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Abstract

Aim of this technical memorandum is to analytically derive the probability of detec-
tion (vrs the probability of false alarms) of two variants of a square-law based adaptive
radar detector when the target signal is buried in colored interference and when the
filter vector to suppress the interference is not constant (i.e. unknown asymptotic
covariance matrix) but a random vector itself. The filter or weight vector is assumed
to be estimated via either Sample Matrix Inversion (SMI), Loaded SMI (LSMI) or
Projection Techniques, such as Eigen-Vector Projection (EVP), Hung-Turner Projec-
tion (HTP) or Matrix Transformation based Projections (MTP), based on a limited
number of statistical independent secondary training data. The analysis is based on a
homogeneous, i.e. Gaussian, stationary clutter plus noise assumption. Target signals
comprise different fluctuating RCS models as well as a constant deterministic model.
The test statistic provides for the summation of several independent cells (‘looks’) to
improve detection performance whereby the target must not necessarily be present
in each cell. Although the analyzed detectors may not directly be applicable, the
provided analytical analysis permits an analytical comparison of the various adaptive
weights estimation techniques. In this sense it is an extension of the work presented
in a previous technical memorandum [1] and its results and conclusions reflect an
intermediate step towards unifying quantitative assessment of more advanced detec-
tors such as the Adaptive Matched Filter (AMF) among others. The capability and
usefulness of the presented equations are demonstrated based on numerical examples
with a variety of different radar parameter settings.

Résumé

L’objectif de ce document technique est de calculer analytiquement la probabilité de
détection (contre la probabilité de fausse alarme) de deux variantes d’un détecteur
radar adaptatif quadratique lorsque le signal cible est masqué dans du brouillage de
couleur et lorsque le vecteur de filtrage utilisé pour éliminer le brouillage n’est pas
constant (c.-à-d. qu’on a une matrice de covariance asymptotique inconnue), mais un
vecteur qui est lui-même aléatoire. On suppose que le vecteur de filtre ou de pon-
dération est estimé soit par inversion de matrice d’échantillons (SMI), par SMI avec
charge (LSMI) ou par des techniques de projection, tels que la projection de vecteur
propre (EVP), la projection de type Hung-Turner (HTP) ou les projections basées
sur des transformations de matrices (MTP), en se basant sur un nombre limité de
données statistiques d’apprentissage secondaires indépendantes. L’analyse est basée
sur l’hypothèse de la présence de fouillis et de bruit homogènes, c’est-à-dire statiques
et gaussiens. Les signaux des cibles sont traités par divers modèles RCS fluctuants
ainsi qu’avec un modèle déterministe constant. Les valeurs statistiques de test cor-
respondent à la sommation de plusieurs cellules indépendantes (" visées ") qui sert
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à améliorer les performances de détection alors que la cible n’est pas nécessairement
présente dans chaque cellule. Bien que les détecteurs analysés puissent ne pas être
directement applicables, l’analyse fournie permet une comparaison analytique des
diverses techniques d’estimation des poids adaptatifs. En ce sens, il s’agit d’une ex-
tension du travail présenté dans une note technique précédente [1] et ses résultats et
conclusions reflètent une étape intermédiaire vers l’évaluation quantitative unificatrice
de détecteurs plus avancés, notamment le filtre adapté adaptatif (AMF). La capa-
cité et l’utilité des équations présentées sont mises en évidence à partir d’exemples
numériques avec une diversité de différents paramètres radar.
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Executive summary

On the Receiver Operating Characteristics of Adaptive
Radar Detectors

Christoph H. Gierull; DRDC Ottawa TM 2013-117; Defence R&D Canada –

Ottawa; December 2013.

Background: Canada’s Forces (CF) deploy Ground Moving Target Indication (GM-
TI) radars on their CP-140 maritime patrol aircrafts and on the remote sensing satel-
lite RADARSAT-2 to operationally monitor the country’s vast ocean approaches.
In addition, the Department of National Defence (DND) is investing in the devel-
opment of modern multi-functional phased array antennas for deployment on their
future naval platforms, air surveillance (air-defense) radars and over-the-horizon radar
systems. To be effective, these systems need to employ Space-Time Adaptive Pro-
cessing (STAP) and adaptive beamforming techniques to reduce strong detrimental
interference (clutter, jammer), which otherwise will significantly compromise their
performance. Both applications have in common that the filter to suppress the unde-
sired interference exploits the knowledge of the mutual cross-correlation between all
receiver channels in form of the covariance matrix. If the covariance matrix is a priori
known, the filter is constant and the resulting performance has been investigated and
well reported in the literature. In practice, however, the covariance matrix is not
known and hence the filter vector must be estimated from a limited number of statis-
tically independent secondary measurements, which is then subsequently applied to
the primary data under consideration. Since there exist several different estimation
techniques with varying statistical properties, the theoretical performance analysis is
challenging. Most of the previous work has been limited to the investigation of either
simplified loss factors due to mathematical tractability, or to one classical (but not
necessary optimum) estimation technique, or has been restricted to one particular
target signal model.

Principal results: This memorandum presents a novel unifying theoretical analy-
sis to examine the performance of a certain class of adaptive Constant False Alarm
Rate (CFAR) detectors in a homogeneous, Gaussian interference environment. In
particular, the analysis comprises several well-known estimation techniques for the
suppression filter, deterministic and random target signal models, arbitrary chan-
nel sizes, selectable dimensionality of the interference as well as incoherent summing
(‘multi-looking’) of independent test cells. It provides closed form analytical ex-
pressions that permit numerical computation of the complete Receiver Operating
Characteristics (ROC), i.e. the probability of target detectability versus a varying
false alarm rate with an arbitrary high accuracy. The utility and usefulness of the
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theoretical work has been demonstrated with examples featuring a variety of different
parameter settings and processing methods. The numerical tools have been proven
to be flexible, efficient and robust.

Significance of results: The main objective of this memorandum is a step towards
an overarching analytical framework that allows prediction of the performance of
adaptive detectors under the realistic assumption that the filter vector is unknown
and must be estimated using auxiliary measurements. The analysis provides for the
first time the opportunity to directly compare the capabilities of various estimation
techniques and therewith to predict which technique will yield superior results under
some practically relevant conditions, including different target signal models. Another
substantial contribution of this report is to provide a radar designer or operator with
tools with whom they can determine how much training data are necessary to obtain,
for instance, a 90% detection level compared to the optimum value (hypothetically
achievable if the covariance matrix was known). Since it depends strongly on the
desired false alarm rate, this is a much more practical and meaningful metric than the
commonly used average loss of signal-to-noise-plus-interference (SNIR) power ratio.
The presented algorithms have already been successfully incorporated into theoretical
performance analysis for the Multi-Sensor Data Fusion project at DRDC Ottawa.

