandHistory: 0xf786f8 Application: TPAutoConnect.exe Flags: Allocated
CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x448

This output indicates that process csrss.exe (PID 608) spawned process TPAutoConnect.exe from
a shell, but that no command shell history is available.

Querying the memory image using the consoles plugin is carried out by executing the command
“volatility consoles -f zeus.vmem.” This yields the following output:

**
ConsoleProcess: csrss.exe Pid: 608
Console: 0x4e23b0 CommandHistorySize: 50
HistoryBufferCount: 1 HistoryBufferMax: 4
OriginalTitle: C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe
Title: C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe
AttachedProcess: TPAutoConnect.e Pid: 1084 Handle: 0x448

CommandHistory: 0xf786f8 Application: TPAutoConnect.exe Flags: Allocated
CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x448

Screen 0x4e2ab0 X:80 Y:25
Dump:
TPAutoConnect User Agent, Copyright (c) 1999-2009 ThinPrint AG, 7.17.512.1
**
ConsoleProcess: csrss.exe Pid: 608
Console: 0xf78958 CommandHistorySize: 50
HistoryBufferCount: 2 HistoryBufferMax: 4
OriginalTitle: ??ystemRoot%\system32\cmd.exe
Title:

This output appears to support the assertion made concerning the cmdscan plugin. However, no
command shell history was found. These plugins provide no additional clues regarding processes
cmd.exe and vmtoolsd.exe.

16 DRDC Valcartier TM 2013-018

Since these plugins were of little help, the next step is to determine if other memory-based
process listing plugins can provide additional information.

2.3.2.4 Psscan plugin

The psscan plugin uses physical memory addresses and scans memory images for _EPROCESS
pool allocations, in contrast to the pslist plugin that uses virtual memory addresses and scans for
EPROCESS lists. The benefit of using this plugin is that sometimes, it can succeed in locating
processes that cannot be found using any of the other process listing plugins (i.e., pslist, psscan,
thrdproc, pspcdid and csrss).

Consider the following output from the psscan plugin, using command “volatility psscan -f
zeus.vmem.”

Table 6: Volatility output for the psscan plugin.

Offset(P) Name PID PPID PDB Time created Time exited

0x01214660 System 4 0 0x00319000

0x06238020 cmd.exe 124 1668 0x06cc02a0 8/15/2010 19:17:55 8/15/2010 19:17:56

0x05f027e0 alg.exe 216 676 0x06cc0240 8/11/2010 6:06:39
 0x04be97e8 VMwareTray.exe 432 1724 0x06cc02e0 8/11/2010 6:09:31
 0x04b5a980 VMwareUser.exe 452 1724 0x06cc0300 8/11/2010 6:09:32
 0x010f7588 wuauclt.exe 468 1028 0x06cc0180 8/11/2010 6:09:37
 0x05471020 smss.exe 544 4 0x06cc0020 8/11/2010 6:06:21
 0x066f0da0 csrss.exe 608 544 0x06cc0040 8/11/2010 6:06:23
 0x066f0978 winlogon.exe 632 544 0x06cc0060 8/11/2010 6:06:23
 0x06015020 services.exe 676 632 0x06cc0080 8/11/2010 6:06:24
 0x05f47020 lsass.exe 688 632 0x06cc00a0 8/11/2010 6:06:24
 0x06384230 vmacthlp.exe 844 676 0x06cc00c0 8/11/2010 6:06:24
 0x0115b8d8 svchost.exe 856 676 0x06cc00e0 8/11/2010 6:06:24
 0x04c2b310 wscntfy.exe 888 1028 0x06cc0200 8/11/2010 6:06:49
 0x063c5560 svchost.exe 936 676 0x06cc0100 8/11/2010 6:06:24
 0x01122910 svchost.exe 1028 676 0x06cc0120 8/11/2010 6:06:24
 0x049c15f8 TPAutoConnect.e 1084 1968 0x06cc0220 8/11/2010 6:06:52
 0x061ef558 svchost.exe 1088 676 0x06cc0140 8/11/2010 6:06:25
 0x06499b80 svchost.exe 1148 676 0x06cc0160 8/11/2010 6:06:26
 0x06945da0 spoolsv.exe 1432 676 0x06cc01a0 8/11/2010 6:06:26
 0x069d5b28 vmtoolsd.exe 1668 676 0x06cc01c0 8/11/2010 6:06:35
 0x04a065d0 explorer.exe 1724 1708 0x06cc0280 8/11/2010 6:09:29
 0x010c3da0 wuauclt.exe 1732 1028 0x06cc02c0 8/11/2010 6:07:44
 0x0655fc88 VMUpgradeHelper 1788 676 0x06cc01e0 8/11/2010 6:06:38
 0x069a7328 VMip.exe 1944 124 0x06cc0320 8/15/2010 19:17:55 8/15/2010 19:17:56

0x0211ab28 TPAutoConnSvc.e 1968 676 0x06cc0260 8/11/2010 6:06:39

DRDC Valcartier TM 2013-018 17

The listing from the psscan appears approximately the same as the output from the pslist plugin
(see Section 2.3.2.2 for details). Moreover, it confirms that PID 124 (cmd.exe) is a child of PID
1668 (vmtoolsd.exe), as also seen by plugin pslist (see Section 2.3.2.2 for details). Process PID
1944 (VMip.exe) is a child process of PID 124 (cmd.exe). However, VMip.exe is a process that
was found exclusively by the psscan plugin. These three processes have been highlighted in the
table above to emphasize the relationship between them.

2.3.2.5 Differentiating the output between the pslist and psscan plugins

Highlighting the differences between the output from the pslist and psscan plugins, as seen in
sections 2.3.2.2 and 2.3.2.4, may not always be obvious. For this task, shell-based text processing
is of significant use. By using the following commands, it will be possible to determine which
differences were found:

$ cat psscan.txt | awk '{print $2"\t"$3"\t"$4"\t"$6"\t"$7}' | grep -v "\-\-\-\-\-\-\-\-\-\-" |
grep -v PPID | sort > psscan.txt

$ cat pslist.txt | awk '{print $2"\t"$3"\t"$4"\t"$9"\t"$10}' | grep -v "\-\-\-\-\-\-\-\-\-\-" |
grep -v PPID | sort > pslist_sorted.txt

$ diff psscan_sorted.txt pslist_sorted.txt > pslist_psscan_diff.txt

The output from file pslist_psscan_diff.txt yields the following output:

18d17

< VMip.exe 1944 124 2010-08-15 19:17:55

Thus, by using these commands, it was possible to determine that the difference between these
two plugins (pslist and psscan) is the VMip.exe process.

2.3.2.6 Connecting the dots with respect to VMip.exe

Based on the information obtained in sections 2.3.2.2, 2.3.2.4 and 2.3.2.5, it can be determined
that the chain of processes for the instantiation of VMip.exe (PID 1944) was:

 PID 632 -> PID 676 -> PID 1668 -> PID 124 -> PID 1944

This translates to the following actual process names:

 winlogon.exe -> services.exe -> vmtoolsd.exe -> cmd.exe -> VMip.exe

Although this may have seemed obvious to an investigator commonly working with virtual
machines and VMware technology, this serves as a useful example of tracing back process
instantiation. Thus, looking back on the command proposed in Section 2.3.2.2:

C:\Program Files\VMware\VMware Tools\> vmtoolsd.exe --cmd “info-get
guestinfo.hypervisor.hostname”

18 DRDC Valcartier TM 2013-018

It is far more likely, based on the above chain of execution, that VMip.exe was actually
instantiated by vmtoolsd.exe directly and not by an intervening user or investigator. Consider that
in order for VMip.exe to run, vmtoolsd.exe called cmd.exe to execute VMip.exe, an action that
occurs regularly where one process runs a shell command to instantiate another process.
However, this becomes more obvious upon examining sections 2.3.2.7 and 2.3.2.8, where
additional plugins lend credence to this claim.

2.3.2.7 Psxview plugin

Volatility provides the ability to detect hidden running processes, such as VMip.exe, through the
psxview plugin.

The psxview plugin provides a detailed listing of which processes were running in the memory
image and by which method they were found. Currently, the Volatility 2.2 psxview plugin
supports five methods: pslist, psscan, thrdproc, pspcdid and csrss.

A hidden process, for example, would be a process that was invisible to not only the pslist plugin,
but to most of the other aforementioned plugins, but which would have to be visible to at least
one, in order to be detected.

Consider the following output from the psxview plugin, using the command “volatility psxview -f
zeus.vmem.”

Table 7: Volatility output for the psxview plugin.

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss

0x06499b80 svchost.exe 1148 TRUE TRUE TRUE TRUE TRUE

0x04b5a980 VMwareUser.exe 452 TRUE TRUE TRUE TRUE TRUE

0x05f027e0 alg.exe 216 TRUE TRUE TRUE TRUE TRUE

0x0655fc88 VMUpgradeHelper 1788 TRUE TRUE TRUE TRUE TRUE

0x0211ab28 TPAutoConnSvc.e 1968 TRUE TRUE TRUE TRUE TRUE

0x04c2b310 wscntfy.exe 888 TRUE TRUE TRUE TRUE TRUE

0x061ef558 svchost.exe 1088 TRUE TRUE TRUE TRUE TRUE

0x06945da0 spoolsv.exe 1432 TRUE TRUE TRUE TRUE TRUE

0x05471020 smss.exe 544 TRUE TRUE TRUE TRUE FALSE

0x069d5b28 vmtoolsd.exe 1668 TRUE TRUE TRUE TRUE TRUE

0x06384230 vmacthlp.exe 844 TRUE TRUE TRUE TRUE TRUE

0x010f7588 wuauclt.exe 468 TRUE TRUE TRUE TRUE TRUE

0x066f0da0 csrss.exe 608 TRUE TRUE TRUE TRUE FALSE

0x010c3da0 wuauclt.exe 1732 TRUE TRUE TRUE TRUE TRUE

0x06238020 cmd.exe 124 TRUE TRUE FALSE TRUE FALSE

0x06015020 services.exe 676 TRUE TRUE TRUE TRUE TRUE

0x04a065d0 explorer.exe 1724 TRUE TRUE TRUE TRUE TRUE

0x049c15f8 TPAutoConnect.e 1084 TRUE TRUE TRUE TRUE TRUE

0x0115b8d8 svchost.exe 856 TRUE TRUE TRUE TRUE TRUE

DRDC Valcartier TM 2013-018 19

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss

0x01214660 System 4 TRUE TRUE TRUE TRUE FALSE

0x01122910 svchost.exe 1028 TRUE TRUE TRUE TRUE TRUE

0x04be97e8 VMwareTray.exe 432 TRUE TRUE TRUE TRUE TRUE

0x05f47020 lsass.exe 688 TRUE TRUE TRUE TRUE TRUE

0x063c5560 svchost.exe 936 TRUE TRUE TRUE TRUE TRUE

0x066f0978 winlogon.exe 632 TRUE TRUE TRUE TRUE TRUE

0x069a7328 VMip.exe 1944 FALSE TRUE FALSE FALSE FALSE

Based on the output from this plugin, it can be confirmed that process VMip.exe (PID 1944),
highlighted in red, cannot be seen by any of the other process listing plugins, except when using
psscan.

A quick web search reveals that process 1944 (VMip.exe) is likely part of the VMware tools,
fitting well with the information already established in Section 2.3.2.6 concerning the chain of its
instantiation. However, prior to jumping to conclusions concerning VMip.exe, the threads plugin
may reveal additional information about some of the processes examined in Section 2.3.2.6. Other
process listing plugins such as pstree are not likely to be of use at this time. The pstree plugin is
useful to view the chain of execution as it creates a process tree.

