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Abstract …….. 

Under the CA/NL MOU IA-6, DRDC Valcartier in Canada and TNO Defence, Security and 
Safety in the Netherlands jointly work to improve their numerical prediction capability on 
airbreathing powered missiles. As part of the collaboration program and to fill in the gap on the 
availability of experimental data in the open literature, wind-tunnel tests were carried out at the 
DRDC Valcartier tri-sonic wind-tunnel in order to gather internal aerodynamic performance data 
on a rectangular air intake model in isolation. 

The experimental data from the wind-tunnel test campaign aimed to improve the understanding of 
flow physics inside supersonic air intakes, to validate commercial CFD codes and to serve as 
input for the ramjet engine performance prediction code developed by DRDC Valcartier and 
TNO, the DRCORE model. 

Mass flow rate, pressure recovery and flow distortion at the combustor face, are outstanding 
parameters to support assessment of overall engine performance. The evaluation of those 
performance parameters is strongly dependent on the accuracy of total pressure measurements. In 
the wind-tunnel test campaign, total pressure measurements were obtained by means of a Pitot 
rake located in the combustor face of the ramjet, and then averaged in order to define a unique 
value for determining the performance parameters. However, Pitot rake measurements have 
limited spatial resolution so as to avoid disturbance to the internal flow. 

This study evaluated the ability of the two-dimensional interpolation algorithms implemented in 
Matlab R2006a to map the flow at the Pitot rake section to overcome the limited spatial resolution 
of experimental measurements, and to improve flow visualization and the accuracy on the 
evaluation of total pressure. Additionally, the algorithms allowed calculation of performance 
parameters (mass flow rate, pressure recovery and flow distortion) of the air intake during the 
wind-tunnel experiments. Some experimental results using the different algorithms in 
MatlabR2006a are presented and compared. 

Résumé …..... 

Dans le cadre de la collaboration CA/NL MOU IA-6, RDDC Valcartier au Canada et le TNO 
Defence, Security and Safety au Pays-Bas coopèrent  pour améliorer leurs capacités de prédiction 
numérique sur la performance des missiles propulsés par statoréacteurs. Pour combler la manque 
d’information expérimental disponible dans la littérature ouverte, des essais en souffleries on été 
effectués à RDDC Valcartier pour la collecte des données sur la performance aérodynamique 
d’un modèle d’entrée d’air rectangulaire en isolation. 

Les données expérimentales acquises durant les essais en soufflerie ont l’objective de améliorer la 
compréhension sur la physique des écoulements travers une entrée d’air supersonique, et pour 
ainsi valider les résultats des simulations numériques et servir d’apport pour le modèle DRCORE,  
soit le code de prédiction de la performance des missiles à statoréacteur développé par RDDC 
Valcartier et TNO. 
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Le débit massique, la récupération de la pression totale ainsi que la distorsion de l’écoulement 
sont des paramètres essentiels pour caractériser les performances globales d’un moteur. 
L’évaluation de ces paramètres dépend fortement de la précision des mesures de la pression 
totale. Durant les essais en soufflerie, les mesures de pression totale ont été obtenues au moyen 
des sondes Pitot situé à l’amont de la chambre de combustion du statoréacteur, ensuite elles ont 
été moyennées pour définir une valeur unique qui déterminera par la suite les paramètres de 
performances. Toutefois, l’espace dédié aux sondes Pitot est limité compte tenu de la perturbation 
qu’il peut apporter à l’écoulement. 

Cette étude évalue la capacité des algorithmes d’interpolation en 2D implémentés sur Matlab 
R2006a pour cartographier la répartition de pression au niveau de la sonde Pitot et 
subséquemment améliorer la résolution spatiale des mesures expérimentales ainsi que la précision 
sur l’évaluation de la pression totale. De plus, l’algorithme permet le calcul des paramètres de 
performance (débit massique, récupération de la pression totale et distorsion de l’écoulement) de 
l’entrée d’air durant les essais en soufflerie. Quelques résultats expérimentaux utilisant ces 
différents algorithmes sur Matlab sont présentés et comparés. 
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Executive summary  

Interpolation algorithm for internal flow visualization of a 
supersonic air intake:   

Pimentel, R. Lesage; F., Ghazlani; M. A.; DeChamplain, A.; DRDC Valcartier TM 
2012-067; Defence R&D Canada – Valcartier; December 2011. 

