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We present a model of ultrasonic dispersion in intracranial tissues that is intended to
provide insight into the operation of DRDC Toronto’s Dispersive Ultrasound System
and contribute to the success of DRDC’s ongoing research program in diagnostic
applications of dispersive ultrasound. The Dispersive Ultrasound System is designed
to use the dispersion spectrum produced by acoustic signals as they traverse the
skull and intracranial tissue to identify non-visible neurological injuries, such as those
resulting from blast exposure.

The Intracranial Dispersion Model is a mathematical representation of intracranial
tissues and their acoustic dispersive properties. It has been developed in order to
better understand the formation of dispersion spectra and the effects that various
factors, including intracranial injury, have upon them. The formulation of the In-
tracranial Dispersion Model is presented in detail. We study, both analytically and
numerically, how dispersion spectra respond to specific changes in the properties of
tissues along the ultrasound propagation path. We also examine uncertainties in dis-
persion measurements and their diagnostic implications. Finally, a hypothetical case
study illustrates the diagnostic insights that can be gained from use of the Intracranial
Dispersion Model.

Nous présentons un modèle de dispersion ultrasonique des tissus intracrâniens conçu
pour offrir une idée sur le fonctionnement du système ultrasonique à dispersion de
RDDC Toronto et contribuer au succès du programme de recherche courant de RDDC
visant les applications diagnostiques par dispersion ultrasonique. Le système ultra-
sonique à dispersion est conçu pour utiliser le spectre de dispersion produit par des
signaux acoustiques au fur et à mesure que ceux-ci traversent les tissus intracrâniens
afin didentifier les blessures neurologiques invisibles comme celles causées par lexpo-
sition à une explosion.

Le modèle de dispersion intracrânien est une représentation mathématique des tissus
intracrâniens et de leurs propriétés dispersives acoustiques. Le modèle a été élaboré
pour mieux comprendre la formation du spectre de dispersion et les effets que divers
facteurs, dont la blessure intracrânienne, ont sur celle-ci. La formulation du modèle
est présentée en détail. Nous étudions, de façon analytique et numérique, comment le
spectre de dispersion répond à certaines modifications spécifiques des caractéristiques
des tissus le long du trajet de propagation des ultrasons. Nous étudions aussi lincer-
titude des mesures de dispersion et leur portée diagnostique. Enfin, nous présentons
une étude de cas hypothétique pour illustrer les aperçus de diagnostique quon peut



obtenir en utilisant le modèle de dispersion intracrânien.
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Background: Within the Canadian Forces there is a requirement to diagnose non-
visible neurological injuries, such as those resulting from exposure to blast pressure
waves. In response, DRDC Toronto is in the process of developing a Dispersive
Ultrasound System. The Dispersive Ultrasound System is intended to provide a
non-invasive, portable, simple to use, and relatively inexpensive means to diagnose
non-visible neurological injuries.

To identify injuries, the Dispersive Ultrasound System relies on the dispersion of
acoustic signals as they traverse the skull and intracranial tissue. All of the tissues
along the ultrasonic propagation path contribute to the final observed dispersion
spectrum. An Intracranial Dispersion Model has been developed in order to better
understand the formation of dispersion spectra and the effects that various factors,
including intracranial injury, have upon them. The Intracranial Dispersion Model
is a mathematical representation of intracranial tissues and their acoustic dispersive
properties.

Principal results: The Intracranial Dispersion Model was used to study the ways in
which dispersion spectra are affected by a variety of factors. We studied the effect of
changes in tissue characteristics, composition, and size on the position of individual
spectral lines within a dispersion spectrum. We found that the dispersion arising
from intracranial tissues is caused principally by the dispersive effects of brain tissue
and diploë (a spongy bone tissue in the skull). As well, we found that some ultrasonic
frequency sets are better able to detect injuries than others. The model was also used
to study the time resolution requirements of the Dispersive Ultrasound System. We
examined the consequences of poor time resolution, and found that low time resolution
can result in certain pathologies going undetected. Lastly, a case study was used to
demonstrate the way in which insights gained from the Intracranial Dispersion Model
can contribute to the understanding of an observed dispersion spectrum.

Significance of results: The Intracranial Dispersion Model provides a better un-
derstanding of ultrasonic dispersion in intracranial tissues, and therefore contributes
toward the use of ultrasound as a diagnostic probe for neurological injuries. The
Model promotes a greater understanding of the response of observed dispersion spec-
tra to various changes to the state of the intracranial tissues, which assists in the
interpretation of the diagnostic significance of dispersion spectra. It can be used



to model the effects on dispersion spectra of certain pathologies and of anatomical
changes. The Model also allows one to study the diagnostic limitations resulting
from the finite time resolution of the Dispersive Ultrasound System. Finally, the
Model provides insight into the challenges faced by the Dispersive Ultrasound Sys-
tem’s machine-learning diagnostic decision support module.

Future work: The Intracranial Dispersion Model described in this document is a
step toward a theoretical approach to the use of ultrasonic dispersion for the diagnosis
of intracranial injury. There are various ways in which the Model can be extended
and improved: inclusion of more tissues, modeling of other pathologies such as mild
Traumatic Brain Injury, and generalization to non-linear dispersion, for instance. The
output of the Model can be improved whenever new data on dispersion in intracranial
tissues becomes available. We also anticipate that greater experience with DRDC’s
Dispersive Ultrasound System under laboratory and clinical conditions will lead to
a fruitful dialogue with the Intracranial Dispersion Model, to the mutual benefit of
both approaches.



Contexte : Les Forces canadiennes doivent diagnostiquer les blessures neurologiques
invisibles comme celles causées par lexposition aux ondes de pression du souffle. Par
conséquent, RDDC Toronto participe à lheure actuelle à la conception du système
ultrasonique à dispersion. Le système servira à offrir un moyen non invasif, porta-
tif, simple à utiliser et relativement peu coûteux pour diagnostiquer les blessures
neurologiques invisibles.

Pour identifier les blessures, le système ultrasonique à dispersion se fie sur la dispersion
des signaux acoustiques qui traversent le crâne et les tissus intracrâniens. Tous les
tissus le long du trajet de propagation des ultrasons contribuent à créer le dernier
spectre de dispersion observé. Un modèle de dispersion intracrânienne a été élaboré
afin de mieux comprendre la formation du spectre de dispersion et les effets que divers
facteurs, y compris la blessure intracrânienne, ont sur celle-ci. Le modèle de dispersion
intracrânienne est une représentation mathématique des tissus intracrâniens et de
leurs propriétés de dispersion acoustique.

Résultats principaux : Le modèle de dispersion intracrânienne a été utilisé pour
étudier lincidence quont divers facteurs sur le spectre de dispersion. Nous étudions
les impacts des modifications apportées aux caractéristiques, à la composition et à
la taille des tissus sur lemplacement des lignes spectrales individuelles dun spectre
de dispersion. Nous avons conclu que la dispersion provenant des tissus intracrâniens
est causée principalement par les effets dispersifs du tissu cérébral et du diploë (tissu
osseux spongieux situé dans le crâne). De même, nous avons découvert que certains
jeux de fréquence ultrasonique sont meilleurs que dautres pour détecter des blessures.
Le modèle a également été utilisé pour étudier les exigences en matière de temps de
réponse du système ultrasonique à dispersion. Nous avons examiné les conséquences
dun mauvais temps de réponse et avons découvert quil nuit à la détection de certaines
maladies. Finalement, une étude de cas a été utilisée pour démontrer la manière
dont les connaissances obtenues avec le modèle de dispersion intracrânienne peuvent
contribuer à comprendre un spectre de dispersion observé.

Portée des résultats : Le modèle de dispersion intracrânienne offre une meilleure
compréhension de la dispersion ultrasonique dans les tissus intracrâniens et favorise
lutilisation des ultrasons comme sonde de diagnostic pour les blessures neurologiques.



Le modèle préconise une meilleure compréhension des réactions des spectres de disper-
sion observés causées par des modifications de létat des tissus intracrâniens. Il permet
aussi dinterpréter la signification du diagnostic du spectre de dispersion. Le modèle
peut être utilisé pour modéliser les impacts de certaines maladies et modifications
anatomiques sur le spectre de dispersion. Il permet détudier les limites de diagnostic
déterminées par le temps de réponse fini du système ultrasonique de dispersion. En-
fin, le modèle offre un aperçu des défis auxquels fait face le module dapprentissage
auxiliaire de décisions diagnostiques du système ultrasonique de dispersion.

Recherches futures : Le modèle de dispersion intracrânienne décrit dans le présent
document constitue une étape vers lapproche théorique pour lutilisation de la disper-
sion ultrasonique dans le diagnostic des blessures intracrâniennes. Il existe diverses
manières daméliorer le modèle, notamment linclusion de plus de tissus, la modélisation
dautres maladies comme le traumatisme cérébral léger et la généralisation vers la dis-
persion non linéaire. Les résultats du modèle saméliorent chaque fois que de nouvelles
données sur la dispersion dans les tissus intracrâniens sont disponibles. Nous nous at-
tendons également à ce que dautres essais cliniques et en laboratoire avec le système
ultrasonique de dispersion de RDDC mènent à un dialogue fructueux avec le modèle
de dispersion intracrânienne et profitent aux deux approches.



