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Abstract

Level of repair analysis (LORA) is often defined as the problem of determining whether a compo-

nent should be repaired or discarded upon its failure, and the location in the repair network to do

such work. A related problem is the determination of the optimal number of spare components for

a given piece of equipment. The most common approaches in the literature on developing a pos-

sible spare provisioning decision model are simulation and mathematical programming. Although

these two problems (LORA and spare provisioning) are interdependent, they are seldom solved si-

multaneously due to the complicating nature of the relationships between spare levels and system

availability.

The need to address LORA and the sparing problems simultaneously has attracted increased atten-

tion from the Department of National Defence (DND). In this technical memorandum, the use of a

multi-objective genetic algorithm (specifically the Non-dominated Sorting Genetic Algorithm II) is

proposed to solve this problem, with optimization objectives as minimizing repair costs (e.g., spare

parts, spares transportation, spares storage) and maximizing operational availability. The approach

uses a Monte Carlo simulation to generate scenarios based on a dataset which includes failures of

the components and their associated times of failure. The objective functions are computed at each

genetic algorithm generation based on all generated scenarios. Examples are given on a realistic

dataset in order to illustrate the type of trade-off analyses that can be carried out. Finally, further

work on a large real (not just realistic) dataset would need to be carried out for DND to benefit fully

from the research.

Résumé

L’analyse du niveau de réparation (ANR) est souvent définie comme le processus qui consiste à

déterminer si un composant défectueux doit être réparé ou jeté, et à quel endroit dans le réseau la

réparation doit se faire le cas échéant. On doit aussi déterminer le nombre optimal de composants

de rechange que l’on peut garder en inventaire pour une pièce d’équipement donnée. La simula-

tion et la programmation mathématique sont les méthodes qui reviennent le plus souvent dans la

documentation portant sur l’élaboration d’un modèle décisionnel d’approvisionnement en pièces

de rechange. Bien que ces deux problèmes (l’ANR et le stockage des pièces de rechange) soient

interdépendants, ils sont rarement résolus simultanément en raison de la complexité des relations

entre les niveaux de pièces de rechange et la disponibilité du système.

Le ministère de la Défense nationale (MDN) porte une attention de plus en plus grande à la néces-

sité de s’attaquer simultanément au problème de l’ANR et à celui de l’approvisionnement en pièces

de rechange. Dans ce document technique, nous proposons de résoudre ce problème au moyen d’un

algorithme génétique à objectifs multiples (le Non-Dominated Sorting Genetic Algorithm II), les

objectifs d’optimisation étant de réduire le plus possible les coûts liés à la réparation (p. ex. pièces

de rechange, transport des pièces, stockage des pièces) et de maximaliser la disponibilité opération-

nelle. Cet algorithme utilise une simulation de Monte Carlo pour créer des scénarios à partir d’un

ensemble de données faisant état des pannes des composants et du moment de la panne. Les fonc-

tions objectifs sont calculées à chaque exécution de l’algorithme sur la base de tous les scénarios
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générés. Nous présentons des exemples fondés sur un ensemble de données réaliste pour illustrer le

genre d’analyses d’arbitrage qui peuvent être faites. Enfin, pour que le MDN tire pleinement profit

de ces recherches, il serait normal de pousser plus loin l’analyse en s’intéressant cette fois à un

grand ensemble de données réel (et non seulement réaliste).
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Executive summary

An Exposition on Solving the Joint Level of Repair
Analysis-Spares Problem using a Multi-Objective Genetic
Algorithm

Raman Pall, Slawomir Wesolkowski, Matthew Dozois; DRDC CORA TM 2013–159;
Defence R&D Canada – CORA; September 2013.

Background: Level of repair analysis (LORA) is often defined as the problem of determining

whether a component should be repaired or discarded upon its failure, and the location in the repair

network to do such work. A related problem is the determination of the optimal number of spare

components for a given piece of equipment.

The complexity of LORA lies in the fact that most of the complex equipment has modular design,

and maintenance is carried out by exchanging parts at locations at different hierarchy levels. Upon

failure of a system, the component which is determined to be responsible for the overall failure

of the system is identified. Occasionally, this component can be broken down further into smaller

subsystems, and the source of the failure can be traced to a single part. The types of systems that

are well described by this model are called multi-indenture products, and each level removed from

the main system is called an indenture level. In military terms, the large systems (e.g., an airplane)

described in this paper are known as Prime Equipment (PE). Each PE is composed of one or more

Line Replaceable Units (LRUs), and each LRU is composed of one or more Shop Replaceable Units
(SRUs). Each of these terms represents an indenture level.

The most common approaches in the literature on developing a possible spare provisioning decision

model are simulation and mathematical programming. Although these two problems (LORA and

spare provisioning) are interdependent, they are seldom solved simultaneously due to the compli-

cating nature of the relationships between spare levels and system availability. Thus in the spare

parts literature and in practice, the approach to solve the joint LORA-Spares problem is to solve

the LORA problem first (concerning the repair/replace decisions and the structure of the repair net-

work), and subsequently solve the spare provisioning problem (concerning the number of spares

held at each of the bases or depots).

Approach: The need to address LORA and the sparing problems simultaneously has attracted in-

creased attention from the Department of National Defence. In this technical memorandum, a

multi-objective approach is used to extend the problem from the traditional approach of finding the

best sparing policy to achieve a predetermined operational availability to that of identifying the re-

lationship between the operational availability and resource cost. In this regard, a multi-objective

evolutionary algorithm (specifically the Non-dominated Sorting Genetic Algorithm II) is proposed

that can identify non-dominated solutions to be used for a trade-off analysis. Multi-objective opti-

mization is the process of simultaneously optimizing two or more conflicting objectives subject to

certain constraints.
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The following optimization objectives have been devised: minimization of total repair cost (e.g.,
spare parts, spares transportation, spares storage) and maximization of operational availability. The

solutions are made up of vectors which include the maximum number of LRUs and SRUs that would

be stocked as well as their re-order points. In addition, the solution also includes the optimal repair

network structure.

The approach uses a Monte Carlo simulation to generate scenarios based on a dataset which includes

failures of the components and their associated times of failure. The average objective functions are

computed at each genetic algorithm generation based on all generated scenarios.

Principal Results: Examples on a realistic dataset illustrate the type of trade-off analyses that can

be carried out. The problem studied included thirty LRUs and thirty SRUs. The solutions from

several different initial population sets were combined into a single aggregate data set and the non-

dominated front of this data set was compared to the non-dominated front of each individual data

set through the use of a hypervolume measure. All but two outlying fronts differed in this respect by

no more than 8%. The two outlying fronts with large percent differences were due to their maximal

downtime objective values compared to the corresponding value in the combined front. It was found

that the large downtime objective value could be mainly attributed to one part in each of these two

cases. Hence, the maintenance strategy is often more sensitive to parts with higher annual failure

rates.

In the realistic example studied, it was determined that a small increase in stock (from one to two)

of one of the LRUs would result in considerably lower system downtime (from 1.29 to 0.25 days)

at a relatively small cost (0.2% difference).

Conclusions and Recommendations: Based on the results in this study, it is recommended that

any part stocking strategy for SRUs and LRUs of DND PEs be examined through multiple lenses

(and not purely on cost). The results in this study indicate that trade-offs can be found and provided

to decision-makers. The ability to choose between several equally good (from a mathematical point

of view) solutions allows the decision-maker to decide which objectives are more important in the

context of available solutions.

Future work in this field could include:

• Testing the algorithm on larger, more complex problems to more closely approximate the

decision space at DND;

• Testing the solutions in the non-dominated front on other scenarios generated from the same

distribution in order to verify the robustness of the solutions; and

• Either incorporating vectorization and parallelization techniques in the code, or implementing

the algorithm in a compiled programming language to decrease the computation required to

generate results.
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Contexte : L’analyse du niveau de réparation (ANR) est souvent définie comme le processus qui

consiste à déterminer si un composant défectueux doit être réparé ou jeté, et à quel endroit dans

le réseau la réparation doit se faire le cas échéant. On doit aussi déterminer le nombre optimal de

composants de rechange que l’on peut garder en inventaire pour une pièce d’équipement donnée.

La complexité de l’ANR tient au fait que la plupart des équipements sophistiqués ont une conception

modulaire et qu’on en assure l’entretien par l’échange de pièces entre les unités de différents niveaux

hiérarchiques. Au moment de la défaillance du système, on identifie le composant qui est à l’origine

de la panne. Ce composant peut parfois être divisé en sous systèmes, ce qui permet d’imputer

la panne à une pièce en particulier. Les types de systèmes qui sont décrits correctement par ce

modèle sont désignés comme des produits à niveaux d’intégration multiples, et chaque niveau retiré

du système principal est appelé niveau d’intégration. En termes militaires, on désigne les grands

systèmes (p. ex. un aéronef) décrits dans ce rapport comme de l’équipement principal (EP). Chaque

EP est composé d’un ou de plusieurs éléments remplaçables en première ligne (line replaceable

units – LRU), et chaque LRU est composé d’un ou de plusieurs éléments remplaçables en atelier
(shop replaceable units – SRU). Chacun de ces termes correspond à un niveau d’intégration.