2.3.2.8 Threads plugin

The threads plugin is useful as it has the ability to provide detailed information about processes
and threads that have since terminated or that may be hidden. Specifically, additional information
should be queried for processes PIDs 124, 1668 and 1944 (cmd.exe, vmtoolsd.exe and VMip.exe,
respectively).

The threads plugin can be used by the investigator to ensure that nothing out of the ordinary is
going with one more processes and its threads.

Output from the threads plugin for PID 124, using command “volatility threads -f zeus.vmem -p
124,” is as follows:

[x86] Gathering all referenced SSDTs from KTHREADs...
Finding appropriate address space for tables...

ETHREAD: 0xff3b1d80 Pid: 124 Tid: 972
Tags:
Created: 2010-08-15 19:17:55
Exited: 2010-08-15 19:17:56
Owning Process: cmd.exe
Attached Process: cmd.exe
State: Terminated
BasePriority: 0x8
Priority: 0x10
TEB: 0x00000000

20 DRDC Valcartier TM 2013-018

StartAddress: 0x7c810867 UNKNOWN
ServiceTable: 0x80552140
 [0] 0x80501030
 [1] 0xbf997600
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0x00000000
CrossThreadFlags: PS_CROSS_THREAD_FLAGS_TERMINATED

Output from the threads plugin for PID 1668, using command “volatility threads -f zeus.vmem -p
1668,” is as follows:

[x86] Gathering all referenced SSDTs from KTHREADs...
Finding appropriate address space for tables...

ETHREAD: 0xff1b88b0 Pid: 1668 Tid: 1672
Tags:
Created: 2010-08-11 06:06:35
Exited: 1970-01-01 00:00:00
Owning Process: vmtoolsd.exe
Attached Process: vmtoolsd.exe
State: Waiting:Executive
BasePriority: 0x8
Priority: 0x8
TEB: 0x7ffdd000
StartAddress: 0x7c810867 UNKNOWN
ServiceTable: 0x80552140
 [0] 0x80501030
 [1] 0xbf997600
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0xe1d73690
CrossThreadFlags:

ETHREAD: 0xff14bbf8 Pid: 1668 Tid: 1844
Tags:
Created: 2010-08-11 06:06:38
Exited: 1970-01-01 00:00:00
Owning Process: vmtoolsd.exe
Attached Process: vmtoolsd.exe
State: Waiting:WrLpcReceive
BasePriority: 0x8
Priority: 0x9
TEB: 0x7ffdb000

DRDC Valcartier TM 2013-018 21

StartAddress: 0x7c810856 UNKNOWN
ServiceTable: 0x80552140
 [0] 0x80501030
 [1] 0xbf997600
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0xe127ab18
CrossThreadFlags:
Eip: 0x7c90eb94
 eax=0x00167a88 ebx=0x00000000 ecx=0x00167ae8 edx=0xfe7b5598 esi=0x0015e298
edi=0x00000100
 eip=0x7c90eb94 esp=0x015dfe1c ebp=0x015dff80 err=0x00000000
 cs=0x1b ss=0x23 ds=0x23 es=0x23 gs=0x00 efl=0x00000246
 dr0=0x00000000 dr1=0x00000000 dr2=0x00000000 dr3=0x00000000 dr6=0x00000000
dr7=0x00000000

ETHREAD: 0xff379bc0 Pid: 1668 Tid: 1380
Tags:
Created: 2010-08-11 06:07:14
Exited: 1970-01-01 00:00:00
Owning Process: vmtoolsd.exe
Attached Process: vmtoolsd.exe
State: Waiting:UserRequest
BasePriority: 0x8
Priority: 0x9
TEB: 0x7ffd8000
StartAddress: 0x7c810856 UNKNOWN
ServiceTable: 0x80552180
 [0] 0x80501030
 [1] 0x00000000
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0x00000000
CrossThreadFlags:
Eip: 0x7c90eb94
 eax=0x77e3e70d ebx=0x00000000 ecx=0x00000000 edx=0x00000000 esi=0x00000000
edi=0x00000102
 eip=0x7c90eb94 esp=0x01c9ff78 ebp=0x01c9ffb4 err=0x00000000
 cs=0x1b ss=0x23 ds=0x23 es=0x23 gs=0x00 efl=0x00000286
 dr0=0x00000000 dr1=0x00000000 dr2=0x00000000 dr3=0x00000000 dr6=0x00000000
dr7=0x00000000

ETHREAD: 0xff1fc230 Pid: 1668 Tid: 1760

22 DRDC Valcartier TM 2013-018

Tags:
Created: 2010-08-11 06:06:38
Exited: 1970-01-01 00:00:00
Owning Process: vmtoolsd.exe
Attached Process: vmtoolsd.exe
State: Running
BasePriority: 0x8
Priority: 0x8
TEB: 0x7ffdc000
StartAddress: 0x7c810856 UNKNOWN
ServiceTable: 0x80552140
 [0] 0x80501030
 [1] 0xbf997600
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0xe174c4a0
CrossThreadFlags:

ETHREAD: 0xff14ada8 Pid: 1668 Tid: 1872
Tags:
Created: 2010-08-11 06:06:38
Exited: 1970-01-01 00:00:00
Owning Process: vmtoolsd.exe
Attached Process: vmtoolsd.exe
State: Waiting:WrLpcReceive
BasePriority: 0x8
Priority: 0x8
TEB: 0x7ffd9000
StartAddress: 0x7c810856 UNKNOWN
Win32StartAddress: 0x00009505
ServiceTable: 0x80552180
 [0] 0x80501030
 [1] 0x00000000
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0x00000000
CrossThreadFlags:
Eip: 0x7c90eb94
 eax=0x00000000 ebx=0x00000000 ecx=0x0015e298 edx=0x000003c0 esi=0x0015e298
edi=0x00000100
 eip=0x7c90eb94 esp=0x017dfe1c ebp=0x017dff80 err=0x00000000
 cs=0x1b ss=0x23 ds=0x23 es=0x23 gs=0x00 efl=0x00000246
 dr0=0x00000000 dr1=0x00000000 dr2=0x00000000 dr3=0x00000000 dr6=0x00000000
dr7=0x00000000

DRDC Valcartier TM 2013-018 23

Output from the threads plugin for PID 1994, using command “volatility threads -f zeus.vmem -p
1944,” is as follows:

[x86] Gathering all referenced SSDTs from KTHREADs...
Finding appropriate address space for tables...

ETHREAD: 0x010fcda8 Pid: 1944 Tid: 1208
Tags: ScannerOnly
Created: 2010-08-15 19:17:55
Exited: 2010-08-15 19:17:56
Owning Process: VMip.exe
Attached Process: VMip.exe
State: Terminated
BasePriority: 0x8
Priority: 0x10
TEB: 0x00000000
StartAddress: 0x7c810867 UNKNOWN
ServiceTable: 0x80552140
 [0] 0x80501030
 [1] 0xbf997600
 [2] 0x00000000
 [3] 0x00000000
Win32Thread: 0x00000000
CrossThreadFlags: PS_CROSS_THREAD_FLAGS_TERMINATED

Examining this output, it is apparent that both processes 124 and 1944 (cmd.exe and VMip.exe,
respectively) have already terminated. However, process 1668 (vmtoolsd.exe) has not yet
terminated, as its threads continue to execute.

2.3.2.9 Thrdscan plugin

The purpose of this section is to corroborate the results obtained from Section 2.3.2.8, where it
was determined based on threads plugin that processes 124 and 1944 have since terminated but
that process 1668 is still active. To validate these results Volatility command “volatility thrdscan
-f zeus.vmem | grep -P ‘(\ 124\ |\ 1668\ |1944\)’| sort -k 2 -n” yields the following output:

Table 8: Volatility output for the thrdscan plugin.

Offset(P) PID TID Start Address Create Time Exit Time

0x04419d80 124 972 0x7c810867 2010-08-15 19:17:55 2010-08-15 19:17:56

0x003f3bf8 1668 1844 0x7c810856 2010-08-11 06:06:38

0x004a0da8 1668 1872 0x7c810856 2010-08-11 06:06:38

0x04a55bc0 1668 1380 0x7c810856 2010-08-11 06:07:14

0x06560230 1668 1760 0x7c810856 2010-08-11 06:06:38

24 DRDC Valcartier TM 2013-018

Offset(P) PID TID Start Address Create Time Exit Time

0x069d58b0 1668 1672 0x7c810867 2010-08-11 06:06:35

0x010fcda8 1944 1208 0x7c810867 2010-08-15 19:17:55 2010-08-15 19:17:56

0x010fcda8 1944 1208 0x7c810867 2010-08-15 19:17:55 2010-08-15 19:17:56

Thus, it can be confirmed that processes 124 and 1944 (cmd.exe and VMip.exe) have indeed
terminated but that process 1668 and its threads remain active. The next step will be to attempt to
dump their process space.

Although nothing appears out of the ordinary about these processes, it is important that the
investigator follow through on leads. This is especially true since PID 1944 (VMip.exe) appears as
a hidden process, and even though it has since terminated, PID 124 (cmd.exe) was not found to be
hidden. Therefore, in order to be thorough, the investigator should finish following these leads
prior to moving on to other avenues of the investigation.

2.3.2.10 Memdump, procexedump and procmemdump plugins

Based on the analyses conducted thus far, it may be that processes 124, 1668 and 1944 are
potentially malicious. In order to validate this assumption, it is necessary to dump their process
space and memory using the memdump, procexedump and procmemdump plugins.

Dumping the process space for PIDs 124, 1668 and 1944 may reveal additional information about
them. If successfully dumped, anti-virus scanners can then be used to determine if they contain
malicious code. Even though two of the three processes have since terminated, they may continue
to occupy space in memory and may therefore be dumped.

In order to dump these potentially malicious processes and memory space, the following four
commands are required, three of which are Volatility-specific.

$ mkdir memdump; mkdir procexedump; mkdir procmemdump

$ volatility memdump -f zeus.vmem -p 124,1668,1944 --dump-dir=memdump

$ volatility procexedump -f zeus.vmem -p 124,1668,1944 --dump-dir=procexedump

$ volatility procmemdump -f zeus.vmem -p 124,1668,1944 --dump-dir=procmemdump

These commands attempt to dump the processes’ memory space to the various working
directories (created as per the mkdir commands). It was possible to dump the memory space
occupied by cmd.exe (PID 124) and vmtoolsd.exe (PID 1668) via the memdump plugin. However,
for the procexedump and procmemdump plugins, it was only possible to dump the memory for
vmtoolsd.exe. In all, four files were generated. It was not possible, however, to dump the memory
for VMip.exe (PID 1944) using any of the aforementioned plugins. These dumps were then
hashed for their SHA1 and fuzzy hash values.

DRDC Valcartier TM 2013-018 25

Using all six scanners (see Section 1.6.1 for details), only the Avast scanner detected that one of
the dumped processes was potentially infected, specifically file memdump/1668.dmp. Avast’s
output was seen as:

 ../memdump/1668.dmp [infected by: Win32:Zbot-BCW [Trj]]

Since only one scanner picked up this infection, it is unlikely that process PID 1668 is itself
infected. Instead, the author posits that older memory space from the active malware, which has
since moved on elsewhere in memory, was taken up by PID 1668.