When waves propagate through a medium, different frequencies propagate at different
speeds. This phenomenon is called dispersion. The propagation times for a set of
frequencies are referred to collectively as the dispersion spectrum. The amount of
dispersion, and, therefore, the form of the dispersion spectrum, depends upon the
physical properties of the medium. As such, dispersion can be used as a probe of
those properties.

In a medical context, ultrasonic waves traveling through biological tissue exhibit
dispersion, and, consequently, the resulting dispersion pattern contains information
about the properties of the tissue. For this reason, ultrasonic dispersion has the
potential for use as a medical diagnostic tool. Unlike most medical diagnostics based
on ultrasound, dispersive ultrasound does not attempt to image the tissues. Rather,
the tissue characterization is based simply on the observed dispersion spectrum.

DRDC Toronto has initiated a research program to develop a Dispersive Ultrasound
System (DUS) for use in medical diagnosis [1, 2]. Ultrasound has significant advan-
tages for military medicine: it requires relatively low power, it can be made portable,
and it is inexpensive compared to many other diagnostic modalities. The DUS,
pictured in Figure 1, is a small, portable device consisting of a pair of ultrasonic
transducers (for transmission and reception of the signal), a signal processing unit,
and a user interface.

The Dispersive Ultrasound System (DUS) prototype. The data acquisition
and analysis unit is pictured on the left; on the right is a fluid container with attached
ultrasound probes, and a temperature monitor.



Preliminary experiments with the DUS prototype focused on evaluating its capacity
to identify homogeneous fluids, such as water, apple juice, orange juice, etc., simply on
the basis of the fluid’s dispersion pattern [2]. These experiments were quite successful,
and convinced us that the technology warranted further study. The next stage of
development of the DUS is to apply it in a medical diagnostic context. To this end,
plans are underway to initiate animal tests as a prelude to clinical studies on human
subjects.

The principal medical use envisaged for the DUS is as a diagnostic tool for internal,
non-visible injuries of the head, such as mild Traumatic Brain Injury (mTBI) or
intracranial hemorrhage. The changes to the intracranial tissues that occur as a result
of these injuries are likely to produce changes in the observed dispersion spectrum,
and this is the key to the diagnostic capabilities of the DUS.

A central challenge, however, is to correctly interpret the observed dispersion spectra.
Since normal tissue is dispersive, how reliably can the cause of a given dispersion spec-
trum be attributed to intracranial injury? Changes to a dispersion spectrum might
indicate the development of an injury, but they might also be due to temperature
changes or inconsistent placement of ultrasonic probes. The fielded DUS will rely on
a machine-learning system to judge whether a given spectrum indicates healthy tissue
or not. Nonetheless, it is worthwhile to study dispersion in intracranial tissues, for
by means of such study we might gain insight into the problem space, understanding
of possible performance limits on machine-learning approaches, and a better grasp of
the possible causes of observed variations of dispersion spectra.

To this end, we developed in this report a simple model of ultrasonic dispersion in
intracranial tissues. The model is not intended to predict observed dispersion spectra
– since dispersion data are not available for all relevant tissues, such prediction is
impossible – but rather to provide a flexible means for studying the variability that
may arise in dispersion spectra as a result of a variety of factors. The model can be
improved with time, and it is hoped that it will contribute to the effectiveness of the
DUS research program.

The Intracranial Dispersion Model (IDM) is motivated by the principal clinical appli-
cation envisaged for the DUS, namely, the detection of non-visible intracranial injury,
such as results from a blast exposure. In this clinical scenario, two ultrasonic probes,
one for transmission and one for reception, are placed bilaterally on the temples of
the patient and the acoustic pulses traverse the tissues between them. As such, the



acoustic propagation path consists of a series of tissue layers. Figure 2 shows an
anatomical cross-section of the human head illustrating the principal tissues which
are present, namely the skull and the brain. We are also interested in cases in which
damage to the head has caused pathologies such as intracranial hematoma, so we
model scenarios in which a layer of blood is also present along the propagation path,
as shown.

Cross-sectional view of human brain illustrating principal tissues along
acoustic propagation path. Adapted from [3].

As shown in Figure 3, the skull is divided into three layers: outer ivory table, diploë,
and inner ivory table. The inner and outer ivory tables are made of compact cortical
bone and enclose the cancellous diploë [4]. Cancellous bones are heterogeneous and
porous; the pores are typically filled with a fluid-like marrow [5]. The distinction of
skull layers is important because of the very different dispersive characteristics of the
cortical and cancellous bone types (see Section 2.1.2).

When the probes are mounted on the temples, the ultrasonic signal passes mainly
through the frontal lobe of the brain, as shown in Figure 4. It is not known if
acoustic propagation through the frontal lobe differs in any significant respects from
propagation through other parts of the brain, but, since no specific data on the
acoustic properties of the frontal lobe were available, we rely on data published for
generic brain tissue.

The study of dispersion is equivalent to the study of the frequency dependence of the
propagation time of an acoustic wave through a medium. Dispersion spectra show



X-ray image of the three bone layers of the cranial vault [4].

Basic brain anatomy, showing principal lobes [6].

the times required for different frequencies to traverse the medium of interest. In this
Section, we present a simple model for computing propagation time.

For a given tissue i, the propagation time for frequency f , ti(f), can be calculated
according to the relation

ti(f) =
di

vi(f)
(1)

=
di

v0i + (f − f0i)Δi
, (2)

where di is the depth of the tissue traversed by the acoustic wave, v0i is the base

speed defined at a base frequency f0i, and Δi is the tissue’s dispersion trend, which
characterizes the frequency dependence of the propagation speed. In (2) we have a
linear dispersion model because the propagation speed is assumed to change linearly
across the range of frequencies under consideration. The frequency set currently used



in DUS laboratory experiments is shown in Table 1. Transmission frequencies are
configurable, but are limited by transducer characteristics and tissue absorption to
be less than 5 MHz.

Members Frequency
of F (MHz)
f1 1.93
f2 2.13
f3 2.78
f4 3.33
f5 3.85
f6 4.08
f7 4.17
f8 4.39
f9 4.76

Frequency set F used in modeling. Absorption of high frequency ultrasound
by tissues and transducer characteristics limit the usable frequency range of the DUS
to f < 5 MHz.

In Section 2.2, we shall show that most materials, in fact, do not exhibit linear disper-
sion. We will also argue, however, and show by example, that dispersion is typically
a small effect that can be described sufficiently accurately by a linear model over the
limited frequency range that is of interest to us. As will be shown in Section 2.1.2

below, moreover, all of the available published dispersion data for relevant tissues
assume that the dispersion is adequately described by a linear trend.

If we have a set of tissue layers T , then the total propagation time is obtained by
summing the propagation time for each tissue in the set

t(f) =
∑
i∈T

ti(f). (3)

The model can be conveniently upgraded or modified. For example, at the user’s
discretion, the model can be supplemented with additional tissue layers. As well, if
precise and detailed dispersion data are available, the dispersion for a given tissue
can be modeled as a non-linear function of frequency, as in (1).

The amount of dispersion arising in a tissue depends on the depth di of the tissue
along the propagation path. Depth values used in the current model are shown in



Tissue Mean Modeling Source
(mm) Range (mm)

Brain 110 60 − 160 [3]
Skull, diploë 3.7 (σ = 2.5) 1.2 − 6.2 [4]
Skull, ivory tables 7 2 − 12 −
Blood, whole − 0 − 25 −

Depth of tissue layers along acoustic propagation path. Data for blood are
for modeling of hemorrhage, and are not used when modeling a healthy brain.

Table 2. The mean values and ranges in Table 2 are taken from the sources indicated
in the last column. Brain tissue accounts for the bulk of the propagation path, with
smaller contributions from the skull layers. The only tissue for which detailed depth
information is available is the diploë skull tissue; studies indicate a mean depth of
3.7 mm and a standard deviation of 2.5 mm in the general population [4]. The depth
and range of the ivory table bone was estimated from the the fact that, as shown in
Figure 3, the ivory table is roughly twice as deep as the diploë.

To model internal hemorrhage, we can introduce a layer of blood, as depicted in
Figure 2. In practice, we varied the depth of the blood layer in the range indicated
in Table 2. When a layer of blood was added, a layer of brain tissue of the same
width was subtracted in order to maintain the same total depth. In reality, the
brain tissue would be displaced and compressed by the hemorrhage, which would
likely result in a change in the base propagation speed for the compressed tissues.
Lacking any data, however, on how the compression of brain tissue affects its acoustic
transmission properties, we were not able to correct for this effect.