La simulation et la programmation mathématique sont les méthodes qui reviennent le plus souvent

dans la documentation portant sur l’élaboration d’un modèle décisionnel d’approvisionnement en

pièces de rechange. Bien que ces deux problèmes (l’ANR et le stockage des pièces de rechange)

soient interdépendants, ils sont rarement résolus simultanément en raison de la complexité des re-

lations entre les niveaux de pièces de rechange et la disponibilité du système. C’est pourquoi dans

les ouvrages sur les pièces de rechange et dans la pratique, on préconise de résoudre le double pro-

blème de l’ANR et du stockage des pièces de rechange en résolvant tout d’abord le problème de

l’ANR (c’est à dire en ce qui regarde la décision de réparer ou de remplacer et la structure du réseau

de réparation) et ensuite celui de l’approvisionnement en pièces de rechange (c’est à dire en ce qui

concerne le niveau des stocks à chaque emplacement (bases ou dépôts)).

Méthode : Le ministère de la Défense nationale (MDN) porte une attention de plus en plus grande

à la nécessité de s’attaquer simultanément au problème de l’ANR et à celui de l’approvisionnement

en pièces de rechange. Dans ce document technique, nous proposons une approche multi objectifs

pour modifier la façon de faire classique : au lieu de tenter de définir la meilleure politique de sto-

ckage qui garantirait un niveau de disponibilité opérationnelle préétabli, nous cherchons à définir le

rapport entre la disponibilité opérationnelle et le coût des ressources. à cet égard, nous proposons

un algorithme évolutionnaire multi objectifs (à savoir le Non-dominated Sorting Genetic Algorithm
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II) capable d’offrir des solutions non dominées qui peuvent servir à l’analyse d’arbitrage. L’opti-

misation multi objectifs est un processus qui consiste à optimiser simultanément plusieurs objectifs

contradictoires étant donné certaines contraintes.

Nous énonçons les objectifs d’optimisation suivants : réduire au maximum les coûts liés à la ré-

paration (p. ex. pièces de rechange, transport des pièces, stockage des pièces) et maximaliser la

disponibilité opérationnelle. Les solutions se composent de vecteurs qui comprennent le nombre

maximum de LRU et de SRU qui seront stockés ainsi que leur seuil de réapprovisionnement. La

solution comprend en outre la structure optimale du réseau de réparation.

Cet algorithme utilise une simulation de Monte Carlo pour créer des scénarios à partir d’un en-

semble de données faisant état des pannes des composants et du moment de la panne. Les fonctions-

objectifs moyennes sont calculées à chaque exécution de l’algorithme génétique sur la base de tous

les scénarios générés.

Principaux résultats : Des exemples fondés sur un ensemble de données réaliste illustrent le genre

d’analyses d’arbitrage qui peuvent être faites. Le problème examiné dans ce rapport comprend trente

LRU et trente SRU. Nous avons regroupé les solutions tirées de plusieurs ensembles de populations

de départ en un seul ensemble de données agrégées et avons comparé le front non dominé de cet en-

semble de données au front non dominé de chacun des ensembles de données pris individuellement

en nous servant d’une mesure d’hypervolume. Tous les fronts secondaires, sauf deux, présentent un

écart de 8 % tout au plus. L’écart plus grand observé pour les deux fronts d’exception s’explique par

la différence entre la valeur maximale de l’objectif de temps d’indisponibilité dans ces deux fronts

et la valeur correspondante dans le front combiné. On a constaté que la valeur élevée de l’objectif

de temps d’indisponibilité était principalement attribuable à une pièce d’équipement dans chacun

des deux cas. En conséquence, la stratégie d’entretien est souvent plus sensible aux pièces qui ont

un taux de défaillance annuel plus élevé.

Dans l’exemple réaliste étudié, nous avons déterminé qu’une légère augmentation (de une ou deux

unités) du stock de l’un des éléments remplaçables en première ligne (LRU) aurait une forte inci-

dence à la baisse sur le temps d’indisponibilité du système (le faisant passer de 1,29 jour à 0,25

jour), moyennant un coût relativement peu élevé (différence de 0,2 %).

Conclusions et recommandations : Suivant les résultats de cette étude, il est recommandé que

toute stratégie de stockage des pièces concernant les SRU et les LRU de l’équipement principal

(EP) du MDN soit examinée sous plusieurs angles (et non seulement sous l’angle des coûts). Les

résultats de l’étude montrent qu’il est possible de trouver des solutions de compromis qui peuvent

être mises à la disposition des décideurs. La capacité du décideur de choisir entre plusieurs solutions

aussi bonnes les unes que les autres (d’un point de vue mathématique) lui permet de déterminer

quels objectifs sont plus importants que d’autres étant donné les solutions qui s’offrent à lui.

Les futurs travaux de recherche dans le domaine pourraient comprendre les expériences suivantes :

– Tester l’algorithme sur des problèmes plus vastes et plus complexes afin d’évaluer avec plus

de précision l’espace de décisions au MDN ;
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– Tester les solutions du front non dominé sur d’autres scénarios tirés de la même distribution

afin de vérifier la robustesse des solutions ;

– Intégrer des techniques de vectorisation et de parallélisation dans le code, ou exécuter l’algo-

rithme dans un langage compilé afin de réduire le volume de calculs requis pour produire les

résultats.
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1 Introduction

“There is one advantage to having nothing, it never needs repair.”
— Frank Howard Clark (1888 – 1962), American screenwriter

1.1 Background and Context

An unfortunate fact of manufacturing is that products are often prone to failure. Whereas inex-

pensive products can be discarded and replaced upon failure, more expensive products are instead

maintained by a repair by replacement policy: a failed component is removed from the product and

replaced by a functioning spare part, if available. Otherwise, the replacement has to wait until a

functioning component arrives.

Level of repair analysis (LORA) is an approach used during the design stage of complex equipment

for the analysis of the cost effectiveness of competing maintenance strategies [1]. LORA is often

defined as the problem of determining whether a component should be repaired or discarded upon

its failure, and the location in the repair network to do such work. LORA is carried out as part of

life cycle cost and cost of ownership analyses, and can play a significant role in minimizing these

costs for capital equipment. This is especially important in defence, where maintenance requires

complex support equipment and highly skilled personnel, and the unavailability of the equipment is

especially undesirable [1].

The complexity of LORA lies in the fact that most of the complex equipment has modular design,

and maintenance is carried out by exchanging parts at locations at different hierarchy levels (i.e.,
there is a hierarchical relationship between the operating locations and their supporting depots). An

issue of paramount importance in LORA is concerned with the locations of where failing items

should be repaired or replaced in order to minimize the total support cost.

A related problem is the determination of the optimal number of spares for a given piece of equip-

ment [2]. This is a major concern for many industrial organizations, including in defence and aircraft

industries, due to the enormous capital spent on spares in these organizations every year. Spare pro-

visioning plays a crucial role to ensure specified availability for a system – increasing the number

of spares can sometimes increase availability at the expense of cost. As such, cost minimization and

availability maximization are often competing objectives in this problem.

1.1.1 Multi-Indenture Products

In the context of LORA, upon failure of a system, the component which is determined to be respon-

sible for the overall failure of the system is identified. Occasionally, this component can be broken

down further into smaller subsystems, and the source of the failure can be traced to a single part.

The types of systems that are well described by this model are called multi-indenture products, and

each level removed from the main system is called an indenture level. All systems described in this

paper are assumed to be multi-indenture products. The option to replace an item at any of its levels

of indenture is a significant contributor to the complexity of the LORA problem.

DRDC CORA TM 2013–159 1



In military terms, the large systems (e.g., an airplane) described in this paper are known as Prime
Equipment (PE). Each PE is composed of one or more Line Replaceable Units (LRUs), and each

LRU is composed of one or more Shop Replaceable Units (SRUs). Each of these terms represents

an indenture level. This concept is illustrated in Figure 1. In theory, the failure of a PE can be due

to a failure at any indenture level, but in practice it is usually considered to be traceable to a single

SRU.1 Once the source of the failure is determined, the method of repair is to replace the failed

component with a working one, if available. If there is no working component, the PE is out of

commission until a replacement is made available.

As an example, consider a system in which a truck is a PE. One of the system’s LRUs consists of a

wheel containing two SRUs: the wheel’s tire and rim. Suppose that the wheel fails. Either the entire

wheel (LRU) can be replaced if available, or, if not, the problem is further investigated. Under the

assumption listed above, the problem will be traceable to one (and only one) of the SRUs – either

the tire, or its rim. The problematic SRU will then require replacement or repair. The choice of

replacement at either indenture level adds to the complexity of the problem.

Figure 1: An illustration of the multi-indenture nature of the prime equipment.

