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Abstract

To satisfy the need for high fidelity representations of propellers for use in Reynolds-
averaged Navier-Stokes (RANS) flow solvers and other propeller applications, a li-
brary of C++ classes has been developed. It provides classes representing the surfaces
of the propeller blades, hubs and ducts in fully differentiable form. The propeller
blades can be defined using the traditional method of specifying the blade section
shape, chord length, pitch, skew and rake at a series of radial sections. More general
blade shapes are also possible provided that they conform to fairly loose require-
ments on the blade parameterization. Simple cylindrical and cigar-shaped hubs can
be defined as well as more general axisymmetric shapes defined from splined offsets.
Similarly, propeller ducts can be defined from commonly used duct cross-sections or
more general shapes defined from offsets.

Résumé

On a créé une bibliothèque de classes C++ afin de satisfaire le besoin de simulations
à haute fidélité des hélices, aux fins d’utilisation dans des solutionneurs d’écoulement
d’analyse d’équations de Navier-Stokes à moyenne de Reynolds (RANS) et dans
d’autres applications relatives aux hélices. Cette bibliothèque comprend des classes
qui représentent les surfaces des pales, des moyeux et des gaines des hélices sous forme
entièrement différentiable. Les pales des hélices peuvent être définies à l’aide de la
méthode classique de spécification de la forme, de la longueur de corde, du pas, de
l’asymétrie et de l’inclinaison des pales à une série de sections radiales. Des pales de
forme plus générale sont également possibles, pourvu qu’elles soient conformes aux
exigences peu strictes concernant le paramétrage des pales. Des moyeux de forme cy-
lindrique simple ou en forme de cigare peuvent être définis, ainsi que des formes plus
asymétriques définies à partir de déviations cannelées. De même, les gaines d’hélice
peuvent être définies à partir de sections transversales de gaine couramment utilisées
ou des formes plus générales définies à partir de déviations.
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Executive summary

C++ classes for representing propeller geometry
David Hally; DRDC Atlantic TM 2013-177; Defence Research and Development
Canada – Atlantic; October 2013.

Background: The design of propellers affects ship performance in many ways in-
cluding maximum speed, fuel consumption, wear on shafts and machinery, on-board
vibrations and radiated noise. The evaluation of propeller designs will be an im-
portant part of the projects to acquire the Arctic/Offshore Patrol Ship (AOPS), the
Joint Support Ship (JSS) and other vessels for the Royal Canadian Navy.

Principal results: A library of C++ classes has been written to allow the repre-
sentation of propeller geometry in applications for analyzing propeller performance.
The classes allow an accurate description of propellers defined in a variety of ways
including the traditional method of a series of transformed blade sections.

Significance of results: The classes are already in use in propeller applications
developed by DRDC and international partners. These applications are being applied
by DRDC to support the design of the propellers for the new ships in the Royal
Canadian Navy.

Future work: If the need arises, the library of classes may be extended to include
features of the propeller geometry that are currently not modelled: e.g. fillets, blade
overhangs and the palms of controllable pitch propellers.

DRDC Atlantic TM 2013-177 iii



Sommaire

C++ classes for representing propeller geometry
David Hally ; DRDC Atlantic TM 2013-177 ; Recherche et développement pour la
défense Canada – Atlantique ; octobre 2013.

Contexte : Le modèle des hélices a une incidence sur le rendement du navire en
raison de différents aspects, y compris la vitesse maximale, la consommation de car-
burant, l’usure des arbres et des machines, les vibrations à l’intérieur, ainsi que le
bruit rayonné. L’évaluation des modèles d’hélice fera partie intégrante de l’acqui-
sition d’un navire de patrouille extracôtier de l’Arctique (NPEA), d’un navire de
soutien interarmées (NSI) et d’autres navires pour la Marine royale canadienne.

Principaux résultats : Une bibliothèque de classes C++ a été créée, afin de per-
mettre la présentation de la géométrie des hélices dans des applications d’analyse du
rendement des hélices. Les diverses classes permettent d’obtenir une définition précise
des hélices de diverses façons, y compris grâce à la méthode classique d’une série de
sections de pales transformées.

Importance des résultats : Les classes sont déjà utilisées dans des applications
relatives aux hélices mises au point par RDDC et des partenaires internationaux. Ces
applications sont utilisées par RDDC afin d’appuyer la conception des hélices des
nouveaux navires de la Marine royale canadienne.

Perspectives : Au besoin, on peut agrandir la bibliothèque de classes afin d’y inclure
des caractéristiques de la géométrie des hélices qui ne sont pas modélisées actuelle-
ment : p. ex. les congés de raccordement, le surplomb des pales et les palmes des
hélices à pas réglable.
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1 Introduction

For many years DRDC has developed and used programs for the analysis of flows past
propellers beginning with lifting line models, then lifting surface models, then, most
recently using Reynolds-averaged Navier-Stokes (RANS) solvers. Each succeeding
refinement in the method of analysis has required greater fidelity in the representation
of the geometry of the propeller. RANS solvers need the geometry to be defined to
the same level of accuracy used for its manufacture.

To satisfy the need for high fidelity representations of propellers to be used in RANS
flow solvers and other propeller codes, a library of C++ classes has been developed.
It uses the CurveLib library [1] to represent the surfaces of the propeller blades, the
hub and optional ducts in fully differentiable form. The propeller blades can be
defined using the traditional method of specifying the blade section shape, chord
length, pitch, skew and rake at a series of radial sections. More general blade shapes
are also possible provided that they conform to fairly loose requirements on the blade
parameterization.

For the present, fillets, blade overhangs and palms of controllable pitch propellers are
not modelled. This will cause some loss of fidelity in predicting flows near the blade
roots. If, for example, it is important to predict blade root cavitation, it may be
necessary to modify the classes to add these features.

The propeller surfaces can be used in any C++ application for which a representation
of the propeller is needed. For example, the classes are used to represent the propeller
geometry in the program Provise [2,3] developed by Cooperative Research Ships as a
front end to its propeller analysis code PROCAL [4,5].

Another application developed at DRDC, smooth-prop [6,7], uses the propeller classes
to write a propeller geometry to a file in IGES format which can then be used any of
the major commercial RANS solvers to generate suitable grids for flow calculations.
For cases in which the propeller blades are poorly defined near the tip, a common
occurrence when they are defined by the traditional method, prop-smooth can also
modify the geometry near the blade tip to ensure that it is of sufficient quality for
the RANS solver.

DRDC Atlantic TM 2013-177 1



2 Fundamentals
2.1 Auxiliary classes

The propeller geometry classes make use of several auxiliary classes and types that
are defined in other libraries.

Float

A floating point number. Defined in the header file BasicTypes.h to be double.

Angle<Float>

An angle whose value is stored as a Float. The value of the angle can be
set or obtained using degrees or radians. The class also allows a full range
of arithmetic and trigonometric functions. It is described in detail in Ref. 1,
Annex E.

Str
A character string. Str is an alias for std::string.

VecMtx::VecN<N,Float>

A vector of length N each of whose components is represented as a Float. The
class allows a full range of arithmetic functions. It is described in detail in
Ref. 1, Annex B.

2.2 Namespaces

The propeller classes and functions are included in namespace PGeom. In the sections
that follow, if a namespace is not explicitly specified, then the class or function is in
PGeom.

The propeller classes use several libraries of classes which also define namespaces: all
classes in the CurveLib library (see Sec. 3.1) are in namespace CurveLib; all classes
in the Airfoil library (see Sec. 3.2) are in namespace Afoil; all classes in the OFFSRF
library (see Sec. 3.3) are in namespace Offsrf.

The vector class VecN<N,Float>, described in the previous section, is in names-
pace VecMtx. Because aliases are provided for VecN<N,Float> (e.g. XYZPoint and
CylPoint defined in Sec. 4), it is rarely necessary to use namespace VecMtx explicitly.

2.3 Exceptions

All exceptions thrown by the propeller geometry classes and functions are derived
from the base class Error; it is not in the namespace PGeom. An Error contains a

2 DRDC Atlantic TM 2013-177



message which can be retrieved, appended to, or prepended to. The prototypes of
the Error member functions are listed in Ref. 1, Annex F.

It is wise, when using the propeller geometry classes, to enclose the body of the code
in a try block which catches an Error. For example:

try {

... // Code which uses propeller geometry classes

}

catch (Error &e) {

// Write the error message

std::cerr << e.get_msg() << ’\n’;

... // Code to handle the error

}

Another important exception is ProgError, a specialization of Error. It is thrown
when an exception occurs that can clearly be recognized as a programming error
rather than a user error. The occurrence of a ProgError is an indication that the
program is faulty. The prototypes of the ProgError member functions are listed in
Ref. 1, Annex F.1.

2.4 Warnings

The propeller geometry classes may also send warning messages. These are considered
less serious than exceptions and will not normally interrupt the flow of execution of
the program. It is up to the programmer to decide what actions to take when a
warning message is received. This is done by defining a warning handler, an instance
of the class WarningHandler:

class WarningHandler

{

public:

WarningHandler() { }

virtual ˜WarningHandler() { }

virtual void handle(const Str &msg);

};

The member function handle is used to do something with the warning message
which it receives in its argument msg. The default version writes the warning to
std::cerr preceded by WARNING!!.

To set a new warning handler, use the function

DRDC Atlantic TM 2013-177 3



WarningHandler& set_warning_handler(WarningHandler &wh);

It returns a reference to the warning handler currently in effect. Alternatively you
can use a WarningSentry, a sentry class which set a new warning handler when it is
constructed, then reverts to the previously defined warning handler when it is deleted.
It has the benefit that it will reset the warning handler even when an exception is
thrown. Use it to set a new warning handler, wh, as follows:

{ // New scope

WarningSentry wsentry(wh); // Sets the warning handler to wh

. . .

} // wsentry destroyed; revert to previous warning handler

For more on sentry classes, see Stroustrup [8].

The class IgnoreWarningHandler is a specialization of WarningHandler which rede-
fines handle to do nothing; the warning is ignored.

2.5 The propeller accuracy

Some aspects of the propeller geometry cannot be calculated exactly; they can only
be determined within a given tolerance: for example, the line of intersection between
a propeller blade and the hub. To ensure that all such geometry is determined with
consistent tolerances, a propeller accuracy is defined and designated by ε. It is a
floating point number normalized using the propeller diameter. If, for example, ε is
set to 10−4, and you request a curve, c(ξ), representing the blade-hub intersection
curve, then a point returned by c(ξ) will lie no more than εD from the true intersection
line.

The propeller accuracy is set or obtained using the following two functions:

void set_prop_accuracy(Float acc);

Float get_prop_accuracy();

The sentry class PropAccSentry has also been defined to make an exception proof
method of altering the propeller accuracy. The accuracy is reset to its previous value
when the sentry is deleted.

The PropAccSentry constructor has a single argument, the accuracy to be set:

PropAccSentry(Float acc);

For example, if you want to evaluate points along the blade-hub intersection to an
accuracy of 10−8D, you could use the following:
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using namespace PGeom;

Propeller p;

Blade blade = p.get_blade();

{

PropAccSentry sentry(1.0e-08);

SurfaceCurve intersection = blade(blade_param_curve_at_hub());

int npts = 11;

for (int i = 0; i < npts; ++i) {

Float xi = Float(i)/Float(npts-1);

std::cout << xi << ’ ’ << intersection(xi) << ’\n’;

}

} // Propeller accuracy returned to original value here

// as sentry is destroyed.

The function blade_param_curve_at_hub is described in Sec. 9.1.6. Notice that
the outer level of curly brackets delimits the scope of sentry so that the propeller
accuracy is returned to its original value once the loop is finished. This will also be
the case if an exception is thrown during the evaluation of the intersection curve.

DRDC Atlantic TM 2013-177 5



3 Class libraries used by the propeller
classes

The propeller classes make use of three other class libraries which are described
briefly in the following sections. Each has been documented fully in other DRDC
reports [1,9–11].

3.1 The CurveLib library

The propeller geometry classes are based on the CurveLib library of classes for repre-
senting differentiable curves and surfaces [1]. A brief overview is presented here but,
for a proper understanding of the following sections, it is recommended that Refs. 1
and 9 be read first.

The fundamental class of the CurveLib library is Curve<N,V,F>. It is a function ob-
ject (a class that behaves like a function) which represents an N parameter function
which returns an object of type V. Each parameter is of type F which, in the pro-
peller classes, is always Float. Since all CurveLib library functions are in namespace
CurveLib, in this section we will omit the namespace.

The parameter list of a CurveLib function object is a Curve<N,V,F>::ParamType

which is simply an alias for VecMtx::VecN<N,F>. The function is evaluated using the
operator

V Curve<N,V,F>::operator()(ParamType p) const;

For example:

using namespace CurveLib;

Curve<2U,Float,Float> f = Abs<2U,Float>();

Curve<2U,Float,Float>::ParamType p(1.0,2.0);

Float absf = f(p); // absf = sqrt(5.0)

The CurveLib function object Abs<N,F> considers its argument list to be a vector
and returns the magnitude of that vector.

CurveLib function objects are fully differentiable in each of their parameters. The
derivatives of a function can be evaluated using the operator

V Curve<N,V,F>::operator()(ParamType p, DerivType d) const;

where DerivType is an alias for Derivs<N>, a class representing a list of unsigned
integers: see Ref. 1, Sec. 2. For example:

6 DRDC Atlantic TM 2013-177



using namespace CurveLib;

Curve<1U,Float,Float> sin_crv = Sin<Float>();

Sin<Float>::ParamType p(0.0);

Sin<Float>::DerivType d(0);

Float dsin0 = sin_crv(p,d); // dsin0 = cos(0.0) = 1.0

The return type, V, is required to support a full set of arithmetic operators (see
Ref. 1, Annex A.1). The curve classes themselves will also support most arithmetic
functions: see Ref. 1, Sec. 4. Therefore, if f and g are both of type Curve<N,V,F>,
then so is 2*f+3*g.

CurveLib function objects can also be composed. Suppose that f is an instance of
Curve<N,V,F>. If g is an M parameter function which returns a parameter list for
f (i.e. it is of type Curve<M,VecMtx::VecN<N,F>,F>) then f(g) is an M parameter
function which returns a V (i.e. it is of type Curve<M,V,F>). Details are provided in
Ref. 1, Sec. 5.

3.1.1 One-parameter function objects

An important specialization of a Curve<N,V,F> is when N is 1. Then the func-
tion can be evaluated using an F instead of a Curve<1U,V,Float>::ParamType.
Similarly, derivatives can be specified using a single unsigned integer rather than
a Curve<1U,V,Float>::DerivType. For example:

using namespace CurveLib;

Curve<1U,Float,Float> sin_crv = Sin<Float>();

Float sin0 = sin_crv(0.0); // sin0 = sin(0.0) = 0.0

Float dsin0 = sin_crv(0.0,1); // dsin0 = cos(0.0) = 1.0

Float d2sin0 = sin_crv(0.0,2); // d2sin0 = -sin(0.0) = 0.0

3.1.2 Implicitly polymorphic member functions

One aspect of the CurveLib classes that is inherited by the propeller geometry classes
deserves special mention: although most member functions are not explicitly declared
virtual, the often behave as if they are. We call this being implicitly polymorphic.
For example, the class Blade used to represent a propeller blade has the member func-
tion get_pitch_at_radius_curve which returns a CurveLib function object defining
the pitch distribution as a function of non-dimensional radius r. Blade has a fairly
inefficient version of this function described in Secs. 6.1.4 and 6.1.5. On the other
hand, the class SectionBlade, a specialization of Blade, has a much more efficient
version of the function. Consider the following code in which a SectionBlade is first
assigned to a blade, then the pitch curve is obtained and evaluated:
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using namespace PGeom;

SectionBlade sblade;

. . . // Code to define sblade

Blade blade = sblade;

Blade::ScalarCurveType pcrv = blade.get_pitch_at_radius_curve();

Float p = pcrv(0.5);

Which version of the pitch curve is used when pcrv is evaluated? It is the efficient
version obtained from sblade because the function get_pitch_at_radius_curve is
implicitly polymorphic.

3.2 The Airfoil library

Propeller blades are commonly defined by specifying a series of blade sections in
the shape of airfoils. The propeller classes make use of the Airfoil class library to
represent the blade sections. It defines classes for representing airfoils using CurveLib
classes and has been documented in Ref. 10.