To populate the IDM, an extensive literature review was carried out to find reported
dispersion measurements for relevant biological tissues. These data are shown in
Table 3. Only a few measurements are available, but they include the major tissues
relevant to our application.

Brain tissue exhibits relatively small dispersion, but the predominance of brain tis-
sue along the propagation path makes this an important contribution to the overall
dispersion pattern.

The most dispersive tissue for which data exist is the diploë, which has a measured
dispersion trend several orders of magnitude larger than the other tissues under con-
sideration. Though it accounts for only a thin slice of the overall propagation path,
it can nonetheless make a significant contribution to the dispersion pattern.

Diploë is a cancellous bone; other studies of cancellous bone have measured dispersion
in femoral heads [5] or, more usually, in the calcaneus (heel bone) [7, 8, 9], and have



found dispersion trends smaller in magnitude and opposite in sign to that reported for
diploë, as shown in Table 3. These negative dispersion observations were somewhat
surprising, and their relevance to our model is not entirely clear; we discuss the issue
further in Section 2.3.

As shown, the ivory table layers of the skull have lower measured dispersion than the
inner layer of diploë. Skull bone is a cortical bone, so we also include in Table 3

data published for generic cortical bone. There is a substantial discrepancy between
the cortical bone data and the ivory table skull data; probably the data specific to
the ivory table are more reliable, but we include the cortical bone data in Table 3

as a conservative upper limit on dispersion in this medium.

Tissue Dispersion Trend Source
(m· s−1· MHz−1)

Brain 1.2 [10]
Skull, diploë 300 [11]
Skull, ivory tables ’slight’ (assumed < 1) [11]
Bone, cortical 10-30 [12]
Bone, calcaneus −59 ± 52 [9]
Blood, whole 0.16 [13]; See Section 2.2.1.

Dispersion trend data for relevant tissues.

Calculation of the propagation time for a given tissue, as in (2), requires also that we
know the propagation speed at a reference, or base, frequency. These values, taken
from a literature review, are shown in Table 4. In each case, there was a range of
speeds found in the published literature; for modeling purposes, we choose one value
as a base, and vary the speed over the range indicated.

Tissue Base Frequency Base Speed Range Sources
(MHz) (m/s) (m/s)

Brain 1.0 1562 1510 − 1572 [10] (base); [13] (range)
Skull, diploë 0.5 2240 2190 − 2870 [14] (base); [11] (range)
Skull, ivory tables 1.7 2960 2060 − 3030 [14] (base); [11] (range)
Blood, whole 1.0 1550 1540 − 1600 [13]

Propagation speeds of acoustic waves through various tissues. All base
speeds are given for a temperature of 37◦C.

Not all of the tissues present in the intracranial space are represented in the current
model. We know, for instance, that the propagation path must also traverse skin



tissue and the various tissues in the subarachnoid space, such as the meningeal mem-
branes and the Cerebrospinal Fluid (CSF), among others [15]. We have been unable,
however, to discover any published data on acoustic dispersion in these media. Were
such data found, these tissues could be easily incorporated into the model, but, in the
meantime, we exclude them from further consideration. By implication, our model is
not intended to predict the observed dispersion spectrum, but, rather, to serve as a
tool for a better understanding of the relative impact of different tissues on dispersion
spectra, the effects of population variability on spectra, and the effect of injury on
the spectra.

The tissues which are not included in the current model constitute a small portion of
the total propagation path. For instance, the volume of cerebrospinal fluid, VCSF , in
the intracranial space is roughly one-tenth the volume of the brain, Vbrain [16]. If we
assume that the cerebrospinal fluid is distributed uniformly in a shell (outer radius
r2 and inner radius r1) around the brain (radius r1), we find that

VCSF =
1

10
Vbrain

4

3
π

(
r3
2 − r3

1

)
=

1

10

(
4

3
πr3

1

)

⇒ r2 =
3

√
11

10
r1 ≈ 1.03 r1, (4)

so that, under these reasonable assumptions, the depth of the cerebrospinal fluid layer
is only about 3% of the depth of the brain tissue. In general, we believe that our
model includes tissues accounting for roughly 90% of the propagation path length.

Another limitation of the current model is that it does not model the effects of
Traumatic Brain Injury (TBI). As the study of TBI is a central objective of the
dispersive ultrasound research program, this is a significant limitation grounded in
our lack of knowledge about the effects of TBI on the dispersive characteristics of the
intracranial tissues. If such effects were known, there would be no obstacle to their
incorporation into the model.

There is an important relationship between dispersion and attenuation of acoustic
waves propagating through a medium which permits dispersion to be calculated from
attenuation in cases where direct dispersion measures are not available. This Section
briefly outlines the relevant theory, and in Section 2.2.1 we apply it in the case of
blood.

In general, the frequency response of a linear system with attenuation and dispersion



can be written as [17, 18]

H(ω) = R(ω) + iX(ω)

= e−α(ω)xe−iβ(ω)x, (5)

where R(ω) and X(ω) are the real and imaginary parts of the frequency response,
α(ω) is the attenuation coefficient, and β(ω) is the dispersion coefficient related to
the phase velocity Vp(ω) by β(ω) = ω/Vp(ω). The frequency response H(ω) is the
Fourier transform of the system’s impulse response h(t). When h(t) is causal, as it
must be in realistic physical systems, then R(ω) and X(ω) are related to one another
by Hilbert transforms [19]:

R(ω0) =
1

π

∫
∞

−∞

X(ω)

ω − ω0
dω and (6)

X(ω0) =
1

π

∫
∞

−∞

R(ω)

ω − ω0
dω. (7)

These equations, which are sometimes also referred to as the Kramers-Kronig rela-
tions, allow one to establish relationships between attenuation and dispersion. In
particular, the dispersion can be calculated if the attenuation is known at all fre-
quencies. Empirically, a wide variety of materials, including soft tissues, exhibit a
power law frequency dependence for the attenuation

α(ω) = α0|ω|
y, (8)

where 0 < y ≤ 2 for most materials [13]. In practice, this relationship can only be
established empirically over a finite range of frequency, and additional assumptions
are needed in order to justify computing the dispersion from the limited attenuation
data. Several models have been proposed for this purpose.

The first model is called the nearly local model [20]. It assumes that the system is
linear and causal, and that the attenuation and phase velocity change slowly over the
frequency range of interest. In such cases, the dispersion can be written as a function
of attenuation:

1

Vp(ω0)
−

1

Vp(ω)
=

2

π

∫ ω

ω0

α(ω′)

ω′2
dω′, (9)

where ω0 is a reference frequency at which the phase velocity is assumed to be known.
When the frequency dependence of the attenuation is linear (y = 1 in (8)), we have

1

Vp(ω0)
−

1

Vp(ω)
=

2α0

π
ln

ω

ω0

(y = 1) (10)

and when the frequency dependence is non-linear (y �= 1 in (8)), we have

1

Vp(ω0)
−

1

Vp(ω)
=

2α0

π(y − 1)

(
ωy−1 − ωy−1

0

)
(y �= 1). (11)



This model has been shown to provide good predictions for dispersion when the
attenuation is a nearly linear function of frequency [17, 21]. For media, however, in
which the attenuation is a non-linear function of frequency, the nearly local model
fails to accurately predict the dispersion [17].

A second model is called the time-causal model [22, 23]. In this case, the wave
equations describing attenuation and dispersion are derived by assuming that the
attenuation has a power law form, as in (8), and that the condition α(ω)/(ω/c0) � 1
is satisfied, where c0 is the propagation speed of the wave in the absence of attenuation
and dispersion. This condition translates into a y-dependent limit on ω; for 1 ≤ y ≤ 2,
it imposes an upper limit. The condition is well satisfied for the tissues and frequency
range relevant to our application 1. The time-causal model is equivalent to the nearly
local model when y = 1, but differs for other values of y [23]. In particular, when the
attenuation is non-linear in frequency it predicts

1

Vp(ω0)
−

1

Vp(ω)
= −α0 tan(

yπ

2
)
(
ωy−1 − ωy−1

0

)
(1 < y ≤ 2). (12)

An interesting consequence of this equation is that the time-causal model predicts no
dispersion when y = 2, a prediction that has experimental support [24]. More gener-
ally, the time-causal model has been found to be in good agreement with experiments
for a variety of materials and different values of y [17].