Introduction or background: In order to fulfill the growing need to accurately predict the 
performance of air-breathing supersonic missiles, under the Canada-Netherlands Memorandum of 
Understanding (Implementing Arrangement No. 6) on Missile Propulsion Technologies, DRDC 
Valcartier in Canada and TNO Defence, Safety and Security in the Netherlands have been 
working together on the development of a Modelling & Simulation (M&S) capability to assess 
global performance of advanced high-speed airbreathing missiles and they conceived a model 
called DRCORE. This model enables the prediction of the thrust of airbreathing missiles during 
on- and off-design air intake operation using engineering formulae applied to each subsystem of 
the propulsion unit. The DRCORE model can be fed with results from other studies, such as 
experimental or numerical data. The M&S capability is used for studies for the mutual Armed 
Forces, to support operational and threat analyses, and weapon system acquisition processes. 

Results: This report evaluated the ability of interpolation algorithms implemented in 
MatlabR2006a to map the flow quality delivered to the combustor of a rectangular ramjet engine. 
The technique provided concise temporal and spatial visualization of flow quality at the 
combustor face necessaries for CFD validation. 

Significance: Air intake is an important component of air breathing propulsion systems, since the 
amount and the quality of the air flow delivered to the combustor strongly influences global 
ramjet engine system performance and it has been addressed as part of the Canadian-Dutch 
collaboration program since 2003.Unfortunately, the amount of useful data on air intakes 
available in the open literature is very limited. Therefore, a wind-tunnel test campaign was carried 
out at DRDC Valcartier tri-sonic wind-tunnel to gather required experimental data. The tests used 
a rectangular air intake model based on VOLVO Flygmotor AB design. Besides providing 
missing data in the open literature, the test campaign aimed to improve understanding on 
supersonic air intake flow physics, to provide data to be used directly in the DRCORE model, and 
to validate commercial CFD codes. Once numerical modeling codes are validated, they could 
generate accurate and larger database for further DRCORE or other simulation tools. 

Future plans: The outcomes of this study will be used to evaluate eventual improvement on 
spatial profile of total pressure upstream the combustor, when the intake will be provided of a 
plasma flow actuator. 
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Sommaire ..... 

Interpolation algorithm for internal flow visualization of a 
supersonic air intake:   

Pimentel, R. Lesage; F., Ghazlani; M. A.; DeChamplain, A. ; DRDC Valcartier TM 
2012-067 ; R & D pour la défense Canada –  Valcartier; décembre 2011. 

Introduction ou contexte : Dans le but de prédire avec précision la performance d’entrée d’air 
supersonique pour les missiles aérobieses, dans le cadre du «Canada-Netherlands Memorandum 
of Understanding (Implementing Arrangement No.6)  sur Missile Propulsion Technologies », 
DRDC Valcartier au Canada et TNO Defence, Safety and Security au Pays-bas ont travaillé en 
étroite collaboration pour développer leur capacité en modélisation et simulation (M&S) pour 
évaluer les performances globales des missiles à haute-vitesse, et ont pu concevoir un modèle 
numérique appelé le DRCORE. Ce modèle permet la prédiction de la poussée des missiles 
aérobies durant opérations  « on et off-design » des entrée d’air en en utilisant des formules 
d’ingénierie appliquées à chaque partie du système de propulsion. Le modèle DRCORE peut être 
alimenté de résultats par d’autres études, telles que des données expérimentales ou numériques. 
M&S est utilisé mutuellement dans les deux armées, pour supporter les processus d’acquisition 
d’armes et les analyses de menaces. 

Résultats : Ce rapport évalue la capacité des algorithmes d’interpolation implémentés sur Matlab 
R2006a servant à cartographier la qualité d’un écoulement à l’amont d’une chambre de 
combustion à l’intérieur d’un statoréacteur rectangulaire. Les techniques présentées fournissent 
une visualisation spatiale et temporelle de la qualité de l’écoulement au niveau de la chambre de 
combustion et qui est nécessaire pour valider la mécanique de fluide numérique.  