1.1.2 Structure of the Repair Network

All movement of broken components or restocking of working components is done through a de-

fined system of supporting depots, called the repair network. Locating spares, and repair and test

equipment close to each of the operating sites is cost-prohibitive. Therefore, central locations have

certain resources which allow them to repair particular components which may not be able to be re-

paired at the operating sites, and are capable of resupplying locations where component stocks have

been depleted. Once in operation, all locations have specific instructions on what to do if particular

components are found to be faulty. Part of the goal of this paper is to determine the optimal repair

network structure to minimize the overall support cost of the system. It is assumed that alternative

repair solutions cannot be made on an ad-hoc basis.

The structure of the repair network forms a single tree with leaves representing locations called the

Forward Operating Bases (FOBs), which are the only locations where PEs can fail. Each FOB has a

1Within this report, all failures in the PE can be associated with the failure of exactly one of its components, and not

from the interaction of several failed components.
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parent node from which it resupplies and to which it sends broken components, called Intermediate
Depots (IDs). The number of IDs may range anywhere from one to the number of FOBs.2 All

IDs resupply from and send broken components to a single location called the Central Depot (CD),

which is the root of the repair tree.3 The CD is the farthest location from the FOB that a component

can travel (in terms of links along the tree, not necessarily in terms of geographic distance). Once

the component is received at the CD, it must be either repaired or replaced.

Each of these classes of nodes forms a single level in the repair network hierarchy, called an echelon.

In principle, any number of echelon levels is possible. In practice however, it is usually limited to

three. The set of operating sites, or FOBs, corresponds to the first such echelon, called echelon 1,

the IDs form echelon 2, and the CD forms echelon 3. This concept is illustrated in Figure 2.

Figure 2: An illustration of the repair network and the echelon concept.

1.1.3 Description of the Problem

When a PE fails at an FOB, the decision of how to get the system back in working order has to be

made. Regardless of what is to be done with the failed component, the first maintenance operation

is to replace the failed LRU with a working one, if one is available at the base. If there is no

replacement ready, the PE must remain out of commission at the FOB, incurring downtime cost,

until a replacement is available.

Once the failed LRU is removed, it can be decomposed into its component SRUs at the base, or

moved up to the Intermediate Depot associated with the FOB. This decision is based on the Echelon
Level of Repair (ELOR) assigned to the LRU. The ELOR for a given part specifies the minimum

echelon level at which the part can be repaired. As an example, a specific SRU may be repaired at

an intermediate depot, and is thus given an ELOR of 2, while another may be more complex and

can only be repaired at the central depot, and is thus given an ELOR of 3. All SRUs must have a

ELOR greater or equal to that of their parent LRU, and all PEs are automatically assumed to have

an ELOR of 1 (i.e., PEs never leave FOBs). Moreover, each component is given a probability of

being repaired at each of the possible echelon levels (subject to the constraint that this probability

be 0 if the echelon level is lower than the ELOR of the component). The decision on the echelon

level regarding where the failed component will be repaired is then handled on a stochastic basis. In

2There cannot be more IDs than the number of FOBs as each ID is associated to a non-zero set of FOBs.
3It is assumed in this paper that there is only one CD, and the repair network forms a single tree, as opposed to a set

of trees (also known as a forest), wherein there would be T CDs, where T is the number of trees in the forest.
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either case, the failed SRU(s) are then isolated and replaced with working ones as soon as they are

available. The LRU is then put back together and kept at whichever location the repair took place.

Repaired LRUs are not immediately sent to the FOB where the failure was discovered. If an SRU is

composed of parts, it can either be decomposed at that location or sent one echelon level higher in

the network for repair, depending on the ELOR of the SRU. In either case, the failed parts are then

isolated and replaced, and the repaired SRU stays at whichever location it was repaired.

Over time, the stock of various LRUs and SRUs will deplete at the FOBs, and accumulate at the

intermediate and central depots. Thus, whenever the stock of a particular part at an FOB falls

below some value, called the reorder threshold, the FOB makes a restock request with its associated

intermediate depot for a number of parts that will bring the stock level of the FOB up to its target
stock level. If the intermediate depot has the stock to satisfy the request, the parts are shipped

immediately. Otherwise, the intermediate depot ships as many parts as it can, and a backorder4 is

generated at the FOB. The intermediate depots and the central depot have a similar relationship. All

backorders are shipped as soon as parts are available at the supplying location, with the exception

that locations will fulfill their own immediate part requirements before shipping backorders to its

children locations.

1.1.4 Common Approaches to the Problem

In the spare parts literature and in practice, the approach to solve the joint LORA-Spares problem

is to solve the LORA problem first (concerning the repair/replace decisions and the structure of the

repair network), and subsequently solve the spare provisioning problem (concerning the number of

spares held at each of the bases). Although the goal of this problem is to achieve a target availabil-

ity of the PEs, a key feature of a number of models used in practice is that the focus is not on the

maximization of the availability, but instead on the minimization of the expected number of back-

orders of parts at the bases. As a result of a backorder, a system is unavailable waiting for spares.

Furthermore, when referring to optimality in the spare parts stocking problem and that efficient so-

lutions are found, it is taken to mean that it is not possible to achieve a lower expected number of

backorders without increasing the cost incurred.

The first LORA model was specified by Barros in 1998. Barros assumed that the same decisions

are taken at all locations at one echelon level, that resources required to perform repairs are unca-

pacitated, and that each resource could repair all parts at a given level of indenture [1]. An integer

linear programming model was used to approach the problem. Other approaches to the problem

have included a branch-and-bound method [3] and a genetic algorithm approach [4]. More recently,

Basten et al. proposed a mathematical programming formulation that generalizes these models by

not requiring that resources be shared by parts, and allowing that different decisions may be taken

at various locations at the same echelon level [5, 6].

The most common approaches in the literature on developing a possible spare provisioning deci-

sion model are simulation and mathematical programming. Of note, Sherbrooke [7] first applied

mathematical programming to the spare parts inventory management problem in a multi-echelon

4A backorder occurs if a component is requested, but cannot be delivered to the requesting base immediately.
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setting. In this work, he developed the METRIC model (Multi-Echelon Technique for Recoverable

Item Control), a model which was used for a single-indenture problem using a greedy heuristic to

optimize the base stock levels. Sherbrooke’s work was extended by Muckstadt [8] in the MOD-

METRIC model, which allowed for the more complex problem in which the system was comprised

of two indenture levels. Further work by Graves [9] and Sherbrooke [10] resulted in more accu-

rate approximations for the two-echelon problem under single-indenture and two indenture levels

(respectively), known as the VARI-METRIC model. The heuristics employed to solve the sparing

problem in these papers are often based on marginal analysis and require very tight restrictions

on the resource-component relations in the associated LORA models. Exact evaluations of these

models have appeared in the literature more recently, most notably by Rustenburg et al. [11], who

consider the more general multi-echelon, multi-indenture problem, providing exact and approxi-

mate evaluations, as well as an overview of the related literature.

Although these two problems (LORA and spare provisioning) are interdependent, they are seldom

solved simultaneously due to the complicating nature of the relationships between spare levels and

system availability. The first paper in the literature that addressed the joint LORA and spares provi-

sioning problem, by Alfredsson [12], considered two-echelon, single-indenture problems. Recently,

Ilgin and Tunali [13] developed an approach for joint optimization of spare part provisioning and

maintenance policies for an automotive factory by integrating simulation with a genetic algorithm.

The simulation model of the manufacturing line was used as an input to the genetic algorithm as

part of the fitness function. However, this paper was limited to optimization based solely on cost.

Most recently, Basten et al.[14] have extended Alfredsson’s optimization methodology with an ex-

act algorithm that provably finds efficient solutions (meaning, once again, that it is not possible to

achieve a lower expected number of backorders without increasing the cost incurred).

1.2 Study of the LORA-Spares Problem at DND

As mentioned previously, the combined problem of LORA and spare provisioning is of interest

to the Department of National Defence (DND), as it can play a role in minimizing life cycle and

maintenance costs for capital equipment, as well as increasing the availability of the equipment.

DND uses a tool known as the OmegaPS Analyzer [15] to approach the LORA-Spares problem.

This tool uses marginal analysis techniques to approach the two interdependent problems using

separate modules within the software. Experience has shown that results from OmegaPS Analyzer

tend to overestimate system availability while underestimating spares requirements, which impacts

both operational and financial planning at DND [16]. Hence, DND has a significant interest in

developing models and methodologies to solve the combined LORA-Spares problem.

In 2010, Defence Research and Development Canada – Centre for Operational Research and Anal-

ysis (DRDC CORA) initiated funding to study the LORA-Spares problem through a departmental

funding mechanism known as the Technology Investment Fund (TIF). More specifically, the goal of

the TIF project was to develop new modelling and solution approaches that are applicable to gener-

alized maintenance networks and more flexible spares allocation and resource utilization regimes.

As an exploration into all possible approaches that could be used in the elucidation of this problem,

a bevy of approaches are being considered: graph theory, network flow modelling, queuing the-
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ory, regression analysis, simulation modelling, decomposition techniques (e.g., the Dantzig-Wolfe

decomposition) and evolutionary optimization techniques [16].