A third model for relating attenuation to dispersion is the minimum-phase model

[17, 25, 26]. This model assumes that the transfer function H(ω) is minimum-phase,
an assumption that is difficult to justify a priori, but which seems to be justified
by the quality of the model’s predictions [23]. An advantage of the minimum-phase
assumption is that it allows the attenuation and dispersion to be directed related by
Hilbert transforms, such that the dispersion is simply the Hilbert transform of the
attenuation. No closed form solution analogous to (11) and (12) is possible in this
model, but we can write

1

Vp(ω0)
−

1

Vp(ω)
=

β(ω0)

ω0
−

β(ω)

ω
(13)

where

β(ω) =
α0

ωs

P

∫ ωs/2

−ωs/2

|ω′|y cot

[
π

ωs

(ω′ − ω)

]
dω′ (1 ≤ y ≤ 2). (14)

In this integral, the cutoff frequency ωs is set by the sampling frequency. The predic-
tions of the minimum-phase model are very similar to those of the time-causal model,
except at low frequencies (below 1 MHz), and are in good agreement with data for a
variety of different power law relationships [17].

1For instance, in Section 2.2.1 below, we will find that for whole blood we have α0 = 0.023/cm
and y = 1.26. Taking c0 ∼ 1550 m/s and requiring that the small ratio not exceed 0.01 yields the
constraint ω < 105 MHz. Our frequency range is well within this limit.



We were unable to locate direct measurements of the dispersive effects of blood, but,
since data on attenuation in blood were available, we made use of the theory outlined
in Section 2.2 to convert the attenuation data into dispersion data. In what follows,
we present results computed using the time-causal model; results obtained with the
nearly local model were also computed and were almost identical.

Measurements (see [13], Figure 4.10) indicate that attenuation follows a power law
that changes with frequency, such that the dependence is approximately

α(f) =

{
(0.20 dB/cm)|f |1.26 when 1 MHz < f < 4 MHz
(0.26 dB/cm)|f |1.04 when 4 MHz < f < 10 MHz.

(15)

This can be re-expressed in terms of angular frequency ω = 2πf as

α(ω) =

⎧⎨
⎩

(0.023/cm)

(2π·106)1.26 |ω|
1.26 when 1 < ω < 4

(0.030/cm)

(2π·106)1.04 |ω|
1.04 when 4 < ω < 10,

(16)

where ω is now expressed in units of 106· rad/s, as shown, and we have removed the
dB from the coefficient using α[dB/cm] = α[/cm]/(20 log10 e). Comparing (16) and
(8), the dispersion in each frequency range can be computed using the time-causal
model (12). In the low frequency range, we take ω0 = 1, Vp(ω0) = 1550 m/s (see [13],
Figure 5.3) , and, in accordance with (16), y = 1.26. Likewise, in the high frequency
range, we take ω0 = 4, Vp(ω0) = 1550.9 m/s, and y = 1.04; this base speed Vp(ω0) was
chosen so that the low frequency and high frequency curves meet at the boundary
ω = 4.

The resulting dispersion is shown in Figure 5. The trend of the solid curve is
reliable toward the low end of the frequency spectrum, and the dashed curve toward
the high end. Note that the overall dispersion is small, amounting to an increase in
propagation speed of less than 0.2% over the frequency range under consideration.

In order to study the effect of blood on dispersion spectra using the linear dispersion
model described in Section 2.1.1, the dispersion curves can be approximated by a
linear dispersion trend, as shown in Figure 5. This linear best-fit differs from the
computed curves by less than 0.03%, and so is a good approximation. The slope of
this dispersion trend is about 0.16 m/(s · MHz). This is the origin of the dispersion
trend value for blood found in Table 3.

All of the models discussed in Section 2.2 predict that if attenuation increases with
frequency (α(ω) > 0), then dispersion should be positive: the propagation speed
should increase with frequency.
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Acoustic dispersion in whole blood, computed from atten-
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(below 4 MHz) and the dashed curve for high frequencies. The
dotted line is a linear best-fit over the frequency range under con-
sideration.

Several authors have reported, however, observations of negative dispersion in can-
cellous bone – with the propagation speed decreasing as the frequency increases –
even when the attenuation factor α(ω) is unambiguously positive [7, 8, 9, 27]. These
observations, which seem to be inconsistent with the Kramers-Kronig relations (6)
and (7), have engendered a number of possible explanations, but no consensus has
yet been reached as to which explanation(s) should be preferred [28].

One possible explanation is that the approximations to the Kramers-Kronig relations
(in which the dispersion is derived from a frequency-limited attenuation curve, as
described in Section 2.2 above) are invalid for cancellous bone. However, the same
approximations have successfully predicted dispersion in a wide variety of materials
[17, 24], and there is no known reason why they should not apply also to cancellous
bone. It has been shown that negative dispersion can arise when acoustic waves
propagate through stratified layers of solids and liquids [29, 30], but this explanation,
while suggestive, is unsatisfactory insofar as cancellous bone, though consisting of
solids and liquids (in the forms of bone and marrow, respectively), is not a stratified
medium. Another possible explanation arises from the fact that theoretical models



of ultrasonic wave propagation predict two distinct compressional waves, called (on
account of their propagation speeds) the fast and slow modes; it has been shown that
the interference of these two modes, both of which have positive dispersion, can result
in an overall apparent negative dispersion [31, 32, 33].

This debate is relevant for the present study because diploë, which is present in the
model, is a cancellous bone, and because the presence of a negative dispersion tissue
allows for more complex dispersion spectra, which in turn has a significant impact
on the conceptual predictive strength of the model. For instance, if all tissues have
positive dispersion, then the spectral lines will be ordered according to frequency, but
this ordering is not necessarily preserved if a negative dispersion tissue is present.

At the present time, there is, to our knowledge, only one published measurement for
dispersion in diploë, which showed strong positive dispersion (as shown in Table 3),
though without error bars. The fact that negative dispersion has been measured in
other cancellous bones (typically in the calcaneus, or heel bone) using more modern
equipment and techniques perhaps raises a doubt about the accuracy of the sole
existing measurement for diploë. In the absence of a confirmatory measurement of
dispersion in diploë, we proceed as follows: we use the published dispersion trend
value in our numerical modeling, but we are careful, in our discussion, not to draw
conclusions which depend on all tissues having positive dispersion.

Using the material presented in the preceding sections, we are able to study the ways
in which dispersion spectra are affected by various factors such as tissue composition
and size, uncertainties in propagation characteristics, and pathologies. We reiterate
that our objective is not to predict the dispersion spectra observed in practice –
lacking data on some of the relevant tissues, such an objective is out of reach at
present – but rather to gain a better understanding of how various factors affect
dispersion spectra.

A representative dispersion spectrum is shown in Figure 6. The solid lines show
the spectrum computed using the reference values for tissue depth, dispersion trend,
and propagation speed given in Tables 2 to 4. The frequencies transmitted through
the tissues are given in Table 1; each horizontal line in Figure 6 corresponds to
one of these frequencies. In dispersive ultrasound experiments, measurements of
propagation time are typically repeated many times, so that individual data points
are extended into lines, as shown. Under laboratory conditions the horizontal lines
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A sample dispersion spectrum is shown in solid lines.
The vertical axis shows the re-scaled propagation time, and each
horizontal line corresponds to a specific frequency. The spectrum
was created using the central values shown in Tables 2 to 4 and
the frequency set from Table 1. The dashed lines show the effect
on the spectrum of varying the dispersion trend for brain tissue.

are slightly broadened due to noise and time resolution limits; we discuss this further
in Section 3.1.

In Figure 6, and throughout this report, propagation times are re-scaled so that the
slowest frequency has a re-scaled value of unity. In the simplest case in which there
is only one tissue present, this makes the spectrum invariant under changes in tissue
depth. For example, if f̃ is the frequency which has the longest propagation time
through tissue i, then the re-scaled time for frequency f is

t̃i(f) =
ti(f)

ti(f̃)
(17)

=
v0i + (f̃ − f0i)Δi

v0i + (f − f0i)Δi
from (2) (18)

= 1 −
(f − f̃)Δi

v0i
+ O

(
Δ2

i

v2
0i

)
, (19)



where we have dropped higher-order terms in the small 2 ratio Δi/v0i. From (18)
we see that dependence on the tissue depth di has dropped out entirely, as expected.
Dependence of the re-scaled time on base speed v0i and dispersion trend Δi remains.
Dependence on the base frequency f0i is present but confined to higher-order terms,
and is expected to be small. Note that since, by definition, t̃i(f) ≤ 1, we must have
(f − f̃)Δi ≥ 0. When, as is the case for all of the tissues listed in Table 3, we have
Δi > 0, this implies that we must have f ≥ f̃ . That is, the frequency with the longest
propagation time must be the lowest frequency. Conversely, if we had Δi < 0, then
(19) implies that we would have the opposite frequency ordering: f̃ ≥ f .