Importance : L’entrée d’air est essentielle pour les missiles propulsés par des statoréacteurs, car 
la qualité de l’air qui rentre dans la chambre de combustion influence fortement la performance 
globale du moteur et c’est pour cela qu’elle a été adressée au programme de collaboration 
canadien-hollandais depuis 2003. Malheureusement, des informations détaillées traitant sur les 
entrées d’air sont très limités dans la littérature ouverte. Par conséquent, des essaies en soufflerie 
ont effectué à DRDC Valcartier pour collecter des données expérimentales et pourtant combler le 
manque d’information disponible. Le modèle d’essai consistait d’une entrée d’air rectangulaire 
basée sur un design de VOLVO Flygmotor AB et avait pour but d’améliorer la compréhension 
sur l’écoulement interne des entrées d’air supersoniques, et de fournir des données expérimentales 
qui peuvent être utilisées directement dans le modèle DRCORE, ainsi que dans la validation des 
codes commerciaux de la mécanique des fluides numérique. Une fois la validation effectuée, ces 
derniers pouvaient générer de larges bases de données pour être utilisées postérieurement dans 
DRCORE ou dans autres outils de simulation. 

Perspectives : Les résultants prévenants de cet étude seront utilisés pour évaluer les éventuels 
améliorations sur la distribution spatiale de la pression total amont la chambre de combustion, 
lorsque le modèle d’entrée d’air sera munit d’un actuateur plasma. 
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1 Introduction 

An increasing interest in airbreathing propulsion systems for tactical high-speed missiles has been 
observed worldwide due to their improved performance in terms of range, sustained speed and 
manoeuvrability compared to solid propellant rocket propulsion. Increased speed offers 
significant improvements in system effectiveness for long range missile applications including 
decreased time-to-target, increased terminal velocity, and reduced effectiveness of anti-missile 
systems. Additionally, fewer missiles are required to effectively cover specific area and they can 
be based farther apart. 

In order to fulfill the growing need to accurately predict the performance of air-breathing 
supersonic missiles, under the Canada-Netherlands Memorandum of Understanding 
(Implementing Arrangement No. 6) on Missile Propulsion Technologies, DRDC Valcartier in 
Canada and TNO Defence, Safety and Security in the Netherlands have been working together on 
the development of a Modelling & Simulation (M&S) capability to assess global performance of 
advanced high-speed airbreathing missiles and they conceived a model called DRCORE. This 
model enables the prediction of the thrust of airbreathing missiles during on- and off-design air 
intake operation using engineering formulae applied to each subsystem of the propulsion unit. 
The DRCORE model can be fed with results from other studies, such as experimental or 
numerical data. The M&S capability is used for studies for the mutual Armed Forces, to support 
operational and threat analyses, and weapon system acquisition processes. 

The performance of any airbreathing propulsion system is strongly dependent on the capability of 
their air intakes to deliver the suitable amount of air required to the combustion process, and to 
guarantee acceptable flow quality in terms of stability and uniformity, throughout the entire 
operating envelope. 

Total pressure profile at the combustor face is fundamental datum to assess performance of air 
intakes systems, since it permits evaluation of important performance parameters such as the 
pressure recovery, mass flow rate, flow distortion and flow stability [1]. 

1.1 Pressure recovery 

Pressure recovery (π ) measures the pressure energy available at the combustor entry from the 
existing pressure energy in the flow at free-stream conditions. It is defined as the ratio of mean 
total pressure at the combustor face to the free stream total pressure. A classical nomenclature 
used for pressure measurement stations in the literature is presented in Figure 1. 
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1.3 Mass flow rate 

In this project, mass flow rate crossing the air intake during the experiments was estimated using 
two different techniques, i.e., the duct-base and the choked valve technique as described in 
DRDC Valcartier TM 2008-292 [3]. 