Thus, if one or more memory pages of PID 1668 contained heuristically detectable code or
signatures, then it is plausible that a scanner would pick these up, as is the case here. Moreover,
this can be readily confirmed by the fact that the process space for PID 1688 dumped by plugins
procexedump and procmemdump were not found to contain any malware, further confirming the
author’s supposition. Specifically, if the executable code contained therein dumped by the two
aforementioned plugins had malicious code, it would be likely that at least one of the scanners
would have detected this. Thus, since they were not detected as malicious, it is logical to conclude
that for this specific process (PID 1668) the detected Zeus code was a remnant of another
possibly infected process.

Comparing the fuzzy hashes of the data carved from the memory image in Section 2.2.3 yielded
no similarities with the fuzzy hashes of the data dumped using the memdump, procexedump and
procmemdump plugins.

However, comparing the fuzzy hashes of the dumped memory samples in the previous subsection
(using plugins memdump, procmemdump and procexedump) revealed that there was an 86%
match between the memdump of process 1668 and 124. This should not be surprising considering
that PID 124 was spawned from PID 1668 and likely inherited memory and DLLs from it. Recall
that when using the memdump plugin, all of a process’ addressable memory is dumped. Thus, it is
expected that such similarities will be a common occurrence.

Moreover, a 99% match was found between the fuzzy hashes of the procexedump and
procmemdump dumps for process 1668. This finding is altogether normal. Recall that the
procmemdump plugin dumps a process’ executable code, stack, memory and slack space while
the procexedump plugin dumps only the process’ executable code. Thus, there is a likelihood of
similarity between them.

The four data files generated from the memdump, procexedump and procmemdump plugins were
compared against the current NSRL hash-set as per their SHA1 hashes. No matches were found.
Moreover, the SHA1 hash values for these memory dumps were also compared against those
obtained against the data carving of the memory image (see Section 2.2.3 for details). No matches
were found in this comparison either.

2.3.2.11 First analysis endeavour summary

The approach undertaken by the author in this section was obviously a wrong turn. However, it
provided a useful lesson concerning the thorough investigation of potential leads and
demonstrated how to examine in detail processes and threads.

26 DRDC Valcartier TM 2013-018

However, another approach must be undertaken to find direct evidence of the malware in
memory. Direct process examination turned up little. Prior to examining other potential avenues
with Volatility, the use of process and thread listings should be exhausted first. The author
considers process memory dumping plugins to be akin to process listings.

The examination of state-based information concerning the memory image may prove to be of
use now that it has been determined that the current line of inquiry has turned up no tangible
leads.

2.3.3 Second analysis endeavour: hunting and finding the evidence

Upon having completed a primary survey of the infected memory image using process and thread
listing plugins, the investigator should consider examining the memory image using state-specific
plugins. These plugins are sometimes able to detect anomalies with respect to the memory
image’s last running known state.

Plugins of use in this section can include command histories5, open files, devices in use, list of
DLLs, drivers and services, event logs, network communications, etc. The first plugin that would
have ordinarily been suggested by the author would have been the command history-based
plugins, but these were used in Section 2.3.2.

The choice of plugins to use all depends on the evidence trail and logical flow of the investigation
under Volatility, some of which have already been established thus far in the investigation.

2.3.3.1 Connscan plugin

The first Volatility plugin that should be used is the connscan plugin. It is used to verify for the
existence of ongoing network connections. It scans a memory image for current or recently
terminated connections. Using command “volatility connscan -f zeus.vmem” yields the following
output:

Table 9: Volatility output for the connscan plugin.

Offset(P) Local Address Remote Address PID

0x02214988 172.16.176.143:1054 193.104.41.75:80 856

0x06015ab0 0.0.0.0:1056 193.104.41.75:80 856

This plugin reveals several important pieces of new information. The first is that the suspect
computer system from whence the memory image originated from has been established by what
appears to be an HTTP connection (using port 80) with a remote system with IP address
193.104.41.75. The system from whence the memory image came from has IP address
172.16.176.143.

5 Command histories generally provide state-based information for command shells, but since the process
and thread listing plugins used in Section 2.3.2 found that cmd.exe had been used, it made sense to take
advantage of Volatility’s command history plugins immediately to determine if additional information
could be readily obtained.

DRDC Valcartier TM 2013-018 27

Upon closer examination, process PID 856 is in fact svchost.exe, as based on the information
obtained in Section 2.3.2.2. It appears that PID 856 is being used as a cover process for some
hidden process carrying out what appears to be a subversive communication. This process,
however, should never communicate on this port, thus marking this activity as particularly
suspicious. Using other network state-based plugins such as connections, sockets and sockscan,
additional information can be determined about this communication channel.

2.3.3.2 Connections plugin

The connections plugin can be used to determine information concerning not only ongoing
communications, but also for recently terminated network communications and sessions. It
therefore makes sense to use this plugin in order to query the memory image for additional
network-based information. Using command “volatility connections -f zeus.vmem” yielded no
output whatsoever.

Although output from the connscan plugin indicated that that the HTTP communication appeared
to have been instantiated by svchost.exe (see Section 2.3.3.1), because it was not seen by the
connections plugin indicates that it is very likely a covert communication channel.

The use of other network-related plugins may help to reveal or isolate the process conducting this
potentially convert communication.

2.3.3.3 Sockets and sockscan plugins

Volatility offers two other network-based plugins, sockets and sockscan. The sockets plugin prints
open sockets that may provide additional information about the convert network channel, while
the sockscan plugin scans a suspect memory image for all TCP sockets.

Consider the following output from the sockets plugin, using command “volatility sockets -f
zeus.vmem”:

Table 10: Volatility output for the sockets plugin.

Offset(V) PID Port Proto Protocol Address Create Time

0x80fd1008 4 0 47 GRE 0.0.0.0 8/11/2010 6:08

0xff258008 688 500 17 UDP 0.0.0.0 8/11/2010 6:06

0xff367008 4 445 6 TCP 0.0.0.0 8/11/2010 6:06

0x80ffc128 936 135 6 TCP 0.0.0.0 8/11/2010 6:06

0xff37cd28 1028 1058 6 TCP 0.0.0.0 8/15/2010
 0xff20c478 856 29220 6 TCP 0.0.0.0 8/15/2010
 0xff225b70 688 0 255 Reserved 0.0.0.0 8/11/2010 6:06

0xff254008 1028 123 17 UDP 127.0.0.1 8/15/2010
 0x80fce930 1088 1025 17 UDP 0.0.0.0 8/11/2010 6:06

0xff127d28 216 1026 6 TCP 127.0.0.1 8/11/2010 6:06

28 DRDC Valcartier TM 2013-018

Offset(V) PID Port Proto Protocol Address Create Time

0xff206a20 1148 1900 17 UDP 127.0.0.1 8/15/2010
 0xff1b8250 688 4500 17 UDP 0.0.0.0 8/11/2010 6:06

0xff382e98 4 1033 6 TCP 0.0.0.0 8/11/2010 6:08

0x80fbdc40 4 445 17 UDP 0.0.0.0 8/11/2010 6:06

Consider the following output from the sockscan plugin, using command “volatility sockscan -f
zeus.vmem”:

Table 11: Volatility output for the sockscan plugin.

Offset(P) PID Port Proto Protocol Address Create Time

0x007c0a20 1148 1900 17 UDP 172.16.176.143 8/15/2010 19:15

0x01120c40 4 445 17 UDP 0.0.0.0 8/11/2010 6:06

0x01131930 1088 1025 17 UDP 0.0.0.0 8/11/2010 6:06

0x01134008 4 0 47 GRE 0.0.0.0 8/11/2010 6:08

0x011568a8 4 138 17 UDP 172.16.176.143 8/15/2010 19:15

0x0115f128 936 135 6 TCP 0.0.0.0 8/11/2010 6:06

0x02daad28 216 1026 6 TCP 127.0.0.1 8/11/2010 6:06

0x04863458 4 139 6 TCP 172.16.176.143 8/15/2010 19:15

0x04864578 1028 68 17 UDP 172.16.176.143 8/15/2010 19:17

0x04864a08 4 137 17 UDP 172.16.176.143 8/15/2010 19:15

0x04a4be98 4 1033 6 TCP 0.0.0.0 8/11/2010 6:08

0x04a51d28 1028 1058 6 TCP 0.0.0.0 8/15/2010 19:17

0x04be7008 4 445 6 TCP 0.0.0.0 8/11/2010 6:06

0x05dee200 1028 123 17 UDP 127.0.0.1 8/15/2010 19:15

0x05e33d68 1148 1900 17 UDP 127.0.0.1 8/15/2010 19:15

0x05f44008 688 500 17 UDP 0.0.0.0 8/11/2010 6:06

0x05f48008 1028 123 17 UDP 127.0.0.1 8/15/2010 19:17

0x06236e98 1028 68 17 UDP 172.16.176.143 8/15/2010 19:17

0x06237b70 688 0 255 Reserved 0.0.0.0 8/11/2010 6:06

0x06450478 856 29220 6 TCP 0.0.0.0 8/15/2010 19:17

0x06496a20 1148 1900 17 UDP 127.0.0.1 8/15/2010 19:17

0x069d5250 688 4500 17 UDP 0.0.0.0 8/11/2010 6:06

DRDC Valcartier TM 2013-018 29

Information for PID 856 has been highlighted in tables 10 and 11 above.

Based on the output from the sockets and sockscan plugins, the information obtained using the
connscan plugin (Section 2.3.3.1) could not be confirmed. Thus, it can be concluded that the
process conducting the suspicious network communication to remote system 193.104.41.75 is
covert, as plugins that should have been able to detect it could not. Specifically, using the
connections, sockets and sockscan plugins, none of them could detect this suspicious network
communication.

Moreover, as based on the information examined thus far in this section, process svchost.exe
presents no useful information about the covert communication channel discovered in Section
2.3.3.1. This should lead the investigator to conclude that process svchost.exe is not actually
initiating the concealed communication, but that some hidden process that seized control of
svchost.exe very likely did. It is highly probable that process svchost.exe was hijacked (possibly
with injected code) in order to instantiate a hidden process that appears as svchost.exe.

The next step an investigator should undertake is to determine more information about this
remote IP address. A web whois search of this IP address may reveal much.

2.3.3.4 Whois suspicious IP address

A web search at http://Whois.net quickly reveals that this IP address currently resides in
Transnistria, a territory bordering Ukraine and Moldavia. Moreover, this country has little
political autonomy from Russia and geopolitically is an ideal location for a command and control
botnet server. Specifically, the output from http://whois.net/ip-address-lookup/193.104.41.75 is as
follows:

[Querying whois.ripe.net]
[whois.ripe.net]
% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf

% Note: this output has been filtered.
% To receive output for a database update, use the "-B" flag.