The model described herein is an output of this TIF project. Other studies associated to the TIF

are numerous. They include an overview by Sakr and Asiedu of the most popular models cur-

rently available in the literature to solve the LORA and Spares problems (individually or simultane-

ously) [17]. Ghaddar, Sakr and Asiedu studied the combined problem when formulated as a single

mixed integer non-linear optimization model to explicitly capture the interdependency between the

repair network and sparing inventory decisions. The resulting optimization model is solved through

decomposition optimization approaches, a simulation model, and a genetic programming-based

symbolic regression methodology [18, 19]. In yet another study, Zhang and Asiedu constructed a

variant of Sherbrooke’s METRIC model to deal with small fleet sizes, based on the use of truncated

distributions for calculating the expected backorder of parts [20].

1.3 Scope of the Analysis and the Structure of the Report

In this technical memorandum, we detail a multi-objective approach to extend the problem from

the traditional approach of finding the best sparing policy to achieve a predetermined operational

availability to that of identifying the relationship between the operational availability and resource

cost. In this regard, an evolutionary algorithm is proposed that can identify non-dominated solutions

to be used for a trade-off analysis.

Optimization objectives are twofold: the minimization of repair costs (e.g., spare parts, spares trans-

portation, spares storage) and the maximization of availability (or equivalently, the minimization of

downtime of prime equipment). The approach developed uses a Monte Carlo simulation to gen-

erate different scenarios based on a dataset which includes the expected failures of the equipment

and their associated probabilities. The average values of the objective functions are computed at

each iteration of the genetic algorithm based on all generated scenarios (once generated, the set of

scenarios remains static).

This paper is organized as follows. The multi-objective optimization method as it pertains to the

LORA-Spares problem is explained in Section 2, with additional background materials in An-

nexes A to C. Section 3 describes applications of the technique and the results that were obtained.

The paper terminates in Section 4 with recommendations and concluding statements.
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2 The Approach

A multi-objective approach was used to extend the problem from the traditional approach of finding

the best sparing policy to achieve a predetermined operational availability to that of identifying the

relationship between the operational availability and resource cost. In this regard, an evolutionary

algorithm is proposed that can identify non-dominated solutions to be used for a trade-off analysis.

A brief introduction to the concept of multi-objective optimization is provided in Section 2.1, with

a more comprehensive explanation provided in Annex A.

A Monte Carlo simulation model was created, implemented in the Matlab mathematical program-

ming environment, to generate scenarios from a dataset detailing the expected failures of the equip-

ment and their associated probabilities [21]. The simulation was run multiple times to determine

the average values of the objectives for each population member. A multi-objective genetic algo-

rithm was then used to perform the optimization analysis. More specifically, the Non-dominated
Sorting Genetic Algorithm II (NSGA-II), constructed by Deb et al. [22, 23], was used to perform

the optimization. A brief description of NSGA-II’s mechanics as it relates to the current problem is

provided in Section 2.2.

2.1 Multi-Objective Optimization

Multi-objective optimization is the process of simultaneously optimizing two or more conflicting

objectives subject to certain constraints. In general, when the objectives in a problem are conflicting,

they prevent simultaneous optimization of each objective. In other words, generally there is no

single solution that simultaneously optimizes each objective. As such, one seeks to find a set of

solutions that cannot be improved with respect to any objective without worsening at least one other

objective.

The concept of dominance is used to determine this set of solutions: one solution is said to dominate

another if the first is at least as good at optimizing each objective as the second, and is better than

the second on at least one of the objectives. If neither solution dominates the other, we say that the

solutions are non-dominated.

A solution is said to be Pareto-optimal if it is not dominated by any other solution in the solution

space. These solutions are precisely those which cannot be improved with respect to any objective

without worsening at least one other objective. The set of all feasible non-dominated solutions is

referred to as the Pareto-optimal set, and for a given Pareto-optimal set, the corresponding objec-

tive function values in the objective space are called the Pareto front [24, 25]. A more complete

discussion on multi-objective optimization can be found in Annex A.

2.2 The Genetic Algorithm

Genetic algorithms (GAs) are algorithms which mimic the biological process of evolution to solve

search and optimization problems [24, 25, 26, 27, 28]. Each solution to the optimization problem

is given a fitness score which relates to its ability to optimize the problem in question. Those

solutions with the highest fitness are used to generate more solutions in a subsequent iteration of the
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algorithm (known as a generation). As the algorithm progresses, its non-dominated front gets closer

and closer to the Pareto-optimal front for the problem.5 A detailed primer on genetic algorithms

(GAs) is provided in Annex B for the interested reader.

By applying a genetic algorithm to our combined problem of level of repair analysis and spares

provisioning, we can obtain a set of solutions making up the non-dominated front in objective space

(i.e., the space with axes labelled “Resource Cost”, and “Operational Availability”). In this way,

we obtain a range of non-dominated solutions varying in cost and operational availability instead of

simply obtaining the lowest cost solution at a specified minimum operational availability – which is

the current output of common techniques in the literature [13].

2.2.1 NSGA-II

The specific GA used in this work is the Non-dominated Sorting Genetic Algorithm II (NSGA-II),

constructed by Deb et al. in 2002 [22, 23]. The NSGA-II algorithm was chosen as a result of its

relatively low computational complexity, retention of the fittest solutions from one iteration of the

algorithm to the next (a property known as elitism in GA parlance), and preservation of diversity

amongst the solutions, i.e., ensuring that they do not all converge to the same set of solutions, but

instead to a large range of solutions.

The NSGA-II algorithm is among the most popular of all GAs for these reasons. In particular, it has

seen usage in Canadian defence applications in Air Force fleet mix optimization problems [29, 30].

A brief description of NSGA-II’s mechanics as it relates to the current problem is provided in

Annex C. In brief, each solution to the problem is comprised of the information representing the

stock levels, reorder thresholds, and ELOR of the components, as well as information regarding the

structure of the repair network.

2.3 The Model

The particulars of the model are described in this section – the objectives, encoding of the chromo-

some, and the main operations within the genetic algorithm.

2.3.1 Objectives

The objectives that we consider in our model are the following:

• Minimization of the total monetary cost of the maintenance strategy; and

• Maximization of the total availability of the system.

The costs included in the model that are captured by the first objective are defined as follows:

5It is worthwhile noting that it is difficult to ascertain whether a GA has converged to the Pareto-optimal set of

solutions after the algorithm has run for several generations [24, 27]. For these reasons, one often speaks of the final non-

dominated set of solutions found via the algorithm (after a given number of generations) in place of the Pareto-optimal

set.
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• Shipping Cost: The cost to ship failed parts either to a location higher in the hierarchy (i.e.,
sending a failed part to a parent for repair), or to a location lower in the hierarchy (i.e., a

resupply of a repaired or spare part). This cost is incurred every time a part is shipped.

• Holding Cost: The daily costs of holding parts overnight at FOBs and IDs, which is directly

proportional to the number of components at each base.

• Repair Cost: The cost of repairing a particular part at a particular echelon.

The algorithm sums all of these costs for each scenario and averages over all scenarios. Naturally,

those solutions with the lowest average overall cost are the fittest with respect to this objective.

The second objective of the GA is to maximize the total availability of the system or, equivalently,

to minimize the downtime of all PEs is the system. Each PE type has a “downtime cost” associated

with it, which determines how much the system will suffer should the PE be out of commission.

The total downtime cost is given by the sum over all PEs of the number of days each PE is out

of commission, multiplied by the downtime cost of that PE. The algorithm averages the downtime

costs over all scenarios, and the solutions with lowest average overall cost are the most fit with

respect to this objective.

2.3.2 Chromosome Representation

In this paper, no PE has more than four indenture levels and the repair network has exactly three

echelon levels. The solution chromosomes consist of two segments: the first detailing information

about the components, and the second detailing information about the locations. For the first seg-

ment, each component has a target stock level and reorder threshold for each of the three echelon

levels. In addition, each component has an ELOR. Thus, this segment of the chromosome has 7n
genes, where n is the number of components in the system. The second segment details the inter-

mediate depots from which each of the FOBs obtains their resupplies (i.e., the parent location of

each of the FOBs). The length of this segment is m, where m is the number of FOBs in the system.

Hence the total length of the chromosome is 7n+m.

2.3.3 Scenario Generation

The fitness functions evaluate the efficiency of a repair management strategy based on a number

of randomly generated failure scenarios. Once these scenarios are generated, they are set and used

repeatedly in the objective function calculation (i.e., the scenarios are not re-generated with each

GA generation). Concretely, the same scenarios are used in each of the iterations of the GA , i.e.,

the looping through the GA encompasses the Monte Carlo scenarios. Performing the loops in this

order ensures that each member of the population is evaluated against the same set of scenarios for

fair comparison of the objective function averages.