1.3.1 Duct-based technique 

By the duct-base technique, mass flow rate is given by the following expression: 

0,2
, , 1

0 2( 1)211
2

d
d D d d geo

air

d

P Mam C A
R T

Ma
γ
γ

γ

γ

•

+
−

=
−+

 
(4)

where 
,D dC  : Discharge coefficient 

,d geoA  : Area of the chocked nozzle, m2 

γ  : Ratio of specific heats, 1.4 for air 

airR  : Gas constant, 287 J/kg.K for air 

0,2P  : Area averaged total pressure at the combustor face, Pa 

0T  : Total temperature, K 
dMa  : Mach number 

and the Mach number, dMa , is given by the following expression: 

1

0,22 1
1d

d

P
Ma

P

γ
γ

γ

−

= −
−

 (5)

where 
dP  : mean static pressure at the combustor face, Pa 

1.3.2 Choked valve technique 

By the choked valve technique, mass flow rate is given by the following expression: 

*
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.
v D v
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•
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where 
,D vC

 : discharge coefficient 
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0,2P  : mean total pressure at the combustor face, Pa 
*A  : area of the chocked nozzle, m2 

*c  : characteristic velocity, m/s 
 
The characteristic velocity is calculated by the following expression: 

1
1

0*

1
2.

..

−
+

+

=
γ
γ

γ
γ

γ TR
c air  

(7)

where 
γ  : ratio of specific heats, 1.4 for air 

airR  : gas constant, 287 J/kg.K for air 

0T  : total temperature, K 
 
The discharge coefficients compensates for inaccuracies of the mean total pressure determination 
due to the limited spatial resolution of the Pitot rake shown in Figure 6 and the fact that Equations 
(3) and (4) are based on the assumption of 1-dimensional isentropic flow. In reality, the flow is 3-
dimensional with viscous and non-isentropic effects (i.e. boundary layers). The discharge 
coefficients ,D dC  and ,D vC  in Eq. 4 and 6 were determined by separate tests as presented in the 
DRDC Valcartier TM 2008-292[3]. 
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2 Experimental set-up 

The wind-tunnel test campaign used a rectangular supersonic air intake model in isolation based 
on a VOLVO Flygmotor AB design [4],[5]. The model was provided of a translating prismatic 
valve at the rear end to allow variation in the back pressure, for simulating different operating 
condition of the combustor. 

During the wind-tunnel test campaign, the effect of Mach number, AoA, ramp bleed block 
openings, and backpressure on air intake performance was evaluated. No force balance 
measurement was taken, and the bleed holes at the cowl side were kept open during the 
experiments. Total pressure at the combustor face can be obtained experimentally using a Pitot 
tube rake.  

2.1 Wind-tunnel 

The experimental tests were carried out at DRDC Valcartier tri-sonic wind-tunnel. It is an 
intermittent in-draft-type wind-tunnel with a test section of 60 cm x 60 cm and a useful run time 
of about 8 seconds depending on the operating Mach number. 

In the facility, air is drawn in an evacuated tank from an atmospheric pressure reservoir. 
Supersonic flow is achieved by using different interchangeable nozzle blocks. Seven blocks are 
available at DRDC Valcartier, permitting operating in the following Mach numbers: 1.5; 1.75; 
2.0; 2.5; 3.0; 3.5 and 4.0. Transonic flow is obtained by the use of a perforated chamber with 
boundary layer control through suction. Subsonic flow is obtained with one nozzle block and a 
downstream choke valve. It is very flexible and relatively low cost facility, which permits up to 
10 tests per day. Schematic of the experimental facility is presented in the Figure 2. 

Figure 2: The DRDC Valcartier tri-sonic wind-tunnel. 
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In Figure 4, the red lines represent compression and expansion waves; the normal shock is put in 
the critical position. The air intake design has the following characteristics: 

 Design Mach number equal to 2.5. 

 Mixed-compression rectangular air intake type. 

 External compression wedge angle of 5 deg at the tip, 1δ , followed by an isentropic 
compression shape. 

 From flow area 2 to 3, the air intake duct cross-sectional area decreases. Downstream of 
flow area 4, the air intake cross-sectional area is constant over a certain length followed 
by the subsonic diffuser that is characterized by an increasing cross-sectional area. 

 Internal cowl lip angle equal to 12 deg, 3δ . 

 Boundary layer bleed system. 

The boundary layer bleed system consisted of a bleed block at the end of the isentropic ramp and 
two rows of 19 bleed holes, 3.0 mm diameter, close to the cowl lip. A prismatic valve with a 
variable position at the outlet of the air intake was used to simulate different operating conditions 
of the combustor. Figure 5 presents the ramjet air intake model manufactured at DRDC Valcartier 
workshop. 