The principal class in the Airfoil library is Afoil::Airfoil<F> which represents a
generic airfoil. When used by the propeller classes, the template parameter F rep-
resenting the type of a floating point number will always be Float. The propeller
classes also define the type AirfoilPt to represent a point on an airfoil; it is equiv-
alent to a VecMtx::VecN<2U,Float>. Afoil::Airfoil<Float> is a specialization
of CurveLib::Curve<1U,AirfoilPt,Float>: that is, it is a one-parameter function
object returning a 2-vector representing a point on the airfoil surface. The point is
defined in a two-dimensional Cartesian coordinate system in which the leading edge
is normally (0,0) and the trailing edge (1,0).

The parameter of the airfoil function object, usually denoted ξ, is 0.0 at the trailing
edge on the pressure side of the airfoil, 0.5 at the leading edge, and 1.0 at the trailing
edge on the suction side.

There are several classes derived from Airfoil<Float> which allow the airfoil to be
defined from offsets, from thickness distributions and mean line offset curves, or from
NACA designations [12].

3.3 The OFFSRF library

The propeller classes allow a propeller to be defined by reading a specification from a
file. The OFFSRF library is used to provide a consistent record structure to the files
as well as standard C++ inserters for reading them. It is documented in Ref. 11.
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4 Coordinate systems

Propeller blades are defined relative to a propeller reference line which extends ra-
dially perpendicular to the axis of rotation. The propeller is defined in a Cartesian
coordinate system, (X, Y, Z), having its origin where the propeller reference line meets
the axis of rotation. The Z coordinate increases along the axis of rotation toward the
aft of the ship, the Y coordinate increases outward from the axis of rotation along
the propeller reference line, and the X coordinate is perpendicular to Y and Z such
that the coordinate system is right-handed: see Fig. 1. A point in the (X, Y, Z)
coordinate system is represented by the type XYZPoint which is simply an alias for
VecMtx::VecN<3U,Float>.

A coordinate system scaled using the propeller diameter is also used. It is denoted
(x, y, z):

x = X/D; y = Y/D; z = Z/D (1)

where D is the propeller diameter. A point in the (x, y, z) coordinate system is
represented by the type Point which is simply an alias for VecMtx::VecN<3U,Float>.

A cylindrical coordinate system, (r, θ, zR) is also used; it will often be called the hub
coordinate system as it is most convenient for defining the hub geometry. It defines θ
to be zero along the propeller reference line (y = 0) and increasing counterclockwise
around the propeller axis when looking forward. This direction for θ is in accordance
with the ITTC conventions for measuring propeller angles (e.g. skew angle or rake
angle; see [13]). The coordinates r and zR are non-dimensionalized with respect to
the propeller radius, R; therefore

x = −1

2
r sin θ; y = 1

2
r cos θ; z = 1

2
zR (2)

and
r = 2

√
x2 + y2; θ = − arctan(x/y); zR = 2z. (3)

The inconsistency in non-dimensionalization is unfortunate, but conforms to tradi-
tional methods. For example, the propeller properties pitch, rake, etc. are tradition-
ally non-dimensionalized using the diameter while blade sections are identified using
r: i.e. a radial location non-dimensionalized using the propeller radius.

A point in the (r, θ, zR) coordinate system is represented by the type CylPoint which
is simply an alias for VecMtx::VecN<3U,Float>. The value of θ is given in radians.

4.1 Classes supporting coordinate transformations

The class CartesianToCylCoords converts a Cartesian point, (x, y, z), to cylindri-
cal hub coordinates (r, θ, zR) using Eq. (3). It is a specialization of the base class
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Figure 1: The Cartesian coordinate system.

CurveLib::Curve<3U,CylPoint,Float> and inherits all the properties of a CurveLib
function object (e.g. it is fully differentiable). It has a default constructor and a copy
constructor and defines no member functions other than those inherited from its base
class.

using namespace PGeom;

CartesianToCylCoords xyz_to_rtz;

Point xyz(1.0,2.0,3.0);

CylPoint rtz = xyz_to_rtz(xyz); // rtz = (4.472136,-0.4636476,6.0)

The class CartesianToRadius converts a Cartesian point (x, y, z) to the cylindrical
coordinate r. It is a specialization of CurveLib::Curve<3U,Float,Float> and in-
herits all the properties of a CurveLib function object. It has a default constructor
and a copy constructor and defines no member functions other than those inherited
from its base class.

Using CartesianToRadius is more efficient than using CartesianToCylCoords and
selecting the r coordinate of the result.
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using namespace PGeom;

CartesianToRadius xyz_to_r;

Point xyz(1.0,2.0,3.0);

Float r = xyz_to_r(xyz); // r = 4.472136

The class CylToCartesianCoords converts a point in cylindrical coordinates, (r, θ, zR),
to Cartesian coordinates, (x, y, z), using Eq. (2). It is a specialization of the base class
CurveLib::Curve<3U,Point,Float> and inherits all the properties of a CurveLib
function object. It has a default constructor and a copy constructor and defines no
member functions other than those inherited from its base class.

using namespace PGeom;

CylToCartesianCoords rtz_to_xyz;

CylPoint rtz(1.0,2.0,3.0);

Point xyz = rtz_to_xyz(rtz); // xyz = (-0.4546487,-0.2080734,1.5)

The following function for transforming from propeller coordinates to a hull coordi-
nate system is also defined:

TransformType prop_to_hull_coordinates(const XYZPoint &porigin,

const XYZPoint &paxis);

It returns a transformation that will convert a point in propeller coordinates to a
point in hull coordinates. The parameter porigin is the origin of the propeller
coordinates in the hull coordinate system and paxis is an aft-facing vector in the
hull coordinate system tangent to the propeller axis. TransformType is an alias for
the class IGES::Transformation described in Ref. 14, Sec. 4.

This function assumes that the propeller reference line has no Y component in the
hull coordinate system and that the hull Z coordinate increases upwards. The hull
X coordinate runs either from bow to stern or from stern to bow; the direction is
determined from the sign of the X component of the aft-facing normal. Then if Xh

and Xp are points in the hull and propeller coordinate systems, respectively, then:

Xh = X0 + MXp (4)

where X0 is the origin of the propeller coordinates in the hull coordinate system (the
point where the propeller reference line crosses the propeller axis), n̂ = (nX , nY , nZ)
is an aft-facing unit vector tangent to the propeller axis, and

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−|nX |nY√
n2

X + n2
Z

−sgn(nX)nz√
n2

X + n2
Z

nX

√
n2

X + n2
Z 0 nY

sgn(nX)nY nZ√
n2

X + n2
Z

|nX |√
n2

X + n2
Z

nZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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5 Surfaces

Each propeller is an aggregate of surfaces on each blade and on the hub. Each
propeller surface is a function of two parameters, (ξ, η), which returns a point in
space (an (x, y, z) point). The parameters are represented by the class SurfaceParam

which is simply an alias for VecMtx::VecN<2U,Float>. The returned value is a Point

(see Sec. 4). Each surface is a specialization of the class Curve<2U,Point,Float>

from the CurveLib library: see Ref. 1, Sec. 8. For ease of use this class is given the
alias Surface within the namespace PGeom.

Surfaces can be evaluated using either of the following operators:

Point Surface::operator()(SurfaceParam p) const;

Point Surface::operator()(Float xi, Float eta) const;

For example, in the following code to obtain a point on the leading edge near the tip
of the reference blade,

using namespace PGeom;

Propeller p;

Surface blade = p.get_blade();

SurfaceParam p(0.5,0.95);

Point x1 = blade(p);

Point x2 = blade(0.5,0.95);

the values of x1 and x2 will be the same.

Derivatives of the surface with respect to its parameters can be evaluated using

Point Surface::operator()(SurfaceParam p, DerivType d) const;

Point Surface::operator()(Float xi, Float eta,

unsigned dxi, unsigned deta) const;

where DerivType (an alias for CurveLib::Derivs<2U>) is a 2-vector of unsigned
integers given the number of derivatives to be taken with respect to ξ and η. For
example, you can calculate a normal to the reference blade at (ξ, η) = (0.2, 0.3) as
follows:

using namespace PGeom;

Propeller p;

Surface blade = p.get_blade();

SurfaceParam p(0.2,0.3);

Surface::DerivType dxi(1,0), deta(0,1);

Point norm1 = cross_product(blade(p,dxi),blade(p,deta));

Point norm2 = cross_product(blade(0.2,0.3,1,0),blade(0.2,0.3,0,1));

The values of norm1 and norm2 will be the same.
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However, the following functions provide a simpler method of obtaining outward-
pointing unit normal to a surface:

Point Surface::normal(SurfaceParam p) const;

Point Surface::normal(Float xi, Float eta) const;

Moreover, these functions will sometimes return a well-defined normal even when one
of the surface derivatives vanishes. This is the case, for example, at the end points of
a cigar-shaped hub (see Sec. 7.1.2). Therefore the preceding code is better replaced
by

using namespace PGeom;

Propeller p;

Surface blade = p.get_blade();

SurfaceParam p(0.2,0.3);

Point norm1 = blade.normal(p);

Point norm2 = blade.normal(0.2,0.3);

The ranges of the surfaces parameters are stored in variables of type RangeType, an
alias for CurveLib::ParamRange<2U,Float>. The ParamRange class is described in
Ref. 1, Sec. 10.1.

Like any CurveLib function object, a surface can exist before it is properly defined.
Most member functions will throw an Error if called before the surface is defined.
The member function

bool is_defined() const;

returns true if the surface is defined.

5.1 Surface curves

Curves on a propeller surface are usually defined in the parameter space of the surface:
i.e. they are one-parameter curves which return a SurfaceParam. Surface curves are
represented by the class CurveLib::Curve<1U,SurfaceParam,Float>; for ease of use
this class is given the alias SurfaceCurve.

Because they are one-parameter function objects, surface curves can be evaluated us-
ing a parameter of type Float and derivatives can be specified using a single unsigned
integer: see Sec. 3.1.1.

For example, the intersection of the reference blade and hub can be viewed as a
surface curve lying in either the blade surface or the hub surface. The Propeller

class has member functions to return either representation (see Sec. 9.1.6). We could
compare the values returned by the two representations by sampling them as follows:
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using namespace PGeom;

Propeller p;

Blade blade = p.get_blade();

Hub hub = p.get_hub();

SurfaceCurve blade_crv = p.blade_param_curve_at_hub();

SurfaceCurve hub_crv = p.hub_param_curve_at_blade();

int npts = 11;

for (int i = 0; i < npts; ++i) {

Float xi = Float(i)/Float(npts-1);

SurfaceParam bparam = blade_crv(xi), hparam = hub_crv(xi);

Point bx = blade(bparam), hx = hub(hparam);

Float diff = abs(bx-hx);

std::cout << xi << ’ ’ << diff << ’\n’;

}

A surface curve can be converted to a curve in space (i.e. a curve returning (x, y, z)
points) by composing it with the surface in which it lies. For example, a curve that
returns the points on the hub/blade intersection could be generated using:

using namespace PGeom;

Propeller p;

Blade blade = p.get_blade();

SurfaceCurve blade_crv = p.blade_param_curve_at_hub();

CurveLib::Curve<1U,Point,Float> intersection_crv = blade(blade_curve);

If a surface curve is evaluated before it is properly defined, an Error will be thrown.
To determine if the surface is defined use the member function

bool is_defined() const;

which returns true if the surface curve is well-defined.
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6 Classes representing propeller blades

The blades of a propeller are numbered 0 to N − 1 with blade 0 being known as
the reference blade. Only the reference blade needs to be defined, the others then
being generated by rotated copies. The reference blade is defined with respect to the
propeller reference line in the (x, y, z) coordinate system: see Sec. 4.

There are two principal classes for representing the reference blade: the base class
Blade which has a minimal set of restrictions on the blade surface, and the class
SectionBlade which generates the blade from a series of sections in the traditional
way. They are described in the following sections.

6.1 The base class Blade

The class Blade represents the reference blade of a propeller. It is a specialization
of Surface (see Sec. 5). Since a Surface returns points in the (x, y, z) coordinate
system, a Blade is non-dimensionalized using the propeller diameter. This means
that its radius at the tip will normally be 0.5 (though the radius may change if
the blade is rotated around the propeller reference line: see Sec. 6.1.6). The non-
dimensionalization makes it easy for the propeller classes to scale the blades, for
example from model scale to full scale.

6.1.1 Blade parameters

We will let b(ξ, η) denote the function returning a point on the blade surface (i.e. the
function represented by the Blade class itself). For a right-handed blade (one which
rotates clockwise as seen from behind looking forward), the ξ parameter increases
from 0.0 at the trailing edge on the downstream face, to 0.5 at the leading edge, to
1.0 at the trailing edge on the upstream face. On a left-handed blade the direction of
ξ is reversed (i.e. ξ = 0 is on the upstream side) so that the direction of the normals
remains outward-pointing.

The range of the parameter η is not defined but it is assumed to increase from the
root of the blade toward the tip. However, although it is usually the case that
the maximum value of η corresponds to the tip (i.e. the point on the blade with
maximal r), it is not required. We wish to be able to mimic a controllable pitch
propeller by rotating the reference blade about the propeller reference line and in
that case the tip of the rotated propeller may shift along the leading or trailing edge
to a point where η is not a maximum.

The range of the parameter η will be denoted [ηmin, ηmax]. It can be obtained using
the member function
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void eta_range(Float &eta_min, Float &eta_max) const;

The range of ξ is always [0, 1] so no corresponding function is necessary for it.

The tip of the blade is the point on the leading or trailing edge farthest from the
propeller axis. As pointed out above, in general, the η parameter at the tip need not
be ηmax. The following member function returns the parameters at the tip:

Blade::ParamType parameters_at_tip() const;

The ξ value returned will always be 0.0, 0.5 or 1.0. The parameters at the tip will be
denoted (ξtip, ηtip).

It is common to specify points on a blade using values of r, so it is convenient to be
able to convert between (ξ, η) and (ξ, r). The following member function returns a
CurveLib function object that returns the value of r given (ξ, η)

CurveLib::Curve<2U,Float,Float> xi_eta_to_r() const;

It is easily implemented as the composition of the blade with a CartesianToRadius

(see Sec. 4.1).

Obtaining the value of η given ξ and r is more complex. It requires solving

bx(ξ, η)2 + by(ξ, η)2 = 1

4
r2 (6)

for η which can be done using a Newton-Raphson search implemented within a
CurveLib::ImplicitCurve<2U,1U,Float> (see Ref. 1, Sec. 11.2). However, near
the tip, there may be more than one solution to Eq. (6). For example, let rm be the
value of r at (1

2
, ηmax) and suppose that the tip lies on the leading edge (i.e. ξtip = 1

2
);

then if r ∈ [rm, rtip], then there will be two values of η which satisfy Eq. (6), one with
η < ηtip and one with η > ηtip.

The following member functions both return a CurveLib function object that performs
the conversion from (ξ, r) to (ξ, η):

CurveLib::MultiCurve<2U,2U,Float> xi_r_to_xi_eta() const;

CurveLib::MultiCurve<2U,2U,Float> xi_r_to_xi_eta(Float eta_lo,

Float eta_hi) const;

The difference between the two is that the first places no restrictions on η, so it may
not be well-defined near the tip. The second restricts η to have values between eta_lo

and eta_hi; it can be used to remove the ambiguity in η near the tip using judicious
values of eta_lo and eta_hi. Sec. 6.1.4 gives examples of its use to determine η as
a function of r on the leading edge.

The class CurveLib::MultiCurve<2U,2U,Float> is described in Ref. 1, Sec. 6.7. Its
return value is a VecMtx::VecN<2U,Float>. It can be composed with the blade to
change its parameterization to (ξ, r).
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using namespace PGeom;

Blade blade;

... // Define blade

CurveLib::Curve<2U,Point,Float>

blade_at_xi_r = blade(blade.xi_r_to_xi_eta());

Point x = blade_at_xi_r(0.5,0.3); // Returns the (x,y,z) point

// on the LE at r = 0.3

However, note that, in general, the lower and upper ranges for r will be dependent
on ξ so one must be careful when evaluating blade_at_xi_r near the root and tip.

Because the object returned by xi_r_to_xi_eta is a CurveLib::MultiCurve, the
curve for η as a function of (ξ, r) can be obtained by selecting the second component
of the curve. For example:

using namespace PGeom;

Blade blade;

... // Define blade

CurveLib::Curve<2U,Float,Float>

xir_to_eta = blade.xi_r_to_xi_eta()[1];

Float eta = xir_to_eta(0.5,0.3); // Returns eta on the LE at r = 0.3.