Future work: The most important extension of the presented analysis concerns the
inclusion of practically more relevant detectors such as the Adaptive Matched Filter
(AMF) or the Generalized Likelihood Ratio Test (GLRT) [2] for which the detec-
tion probabilities have been calculated only for SMI [3, 4] but not for the advanced
weights like LSMI/EVP. Another open problem relates to non-ideal conditions such
as that the true target direction (for adaptive beamforming) or true velocity (for
STAP processing) are not known. Therefore, the true target or signal vector s might
not align with the assumed steering vector d ; In other words the case that the signal
impinges on the array from a slightly different direction from that into which the
antenna was steered. The implications of this mismatch on the statistical properties
have originally been investigated by Boroson [5, 2] see also [4]. The proposed theo-
retical approach in these papers is supposed to be directly applicable to the problem
at hand in this report.
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Introduction : Les Forces canadiennes (FC) déploient des radars GMTI (de détec-
tion de cibles mobiles au sol) sur leurs avions de patrouille maritime CP-140 et sur
le satellite de télédétection RADARSAT-2 pour surveiller les vastes zones d’approche
océanique du pays. En outre, le ministère de la Défense nationale (MDN) investit
dans le développement d’antennes à balayage électronique multifonctionnelles mo-
dernes destinées à être déployées sur ses futures plateformes navales, à effectuer de
la surveillance radar et à servir avec les systèmes radar aériens transhorizon (pour
la défense aérienne). Pour être efficaces, ces systèmes doivent employer le traite-
ment adaptatif spatio-temporel (STAP) et des techniques de formation de faisceaux
adaptatifs pour réduire le fort brouillage nuisible (fouillis, brouilleurs), qui autrement
compromet considérablement leur performance. Les deux applications ont en com-
mun que le filtre qui supprime le brouillage indésirable exploite la connaissance de la
corrélation mutuelle entre tous les canaux de réception sous la forme d’une matrice
de covariance. Si la matrice de covariance est connue a priori, le filtre est constant,
et la performance résultante a été étudiée et bien documentée dans la littérature. En
pratique toutefois, la matrice de covariance n’est pas connue et le vecteur filtre doit
donc être estimé à partir d’un nombre limité de mesures secondaires statistiquement
indépendantes, qui seront ensuite appliquées aux données primaires à l’étude. Comme
il existe plusieurs techniques d’estimation différentes ayant différentes propriétés sta-
tistiques, l’analyse de la performance théorique est difficile. La plupart des travaux
antérieurs ont été limités à l’étude de facteurs d’affaiblissement simplifiés en raison
de questions de résolubilité mathématique ou à une technique d’estimation classique
(mais pas nécessairement optimale), ou ont été limités à un modèle particulier de
signal de cible.

Résultats principaux : Cette note présente une analyse théorique unificatrice et
novatrice afin d’examiner la performance d’une certaine catégorie de détecteurs adap-
tatifs de taux de fausse alarme constant (TFAC) dans un environnement de brouillage
gaussien homogène. En particulier, l’analyse fait appel à plusieurs techniques bien
connues d’estimation pour le filtre de suppression, des modèles de signaux cibles
déterministes et aléatoires, des tailles de canal arbitraires, des choix d’intensité de
brouillage ainsi que la sommation incohérente (" multi-visées ") de cellules de test
indépendantes. Il fournit des expressions analytiques fermées qui permettent le cal-
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cul numérique des caractéristiques de fonctionnement du récepteur (ROC) complètes,
c’est-à-dire la probabilité de détectabilité de la cible par rapport à un taux de fausses
alarmes variant avec une grande précision arbitraire. L’utilité du travail théorique a
été démontrée par des exemples comportant une diversité de différents paramètres et
méthodes de traitement. La polyvalence, l’efficacité et la robustesse des outils numé-
riques ont été prouvées.

Importance des résultats : L’objectif principal de cette note est de progresser vers
un cadre analytique global qui permettra de prédire la performance des détecteurs
adaptatifs avec l’hypothèse réaliste que le vecteur filtre est inconnu et doit être estimé
à partir de mesures auxiliaires. Cette analyse fournit pour la première fois la possibilité
de comparer directement les capacités des différentes techniques d’estimation et ainsi
de prédire quelle technique donnera des résultats supérieurs dans certaines conditions
pratiques pertinentes, y compris en présence de différents modèles de signaux de cible.
Une autre contribution importante de ce rapport est de fournir à un concepteur ou
opérateur de radar des outils avec lesquels ils pourront déterminer la quantité de
données d’apprentissage nécessaire pour obtenir, par exemple, un niveau de détection
de 90 % par rapport à la valeur optimale (hypothétiquement réalisable si la matrice
de covariance était connue). Comme cela dépend fortement du taux de fausse alarme
souhaité, c’est une mesure beaucoup plus pratique et significative de l’affaiblissement
moyen calculé avec le rapport signal sur bruit plus brouillage (SNIR) couramment
utilisé. Les algorithmes présentés ont déjà été incorporés avec succès dans l’analyse de
la performance théorique pour le projet de fusion de données multi-capteurs à RDDC
Ottawa.

Perspectives : L’extension la plus importante de l’analyse présentée concerne l’inclusion
des détecteurs pratiquement plus pertinents, tels que le filtre adapté adaptatif (AMF)
ou le test de rapport de vraisemblance généralisé (GLRT) [2] pour lesquels les pro-
babilités de détection ont été calculées uniquement pour la SMI [3, 4], mais pas pour
les pondérations avancées qu’on peut obtenir par LSMI/EVP. Un autre problème
concerne les conditions non idéales comme l’ignorance de la vraie direction de la cible
(pour la formation adaptative de faisceau) ou sa vitesse vraie (pour le traitement
STAP). Par conséquent, la vraie valeur du vecteur de cible ou de vitesse s pourrait ne
pas correspondre au vecteur de direction supposée d ; en d’autres termes, c’est un cas
où le signal arrive à l’antenne réseau à partir d’une direction légèrement différente
de celle dans laquelle l’antenne a été dirigée. Les conséquences de ce décalage des
propriétés statistiques ont été initialement étudiées par Boroson [5, 2] (voir aussi [4]).
L’approche théorique proposée dans ces documents devrait être directement appli-
cable au problème traité dans le présent rapport.
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1 Introduction

Adaptive multi-channel or sensor detection techniques and algorithms are nowadays
widely used for interference suppression in active radar applications such as control
of the antenna pattern in adaptive arrays (also called adaptive beamforming) [4] or
in post-Doppler Space-Time Adaptive Processing (STAP) for Ground Moving Target
Indication (GMTI) under severe clutter conditions [6, 7]. If the Gaussian interference,
or more precisely the interference covariance matrix, is known, the maximization of
the Signal-to-Noise-plus-Interference Ratio (SNIR) is equivalent to the maximization
of the detection probability Pd for a fixed false alarm rate [6]. The adaptive processor
linearly combines the elements of the data snapshot Z = [Z1, . . . , ZN ] yielding a
scalar output

T̄ = u∗Z . (1)

where N is the number of channels, and u denotes the weight or filter vector. The
SNIR of this filter output for a given (expected) target signal s is

SNIR := κ =
E |u∗s|2

Eu∗WW ∗u
, (2)

in which R = EWW ∗ is the interference covariance matrix. E denotes the expec-
tation operator. Assuming the interference comprises of a clutter component C and
an independent thermal noise component N , and under the Gaussian assumption for
the interference data W = C +N ∼ N C

N (0 ,R) with R = RC +RN , the optimum
detector follows from a Likelihood-Ratio-Test (LRT) [6]

|T̄ |2 ≷ η, (3)

where η denotes the detection threshold. This threshold is set to discriminate between
one of the two hypotheses

H : Z = C +N (interference alone) (4)
A : Z = S +C +N (interference plus target) (5)

for a given probability of false alarms Pfa.

If n independent snapshots Z k for k = 1, . . . , n are available, which possess the same
statistical properties, the test becomes the incoherent sum [8]

T̄ =
n∑

k=1

|u∗Z k|2 ≷ η. (6)

This is for instance the case in SAR-GMTI application when the target spread
over multiple image resolution cells, or when multilook GMTI processing is applied,
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i.e. when the entire available frequency bands are divided into subbands that are
incoherently added [9]. Multilook processing is commonly applied in order to re-
duce speckle variation in the SAR image causing graininess. The parameter n will
be called number of looks from here onwards in line with the SAR example. Note,
for the following analysis it is not required that the target is present in each cell,
i.e. we introduce an additional parameter L describing the number of looks actually
containing the target with 1 ≤ L ≤ n.