% Information related to '193.104.41.0 - 193.104.41.255'

inetnum: 193.104.41.0 - 193.104.41.255
netname: VVPN-NET
descr: PE Voronov Evgen Sergiyovich
country: MD
org: ORG-PESV2-RIPE
admin-c: ESV1-RIPE

30 DRDC Valcartier TM 2013-018

http://whois.net/
http://whois.net/ip-address-lookup/193.104.41.75

tech-c: ESV1-RIPE
status: ASSIGNED PI
mnt-by: VVPN-MNT
mnt-by: RIPE-NCC-END-MNT
mnt-lower: RIPE-NCC-END-MNT
mnt-routes: VVPN-MNT
mnt-domains: VVPN-MNT
source: RIPE # Filtered

organisation: ORG-PESV2-RIPE
org-name: PE Voronov Evgen Sergiyovich
org-type: OTHER
descr: PE Evgen Sergeevich Voronov
address: 25 October street, 118-15
address: Tiraspol, Transdnistria
phone: +373 533 50404
admin-c: ESV1-RIPE
tech-c: ESV1-RIPE
mnt-ref: VVPN-MNT
mnt-by: VVPN-MNT
source: RIPE # Filtered

person: Evgen Sergeevich Voronov
address: 25 October street, 118-15
address: Tiraspol, Transdnistria
phone: +373 533 50404
nic-hdl: ESV1-RIPE
mnt-by: VVPN-MNT
source: RIPE # Filtered

% Information related to '193.104.41.0/24AS49934'

route: 193.104.41.0/24
descr: PE Voronov Evgen Sergiyovich
origin: AS49934
mnt-by: VVPN-MNT
source: RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.51.1 (WHOIS1)

The next step the investigator should examine is the process space of svchost.exe (PID 856).
However, since this process has likely been injected with malicious code, it is unlikely that any
thread-based plugins will be of much help. Instead, the investigator should consider using a
Volatility plugin designed to seek out malware, including injected malware. The easiest of these
to use, as it requires no specific software or malware reverse engineering knowledge, is the
malfind plugin.

DRDC Valcartier TM 2013-018 31

2.3.3.5 Malfind plugin

Volatility’s malfind plugin was specifically designed to search for potentially hidden malware
residing within a memory image. Moreover, it may help the investigator extract the actual process
(es) associated with PID 856, possibly including hidden process (es). Recall that PID 856 is
process svchost.exe and that thus far, it appears that it has been hijacked or injected with
malicious code. This likely explains the mysterious network communication with remote system
193.104.41.75 (see Section 2.3.3.1).

Using command “volatility malfind -f zeus.vmem -p 856” results in the following output, where
the memory address for each instance of potential malware detected by the malfind plugin for this
process has been highlighted.

Process: svchost.exe Pid: 856 Address: 0xb70000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 38, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x00b70000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x00b70010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x00b70020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00b70030 00 00 00 00 00 00 00 00 00 00 00 00 d0 00 00 00

0xb70000 4d DEC EBP
0xb70001 5a POP EDX
0xb70002 90 NOP
0xb70003 0003 ADD [EBX], AL
0xb70005 0000 ADD [EAX], AL
0xb70007 000400 ADD [EAX+EAX], AL
0xb7000a 0000 ADD [EAX], AL
0xb7000c ff DB 0xff
0xb7000d ff00 INC DWORD [EAX]
0xb7000f 00b800000000 ADD [EAX+0x0], BH
0xb70015 0000 ADD [EAX], AL
0xb70017 004000 ADD [EAX+0x0], AL
0xb7001a 0000 ADD [EAX], AL
0xb7001c 0000 ADD [EAX], AL
0xb7001e 0000 ADD [EAX], AL
0xb70020 0000 ADD [EAX], AL
0xb70022 0000 ADD [EAX], AL
0xb70024 0000 ADD [EAX], AL
0xb70026 0000 ADD [EAX], AL
0xb70028 0000 ADD [EAX], AL
0xb7002a 0000 ADD [EAX], AL
0xb7002c 0000 ADD [EAX], AL
0xb7002e 0000 ADD [EAX], AL
0xb70030 0000 ADD [EAX], AL
0xb70032 0000 ADD [EAX], AL
0xb70034 0000 ADD [EAX], AL

32 DRDC Valcartier TM 2013-018

0xb70036 0000 ADD [EAX], AL
0xb70038 0000 ADD [EAX], AL
0xb7003a 0000 ADD [EAX], AL
0xb7003c d000 ROL BYTE [EAX], 0x1
0xb7003e 0000 ADD [EAX], AL

Process: svchost.exe Pid: 856 Address: 0xcb0000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x00cb0000 b8 35 00 00 00 e9 cd d7 c5 7b 00 00 00 00 00 00 .5.......{......
0x00cb0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00cb0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00cb0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0xcb0000 b835000000 MOV EAX, 0x35
0xcb0005 e9cdd7c57b JMP 0x7c90d7d7
0xcb000a 0000 ADD [EAX], AL
0xcb000c 0000 ADD [EAX], AL
0xcb000e 0000 ADD [EAX], AL
0xcb0010 0000 ADD [EAX], AL
0xcb0012 0000 ADD [EAX], AL
0xcb0014 0000 ADD [EAX], AL
0xcb0016 0000 ADD [EAX], AL
0xcb0018 0000 ADD [EAX], AL
0xcb001a 0000 ADD [EAX], AL
0xcb001c 0000 ADD [EAX], AL
0xcb001e 0000 ADD [EAX], AL
0xcb0020 0000 ADD [EAX], AL
0xcb0022 0000 ADD [EAX], AL
0xcb0024 0000 ADD [EAX], AL
0xcb0026 0000 ADD [EAX], AL
0xcb0028 0000 ADD [EAX], AL
0xcb002a 0000 ADD [EAX], AL
0xcb002c 0000 ADD [EAX], AL
0xcb002e 0000 ADD [EAX], AL
0xcb0030 0000 ADD [EAX], AL
0xcb0032 0000 ADD [EAX], AL
0xcb0034 0000 ADD [EAX], AL
0xcb0036 0000 ADD [EAX], AL
0xcb0038 0000 ADD [EAX], AL
0xcb003a 0000 ADD [EAX], AL
0xcb003c 0000 ADD [EAX], AL
0xcb003e 0000 ADD [EAX], AL

This output is not particularly revealing to non-software reverse engineering specialists. However,
what is important to know is that an MZ PE header was detected at memory address 0xb70000.

DRDC Valcartier TM 2013-018 33

This type of file signature is used to identify Windows-based executables. This is highly
indicative of an injected process within the process space of PID 856. Thus, within the memory
space of svchost.exe, at linear decimal byte offset 11,993,088, one suspicious PE header was
found. The other possible malware detected by this plugin is very likely a false positive, as no PE
header was found in the above output associated with memory address offset 0xcb0000.
Moreover, based on the above malfind output, it is likely that these two processes are hidden.

2.3.3.6 Dumping the suspicious process using Volatility and malfind

Upon finding two suspicious processes within the memory space of svchost.exe using the malfind
plugin, rather than have to carve them out manually using esoteric sub-process byte address
conversion to physical memory addresses, the malfind plugin can readily perform this on behalf
of the investigator. This is done by rerunning the plugin and appending the “--dump-dir”
parameter to the command. This parameter specifies a directory location to dump the suspicious
process. In so doing, it is hoped that the malfind plugin will succeed in dumping these two hidden
processes associated with PID 856. Running the command “volatility malfind -f zeus.vmem -p 856
--dump-dir=.” generates the following two files:

process.0x80ff88d8.0xb70000.dmp

process.0x80ff88d8.0xcb0000.dmp

The two filenames listed above correspond to the order in which they were displayed by
Volatility’s malfind plugin and the memory address offsets where they were located within PID
856’s memory space.

Performing a SHA1 hash of the two dump files above and comparing them against the current
NSRL hash-set resulted in no matches being established. SHA1 comparisons between them and
the data carved from the memory image (see Section 2.2.3 for details) also resulted in no
established matches. Moreover, conducting a fuzzy hash comparison of the two dumped
processes above against those obtained from the data carving of the memory image (see Section
2.2.3 for details) also resulted in no partial matches being established.

Note that the files for both process dumps consist of 0x80ff88d8. This virtual memory address
was found to be in use for svchost.exe (PID 876) as found in Section 2.3.2.2 (Table 5). This
indicates that these dumped processes can be directly attributed to PID 856.

The next step is to determine if the various anti-virus scanners can reveal about these two dumped
processes.

2.3.3.7 Virus scanning and hash verification of malfind-dumped PID 856

Using the six anti-virus scanners (see Section 1.6.1 for details) against the two malfind-extracted
files produced in Section 2.3.3.5, the following scanner messages and alerts were produced:

Avast:

process.0x80ff88d8.0xb70000.dmp [infected by: Win32:Zbot-BCW [Trj]]

34 DRDC Valcartier TM 2013-018

process.0x80ff88d8.0xcb0000.dmp [OK]

AVG:

process.0x80ff88d8.0xb70000.dmp Virus found Win32/Heri

BitDefender:

process.0x80ff88d8.0xb70000.dmp infected: Gen:Variant.Graftor.22830

process.0x80ff88d8.0xcb0000.dmp ok

ClamAV:

process.0x80ff88d8.0xb70000.dmp: OK

process.0x80ff88d8.0xcb0000.dmp: OK

FRISK:

[Found security risk] <W32/Zbot.AG.gen!Eldorado (generic, not disinfectable)>
process.0x80ff88d8.0xb70000.dmp

McAfee:

process.0x80ff88d8.0xb70000.dmp ... Found the PWS-Zbot.gen.ub trojan !!!

It appears that five of the six scanners have found infections within the malfind-based dump
process file process.0x80ff88d8.0xb70000.dmp for PID 856. Three of the six scanners identified it
as the Zeus Trojan horse. It is interesting to note that while five of the six scanners identified the
dump file process.0x80ff88d8.0xb70000.dmp as infected, its SHA1 and fuzzy hash signatures do
not match (see Section 2.3.3.6 for more information), even partially, any of those files carved
from the memory image that were identified as Zeus-based in Section 2.2.3.

Not surprisingly, the second process dumped by the malfind plugin, found within PID 856’s
memory space at address offset 0xcb0000, was found to be uninfected.

2.3.3.8 Filescan plugin

Now that the Zeus infection has been found in memory, including both in the actual process
where it was running and in the process where it injected code to hide itself (see sections 2.3.3.5,
2.3.3.6 and 2.3.3.7 for details), it is time to attempt to determine which files on disk were
responsible for this infection.

To determine this, the filescan plugin can be used. This plugin searches memory for open file
handles. Unfortunately, it is not able to directly link files to processes. The best manner for
finding indications is twofold. First, using keywords (e.g. Zeus, infection, rootkit, etc.) it may be
possible to find the infection, as malware programmers do not always remember to use innocuous
looking filenames. Of course, this is at best a hit and miss approach. Secondly, attempt to detect
suspect files based on their names and locations. This process requires that the investigator have a

DRDC Valcartier TM 2013-018 35

good working knowledge of the operating system from whence the memory image originated, as
just looking blindly at filenames6 is not likely to produce meaningful results.

Nevertheless, with the necessary knowledge of file listing and hash-sets, this plugin may help
investigators pinpoint the actual file(s) causing the infection. Based on the information found in
[7, 9, 17 and 18] concerning the Zeus botnet, it is known that “variant 4” instances of Zeus-based
infections rely on filenames of sdra, lowsec\user.ds and lowsec\local.ds. With this knowledge, the
investigator is equipped with the necessary knowledge to find additional evidence of this specific
malware infection using the grep command.