The algorithm used to generate a scenario operates as follows: for each component, a random

number of failures is sampled from a Poisson distribution with mean equal to the Average Yearly
Failure (AYF) of that component. This results in a total of

∑n
i=1 fi failures in the year.
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Each individual failure is randomly assigned a specific date in the year for the event (an integer from

1 to 365), as well as a location (i.e., FOB) where the failure occurred. The probability of failing on a

certain date is uniform across all dates, while the probability of failing at the specific FOBs is taken

as an input to the model. The resulting list of failures, sorted by ascending date, is a single scenario.

The model is run using many randomly generated scenarios (i.e., using a Monte Carlo approach) to

determine the optimal maintenance strategy (with respect to the structure of the repair network and

the number of spares held at each of the locations).

2.3.4 Population Initialization

A population of size p is randomly generated at the start of the GA. The genes of each chromosome

are generated in the following way:

• The target stock level for each component at each echelon is chosen randomly from 1 to some

theoretical upper bound. The bound for each component is chosen by using the cumulative

probability of that component failing up to a given number of times. Setting the bound in this

way allows the elimination of solutions with an excess number of spare components which

would cause an increase in overall cost without reducing the repair time of the PE.

• The reorder threshold for each component at each echelon is chosen from 0 to one less than

the target stock level.

• The ELOR of each component is chosen. Since a component must have an ELOR no lower

than that of its parent, the algorithm decides on the ELOR of all ancestors of a component

before choosing an ELOR for that component. The ELOR of a component is randomly chosen

between the ELOR of its parents and 3. If the component is a PE, it is automatically given an

ELOR of 1.

• Each FOB is randomly assigned to an intermediate depot from which it resupplies and to

which it sends its items for repairs.

Note that in the analysis of a real system, the steps above may not necessarily applicable – for

example, the components would most likely already be associated to pre-determined ELORs.

2.3.5 Crossover and Mutation

The binary tournament selection procedure is used to choose parents for the crossover operator [23].

Four solutions are chosen at random from the population, and the fitter of the first two and the fitter

of last two are selected as the parent solutions for the crossover operation. This is repeated p times

to create 2p parents in the mating pool.

The standard crossover (random exchange of elements in the two parent chromosomes) is used for

mating parts of the chromosome related to the stock levels and reorder points as well as the location

of the FOBs.

Given the tree structure for the ELOR, the crossover operation must preserve the property that all

components have a higher ELOR than their parent components. To do so a pivotal node is randomly
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selected. The tree with the higher ELOR at the pivotal node is labeled parent A, while the other is

labeled parent B. The child tree inherits the entire branch starting from the pivotal node, including

the pivotal node, from parent A, and all other nodes from parent B. In additional detail, the crossover

operation is divided into the following three stages:

• Stock level stage: The algorithm carries out the following crossover procedure for each com-

ponent.

– Assuming there are N parts, the program randomly chooses an integer n, where 1 < n <
N.

– The algorithm chooses n random parts from parent 1, and the remaining N − n parts

from parent 2.

– The stock levels and reorder points of each part are then passed to the child from each

corresponding parent.

• ELOR stage: The multi-indenture structure of a system can be thought of as a tree, with the

PE as the root node and the parts as the leaves. The crossover operation must preserve the

property that all components have a higher ELOR than their parent components. To do this,

the following crossover procedure is carried out for each system tree.

– A random node in the tree, called the pivotal node, is selected.

– The tree with the higher ELOR at the pivotal node is labeled parent A, while the other

is labeled parent B.

– The child tree inherits the entire branch starting from the pivotal node, including the

pivotal node, from parent A, and all other nodes from parent B.

• FOB stage: No assumptions are made regarding which forward operating bases are associated

with which intermediate depots. Therefore, for each operating base, the child simply chooses

randomly whether to inherit the intermediate depot from parent 1 or parent 2.

Like the crossover function, mutation has to be done in sections, since different sections of the

chromosome mutate in different ways. Each section mutates in the following way.

• Stock level stage: The standard mutation operator [23] is used to randomly mutate the stock

level for each component at each echelon. The stock level is mutated to a random number

within its allowable range (from 1 to some theoretical upper bound) if the mutation is suc-

cessful. If the stock level for a part successfully mutates, the reorder point mutates to ensure

that the reorder point remains below the stock level for all components at all echelons.

• ELOR stage: The IDs associated to each of the FOBs are randomly mutated. Given that each

component must always have a higher ELOR than its parent component, components may

only mutate their ELORs to values above or equal to the ELOR of their parent node, and

below or equal to the minimum of the ELOR of their children. The order in which parts are

considered for mutation is randomized to ensure that the structure of the tree after mutation

is not biased. All PEs maintain an ELOR of 1.

• FOB stage: No assumptions are made regarding which FOBs are associated with which

Intermediate Depots. Therefore, for each successful mutation, the FOB is randomly assigned

an Intermediate Depot.
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2.3.6 Termination of the Algorithm

The algorithm terminates after a number of generations specified by the analyst. The algorithm is

run a specified number of times, called the number of trials or runs. After the last run is complete,

the solutions in the final generations of each run are combined together and the non-dominated front

of the combined solution set is found. This set, while not necessarily the Pareto-optimal front, is

the output of the model.
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3 Applications of the Technique

In this section, the search space is defined in Section 3.1, and results are included for the model for

two examples – the first is a small prototypical example, for which the true optimal values could be

determined via exhaustive search; and the second represents a large, realistic example which would

correspond to the size (and associated repair network) of a system in use by DND. These examples

are provided in Sections 3.2 and 3.3, respectively.

3.1 Defining the Search Space

As mentioned in Section 2.3.4, a maximum upper bound needs to be set at each echelon of the repair

network for each component. The bound for each component was set using the cumulative proba-

bility of the component failing a given number of times. The cumulative probability distribution for

an SRU is given by

P(0 ≤ x ≤ n) = P(0)+ · · ·+P(x)+ · · ·+P(n)

where x is a positive integer representing the number of failures of the part in the scenario, and

P(x) is the probability of such an occurrence. P(x) is determined by the Poisson process with a rate

parameter equal to the part’s AYF. The cumulative probability distribution of an LRU failing is also

a Poisson process. Since the failures of the SRUs are assumed to be independent of one another,

the Poisson probability distributions can be multiplied together to show the rate parameter of the

Poisson process of the LRU is the summation of each of the AYF for each SRU that composes the

LRU [31]. The value of n was then chosen such that the cumulative failure probability would be

equal to or greater than 99.9%. Since less than a 0.1% chance of a part failing more than n times

in a year exists, stocking more than n parts would unnecessarily increase the holding cost without

providing a benefit to the time objective except in extreme cases.

3.2 A Validated Protoypical Example

In order to illustrate the use of the methodology, we provide the results generated for a prototypical

example consisting of a small repair network comprised of one central depot, two intermediate

depots, and four FOBs. The algorithm was implemented in Matlab and run for 500 generations

with a population size of 100, under 10 failure scenarios. The small size of this example enabled

the true optimal values to be easily determined via exhaustive search, which illustrate the validity

of the algorithm.

The initial population was randomly generated, and the mutation rate used was 0.15. There were

twelve types of parts in the example; of which two are PEs, four are LRUs, and six are SRUs. The

hierarchy of the parts is depicted in Figure 3, where their level of indenture is shown (several parts

have sub-components common to other parts).

The costs of shipping parts from one location to another ranged from $0 to $10,000 depending on

the part number and the locations involved. Further, the shipping costs and times between location

pairs were chosen such that the optimal maintenance strategy was obvious with little analysis. Each

SRU was assumed to fail with equal probability at each FOB. Only the SRUs were given non-zero
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Figure 3: Hierarchy of the parts in the example.

probabilities of failure (specified by their average yearly failure values) – meaning that the LRUs

and PEs did not fail directly in the example, and all failures could be traced to the failure of a single

SRU. Finally, the failure of each part was assumed to contribute equally to the downtime of the PE

regardless of the cause of failure of the PE.

It was found that the algorithm converged to a non-dominated front of four solutions, as can be

seen in Figure 4 and Table 1. Moreover, it was found that this set of solutions was precisely the the

Pareto front for the example in question, illustrating that the algorithm converged to the required

front as desired.

40

60

80

100

Downtime (days)

0

20

760 780 800 820 840 860

Cost ($, Thousands)

Figure 4: The non-dominated front found in the example, consisting of four solutions.

Table 1: Details on the non-dominated front found in the example, consisting of four solutions.

Cost ($) Downtime (days)

778,700 78.2

789,419 7.3

791,697 1.4

851,751 0

Note in particular that a methodology solving the problem at the minimum cost would have found

only the first solution (with a cost of $778,700, and an associated system downtime of 78.2 days);
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whereas another single-objective mathematical programming methodology requiring a constraint

on the downtime (say, downtime < 10 days), such as Ilgin and Tunali’s methodology [13], would

find only the second solution (with a cost of $789,419, and an associated system downtime of 7.3

days). The advantage of the methodology presented here is that it illustrates to the decision-maker

many of the feasible solutions to the problem along the non-dominated front, granting them addi-

tional flexibility in their decision making process. For example, they would find that an increase

of 0.3% in cost from the second solution (moving from $789,419 to $791,697) would yield a so-

lution decreasing the downtime incurred by 80.8% (going from 7.3 days to 1.4 days of downtime

incurred).