Without loss of generality, the test can be normalized to the expected value under
the hypothesis H, i.e.

E T̄H =
n∑

k=1

u∗ E (Z kZ ∗
k)u = nu∗Ru , (7)

so that

T :=
T̄

nu∗Ru
=

1

n

n∑
k=1

|u∗Z k|2
u∗Ru

, (8)

with ET = 1.

As mentioned before, for a signal vector s = σtd , the Pd is essentially determined
by the achievable SNIR κ = σ2

t
|u∗d |2
u∗Ru ; hence maximizing κ will maximize Pd. The

common amplitude σt determines the related Signal-to-Noise Ratio (SNR), a function
of the target’s RCS, and the vector d is usually denoted as steering or Direction-Of-
Arrival (DOA) vector. The weight vector to maximize the SNIR is well known to
be

uopt = αR−1d , (9)

[4, 6] in which α is an arbitrary constant resulting in the optimum SNIR

κopt = σ2
t d

∗R−1d . (10)

The SNIR loss function has been defined as

κl =
κ

κopt

=
|u∗d |2
u∗Ru

1

d ∗R−1d
. (11)

In reality, however, the covariance matrix is not known and must be estimated. This
estimation is conventionally done using K independent secondary training samples
X = [X 1, . . . ,XK ] for the interference (i.e. in the absence of a target) that possess
the same statistical properties as the primary data, i.e. X k ∼ N C

N (0 ,R). In their
classic paper, Reed, Brennan and Mallet [10] proposed to replace R with its Maximum
Likelihood Estimation (MLE)

R̂ =
1

K
XX∗ =

1

K

K∑
k=1

X kX ∗
k K ≥ N. (12)
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Please note that this approach is rather ad hoc and heuristically motivated and by
no means satisfying an optimization criterion. In this memorandum, random vectors
are capitalized and slanted while matrices are capitalized using a straight font. Their
corresponding realizations are written in small letters.

Inserting
Û SMI = R̂−1d (13)

into (11) yields the scalar random variable

Kl =
|d ∗R̂−1d |2

d ∗R̂−1RR̂−1d
1

d ∗R−1d
, (14)

which has been shown to follow a beta-distribution with 2(K −N + 2), 2(N − 1) de-
grees of freedom [10]. This method has been called Sample Matrix Inversion (SMI).
Many researchers have used the expectation of (14) to determine the average number
of training samples, K3dB = 2N − 3, required to reach a 3dB SNIR loss, e.g. [11].
However, it has been realized that considering only the mean is not sufficient as it
neglects the impact of the variability of the random variable. Nitzberg [12] proposed
a more suitable performance metric for SMI, the detection loss, for which he showed
that (in contrast to the mean value) it depends also on the false alarm rate, the num-
ber of channels as well as the secondary sample size. Wang and Cai [13] went a step
further and analyzed the probability of detection of the square-law detector when
the weights are estimated via SMI. Presumably for mathematical tractability, how-
ever, they limited their derivation to Swerling target scenarios that are statistically
independent from the interference [14].

Instead of inverting the Sample Covariance Matrix (SCM), Carlson [15] showed that it
is advantageous in most cases1 to add a small constant to the SCM prior to inversion:

Û LSMI = α

(
1

K

K∑
k=1

X kX ∗
k + δI

)−1

d . (15)

This addition compresses and smoothes the usually strongly fluctuating noise eigen-
values which have a detrimental effect on the SNIR loss [4, 16]. The probability
density function (pdf) of the so-called Loaded SMI (LSMI) has originally been de-
rived by [17], see also [16]. Kl for the LSMI follows also a beta-distribution but
with 2(K −M − 1), 2M degrees of freedom. The number of required secondary data
is significantly reduced to K3dB = 2M , when M denotes the number of large in-
terference/clutter eigenvalues which can be significantly smaller than the number of
channels N .

1Particularly when the number of samples is small and especially smaller than the number of
channels which leads to a non-invertible covariance matrix.
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Arguably the best known so-called projection technique is the Eigen Vector based
Projection (EVP) [4] that completely avoids the small eigenvalues:

Û EVP = α (I− ECE
∗
C)d , (16)

where R̂ = [ECEN ]Λ[ECEN ]
∗ denotes the eigenvalue decomposition of the sample

covariance matrix and EC ∈ C
N×M

represent the estimated clutter subspace. It has
been shown that the statistical properties of EVP are under some mild conditions are
identical to that of LSMI [18]. In order to avoid the computational expense associ-
ated with an eigenvector decomposition of a potentially large covariance matrix, many
eigenvector-free techniques have been proposed in the past. A classical representative
of this class of techniques is the Hung-Turner Projection (HTP) developed at DRDC
Ottawa, in which the projection matrix is directly generated by the set of secondary
samples [19]. The statistical properties of the HTP have been derived in [20] using
fundamental results presented in [17]2. An economically most favorable technique in
terms of computational load, called Matrix Transformation based Projection (MTP),
which achieves optimal performance (i.e. nearly identical to LSMI/EVP) was intro-
duced in [21]. A comprehensive summary of these kind of techniques can be found
in [16] and in English in [22]. A statistical analysis of projection techniques for small
sample sizes was provided in [23].

The objective of this memorandum is to provide a generalized and unifying analysis,
comprising the different estimation techniques of the filter vector, of the operationally
relevant full Receiver Operator Characteristics (ROC) for the classic class of square-
law detectors [8, 24] rather than the SNIR loss or detection loss factors. Although the
two analyzed detectors are not the most practical relevant, their thorough assessment
is an important step towards a unifying theoretical framework which eventually shall
comprise all practical detectors and advanced adaptive weight vectors. For instance.
the presented derivations include a parameterized target model covering all fluctuat-
ing Weinstein or Swerling cases as well as the constant (deterministic) RCS model.
In addition to previous work the analysis includes incoherent multilooking at which
the target must not necessarily be present in each cell. Last but not least, through a
single parameter it permits the performance comparison of SMI on one hand and the
LSMI/EVP on the other hand. The memorandum presents analytical closed form
expressions leading to efficient numerical recipes to compute the probability of detec-
tion with an arbitrarily small error, which have been shown to work robustly for radar
systems consisting of several hundreds channels processing several hundred secondary
data. The theoretical foundation of this work is based on the work by Mitchell and
Walker [25] and Shnidman [26, 27], see also [1]. For completeness sake it should be
mentioned that alternative detectors have been suggested for instance by Kelly [28]
and Robey et. al. [29], and were statistically analyzed in depth by Richmond [3].

2Some additional analysis for the HTP is being presented in this report, see Annexes B and C.
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2 Detector statistics

Suppose that the decision whether or not a moving target is present in the multi-
channel data is based on the square-law test

T̄ = ‖Z∗U ‖2 = U ∗ZZ∗U

=
n∑

k=1

|U ∗Z k|2 . (17)

As extension to the test in (6), the weight vector intended to suppress the interference
U is not deterministic and known but a random vector of size N×1 itself. The random
matrix Z of size n × N contains as columns n statistically independent Gaussian
primary data vectors, with

Z k = S k +W k, W k = C k +N k ∼ N C

N (0 ,R) , (18)

for k = 1, . . . , n, where R = RC + RN denotes the clutter plus noise covariance
matrix and S denotes a potential moving target signal. According to equation (23)
in [1], assuming homogeneous clutter for which Δ = δ = 1, the conditional probability
density function (pdf) of the test (17) for constant target signal S = s and constant
weight U = u reads

f(T̄ |S=s,U=u)(t̄; s ,u) =
(

1

σ2

)n+1
2

(
t̄

ω

)n−1
2

exp

(
− t̄

σ2
− ω

)
In−1

(
2

√
ω

t̄

σ2

)

with
σ2 = u∗Ru ,

ω = L
|u∗s|2
σ2

= L
|u∗s|2
u∗Ru

s = σtd ,

(19)

where the common amplitude σt determines the related Signal-to-Noise Ratio (SNR),
mainly driven by the target’s RCS, and the vector d is usually denoted as steering
vector containing information on the target’s across-track velocity component vy or
its bearing, and Im denotes the Bessel function of the first kind of order m.