Running the command “volatility filescan -f zeus.vmem | grep -i ‘(zeus|sdra|lowsec)’ ” in order to
look for “variant 4” based evidence of Zeus generates the following output:

0x061abef8 1 0 R--r-d \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\ZeuS_binary_5767b2c6d84d87a47d12da03f4f376ad.ex
e

0x029d9b40 1 1 R----- \Device\HarddiskVolume1\WINDOWS\system32\sdra64.exe

0x029d9cf0 1 0 -WD---
\Device\HarddiskVolume1\WINDOWS\system32\sdra64.exe

0x01061028 1 0 RW-r--
\Device\HarddiskVolume1\WINDOWS\system32\lowsec\user.ds

0x0115ab90 1 1 R-----
\Device\HarddiskVolume1\WINDOWS\system32\lowsec\user.ds

0x02bbe470 1 1 R-----
\Device\HarddiskVolume1\WINDOWS\system32\lowsec\local.ds

Of course, had the infection not been “variant 4” based, the other sources of Zeus information
cited herein may have been of use. If not, the investigator must exercise painstaking attention to
the details found by the filescan plugin and attempt to spot filenames that simply do belong in the
\WINDOWS\system32 directory.

2.3.3.9 Summary

This subsection succeeded in locating and extracting the malware suspected of having infected
the memory image. The malware seems to be based on a known version of the Zeus Trojan horse,
although many versions of this malware are known to exist with differing detection signatures. As
no disk image was available for examination in this analysis, it is not possible to attempt to match
disk-based malware signatures with the known malware signatures for Zeus. Relying on memory-

6 Recall that a good source of filenames is the NSRL hash-set. It is broken by product and operating
system.

36 DRDC Valcartier TM 2013-018

extracted malware signatures and comparing them against known disk-based signatures would be
ineffective, as memory-resident executables are modified while running in memory.

Specifically, Zeus is a botnet-based Trojan horse primarily intended for stealing victims’ banking
information. It is stealthy and difficult to detect while running on a given Windows-based system
even with up to date virus scanners, as seen in the analysis carried out herein. [4]

Even though the infection has been found and extracted, the final part of the investigation is to
determine, if possible, how it was loaded by the system. It is likely that it was loaded by the
registry. As with many other malware, once a system becomes infected, the malware makes
changes to the victim Windows system’s registry so that it remains persistent. These changes are
generally made to the registry settings affecting system boot-up or user logons.

2.3.4 Pruning the registry for more information

The Windows registry can serve to both complicate and facilitate the investigator’s work. It is
commonly used by malware to store its settings and configure the victim’s system to load it at
boot up or user login. However, the difficulty in working with the registry lies in knowing where
to look. The registry is spread out across many data files (also commonly known as registry
hives) in various locations and each serves a specific purpose with respect to system, application
and user configurations. Reference [6] provides additional background information.

2.3.4.1 Hivelist plugin

The purpose in using the hivelist plugin is to determine which registry hives7 are available in the
memory image. Running the command “volatility hivelist -f zeus.vmem” generates the following
output:

Table 12: Volatility output for the hivelist plugin.

Virtual Physical Name

0x8066e904 0x0066e904 [no name]

0xe1008978 0x01824978 [no name]

0xe101b008 0x01867008 \Device\HarddiskVolume1\WINDOWS\system32\config\system

0xe13ae580 0x01bbd580 [no name]

0xe1537b60 0x06ae4b60 \SystemRoot\System32\Config\SECURITY

0xe153ab60 0x06b7db60 \Device\HarddiskVolume1\WINDOWS\system32\config\software

0xe1542008 0x06c48008 \Device\HarddiskVolume1\WINDOWS\system32\config\default

0xe1544008 0x06c4b008 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM

0xe1a33008 0x01f98008 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT

7 A registry hive denotes the actual disk file and its location on disk.

DRDC Valcartier TM 2013-018 37

Virtual Physical Name

0xe1a39638 0x021eb638
\Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1c41b60 0x04010b60 \Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT

0xe1c49008 0x036dc008
\Device\HarddiskVolume1\Documents and
Settings\LocalService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1da4008 0x00f6e008 \Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT

0xe1e158c0 0x009728c0
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

In the above table, the Virtual and Physical columns refer to virtual and physical memory address
offsets, respectively. The column Name refers to data file locations (registry hives) of the
underlying registry hives.

It is important to note that not all the registry hives generated from the hivelist plugin are of
immediate use. This is based in part on the experience of the investigator and on what he may
hope to find as evidence. The following table provides an overview of the various registry hives
contained within this memory image that are, in the opinion of the author, the most likely to
contain registry-based evidence of malware infection. This is based on the associated root registry
keys and virtual memory address offsets, as seen in Annex D and Table 12 (above), respectively.

Table 13: Association between registry hives and their corresponding registry keys
commonly used for registry-based infections as per the hivelist output.

Registry data file (hive) Associated root registry key Virtual Offset

\Device\HarddiskVolume1\Documents and
Settings\LocalService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

HKEY_CURRENT_USER\SOFTWARE 0xe1a39638

\Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT

HKEY_CURRENT_USER\SOFTWARE 0xe1a33008

\Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local
Settings\Application
Data\Microsoft\Windows\UsrClass.dat

HKEY_CURRENT_USER\SOFTWARE 0xe1a39638

\Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT

HKEY_CURRENT_USER\SOFTWARE 0xe1c41b60

\Device\HarddiskVolume1\Documents and
Settings\Administrator\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

HKEY_CURRENT_USER\SOFTWARE 0xe1e158c0

\Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT

HKEY_CURRENT_USER\SOFTWARE 0xe1da4008

38 DRDC Valcartier TM 2013-018

Registry data file (hive) Associated root registry key Virtual Offset

\Device\HarddiskVolume1\WINDOWS\system32\
config\software

HKEY_LOCAL_MACHINE\SOFTWARE 0xe153ab60

\Device\HarddiskVolume1\WINDOWS\system32\
config\system

HKEY_LOCAL_MACHINE\SYSTEM 0xe101b008

2.3.4.2 Printkey plugin

The purpose of the printkey plugin is to extract registry key information from specific registry
hives, as found in the memory image, using the hivelist plugin results of the preceding section.

Based on the information provided by Annex D and Section 2.3.4.1, the following
HKLM\SOFTWARE-specific registry keys are examined using the printkey plugin as based on the
following Volatility commands:

Command Set (1):

volatility -printkey -o 0xe153ab60 -K 'Microsoft\Windows NT\CurrentVersion\Winlogon'
-f zeus.vmem

volatility -printkey -o 0xe153ab60 -K 'Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify' -f zeus.vmem

volatility -printkey -o 0xe153ab60 -K
'Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects' -f zeus.vmem

volatility -printkey -o 0xe153ab60 -K
'Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler' -f zeus.vmem

volatility -printkey -o 0xe153ab60 -K
'Microsoft\Windows\CurrentVersion\Policies\Explorer\Run' -f zeus.vmem

volatility -printkey -o 0xe153ab60 -K 'Microsoft\Windows\CurrentVersion\Run' -f
zeus.vmem

volatility -printkey -o 0xe153ab60 -K
'Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad' -f zeus.vmem

Based on the information provided in Annex D and Section 2.3.4.1, the following
HKLM\SYSTEM-specific registry keys are examined using the printkey plugin as based on the
following Volatility commands:

Command Set (2):

volatility -printkey -o 0xe101b008 -K
'ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\Auth
orizedApplications\List' -f zeus.vmem

volatility -printkey -o 0xe101b008 -K 'CurrentControlSet\Services' -f zeus.vmem

DRDC Valcartier TM 2013-018 39

Based on the information provided in Annex D and Section 2.3.4.1, the following
HKCU\SOFTWARE-specific registry keys are examined using the printkey plugin as based on the
following Volatility commands:

Command Set (3):

volatility -printkey -o 0xe1c41b60 -K
'Microsoft\Windows\CurrentVersion\Explorer\RunMRU' -f zeus.vmem

volatility -printkey -o 0xe1c41b60 -K
'Microsoft\Windows\CurrentVersion\Explorer\UserAssist' -f zeus.vmem

volatility -printkey -o 0xe1c41b60 -K 'Microsoft\Windows\CurrentVersion\Run' -f
zeus.vmem

volatility -printkey -o 0xe1e158c0 -K
'Microsoft\Windows\CurrentVersion\Explorer\RunMRU' -f zeus.vmem

volatility -printkey -o 0xe1e158c0 -K
'Microsoft\Windows\CurrentVersion\Explorer\UserAssist' -f zeus.vmem

volatility -printkey -o 0xe1e158c0 -K 'Microsoft\Windows\CurrentVersion\Run' -f
zeus.vmem

The various memory addresses, as specified in the abovementioned commands, have been
highlighted to aid in the differentiation between the virtual address offsets used in the previously
mentioned commands.

2.3.4.3 Output from the various printkey commands

The output, based on the HKLM\SOFTWARE hives registry keys and the Command Set (1), after
pruning duplicate and non-useful output, has resulted in the following evidence:

REG_DWORD AutoRestartShell : (S) 1

REG_SZ DefaultDomainName : (S) BILLY-DB5B96DD3

REG_SZ DefaultUserName : (S) Administrator

REG_SZ LegalNoticeCaption : (S)

REG_SZ LegalNoticeText : (S)

REG_SZ PowerdownAfterShutdown : (S) 0

REG_SZ ReportBootOk : (S) 1

REG_SZ Shell : (S) Explorer.exe

REG_SZ ShutdownWithoutLogon : (S) 0

REG_SZ System : (S)

40 DRDC Valcartier TM 2013-018

REG_SZ Userinit : (S)
C:\WINDOWS\system32\userinit.exe,C:\WINDOWS\system32\sdra64.exe,

REG_SZ VmApplet : (S) rundll32 shell32,Control_RunDLL "sysdm.cpl"

REG_DWORD SfcQuota : (S) 4294967295

REG_SZ allocatecdroms : (S) 0

REG_SZ allocatedasd : (S) 0

REG_SZ allocatefloppies : (S) 0

REG_SZ cachedlogonscount : (S) 10

REG_DWORD forceunlocklogon : (S) 0

REG_DWORD passwordexpirywarning : (S) 14

REG_SZ scremoveoption : (S) 0

REG_DWORD AllowMultipleTSSessions : (S) 1

REG_EXPAND_SZ UIHost : (S) logonui.exe

REG_DWORD LogonType : (S) 1

REG_SZ Background : (S) 0 0 0

REG_SZ AutoAdminLogon : (S) 0

REG_SZ DebugServerCommand : (S) no

REG_DWORD SFCDisable : (S) 0

REG_SZ WinStationsDisabled : (S) 0

REG_DWORD HibernationPreviouslyEnabled : (S) 1

REG_DWORD ShowLogonOptions : (S) 0

REG_SZ AltDefaultUserName : (S) Administrator

REG_SZ AltDefaultDomainName : (S) BILLY-DB5B96DD3

Information highlighted in red above pinpoints the registry key responsible for re-loading the
Zeus malware into memory. Specifically, the system becomes re-infected every time the
Administrator user logs in to the system.

The output, based on the HKLM\SYSTEM hives and registry keys from Command Set (2), after
pruning duplicate and non-useful output, has resulted in the following evidence:

REG_SZ %windir%\system32\sessmgr.exe : (S)
%windir%\system32\sessmgr.exe:*:enabled:@xpsp2res.dll,-22019

REG_DWORD EnableFirewall : (S) 0

DRDC Valcartier TM 2013-018 41

From this output, it is not possible to determine if the system’s firewall was already disabled or if
it was disabled by the Zeus Trojan horse, as it is known to have this ability [8].

Finally, the output based on the HKCU\SOFTWARE hives and registry keys and the Command
Set (3) resulted in no useful information.