In the more realistic case in which there are multiple tissue layers, it is no longer the
case that re-scaling eliminates dependence on tissue depth, but it does reduce such
dependence. If we let f̃ once again represent the frequency with the longest overall
propagation time, then the re-scaled time for frequency f in the general case of M
tissue layers is

t̃(f) =

M∑
i=1

di

v0i

[
1

1 + (f − f0i)
Δi

v0i

]

M∑
j=1

dj

v0j

[
1

1 + (f̃ − f0j)
Δj

v0j

] (20)

= 1 − (f − f̃)

{
M∑
i=1

Δi

v0i

di

v0i

}/{
M∑

j=1

dj

v0j

}
+ O

(
Δ2

v2
0

)
, (21)

where, in moving to (21), we have once again dropped terms suppressed by additional
powers of the factor Δi/v0i � 1. Clearly, the re-scaled time t̃(f) does depend on
the depths of the tissues, but the dependence is suppressed relative to that for the
un-scaled time in (2). Note also that (21) has the form of a weighted sum (x̄ =∑

xf(x)/
∑

f(x)); the position of a normalized spectral line is set by the weighted
mean of the relative dispersion trend values (Δi/v0i) where the weighting factor is
the non-dispersive ”base time” (di/v0i) which the signal takes to pass through the
medium in question.

Notice, from the exact expression (20), that if all of the tissue depths are scaled by
an equal factor (di → γdi), then t̃(f) is invariant. Thus, it is only relative changes
in tissue depth that affect the dispersion spectrum. This is an important feature of
re-scaled propagation time because it means that the re-scaled dispersion spectrum
is relatively insensitive to the normal variation in body size that one expects to
encounter in a population of subjects.

Looking again at Figure 6, we note from the example dispersion spectrum (shown
in solid lines) that the dispersion arising from the tissues included in the model is

2The data presented in Table 3 confirm that Δi/v0i � 1 for the tissues under consideration.



a small effect: the propagation time of the slowest frequency differs from that of
the fastest frequency by less than 1%. This is consistent with data collected in the
laboratory. By implication, the spectrum is sensitive to even small changes that
affect propagation time, and it is necessary to have precise methods for measuring
the propagation time of each frequency.

As an illustration of how a dispersion spectrum can be affected by the properties of
the dispersive tissues, consider the dashed lines in Figure 6 which show the effect of
varying the dispersion trend value for brain tissue, Δbrain. The published value for
this quantity is 1.2 m/(s·MHz) (see Table 3), but this value was published without
error estimates. If we assume (arbitrarily) that the published value is accurate only
to within ±50%, we can see from Figure 6 how this uncertainty translates into an
uncertainty in the dispersion spectrum, effectively broadening each spectral line into
a band that covers a range of propagation times.

There are several things to notice about this simple example. First, the variation is
greater for frequencies that differ the most from the re-scaling reference frequency f̃ ;
this is reflected in the steeper slopes for the lines further removed from the top of the
spectrum. This amplification is a consequence of the factor (f − f̃) in (19) and (21)
which produces a relatively greater change in the spectral lines for relatively greater
frequency differences.

Second, it is evident that for a given spectral line there are only two possible ways
that it can vary in response to a change in the properties of the tissues: it can move
up (to a larger re-scaled propagation time) or down (to a smaller one). To the extent
that the shifting directions of multiple spectral lines are correlated – and they often
are, as we argue in Section 2.4.2 – this implies that sets of spectral lines expand or
contract together in response to changes in the medium.

It is interesting to study the effect upon the spectral lines brought about by small
changes in the properties of the tissues. Such changes cause the re-scaled time t̃(f)
for a given frequency to shift to a new value t̃′(f). It is convenient to define the shift
as

δt̃(f) = t̃′(f) − t̃(f). (22)

We can calculate the approximate shift in the re-scaled time for the general case of
M tissues from (20). We consider changes to the tissue’s dispersive properties, base
speed of propagation, and depth.

Dispersive properties. Consider small changes to the dispersion trend values for
the tissues, Δi → Δ′

i = Δi +δΔi where δΔi � Δi. We treat both Δi/v0i ∼ δΔi/Δi ∼



O(κ) as comparably small quantities and expand (20) in a Taylor series, retaining
only the leading (O(κ2)) contribution to the time shift. It is

δt̃(f) =
−(f − f̃)

M∑
i=1

di

v0i

{
M∑
i=1

di

v0i

[
δΔi

Δi

] [
Δi

v0i

]}
, (23)

where the factors of O(κ) are enclosed in square brackets for clarity, and we have
dropped terms suppressed by additional factors of O(κ).

In cases for which f > f̃ – that is, when the lowest frequency is also the slowest one,
which is the normal situation when positive dispersion media predominate – a positive
change in the dispersion trend, δΔi > 0, contributes negatively to the spectral time
shift, δt̃(f) < 0. This corresponds to a spectral expansion, since the new propagation
time is further from unity than it was previously. This makes sense: a more positive
dispersion trend results in more dispersion overall. Contrariwise, a negative change
in dispersion trend, δΔi < 0, causes a spectral contraction under the same conditions.

If, on the other hand, we have a rarer case in which f < f̃ – that is, when the
highest frequency is the slowest one – we are dealing with a predominantly negative
dispersion medium, and all of the effects described above are reversed: now it is a
negative change in dispersion trend, δΔi < 0, that causes a spectral expansion, and a
positive change that causes a contraction. In each case, the expansion (contraction)
results from whether or not the change tends to be toward (against) the dispersive
behaviour characteristic of the medium as a whole.

Propagation speed. Consider small changes to the base propagation speed for the
tissues, v0i → v′

0i = v0i + δv0i, where δv0i � v0i. Such a change can result from a
temperature change in a medium, for example, or from pressurization. Again, we
treat Δi/v0i ∼ δv0i/v0i ∼ O(κ) as small and expand (20) in a Taylor series. The
leading contribution to the resulting time shift in the general case of M tissues is

δt̃(f) =
(f − f̃)[
M∑

k=1

dk

v0k

]2

{
M∑
i=1

M∑
j=i

(
1

1 + δij

)
di

v0i

dj

v0j
Sij

}
, (24)

where δij is the Kronecker delta function

δij =

{
1, if i = j
0, if i �= j

, (25)

and

Sij =

[
δv0i

v0i

(
2Δi

v0i
−

Δj

v0j

)
+

δv0j

v0j

(
2Δj

v0j
−

Δi

v0i

)]
(26)



is a quantity of O (κ2). Neglected terms are suppressed by additional factors of O (κ).

The spectral lines therefore shift up or down depending on the sign of the double
summation in (24). The direction of the shift depends on the factor Sij, which in turn
depends on the relative values of the dispersion trend variables Δi, base propagation
speeds v0i, and speed changes δv0i.

The fact that Sij can be either positive or negative raises the interesting question of
when (24) can sum to zero. In general it is always possible to choose the δv0i so that
the sum is zero, provided that δv0i �= 0 for at least two tissues. In the special case
M = 2 we find that the sum is zero when(

Δ1

v01

)
(

Δ2

v02

) =

(
δv01

v01

) (
d1

v01

/
d2

v02

)
−

(
δv02

v02

) (
1 + 2

(
d1

v01

/
d2

v02

))
(

δv01

v01

) (
d1

v01

/
d2

v02

) (
2 +

(
d1

v01

/
d2

v02

))
−

(
δv02

v02

) (
d1

v01

/
d2

v02

) . (27)

Making the additional assumption that only the base speed in the first tissue changes
(δv02 = 0), this simplifies to (

Δ1

v01

)
(

Δ2

v02

) =
1

2 +

(
d1

v01

/
d2

v02

) . (28)

Notice that in this case, when only one base speed varies, the zero-sum condition in
(28) is independent of that variation, so that it can only be satisfied for media having
very particular properties. Figure 7 shows this δt̃(f) = 0 contour, derived from the
approximation in (24), as well as the same contour derived from the exact expression
in (22) (the analytic form of which is too complex to present here). It is clear that
the approximation captures the general trend of the exact result.

An interesting feature of the approximation in (24) is that the only frequency depen-
dence is in the (f − f̃) pre-factor. This implies that, for a given set of media, the
sign of δt̃(f) depends entirely on the relative values of f and f̃ . If all of the media
have positive (negative) dispersion, then f̃ will be the lowest (highest) frequency and
the sign of (f − f̃) will be the same for all values of f . Consequently, the time-shift
δt̃(f) will have the same sign for all frequencies. In such cases, (24) therefore predicts
that, to a first approximation, all of the spectral lines respond in the same way, either
expanding or contracting together.

This uniform time-shifting behaviour is, however, not always a feature of the exact
time-shift in (22). To illustrate this, Figure 8 shows the time-shift δt̃(f) as a function
of frequency for a two-tissue system satisfying the condition in (28). With this condi-
tion the approximate time-shift in (24) is exactly zero; however the exact time-shift
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in (22), though small, has a residual frequency dependence, as shown in the Figure.
At low frequencies, the time-shift is negative, indicating expansion of the spectrum,
and at high frequencies, it is positive, indicating compression. Consequently, it is not
possible to conclude that a spectrum always expands or contracts under base speed
variation; there are special cases – in particular, when the variation is almost zero –
when part of the spectrum may expand and another may contract.