Let us re-write the variable ω as a linear function of the SNIR loss (11), i.e.

ω = Lσ2
t d ∗R−1d︸ ︷︷ ︸

a

· |u
∗s|2

u∗Ru
1

d ∗R−1d︸ ︷︷ ︸
κl

, (20)
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with the new variable a := Lσ2
t d ∗R−1d so that (19) can be expressed as conditioned

on fixed A = a and Kl = κl rather than the weight vector itself, i.e.

fT̄ |A,Kl
(t; a, κl, σ

2) =

(
1

σ2

)n+1
2

(
t̄

aκl

)n−1
2

exp

(
− t̄

σ2
− aκl

)
In−1

(
2

√
aκl

t̄

σ2

)
.

(21)
For notational simplicity we will omit the index l from here onwards. However, the
conditional pdf still depends on σ2, which is a function of u . The key step in the
provided analysis is to normalize the test appropriately so that the dependency on σ2

in (21) disappears, and the unconditional pdf results from integrating over the two
random variables A and K. It will be shown that this can be achieved for instance
by the following two normalizations:

a) T :=
T̄

nU ∗RU
and b) T :=

T̄

n |U ∗d |2 . (22)

Observe that b) is a perfectly valid test that is strongly related to the AMF except
for the square of the denominator, while a) is of a mere academic nature since the
asymptotic covariance R was assumed unknown to begin with, and hence cannot
appear in the denominator. Nevertheless, the analytical analysis and the derived
closed form solutions for the performance metrics provide valuable insight into the
relative comparison of various adaptive weight estimation techniques, which has not
been established in the literature. Furthermore, this approach may also open the
door to enable the derivation of closed form solutions for more practical detectors
such as AMF and GLRT involving advanced adaptive weights.

For brevity we derive the Pfa and Pd in detail only for Test a) in the subsequent
sections and in a much briefer form for Test b) in Annex D. The normalization for
Test a) is reflected through

fT |A,K(t; a, κ) = nσ2fT̄ |A,K(nσ
2t̄; a, κ, σ2)

= n
n+1
2

(
1

aκ

)n−1
2

t
n−1
2 e−nt e−aκ In−1

(
2
√
naκt

)
.

(23)

In this memorandum we concentrate on the two distinct classes of adaptive weight
estimators, SMI and LSMI/EVP/MTP, respectively as their statistical properties
can be parameterized using a single parameter, i.e. the pdf of the SNIR loss random
variable (14) containing the estimated filter vector

K =
|Û ∗

d |2
Û

∗
RÛ

1

d ∗R−1d
(24)
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is beta-distributed, ∼ β2(K−ν+1),2ν , with pdf

fK(κ) =
Γ(K + 1)

Γ(ν)Γ(K − ν + 1)
κK−ν (1− κ)ν−1 0 < κ ≤ 1, (25)

in which the new parameter ν is used to indicate the applied estimation technique

Table 1: Estimation Technique Selection Parameter
Parameter ν Method

N − 1 SMI
M LSMI/EVP/MTP

However it should be noted that any estimation technique for which a density function
fK(κ) exists, can be analytically investigated with regard to its achievable probability
of detection, cf. (31). For instance in Annex C the Pd of the classical Hung-Turner
Projection (HTP) method is derived using the newly found closed form expression of
the pdf for K in Annex B.

3 Probability of false alarm

Setting a = 0 and using the result of Annex A in [16], the conditional pdf in absence
of a target is given to under the assumption of homogeneous clutter with σ̄2 = σ2

f(T |K)(t; 0, κ) = nn t
n−1

Γ(n)
e−nt, (26)

which does not depend on the weighting vector or κ respectively, and leads to the
probability of false alarm Pfa

Pfa(η) =
Γ(n, nη)

Γ(n)
, (27)

where Γ(·, ·) denotes the incomplete gamma function [16].
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4 Probability of detection
4.1 Deterministic target signal
4.1.1 Arbitrary number of channels

For a deterministic target, we can set A = a ≡ ξ and yield for the conditional pdf in
(21)

f(T |K)(t;κ) = n
n+1
2

(
1

ξ

)n−1
2

t
n−1
2 e−nt

(
1

κ

)n−1
2

e−ξκ In−1

(
2
√
nξκt

)
. (28)

Using the power series representation for the Bessel function

In−1

(
2
√
nξκt

)
=

∞∑
μ=0

1

Γ(μ+ 1)Γ(n+ μ)

(√
nξκt

)n−1+2μ

(29)

in (28) yields

f(T |K)(t;κ) =
∞∑
μ=0

nn+μξμ

Γ(μ+ 1)Γ(n+ μ)
tn+μ−1e−ntκμe−ξκ. (30)

Since

fT (t) =

∫ 1

0

f(T |K)(t;κ) fK(κ) dκ, (31)

by using (25) we get for the test statistic

fT (t) =
∞∑
μ=0

Γ(K + 1) nn+μξμtn+μ−1e−nt

Γ(μ+ 1)Γ(n+ μ)Γ(ν)Γ(K − ν + 1)

1∫
0

κK−ν+μ(1− κ)ν−1 e−ξκ dκ,

︸ ︷︷ ︸
B(K−ν+μ+1,ν) 1F1(K−ν+μ+1,K+μ+1;−ξ)

(32)
where we have used the result in [30][p.343-3.383-1], and B(a, b) = Γ(a)Γ(b)

Γ(a+b)
. Using

(32) the probability of detection Pd can be computed to

Pd(η,K) =

∞∫
η

fT (t) dt

=
∞∑
μ=0

Γ(K + 1)Γ(n+ μ, nη)

Γ(μ+ 1)Γ(n+ μ)Γ(ν)Γ(K − ν + 1)
ξμ

1∫
0

κK−ν+μ(1− κ)ν−1 e−ξκ dκ

=
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

Γ(K + 1)B(K − ν + μ+ 1, ν)

Γ(μ+ 1)Γ(ν)Γ(K − ν + 1)

× ξμ 1F1 (K − ν + μ+ 1, K + μ+ 1;−ξ) ,

(33)
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where it has been used that the integral with respect to t evolves to an incomplete
Gamma function: ∞∫

η

tn+μ−1e−nt dt =
Γ(n+ μ, nη)

nn+μ
. (34)

Since ν appearing in the power under the integral in (32) is always ∈ N, one can use
the finite power series

(1− κ)ν−1 =
ν−1∑
j=0

(
ν − 1

j

)
(−1)j κj (35)

to get a closed form solution for the integral

ν−1∑
j=0

(
ν − 1

j

)
(−1)j

1∫
0

κK−ν+μ+je−ξκ dκ

︸ ︷︷ ︸
( 1
ξ )

K−ν+μ+j+1
γ(K−ν+μ+j+1,ξ)

, (36)

where
(·
·
)

is the binomial coefficient which can be expressed to

(
ν − 1

j

)
=

Γ(ν)

Γ(j + 1)Γ(ν − j)
=

j∏
l=1

ν − j − 1 + l

l
. (37)

Using for instance the gamma-functions relationship in (37) the Pd can be computed
via

Pd(η) =
∞∑
μ=0

ν−1∑
j=0

(−1)j
Γ(K + 1) Γ(n+ μ, nη) γ(K − ν + μ+ j + 1, ξ)

Γ(μ+ 1)Γ(j + 1)Γ(n+ μ)Γ(K − ν + 1)Γ(ν − j)
ξν−K−j−1.