2.3.4.4 Userassist plugin

The final Volatility plugin that will be run against the memory image is userassist. This plugin
has the potential to provide, among other things, additional registry-based information pertaining
to programs run and files opened by the user. Its output, after pruning it of non-useful
information, has resulted in the following evidence:

REG_BINARY UEME_RUNPATH:C:\Documents and
Settings\Administrator\Desktop\ZeuS_binary_5767b2c6d84d87a47d12da03f4f376ad.exe

This output indicates that a UserAssist registry artifact was found and its name is indicative of the
Zeus infection. Moreover, it coincides directly with the evidence found using the filescan plugin
(see Section 2.3.3.8). Furthermore, since this evidence was found in the UEME_RUNPATH, it
was executed. Whether this executable contains an actual instance of the Zeus Trojan horse is not
known at this time, as the file is not available for analysis. However, based on the name of the
file, it is not a part of any Windows or known application installation. Thus, it can be said that
this executed file is in some way related to the infection.

42 DRDC Valcartier TM 2013-018

3 Memory analysis issues

3.1 Memory analysis problems

Although memory forensics has begun to change how computer forensic investigations are
conducted, there is much work yet to be done. It is still largely a field predominantly comprised
of software reverse engineers. Moreover, even once an infection has been isolated, an in-depth
understanding of the infection is predominantly obtained through the reverse engineering of the
malware.

Unfortunately, each memory analysis framework is quite different. Further complicating the
matter is the fact that the memory analysis capabilities of the frameworks provided by the main
vendors (e.g. FTK, EnCase, Paraben) have not yet caught up with the capabilities of their
competitors (e.g. Volatility, HBGary Responder and DNA, Mandiant Redline, etc.). This has the
added effect of creating a fragmented marketplace. In addition, each framework is distinct with its
own learning curve and nuances. Moreover, some have been designed for non-memory
specialists, while others are difficult to use and comprehend by anyone other than software
reverse engineers. The documentation of these various frameworks, whether commercial, free or
open source, is largely lacking and of poor quality. The provided literature with these products is
always obvious even to non-experienced memory specialists.

Finally, further complicating the matter is that these frameworks primarily support Windows-
based systems, although Volatility does provide some non-Windows support. It is worth
mentioning that Volatility’s Linux-based support is continuing to improve.

3.2 The uses of memory analysis

Memory analysis, when working against a given memory image, can readily enable the
investigator to determine a variety of facts about a suspect system’s state at the time of the
memory’s acquisition. It can be used to determine what documents a suspect was working on,
what network activities he was currently or recently involved in. Pictures can be readily detected
and extracted using data carving techniques. Evidence of malicious activity such as computer
malware infections can be found and used to corroborate evidence found on disk or to detect
newer strains of malware that never write to disk. Memory analysis can even reveal encryption
keys and passwords that can be used to decrypt locked volumes and files, including accessing
user files and shared network drives.

Finally, computer memory forensics is the latest chapter in computer-based forensics and there is
still a great deal of work, research and innovation to be coaxed from memory acquisition and
analysis.

DRDC Valcartier TM 2013-018 43

4 Conclusion

What can be concluded from this work is that using solid investigative footwork, combined with
the capabilities of the Volatility memory forensics framework, investigators can readily analyse
and investigate memory-based infections. The Zeus Trojan horse was not particularly obvious to
find with respect to process-based listings, but it left actual traces of its activity through its
extensive use of the registry and its cover communications channel. Of course, armed with
various virus reports, it was possible to determine other potential sources of evidence.

Moreover, using Volatility’s malware-finding and dumping plugin malfind, it was possible to not
only find the process that had been hijacked but even to dump the actual Zeus process.
Throughout this document, the author has demonstrated the manner in which a forensic memory
analysis could be conducted by non-memory specialists using a comprehensive, yet easy to
follow, memory analysis methodology. Thus, even novice memory investigators can successfully
examine relatively difficult memory analyses, when armed with a usable technique and
methodology, as well as the necessary background information concerning the infection.

However, not all analyses to be conducted will be able to rely on many well-prepared virus
reports. Furthermore, not all investigations will be carried out against known malware, as
malware is constantly evolving. Nevertheless, the techniques and methodology presented herein
will be of use against even these newer malware.

This document, the first in a series of many, walks the reader through various malware memory
infections in the hope of building a sufficient compendium of knowledge for memory analysis.
While the degree of difficulty will vary substantially throughout these analyses, they will provide
a means for investigators to rely on in learning how to carry out their own memory investigations.

44 DRDC Valcartier TM 2013-018

References

[1] Carbone, Richard. File recovery and data extraction using automated data recovery tools: A
balanced approahc using Windows and Linux when working with an unknown disk image
and filesystem. Technical Memorandum. DRDC Valcartier. TM 2009-161. August 2009.

[2] Volatility. Command Reference 2.2. Online article. Volatility 2012.
http://code.google.com/p/volatility/wiki/CommandReference22.

[3] Carbone, Richard and Vincent, Simon. Installing and configuring a declassification system:
A solution combining Trusted Solaris and Free and Open Source Software. Technical
Memorandum. DRDC Valcartier. TM 2009-086. January 2013.

[4] Wikipedia. Zeus (Trojan horse). Online encyclopaedic article. Wikimedia Foundation.
February 2013. http://en.wikipedia.org/wiki/Zeus_(Trojan_horse).

[5] F-Secure. Top10 malware registry launchpoints. Online article. F-Secure.com. June 2007.
http://www.f-secure.com/weblog/archives/00001207.html.

[6] Wikipedia. Windows Registry. Online encyclopaedic article. Wikimedia Foundation.
February 2013. http://en.wikipedia.org/wiki/Windows_Registry.

[7] IOActive Inc. Reversal and Analysis of Zeus and SpyEye Banking Trojans. Technical
wgitepaper. IOActive Inc. 2012.
http://www.ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf.

[8] PC Tools by Symantec. Zeus Almighty’s Handcrafter PDF Files. Online article. PC Tools
by Symantec. 2012. http://www.pctools.com/security-news/zeus-almightys-handcrafted-pdf-
files/.

[9] Binsalleeh, H., Ormerod, T., et al. On the analysis of the Zeus Botnet Crimeware Toolkit.
Technical paper. Computer Security Laboratory, Concordia University.
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf.

[10] BitDefender. Trojan.Spy.Zeus.W. Online article. BitDefender.
http://www.bitdefender.com/VIRUS-1000496-en--Trojan-Spy-Zeus-W.html.

[11] Zeustracker.abuse.ch. ZeuS Tracker :: FAQ. Online article / FAQ. June 2009.
Zeustracker.abuse.ch. https://zeustracker.abuse.ch/faq.php.

[12] Waheed, Shahzad. Implementation and evaluation of a botnet analysis and detection
methods in a virtual environment. Technical paper. Document No.: 01007306. August
2012. Edinburgh Hapier University.
http://researchrepository.napier.ac.uk/5667/1/Waheed.pdf.

DRDC Valcartier TM 2013-018 45

http://code.google.com/p/volatility/wiki/CommandReference22
http://en.wikipedia.org/wiki/Zeus_(Trojan_horse)
http://www.f-secure.com/weblog/archives/00001207.html
http://en.wikipedia.org/wiki/Windows_Registry
http://www.ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf
http://www.pctools.com/security-news/zeus-almightys-handcrafted-pdf-files/
http://www.pctools.com/security-news/zeus-almightys-handcrafted-pdf-files/
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
http://www.bitdefender.com/VIRUS-1000496-en--Trojan-Spy-Zeus-W.html
https://zeustracker.abuse.ch/faq.php
http://researchrepository.napier.ac.uk/5667/1/Waheed.pdf

[13] Mcafee. Summary: PWS-Zbot. Online article. June 2012.
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTAT
ION/23000/PD23030/en_US/McAfee_Labs_Threat_Advisory_PWS_ZBot.pdf.

[14] Wyke, James. What is Zeus? Technical paper. SophosLabs UK. May 2011.
http://www.sophos.com/medialibrary/PDFs/technical%20papers/Sophos%20what%20is%2
0zeus%20tp.pdf.

[15] Falliere, Nicolas and Chien, Eric. Zeus: King of the Bots. Technical paper. Symantec.
http://courses.isi.jhu.edu/malware/papers/ZEUS.pdf.

[16] Michaud, F. and Carbone, R. Practical verification & safeguard tools for C/C++.
Technical Report. TR 2006-735. DRDC Valcartier. http://cradpdf.drdc-
rddc.gc.ca/PDFS/unc69/p528977.pdf.

[17] Wallisch, Phil. Physical Memory Standard Operating Procedures: HBGary Memory
Forensic Tools. Technical paper (draft). Morgan Stanley. May 2010.
http://info.publicintelligence.net/HBGary-MorganStanley.pdf.

[18] McMahon, David. PSTP08-0107eSec Combating Robot Networks and Their Controllers:
A Study for the Public Security and Technical Program (PSTP). Technical paper. PSTP
08-0107ESEC Version 3.0. Bell Canada for Defence R&D Canada Public Security S&T
Summer Symposium 2009. December 2010.

46 DRDC Valcartier TM 2013-018

https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23030/en_US/McAfee_Labs_Threat_Advisory_PWS_ZBot.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23030/en_US/McAfee_Labs_Threat_Advisory_PWS_ZBot.pdf
http://www.sophos.com/medialibrary/PDFs/technical%20papers/Sophos%20what%20is%20zeus%20tp.pdf
http://www.sophos.com/medialibrary/PDFs/technical%20papers/Sophos%20what%20is%20zeus%20tp.pdf
http://courses.isi.jhu.edu/malware/papers/ZEUS.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc69/p528977.pdf
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc69/p528977.pdf
http://info.publicintelligence.net/HBGary-MorganStanley.pdf

 Anti-virus scanner logs for data carved files Annex A

A.1 Avast

carving/recup_dir.1/f0198744.exe [infected by: Win32:Malware-gen]
carving/recup_dir.1/f0198048.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0126936.exe [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0179568.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0186296.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0122376.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0083472.exe [infected by: Win32:Malware-gen]
carving/recup_dir.1/f0169264.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0179776.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0069472.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0026720.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0102992.exe [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0123288.exe [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0078696.exe [infected by: Win32:SwPatch [Wrm]]
carving/recup_dir.1/f0108688.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0016384.exe [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0136384.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0068952.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0031840.dll [infected by: Win32:Zbot-BCW [Trj]]
carving/recup_dir.1/f0009000.exe [infected by: Win32:SwPatch [Wrm]]
carving/recup_dir.2/f0127576.dll [infected by: Win32:Zbot-BCW [Trj]]

A.2 AVG

carving/recup_dir.1/f0198744.exe Virus found Win32/Heri
carving/recup_dir.1/f0189184.exe Trojan horse Pakes.AW
carving/recup_dir.1/f0198048.dll Virus identified Win32/Cryptor
carving/recup_dir.1/f0197560.dll Virus found Win32/Heur
carving/recup_dir.1/f0126936.exe Virus identified Win32/Cryptor
carving/recup_dir.1/f0169216.dll Virus found Win32/Heur
carving/recup_dir.1/f0106544.exe Virus found Win32/Heur
carving/recup_dir.1/f0126048.exe Virus found Win32/Heri
carving/recup_dir.1/f0083472.exe Virus found Win32/Heri
carving/recup_dir.1/f0176824.exe Virus found Win32/Heri
carving/recup_dir.1/f0076592.exe Virus found Win32/Heri
carving/recup_dir.1/f0080496.exe Virus found Win32/Heri
carving/recup_dir.1/f0096936.exe Virus found Win32/Heri
carving/recup_dir.1/f0197216.exe Virus found Win32/Heri
carving/recup_dir.1/f0062328.exe Virus found Win32/Heri