6.1.2 Constructors

A Blade can be constructed from any CurveLib surface with a given parameter
range: i.e. a CurveLib::RangeCurve<2U,Point,Float> which is described in Ref. 1,
Sec. 10.2. Within the Blade class, this is given the alias RangeSurface.

typedef CurveLib::RangeCurve<2U,Point,Float> RangeSurface;

The prototype for the constructor is then

Blade(RangeSurface srf);

The first parameter of srf will be scaled so that ξ has the expected ranges for the
blade. That is, if srf represents the surface s(u, v) with u ∈ [ulo, uhi] and v ∈ [vlo, vhi],
then the blade surface will be

b(ξ, η) = s
(
ulo + ξ(uhi − ulo), η

)
. (7)

Since ξ = 1

2
is identified with the leading edge, this is the line in srf having

u = 1

2
(ulo + uhi). It is up to the calling class to ensure that the normals to srf

are outward pointing.

The following member function also allows one to redefine the blade surface using a
RangeSurface:

void define(RangeSurface srf);
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As is recommended for all of the CurveLib classes, Blade also has a default construc-
tor. When it is used, the blade will not immediately be defined: it will be necessary
to define it either by assigning it to another Blade or by calling the member function
define. For example, if blade is an instance of any class derived from Blade, and
srf is a RangeSurface:

using namespace PGeom;

Blade b1, b2, b3(srf); // b1 are b2 are undefined, b3 is defined.

b1 = b3; // b1 now defined and equivalent to b3.

b2.define(srf); // b2 now defined and equivalent to b3.

The member function is_defined() can be used to determine if a Blade is defined;
it will return true if it is.

6.1.3 Blade properties

The handedness of the blade can be determined using the member function

bool is_right_handed() const;

which returns true for a right-handed blade.

The trailing edge of a blade section is sharp if the unit normal at the trailing edge
on the suction side differs from the unit normal on the pressure side. A blade is
considered to have a sharp trailing edge if any of its sections has a sharp trailing
edge. The following member function returns true if the trailing edge is sharp:

bool has_sharp_trailing_edge() const;

The section of the blade with η = ηmax might not have zero thickness; in that case
the blade is said to have an open tip. This is common, for example, in blades of
ducted propellers. The following member function returns true if the blade has an
open tip:

bool has_open_tip() const;

If all the normals to the blade along the section with η = ηmax are the same, then the
blade surface is smooth at the tip. If some of the normals differ, the blade is said to
be sharp. The following member function returns true if the blade has a sharp tip:

bool has_sharp_tip() const;

The returned values of the functions has_sharp_trailing_edge, has_open_tip and
has_sharp_tip are determined by sampling the trailing edge or tip section at a
series of points, then comparing values of the points or normals to ensure that they
are within the propeller accuracy. For efficiency this is done once when the blade is
constructed. Derived blade classes may use more efficient and/or accurate methods
for determining the values.
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6.1.4 The leading and trailing edges

If ηtip = ηmax, then the leading edge is simply the curve ble(η) = b(1

2
, η) and the

trailing edge is the curve ble(η) = 1

2

(
b(0, η) + b(1, η)

)
; the average of the points with

ξ = 0 and 1 keeps a single trailing edge curve well-defined even if the trailing edge is
open.

However, if ηtip /= ηmax, then when η > ηtip the trailing edge may include points for
which ξ = 1

2
and similarly for the leading edge. The member functions described in

this section are provided to make it easier to evaluate points on the true leading and
trailing edges.

The true leading and trailing edges can be parameterized unambiguously using r,
since it can be assumed that it will increase monotonically along these curves from
the root of the blade to the tip. The principal task is then to provide a means for
calculating the blade parameters (ξ, η) which correspond to a given value of r on
either the leading or trailing edge. We describe the procedure for the leading edge;
the trailing edge is similar.

1. If ηtip = ηmax or if ξtip = 1

2
, then the leading edge is simply ble(η) with η ∈

[ηmin, ηtip]. Set eta_lo to ηmin and eta_hi to ηtip and obtain the function object
returned by xi_r_to_xi_eta(eta_lo,eta_hi)[1] (see Sec. 6.1.1); it returns
η as a function of (ξ, r). Restrict it to have ξ = 1

2
(see the description of the

CurveLib class ConstPCurve<N,V,F> in Ref. 1, Sec. 6.5) to generate a function
object returning η as a function of r on the leading edge.

2. Otherwise, the leading edge has two segments: one is ble(η) with η ∈ [ηmin, ηmax]
and the other is bte(η) with η ∈ [ηtip, ηmax].

(a) Construct a function object on the first segment which solves

ble
x (η)2 + ble

y (η)2 = 1

4
r2 (8)

for η restricted to the range [ηmin, ηmax]. This can be done using the class
CurveLib::FInverseCurve<Float> described in Ref. 1, Sec. 11.3. The
domain of the function object will be r ∈ [rmin, rmax] where rmin is the
value of r for the point with (ξ, η) = (1

2
, ηmin) and rmax is the value of r

for the point with (ξ, η) = (1

2
, ηmax).

(b) Construct a function object on the second segment by solving

bte
x (η)2 + bte

y (η)2 = 1

4
r2 (9)

for η restricted to the range [ηtip, ηmax]. The domain of the function object
will be r ∈ [rmax, rtip].
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(c) Combine the two function objects into a single function object over the
range r ∈ [rmin, rtip] using a Spline::GeneralSpline<Float,Float> (de-
scribed in Ref. 9, Sec. 5).

Once η is known as a function of r along the leading and trailing edges, it can be
composed with ble(η) and bte(η) to generate function objects which return points on
the leading and trailing edges as a function of r. The following two member functions
return these function objects.

CurveLib::Curve<1U,Point,Float> leading_edge_at_radius() const;

CurveLib::Curve<1U,Point,Float> trailing_edge_at_radius() const;

The allowed ranges for r along the leading and trailing edges will, in general be
different. They can be obtained using the following member functions:

void leading_edge_r_range(Float &r_lo, Float &r_hi) const;

void trailing_edge_r_range(Float &r_lo, Float &r_hi) const;

6.1.5 Blade section properties

The blade section at radius r is the intersection of the blade surface with a cylinder of
radius r whose axis is the propeller axis. The properties of any blade section—chord
length, pitch, etc.—can be calculated easily provided one knows the points at the lead-
ing and trailing edges of the section. These are provided by the member functions
leading_edge_at_radius and trailing_edge_at_radius described in the previous
section. They return function objects representing the functions ble(r) and bte(r) re-
turning the points along the leading and trailing edges as a function of r.

The points on the leading and trailing edges can easily be converted to cylin-
drical coordinates (e.g. by composing a CartesianToCylCoords with the func-
tion objects returned by leading_edge_at_radius and trailing_edge_at_radius).

The corresponding cylindrical coordinates will be denoted
(
r, θ le(r), zle

R(r)
)

and(
r, θ te(r), zte

R (r)
)
.

The chord length, L(r), of the section is the distance between the leading and trailing
edges along a line on the surface of the intersecting cylinder:

L(r) = 1

2
D

√(
zte

R (r) − zle
R(r)

)2

+ r2

(
θ te(r) − θ le(r)

)2

. (10)

The following member function returns a CurveLib function object which evaluates
L(r):

Blade::ScalarCurveType chord_at_radius_curve() const;

where ScalarCurveType is an alias for CurveLib::Curve<1U,Float,Float>.
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The pitch, p(r), is the axial distance traversed by a helix through the leading and
trailing edges as it traverses one revolution around the propeller axis:

p(r) = πD

(
zte

R (r) − zle
R(r)

θ te(r) − θ le(r)

)
. (11)

The pitch angle, φ(r), is the angle the pitch helix makes with the propeller plane. It
is related to the pitch by

φ(r) = arctan

(
p(r)

πDr

)
; p(r) = πDr tan

(
φ(r)

)
. (12)

The following member functions return CurveLib function objects which evaluate p(r)
and φ(r):

Blade::ScalarCurveType pitch_at_radius_curve() const;

Blade::AngleCurveType pitch_angle_at_radius_curve() const;

where AngleCurveType is an alias for CurveLib::Curve<1U,Angle<Float>,Float>.

The skew angle, θs(r), is the angular displacement of the centre of the section from
the propeller reference line.

θs(r) = 1

2

(
θ te(r) + θ le(r)

)
. (13)

The following member function returns a CurveLib function object which evaluates
θs(r):

Blade::AngleCurveType skew_angle_at_radius_curve() const;

The generator line is the locus of points where the pitch helices intersect the plane
containing the propeller reference line and the propeller axis (the plane x = 0). The
generator rake, iG(r), is the axial displacement of the generator line at r from the
propeller reference line. The skew-induced rake, iS(r), is the axial displacement of
the centre of the section at r from the generator line at r. The total rake, iT (r), is
the axial dispacement of the centre of the section at r from the propeller reference
line:

iT (r) = 1

2
D

(
zte(r) + zle(r)

)
; (14)

iS(η) = 1

2
Drθs(r) tan

(
φ(r)

)
=

p(r)θs(r)

2π
; (15)

iG(η) = iT (η) − iS(η). (16)

The following member functions return CurveLib function objects which evaluate
iG(r), iS(r) and iT (r):
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Blade::ScalarCurveType generator_rake_at_radius_curve() const;

Blade::ScalarCurveType skew_induced_rake_at_radius_curve() const;

Blade::ScalarCurveType total_rake_at_radius_curve() const;

It is important to note that despite not being declared virtual, each function re-
turning a blade section property is implicitly polymorphic (see Sec. 3.1.2). When
the blade is defined in the traditional way by specifying these properties, the proper-
ties can be evaluated much more efficiently than by the methods described here: see
Sec. 6.2.

6.1.6 Simulating a controllable pitch propeller

To simulate a controllable pitch propeller, the blade can be rotated around the pro-
peller reference line (the y axis) using the member function:

void set_rotation(const Angle<Float> ang);

The current value of the rotation can be obtained using:

Angle<Float> get_rotation() const;

The new reference blade is determined from the non-rotated blade by

bnew(ξ, η) = Mb(ξ, η) (17)

where M is the rotation matrix

M =

⎛
⎜⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎟⎠ . (18)

Note that the values of the pitch, skew, etc. will be changed by the rotation. Immedi-
ately after construction or redefinition of the blade, the rotation around the propeller
reference line will be zero.

6.1.7 An example blade

As a simple example of a blade constructed from an arbitrary surface, we define an
ellipsoidal blade:

L(η) = Lroot cos(1

2
πη) (19)

x(ξ, η) = L(η) cos(2πξ) (20)

y(ξ, η) = 1

2
sin

(
1

2
πη

)
(21)

z(ξ, η) = −1

2
tL(η) sin(2πξ) (22)

where Lroot is the chord length at the root and t is the thickness of each section relative
to the chord length. Note that unlike the normal method of defining sections, these
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ones are defined in planes of constant y rather than on the surfaces of cylinders
(surfaces of constant r).

This blade surface can be defined using the following code (the CurveLib classes are
all described in Ref. 1):

Float Lroot = 0.1, t = 0.25, pi = Const::Pi<Float>::value();

Float h = 0.11, z = 0.2;

CurveLib::OneParamCurve<2U,Float> xi_crv(0), eta_crv(1);

CurveLib::Cos<Float> cos_crv;

CurveLib::Sin<Float> sin_crv;

CurveLib::Curve<2U,Float,Float> Lcrv = Lroot*cos_crv(0.5*pi*eta_crv);

CurveLib::MultiCurve<2U,3U,Float> base_srf;

base_srf[0] = Lcrv*cos_crv(2.0*pi*xi_crv);

base_srf[1] = 0.5*sin_crv(0.5*pi*eta_crv);

base_srf[2] = -0.5*t*Lcrv*sin_crv(2.0*pi*xi_crv);

Figure 2: A propeller with
ellipsoidal blades.

If the blade is allowed to extend all the way to
the propeller axis, numerical problems may occur
(for example the lowest section will not project
correctly onto a hub) so it is usual to restrict
the range of η so the lowest section is above the
axis but beneath the surface of the hub. Here we
restrict the range to [0.1, 1]:

CurveLib::ParamRange<2U,Float> range;

range.set range(0,0.0,1.0);

range.set range(1,0.1,1.0);

Blade::RangeSurface srf(base srf,range);

Blade blade(srf);

As defined, the blade has zero pitch. To make
some we rotate the blade about the reference line:

Angle<Float> ang;

ang.set_degrees(60.0);

blade.set_rotation(ang);

Fig. 2 shows a propeller with four of these blades.

6.2 The class SectionBlade
Traditionally, propellers have been defined by specifying a series of blade sections
(airfoils) at given radii. Each section is scaled, translated and rotated according
to values of the chord length, pitch, rake and skew angle. Suppose that the blade
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ζ = 0 ζ = 1

Suction side

Pressure side

Figure 3: The coordinates on a reference section of a right-handed blade with an
open trailing edge. On a left-handed blade the direction of ξ is reversed.

parameter η is a function only of the distance to the axis, r. For any η, a reference
section is defined as an airfoil,

(
xs(ξ, η), ys(ξ, η)

)
, where xs varies between 0.0 (leading

edge) and 1.0 (trailing edge). In the parlance of the airfoil classes [10], the section is
canonical: i.e. the leading edge is at (xs, ys) = (0, 0) and the trailing edge is at (1, 0).
The coordinate xs is then equivalent to the fractional chord length along the airfoil,
often denoted by ζ . The airfoil coordinates are shown in Fig. 3.

The surface of a right-handed reference blade in the (r, θ, zR) coordinate system is
then defined by:

θ(ξ, η) = θs(η) +

((
xs(ξ, η) − 1

2

)
cos φ(η) + ys(ξ, η) sin φ(η)

)
r(η)

2L(η)

D
; (23)

zR(ξ, η) =
2iT (η)

D
+

((
xs(ξ, η) − 1

2

)
sin φ(η) − ys(ξ, η) cos φ(η)

)
2L(η)

D
. (24)

The blade in the Cartesian coordinate system can be determined using Eqs. (1)
and (2). The remaining blades are determined by rotating the reference blade around
the ẑ axis in increments of 2π/N .

A left-handed blade is obtained by replacing θ with −θ. To ensure that ξ̂ × η̂ is an
outward pointing normal on a left-handed blade, the parameter ξ is also replaced
by 1 − ξ. Therefore, on a right-handed blade, the pressure side (face) is the region
ξ ∈ [0, 0.5]; on a left-handed blade this region is the suction side (back).

The class SectionBlade is a specialization of Blade which represents the reference
blade using Eqs. (23) and (24). It needs to define function objects representing the

blade sections,
(
xs(ξ, η), ys(ξ, η)

)
, the chord length relative to the diameter, L(η)/D,

the pitch relative to the diameter, φ(η)/D, the skew angle, θs(η), and the total rake
relative to the diameter, iT (η)/D.
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The function r(η) defining the dependence of the non-dimensional radius on the
parameter η is not specified in Eqs. (23) and (24). By default, SectionBlade uses
the following definition for r(η):

• If the blade closes at the tip it is given by

r(η) = sin
(

1

2
πη

)
; η(r) =

2 arcsin(r)

π
. (25)

This enables the blade to close smoothly at the tip despite the coordinate sin-
gularity there. The derivative of the chord length with respect to η remains
finite at the tip while its derivative with respect to r is infinite.

• If the chord length at the tip is non-zero, it is simpler to define

r(η) = η. (26)

SectionBlade allows different functional forms for r(η) but requires that r(η) is
strictly increasing. The member function

ScalarCurveType radius_curve() const;

returns a CurveLib function object evaluates r as function of η. Similarly,

ScalarCurveType eta_curve() const;

returns η as a function of r. For example, with η and r defined by Eq. (25), the
following code

using namespace PGeom;

SectionBlade blade;

. . . // Define the blade

Blade::ScalarCurveType r_crv = blade.radius_curve(),

eta_crv = blade.eta_curve();

Float eta = eta_crv(0.5);

Float r = r_crv(eta);

std::cout << "eta = " << eta << " r = " << r << std::endl;

would generate the output

eta = 0.333333 r = 0.5

6.2.1 The surface of reference sections

Consider the surface defined by

x = xs(ξ, r); y = ys(ξ, r); z = r. (27)

It will be called the surface of reference sections. It resembles a fin or wing where
every section has a chord length of 1.0. Eqs. (23) and (24) define the reference blade
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as a surface of reference sections twisted and deformed by the chord length, pitch
angle, etc.