(38)

4.1.2 Special case: SMI with infinite sample size

In case of infinite sample size, (33) can be expressed as

Pd(η) := lim
K→∞

Pd(η,K)

=
∞∑
μ=0

αμ lim
K→∞

Γ(K + 1)Γ(K − ν + μ+ 1)

Γ(K + μ+ 1)Γ(K − ν + 1)
1F1

(
K − ν + μ+ 1, K + μ+ 1;−ξ̄

)
,

(39)
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where αμ comprises all terms independent of K. Since Γ(K+1) = K(K−1) . . . (K−
ν + 1)Γ(K − ν + 1) = (Kν +O(Kν−1)) Γ(K − ν + 1) and similarly Γ(K + μ + 1) =
(Kν +O(Kν−1)) Γ(K + μ+ 1− ν), the limit inside the sum becomes

lim
K→∞

Kν +O(Kν−1)

Kν +O(Kν−1)
1F1

(
K − ν + μ+ 1, K + μ+ 1;−ξ̄

)
=

lim
K→∞

e−ξ̄
1F1

(
ν,K + μ+ 1; ξ̄

)
= e−ξ̄,

(40)

such that

Pd(η) = e−ξ

∞∑
μ=0

Γ(n+ μ, nη)

Γ(μ+ 1)Γ(n+ μ)
ξμ, (41)

It is interesting to note that (41) is independent of ν and therewith of the number
of channels N . In other words, if the covariance matrix is known one does not need
to deploy a large array with many elements; N = 2 would already be sufficient to
achieve the same Pd. Note, (41) has been derived independently as result (32) in [1].
However, for finite K and especially small training sets, the probability of detection
depends on N according to (33) or (38).

4.1.3 Special case: SMI with N = 2 (ν = 1)

For a two-channel system such as RADARSAT-2 or XWEAR applying SMI, i.e. ν = 1,
(33) becomes

Pd(η) =
∞∑
μ=0

Γ(K + 1)Γ(n+ μ, nη)B(K + μ, 1)

Γ(μ+ 1)Γ(n+ μ)Γ(N − 1)Γ(K)
ξμ 1F1 (K + μ,K + μ+ 1;−ξ) . (42)

Using the identities B(K + μ, 1) = 1/(K + μ) and 1F1 (K + μ,K + μ+ 1;−ξ) =
K+μ
ξK+μγ(K + μ, ξ) as well asUsing Γ(K + 1) = KΓ(K), we get

Pd(η,K) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(μ+ 1)Γ(n+ μ)

K

ξK
γ(K + μ, ξ). (43)

Alternatively one can set j = 0 and ν = 1 in (38) to get (43).

4.2 Random target signal
4.2.1 General number of channels

By adopting the generic Gamma distribution for A in [1] with pdf

fA(a) =
1

Γ(s)ξ̄s
as−1 exp

{
−a

ξ̄

}
, (44)
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Table 2: Relationship between Target Models and parameter s

Parameter s Target Model
0 < s < 1 Weinstock [26]
s = 1 Swerling I
s = L Swerling II
s = 2 Swerling III
s = 2L Swerling IV
s → ∞ constant RCS

where
ξ̄ =

ξ

s
=

L

s
σ2
t d ∗R−1d . (45)

Various models may be expressed through the sole shape parameter s: The less
used Swerling models III and IV are minor variants of the first two models with Γ4

and Γ4L distributions [31], respectively. Note, in all cases the expectation of A is
approximately the SNR:

EA ≡ ξ = Lσ2
t d ∗R−1d

∼= L
σ2
t

σ2
n

N if σ2
c >> σ2

n, ‖d‖2 = N. (46)

Now, the marginal test pdf can be expressed as the double integral

fT (t) =

∫ 1

0

∫ ∞

0

f(T |A,K)(t; a, κ) fA(a) fK(κ) da dκ.

Using (44) and by integrating over t, see (34), the detection probability reads

Pd(η,K, s) =
∞∑
μ=0

Γ(n+ μ, nη)Γ(K + 1)ξ̄−s

Γ(μ+ 1)Γ(n+ μ)Γ(ν)Γ(K − ν + 1)Γ(s)

×
∞∫
0

as+μ−1e
− 1

ξ̄
a

1∫
0

κK−ν+μ(1− κ)ν−1e−κa dκ

︸ ︷︷ ︸
B(ν,K−ν+μ+1) 1F1(K−ν+μ+1,K+μ+1;−a)

da,
(47)

where we for the inner integral have used the result in [30][p.343-3.833-1]. Using the
identity 1F1 (a, b;−x) = e−x

1F1 (b− a, b; x) is leading to

1F1 (K − ν + μ+ 1, K + μ+ 1;−a) = e−a
1F1 (ν,K + μ+ 1; a)
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and with B(ν,K − ν + μ+ 1) = Γ(ν)Γ(K + μ− ν + 1)/Γ(K + μ+ 1) we yield

Pd(η,K, s) =
∞∑
μ=0

Γ(n+ μ, nη)Γ(K + 1)Γ(K − ν + μ+ 1)ξ̄−s

Γ(μ+ 1)Γ(n+ μ)Γ(K − ν + 1)Γ(s)Γ(K + μ+ 1)

×
∞∫
0

as+μ−1e
−
(
1+ 1

ξ̄

)
a
1F1 (ν,K + μ+ 1; a) da

︸ ︷︷ ︸
Γ(s+μ)

(
1+ 1

ξ̄

)−(s+μ)

2F1

(
ν,s+μ;K+μ+1; ξ̄

1+ξ̄

)

, (48)

where we used the result in [30][p.816-4]. This finally results in

Pd(η,K, s) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

Γ(K + 1)Γ(K − ν + μ+ 1)Γ(s+ μ)

Γ(μ+ 1)Γ(K − ν + 1)Γ(s)Γ(K + μ+ 1)

× ξ̄μ

(1 + ξ̄)s+μ 2F1

(
ν, s+ μ;K + μ+ 1;

ξ̄

1 + ξ̄

)
.

(49)

In many cases the evaluation of the Gauss hypergeometric function is numerically
challenging. In order to get a more numerical stable expression for (49), we can use
the identity

2F1

(
ν, s+ μ;K + μ+ 1;

ξ̄

1 + ξ̄

)
= (1+ξ̄)s+μ

2F1

(
s+ μ,K + μ+ 1− ν;K + μ+ 1;−ξ̄

)
.

(50)
Using the integral representation of the hypergeometric function in (50), see [32]:

2F1

(
s+ μ,K + μ+ 1− ν;K + μ+ 1;−ξ̄

)
=

Γ(K + μ+ 1)

Γ(K + μ+ 1− ν)Γ(ν)

1∫
0

κK−ν+μ(1− κ)ν−1

(1 + ξ̄κ)s+μ
dκ, (51)

the detection probability can be evaluated through

Pd(η,K, s) =
∞∑
μ=0

Γ(K + 1)Γ(s+ μ)Γ(n+ μ, nη)

Γ(μ+ 1)Γ(n+ μ)Γ(ν)Γ(K − ν + 1)Γ(s)
ξ̄μ

1∫
0

κK−ν+μ(1− κ)ν−1

(1 + ξ̄κ)s+μ
dκ.