DRDC Valcartier TM 2013-018 47

carving/recup_dir.1/f0123288.exe Virus identified Win32/Cryptor
carving/recup_dir.1/f0105344.exe Virus found Win32/Heri
carving/recup_dir.1/f0152824.exe Virus found Win32/Heri
carving/recup_dir.1/f0104608.exe Virus found Win32/Heur
carving/recup_dir.1/f0070384.exe Virus found Win32/Heri
carving/recup_dir.1/f0078696.exe Virus found Win32/Heri
carving/recup_dir.1/f0169152.dll Virus found Win32/Heur
carving/recup_dir.1/f0135928.dll Virus found Win32/Heur
carving/recup_dir.1/f0144008.exe Virus found Win32/Heri
carving/recup_dir.1/f0095216.exe Virus found Win32/Heri
carving/recup_dir.2/f0215816.exe Trojan horse Pakes.AW
carving/recup_dir.2/f0202808.exe Virus found Win32/Heri
carving/recup_dir.2/f0202184.exe Virus found Win32/Heri
carving/recup_dir.2/f0206136.exe Virus found Win32/Heri
carving/recup_dir.2/f0217400.exe Virus found Win32/Heur
carving/recup_dir.2/f0209592.exe Virus found Win32/Heri
carving/recup_dir.2/f0214736.dll Virus found Win32/Heur

A.3 BitDefender

carving/recup_dir.1/f0215816.exe infected:Gen:Trojan.Heur.FU.hqW@aahezco
carving/recup_dir.1/f0202808.exe infected: Gen:Trojan.Heur.JP.hqW@aqTeVHc
carving/recup_dir.1/f0198744.exe infected: Trojan.Generic.8251755
carving/recup_dir.1/f0053360.exe infected: Backdoor.Bot.156746
carving/recup_dir.1/f0126048.exe infected: Gen:Trojan.Heur.FU.hqW@aqTeVHc
carving/recup_dir.1/f0083472.exe infected: Trojan.Generic.7400965
carving/recup_dir.1/f0176824.exe infected: Gen:Trojan.Heur.JP.hqW@aqTeVHc
carving/recup_dir.1/f0152824.exe infected: Gen:Trojan.Heur.FU.hqW@aqTeVHc
carving/recup_dir.1/f0078696.exe infected: Gen:Trojan.Heur.FU.hqW@aqTeVHc

A.4 ClamAV

carving/recup_dir.1/f0152992.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0144496.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0144144.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0189184.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0026008.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0198048.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0005728.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0146736.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0137232.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0102264.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0169616.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0132888.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

48 DRDC Valcartier TM 2013-018

carving/recup_dir.1/f0169216.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0013544.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0007368.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0185552.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0145024.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0091520.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0186296.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0122376.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0169264.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0179776.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0176824.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0063288.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0146176.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0144536.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0118024.dll: PUA.Win32.Packer.BorlandDelphiKo FOUND
carving/recup_dir.1/f0096936.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0069472.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0118440.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0008976.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0189832.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0159152.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0026848.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0112520.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0026720.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0024864.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0018848.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0048840.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0094808.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0184400.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0174120.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0050760.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0056096.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0179536.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0169136.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0142112.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0088992.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0186488.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0059664.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0165528.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0104608.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0150376.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0144488.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0134080.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0078696.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0137240.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND

DRDC Valcartier TM 2013-018 49

carving/recup_dir.1/f0118992.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0108688.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0110056.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0102544.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0159528.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0018152.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0130352.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0135928.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0136384.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0153976.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0068952.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0031840.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0075624.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0191400.exe: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0144008.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0192048.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0081112.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0138992.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0144928.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0024528.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0063824.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0030696.exe: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0042984.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0058272.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0141512.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0008576.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0089600.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0102320.exe: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.1/f0083224.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.1/f0157160.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0215816.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0203632.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0260944.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0252472.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0219592.exe: PUA.Win32.Packer.NspackDotnetNor-1 FOUND
carving/recup_dir.2/f0210064.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0204448.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0216392.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0206136.exe: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.2/f0213520.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0250272.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0203192.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0203408.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.2/f0243048.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0209976.dll: PUA.Win32.Packer.Msvcpp FOUND

50 DRDC Valcartier TM 2013-018

carving/recup_dir.2/f0221920.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0203288.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.2/f0202984.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0254128.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0218960.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0219024.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0209968.dll: PUA.Win32.Packer.Msvcpp FOUND
carving/recup_dir.2/f0209608.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0218064.dll: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0204816.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0250240.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND
carving/recup_dir.2/f0241064.exe: PUA.Win32.Packer.MsVisualCpp-2 FOUND

A.5 F-Prot

[Found security risk] <W32/Zbot.AG.gen!Eldorado (generic, not disinfectable)>
carving/recup_dir.1/f0126048.exe
[Found security risk] <W32/Zbot.AG.gen!Eldorado (generic, not disinfectable)>
carving/recup_dir.1/f0078696.exe

A.6 McAfee

McAfee was the only anti-virus scanner unable to detect any malware whatsoever for the data
carved files recovered.

DRDC Valcartier TM 2013-018 51

This page intentionally left blank.

52 DRDC Valcartier TM 2013-018

 Volatility Windows-based plugins Annex B

The following is a complete list of the default Windows-based analysis plugins provided with
Volatility version 2.2:

Table B.1: List of Volatility 2.2 plugins.

Plugin Capability (as per Volatility --help output)

apihooks Detect API hooks in process and kernel memory

atoms Print session and window station atom tables

atomscan Pool scanner for _RTL_ATOM_TABLE

bioskbd Reads the keyboard buffer from Real Mode memory

callbacks Print system-wide notification routines

clipboard Extract the contents of the windows clipboard

cmdscan Extract command history by scanning for _COMMAND_HISTORY

connections Print list of open connections [Windows XP and 2003 Only]

connscan Scan Physical memory for _TCPT_OBJECT objects (tcp connections)

consoles Extract command history by scanning for _CONSOLE_INFORMATION

crashinfo Dump crash-dump information

deskscan Poolscaner for tagDESKTOP (desktops)

devicetree Show device tree

dlldump Dump DLLs from a process address space

dlllist Print list of loaded dlls for each process

driverirp Driver IRP hook detection

driverscan Scan for driver objects _DRIVER_OBJECT

envars Display process environment variables

eventhooks Print details on windows event hooks

evtlogs Extract Windows Event Logs (XP/2003 only)

filescan Scan Physical memory for _FILE_OBJECT pool allocations

gahti Dump the USER handle type information

gditimers Print installed GDI timers and callbacks

DRDC Valcartier TM 2013-018 53

Plugin Capability (as per Volatility --help output)

gdt Display Global Descriptor Table

getservicesids Get the names of services in the Registry and return Calculated SID

getsids Print the SIDs owning each process

handles Print list of open handles for each process

hashdump Dumps passwords hashes (LM/NTLM) from memory

hibinfo Dump hibernation file information

hivedump Prints out a hive

hivelist Print list of registry hives.

hivescan Scan Physical memory for _CMHIVE objects (registry hives)

idt Display Interrupt Descriptor Table

imagecopy Copies a physical address space out as a raw DD image

imageinfo Identify information for the image

impscan Scan for calls to imported functions

kdbgscan Search for and dump potential KDBG values

kpcrscan Search for and dump potential KPCR values

ldrmodules Detect unlinked DLLs

lsadump Dump (decrypted) LSA secrets from the registry

malfind Find hidden and injected code

memdump Dump the addressable memory for a process

memmap Print the memory map

messagehooks List desktop and thread window message hooks

moddump Dump a kernel driver to an executable file sample

modscan Scan Physical memory for _LDR_DATA_TABLE_ENTRY objects

modules Print list of loaded modules

mutantscan Scan for mutant objects _KMUTANT

patcher Patches memory based on page scans

printkey Print a registry key, and its subkeys and values

procexedump Dump a process to an executable file sample

54 DRDC Valcartier TM 2013-018

Plugin Capability (as per Volatility --help output)

procmemdump Dump a process to an executable memory sample

pslist Print all running processes by following the EPROCESS lists

psscan Scan Physical memory for _EPROCESS pool allocations

pstree Print process list as a tree

psxview Find hidden processes with various process listings

raw2dmp Converts a physical memory sample to a windbg crash dump

screenshot Save a pseudo-screenshot based on GDI windows

sessions List details on _MM_SESSION_SPACE (user logon sessions)

shimcache Parses the Application Compatibility Shim Cache registry key

sockets Print list of open sockets

sockscan Scan Physical memory for _ADDRESS_OBJECT objects (tcp sockets)

ssdt Display SSDT entries

strings Match physical offsets to virtual addresses (may take a while, VERY
verbose)

svcscan Scan for Windows services

symlinkscan Scan for symbolic link objects

thrdscan Scan physical memory for _ETHREAD objects

threads Investigate _ETHREAD and _KTHREADs

timers Print kernel timers and associated module DPCs

userassist Print userassist registry keys and information

userhandles Dump the USER handle tables

vaddump Dumps out the vad sections to a file

vadinfo Dump the VAD info

vadtree Walk the VAD tree and display in tree format

vadwalk Walk the VAD tree

volshell Shell in the memory image

windows Print Desktop Windows (verbose details)

wintree Print Z-Order Desktop Windows Tree

wndscan Pool scanner for tagWINDOWSTATION (window stations)

DRDC Valcartier TM 2013-018 55

Plugin Capability (as per Volatility --help output)

yarascan Scan process or kernel memory with Yara signatures

56 DRDC Valcartier TM 2013-018

 NSRL file hash matches for data carved files Annex C

This annex provides a listing of those data carved files obtained in Section 2.2.3 that matched the
SHA1 hashes of the NSRL hash-set (September 2012). In all, eleven NSRL SHA1 matches were
obtained. In turn, these eleven matches resulted in 793 SHA1-filename matches. However, after
taking into account repeating SHA1-filename matches, 65 unique matches were found. These
unique SHA1-filename matches, based on the eleven NSRL SHA1 hash matches obtained in
Section 2.2.3 are as follows:

Table C.1: Data carved file SHA1-filename matches as per the NSRL

SHA1 hash File name

048ABF0A35FFFEB7A43696EFB78290C2923F6069 icmp.dll

09105C886A83677E49CE6EF47F8CF1A047214AED 8.0.50727.762.policy

09105C886A83677E49CE6EF47F8CF1A047214AED
manifest.8.0.50727.762.68B7C6D9_1DF2_54C1_FF1F_C8B3
B9A1E18E

09105C886A83677E49CE6EF47F8CF1A047214AED ul_manifest.68B7C6D9_1DF2_54C1_FF1F_C8B3B9A1E18E

09105C886A83677E49CE6EF47F8CF1A047214AED x1sw1o0k.9hi

09105C886A83677E49CE6EF47F8CF1A047214AED z1sw1o0k.9hi

830D6459350DD1AB3B1F070135425A93395782B1
manifest.8.0.50727.762.74FD3CE6_2A8D_0E9C_FF1F_C8B3
B9A1E18E

830D6459350DD1AB3B1F070135425A93395782B1
mfc80loc_man.7643D2EA_8E33_4EBC_B95C_9E5DF999A53
5

830D6459350DD1AB3B1F070135425A93395782B1 ul_manifest.74FD3CE6_2A8D_0E9C_FF1F_C8B3B9A1E18E