For cases in which tissues having both positive and negative dispersion are present,
the reference frequency f̃ is, in general, no longer the highest or lowest frequency,
but one of the intermediate frequencies. The direction of the spectral line shift still
depends, as before, on the sign of (f − f̃), and so differs across the frequency set. In
effect, an intermediate reference frequency f̃ divides the frequency set into two parts:
the low (f < f̃) and high (f > f̃) subsets. The spectral lines of the frequencies in
each subset will expand or contract together, but the behaviour of the two subsets
will be opposites.

Tissue depth. Consider small changes to the tissue depth, di → d′
i = di +δdi, where
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causes the time-shift to be negative for some frequencies and posi-
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δdi � di. Again, we treat Δi/v0i ∼ δdi/di ∼ O(κ) as small and expand (20) in a
Taylor series. The leading contribution to the resulting time shift in the general case
of M tissues is

δt̃(f) =
−(f − f̃)[

M∑
k=1

dk

v0k

]2

{
M−1∑
i=1

M∑
j=i+1

di

v0i

dj

v0j

(
Δi

v0i

−
Δj

v0j

) (
δdi

di

−
δdj

dj

)}
(M ≥ 2),

(29)
where additional contributions are suppressed by a factor of O (κ). As indicated,
this result is valid when M ≥ 2. (When M = 1 the time shift under changes in
tissue depth is exactly δt̃(f) = 0 because the propagation times for frequencies f
and f̃ change by the same factor, leaving the re-scaled propagation time in (20)
unchanged.)

According to the approximation in (29) there are two special conditions under which



a term in the sum may be zero: when two tissues have the same relative dispersion
trend (Δi/v0i = Δj/v0j), or when they experience the same relative change in depth
(δdi/di = δdj/dj).

The first of these conditions is an artifact of the approximation, and is therefore only
approximately true. For example, in the simplest (M = 2) case, the exact expression
for the time-shift in (22) yields zero if

(Δ1/v01) =
(Δ2/v02)

1 − (f01 − f02) (Δ2/v02)
(30)

= (Δ2/v02) + O
(
Δ2

2/v
2
02

)
. (31)

On the other hand, the proportionality in (29) of the time-shift to (δdi/di − δdj/dj)
for two tissues i and j carries over to the exact result. Therefore, if the depths of all
tissues change proportionately, then the overall time-shift will be zero, as was noted
above in the discussion of (20).

An interesting case occurs when one tissue is displaced by another without affecting
the overall sum of tissue depths, δdi = −δdj for two (not necessarily neighbouring)
tissues. In general, such cases result in a non-zero contribution to the time-shift,
unless it also happens that the initial depths of the two tissues are equal (di = dj).

As was the case for the base speed variations above, the expansion or contraction of
the spectral lines in response to depth variations depends, to a first approximation,
on the factor (f − f̃). Again, frequencies in the low subset (f < f̃) tend to expand
or contract as a group, and those in the high subset (f > f̃) tend to behave as a
group with the opposite tendency. We do find, however, as we also did in the case of
propagation speed variation above, that it is possible to find special cases in which
the time-shift is small enough that the weak frequency dependence from the higher-
order corrections to (29) can result in δt̃(f) being positive for some frequencies and
negative for others, even within the same subset. Usually, however, all frequencies in
a given subset (high or low) will shift in the same direction.

When studying shifts in the dispersion spectrum brought about by changes in tissues,
it is useful to have a measure of the degree of spectral variation brought about by
those changes. In this Section, we define such a measure.

A simple candidate measure would sum over the spectral shifts in each frequency,
yielding

s̃ =
∑
f∈F

|δt̃(f)|, (32)



where F is the set of frequencies used and δt̃(f) is defined in (22).

This measure, however, has several undesirable characteristics. For instance, it scales
with the number of frequencies, so that, all other things being equal, doing a measure-
ment with more frequencies will yield a larger spectral variation. Second, it depends
on the particular frequencies used. This can be seen from (23), (24), and (29), each
of which show that the re-scaled time shift for a given frequency f is multiplied by
the factor (f − f̃), where f̃ is the frequency with the longest propagation time. Thus,
the spectral variation computed using (32) will depend on the way the frequencies are
distributed with respect to f̃ . Both of these characteristics are undesirable because
they make the spectral variation s̃ sensitive to factors that pertain to the experimental
method rather than to the tissues being studied.

A third potential issue with (32) is that it sums over the absolute values of the time
shifts. This can be sensible in some situations, but by removing information about
the sign of δt̃(f) it removes information that may be of interest – namely, whether
the re-scaled spectrum expands or contracts.

These considerations suggest another measure of variation of the dispersion spectrum:

s = sgn(δt̃(f)) max
f∈F

∣∣δt̃(f)
∣∣ . (33)

This definition selects the largest time-shift, regardless of whether it is positive or
negative. It does not depend on the number of frequencies in the set F , and though
it clearly does depend on the value of the frequency with the largest time-shift, there
is no dependence on any other frequencies in F .

A notable feature of this definition of dispersion spectrum variation is that a positive
value corresponds to a spectral contraction (δt̃(f) > 0 implies that the new time is
larger – that is, closer to unity – than was the original time). Likewise, a negative
dispersion spectrum variation indicates spectral expansion. The numerical value of
the dispersion spectrum variation directly indicates the amount of shift of the most
displaced spectral line, which is an intuitive indicator of the amount of variation in
the spectrum as a whole.

Table 5 presents the dispersion spectrum variations produced by varying the depth,
dispersion trend, and base speed values for each of the principal tissues in the model.
To generate these values, we used the data in Tables 2 to 4; the reference values for
depth, dispersion trend, and base speed were used to generate a reference dispersion
spectrum, and then each quantity (depth, dispersion trend, base speed) was varied
independently across its range as given in Tables 2 to 4.

The results in Table 5 are shown as ordered pairs (x, y); the first element gives the
dispersion spectrum variation that results when the varied quantity has the lowest



Tissue Dispersion Spectrum Variation, s
Depth (×10−3) Base speed (×10−4) Dispersion Trend (×10−4)

Skull, ivory table (−0.15, 0.14) (0.29,−0.19) (0.0015,−0.0015)
Skull, diploë (3.0,−3.0) (−7.4, 5.9) (4.9,−3.8)
Brain (−3.3, 1.3) (1.9,−2.3) (4.1,−4.1)

Dispersion spectrum variation produced by varying tissue depth, base speed,
and dispersion trend in the ranges given in Tables 2 to 4. Central values of each
parameter are as given in the same Tables.

value in its range, and the second element gives the variation that is produced when
the varied quantity has the highest value in its range.

Consider first the column for variations in tissue depth. The ivory table skull bone
and brain tissue both indicate a spectral contraction (a movement from negative
variation to positive) as the depth is increased; these are both low dispersion media,
so this result is expected. By contrast, increasing the depth of the high dispersion
diploë tissue causes the overall spectrum to expand. The variations produced by
base speed changes in the next column are related: increasing the base propagation
speed through a medium is convertible with decreasing the tissue’s depth. We are
not surprised, therefore, to see that the dispersion spectrum variation inclining in the
opposite direction from the first column (which was produced by increasing tissue
depth). Finally, the third column shows that increasing the dispersion trend value
for a tissue, which just adds more dispersion along the propagation path, causes the
spectrum to expand.

As a final comment on Table 5 we note that the dispersion spectrum variation s
produced by changes to the ivory table bone is at least an order of magnitude smaller
than that produced by the other tissues. This reflects the fact that ivory table bone
is both low in depth and low in dispersion, and does not have a substantial impact
on the final spectrum.

In this Section, we consider the experimental and diagnostic implications of the fact
that that the DUS has finite time resolution. We then present a hypothetical case
study to illustrate how the IDM can provide insight into observed dispersion spectra.
Finally, we discuss the significance of our findings for machine learning systems such
as that used by the DUS.



The precision of a propagation time measurement using the DUS is limited by the
system’s time resolution, and this results in an uncertainty in the position of a spectral
line in a dispersion spectrum. In this Section, we examine the impact that these
precision limits have on the diagnostic use of the DUS.
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Time-resolution uncertainties in re-scaled propagation
times for a set of frequencies passing through tissues. The frequen-
cies are those shown in Table 1.

There are several potential sources of time resolution uncertainties in the DUS. The
lowest level source, which establishes a minimal resolution limit that cannot be further
improved, arises from a phase-marking procedure in the signal processing algorithms
used by the DUS. To resolve the narrow splitting of spectral lines, the DUS requires
time resolution that exceeds the sampling period of the signal. The phase-marking
procedure uses phase information in the received signal to acquire sub-sampling period

time resolution [2]. However, phase distortion arising from system noise and signal
quality causes a low-level jitter in the computed signal propagation time. Empirically,
the scale of this uncertainty depends upon the quality of the received ultrasound
signal, but we have found it to be consistently less than 2 ns.

The IDM can be used to simulate the effect of time resolution on the positions of
spectral lines. Figure 9 shows how the uncertainty in the re-scaled propagation time



increases as the time resolution of the DUS worsens.