3.3 A Large, Realistic Example

With only 10 parts, an exhaustive search provided a reasonable method for finding the optimum

solution in the prototypical example. However, for realistic examples which would interest DND,

an exhaustive search is not feasible due to the size of the search space.

In this example, the repair network of the system consisted of one central depot, two intermediate

depots and four FOBs. The part network had one PE, thirty LRUs and thirty SRUs as shown in

Figure 5. Note that the part with ID 603 is the PE, and parts with ID 1 to 60 are the LRUs and

SRUs. Those parts with no children (such as 31, 32, and 5) are SRUs, and the intermediate nodes

(such as 1, 2, and 3) are LRUs.

Figure 5: Part hierarchy of the realistic example.

3.3.1 The Search Space

Given the possible repair and maintenance structure, the size of the search space was examined.

The number of reorder combinations that exist for each stock threshold of each part is equal to the

stock threshold for that part. Furthermore, the number of stock threshold combinations for each
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part at each echelon is equal to the theoretical upper bound set using the Poisson distribution. Con-

sequently, the number of possible solutions for each part at each echelon is equal to the theoretical

upper bound multiplied by the summation of 1 to the theoretical upper bound. The number of com-

binations between all parts at each echelon was then calculated by multiplying the resultant values

together. Afterwards, the numbers of combinations at each echelon were multiplied together since

the values are independent. The total number of combinations given maximum stocking values and

reorder points of the parts was approximated to be 10311 based off of the AYF of the parts.

Each LRU can also be repaired at any of the three echelons, and the SRUs used in the LRU can

only be repaired at the echelons equal to or greater to the parent LRU which means six possible

combinations exist for the ELOR for any given SRU and parent LRU. The approximated value was

then raised to the power of thirty since the number of LRUs and SRUs are each equal to thirty.

The operating bases can be supplied from any of the eight facilities with each of the operating

bases being able to differ in the supply location. Hence, the number of combinations from possible

supply locations was approximated to be the number of combinations possible from selecting four

facilities as shipping locations from the eight total facilities. Once all the aforementioned values

were calculated, the values were multiplied together to obtain the approximated search space size

of 10338 which is too large to be searched exhaustively in a reasonable timeframe.

3.3.2 Inputs for the GA

To search the space, the genetic algorithm was run for 20 different initial populations, each iterated

through 500 generations with an initial population size of 100, and for 100 failure scenarios. The

mutation rate of the genetic algorithm was set to 0.15.

The cost of shipping parts from one location to another varied from $38 to $102 and was dependent

upon both the part and the shipping locations. The time of shipping a part from one location to an-

other varied from 8 days to over 21 days and was again dependent on both the part and the shipping

locations. SRUs and LRUs which were not composed of SRUs were given non-zero probabilities

of failures. Damaged parts could also be reshipped to a higher echelon than the repair echelon if

the failure was too severe to be repaired at the part’s designated repair echelon. The failure of each

part contributed equally to the downtime of the PE.

3.3.3 Combining the Fronts

The solutions from the different initial population sets were combined into a single aggregate data

set and the non-dominated front of this data set was compared to the non-dominated front of each

individual data set through a hypervolume measure [32]. A reference point for the hypervolume

was chosen to be twice the maxima of the time and fitness objective values (32 days, 3.35 million

dollars) of the non-dominated fronts examined.

The relative differences between the hypervolume measures of each individual run and the the ag-

gregate front are listed in Table 2. The extrema of the final generation in each run specified in the

table, represented by their maximum and minimum values along the objectives (measured in $ for

the Cost objective, and days for the Downtime objective). The relative differences in the hypervol-
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ume between the aggregate Non-Dominated Front (NDF) and the individual NDFs in each run are

also provided in the table, and expressed as percentages.

The median value was found to be 2.63%; the minimum, 0.27%; and all but two outlying fronts

differing by no more than 8%. The two outlying fronts with large percent differences – 57.9% and

71.5%, respectively, and highlighted in Table 2 – were due to their maximal downtime objective

values (12.3 and 16.0 days, respectively), compared to the maximal downtime objective value of

1.34 days in the combined front. The large downtime objective value in each of these two cases

could be mainly attributed to one part. For the solution with the time objective value of 12.3 days,

the LRU with ID 26 contributed to 11.4 out of the 12.3 days, and for the solution with an objective

value of 16.0 days the LRU with ID 12 contributed to 15.5 out of 16.0 days. Both of the SRUs which

compose these LRUs had annual yearly failure rates of 1.98 failures per year, the highest failure rate

out of any of the SRUs. Hence, the maintenance strategy can be sensitive to parts with high annual

failure rates. A decision-maker’s role becomes of practical importance when outlying solutions

exist because the solutions can be easily disregarded during the decision process if undesirable.

3.3.4 The Non-Dominated Solutions

The combined front consisted of 60 unique chromosomes which mapped to 10 unique objective

values. Each objective function reached a maxima when the other objective reached a minima and

vice versa. The supporting operating base, intermediate depot, and central depot repair network was

the same for both the optimal cost and optimal time solutions.

Both extreme solutions also had fairly evenly distributed echelon levels of repair. The minimal-

time solution had 19 parts repaired at the FOBs, 16 at the IDs, and 25 at the CD; whereas the

minimal cost solution had 21 repaired at the operating bases, 19 at the intermediate depots, and 20

at the central depot. These results show that some parts being repaired at the central depot may be

providing a benefit to the time objective but increasing the cost objective. Moreover, the optimal

cost solution also reduced overall cost by stocking more parts across the echelons than in the optimal

time solution (specifically, a total maximum of 309 compared to 301 parts).

Some of the stocked parts affected the objective values more than others. Parts such as the LRU

with ID 38 differed in every stocking level between solutions whereas the SRU with ID 11 had the

same stocking levels for each solution. The differences in the optimal objective functions along the

non-dominated front emphasize how the repair network and maintenance strategy can be adjusted

based on the goals of the decision maker.

The non-dominated front in the combined data set is shown in Figure 6, and the corresponding

objective values are shown in Table 3. The decision making process could dictate the use of the

global maxima and minima if one of time or cost takes much higher precedence. However, in actual

situations, a trade-off between cost and downtime may be more beneficial. For example, a deci-

sion maker could choose to reduce the downtime objective by 80% (from 1.29 to 0.25 days) while

only increasing the cost objective by 0.2% (from 1.440 to 1.442 million dollars). The large reduc-

tion in downtime was found to be due to the maintenance strategy for one particular LRU, which

contributed 1.09 days to the solution. By doubling the stock of this LRU at the first echelon from

one to two, the cost was slightly increased while achieving a large reduction in the PE downtime.
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Table 2: Details on the NDF found in the 20 runs for the example – including the extrema of

the NDF in each run, and their relative hypervolume differences with the aggregate NDF. The two

outlying fronts are also identified.

Extrema of the final generation

Run min(Cost) max(Downtime) max(Cost) min(Downtime)

Hypervolume

Difference (%)

15 1,540,700 0.29 1,627,000 0.00 0.27

20 1,555,000 0.54 1,628,400 0.00 0.35

1 1,583,500 0.11 1,627,100 0.00 0.62

10 1,520,000 0.47 1,614,700 0.00 1.15

5 1,585,100 0.27 1,699,000 0.00 1.77

16 1,471,800 1.13 1,603,800 0.00 1.82

12 1,510,100 0.45 1,734,900 0.00 1.82

11 1,547,100 0.02 1,598,300 0.00 2.63

9 1,535,500 0.39 1,627,200 0.00 2.01

14 1,433,700 1.34 1,540,200 0.00 2.27

4 1,518,900 0.30 1,547,400 0.00 3.77

13 1,516,900 0.08 1,636,000 0.00 4.27

3 1,489,900 0.06 1,766,000 0.00 4.99

6 1,477,900 0.37 1,532,700 0.00 5.45

17 1,500,200 0.06 1,597,400 0.00 5.47

2 1,506,700 1.76 1,589,300 0.00 6.22

7 1,467,100 0.09 1,541,400 0.00 6.50

8 1,514,700 2.20 1,569,700 0.00 7.38

19 1,503,100 12.33 1,622,600 0.00 57.86∗
18 1,530,800 15.98 1,627,400 0.00 71.45∗

Aggregate 1,433,732 1.34 1,523,721 0.00 ∗: outlying front

18 DRDC CORA TM 2013–159



This reduction shows that the maintenance strategy can be adjusted to accommodate parts which

contribute significantly to the objectives.

Thus, these non-dominated solutions can be used for a trade-off analysis in which the decision

maker would be able to decide between solutions depending on political, budgetary, and other

motivations. This result indicates that a multi-objective GA may be a viable method of addressing

the LORA-Spares problem.

Figure 6: The non-dominated solutions in the example found after combining the solutions found

in the various runs of the GA.