830D6459350DD1AB3B1F070135425A93395782B1
x86_Microsoft.VC80.MFCLOC_1fc8b3b9a1e18e3b_8.0.5072
7.762_x-ww_91481303.manifest

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 comctl.man

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 COMCTL.MAN

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8
X86_POLICY.6.0.MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.2180_X-

A8139A5A5BCC413090176ECAF41510AA0FFBB987 Windows Catalog.lnk

B97B75F861EE499D00CBD547AEDE672B8F8BD08D __0X0056

C5B52B71F4C5F933815D7D606175EA0BB37DC548 controls.man

C5B52B71F4C5F933815D7D606175EA0BB37DC548 CONTROLS.MAN

C5B52B71F4C5F933815D7D606175EA0BB37DC548
X86_MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.2180_X-

D10440930CC994409E920D94C7C45F0405D60422 8.0.50727.762.policy

DRDC Valcartier TM 2013-018 57

SHA1 hash File name

D10440930CC994409E920D94C7C45F0405D60422
manifest.8.0.50727.762.63E949F6_03BC_5C40_FF1F_C8B3
B9A1E18E

D10440930CC994409E920D94C7C45F0405D60422 ul_manifest.63E949F6_03BC_5C40_FF1F_C8B3B9A1E18E

D10440930CC994409E920D94C7C45F0405D60422 xxgs54we.kj4

D10440930CC994409E920D94C7C45F0405D60422 zxgs54we.kj4

DFC37F6C15612F7AB155E53A028A69FB5987199A Program Compatibility Wizard.lnk

F081561658705610ADAD4C30E757312491EDF9E0 8.0.50727.762.policy

F081561658705610ADAD4C30E757312491EDF9E0
manifest.8.0.50727.762.D2730D3F_3C41_5884_FF1F_C8B3
B9A1E18E

F081561658705610ADAD4C30E757312491EDF9E0 ul_manifest.D2730D3F_3C41_5884_FF1F_C8B3B9A1E18E

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X001A

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X001B

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X001C

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X001D

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X001E

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X001F

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0020

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0021

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0022

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0023

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0024

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0025

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0085

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0087

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0089

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X008B

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X008D

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X008F

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00BB

58 DRDC Valcartier TM 2013-018

SHA1 hash File name

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00BD

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00BF

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00C1

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00C3

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00C5

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00DF

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00E1

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00E3

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00E5

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00E7

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X00E9

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0408

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X040A

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X040C

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X040E

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0410

FA52F823B821155CF0EC527D52CE9B1390EC615E __0X0412

DRDC Valcartier TM 2013-018 59

This page intentionally left blank.

60 DRDC Valcartier TM 2013-018

 Commonly used registry keys in a typical Annex D
malware infection

Due to the complexity inherent in working with the Windows registry, this document should not
be construed as a registry tutorial. The registry is simply too complex to be fully explained in a
few pages. However, certain registry locations are frequently used by malware. Common
locations, as based on reference [5] include:

Registry Set (1):

A) HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

B) HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Winlogon

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Winlogon\Notify

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Explorer\SharedTaskScheduler

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Explorer\Browser Helper Objects

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\Explorer\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
ShellServiceObjectDelayLoad

C) HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

Other common registry locations of general forensic interest, although not necessarily of use by
malware, as based on those the author regularly uses in his own investigations include:

Registry Set (2):

A) HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer\Download
Directory

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer\Main

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer\TypedURLs

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
RunMRU

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
UserAssist

DRDC Valcartier TM 2013-018 61

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
ComputerDescriptions

B) HKEY_LOCAL_MACHINE\SOFTWARE\ Microsoft\WZCSVC\Parameters\Interfaces

C) HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\SharedAccess\Parameter
s\FirewallPolicy\StandardProfile\AuthorizedApplications\List

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Tcpip\Parameters\
Interfaces\

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet00x\Enum\USBSTOR

HKEY_LOCAL_MACHINE\SYSTEM\MountedDevices

However, upon combining the various registry keys from Registry Set (1) and (2), based on the
author’s interpretation of registry-based malware forensics, the following registry keys should be
regularly examined for evidence of malware infection:

Aggregated Registry Keys:

A) HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
RunMRU

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
UserAssist

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

B) HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Explorer\Browser Helper Objects

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Explorer\SharedTaskScheduler

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\
Explorer\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
ShellServiceObjectDelayLoad

C) HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\SharedAccess\
Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

Moreover, consider that the registry keys presented in Registry Set (1) and (2) and Aggregated
Registry Keys could be readily regrouped into the following root registry keys:

62 DRDC Valcartier TM 2013-018

Root Registry Keys:

HKEY_CURRENT_USER\SOFTWARE

HKEY_LOCAL_MACHINE\SOFTWARE

HKEY_LOCAL_MACHINE\SYSTEM

The use of these root registry keys is of immediate use to Section 2.3.4.

DRDC Valcartier TM 2013-018 63

This page intentionally left blank.

64 DRDC Valcartier TM 2013-018

Bibliography

AccessData. AccessData Supplemental Appendix: Understanding the UserAssist Registry Key.
Technical documentation. 2008. http://ad-
pdf.s3.amazonaws.com/UserAssist%20Registry%20Key%209-8-08.pdf.

Delorie, DJ. EXE format. Online informational article. Delorie.com. September 2010.
http://www.delorie.com/djgpp/doc/exe/.

Insecure.com. Nmap socket services. Socket service listing. Insecure.com.
https://svn.nmap.org/nmap/nmap-services.

Wikipedia. Flat memory model. Online encyclopaedic article. Wikimedia Foundation. July
2012. http://en.wikipedia.org/wiki/Flat_memory_model.

Wikipedia. Memory management unit. Online encyclopaedic article. Wikimedia Foundation.
November 2012. http://en.wikipedia.org/wiki/Memory_management_unit.

Wikipedia. Network socket. Online encyclopaedic article. Wikimedia Foundation. January
2013. http://en.wikipedia.org/wiki/Network_socket.

Wikipedia. Page (compute memory). Online encyclopaedic article. Wikimedia Foundation.
November 2012. http://en.wikipedia.org/wiki/Page_(computing).

Wikipedia. Page cache. Online encyclopaedic article. Wikimedia Foundation. October 2012.
http://en.wikipedia.org/wiki/Page_cache.

Wikipedia. Page table. Online encyclopaedic article. Wikimedia Foundation. September 2012.
http://en.wikipedia.org/wiki/Page_table.

Wikipedia. Paging. Online encyclopaedic article. Wikimedia Foundation. November 2012.
http://en.wikipedia.org/wiki/Page_file.

Wikipedia. Portable Executable. Online encyclopaedic article. Wikimedia Foundation.
November 2012. http://en.wikipedia.org/wiki/Portable_Executable.

Wikipedia. Shared memory. Online encyclopaedic article. Wikimedia Foundation. November
2012. http://en.wikipedia.org/wiki/Shared_memory.

Wikipedia. Virtual address space. Online encyclopaedic article. Wikimedia Foundation.
October 2012. http://en.wikipedia.org/wiki/Virtual_address.

Wikipedia. Virtual memory. Online encyclopaedic article. Wikimedia Foundation. November
2012. http://en.wikipedia.org/wiki/Virtual_memory.

Wikipedia. Zeus (Trojan horse). Online encyclopaedic article. Wikimedia Foundation. October
2012. http://en.wikipedia.org/wiki/Zeus_(trojan_horse).

DRDC Valcartier TM 2013-018 65

http://ad-pdf.s3.amazonaws.com/UserAssist%20Registry%20Key%209-8-08.pdf
http://ad-pdf.s3.amazonaws.com/UserAssist%20Registry%20Key%209-8-08.pdf
http://www.delorie.com/djgpp/doc/exe/
https://svn.nmap.org/nmap/nmap-services
http://en.wikipedia.org/wiki/Flat_memory_model
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Network_socket
http://en.wikipedia.org/wiki/Page_(computing)
http://en.wikipedia.org/wiki/Page_cache
http://en.wikipedia.org/wiki/Page_table
http://en.wikipedia.org/wiki/Page_file
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Zeus_(trojan_horse)

List of symbols/abbreviations/acronyms/initialisms

AV Anti-Virus or Antivirus

CFNOC Canadian Forces Network Operations Centre

CORFC Centre d'opérations des réseaux des Forces canadiennes

CTPH Context Triggered Piecewise Hash
Sometimes known as fuzzy hash or ssdeep hash

DLL Dynamically Loaded Library

DND Department of National Defence

DRDC Defence Research & Development Canada
DRDKIM Director Research and Development Knowledge and Information

Management
EDT Eastern Daylight Time

EXT4 Fourth Extended Filesystem

GICT Groupe intégré de la criminalité technologique

GRC Gendarmerie Royale du Canada

HKCU HKEY_LOCAL_USER

HKLM HKEY_LOCAL_MACHINE

ID Identification

IP Internet Protocol

ITCU Integrated Technological Crime Unit

MAC Mandatory Access Control

MiB Mebibyte

NIST National Institute of Standards and Technology

NSRL National Software Reference Library

PE Portable Executable

PID Process ID

R&D Research & Development

RAM Random Access Memory

RCMP Royal Canadian Mounted Police

RDDC Recherche et Développement pour la Défense Canada

SHA1 Secure Hash Algorithm 1

TID Thread ID

66 DRDC Valcartier TM 2013-018

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED
(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Malware memory analysis for non-specialists: Investigating a publicly available memory image of
the Zeus Trojan horse

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Carbone, R.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

April 2013

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

82

 6b. NO. OF REFS
(Total cited in document.)

18
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 31XF20 « MOU RCMP "Live Forensics" »

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TM 2013-018

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

This technical memorandum examines how an investigator can analyse a Windows-based
computer memory dump infected with malware. The author investigates how to carry out such
an analysis using Volatility and other investigative tools, including data carving utilities and
anti-virus scanners. Volatility is a popular and evolving open source-based memory analysis
framework. The author has proposed a memory-specific methodology based on a simple
investigative process to help fellow novice memory analysts. Once evidence or indicators of
malware have been found, the author examines how Volatility can be used to undertake a given
memory investigation. This technical memorandum is the first of a series of reports that will be
written concerning Windows malware-based memory analysis using Volatility and various
malware scanners. This specific work examines a memory image infected with the Zeus Trojan
horse.

Le présent mémorandum technique examine comment un enquêteur peut analyser une image
mémoire Windows infectée par des logiciels malveillants. L'auteur étudie la façon d’effectuer
une telle analyse en utilisant Volatility ainsi que d’autres outils, y compris des utilitaires pour la
récupération de données et des scanneurs anti-virus. Volatility est un cadriciel à code source
ouvert populaire et en constante évolution pour l’analyse de mémoire. L’auteur propose une
méthodologie spécifique à l’analyse de mémoire basée sur un processus d'enquête simple afin
d’aider des collègues débutants. Une fois que des preuves ou des indicateurs de la présence de
logiciels malveillants ont été trouvés, l’auteur examine comment Volatility peut être utilisé pour
analyser la mémoire. Ce mémorandum technique est le premier d’une série de rapports qui
seront écrits au sujet de l’analyse de mémoire pour Windows en utilisant Volatility et d’autres
scanneurs de logiciels malveillants. Le présent ouvrage examine une image mémoire infectée
par le cheval de Troie Zeus.

 14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Antivirus; Anti-virus; Computer forensics; Digital forensics; Digital forensic investigations;
Forensics; Malware; Memory analysis; Memory image; Rootkit; Scanners; Trojan horse; Virus
scanner; Volatility; Windows; Zeus