These results can be used to guide the selection of a set of suitable transmission
frequencies. Figure 9 shows that when frequencies are too close together uncertain-
ties from time resolution can cause the spectral lines to blur together. Hence, the
current set of transmission frequencies is not ideal. Figure 10 shows the spectrum
that results when the transmission frequencies are evenly spaced at a distance of 0.4
MHz, starting from a minimal frequency of 1.2 MHz. In this case, overlap due to the
broadening of the spectral lines can be prevented for the time resolution limits shown
3.
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Time-resolution uncertainties in re-scaled propagation
times for a set of frequencies passing through tissues. The frequen-
cies are in the range 0 – 5 MHz, and are evenly spaced at intervals
of 0.4 MHz.

The spectra in Figures 9 and 10 were generated using the mean values for the
tissues listed in Tables 2 to 4. A different set of tissue properties would result in a
different dispersion spectrum, and, therefore, different requirements would have to be
instituted to avert overlap of the time resolution-broadened spectral lines. The set of
frequencies most suitable to a given situation should be determined on a case-by-case

3It should be noted that ultrasonic transducers have a frequency-dependent power transmission
profile which makes certain transmission frequencies more suitable than others; this profile should
also be consulted in the process of choosing the set of transmission frequencies.



basis, either by modeling or by experimental tests. Departures from linear dispersion
will also affect the spacing of spectral lines; a logarithmic trend such as that shown
in Figure 5 will tend to increase the separation of low frequency spectral lines.

Uncertainty in the dispersion spectrum has implications for the ability of the DUS
to detect pathologies. We illustrate this in Figure 11, which shows two dispersion
spectra. The first, on the left, is the dispersion spectrum of a healthy subject. As
in Figure 9, the dashed lines represent the uncertainty in the spectral lines position
induced by the limited time resolution of the DUS. The second spectrum, on the
right, results from an injury that causes bleeding in the intracranial space. As the
amount of blood increases the spectrum contracts, but the injury can only be detected
if the contraction exceeds the uncertainty bounds in the healthy subject’s spectrum.
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The dispersion spectrum of a healthy subject is shown on
the left; dashed lines indicate the uncertainty around each spectral
line corresponding to time resolution limits of 5 ns. On the right
is the spectrum resulting from the gradual addition of blood, as
from an intracranial hematoma. As the spectral lines exceed the
resolution uncertainty bounds they change from dashed to solid
lines.

In Figure 11, undetectable changes in a spectral line are represented by dashed lines;
once the injury becomes detectable the spectral line is represented by a solid line.
This illustrates that, given a frequency-independent time resolution, the frequencies



furthest from the reference frequency are best able to detect injury, and are therefore
more useful to a machine learning system. This is consistent with our earlier obser-
vation that frequencies furthest from the reference frequency are the most sensitive
to variations in the properties of the medium.

In this Section we present a hypothetical scenario involving dispersive ultrasound
observations on a patient. We assume that a patient is subject to two examinations
with the DUS; the two examinations are separated by some time interval. In each
case, the dispersion spectra produced from these examinations will be dependent
upon the examination conditions, including the positions of the transducers on the
skull, the anatomy of the intracranial tissues, and the properties of those tissues
(temperature and pathological state, for instance).

For the purposes of discussion, suppose a variation between the two dispersion spectra
is observed, as in Figure 12. The second observation exhibits a spectral contraction
relative to the first. We want to consider what can be concluded about the patient on
the basis of the variation in the dispersion spectra, even without the use of a trained
machine-learning system.
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Hypothetical dispersion spectra collected from a single
patient on two different occasions.

Each tissue along the signal’s propagation path contributes to the final observed



dispersion spectrum. The observed spectrum is not, however, a simple summation
of the contributions from the individual tissues. Rather, because of the re-scaling
of propagation times discussed in Section 2.4.1, the spectrum is a weighted average
of the individual contributions, as in (21). This is illustrated in Figure 13, where
continually increasing the depth of brain tissue along the propagation path causes the
observed spectrum to asymptotically converge to the dispersion spectrum of brain
tissue alone.

R
e-

sc
al

ed
P

ro
p
ag

at
io

n
T

im
e

Depth of Brain Tissue (mm)

Brain Tissue
Depth Increasing

Brain Tissue Spectrum

Reference Spectrum

110 110 1000 3000 5000
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

Re-scaled dispersion spectra are a weighted average of
the individual contributions. The reference spectrum (on the left)
is produced by a mixture of tissues, including brain tissue. As the
amount of brain tissue increases, the spectrum trends toward the
spectrum produced by brain tissue alone (as shown on the right).

With this in mind, one can predict the behaviour of the final dispersion spectrum
in response to changes in anatomy and tissue properties. For example, Table 3

identifies the ivory table bone as having the lowest positive dispersive trend of the
tissues presently included in the model. By decreasing the depth of the ivory table
bone, the weight of its low dispersion is reduced. As a result, decreasing the depth
promotes a high, positive overall dispersion. This results in a spectral expansion
if the dispersion spectrum previously exhibited overall positive dispersion. On the
other hand, decreasing the depth will cause the spectrum to contract if the overall
dispersion spectrum previously exhibited overall negative dispersion.



Similarly, the behaviour of the final dispersion spectrum can be predicted for other
changes. As a general guide, one must first deduce what type of dispersion (high,
low, positive, negative) is being promoted by the change. Secondly, a contraction or
expansion of the final spectrum will depend upon the relative properties of the other
tissues contributing to the dispersion spectrum. Using these guidelines, logical causes
for contraction and expansion are outlined in Table 6.

Causes of Causes of
Spectral Contraction Spectral Expansion

• Increase depth of tissue with relatively • Increase depth of tissue with relatively
low or negative dispersion high dispersion

• Decrease depth of tissue with relatively • Decrease depth of tissue with relatively
high dispersion low or negative dispersion

• Decrease in dispersion trend, any tissue • Increase in dispersion trend, any tissue
Potential causes of spectral contraction and expansion. These guidelines ap-

ply to frequency sets with overall positive dispersion (f > f̃); corresponding guidelines
for the opposite case (f < f̃) are obtained by interchanging ‘Increase’ ↔ ‘Decrease’.

For more detailed analysis, the IDM can be used to simulate the effects of certain
changes. Varying model parameters within reasonable limits corresponds to real-life
variations in the patient and test environment. The simulated dispersion patterns can
then be used to exclude, and perhaps to determine, possible causes of the observations.
In this spirit, the model has been used to simulate possible scenarios that might have
produced the dispersion pattern observed in the second examination in Figure 12.
This analysis is presented below.

Placement of transducers. During an examination with the DUS, the transduc-
ers are placed on the temples of the head, as described in Section 2.1. A possible
explanation of the variation observed in Figure 12 is that the transducer placement
changed somewhat from one examination to the next. This scenario can be simulated
in the IDM by varying the depths of the tissues; representative results are shown in
Figure 14.

Notice that increasing the depth of the ivory table bones causes the overall dispersion
spectrum to slightly contract. The contraction exhibited is, however, substantially
less than that observed between the first and second examinations. As a result, a
variation in depth of the ivory table bones alone could not have caused the observed
variation between the first and second examinations.

Independently increasing the depth of the brain tissue or decreasing the depth of
the diploë causes the dispersion spectrum to significantly contract. Independently
or in combination, these two variations could contract the spectrum enough for it to
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Dispersion spectra under various conditions related to
transducer placement. The two spectra on the left are the same as
those shown in Figure 12. On the right are three spectra showing
how the ”First Examination” spectrum might vary as the ultra-
sound transducer is moved. The examples labelled ”Diploe” and
”Ivory Table” were generated by varying the depth of the specified
tissue over the ranges given in Table 2; for the ”Brain” example
the depth was varied over the range 80 to 130 mm.

resemble the spectrum produced by the second examination. As a result, increasing
the depth of the brain and/or decreasing the depth of the diploë could have caused
the observed variation. (Assuming that only one of the tissues was affected, the
depth of brain tissue would have to increase from 110 mm to 122 mm, or the depth
of diploë would have to decrease from 3.7 mm to 3.3 mm.)

Intracranial tissue anatomy. A change in the anatomy of the patient’s intracranial
tissues could also potentially have caused the observed variation between the two
dispersion spectra in Figure 12. The change in anatomy could be pathological.
For instance, given the attenuation and dispersion data available, we can simulate
the dispersion pattern of hematomas of varying severity. Greater depths of blood
correspond to more severe hematomas; see Figure 15 for results.