The class RefSectionSurface is a base for classes which represent the surface of
reference sections. It is a two-parameter function object which returns a two-vector:
given (ξ, r) it returns (xs, ys). The non-dimensional radius, r, has been chosen as
the parameter of the RefSectionSurface instead of the blade parameter η because
the properties of the blade sections are traditionally given at values of r; moreover,
these properties vary smoothly with r even at the tip (unlike, for example, the chord
length) so that splining with respect to r will almost always generate an accurate
representation of the blade surface.

RefSectionSurface is a specialization of CurveLib::Curve<2U,AirfoilPt,Float>

where AirfoilPt represents a point (xs, ys) on an airfoil: it is an alias for the
class VecMtx::VecN<2U,Float>. For ease of use, the base class is given the alias
SurfaceType within RefSectionSurface:

typedef CurveLib::Curve<2U,AirfoilPt,Float> SurfaceType;

RefSectionSurface has only a default (no argument) constructor. Therefore there
is little purpose in creating an instance of a RefSectionSurface except as the base
of one of the derived classes described in Secs. 6.2.1.3, 6.2.1.1 and 6.2.1.2.

The surface of reference sections is typically defined from an array of airfoils which
are splined in r to generate the surface. The geometry of airfoils and C++ classes to
describe them have already been documented in Ref. 10.

The splining of the airfoils can be done in two ways: using Hermite splines (see
Ref. 9, Sec. 8 for a description of Hermite splines) or tensor product splines. The
former has the advantage that each airfoil in the input array remains unchanged in
the surface of reference sections; however, the surface of reference sections will only
be C1, so that its normals may have discontinuous derivatives. For applications that
are sensitive to the normals, in particular calculating blade pressures with boundary
element methods, Hermite splines may not work well. Surfaces of reference sections
which use Hermite splines are represented by the class HermiteRefSectionSurface

described in Sec. 6.2.1.1.

In contrast, the method of tensor product splines generates a C2 surface, so the normals
are continuous, but has the disadvantage that the input airfoils must be approximated
before being splined with respect to the parameter r. Surfaces of reference section which
use tensor product splines are represented by the class BSplineRefSectionSurface

described in Sec. 6.2.1.2.

Fig. 4 shows an inheritance diagram for RefSectionSurface and its derived classes.

The range of r for which the RefSectionSurface is defined can be obtained using
the member function
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CurveLib::Curve<2U,Vec2,Float>

RefSectionSurface

HermiteRefSectionSurface BSplineRefSectionSurface ConstAfoilRefSectionSurface

Figure 4: An inheritance diagram for the class RefSectionSurface.

void r_range(Float &rlo, Float &rhi) const;

At the trailing edge of the surface of reference sections, each section can either be
open or closed; the surface of reference sections is considered to have a closed trailing
edge if it is closed at all its sections. If a section is closed, it can have continuous
normals across the trailing edge (it is dull) or discontinuous normals (it is sharp).
The trailing edge of the surface is considered to be dull only if all closed sections are
dull; it is sharp if at least one closed section is sharp; if all sections are open, the
sharpness is not defined. The following member functions return information about
the trailing edge:

bool has_open_trailing_edge() const;

bool has_closed_trailing_edge() const;

bool has_sharp_trailing_edge() const;

bool has_dull_trailing_edge() const;

The surface of reference sections can also be open or closed at its tip (i.e. at the
largest value of r). It is open if the uppermost section has non-zero thickness. Use

bool has_open_tip() const;

to determine whether the tip is open.

RefSectionSurface has been designed so that it can also be used to define the surface
of a rudder or of a fin of a podded propulsor. Therefore it is allowed to have knuckles
(lines of constant r along which the normals to the surface are discontinuous). Since
knuckles will seldom, if ever, be present on a propeller blade, the member functions
implementing knuckles are not described here.

6.2.1.1 Definition using Hermite splines

Suppose that for each i ∈ [0, N − 1], xi(ξ) defines an airfoil at r = ri. These curves
can be combined to form a surface of reference sections as follows.

1. Given ξ and r, find j such that rj ≤ r < rj+1.
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2. Evaluate xi(ξ) for i ∈ [j − 1, j + 2].

3. The three points with i ∈ [j − 1, j + 1] define a parabola whose slope can be
used for the slope of the spline with respect to r at rj.

4. Similarly, the three points with i ∈ [j, j + 2] define a parabola whose slope can
be used for the slope of the spline with respect to r at rj+1.

5. The points with i = j and j +1, along with the two slopes, now uniquely defines
a cubic polynomial with respect to r in the range r ∈ [rj, rj+1]. The value of
the polynomial is the value of the surface of reference sections at (ξ, r).

This method of combining curves to form a surface is implemented in the class
CurveLib:HermiteExtendedCurve<N,V,F> described in Ref. 9, Sec. 8.6. The sur-
face of reference sections is only C1 with respect to r because the second derivatives
at the end points of neighbouring cubic polynomial segments need not match.

In principle one could make a C2 surface by sampling each airfoil at ξ, then forming
a cubic spline through the points and evaluating the spline to get the point on the
surface. In practice this is prohibitively slow, due to the many evaluations of the
airfoil curves and the subsequent calculation of the spline coefficients. The Hermite
splines depend only locally on the airfoil curves (i.e. only four airfoil curves are needed
for each evaluation) and so are much faster to compute.

The class HermiteRefSectionSurface, a specialization of RefSectionSurface, de-
fines a surface of reference sections using a CurveLib::HermiteExtendedCurve to
interpolate between an array of airfoils. This representation has the property that
the airfoil curves remain exact. If they interpolate offset data, the resulting surface
will also interpolate those data.

HermiteRefSectionSurface has a default (no argument) constructor. When in-
voked, the surface of reference sections remains undefined; it must later be defined by
copying from another HermiteRefSectionSurface or by using the define functions
described below.

The following constructor makes a HermiteRefSectionSurface from an array of
airfoils.

HermiteRefSectionSurface(const RadiusArray &radii,

const SectionArray &s,

bool open_tip = true);

Here RadiusArray is an alias for std::vector<Float> and SectionArray is an alias
for std::vector<Afoil::Airfoil<Float> >. Afoil::Airfoil<Float> is a class
representing an airfoil; it is described in Ref. 10. The array radii stores the value
of r for each section and s is an array of airfoils describing the section shapes. If
open_tip is false, the surface will be closed at the tip using the algorithm described
in Sec. 6.2.1.4.
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For example, the following code makes a surface of reference sections from four sec-
tions (typically real propellers are specified with about ten):

using namespace PGeom;

RadiusArray radii;

radii.push_back(0.20);

radii.push_back(0.50);

radii.push_back(0.95);

radii.push_back(1.00);

Afoil::NACAAirfoil<Float>

naca20("0020"), naca10("0010"), naca5("0005");

SectionArray afoils;

afoils.push_back(naca20);

afoils.push_back(naca10);

afoils.push_back(naca5);

afoils.push_back(naca5);

HermiteRefSectionSurface ref_sec_srf(radii,afoils,false);

Figure 5: A surface of reference
sections made from four NACA

airfoils.

The class Afoil::NACAAirfoil<Float> rep-
resents a NACA airfoil [12] (it is described
in Ref. 10, Sec. 6.1.3), so the four sections
are made from NACA 0020, NACA 0015 and
NACA 0005 airfoils which have no cambre and
thicknesses of 20%, 15% and 5% of chord length
respectively. The four sections are located at
r = 0.2, 0.5, 0.95 and 1.0; therefore the result-
ing surface of reference sections will get thinner
toward the tip. It is shown in Fig. 5.

Alternatively, the following constructor makes a
HermiteRefSectionSurface from arrays of off-
set points at each section.

HermiteRefSectionSurface(const RadiusArray &radii,

const std::vector<OffsetArray> &offsets,

bool close_te = false,

bool sharp_te = true);

Here OffsetArray is an alias for std::vector<AirfoilPt>; it is an array of 2-vectors
containing values of (xs, ys) along the section. In each array of offsets, one offset must
have an x-value of 0.0; this is the point at the leading edge.

The offsets are splined to create an airfoil (an Afoil::Airfoil<Float>) at each
section, then the surface of reference sections is created by splining the array of
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airfoils. The ξ values for each array of offsets are determined by calculating the
fractional arclength to each offset based on straight line segments between the points.
These values are then adjusted so that the ξ value of the point at the leading edge is
0.5 (the leading edge). Details are given in Ref. 10, Sec. 5.1.

If close_te is true, each airfoil will be forced to have a close trailing edge; if sharp_te

is true the closed trailing edge will be sharp, otherwise it will be dull. The algorithms
used to close the trailing edges are described in Ref. 10. The surface will have an
open tip.

In addition, HermiteRefSectionSurface has the following functions for redefining
an existing instance of the class. Each of these is equivalent to the constructor with
the same arguments.

void define(const RadiusArray &radii,

const SectionArray &s,

bool open_tip = true);

void define(const RadiusArray &radii,

const std::vector<OffsetArray> &offsets,

bool close_te = false,

bool sharp_te = true);

6.2.1.2 Definition using tensor product splines

A tensor product spline of the sequence of airfoils is created by first approximating
each airfoil with a spline, then splining their spline coefficients with respect to r. For
this to work, it is necessary that each airfoil spline use the same knot sequence. The
sequence of calculations used is:

1. Choose an initial knot sequence for the range ξ ∈ [0, 1].

2. Choose the first airfoil.

3. Construct a spline on the current airfoil using the current knot sequence.

4. Sample the spline between each pair of knots and compare it with the airfoil.
If it is not sufficiently accurate, insert a new knot at the centre of the knot
interval.

5. Repeat steps 3 and 4 until the spline is sufficiently accurate.

6. Go to the next airfoil. Perform steps 3 to 5 until all airfoils have been approx-
imated. The knot sequence is now sufficiently dense to approximate all the
airfoils to the required accuracy.

7. Respline all the airfoils using the knot sequence.
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8. Spline the coefficients of the airfoil splines with respect to r to generate a two-
dimensional spline with respect to parameters (ξ, r). This is the surface of
reference sections.

The class BSplineRefSectionSurface, a specialization of RefSectionSurface, uses
a two-dimensional tensor-product B-spline curve to represent the surface defined by
the reference sections of a blade. Currently, because periodic B-spline curves have
not yet been implemented, the trailing edge of a BSplineRefSectionSurface must
be sharp.

BSplineRefSectionSurface has a default (no argument) constructor. When in-
voked, the surface of reference sections remains undefined; it must later be defined by
copying from another BSplineRefSectionSurface or by using the define functions
described below.

The following constructor makes a BSplineRefSectionSurface from an array of
airfoils:

BSplineRefSectionSurface(const RadiusArray &radii,

const SectionArray &s,

Float acc);

The accuracy to which the airfoils are approximated is specified using acc. For
example, if acc is 10−4, then when evaluated at any ξ, the original airfoil and the
spline approximation will return points whose separation is at most 10−4. (Since
the chord length of all sections is 1.0, the accuracy can be considered to be non-
dimensionalized by the chord length.) The surface will have an open tip.

Alternatively, a BSplineRefSectionSurface can be constructed from arrays of off-
sets at each section:

BSplineRefSectionSurface(const RadiusArray &radii,

const std::vector<OffsetArray> &offsets,

Float acc,

bool close_te = false);

The offsets are used to generate airfoils at each section as described for the simi-
lar HermiteRefSectionSurface constructor (Sec. 6.2.1.1); the surface of reference
sections is then generated using the algorithm described above.

In addition, BSplineRefSectionSurface has the following functions for redefining
an existing instance of the class. Each of these is equivalent to the constructor with
the same arguments.

void define(const RadiusArray &radii,

const SectionArray &s,

Float acc);
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void define(const RadiusArray &radii,

const std::vector<OffsetArray> &offsets,

Float acc,

bool close_te = false);

Since the surface is represented as a tensor product spline, there is a knot sequence
for each coordinate direction (see Ref. 9, Sec. 2). They can be obtained using the
member functions

const Spline::KnotSeq<Float>& xi_knots() const;

const Spline::KnotSeq<Float>& r_knots() const;

The class Spline::KnotSeq<Float> representing a knot sequence is described in
Ref. 9, Sec. 3.

The member function

void close_tip(bool exact);

can be used to close the tip using the algorithm described in Sec. 6.2.1.4. The
surface will only be affected between the next-to-last and last sections. If exact is
true, the pressure side and suction side of the closed section will match to (roughly)
machine accuracy; otherwise matching is only guaranteed to within the accuracy of
the reference section surface (as set by the argument acc in the constructor).

The member function

void close_trailing_edge();

can be used to close the trailing edge of the surface by collapsing it to the mean line
of the trailing edges on the pressure and suction sides. Only the portion of the surface
in the first and last ξ-knot interval will be affected.

6.2.1.3 The class ConstAfoilRefSectionSurface

The class ConstAfoilRefSectionSurface represents a surface of reference sections
in which all the reference sections are the same. It is not very useful, in practice, as
propeller sections typically get thinner as one proceeds from the root to the tip and
will also usually have varying amounts of cambre. ConstAfoilRefSectionSurface

is derived from the base class RefSectionSurface.

ConstAfoilRefSectionSurface has a default (no argument) constructor. When
invoked, the surface of reference sections remains undefined; it must later be defined
by copying from another ConstAfoilRefSectionSurface or by using the define

function described below.

The following constructor makes a ConstAfoilRefSectionSurface from an airfoil
and a range of r values.
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ConstAfoilRefSectionSurface(const Afoil::Airfoil<Float> &a,

Float rlo, Float rhi);

A ConstAfoilRefSectionSurface can also be redefined using

void define(const Afoil::Airfoil<Float> &a,

Float rlo, Float rhi);

6.2.1.4 Closing the tip

If the chord length at the blade tip is zero, the blade will automatically be closed at
the tip. In that case it is best that the uppermost section of the surface of reference
sections remains open. However, if the chord length is not zero, the blade will only
be closed at the tip if the surface of reference sections closes at the tip. This can be
ensured in two ways:

1. by ensuring that the airfoil at the tip has zero thickness; or

2. by modifying the splines in the surface of reference sections to ensure that the
surface closes.

The problem with the first method is that it will generally induce wiggles in the
splines defining the surface of reference sections; the second method is preferred.

Suppose that there are N airfoils with the last one, at rN−1 = 1, having non-zero
thickness, and that the surface of reference sections has been constructed. When
the surface is defined using Hermite splines, the cubic polynomial between rN−2 and
rN−1 is altered: its value and slope at r = rN−2 remain the same, but the value at

r = rN−2 = 1 is changed to
(
xN−1(ξ), 1

2
[ yN−1(ξ) + yN−1(1 − ξ)]

)
and the slope there

is changed to

sN−1(ξ) =
xN−1(ξ) + xN−1(1 − ξ) − 2xN−2(ξ)

rN−1 − rN−2

− sN−2(ξ). (28)

This makes the polynomial between rN−2 and rN−1 parabolic with slope sN−2 at rN−2.

If a tensor product spline is used, then:

1. The spline is first converted to a B-spline representation if it is not already.

2. Extra knots are included in the ξ sequence to make it symmetric about ξ = 0.5:
i.e. tj = 1 − tM−1−j for each j, where M is the number of ξ knots. Note that
this does not change the values of the splined surface, just the way they are
represented. However, because of the increased number of knots, it will be
somewhat less efficient to evaluate.

3. The last row of spline coefficients (i.e. the ones corresponding to rN−1) is mod-
ified by Bj → 1

2
(Bj + BMs−1−j) where Ms is the number of spline coefficients

(Ms = M − 4).
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C1

C2

Figure 6: The thickness of the surface of reference sections after closure of
the tip. The curves in red show the closure that results when the thickness of
the last section is set to zero; the curves in black show the closure resulting
when the splines are adjusted. The circles show where the airfoil sections
were defined. The curves at the top use Hermite spline; those at the bottom
use tensor product splines.

In each of these methods, the surface of reference sections is modified only between
rN−2 and rN−1. The airfoil at the tip is replaced by: x(ξ) = 1

2

(
x(ξ) + x(1 − ξ)

)
.

Figure 7: The surface of
reference sections of Fig. 5 after

its tip has been closed.