(52)
For large SNR, ξ̄, it is more efficient to re-write (52) so that the integral behaves
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numerically more favorable even for increasing indices μ:

Pd(η,K, s) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

Γ(K + 1)Γ(s+ μ)

Γ(μ+ 1)Γ(ν)Γ(K − ν + 1)Γ(s)

×
(
1

ξ̄

)s
1∫

0

κK−ν−s(1− κ)ν−1(
1 + 1

ξ̄κ

)s+μ dκ.

(53)

4.2.2 Special case: SMI with infinite sample size

In case of infinite sample size, (49) can be expressed as

Pd(η, s) := lim
K→∞

Pd(η,K, s)

=
∞∑
μ=0

αμ lim
K→∞

Γ(K + 1)Γ(K − ν + μ+ 1)

Γ(K + μ+ 1)Γ(K − ν + 1)
2F1

(
ν, s+ μ;K + μ+ 1;

ξ̄

1 + ξ̄

)
,

(54)

where αμ comprises all terms independent of K. Since Γ(K+1) = K(K−1) . . . (K−
ν + 1)Γ(K − ν + 1) = (Kν +O(Kν−1)) Γ(K − ν + 1) and similarly Γ(K + μ + 1) =
(Kν +O(Kν−1)) Γ(K + μ+ 1− ν), the limit inside the sum becomes

lim
K→∞

Kν +O(Kν−1)

Kν +O(Kν−1)
2F1

(
ν, s+ μ;K + μ+ 1;

ξ̄

1 + ξ̄

)
= 1, (55)

such that

Pd(η, s) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

Γ(s+ μ)

Γ(s)Γ(μ+ 1)

ξ̄μ

(1 + ξ̄)s+μ
. (56)

Again, as in the deterministic target scenario, the Pd(η, s) (56) is also independent
of ν and therewith of the number of channels3 N . In other words, if the covariance
matrix is known a small N would already be sufficient to achieve identical Pd. Note,
(56) has been derived independently in [1]. For instance, it is identical to equation
(49) in [1] for homogeneous clutter, i.e. Δ = δ = 1 so that the SCNR(1) in equation
(48) of [1] equals ξ̄ in (56) above. However, for finite K, and especially small training
sets, the probability of detection depends on N according to (53).

3Except for the increase in SNR due to the higher antenna gain (larger N in (46)).
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4.2.3 Special case: Infinite target model parameter

In Annex A it is shown that the detection probability for the deterministic target
model, i.e. a constant RCS, can be derived as the limiting case of (49) for s → ∞:

Pd(η,K; ξ) := lim
s→∞

Pd(η,K, s; ξ
s
)

=
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

Γ(K + 1)Γ(K − ν + μ+ 1)

Γ(μ+ 1)Γ(K − ν + 1)Γ(K + μ+ 1)

× ξμ 1F1 (K + μ− ν + 1, K + μ+ 1;−ξ) ,

(57)

which is identical to (33). This transition is also demonstrated numerically in Fig. 3.

5 Numerical examples

This chapter presents several examples of the numerically evaluated ROC’s for differ-
ent filter estimation techniques, target signal models and varying parameter settings.

The required asymptotic covariance matrix has been computed to

R = σ2
c

M∑
m=1

d(um)d(um)
∗ + σ2

nIN , (58)

where σ2
c denotes the interference power level and σ2

n the noise power level, respec-
tively, so that the interference-to-noise ration (INR) at a single antenna channel is
INR = σ2

c/σ
2
n. Without loss of generality, the steering or Direction-of-Arrival vector

d ∈ C
N×1

is given as a pure phase vector:

d(u) =
[
1, e−j 2π

λ
d u, . . . , e−j 2π

λ
d(N−1)u

]′
. (59)

An X-band system with wavelength λ = 3 cm is chosen, and the antenna element
distance d is d = λ/2 avoiding any grating lobes. The interference dimension was
set to M = 3 with the corresponding directions um = −[0.5, 0.2, 0.1]. According to
(19) the target signal was computed to s(ut) = σtd(ut) while the target direction is
ut = 0.5 hence representing a sidelobe interference scenario with a given SNIR=L ·
SNR · d(ut)

∗Rd(ut) with SNR = σ2
t /σ

2
n.

The false alarm rate Pfa was varied between 1 and 10−6 for all computations. The
detection threshold η for a homogeneous Gaussian interference model given in (27)
can in MATLAB conveniently determined using the single command:

η = gammaincinv(Pfa, n,
′upper′)/n, (60)
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where the division by the number of looks stems from the scaling of the threshold n
in (27).

For the smallest possible multi-channel system, a two-channel radar such as RADAR
SAT-2 or XWEAR [33], using a constant target signal model and employing SMI,
Figure Fig. 1 illustrates the improving performance when the sample size increases
from K = 2 to infinity. For smaller training sample sizes there is a steady increase
in performance while for values larger than K = 50, the curves are almost indistin-
guishable. For the black curve representing K → ∞ we used (41).
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Figure 1: ROCs of SMI for varying number of training samples for a small array.

Fig. 2 shows essentially the same scenario but for a somewhat larger array with
N = 10 channels. Again, the performance is steadily improving until about K ∼= 20·N
at which it gets close to the optimum curve. This figure is a good example to highlight
that the SNIR loss factor is not sufficient to judge full capabilities. According to (14)
the average number of training data to achieve a 3 dB loss in SNIR is about K = 20,
which however may clearly not sufficient in terms of Pd especially for smaller Pfa.

Fig. 3 illustrates two facts. First, the drastically reduced Pd when a Swerling I target
model is used compared to the determinsitic model in Fig. 2. Second, it demonstrates
how the Pd for a Swerling target in (49) converges toward the one for deterministic
targets in (33) (black curve) if s tends to infinity.
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Figure 2: ROCs of SMI for varying number of training samples for a larger array.

Fig. 4 illustrates the change in detectability of a deterministic target as a function
of the number of sensor elements, given a fixed number of training samples K = 20.
One can recognize that the Pd raises sharply from N = 2 to N = 8, then stays quasi
constant for N = 12, and then drops back rapidly until N = 20. At first glance this
seems counterintuitive since the SNR increases steadily for larger N ; Nevertheless for
larger arrays the training sample size is too small and hence the uncertainty in the
estimation of the covariance matrix severely starts to limit the performance.

Fig. 5 demonstrates how the provided equations permit comparison of different filter
estimation techniques exemplified with SMI and Loaded SMI, see Table 1. On one
hand, it is interesting to note that LSMI is better than SMI over the entire false
alarm range. On the other hand, comparing the ROCs of one technique but for
different target models reveals an intersection point after which the random model
shows higher detectability than the constant target signal model.

Fig. 6 illustrates the improvement of detection performance invoked by increasing
SNR for a given array size and training sample size, respectively. The LSMI method
was chosen. Once can see that the increase in detection probability does not follow
linearly the increase in SNIR, hence again demonstrating that the simple SNIR loss
factor does not provide the full picture.

Fig. 7 and Fig. 8 depict the detectability loss against the optimum Pd (with exactly
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Figure 3: ROCs of SMI for Swerling target for an increasing target model parameter
s. The black curve has been computed using (33).

known covariance matrix) for varying number of training samples used to estimate
the covariance number for a deterministic and fluctuating target model, respectively.
For a given operating point, i.e. Pfa, these curves will tell a radar designer what the
minimum number K shall be, in order to achieve a given percentage of the optimum
detectability. For instance, if one wishes to achieve at least 50% detection probability
for a given false alarm rate of 10−6, then for a deterministic target ones needs to
provide about 40 training samples, and for a Swerling I target about 10 to 15 less.
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Figure 4: ROCs of SMI for a deterministic target and varying number of elements.
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Figure 6: ROC of LSMI for increasing SNR.
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of training samples K; Deterministic target model.
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of training samples K; Swerling I target model.
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6 Summary and conclusions

This memorandum presented several novel closed-form mathematical expressions to
compute the Receiver Operating Characteristics of multi-channel adaptive detectors,
used in applications such as STAP for GMTI or interference suppression via adaptive
beamforming in phased array antennas under the assumption of an homogeneous in-
terference environment. As a novelty, the presented performance analysis and numer-
ical approaches comprise all practically relevant techniques to estimate the adapted
filter vector based on a set of independent secondary training data. The presented
work can be seen an extension or generalization of previous work, [1], in which the
covariance matrix and hence the filter vector was presumed to be known.