Increasing the depth of blood causes the dispersion spectrum to contract. Hence, in
principle the contraction observed in the second examination could have been caused
by a hematoma within the patient’s head. A layer of blood roughly 25 mm in depth



R
e-

sc
al

ed
P

ro
p
ag

at
io

n
T

im
e

Depth of Blood (mm)

First
Examination

Intracranial
Hematoma

Second
Examination

Unknown 0 5 10 15 20 25 Unknown
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

Dispersion spectra under the influence of an intracra-
nial hematoma. The left and right spectra are as shown in Fig-

ure 12; the middle spectrum shows how an intracranial hematoma
can cause the first spectrum to drift toward the second.

would be necessary to achieve the amount of contraction observed in the second
examination.

Environmental factors. Other factors, such as the temperature and density of
the tissues, affect the base propagation speed of the ultrasonic wave in a frequency
dependent manner and therefore cause changes to the dispersion spectrum. The IDM
can model these effects as well. Figure 16 shows the spectral changes induced by
varying the base propagation speed of the various tissues by ±10%.

Varying the base speed within the ivory tables of the skull has only a small impact
on the overall dispersion. As a result, such variations could not have caused the
difference observed between the first and second examinations.

Decreasing the base speed within the brain tissue causes the overall dispersion spec-
trum to contract, and so could in principle be a cause of the observed data. However,
as shown, the spectral contraction is significantly less than that observed.

Increasing the base speed within the diploë causes the overall dispersion spectrum
to contract. Furthermore, the dispersion spectrum with diploë at maximal base
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as factors affecting base propagation speed, such as temperature
and pressure, are varied. The examples were generated by varying
the base speed of the specified tissue by ±10% around the central
values given in Table 4.

speed (see Table 4) converges to the spectrum observed in the second examination.
As a result, a base speed variation, perhaps resulting from pressure or temperature
changes within the diploë, could have caused the variation between the first and
second examination.

In the preceding Section, we have considered a number of possible causes for the
spectral contraction observed in Figure 12. Through simulation, certain possible
causes were eliminated. For example, an increase in the depth of the ivory table
skull bone as a result of inconsistent transducer placement, though it would produce
a spectral contraction, was eliminated as a sole cause because it would not be able
to produce a contraction as large as that observed. Of course, it could still be a
contributing factor in combination with another cause.



Table 7 shows a set of possible causes of the spectral contraction that could not
be eliminated in this way. These possible causes produce a contraction that is pro-
portional to that observed in Figure 12. Discrimination between these possible
causes would be made on the basis of the fine detail of the inter-line spacing in the
dispersion spectrum; in the DUS, this discrimination task is the responsibility of a
machine-learning classifier. We discuss the implications of the IDM for a machine-
learning system in more detail in Section 3.3.

In this case study, it was not possible to identify a single specific cause of the ob-
served spectral contraction using the IDM alone. Although one of the potential causes
was identified as being pathological (an intracranial hematoma), others were benign.
This is likely to be true in general, especially considering that multiple factors may
contribute to a single observed spectral change. Therefore, the IDM is not to be
considered a substitute for a machine-learning approach to diagnosis, but rather as
a complimentary approach that can be used, for example, to validate the conclu-
sions reached by a machine-learning classifier, or to simulate the effects of certain
pathologies.

Possible Cause of the Relevant Quantity
Observed Spectral Contraction Tissue Change
Transducer placement Brain Increased depth
Transducer placement Diploë Decreased depth
Pathology Blood Increased depth
Pressure / Temperature variation Diploë Increased base speed
Possible causes of the spectral contraction shown in Figure 12. In each case

the quantity change is understood as being limited by the ranges given in Tables 2

to 4.

In practice, the DUS is designed to be used together with a machine-learning system
to arrive at a diagnosis of intracranial injury. The analysis presented in this document
has several implications for the performance of such a diagnostic system.

A machine-learning system, such as a Support Vector Machine or neural network,
functions as a classifier: it assigns a dispersion spectrum collected from a subject to
one of several classes, each class corresponding to a particular diagnosis. The machine-
learning classifier is trained in advance to recognize the general features of each class.
The principal advantages of a machine-learning approach to classification are, first,
that the classification is fairly tolerant of minor variations between cases, which is
useful in real-world applications where data are sometimes messy, and, second, that



the classification is automatically based on whatever features of the dispersion spectra
provide the best discrimination between classes, without the user needing to specify
in advance what those features are.

A re-scaled dispersion spectrum responds to a change in the insonified tissues in a
way that depends on the collective properties of the tissues. There will always be a
frequency, denoted f̃ , which has the longest propagation time and which is therefore
used to normalize the propagation times of the other frequencies; the frequency set
is usefully divided into two subsets consisting respectively of frequencies above or
below the reference frequency f̃ . We found in Section 2.4.2 that the spectral lines
for each subset are ordered by frequency and that, except in rare special cases, the
spectral lines for each subset either expand or contract together; furthermore the two
subsets generally respond in a manner opposite the other – when one expands the
other contracts, and vice versa. Also, although the times for the two subsets are
ordered by frequency, the times for the two frequency sets are, in general, intermixed,
so that the entire set of times is not ordered by frequency.

Clearly, when the reference frequency f̃ is the lowest (highest) frequency, as happens
when positive (negative) dispersion media sufficiently dominate the spectrum, then all
of the spectral lines expand or contract together. This uniformity implies that there
are relatively fewer features by which a machine-learning classifier can distinguish one
spectrum from another, and this may have an impact on the classification accuracy.

We speculate, on the basis of these considerations, that a machine-learning classifier
will succeed well in some cases and less well in others. Specifically, we expect that, all
other things (signal quality, number of frequencies, appropriateness of training data,
etc.) being equal, the classifier will have a good chance of success when the insonified
tissues are a mixture of positive and negative dispersion media, since in these cases
spectral lines in a normalized spectrum will have a distinctive ordering. Conversely,
when the set of tissues is dominated by either positive or negative dispersion media the
spectral lines will be simply ordered by frequency and the machine-learning system
will have to classify based principally on features such as inter-spectral line spacing. It
is quite possible, however, that these finer details, being less distinctive, will provide
less discriminatory power to the classifier, and thus less diagnostic accuracy.

According to Table 3, the principal tissues along the intracranial propagation path
are positive dispersion tissues. This fact leads one to expect that the dispersion spec-
trum should have the relatively simple form in which the entire set of spectral lines
are ordered by frequency. Experience, however, is a great teacher, and there is no
substitute for real laboratory data. As was discussed in Section 2.3, recent measure-
ments of cancellous bone suggest that the diploë skull tissue, which is cancellous, may
behave as a negative dispersion medium; if true, this would potentially complicate
the observed spectrum in ways favourable to machine classification.



We hope that these speculations will stimulate further work on the machine-learning
system for the DUS, and that experiments will investigate whether or not our expec-
tations are realized in practice.

We have developed a model of ultrasonic dispersion in intracranial tissues that is
intended to provide insight into the operation of DRDC’s DUS and contribute to the
success of DRDC’s ongoing research program in diagnostic applications of dispersive
ultrasound. The principal objective of the dispersive ultrasound research program is
to develop safe, portable, and easy to use diagnostic tools to aid in the rapid diagnosis
of non-visible neurological injury, with special attention to injuries resulting from
blast exposure.

The DUS, which currently exists in the prototype stage, uses ultrasonic signals of dif-
ferent frequencies to characterize and monitor the state of internal tissues, and relies
on a trained machine-learning classifier to produce a diagnosis. The IDM developed
in this report is intended to complement that approach by giving greater insight into
the dispersive effects of relevant tissues and pathologies.

We have carried out a literature review of the acoustic propagation characteristics,
including the dispersive properties, of intracranial bone and tissue. We find that data
are available for tissues comprising roughly 90% of the ultrasound signal’s intracranial
propagation path. The fact that some data are unavailable prevents the IDM being
used to predict observed dispersion spectra at the present time.

In this report, we make a linear dispersion approximation, although the IDM could be
readily generalized to include non-linear dispersion if data of sufficiently high quality
were to become available. We review the relationship between acoustic dispersion
and attenuation, and we derive the dispersion relation for human blood from its
attenuation curve. We also discuss possible sources of negative dispersion and con-
sider the implications of negative dispersion tissues for the interpretation of observed
dispersion spectra, including the probable impact on a machine-learning classifier.

We also study, both analytically and numerically, how dispersion spectra respond to
specific changes in the properties of tissues along the acoustic propagation path. We
note certain special conditions under which changes to the tissues can nonetheless
result in no change to the observed dispersion spectrum. We propose a convenient
quantitative measure of the variation produced in a dispersion spectrum as a result of
some change to the insonified tissues, and we use this measure to identify the factors
to which intracranial dispersion spectra are most sensitive.

Finally, we examine the impact of the DUS’s time resolution limits on both frequency



selection and diagnostic sensitivity, and we present a hypothetical case study to illus-
trate the diagnostic insights that can be gained from use of the IDM. We close with
a discussion of the implications for machine-learning classifiers such as that used by
the DUS.

We believe that these analyses demonstrate the value of the IDM, and we hope that
it will contribute to the further success of DRDC’s dispersive ultrasound research
program.
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