Fig. 6 shows the thickness of a surface of refer-
ence sections near its tip after closure. The orig-
inal surface had constant thickness. The sections
at which the sections were defined are shown by
the dots in the figure. The curves at the top are
C1 while those at the bottom are C2. The curves
in red show the closure when the thickness of the
last section is set to zero. It can be seen that
the thickness of the closed surface overshoots the
original thickness on the second last interval be-
tween sections. For the C1 case this does not
propagate further, but for the C2 case the wiggle
extends all the way to the first section, although
it becomes very small after a few sections. In
contrast, the closure by adjusting the splines has
no overshoot and the modification of the surface is confined to the interval between
the last two sections.

The surface of reference sections shown in Fig. 7 is the same as that shown in Fig. 5
except that this time it was constructed to have a closed tip. Notice that the ge-
ometry has changed only in the immediate vicinity of the tip: since the second last
section is at r = 0.95, only the region r ∈ [0.95, 1.0] has changed.
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6.2.2 Closing the trailing edge

The airfoils used to define the surface of reference sections may need to have their
trailing edges closed. There are two options:

1. use a closure that leaves the trailing edge sharp: the unit normal at the trailing
edge on the suction side will differ from the unit normal on the pressure side; or

2. use a closure that makes the trailing edge dull: the two normals at the trailing
edge will be the same.

The class Afoil::Airfoil<Float> provides the following member functions for doing
this:

void close_trailing_edge();

Ensures that the airfoil has a closed trailing edge; does nothing if the trailing
edge is already closed. The trailing edge will be sharp.

void make_trailing_edge_blunt(F radius);

If the airfoil has an open trailing edge, closes it such that it is dull; does nothing
if the trailing edge is already closed. The argument radius is the approximate
radius of curvature of the trailing edge. It must be strictly positive.

When the trailing edge is to be dull, the radius of curvature of each airfoil must be
chosen carefully. Consider a plane that cuts normal to the trailing edge: see Fig. 8.
We would like the cross-section of the trailing edge in this plane to be roughly semi-
circular. However, the airfoil section meets the trailing edge obliquely, so that the
semi-circular trailing edge in the plane is stretched into a semi-ellipse whose minor
to major axis ratio is csc β with β equal to the angle between the airfoil section and
the line along the trailing edge. The radius of curvature of the ellipse at the trailing
edge is

rc = 1

2
d sin β (29)

where d is the width of the trailing edge gap. From Eqs. (23) and (24), a tangent to
the trailing edge is

t =
2

D

[
x̂

∂x

∂r
+ ŷ

∂y

∂r
+ ẑ

∂z

∂r

]
xs=1/2, ys=0

= (−x̂ sin θ + ŷ cos θ)

− (x̂ cos θ + ŷ sin θ)

(
r

dθs

dr
+

cos φ

D

dL

dr
−

L sin φ

D

dφ

dr
−

L cos φ

rD

)

+ ẑ

(
2

D

dR

dr
+

sin φ

D

dL

dr
+

L cos φ

D

dφ

dr

)
. (30)

A unit tangent to the chord line at the trailing edge (xs = 1

2
) is

â = −(x̂ cos θ + ŷ sin θ) cos φ + ẑ sin φ (31)
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β

Figure 8: The red line marks a plane normal to the trailing edge of a
highly skewed blade. The blue line is the section meeting the plane
at the trailing edge.

so that

β = arccos(t̂ · â); t̂ =
t

|t|
. (32)

Therefore the trailing edge at each section is closed using

rc = 1

2
d

√
1 − (t̂ · â)2. (33)

Because this method of closure requires knowledge of the blade section properties,
knowledge that is not available to the classes representing the surface of reference
sections, it must be implemented in SectionBlade, not in RefSectionSurface.

6.2.3 Defining the blade surface using a tensor product spline

A CurveLib function object used to represent a SectionBlade is normally a direct
implementation of Eqs. (2), (23) and (24): the surface of reference sections, and
function objects for the rake, skew, etc. are combined to form the blade surface. It
is also possible to replace this representation with a two-parameter tensor product
spline describing the blade surface. This has two principal advantages:

1. evaluating points on the surface is more efficient; and

2. the splined surface can be represented in standard file formats (e.g. IGES [15])
while the implementation using Eqs. (2), (23) and (24) cannot.
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However, there are also drawbacks:

1. the spline representation is generally much more costly in memory as many
spline coefficients must be stored;

2. the geometry near the tip will tend to be poorly defined as the coordinate
singularity there will cause wiggles in the spline; and

3. it is only an approximation of the original blade surface so some fidelity is lost
in the conversion.

The conversion of the blade surface to a tensor product spline is similar to that for
the surface of reference sections in that the same knot sequence must be used on each
blade section. If the surface of reference sections is a BSplineRefSectionSurface,
its ξ knot sequence can be used; otherwise a suitable knot sequence is determined
using an algorithm similar to that described in Sec. 6.2.1.2. The knot sequence in
the η direction is obtained from the r values of the blade sections. The original blade
surface is sampled at an array of points which are then splined to generate the new
representation.

6.2.4 Constructors

SectionBlade has a default (no argument) constructor. When used, the blade re-
mains undefined and must later be defined by assignment to another SectionBlade

or using one of the define functions described below. As for all CurveLib functions
objects, the member function is_defined can be used to determine if the blade has
been defined.

SectionBlade has three additional constructors defined in the following sections.

6.2.4.1 Construction from pre-defined function objects

The following constructor makes a blade from function objects representing the func-
tions in Eqs. (23) and (24).

SectionBlade(RefSectionSurface rss,

ScalarCurveType total_rake_crv,

AngleCurveType skew_crv, ScalarCurveType pitch_crv,

ScalarCurveType chord_crv, ScalarCurveType r_crv,

ScalarCurveType eta_crv, bool rh = true);

The function object rss represents the functions
(
xs(ξ, r), ys(ξ, r)

)
; total_rake_crv

represents the total rake relative to the diameter, iT (r)/D; skew_crv represents the
skew angle, θs(r); pitch_crv represents the pitch relative to the diameter, p(r)/D;
chord_crv represents the chord length relative to the diameter, L(η)/D; r_crv rep-
resents the non-dimensional radius, r(η); and eta_crv represents η as a function of r.
Notice that most of these curves are given as a function of r but that the chord length
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is given as a function of η since its derivatives with respect to r are infinite at the
tip when, as is usual, the chord length there is zero. Requiring the specification of
both r(η) and η(r) is not strictly necessary, as either could be derived from the other;
however, inverting one or the other curve would be inefficient when a simple analytic
version of the curve is available (as in Eqs. (25) and (26), for example); therefore both
curves are required. If the flag rh is true, the blade will be right-handed; otherwise
left-handed. CurveLib function objects are used to combine each of these arguments
to form the blade surface according to Eqs. (23) and (24).

Figure 9: A blade with circular
expanded outline.

The range of radii is obtained using
rss.r range(rlo,rhi) (see Sec. 6.2.1); the
range of η can then be obtained using
eta crv to convert the range of r. It is as-
sumed that all section properties curves are
well-defined over these regions.

The following code defines a blade having no
rake, no skew and constant pitch equal to D.
It has a circular expanded outline: the chord

length is defined as L(r) =
√

r(1 − r) D.

Note that the derivative of L(r) at the tip
is infinite; however, using the relationship
between r and η given in Eq. (25) leads to

L(η) = sin
(

1

4
π(1 − η)

)√
2 sin(1

2
πη) which is

well-behaved at the tip. The surface of refer-
ence sections is the same as that defined on
page 29 and shown in Fig. 5. A display of the blade is shown in Fig. 9.

using namespace CurveLib;

Float pi = Const::Pi<Float>::value();

ConstCurve<1U,Float,Float> zero_crv(0.0), one_crv(1.0);

SectionBlade::ScalarCurveType

total_rake_crv = zero_crv,

pitch_crv = one_crv,

eta = FIdentityCurve<Float>(),

r_at_eta = Sin<Float>()(0.5*pi*eta),

chord_at_eta = Sin<Float>()(0.25*pi*(1.0-eta))*

Sqrt<Float>()(2.0*r_at_eta),

eta_at_r = (2.0/pi)*ArcSin<Float>();

CurveLib::AngleCurve<1U,Float> skew_crv(zero_crv);

SectionBlade blade(rss,total_rake_crv,skew_crv,pitch_crv,chord_at_eta,

r_at_eta,eta_at_r);

The member function
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void define(RefSectionSurface rss,

ScalarCurveType rake_c,

AngleCurveType skew_c, ScalarCurveType pitch_c,

ScalarCurveType chord_c, ScalarCurveType r_c,

ScalarCurveType eta_c, bool rh = true);

can be used to redefine the blade after it has been constructed. It is equivalent to
creating a new blade using the constructor described above.

6.2.4.2 Construction from an array of BladeSections

The struct BladeSection represents a single section of a propeller blade: an airfoil
with a value of non-dimensional radius, r, giving its location along the propeller
reference line, and values for total rake, pitch, skew angle and chord length. It has
the following public members.

Float radius
The value of non-dimensional radius for the section.

Float pitch

The pitch of the section relative to the diameter.

Angle<Float> skew

The skew angle of the section.

Float total_rake

The total rake of the section relative to the diameter.

Float chord_length

The chord length of the section relative to the diameter.

Afoil::Airfoil<Float> airfoil
An airfoil defining the reference section. The class Afoil::Airfoil<Float> is
described in Ref. 10.

A SectionBlade can be constructed using an array of BladeSections:

SectionBlade(const std::vector<BladeSection> &sections,

bool rh = true, bool close_te = false,

bool sharp_te = true, bool close_tip = false,

bool sharp_tip = false, bool splined = false,

bool c2 = true);

If rh is true, the blade will be right-handed; otherwise it will be left-handed.

If close_te is true, then SectionBlade will ensure that the trailing edges of all
airfoils in the sections are closed: if sharp_te is true, any open trailing edge that is
closed will be sharp; otherwise it will be dull. The algorithm described in Sec. 6.2.2
is used to close the trailing edges. Similarly, if close_tip is true and the chord
length at the tip is finite, then the blade will be closed at the tip using the algorithm
described in Sec. 6.2.1.4.
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If c2 is true, the blade surface will have continuous second derivatives with respect
to its parameters. This is a necessary condition for some applications. However, this
level of continuity may come at the price of approximating, rather than interpolating,
the offset data in p. When c2 is true and p.sharp_te is false, then the trailing edge
closure of closed sections will be C2 provided that all blade sections are closed.

The array of BladeSections provides a sequence of non-dimensional pitch values, pi,
at the section radii, ri. A spline, ps(r), is generated using the points (ri, pi); it returns
the non-dimensional pitch as a function of r. If c2 is true, a standard cubic spline is
used to ensure that the curve is C2; otherwise the curve will only be C1. The pitch
as a function of η is then obtained using Eqs. (25) and (26):

p(η) = ps

(
r(η)

)
D. (34)

Curves for iT and θs as functions of both r and η are generated in a similar way.

If the blade tip is closed, L as a function of r will have infinite slope at the tip;
splining L with respect to r will yield a curve that has finite slope at the tip resulting
in a blade which is not smooth there. Because the slope of L with respect to η is
finite, we can avoid this problem by converting the values ri to equivalent values of η
using Eq. (25) and splining with respect to η to generate the curve L(η).

If splined is true, the blade will first be constructed as described above, then con-
verted to a splined surface using the algorithm described in Sec. 6.2.3. In this case the
propeller section data will be approximated, not interpolated, but the blade surface
will evaluate more efficiently.

The member function

void define(const std::vector<BladeSection> &sections,

bool rh = true, bool close_te = false,

bool sharp_te = true, bool close_tip = false,

bool sharp_tip = false, bool splined = false,

bool c2 = true);

can be used to redefine the blade after it has been constructed. It is equivalent to
creating a new blade using the constructor described above.

6.2.4.3 Construction from PropSectionData

SectionBlade has a constructor which defines the blade using offset data stored in
a PropSectionData structure (defined in Sec. 9.3):

SectionBlade(const PropSectionData &p,

bool rh = true, bool close_te = false,

bool splined = false, bool c2 = true,

bool close_tip = false);
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A surface of reference sections is defined by splining the section offset data in p;
similarly, splines for the chord length, rake, skew angle and total rake are defined.
These are combined to make the blade surface.

The argument p contains arrays of offsets along the pressure and suction sides of
blade sections at a number of radii, ri. At each radius, the offsets are concate-
nated to form a single list of offsets which can be splined to generate an airfoil (an
Afoil::Airfoil<Float>). The trailing edges of the airfoils are closed in accordance
with close_te and sharp_te using the algorithm described in Sec. 6.2.2. The airfoils
and the section properties in p can then be used to create an array of BladeSections
which are used to construct the blade as described in Sec. 6.2.4.2.

The remaining arguments are similar to those of the constructor described in the
previous section: rh determines whether the blade is right-handed or left-handed; if
splined is true, the blade will first be constructed as described above, then converted
to a splined surface using the algorithm described in Sec. 6.2.3; if c2 is true the blade
surface will have continuous second derivatives with respect to its parameters; if
close_tip is true and the chord length at the tip is finite, then SectionBlade will
ensure that the blade is closed at the tip using the algorithm described in Sec. 6.2.1.4.

The member function

void define(const PropSectionData &p, bool rh = true,

bool close_te = false, bool splined = false,

bool c2 = true, bool close_tip = false);

can be used to redefine the blade after it has been constructed. It is equivalent to
creating a new blade using the constructor described above.

6.2.5 Section properties
SectionBlade redefines the member functions pitch_at_radius_curve, etc. so that
if the blade has not been rotated about the propeller reference line (see Sec. 6.1.6),
they return the curves used to define the blade; these curves are usually more efficient
and more accurate than those defined by the base class. In addition it provides
member functions which return the pitch, total rake, etc. as a function of the blade
parameter η. This can’t be done in the base class as there is no guarantee that each
section lies on a curve of constant η. However, note that these functions always refer
to the blade properties when the blade has not been rotated about the propeller
reference line. The new member functions are:

ScalarCurveType pitch_at_eta_curve() const;

AngleCurveType pitch_angle_at_eta_curve() const;

ScalarCurveType chord_at_eta_curve() const;

AngleCurveType skew_at_eta_curve() const;

ScalarCurveType total_rake_at_eta_curve() const;

ScalarCurveType generator_rake_at_eta_curve() const;

ScalarCurveType skew_induced_rake_at_eta_curve() const;
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6.2.6 Defining a SectionBlade from a file

A SectionBlade can be defined by reading records in OFFSRF format [11] from an
input file. The class BladeReader is used to read the file and construct the blade.
BladeReader is derived from Offsrf::Base so it has an inserter defined for reading
the file. It also has a public member blade of type SectionBlade to represent the
blade non-dimensionalized using the diameter (i.e. its diameter will always be 1.0)
as well as a public member diameter of type Float to specify the diameter. The
following code reads the file blade.dat to define a propeller blade.

using namespace PGeom;

BladeReader reader;

Offsrf::IFStream in("blade.dat");

if (!in) throw Error("Could not open blade.dat");

in >> reader;

if (!in.good() && !in.eof())

throw Error("Error when reading blade.dat.");

if (!reader.blade.is_defined()) {

throw Error("Blade undefined after reading blade.dat.");

SectionBlade blade = reader.blade;

Float diameter = reader.diameter;

BladeReader recognizes three different records to define a blade: DREA PROPELLER

GEOMETRY, BLADE SECTIONS and SCALED BLADE SECTIONS. They are mutually exclu-
sive, so only one of them should be present in the file.

6.2.6.1 The DREA PROPELLER GEOMETRY record

The DREA PROPELLER GEOMETRY record is used to read the definition of the blade
from a DREA propeller geometry file [16]. The file is read into a PropSectionData

struct which is used to construct the blade. The record has the following format:

{DREA PROPELLER GEOMETRY: file-name
<Records defining the blade properties >

}DREA PROPELLER GEOMETRY

where file-name is the name of the file. The following records can be used to define
the blade properties. Use

{LEFT HANDED} or {RIGHT HANDED}

to make the blade left- or right-handed. If neither is present it will be right-handed.
Use

{CLOSE TRAILING EDGE}

to ensure that the trailing edges of all blade sections are closed. To specify whether
they should be dull or sharp after closure use
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{DULL TRAILING EDGE} or {SHARP TRAILING EDGE}

If neither of these is present, a sharp closure will be used. The algorithm described
in Sec. 6.2.2 is used to close the sections. To ensure that the surface of reference
sections is closed at the tip, use

{CLOSE TIP}

and

{DULL TIP} or {SHARP TIP}

to specify whether it should be dull or sharp after closure. The default is a dull tip.
The records

{C1} or {C2}

are used to specify that the blade surface is C1 or C2. If the blade is C1, the surface of
reference sections will be defined as described in Sec. 6.2.1.1 and the curves defining
the rake, skew, etc. will be defined using Hermite splines; if it is C2 the surface of
reference sections will be defined as described in Sec. 6.2.1.2 and the rake, skew, etc.
will be defined using standard cubic splines. The record

{SPLINE REPRESENTATION}

can be used to require that the blade surface be replaced by a tensor product spline:
see Sec. 6.2.3.