Figure 5: The air intake wind-tunnel model design. 

The model is provided with 125 static pressure taps to gather flow physics associated with the 
internal flow, to locate shock impingement points as well as regions of flow separation, and to 
support the validation of CFD codes. A longitudinal row of wall static-pressure orifices extends 
from the leading edge of the air intake ramp down to the end of the subsonic diffuser. This allows 
a good evaluation of the supersonic and subsonic diffuser performance. An additional row of 
static taps along the centerline of the cowl in the longitudinal direction is used to locate shock 
waves in the throat or subsonic diffuser region. 

In order to avoid influence of adjacent holes, the static pressure taps are spaced 50 tap diameters 
apart, following recommendation in previous studies [6]. 
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5 Conclusions and recommendations 

This study evaluates the 2D interpolation algorithms available in Matlab to improve flow 
visualization and to estimate the mean total pressure at the combustor face, which is necessary for 
calculation of pressure recovery, flow distortion and the mass flow rate of air intakes during 
wind-tunnel test campaign. 

There are three interpolation algorithms in MatlabR2006a for two-dimensional data, which were 
evaluated in this study: the nearest neighbour, bilinear and bi-cubic algorithms. The bi-cubic 
algorithm produced sharper images and no relevant difference on computation time between the 
three interpolation methods was observed. The quality of those interpolation methods could be 
validated using CFD solutions of simpler test cases. Best trade-off between processing time and 
output quality leads us to use six pass meshes. 

The algorithm can now be used to treat all the existing wind-tunnel data of the DRDC/TNO 
supersonic intake for better characterisation of the physical process for all operating conditions. 
This new information, combined with further CFD solutions, will provide a good data set to help 
evaluation of supersonic airbreathing missiles performance. The effect of distortion at the 
combustor face on the engine performance should be further investigated now that more detailed 
information on the flow is available. Additionally, the algorithm will be used for evaluation of 
eventual improvement on air intake performance due to use of plasma actuators in the framework 
of the TIF 11az01 “Plasma discharges for improved stealth and aerodynamics”. 
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List of symbols/abbreviations/acronyms/initialisms 

A Area, m2 
*A  Area of the chocked nozzle, m2 

AoA Angle of attack, deg 

CFD Computational Fluid Dynamics 
*c  Characteristic velocity, m/s 

DND Department of National Defence 

DRDC Defence Research & Development Canada 

DRDKIM Director Research and Development Knowledge and Information 
Management 

 Mass flow rate, kg/s 

bMa  Mach number at the bellmouth 

wMa  Mach number at the wedge 

02P  Mean total pressure at the Pitot rake station, Pa 

00P  Free stream total pressure, Pa 

0dP  Total pressure in the duct, Pa 

bP  Static pressure bellmouth, Pa 

R Gas constant, 287 J/kg.K for air 

Re Reynolds number 

R&D Research & Development 

0T ∞  Total ambient temperature, K 

x Wedge insertion depth, mm 

  

Δ  Flow distortion 
γ  Ratio of specific heats, 1.4 for air 

π  Pressure recovery 

θ  Angle of the wedge, deg 

 

 
 



 
 

26 DRDC Valcartier TM 2012-067 
 
 
 
 

This page intentionally left blank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNCLASSIFIED 
SECURITY  CLASSIFICATION  OF  FORM

(highest classification of Title, Abstract, Keywords) 

DOCUMENT CONTROL DATA 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified.) 

1. ORIGINATOR  (Name and address of the organization preparing the document.) 
Defence R&D Canada – Valcartier 
2459 Pie-XI Blvd North 
Quebec (Quebec) 
G3J 1X5 Canada  

2. SECURITY CLASSIFICATION 
 (Overall security classification of the document, 

including special warning terms if applicable.) 
UNCLASSIFIED 
NON-CONTROLLED GOODS 
DMC A 
REVIEW: GCEC JUNE 2010  

3. TITLE  (The complete document title as indicated on the title page.  Its classification should be indicated by the appropriate abbreviation (S, C or U) in 
parentheses after the title.) 