The dimensionality of the array, the primary and secondary data sets, the interference
rank as well as power levels are freely selectable and together with interchangeable
target signal statistics (all Swerling cases including deterministic) offer a sufficient
breadth to cover a wide range of scenarios. It was found that all of these parameters
have a distinct impact on the achievable ROC in contrast to results in previous pub-
lications which indicated dependency mainly on the number of channels. The utility
and usefulness of the theoretical work has been demonstrated with examples featur-
ing a variety of different parameter settings and estimation methods. The presented
numerical recipes have been proven to be efficient and robust. They are capable of
numerically handling arrays consisting of several hundreds receiver channels using sev-
eral hundreds training samples effortlessly. The computation time on a conventional
desktop computer is in the order of seconds. Note that a purely simulation-based
approach is unfeasible for large sized arrays.

Although the provided theoretical analysis has been limited to non-classical detec-
tor schemes due to mathematical tractability, it is a very important step towards a
complete unifying theoretical framework that will eventually include most practical
detectors, all relevant adaptive weight estimators and even impact of target signal
mismatches. Another important and non-trivial open topic for future work would be
to extend the provided theoretical derivation to heterogeneous interference environ-
ments. Heterogeneity is commonly modeled through use of an additional independent
texture random variable applied to the clutter, see for instance [1]. Including this
so-called compound model, unfortunately, does not permit to write the pdf of the
test statistic (21) as a function of the SNIR loss factor κ anymore. As this was the
prerequisite for the proposed analysis, heterogeneity makes the mathematical deriva-
tion much more challenging. Perhaps the results and techniques may be useful for
tackling the heterogeneous case.
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Annex A: Limit of Pd (49) for infinite target
model parameter s

Using identity (50), the Pd for fluctuating target RCS in (49) reads:

Pd(η,K, s) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

Γ(K + 1)Γ(K − ν + μ+ 1)Γ(s+ μ)

Γ(μ+ 1)Γ(K − ν + 1)Γ(s)Γ(K + μ+ 1)

× ξ̄μ 2F1

(
s+ μ,K + μ− ν + 1;K + μ+ 1;−ξ̄

)
.

(A.1)

According to Table 2 in section 4.2.1, the limit s → ∞ corresponds to the deter-
ministic target model, sometimes also called Swerling 0. Considering only the terms
depending on s in (A.1) and remembering that ξ̄ = ξ

s
, the task at hand is to evaluate

the following limit:

lim
s→∞

F (s) = lim
s→∞

Γ(s+ μ)

Γ(s)

1

sμ
2F1

(
s+ μ,K + μ− ν + 1;K + μ+ 1;− ξ

s

)
. (A.2)

Using the general series definition of the hypergeometric function, e.g. [32], the limit
can be re-written as

lim
s→∞

F (s) = lim
s→∞

�����Γ(s+ μ)

Γ(s)sμ
Γ(K + μ+ 1)

�����Γ(s+ μ)Γ(K + μ− ν + 1)

×
∞∑

m=0

Γ(s+ μ+m)Γ(K + μ− ν + 1 +m)

Γ(K + μ+ 1 +m)

(−ξ)m

m!sm

=
∞∑

m=0

Γ(K+μ−ν+1+m)
Γ(K+μ−ν+1)

Γ(K+μ+1+m)
Γ(K+μ+1)

(−ξ)m

m!
lim
s→∞

Γ(s+ μ+m)

Γ(s) sm+μ
.

(A.3)

Using the identity

Γ(s+ μ+m) = (s+ μ+m− 1) · (s+ μ+m− 2) · · · (s+ 1) · sΓ(s)
=

[
sμ+m +O (

sm+μ−1)
)]

Γ(s)

one can see that the limit in (A.3) tends towards one for any μ, so that

lim
s→∞

F (s) =
∞∑

m=0

(K + μ− ν + 1)m
(K + μ+ 1)m

(−ξ)m

m!
= 1F1 (K + μ− ν + 1, K + μ+ 1;−ξ) ,

(A.4)
where (a)m = Γ(a+m)

Γ(a)
denotes the Pochhammer symbol, [32]. Inserting (A.4) into

(A.1) confirms the correctness of (33), which was alternatively derived based on the
deterministic target model in section 4.1.1.
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Annex B: Derivation of the pdf of the SNIR
loss factor for the HTP

As shown in [20], for the HTP the pdf of the SNIR loss factor Kl in (24) is given
as the product of two independent beta-distributed random variables with 2(N −
K), 2(K − M), and 2(K − M + 1), 2M degrees of freedoms respectively. The filter
vector is being created as

Û =
(
I−X (X∗X)−1 X∗)d , (B.1)

with X = [X 1, . . . ,XK ] is a matrix whose columns are made up by the K secondary
data vectors. Consequently, in comparison to the other estimation methods, for HTP
the number of training samples is limited by 1 ≤ K < N .

In the following a new closed form expression for the product pdf will be derived that
in turn leads to a closed form expression for the achievable probability of detection,
see Annex C. Let Z = Z1 · Z2 be the product of the two beta-distributed variables
with pdfs according to (25):

fZ1(z1) =
1

B(N −K,K −M)
zN−K−1
1 (1− z1)

K−M−1 0 < z1 ≤ 1 (B.2)

fZ2(z2) =
1

B(K −M + 1,M)
zK−M
2 (1− z2)

M−1 0 < z2 ≤ 1, (B.3)

for which the product pdf can be computed via

fZ(z) =

∞∫
−∞

1

|w| fZ1(w) fZ2

(
z
w

)
dw (B.4)

with z ≤ w ≤ 1, leading to

fZ(z) =
B(K −M + 1,M)−1

B(N −K,K −M)
zK−M

1∫
z

wN−2K−1 (1− w)M−1 (w − z)M−1 dw. (B.5)

Applying the variable transformation (w− z) → x and using the result [30] [p.315-8]
yields

fZ(z) =
B(K−M,M)

B(N−K,K−M)B(K−M+1,M)
zN−M−K−1 (1−z)K−1

2F1

(
2K + 1−N,M ;K; z−1

z

)
,

(B.6)
where .2F1(·) denotes the hypergeometric function. Using B(a, b) = Γ(a)Γ(b)

Γ(a+b)
and the

identity [30] [p.998-9.131.1]

2F1

(
2K + 1−N,M ;K;−1− z

z

)
= zM 2F1 (M,N −K − 1;K; 1− z) , (B.7)
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finally results in

fZ(z) =
K Γ(N −M)

Γ(N −K)Γ(K −M + 1)
zN−K−1 (1−z)K−1

2F1 (M,N −K − 1;K; 1− z) ,

(B.8)

with 0 < z ≤ 1. A simple test that (B.8) is indeed a density function is achieved by
integrating the three z-dependent terms after applying the transformation (1−z) → x,
i.e.