6.2.6.2 The BLADE SECTIONS record

The BLADE SECTIONS record specifies a series of blade sections, each with an airfoil to
define the section shape and values of r, p/D, L/D, θs and either iT or iG. These are
used to construct a series of BladeSections which are used to construct the blade.
It has the following format:

{BLADE SECTIONS

{SKEW IN DEGREES} or {SKEW IN RADIANS}

{USE GENERATOR RAKE} or {USE TOTAL RAKE}

{SECTION: r p/D L/D θs rake
<Records to define an airfoil: see Ref. 10, Sec. 7 >

}SECTION

. . . ! More SECTION records. There should be at least two.

{DIAMETER: diameter }

<Records defining the blade properties >
}BLADE SECTIONS

The records SKEW IN DEGREES and SKEW IN RADIANS determine whether the values
of θs in the SECTION records are interpreted as angles in radians or degrees. If neither
is present, the skew angle will be in degrees.
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Similarly, the records USE GENERATOR RAKE and USE TOTAL RAKE determine whether
the values of rake are interpreted as total rake, iG or generator rake iT . If neither is
present total rake is assumed.

The records defining the blade properties are the same as for the DREA PROPELLER

GEOMETRY record.

6.2.6.3 The SCALED BLADE SECTIONS record

The SCALED BLADE SECTIONS record specifies a series of blade sections all constructed
from a single thickness distribution and mean line offset curve (see Ref. 10, Sec. 6.1).
Each section has an associated value of r, t/L, c/L, p/D, L/D, θs, and either iT or
iG, where t is the thickness and c is the cambre. The thickness distribution, mean line
offset curve, thickness and cambre are used to construct an airfoil for each section.
These are used to construct a series of BladeSections which are used to construct
the blade. The record has the following format:

The SCALED BLADE SECTIONS record has the following format:

{SCALED BLADE SECTIONS

{SKEW IN DEGREES} or {SKEW IN RADIANS}

{USE GENERATOR RAKE} or {USE TOTAL RAKE}

{THICKNESS DISTRIBUTION AIRFOIL

<Records to define the thickness and cambre: see Ref. 10, Sec. 7.9 >
}THICKNESS DISTRIBUTION AIRFOIL

{SECTION: r t/L c/L p/D L/D θs rake }

. . . ! More SECTION records. There should be at least two.

{DIAMETER: diameter }

<Records defining the blade properties >
}SCALED BLADE SECTIONS

The records SKEW IN DEGREES, SKEW IN RADIANS, USE GENERATOR RAKE and USE

TOTAL RAKE affect the values of skew-angle and rake in the same way as in the BLADE

SECTIONS record and the records defining the blade properties are the same as for
the DREA PROPELLER GEOMETRY record.

The following records define the geometry of the David Taylor Model Basin (DTMB)
P4382 propeller blade, one of the NSRDC skewed propeller series [17]. It uses the
DTMB modification of the NACA 66 airfoil [18] for each of its sections and has no
generator rake. A display of the blade is shown in Fig. 10.
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Figure 10: The blade of DTMB P4382.

{SCALED BLADE SECTIONS

{SKEW IN DEGREES}

{USE GENERATOR RAKE}

{THICKNESS DISTRIBUTION AIRFOIL

{NACA 66 DTMB(mod): 1 1 }

}THICKNESS DISTRIBUTION AIRFOIL

! radius thick cambre pitch chord skew(deg.) rake

{SECTION: 0.2 0.2494 0.0389 1.4142 0.174 0.000 0.0 }

{SECTION: 0.3 0.1562 0.0370 1.4332 0.229 4.655 0.0 }

{SECTION: 0.4 0.1068 0.0344 1.4117 0.275 9.363 0.0 }

{SECTION: 0.5 0.0768 0.0305 1.3613 0.312 13.948 0.0 }

{SECTION: 0.6 0.0566 0.0247 1.2854 0.337 18.378 0.0 }

{SECTION: 0.7 0.0421 0.0199 1.1999 0.347 22.747 0.0 }

{SECTION: 0.8 0.0314 0.0161 1.1117 0.334 27.145 0.0 }

{SECTION: 0.9 0.0239 0.0134 1.0270 0.280 31.575 0.0 }

{SECTION: 1.0 0.0200 0.0100 0.9589 0.000 36.000 0.0 }

{DIAMETER: 0.3048 }

{RIGHT HANDED}

{CLOSE TRAILING EDGE}

{DULL TRAILING EDGE}

}SCALED BLADE SECTIONS
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7 Classes representing hubs

The hub is represented as a spine curve,

g(ξh) = r̂ gr(ξh) + ẑ gz(ξh), (35)

rotated about the z axis to form an axisymmetric surface. Here gz(ξh) is the distance
along the z axis and gr(ξh) is the distance of a point on the spine from the z-axis.
The function gz(ξh) should be increasing. A point on the hub is then parameterized
using ξh and θh:

x(ξh, θh) = x̂ gr(ξh) sin θh + ŷ gr(ξh) cos θh + ẑ gz(ξh). (36)

With these definitions we have θh = −θ, where θ is the angular coordinate defined
in Eq. (3). The change in sign has been made to maintain outward pointing normals

to the hub surface: i.e. ξ̂h × θ̂h is outward pointing. The intersection of the propeller
reference line with the hub is at θh = 0.

7.1 The base class Hub

The base class Hub represents a propeller hub. It is a specialization of the CurveLib
class AxisymmetricSurface<Float> (see Ref. 1, Sec. 8.1) which is itself a special-
ization of Curve<2U,Point,Float>, so a Hub is a specialization of a Surface as
defined in Sec. 5. Like all propeller surfaces, the hub is non-dimensionalized using
the propeller diameter.

Specializations of Hub are provided for defining cylindrical hubs with or without hemi-
spherical end caps and for defining a hub using splined offsets. The specializations are
described in Secs. 7.1.1–7.1.3. Fig. 11 is an inheritance diagram for the hub classes
and Fig. 12 shows examples of hubs created using the derived classes.

Hub provides the alias ZRPoint to represent a point (z, r) returned by the spine func-
tion; it is equivalent to VecMtx::VecN<2U,Float>. AxisymmetricSurface<Float>

also provides the following alias for the type of the function object representing the
spine of the surface:

typedef CurveLib::Curve<1U,ZRPoint,Float> SpineCurveType;

Hub has two constructors, the default (no argument) constructor, and

Hub(SpineCurveType s, Float xih_lo, Float xih_hi);

which makes a hub using s as the spine. The range for ξh is given by xih_lo and
xih_hi: i.e. the upstream end of the hub is at ξh = xih_lo and the downstream end
at ξh = xih_hi. An existing hub can also be redefined in a similar way using
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CurveLib::Curve<2U,Point,Float>

CurveLib::AxisymmetricSurface<Float>

Hub

SplineHub CylindricalHub CigarHub

Figure 11: An inheritance diagram for the class Hub.

void define(SpineCurveType s, Float xih_lo, Float xih_hi);

The function object representing the spine can be obtained using

SpineCurveType spine_curve() const;

Its range for the parameter ξh can be obtained using

void spine_range(Float &xih_lo, Float &xih_hi) const;

The range of θh is unlimited. The range of z values is obtained using

void z_range(Float &z_lo, Float &z_hi) const;

The spatial coordinate z is a function only of ξh. The member function

Float z(Float xih, unsigned n = 0) const;

is provided as a convenience for calculating z at ξh. The argument n specifies the
number of derivatives to be taken: i.e. if n is positive, then the value of dnz/dξn

h is
returned instead. This function is usually very efficient as it only involves evaluation
of gz(ξh) or its derivatives.

The member function

Float xi(Float z, unsigned n = 0) const;

performs the inverse calculation returning ξh or its derivatives given a value of z. In
general it is only an approximation calculated by using a Newton-Raphson iteration
to solve gz(ξh) = z (but this may be changed by derived classes). Control over the
accuracy of xi is provided by the following two member functions:

Float get_xi_accuracy() const;

Float set_xi_accuracy(Float acc);
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Cylindrical Hub
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Cigar Hub
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Splined Hub

Figure 12: Hubs created by the CylindricalHub, CigarHub and SplineHub classes.
The spine for each hub is at the left, its appearance in three-dimensions at the right.
The red dots on the spine of the splined hub show the points interpolated to create
the spine.
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The latter returns the previous value of the accuracy. If the accuracy of xi is acc

then |z(xi(z_val))-z_val| < acc. By default the accuracy will be the propeller
accuracy (obtained from get_propeller_accuracy: see Sec. 2.5) at the time the
hub is constructed or defined; however, derived classes may use a different default
accuracy, in particular when ξh can be determined analytically so that the accuracy
is effectively zero.

It is straightforward to evaluate points on the hub using parameters (ξh, θh) by using
the standard evaluation function for a CurveLib function object. The following mem-
ber functions provide a similar capability when one wants to use z as the parameter
instead of ξh.

Point value_at_z(Float zh, Angle<Float> theta) const;

Returns a point on the hub as a function of z and θh.

Point value_at_z(Float zh, Angle<Float> theta,

unsigned dz, unsigned dtheta) const;

Returns a point on the hub, or its derivatives, as a function of z and θh; dz

derivatives with respect to z are taken and dtheta with respect to θh.

ZRPoint spine_value_at_z(Float zh, unsigned d = 0) const;

Returns the value of the spine or its derivatives as a function of z.

The member function

CurveLib::Curve<3U,SurfaceParam,Float> parameter_curve() const;

returns a function object that, when given a Cartesian point (x, y, z), projects it
radially onto the hub, then returns the hub parameters which generate the projected
point: i.e. it will return (ξh, θh) =

(
ξ(z), arctan(x/y)

)
where ξ(z) is the function

implemented by member function Hub::xi. The accuracy of the returned curve is
given by the accuracy of Hub::xi when parameter_curve is called: i.e. if p is the
value of the curve, and acc is the value returned by hub.get_xi_accuracy, then
hub(p) will be within acc of the projected point. The θh value returned by the curve
is always in the range [−π, π]. If a curve whose value is a Cartesian point is composed
with the parameter curve, the resulting curve may be discontinuous at θh = ±π. The
returned curve is only well-defined for values of z in the range returned by z_range

and for r =
√

x2 + y2 > 0.

The member function

CurveLib::Curve<3U,XiThetaRPoint,Float> parameter_3d_curve() const;

is in all respects similar to parameter_curve, except that it returns a function object
that returns points in the hub coordinate system (ξh, θh, r) instead of just the hub
parameters (ξh, θh). XiThetaRPoint is an alias for VecMtx::VecN<3U,Float>.
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The member function

CurveLib::Curve<3U,Float,Float> distance_above_hub_curve() const;

returns a function object that, given a Cartesian point (x, y, z), returns the distance
of the point above the hub as measured along a radial line (not along a normal to

the hub): i.e. it returns d =
√

x2 + y2 − gr

(
ξ(z)

)
. The function object returned by

distance_above_hub_curve is defined only for values of z in the range returned by
z_range.

To determine if a Cartesian point x is inside the hub, use the member function

int is_inside(const Point &x) const;

The possible returned values are

0: if x is inside the hub;
1: if x is above the hub;
2: if x is upstream of the start of the hub; and
3: if x is downstream of the end of the hub.

The hub may be split into a rotating part and a stationary part at z = zh: the
portion with z < zh rotates; the portion with z > zh is stationary. The inclusion of
this feature was made to facilitate the representation of a podded propulsor in which
the propeller is upstream of the fixed portion of the pod. The following member
functions support this feature:

Float z_transition() const;

Returns the value of zh.

void set_z_transition(Float z);

Sets the value of zh

bool has_z_transition() const;

Returns true if a value for zh has been defined.

The size of a hub can be scaled simply by multiplying it by a Float:

Hub operator*(const Hub &h, Float s);

Hub operator*(Float s, const Hub &h);

Each function returns a hub equivalent to h scaled by s.

7.1.1 Cylindrical hubs

The class CylindricalHub, a specialization of Hub, represents a cylindrical propeller
hub defined by

gr(ξh) = Rh/D, gz(ξh) = z0 + ξh(z1 − z0), (37)
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where Rh is the radius of the hub. The parameter ξh has the range [0,1] and in terms
of z is given by

ξh =
z − z0

z1 − z0

. (38)

Since ξh is related to z by a simple analytic function, the member function xi

is always accurate to machine accuracy. Therefore the implicitly virtual function
set_xi_accuracy inherited from Hub does nothing.

CylindricalHub has a default constructor as well as the following:

CylindricalHub(Float radius, Float z0, Float z1);

where radius is the radius of the hub and z0 and z1 are the values of z at the
upstream and downstream ends, respectively. An existing cylindrical hub can be
redefined using

void define(Float r, Float z0, Float z1);

7.1.2 Cigar hubs

A CigarHub is a cylindrical propeller hub with hemispherical end caps; it is a spe-
cialization of Hub. Its spine is defined by

gz(ξh) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 + Rh

[
1 − cos

(
πξh

2ξh0

)]
for ξh < ξh0

z0 + Rh +
(ξh − ξh0)(z1 − z0 − 2Rh)

ξh1 − ξh0

for ξh0 ≤ ξh ≤ ξh1

z1 − Rh

[
1 − cos

(
π(1 − ξh)

2(1 − ξh1)

)]
for ξh1 < ξh

(39)

gr(ξh) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rh sin

(
πξh

2ξh0

)
for ξh < ξh0

Rh for ξh0 ≤ ξh ≤ ξh1

Rh sin

(
π(1 − ξh)

2(1 − ξh1)

)
for ξh1 < ξh

(40)

ξh0 = 1 − ξh1 =
πRh

2(πRh + z1 − z0 − 2Rh)
(41)

where Rh is the hub radius, z0 and z1 are the values of z at the upstream and
downstream ends of the hub and ξh0 and ξh1 are the values of ξh at which the upstream
and downstream end-caps meet the cylindrical central section. The parameter ξh has
the range [0,1] and is equivalent to the fractional arclength along the spine curve. It
can be represented in terms of z by inverting Eq. (39):
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ξh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ξh0

π
arccos

(
1 −

(z − z0)

Rh

)
for z < z0 + Rh,

ξh0 +
(z − z0 − Rh)(ξh1 − ξh0)

z1 − z0 − 2Rh

for z0 + Rh ≤ z ≤ z1 − Rh,

1 −
2(1 − ξh1)

π
arccos

(
1 +

z − z1

Rh

)
for z > z1 − Rh.

(42)

The implicitly virtual function set_xi_accuracy will do nothing since ξ can be de-
termined from z to machine accuracy.

CigarHub has a default constructor as well as the following:

CigarHub(Float radius, Float z0, Float z1);

where radius is the radius of the hub and z0 and z1 are the values of z at the
upstream and downstream ends, respectively. An existing cylindrical hub can be
redefined using

void define(Float r, Float z0, Float z1);

7.1.3 Splined hubs

A SplineHub is a Hub whose spine is represented by a Hermite spline through a
set of offsets (see Ref. 9, Sec. 8 for a description of Hermite splines and the class
Spline::HermiteSpline used to represent them). The slopes for the spline at the
offset points can be calculated in different ways.