Table 3: Details on the non-dominated front found in the large example, consisting of ten solutions.

Cost ($) Downtime (days)

1,433,732 1.34

1,439,842 1.29

1,442,452 0.25

1,448,562 0.20

1,457,400 0.14

1,463,509 0.09

1,476,284 0.04

1,505,119 0.03

1,506,475 0.01

1,523,721 0.00
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4 Conclusions and Recommendations

The need to address LORA and the sparing problem simultaneously is a problem of significant

interest to DND. In this technical memorandum, we extended the state of the art in the study of

the joint LORA-Spares problem by proposing to approach this problem through an application of a

multi-objective GA, where both cost and availability are objectives to be optimized. Two examples

were provided in which non-dominated solutions were identified that can be used for a trade-off

analysis. In the realistic example, it was determined that a small increase in stock (from one to two)

of one of the LRUs would result in considerably lower system downtime (from 1.29 to 0.25 days)

at a relatively small cost (0.2% difference).

From a technical point of view, a key aspect of generating solutions in a reasonable amount of time

was the application of ceilings on the maximum required stock for each of the parts in order to

significantly limit the search space (which is still quite large).

4.1 Recommendations

Based on the results in this study, it is recommended that any part stocking strategy for SRUs and

LRUs of DND PEs be examined through multiple lenses (and not purely on cost). The results

in this study indicate that trade-offs can be found and provided to decision-makers. The ability

to choose between several equally good (from a mathematical point of view) solutions allows the

decision-maker to decide which objectives are more important in the context of available solutions.

4.2 Future Work

Future work in this field could include:

• Testing the algorithm on larger, more complex problems to more closely approximate the

decision space at DND;

• Testing the solutions in the non-dominated front on other scenarios generated from the same

distribution in order to verify the robustness of the solutions to similar new scenarios; and

• Either incorporating vectorization and parallelization techniques in the Matlab code, or im-

plementing the algorithm in a compiled programming language (e.g., C or C++) to decrease

the computation time.
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Annex A: Multi-Objective Optimization

In mathematics, the concept of optimization refers to choosing the best element from some set of

available alternatives. In the simplest case, this means solving problems in which one seeks to

minimize or maximize a function by altering the values of a set of variables from within an allowed

range. Many real world problems, however, have usually two or more conflicting objectives which

cannot be adequately analyzed using single-objective optimization algorithms. These problems are

referred to as multi-objective problems.

Multi-objective optimization is the process of simultaneously optimizing two or more conflicting

objectives subject to certain constraints. Multi-objective optimization problems can be found in a

variety of fields. These include product and process design; finance; economics; vehicle design; or

more generally, wherever optimal decisions need to be taken in the presence of trade-offs between

two or more conflicting objectives [24, 25, 33].

In mathematical terms, a multi-objective problem can be written as follows:

min
x

[
f1(x), f2(x), . . . , fn(x)

]
s.t.

g j(x) ≤ 0, 1 ≤ j ≤ m
xl ≤ x ≤ xu

(A.1)

The functions { fi | 1 ≤ i ≤ n } are called the objectives; the functions {g j | 1 ≤ j ≤ m } are called

the constraints; and xl and xu are lower and upper bounds on the value of x, respectively. Note

that all objectives in equation (A.1) are assumed to be of the minimization type (as opposed to

the maximization type). A maximization type objective can be converted to a minimization by

multiplying the objective by −1.

In general, the objectives in such a problem are conflicting, preventing simultaneous optimization of

each objective. In other words, generally there are no single solutions that simultaneously optimize

each objective. As such, one generally seeks to find a set of solutions that cannot be improved with

respect to any objective without worsening at least one other objective. The concept of dominance
is used to determine this set of solutions.

Given feasible solutions x1 and x2 for a multi-objective problem6, x1 is said to dominate x2, written

x1 � x2, if and only if x1 is at least as good at minimizing each objective as x2, i.e., fi(x1) ≤ fi(x2)

for all i, and there is at least one objective at which it does so better (there exists an i∗ such that

fi∗(x1) < fi∗(x2)). If x1 does not dominate x2 and if x2 does not dominate x1, we say that the

solutions are incomparable or non-dominated.

A solution is said to be Pareto-optimal if it is not dominated by any other solution in the solution

space.7 These solutions are precisely those which cannot be improved with respect to any objective

without worsening at least one other objective. The set of all feasible non-dominated solutions is

referred to as the Pareto-optimal set, and for a given Pareto-optimal set, the corresponding objective

function values in the objective space are called the Pareto front [24, 25].

6A solution is said to be feasible if it does not violate any of the constraints of the problem.
7The term Pareto in Pareto-optimal is named after Vilfredo Pareto (1848–1923), an Italian economist who used the

concept in his studies of economic efficiency and income distribution.
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Annex B: Genetic Algorithms

There are two classical approaches to multiple-objective optimization. One is to combine the indi-

vidual objective functions into a single function. Another involves moving all but one objective to

the constraint set.

In the first method, the analyst is required to provide a series of weights that represent the decision-

maker’s preferences. This may prove to be significantly difficult, as it requires all objectives be

measured on the same scale. Moreover, small changes in the weights can often lead to quite differ-

ent solutions. In the second method, a bound must be established for each of the former objectives

which have been moved to the constraint set, which can be rather arbitrary. In both cases, these

methods return a single solution rather than a set of non-dominated solutions. Hence, classical

approaches to multiple-objective optimization suffer from a major failing: a lack of a global per-

spective.

More recently, a new class of search and optimization algorithms which do not suffer from this fail-

ing have been garnering significant attention. These methods, which mimic the biological process

of evolution to solve search and optimization problems, were first developed by John Holland in

1975 and are known as evolutionary algorithms techniques [34].

The most popular of these techniques are known as genetic algorithms (GAs) [24, 25, 26, 27, 28],

which are algorithms inspired by Darwin’s survival of the fittest principle [35]. Put simply, this

principle states that the life expectancy of an individual is dependent on the fitness of the individual.

This causes genetically strong individuals the opportunity to produce more offspring than their

genetically weaker brethren. Moreover, an individual’s offspring tends to inherit some of their

traits.

Random changes may occur in genes during reproduction that may cause speciation events. If these

changes prove beneficial to the offspring, they may be retained in future generations. Conversely,

detrimental changes are eliminated by natural selection. In the long run, the combination of genes

in a species causing it to be genetically strong become dominant in their population.

In terminology of GAs, a solution is called an individual or a chromosome. Chromosomes are made

of discrete units called genes. Each gene controls one or more features of the chromosome. The map

between the solution space and the chromosomes is called an encoding. The set of chromosomes

under examination is referred to as a population.

In most GAs, the population is initialized with a random set of chromosomes. A function known as

the fitness function assigns to each solution a fitness score, which is directly related to the objective

function(s) of the search and optimization problem.

Two operators are used to generate new solutions from existing ones: crossover and mutation. The

crossover operator combines two chromosomes (referred to as the parents) to form new chromo-

somes (referred to as the offspring, or children). The parents are selected among existing chromo-

somes in the population, with a preference towards choosing those with higher fitness. This ensures

that offspring have a stronger chance of inheriting the genes which encourage fitness. The muta-
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tion operator introduces random changes into chromosomes by altering the values of some of their

genes. Very few chromosomes are affected when the mutation operator is applied to the population,

and very few of the genes of the affected individuals are altered.

These two operators play critical and distinct roles in GAs. The crossover operator encourages

population convergence towards fit chromosomes, and the mutation operator introduces genetic

diversity into the population, avoiding the pitfall of convergence to local optima.

Finally, the chromosomes are selected for survival into the next stage of the population (referred to

as a generation). In most GAs, the fitness of an individual determines the probability of its survival

for the next generation.

It is worthwhile noting that it is difficult to ascertain whether a GA has converged to the Pareto-

optimal set of solutions after the algorithm has run for several generations [24, 27]. For these

reasons, one often speaks of the final non-dominated front found via the algorithm after a given

number of generations in place of the Pareto-optimal front. In order to assess the convergence of

the non-dominated front to the Pareto-optimal front, the concept of hypervolume is often used [32].

Hypervolume is a measure of the size of the portion of the objective space that is dominated by the

non-dominated front of solutions. Such a calculation produces a single scalar figure which allows

for simple comparisons between the non-dominated fronts produced by genetic algorithms. The

hypervolume of each front is calculated with respect to a reference point. In Figure B.1. is shown a

visual representation for the hypervolume of a front which consists of two objectives.

One may also note that, for the vast majority of problems, convergence of GAs is not a signifi-

cant issue, especially in algorithms in which the fittest solutions are retained between subsequent

generations [36].

B.1 A List of Notable Multi-Objective GAs

There are numerous well-known multi-objective GAs used in academia and in industry. Generally,

these algorithms differ in their fitness assignment procedures; retention of the fittest solutions from

one iteration of the algorithm to the next (a property known as elitism in GA parlance); and their

approaches to ensure diversification in the solutions.