1∫
0

(1− x)N−K−1 xK−1
2F1 (M,N −K − 1;K; x) dx, (B.9)

which, using the result [30] [p.806-7.512.4] becomes

���Γ(K)Γ(N −K)Γ(K −M + 1)

Γ(N −M)�������K���Γ(K)

Γ(K + 1)

, (B.10)

equaling the inverse of the constant in (B.8), and hence confirming
∫ 1

0
fZ(z) dz = 1.
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Annex C: Probability of detection of a
deterministic target using HTP

Using (30) and (31) the Pd of any estimation technique, for which a density function
K exists, can be computed via

∫∞
η

fT (t) dt, i.e.

fT (t) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

ξμ

Γ(μ+ 1)

1∫
0

e−ξκ κμ fK(κ) dκ, (C.1)

where it has been used that the integral with respect to t involves to the incomplete
Gamma function, see (34). Utilizing the pdf for HTP in (B.8) and disregarding for a
moment the constant terms, the following integral needs to be computed:

1∫
0

κN−K+μ−1 (1− κ)K−1 exp (−ξκ) 2F1 (M,N −K − 1;K; 1− κ) dκ. (C.2)

Applying the variable transformation (1−κ) → x and using the result in [30] [p.809-
7.523], the integral evolves to

e−ξ

1∫
0

(1− x)N−K+μ−1 xK−1 eξx 2F1 (M,N −K − 1;K; x) dx

︸ ︷︷ ︸
Γ(K)Γ(N−K+μ)Γ(K−M+μ+1)

Γ(N−M+μ)Γ(K+μ+1)
eξ 2F2(K,K−M+μ+1,N−M+μ,K+μ+1;−ξ)

, (C.3)

where 2F2(·) denotes the generalized hypergeometric function. Considering the con-
stant terms in (B.8) finally yields:

Pd(η,K) =
∞∑
μ=0

Γ(n+ μ, nη)

Γ(n+ μ)

(N −K)μ(K −M + 1)μ
(N −M)μ(K + 1)μ

ξμ

Γ(μ+ 1)

× 2F2 (K,K −M + μ+ 1, N −M + μ,K + μ+ 1;−ξ) ,

(C.4)

where (a)m = Γ(a+m)
Γ(a)

denotes the Pochhammer symbol, [32].
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Annex D: Performance analysis of Test b)

For the normalization of Test b) in (22) the pdf in (21) becomes

fT |A,K(t; a, κ) = n |u∗d |2fT̄ |A,K(n |u∗d |2 t̄; a, κ, σ2)

= n |u∗d |2
(

1

u∗Ru

)n+1
2

(
n|u∗d |2 t

aκ

)n−1
2

× exp

(
−n |u∗d |2

u∗Ru
t− aκ

)
In−1

(
2

√
a κ

n |u∗d |2
u∗Ru

t

)
.

(D.1)

Exploiting that d∗R−1d
d∗R−1d

|u∗d |2
u∗Ru = d ∗R−1d κ at the appropriate places in (D.1) we get

fT |A,K(t; a, κ) =
(
nd ∗R−1d

)n+1
2 κ

n+1
2

(
t

aκ

)n−1
2

× exp
(−nd ∗R−1d κ t− aκ

)
In−1

(
2κ

√
nd ∗R−1d a t

)
.

(D.2)

Using the variable transform T ′ → Tnd ∗R−1d where t′ ∈ {0,∞}, the pdf (D.2)
simplifies to

fT ′|A,K(t′; a, κ) = κ

(
t′

a

)n−1
2

exp (−(t′ + a)κ) In−1

(
2κ

√
a t′

)
, (D.3)

which only depends on a and κ.

D.1 Probability of false alarm
In the absence of a target, i.e. a = 0, the conditional pdf (D.3) reads

fT |K(t;κ) =
κn

Γ(n)
tn−1 e−t κ, (D.4)

so that the Pfa corresponding to the threshold η results from the double integration:

Pfa(η) =

∫ 1

0

��κn

Γ(n)
fK(κ)

∫ ∞

η

tn−1 e−t κ dt︸ ︷︷ ︸
Γ(n,η κ)

��κn

dκ

=

∫ 1

0

Γ(n, η κ)

Γ(n)
fK(κ) dκ = EK

Γ(n, ηK)

Γ(n)
,

(D.5)
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which in contrast to (27) still depends on the SNIR loss κ. The incomplete gamma-
function in (D.5) can be replaced by the finite sum expression

Γ(n, ηκ) = Γ(n)e−ηκ

n−1∑
m=0

ηm κm

Γ(m+ 1)
(D.6)

and after some algebra and using the fact that∫ 1

0

κK−ν+m (1−κ)ν−1 e−ηκ dκ = B(ν,K−ν+m+1) e−η
1F1 (ν,K +m+ 1; η) (D.7)

we finally yield

Pfa(η) =
n−1∑
m=0

Γ(K + 1)Γ(K − ν +m+ 1)

Γ(K − ν + 1)Γ(m+ 1)Γ(K +m+ 1)
ηm e−η

1F1 (ν,K +m+ 1; η) .

(D.8)

D.2 Probability of detection
Inserting the power series representation of the Bessel-function

In−1

(
2κ

√
a t

)
=

∞∑
μ=0

κn−1+2μ (at)
n−1+2μ

2

Γ(μ+ 1)Γ(n+ μ)
(D.9)

into (D.3) leads to

fT |A,K(t; a, κ) =
∞∑
μ=0

Γ(K + 1)Γ(μ+ 1)−1Γ(n+ μ)−1

Γ(ν)Γ(K − ν + 1)Γ(s)

1

ξ̄s︸ ︷︷ ︸
cμ

κK−ν+n+2μ (1− κ)ν−1

× tn+μ−1 aμ+s+1 e−(t+a)κ e−a/ξ̄.

(D.10)

Integrating (D.10) with respect to a yields

fT |K(t;κ) =
∞∑
μ=0

cμκ
K−ν+n+2μ (1− κ)ν−1tn+μ−1 e−tκ

∫ ∞

0

aμ+s−1 e−(kappa+1/ξ̄)a da︸ ︷︷ ︸
Γ(s+μ)(κ+1/ξ̄)−(μ+s)

,

(D.11)
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and a subsequent integration with respect to t gives

Pd(η)|(K = κ) =
∞∑
μ=0

cμ Γ(s+ μ)
κK−ν+n+2μ (1− κ)ν−1(

κ+ 1
ξ̄

)μ+s

∫ ∞

η

tn+μ−1 e−κt dt︸ ︷︷ ︸
Γ(n+μ,κη)

κn+μ

, (D.12)

and finally after integration with respect to κ and some simple algebra, the detection
probability for Test b) becomes:

Pd(η) =
∞∑
μ=0

Γ(K + 1)Γ(s+ μ)

Γ(μ+ 1)Γ(ν)Γ(K − ν + 1)Γ(s)

1

ξ̄s

×
∫ 1

0

κK−ν−s (1− κ)ν−1(
1 + 1

κξ̄

)μ+s

Γ(n+ μ, κη)

Γ(n+ μ)
dκ

(D.13)

It is interesting to note that (D.13) looks very similar to the Pd of Test a) in (53)
except that Test b) requires to integrate over the incomplete gamma-function. The
derivation of the special case s → ∞, i.e. the deterministic target scenario, following
the analysis in section 4.2.3 and Annex A, is left to the interested reader.

I order to demonstrate that (D.13) is indeed implementable, Fig. D.1 compares the
Pd of both tests for a given simulation scenario involving a Swerling II target. Please
note that the red curve in fact crosses the blue curve indicating that for particular
false alarms Test b) can perform better than Test a), which is counterintuitive given
that Test a) partly requires the knowledge of R.
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Figure D.1: Comparison of the ROC of SMI for both tests.
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