Use the constructor

SplineHub(const Spline::HermiteSpline<ZRPoint,Float> &s);

to make a hub using s as the spine; the range of ξh is determined from the spline knot
sequence. A SplineHub can also be constructed from data in a PropSectionData:

SplineHub(const PropSectionData &p, bool c2 = false);

If c2 is true, the hub will be C2; otherwise it will only be C1. The following functions
can be used to redefine an existing hub; they are equivalent to the constructors with
the same arguments.

void define(const Spline::HermiteSpline<ZRPoint,Float> &s);

void define(const PropSectionData &p, bool c2 = false);

The knots used by the spine can be obtained using

const Spline::KnotSeq<Float>& get_spine_knots() const;

The class Spline::KnotSeq<Float> is described in Ref. 9, Sec. 3.
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7.2 Defining a hub from a file

A Hub can be defined by reading records in OFFSRF format [11] from an input file.
The class HubReader is used to read the file and construct the hub. HubReader is
derived from Offsrf::Base so it has an inserter defined for reading the file. It also
has a public member hub of type Hub to represent the hub. The following code reads
the file hub.dat to define a hub.

using namespace PGeom;

HubReader reader(true);

Offsrf::IFStream in("hub.dat");

if (!in) throw Error("Could not open hub.dat");

in >> reader;

if (!in.good() && !in.eof())

throw Error("Error when reading hub.dat.");

if (!reader.hub.is_defined())

throw Error("Hub undefined after reading blade.dat.");

Hub hub = reader.hub;

The boolean argument of the HubReader constructor affects whether the hub will
be dimensional or non-dimensional when it is defined by reading a DREA propeller
geometry file (see the description of the DREA PROPELLER GEOMETRY record below).
If the argument is true, the hub will be non-dimensionalized using the propeller
diameter; otherwise it will have its true dimensions. When the hub is to be included
as a component of a propeller, the argument should always be true.

HubReader recognizes four different records to define a hub: CYLINDER, CIGAR, DREA

PROPELLER GEOMETRY and OFFSETS. They are mutually exclusive, so only one of them
should be present in the file.

The DREA PROPELLER GEOMETRY record reads a file in the DREA propeller geometry
format [16] and defines the hull from the hub offset data within it. The record has
the following format:

{DREA PROPELLER GEOMETRY: file-name }

where file-name is the name of the file containing the description of the propeller.

The CYLINDER record defines a cylindrical hub; it has the following format:

{CYLINDER: Rh zmin zzmax }

where Rh is the hub radius, and zzmin and zzmax define the range of z for the hub.
When the hub is to be included as a component of a propeller, these values would be
non-dimensionalized using the propeller diameter.
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The CIGAR record defines a cylindrical hub with hemispherical end caps. Its format
is similar to that for the cylindrical hub:

{CIGAR: Rh zmin zzmax }

The total z range must exceed the hub diameter: i.e. zzmax − zmin > 2Rh.

The OFFSETS record is used to define a hub by splining a sequence of offsets. It has
the following format:

{OFFSETS

z1 r1

. . .
zn rn

}OFFSETS

The offsets are used to construct a C2 SplineHub.

In addition, the following record can be used to define the z value for the transition
between the rotating and stationary portions of the hub.

{Z TRANSITION: z }

It should appear after the record used to define the hub.
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Figure 13: The coordinates for the airfoil defining a duct cross-section.

8 Classes representing ducts

Like a hub, a propeller duct is represented as an axisymmetric surface created by
rotating a cross-section curve,

c(ξd) = r̂ cr(ξd) + ẑ cz(ξd), (43)

about the z axis. The cross-section is defined by scaling and translating an airfoil:

cz(ξd) = Ld

(
xd(ξd) − ζp

)
, cr(ξd) = Ldyd(ξd) + roff , (44)

where (xd, yd) is the airfoil, Ld is the chord length of the duct, ζp is the distance from
the leading edge of the duct to the propeller plane, and roff is a radial offset.

The standard airfoil parameterization is used so that parameter ξd increases from 0.0
at the trailing edge on the inner surface, to 0.5 at the leading edge, to 1.0 at the
trailing edge on the outer surface: see Eq. 44. The coordinate xd is 0.0 at the leading
edge of the duct and 1.0 at the trailing edge so that is is equivalent to the fractional
chord length, ζ . However, note that unlike most airfoils, yd is usually not 0.0 at the
leading and trailing edges: instead, yd is 0.0 on the lowest point of the inner side of
the airfoil (i.e. the side that corresponds to the inner surface of the duct).

A point on the duct is then parameterized using ξd and θd:

x(ξd, θd) = (x̂ sin θd + ŷ cos θd) cr(ξd) + ẑ cz(ξd) (45)

With these definitions we have θd = θh = −θ, where θh is the angular hub parameter
and θ is the angular coordinate defined in Eq. (3). The normals to the duct are
outward pointing.
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8.1 The class Duct

The class Duct represents a propeller duct. It is a specialization of the CurveLib class
AxisymmetricSurface<Float> (see Ref. 1, Sec. 8.1) which is itself a specialization
of Curve<2U,Point,Float>, so a Duct is a specialization of a Surface as defined in
Sec. 5. Like all propeller surfaces, the duct is non-dimensionalized using the propeller
diameter.

Duct has three constructors in addition to the default and copy constructors.

Duct(Afoil::Airfoil<Float> afoil, Float chord_over_radius,

Float zeta_prop, Float r_offset);

makes a duct using afoil to define the cross-section shape. The values of Ld/R, ζp

and roff /R are given by chord_over_radius, zeta_prop and r_offset respectively.

There are several duct cross-sections that have been used widely both on real ships
and as test cases to validate computations. Two of them, the MARIN 19A and the
MARIN 37 ducts shown in Fig. 14, are available using the following constructor:

Duct(const Str &desig, Float chord_over_radius, Float zeta_prop,

Float r_offset);

This makes a duct using a cross-section having a standard designation given by desig;
currently its value must be MARIN 19A or MARIN 37 but other standard ducts may be
added in the future. An Error is thrown if the designation is not recognized. The
remaining arguments are the same as in the previous constructor.

A duct can also be constructed from a DuctData struct.

Duct(const DuctData &dd);

DuctData has the following public members:

description;

A description of the duct.

Float chord_over_radius;

The value of Ld/R.

Float z_prop;

The value of ζp.

Float r_offset;

The value of roff /R.

std::vector<AirfoilPt> xup;

Points on the upper surface of the airfoil defining the duct cross-section. The
points are in order from the leading edge to the trailing edge. The abscissa
of each point is the fractional chord length measured from the leading edge.
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MARIN 19A Duct

MARIN 37 Duct

Figure 14: The MARIN 19A and MARIN 37 ducts. The duct cross-section is shown
at the left, the duct in three-dimensions along with a propeller and cigar hub at
the right.
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The ordinate is the distance of the point above the mean cambre line, also
non-dimensionalized using the chord length.

std::vector<AirfoilPt> xdown;

Similar to xup but the points are on the inner surface.

bool sharp_te;

True if the trailing edge is sharp.

A function object for the duct cross-section can be obtained using

CurveLib::Curve<1U,ZRPoint,Float> cross_section() const;

Here ZRPoint represents a point (cz(ξd), cr(ξd)) on the duct cross-section; it is an
alias for VecMtx::VecN<2U,Float>. Values of cz(ξd) or its derivatives can also be
obtained using

Float z(Float xid, unsigned d = 0) const;

where xid is the value of ξd and d is the number of derivatives to take.

The airfoil
(
xd(ξd), yd(ξd)

)
used to define the cross-section is obtained using

Afoil::Airfoil<Float> get_airfoil() const;

The member function

int is_inside(const Point &x) const;

determines if the point x is inside the duct. The possible returned values are

0: if x is inside the duct;
1: if x is above the inner surface of the duct;
2: if x is upstream of the start of the duct; and
3: if x is downstream of the end of the duct.

The member function

Float distance_to_inner_surface(const Point &x) const;

returns the distance of the point x from the inner surface of the duct. A positive
value means the point is below the inner surface, negative means it is above. It is
useful for determining the clearance between the propeller tip section and the duct.
Alternatively, suppose the function object, crv, represents a curve x(ξ) which returns
a point in space as a function of ξ. Then the member function

CurveLib::Curve<1U,Float,Float> distance_to_inner_surface(

const CurveLib::Curve<1U,Point,Float> &crv) const;

returns a function object giving the distance of x(ξ) from the inner duct surface as a
function of ξ.

The size of a duct can be scaled simply by multiplying it by a Float:
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Duct operator*(const Duct &d, Float s);

Duct operator*(Float s, const Duct &d);

Each function returns a duct equivalent to d scaled by s.

8.2 Making the trailing edge sharp

Most duct cross-sections have blunt trailing edges to facilitate their operation when
the ship is backing. However, some applications require that the trailing edge be
sharp: for example, boundary element methods require a sharp trailing edge to pre-
vent flow separation and to be able to apply a Kutta condition. A blunt trailing
edge can be made sharp by specifying the location of the sharp trailing edge and two
points, one on each side of the duct, where the modified geometry will be faired into
the original geometry. The trailing edge point is specified in the coordinate system
of the airfoil defining the cross-section denoted by (xd, yd). The two points where the
new and old surfaces are merged are specified by values of xd; these values must be
in (0,1).

Let (xd, yd) = (xte, yte) be the location of the new trailing edge and let xi and xo be
the value of xd for the points on the inner and outer surfaces, respectively, where the
old and new geometries are merged. Let ξi be the duct parameter ξd corresponding
to the value xi: i.e. xd(ξi) = xi. Similarly define ξo so that xd(ξo) = xo. The new
duct cross-section will then be defined as:

xd(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi + x′d(ξi)(ξ − ξi) + 1

2
x′′d(ξi)(ξ − ξi)

2

+
[
xi − xte − x′d(ξi)ξi + 1

2
x′′d(ξi)ξ

2
i

](ξ − ξi)
3

ξ3
i

for ξ < ξi;

xd(ξ) for ξi ≤ ξ ≤ ξo;

xo + x′d(ξo)(ξ − ξo) + 1

2
x′′d(ξo)(ξ − ξo)

2

+
[
xte − xo − x′d(ξo)(1 − ξo)

−1

2
x′′d(ξo)(1 − ξo)

2
](ξ − ξo)

3

(1 − ξo)3
for ξ > ξo;

(46)

y(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yd(ξi) + y′d(ξi)(ξ − ξi) + 1

2
y′′d(ξi)(ξ − ξi)

2

+
[
yd(ξi) − yte − y′d(ξi)ξi + 1

2
y′′d(ξi)ξ

2
i

](ξ − ξi)
3

ξ3
i

for ξ < ξi;

yd(ξ) for ξi ≤ ξ ≤ ξo;

yd(ξo) + y′d(ξo)(ξ − ξo) + 1

2
y′′d(ξo)(ξ − ξo)

2

+
[
yte − yd(ξo) − y′d(ξo)(1 − ξo)

−1

2
y′′d(ξo)(1 − ξo)

2
](ξ − ξo)

3

(1 − ξo)3
for ξ > ξo.

(47)

This curve is C2.
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Figure 15: The MARIN 19A duct before (black) and after (blue) the trailing edge
has been made sharp. The red dots show the points where the new trailing edge was
faired into the original cross-section.

The trailing edge of a duct can be made sharp using the following Duct member
function:

void make_trailing_edge_sharp(const ZRPoint &te,

Float x_i, Float x_o,

Float *xi_i, Float *xi_o);

Here te specifies the new trailing edge point, x_i is the value of xi and x_o is the
value of xo. The values of ξi and ξo are returned in xi_i and xi_o respectively.

For example, a MARIN 19A duct could be closed as follows with trailing edge at
(xd, yd) = (1.0, 0.023), xi = 0.98 and xo = 0.5:

using namespace PGeom;

Duct duct19A("MARIN 19A",1.0,0.5,1.0875);

ZRPoint te(1.0,0.023);

Float xi_i, xi_o;

duct19A.make_trailing_edge_sharp(te,0.98,0.5,&xi_i,&xi_o);

The result is shown in Fig. 15. The blue curve is the new trailing edge. The two
red dots show the locations where the new trailing edge was faired into the original
cross-section.

Use

bool has_sharp_trailing_edge() const;

to determine whether the duct has a sharp trailing edge.

8.3 Defining a duct from a file

A Duct can be defined by reading records in OFFSRF format [11] from an input file.
The class DuctReader is used to read the file and construct the duct. DuctReader is
derived from Offsrf::Base so it has an inserter defined for reading the file. It also
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has a public member duct of type Duct to represent the duct non-dimensionalized
using the propeller diameter. The following code reads the file duct.dat to define a
duct.

using namespace PGeom;

DuctReader reader;

Offsrf::IFStream in("duct.dat");

if (!in) throw Error("Could not open duct.dat");

in >> reader;

if (!in.good() && !in.eof())

throw Error("Error when reading duct.dat.");

if (!reader.duct.is_defined())

throw Error("Duct undefined after reading blade.dat.");

Duct duct = reader.duct;

The following records are used to specify the size and location of the duct:

{CHORD LENGTH/PROP RADIUS: L/R }

{RADIAL OFFSET: roff /R }

{Z PROP/CHORD: ζp }

DuctReader recognizes three different records to define the shape of the duct cross-
section: AIRFOIL, DESIGNATION and and OFFSETS. They are mutually exclusive, so
only one of them should be present in the file.

An AIRFOIL record simply encloses records to define an arbitrary airfoil:

{AIRFOIL

<Records to define an airfoil: see Ref. 10, Sec. 7 >
}AIRFOIL

A DESIGNATION record defines the cross-section using a string to specify one of the
pre-defined duct cross-sections:

{DESIGNATION: designation }

Currently designation must be either MARIN 19A or MARIN 37.

An OFFSETS record defines a series of (xd, yd) offsets to define the airfoil shape:

{OFFSETS

xd1 yd1

. . .
xdn ydn

}OFFSETS

To ensure that the trailing edge of the duct is sharp, use the following record:
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{SHARP TRAILING EDGE: xte yte xi xo }

For example, the following records define the duct whose cross-section is shown in
Fig. 15:

{DESIGNATION: MARIN 19A }

{CHORD LENGTH/PROP RADIUS: 1.0 }

{RADIAL OFFSET: 1.0875 }

{Z PROP/CHORD: 0.5 }

{SHARP TRAILING EDGE: 1.0 0.023 0.98 0.5 }
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9 Classes representing propellers

There are two classes for representing propellers: Propeller and SectionPropeller.
The former uses a Blade to represent the reference blade, the latter a SectionBlade.

9.1 The base class Propeller

A propeller is defined using three basic components: a reference blade, a hub and a
duct. Although the propeller classes defined here will allow any of these components
to be missing, in practice the reference blade will always be present, the hub will
almost always be present, but the duct is often missing. Each component is defined
independent of the others. The hub and the reference blade intersect (or at least
touch) and are connected by their intersection curve. Currently, no provision is made
for fillets between the blade and the hub.

Propeller is a base class for propellers. It contains a reference blade of type Blade

(see Sec. 6.1), a hub of type Hub (see Sec. 7) hub and a duct of type Duct (see Sec. 8).
The number of blades is also stored.

The Propeller class must also store the propeller diameter since the reference blade,
hub and duct are all given in non-dimensional form.

9.1.1 Constructors

Propeller has the following constructor in addition to the default (no argument)
and copy constructors:

Propeller(unsigned nb, Float d, Blade b, Hub h = Hub(),

Duct dct = Duct());

It makes a propeller with diameter d, nb copies of blade b, a hub h and a duct dct.
When the the default argument is used for the duct, it will remain undefined; the
propeller is then assumed to have no duct. Similarly, if the hub is undefined, the
propeller will have no hub.

The propeller can also be defined using the member function:

virtual void define(unsigned nb, Float d, Blade b, Hub h = Hub(),

Duct dct = Duct());

which is similar to the constructor. It is virtual so that it can be redefined by
SectionPropeller to ensure that the blade is actually a SectionBlade.

If the default constructor is used, the propeller remains undefined. It must later be
defined by assignment to another propeller, or by using the define function.
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9.1.2 Member functions for the propeller description

For identification purposes, each propeller contains the following descriptive strings:

• an origin: the organization where the propeller originated;

• a designation: the number or designator assigned to the propeller by the origi-
nating organization;

• a description: any other other information that might be useful for identifying
the propeller.

The following member functions are provided for setting and obtaining these strings:

void set_origin(const Str &s);

Str origin() const;

void set_designation(const Str &s);

Str designation() const;

void set_description(const Str &s);

Str description() const;

9.1.3 Member functions for obtaining the principal characteristic
of the propeller

The number of blades of the propeller can be obtained using

unsigned number_of_blades() const;

and its diameter using

Float diameter() const;

Use

bool is_right_handed() const;

to determine whether the propeller is right-handed: i.e. rotates clockwise when viewed
from astern.