The first multi-objective GA, called vector evaluated GA (or VEGA), was proposed by Schaffer in

1985 [37]. Since that time, several other multi-objective GAs have seen substantial use, including

the following:

• the Multi-objective Genetic Algorithm (MOGA) [38];

• the Random Weighted Genetic Algorithm (RWGA) [39];

• the Nondominated Sorting Genetic Algorithm (NSGA) [22];

• the Strength Pareto Evolutionary Algorithm (SPEA) [40];

• the improved SPEA (SPEA2) [41];
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Figure B.1: The hypervolume of non-dominated front for a two objective optimization. In this

example, the hypervolume is computed as the area between the reference point (marked in red) and

the non-dominated front.

• the Pareto-Archived Evolution Strategy (PAES) [42];

• the Pareto Envelope-based Selection Algorithm (PESA) [43]; and

• the Fast Nondominated Sorting Genetic Algorithm (NSGA-II) [23].

Several survey papers [44, 45, 46] have been published that provide additional detail on these multi-

objective GAs.
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Annex C: The Steps in NSGA-II

A brief description of NSGA-II’s mechanics as it relates to the current problem is provided in this

annex.

C.1 The Initial Population

The first generation consists of a randomly generated set of solutions (not necessarily feasible),

which are used to seed the search space. This initial population has a very large impact on the

resulting solution. Some initial populations favor certain areas of the Pareto Front. As a result,

the genetic algorithm is typically run several times with different initial populations in the hopes of

uncovering the entire front.

C.2 The Tournament and Mating Pool

To construct a mating pool, solutions are randomly selected from the population in groups of two,

and the fitter solution of the two is added to the mating pool. This process (commonly known as a

tournament) is repeated until the mating pool is as large as the population size. Note that a solution

may be added multiple times to the mating pool. The fitness function used to evaluate solutions

emphasizes both high values of the objective functions, as well as diversity of the solutions in the

population.

C.3 Values of the Objective Functions and Front Numbers

It is obvious that a solution x1 that dominates another solution x2 would be preferred over x2.

However, in the more general case where the solutions are incomparable it is not obvious how one

would compare the two.

A solution to this problem is to group our solutions into non-dominated fronts. This means partition-

ing the solutions into groupings such that every pair of solutions in the same front are incomparable,

and every solution in one grouping will dominate, or be dominated by, all solutions in another front.

The fronts are then numbered such that any member in front j will be dominated by at least one

member in front j−1.

To create these fronts, all non-dominated solutions from the population are placed in front 1. Those

which are non-dominated among the remaining solutions are placed in front 2. The process is

iterated until the entire population has been placed into subsequent fronts.

To illustrate this procedure, consider the following example with two objectives, in which the goal

is to minimize both objectives. Suppose we have 5 solutions in our population having the following

objective values: (2,1), (2,6), (3,2), (4,5), and (1,2). The solutions which dominate all other

solutions and which are not dominated by any others form the first front. Hence (1,2) and (2,1)

form Front 1. Of the remaining solutions, (3,2) and (2,6) are non-dominated, and are thus form

Front 2. The only remaining solution is (4,5), and so it forms Front 3. This process is presented

graphically in Figure C.1.
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Figure C.1: Partitioning the population in the example into non-dominated fronts.

C.4 Diversity, Elimination of Redundant Solutions, and Crowding
Distance

To prevent our population from clustering onto one solution on the Pareto front, redundant solutions

are removed and the idea of crowding distance are used. The removal of solutions which have the

same chromosomes ensures the uniqueness of the chromosome of each individual in the population,

thereby improving the diversity and convergence of the Pareto front [47].8

The goal of using the idea of crowding distance is to have many solutions on the Pareto front with

large distance to adjacent solutions as opposed to multiple solutions occupying the same portion of

the Pareto front. Choosing the solutions with the largest distance from one another along the front

ensures that the decision-makers are given as diverse a set of optimal solutions as possible.

To calculate this metric, all solutions in the population are sorted according to each objective fi. The

crowding distance for each solution is defined as the sum of all the distances between the solution’s

closest neighboring points across all objective functions. The extreme points on each objective are

given a crowding distance of infinity. Written mathematically, it is calculated as

CD(x) =

n∑

i=1

fi(x+i )− fi(x−i )

maxy∈P fi(y)−miny∈P fi(y)

where { fi | 1 ≤ i ≤ n } are the objective functions, P is the set of solutions (i.e., the population), and

x+i and x−i are the closest neighbours of x according to objective fi.

8Note that this action does not contradict the fact that a solution may be added to the mating pool multiple times, as

the removal of solutions to increase diversity (using the crowding distance) is performed when the fittest solutions are

selected, which occurs after the mating and mutations step (which modifies the mating pool).
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Continuing the example from the previous section, suppose we wish to calculate the crowding

distance of point (3,2). Along the first objective, its neighbors are (2,1) and (4,5). The minimum

value for the first objective is 1 and the maximum is 4. Hence, the point’s crowding distance is
4−2
4−1
= 2

3
along the first objective. A similar calculation along the second objective finds that the

crowding distance along this objective is 2−1
6−1
= 1

5
(as its nearest neighbours along this objective

are (2,1) and (1,2), and the minimum and maximum values for the second objective are 1 and 4

respectively). Thus, the total crowding distance is 2
3
+ 1

5
= 13

15
for the point (3,2). An illustration of

this calculation is provided in Figure C.2.

(a) Calculation of the point (3,2)’s crowding distance in

the direction of the first objective. Note that the point’s

nearest neighbours in this objective are (2,1) and (4,5).

(b) Calculation of the point (3,2)’s crowding distance in

the direction of the second objective. Note that the point’s

nearest neighbours in this objective are (2,1) and (1,2).

Figure C.2: An example of the calculation of the crowding distance for point (3,2). The calculation

along the first objective is shown in (a), while its calculation along the second objective is shown in

(b).

C.5 Fitness Hierarchy

In order to to compare the relative fitness of solutions, the front numbers of the solutions are exam-

ined. If one has a superior (i.e., lower) front number, that solution is chosen as the fitter solution.

If they have the same front number, the crowding distance of the solutions is used to determine the

relative fitness of the solutions. The solution with the higher crowding distance is chosen as the fit-

ter solution. In the unlikely event that they share the same crowding distance as well, the solutions

are deemed to be equally fit.

C.6 Mating and Mutation

Following the tournament using the fitness relation and the creation of the mating pool, the solutions

undergo the mating and mutation processes, referred to as reproduction. Solutions in the mating

pool are paired up (randomly) and either reproduce or mutate.9

9The choice of the fraction of solutions which are formed through mating or mutation is rather arbitrary, and is chosen

by the analyst. Generally, in the literature it has been found that the choice of mutation rate that minimizes convergence

time (in terms of the number of generations required) is highly problem-specific.
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These two processes provide the algorithm with ways to explore new areas of the search space.

Mating produces children that are combinations of their parents, while mutations produce children

that are slightly different than one of their parents. The general idea is that mating will try to make

stronger members of the population by combining traits from strong parents. Mutations will help

us find new solutions by modifying existing traits in the hopes of bringing new and stronger traits

to the table.

C.7 Selection of the Next Generation

The final step in the genetic algorithm process is selecting the fittest solutions.

After mating and mutation, the population size doubles. To remedy this, the top half of the popula-

tion with respect to their fitness level is retained, and the lesser half is killed. This method preserves

only the strongest individuals and ensures that good solutions are never replaced with worse ones.

The entire process is iterated until the algorithm converges on a group of solutions, according to

pre-defined convergence criteria. These criteria can include having the mean or standard deviation

of the population’s objective values not change between successive generations, no improvement

in the size of the non-dominated front, computing for a set number of generations, or several other

reasons [26].
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List of Acronyms & Abbreviations

ANR analyse du niveau de réparation

AYF Average Yearly Failure

CANOSCOM Canadian Operational Support Command

CD Central Depot

CDS Chief of the Defence Staff

CF Canadian Forces

CFAWC Canadian Forces Air Warfare Centre

CJOC Canadian Joint Operations Command

CORA Centre for Operational Research and Analysis

DND Department of National Defence

DRDC Defence Research and Development Canada

ELOR Echelon Level of Repair

EP équipement principal

FC Forces canadiennes

FOB Forward Operating Base

GA Genetic Algorithm

ID Intermediate Depot

LORA Level of Repair Analysis

LRU Line Replaceable Unit

MDN ministère de la Défense nationale

METRIC Multi-Echelon Technique for Recoverable Item Control

MND Minister of National Defence

MOGA Multi-objective Genetic Algorithm

NDHQ National Defence Headquarters

NDF Non-Dominated Front

NSGA Non-dominated Sorting Genetic Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm II

OS Operational Support

PAES Pareto-Archived Evolution Strategy

PE Prime Equipment
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PESA Pareto Envelope-based Selection Algorithm

RWGA Random Weighted Genetic Algorithm

SPEA Strength Pareto Evolutionary Algorithm

SRU Shop Replaceable Unit

TIF Technology Investment Fund

VEGA Vector Evaluated Genetic Algorithm
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