 
Interpolation algorithm for internal flow visualization of a supersonic air intake 

 

4. AUTHORS  (Last name, followed by initials – ranks, titles, etc. not to be used.) 
 
Pimentel, R.; Lesage, F.; Ghazlani, M. and DeChamplain, A.  

5. DATE OF PUBLICATION  (month and year of publication of document.) 
 

December 2011 
  

6. NO. OF PAGES  (Including Annexes, Appendices and DCD sheet.) 
 

39  

7. DESCRIPTIVE NOTES  (the category of the document, e.g. technical report, technical note or memorandum.  If appropriate, enter the type of report, e.g. 
interim, progress, summary, annual or final.  Give the inclusive dates when a specific reporting period is covered.) 

 
Technical Memorandum 

8a. PROJECT OR GRANT NO. (If appropriate, the applicable research and 
development project or grant number under which the document was  
written.  Please specify whether project or grant) 

 
11az01  

8b. CONTRACT NO.  (If appropriate, the applicable number under which the 
document was written) 

 
 
      

9a. ORIGINATOR’S DOCUMENT NUMBER (Official document number by 
which the document is identified by the originating activity. Number must 
be unique to this document.) 

 
DRDC Valcartier TM2012-067  

9b. OTHER DOCUMENT NOS.  (Any other numbers which may be assigned 
to this document either by the originator or the sponsor.) 

 
 
      

10. DOCUMENT AVAILABILITY  (Any limitation on further distribution of the document, other than those imposed by security classification.) 
 
 (  X ) Unlimited distribution 
 (   ) Distribution limited to defence departments  
 (   ) Distribution limited to defence contractors 
 (   ) Distribution limited to government  
 (   ) Distribution limited to Defence R&D Canada 
 (    ) Controlled by Source  

 
11. DOCUMENT ANNOUNCEMENT  (Any limitation to the bibliographic announcement of this document.  This will normally correspond to the Document 

Availability (10).  However, where further distribution (beyond the audience specified in (10) is possible, a wider announcement audience may be selected.) 
 

Unlimited  

 
 
 
 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF  FORM  



  

UNCLASSIFIED 
SECURITY CLASSIFICATION OF FORM  

12. ABSTRACT   (Brief and factual summary of the document. May also appear elsewhere in the body of the document itself.  It is highly desirable that the 
abstract of classified documents be unclassified.   Each paragraph of the abstract shall begin with an indication of the security classification of the 
information in the paragraph (unless the document itself is  unclassified) represented as (S), (C), or  (U). May be in English only). 

Under the CA/NL MOU IA-6, DRDC Valcartier in Canada and TNO Defence, Security and Safety in the 
Netherlands jointly work to improve their numerical prediction capability on airbreathing powered missiles. As part 
of the collaboration program and to fill in the gap on the availability of experimental data in the open literature, 
wind-tunnel tests were carried out at the DRDC Valcartier tri-sonic wind-tunnel in order to gather internal 
aerodynamic performance data on a rectangular air intake model in isolation. 

The experimental data from the wind-tunnel test campaign aimed to improve the understanding of flow physics 
inside supersonic air intakes, to validate commercial CFD codes and to serve as input for the ramjet engine 
performance prediction code developed by DRDC Valcartier and TNO, the DRCORE model. 

Mass flow rate, pressure recovery and flow distortion at the combustor face, are outstanding parameters to 
support assessment of overall engine performance. The evaluation of those performance parameters is strongly 
dependent on the accuracy of total pressure measurements. In the wind-tunnel test campaign, total pressure 
measurements were obtained by means of a Pitot rake located in the combustor face of the ramjet, and then 
averaged in order to define a unique value for determining the performance parameters. However, Pitot rake 
measurements have limited spatial resolution so as to avoid disturbance to the internal flow. 

This study evaluated the ability of the two-dimensional interpolation algorithms implemented in Matlab R2006a to 
map the flow at the Pitot rake section to overcome the limited spatial resolution of experimental measurements, 
and to improve flow visualization and the accuracy on the evaluation of total pressure. Additionally, the algorithms 
allowed calculation of performance parameters (mass flow rate, pressure recovery and flow distortion) of the air 
intake during the wind-tunnel experiments. Some experimental results using the different algorithms in 
MatlabR2006a are presented and compared.  
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