9.1.4 Member functions for the propeller components

To determine which components a propeller has, you can use the member functions

bool has_blade() const;

bool has_hub() const;

bool has_duct() const;

Each returns true if that component is defined. To get a representation of one of the
components, use
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Blade get_blade() const;

Hub get_hub() const;

Duct get_duct() const;

The surfaces of blades other than the reference blade can be obtained using

Surface get_blade(unsigned n) const;

where n is the number of the blade you want. The numbering is from 0 to N −1 with
0 being the reference blade. If the surface is denoted bn(ξ, η), then

bn(ξ, η) = Mnb(ξ, η) (48)

where Mn is a 3×3 rotation matrix which generates blade n from the reference blade
by rotating about the propeller axis:

Mn =

⎡
⎢⎣

cos(2πn/N) − sin(2πn/N) 0
sin(2πn/N) cos(2πn/N) 0

0 0 1

⎤
⎥⎦. (49)

To change one of the components, use

virtual void set_blade(Blade b);

virtual void set_hub(Hub h);

virtual void set_duct(Duct d);

These functions are virtual because changing a component may also require other
changes in derived classes. A cylindrical hub can also be added to the propeller using

void make_cylindrical_hub(Float radius, Float z0, Float z1,

bool endcaps);

which makes a cylindrical hub of given radius extending from z0 to z1 in the Z
direction. If endcaps is true, hemispherical end caps are added while keeping the
length of the hub unchanged: in this case an Error is thrown if 2*radius exceeds
z1-z0.

The surface of the blade will normally extend into the interior of the hub so that the
intersection between the blade and hub is well-defined. The member function

Surface blade_above_hub(unsigned n = 0) const;

returns a surface representing the portion of blade n above the hub. If there is
no hub, the surface is the same as the full blade surface. The first parameter of
the surface is the same as blade ξ. The second parameter, η′, varies from 0 at the
hub-blade intersection to 1 at the tip of the blade. Let ηh(ξ) denote the value of
η at which the blade intersects the hub (this can be obtained using the function
blade_param_curve_at_hub described in Sec. 9.1.6). Then

η′ =
η − ηh(ξ)

1 − ηh(ξ)
; η = (1 − η′)ηh(ξ) + η′. (50)

DRDC Atlantic TM 2013-177 65



If the surface is denoted bn(ξ, η′), then

bn(ξ, η′) = Mnb
(
ξ, (1 − η′)ηh(ξ) + η′

)
(51)

where Mn is given by Eq. (49).

9.1.5 Member functions to simulate a controllable pitch propeller

In order to simulate a controllable pitch propeller, the reference blade can be ro-
tated about the propeller reference line by a given angle. Use the following member
functions:

void set_blade_rotation_around_generator(Angle<Float> ang);

Angle<Float> get_blade_rotation_around_generator() const;

When a new blade rotation is set, the Blade function set_rotation is called to
rotate the blade, then a check is made to ensure that the blade/hub intersection is
still well-defined. If it is not, a warning message will be written (see Sec. 2.4).

9.1.6 Member functions for the hub/blade intersection

To check that the intersection of the blade and the hub is defined, use

bool blade_hub_intersection_defined() const;

It will return false, for example, if either of the blade or hub are missing or if the root
of the blade is above the hub surface.

The following two member functions return the intersection curve in the parameter
space of the blade and in the parameter space of the hub respectively:

SurfaceCurve blade_param_curve_at_hub() const;

SurfaceCurve hub_param_curve_at_blade() const;

Each function will throw a ProgError if the intersection is not defined. The parameter
of each of the returned curves is the same as the blade parameter ξ. These curves
can be composed with the blade and hub, respectively, to create curves which return
points on the intersection in (x, y, z) coordinates:

using namespace PGeom;

Propeller prop;

Blade blade = prop.get_blade();

Hub hub = prop.get_hub();

SurfaceCurve b_param_crv = prop.blade_param_curve_at_hub();

SurfaceCurve h_param_crv = prop.hub_param_curve_at_blade();

CurveLib::Curve<1U,Point,Float>
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bcrv = blade(b_param_crv),

hcrv = hub(h_param_crv);

The curves bcrv and hcrv should be equivalent. In practice, because the intersection
curve cannot be calculated exactly, they will differ by a small amount. The accuracy
of the parametric intersection curves has been set so that for any xi with value in
[0.0,1.0], abs(bcrv(xi)-hcrv(xi)) will not exceed 0.1 times the current propeller
accuracy (as determined from the function get_prop_accuracy: see Sec. 2.5).

9.2 The class SectionPropeller

The class SectionPropeller is a specialization of the base class Propeller in which
the blade is represented as a SectionBlade rather than the more generic Blade

(SectionBlade is described in Sec. 6.2). Thus, its blades are constructed from a
series of airfoils along with curves to define the total rake, skew angle, pitch and
chord length. SectionPropeller inherits all the Propeller public member func-
tions except for Propeller::define and Propeller::set_blade which are hidden
to prevent a blade being assigned which is not a SectionBlade. The member function
get_blade is overloaded to return a SectionBlade:

SectionBlade get_blade() const;

SectionPropeller has default and copy constructors. Use

SectionPropeller(unsigned nb, Float d, SectionBlade b,

Hub h = Hub(), Duct dct = Duct());

to make a propeller with diameter d, nb copies of blade b, a hub h and a duct dct.
When the the default argument is used for the duct, it will remain undefined; the
propeller is then assumed to have no duct. Similarly, if the hub is undefined, the
propeller will have no hub.

A SectionPropeller with no duct can also be constructed from the data in a
PropSectionData (see Sec. 9.3).

SectionPropeller(const PropSectionData &pdata, bool rh = true,

bool close_te = true, bool splined = false,

bool c2 = false, bool close_tip = false);

The arguments are passed to SectionBlade and SplineHub constructors; see Sec. 6.2
and Sec. 7.1.3 for details on how the arguments are actually used.

The following member functions can be used to redefine a SectionPropeller. They
are similar to the constructors having the same arguments.

void define(unsigned nb, Float d, SectionBlade b, Hub h = Hub(),

Duct duct = Duct());
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void define(const PropSectionData &pdata, bool rh = true,

bool close_te = true, bool splined = false,

bool c2 = false, bool close_tip = false);

9.3 The class PropSectionData
In the early 1980s, DRDC (then DREA) developed a system for storing information
concerning ship propulsion. Part of that system was a file format to specify offset data
describing the geometry of a propeller [16]. The class PropSectionData represents
the data in a DREA propeller geometry file. It can be interpolated in various ways
to generate smooth representations of the propeller.

The blade sections are defined using a sequence of (xs, ys) points to define the section
shape: see Fig. 3. They are represented by the class AirfoilPt which, as explained
in Sec. 6.2.1, is an alias for VecMtx::VecN<2U,Float>.

The following public members represent the data:

Str origin;

The origin of the propeller.

Str designation;

The designation of the propeller.

Str description;

The description of the propeller.

unsigned num_blades;

The number of blades on the propeller

Float diameter;

The diameter of the propeller.

Float hub_diameter;

The ratio of the hub diameter to the propeller diameter.

std::vector<Float> radii;

The value of r for each section. The radii must be strictly increasing.

std::vector<Angle<Float> > skew_vals;

The values of the skew at each of the radii.

std::vector<Float> rake_vals;

The values of the rake at each of the radii. These values are non-dimensionalized
with respect to the propeller diameter.

std::vector<Float> pitch_vals;

The values of the pitch at each of the radii. These values are non-dimensionalized
with respect to the propeller diameter.
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std::vector<Float> chord_vals;

The values of the chord length at each of the radii. These values are non-
dimensionalized with respect to the propeller diameter.

std::vector<std::vector<AirfoilPt> > xup;

A sequence of (xs, ys) points on the suction side of the blade section at each
radius. The points are in order from the leading edge to the trailing edge and
are non-dimensionalized using the chord length of the section. The abscissa of
each point is the fractional chord length measured from the leading edge: i.e. 0
at the leading edge, 1 at the trailing edge. The ordinate is the distance of the
point above the mean cambre line.

std::vector<std::vector<AirfoilPt> > xdown;

Similar to xup but giving the points on the pressure side of the section curve
at each radius. Since the points are normally below the mean cambre line, the
ordinates of these points are usually negative.

std::vector<Hub::ZRPoint> hub_points;

Points on the spine of the hub. Each point is a (z, r) pair where z is the distance
along the hub non-dimensionalized with respect to the propeller diameter.

bool sharp_te;

True if the trailing edge is sharp on closed sections: i.e. the normal on the
suction side of the blade will not be the same as the normal on the pressure
side at the trailing edge.

bool sharp_tip;

True if the tip is sharp: i.e. there will not be a single well-defined normal to the
blade at the tip.

The following public member functions are also defined:

bool has_open_trailing_edge() const;

Returns true if the trailing edge is open: i.e. the thickness of the section at the
trailing edge is non-zero so that the blade does not close.

bool has_open_tip() const;

Returns true if the tip is open.

void add_points_at_leading_edge();

Ensures that on every section the offsets for both sides of the blade include a
point at the leading edge. If only the face has one, it will be copied to the back
and vice versa. If neither has one, the two leading points on the face and the two
leading points on the back will be splined and the location of the leading edge
point determined from the spline. If both have a point but they are different,
an Error is thrown.

The following functions can be used to read or write the data to I/O streams:
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std::istream& operator>>(std::istream&, PropSectionData&);

Reads propeller section data from an input stream in DRDC format. The
trailing edge is assumed to be sharp as this information is not present in the
DRDC geometry file.

std::ostream& operator<<(std::ostream&, const PropSectionData&);

Writes propeller section data to an output stream in DRDC format.

void describe(std::ostream&, PropSectionData&);

Writes a description of propeller section data to an output stream.

9.4 Defining a propeller from a file
A SectionPropeller can be defined by reading records in OFFSRF format [11] from
an input file. The class PropReader can be used to read the file and construct the
propeller. PropReader is derived from Offsrf::Base so it has an inserter defined for
reading the file. It also has a public member propeller of type SectionPropeller

to represent the propeller. The following code reads the file prop.dat to define a
propeller.

using namespace PGeom;

PropReader reader;

Offsrf::IFStream in("prop.dat");

if (!in) throw Error("Could not open prop.dat");

in >> reader;

if (!in.good() && !in.eof())

throw Error("Error when reading prop.dat.");

SectionPropeller propeller = reader.propeller;

The input file can contain a DREA PROPELLER GEOMETRY record:

{DREA PROPELLER GEOMETRY: file-name
<Records defining the blade properties >

}DREA PROPELLER GEOMETRY

where file-name is the name of the file and the records defining the blade properties
are the same as those described in Sec. 6.2.6.1.

Alternatively, the propeller can be defined using records to define each of its compo-
nents as follows:

{NUMBER OF BLADES: N }

{DIAMETER: D }

{BLADE

<Any records recognized by BladeReader: see Sec. 6.2.6 >
}BLADE

{BLADE ROTATION AROUND GENERATOR: θ } ! degrees
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{HUB

<Any records recognized by HubReader: see Sec. 7.2 >
}HUB

{DUCT

<Any records recognized by DuctReader: see Sec. 8.3 >
}DUCT

Any of these records can also be used after a DREA PROPELLER GEOMETRY record; the
components defined in the geometry file will then be replaced by the new component
defined by the records which succeed it.

The following records define the geometry of the David Taylor Model Basin (DTMB)
P4119 propeller [19] often used as a test case for propeller analysis programs. It uses
the DTMB modification of the NACA 66 airfoil [18] for each of its sections and has
no generator rake or skew. A cigar hub is used and there is no duct. A display of the
blade is shown in Fig. 16.

{ORIGIN: DTMB }

{DESIGNATION: P4119 }

{NUMBER OF BLADES:3}

{DIAMETER:0.3048}

{BLADE

{SCALED BLADE SECTIONS

{USE GENERATOR RAKE}

{THICKNESS DISTRIBUTION AIRFOIL

{NACA 66 DTMB(mod): 1 1 }

}THICKNESS DISTRIBUTION AIRFOIL

! r/R t/L c/L p/D L/D skew i_G/D

{SECTION: 0.20 0.20550 0.01429 1.105 0.3200 0.0 0.0 }

{SECTION: 0.30 0.15530 0.02318 1.102 0.3625 0.0 0.0 }

{SECTION: 0.40 0.11800 0.02303 1.098 0.4048 0.0 0.0 }

{SECTION: 0.50 0.09160 0.02182 1.093 0.4392 0.0 0.0 }

{SECTION: 0.60 0.06960 0.02072 1.088 0.4610 0.0 0.0 }

{SECTION: 0.70 0.05418 0.02003 1.084 0.4622 0.0 0.0 }

{SECTION: 0.80 0.04206 0.01967 1.081 0.4347 0.0 0.0 }

{SECTION: 0.90 0.03321 0.01817 1.079 0.3613 0.0 0.0 }

{SECTION: 0.95 0.03228 0.01631 1.077 0.2775 0.0 0.0 }

{SECTION: 1.00 0.03125 0.01175 1.075 0.0000 0.0 0.0 }

{RIGHT HANDED}

{CLOSE TRAILING EDGE}

{DULL TRAILING EDGE}

}SCALED BLADE SECTIONS

}BLADE

{CIGAR HUB: 0.1 -0.3333 0.3 }
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Figure 16: The propeller DTMB P4119.
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10 Concluding remarks

A library of C++ classes has been written to permit the accurate representation of
propeller geometry. The library is based on the CurveLib and Airfoil libraries of C++
classes that have been documented previously [1,9,10].

The propeller geometry can be used in any C++ application for which a repre-
sentation of the propeller is needed. They are already being used in the program
Provise [2,3] developed by Cooperative Research Ships as a front end to its propeller
analysis code PROCAL [4,5], and in an application for generating IGES [15] repre-
sentations of propellers suitable for use in RANS solvers [6,7]. These applications are
being used by DRDC to support the design of the propellers for the new ships in the
Royal Canadian Navy.
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List of symbols

ε The propeller accuracy.

ζp The location of the propeller plane relative to the duct leading edge as a
fraction of the duct chord length.

ηh(ξ) The value of η at the intersection of the reference blade with the hub.

ηmax The maximum value of η on the blade.

ηmin The minimum value of η on the blade.

ηtip The value of η at the blade tip.

θ Angular coordinate about the propeller axis: see Sec. 4.

θle The value of θ for the point on the leading edge of a blade section.

θs Skew angle.

θte The value of θ for the point on the trailing edge of a blade section.

(ξ, η) Parameters for a point on the reference blade.

(ξh, θ) Parameters for a point on the hub.

ξtip The value of ξ at the blade tip.

φ Pitch angle.

c Cambre of a blade section.

D Propeller diameter.

iG Generator rake.

iS Skew-induced rake.

iT Total rake.

L Chord length of a blade section.

Ld Chord length of propeller duct.

M A unitary matrix to transform points from the propeller coordinate
system to the hull coordinate system.

N The number of blades.
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P Pitch.

r The distance of a point from the propeller axis normalized using the
propeller radius.

roff The radial offset of the duct cross-section shape.

R The propeller radius.

t Thickness of a blade section.

(X, Y, Z) Cartesian coordinates aligned with the propeller axis: see Sec. 4 and
Fig. 1.

X0 The centre of the propeller disk in hull coordinates.

Xh A point in hull coordinates.

Xp A point in propeller coordinates.

(x, y, z) Cartesian coordinates aligned with the propeller axis and
non-dimensionalized using the propeller diameter: see Sec. 4.

(xd, yd) Coordinates of the airfoil defining a duct cross-section: see Eq. 44.

xi, xo Values of xd used to specify where a sharp duct trailing edge is faired into
the original duct.

xle, xte The location of the sharp trailing edge of a duct cross-section.

(xs, ys) Coordinates of a blade section: see Fig. 3.

zh The value of z which splits the hub into rotating and stationary parts.

zR Cylindrical coordinate along the propeller axis: zR = Z/R.

zle
R The value of zR for the point on the leading edge of a blade section.

zte
R The value of zR for the point on the trailing edge of a blade section.
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Afoil classes
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NACAAirfoil, 29
Airfoil classes, 8
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blade overhang, 1

coordinate systems, 9–11
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CurveLib classes
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HermiteExtendedCurve, 28
ImplicitCurve, 16
MultiCurve, 16, 23
OneParamCurve, 23
ParamRange, 13, 23
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DREA propeller geometry file, 42, 53,
68

exceptions
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AngleCurveType, 21
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CartesianToRadius, 10–11, 16
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67

PropReader, 70–71
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