

Malware memory analysis for non-
specialists
Investigating publicly available memory image 0zapftis (R2D2)

R. Carbone
Certified Forensic Hacking Investigator (EC-Council)
Certified Incident Handler (SANS)
DRDC Valcartier

Defence Research and Development Canada – Valcartier
Technical Memorandum
DRDC Valcartier TM 2013-177
October 2013

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

Abstract ……..

This technical memorandum examines how an investigator can analyse an infected Windows
memory dump. The author investigates how to carry out such an analysis using Volatility and
other investigative tools, including data carving utilities and anti-virus scanners. Volatility is a
popular and evolving open source-based memory analysis framework upon which the author has
proposed a memory-specific methodology for aiding fellow novice memory analysts. The author
examines how Volatility can be used to find evidence and indicators of infection. This technical
memorandum is the third in a series concerning Windows malware-based memory analysis. This
current work examines the 0zapftis (R2D2) infected memory image.

Résumé ….....

Ce mémorandum technique examine comment un investigateur peut analyser une image mémoire
d’une machine Windows infectée. L’auteur investigue les techniques d’analyse utilisant Volatility
et d’autres outils tels que les utilitaires de récupération de données et les scanneurs anti-virus.
Volatility est un cadre populaire d’analyse de mémoire en source libre sur lequel l’auteur s’appuie
pour proposer une méthodologie spécifique à la mémoire pour aider ses collègues analystes
novices. L’auteur examine comment Volatility peut être utilisé pour trouver des preuves ou des
indicateurs d’infection. Ce mémorandum technique est le troisième d’une série visant la
découverte de maliciel par le biais d’une analyse de la mémoire. Le présent travail examine
l’image de mémoire infectée par 0zapftis (R2D2).

DRDC Valcartier TM 2013-177 i

This page intentionally left blank.

ii DRDC Valcartier TM 2013-177

Executive summary

Malware memory analysis for non-specialists: Investigating
publicly available memory image 0zapftis (R2D2)

Carbone, R.; DRDC Valcartier TM 2013-177; Defence Research and
Development Canada – Valcartier; October 2013.

While memory analysis has largely been carried out by software reverse engineers and malware
analysts, the advent of memory analysis-based forensic frameworks such as Volatility has made it
possible for non-memory specialists to engage in the forensic analysis of malware-infected
memory images. By combining Volatility, data carving utilities and anti-virus scanners, novice
analysts have all the necessary tools required for conducting memory-based investigations.

The author’s primary objective is to demonstrate through tutorials how investigators can conduct
meaningful memory-based investigations on their own.

This technical memorandum examines the 0zapftis (R2D2) Trojan horse, in order to build a
compendium of tutorials that can be used by the Canadian Armed Forces and our partners as a
basis for conducting their own investigations. This work is the third in a series that examines
various Windows-based malware infected memory images. The two previous reports in this
series, TM 2013-018 and TM 2013-155, examined the Zeus Trojan horse (the former) while the
latter examined the Prolaco worm and SpyEye Trojan horse. It is hoped that these documents will
serve as a learning guide.

Although others have engaged in the analysis of some of these publicly available memory images,
the author is of the opinion that these analyses are insufficient for use as a learning guide.
Specifically, these analyses are either too limited in their investigative scope or report too little
information to be of use to budding memory analysts. Moreover, many of the analyses leave the
reader asking more questions than when he began, due to their overall in using a comprehensive
investigative context. Thus, the author has strived to ensure that his investigative actions and lines
of inquiry were well documented, even if some portions of a given investigation were
unsuccessful, in order to ensure that the investigative context used was coherent.

This work was carried out over a period of several months as part of the Live Computer Forensics
project, an agreement between DRDC Valcartier and the RCMP (SRE-09-015, 31XF20).

The results of this project will also be of great interest to the Canadian Forces Network
Operations Centre (CFNOC), the RCMP’s Integrated Technological Crime Unit (ITCU), the
Sûreté du Québec and other cyber investigation teams.

DRDC Valcartier TM 2013-177 iii

Sommaire

Malware memory analysis for non-specialists: Investigating
publicly available memory image 0zapftis (R2D2)

Carbone, R. ; DRDC Valcartier TM 2013-177 ; Recherche et développement
pour la défense Canada – Valcartier; octobre 2013.

Bien que l’analyse de la mémoire ait été principalement effectuée jusqu’à présent par les rétro-
ingénieurs logiciels et les analystes de maliciel, les avancées des cadres d’analyse de la mémoire,
tel que Volatility, permettent maintenant aux non-spécialistes de la mémoire d’effectuer des
analyses d’image mémoire de machines infectées par des maliciels. En combinant Volatility, les
outils de récupération de données et les scanneurs anti-virus, les analystes novices possèdent tous
les outils requis pour investiguer une image mémoire.

L’objectif premier de l’auteur est de démontrer, par le biais d’un tutoriel, comment un
investigateur peut réaliser une analyse de la mémoire par lui-même.

Ce mémorandum technique examine l’image de mémoire de 0zapftis (R2D2), pour monter un
ensemble de tutoriels qui pourront être utilisés par les Forces Armées canadiennes et nos
partenaires pour faire leurs propres investigations. Ce travail est le troisième d’une série visant la
découverte de maliciel par le biais d’une analyse de la mémoire d’une machine Windows
infectée. Les deux premiers rapports de cette série, TM 2013-018 et le TM 2013-155, examinait
le cheval de Troie Zeus (premier rapport) et le verre de Prolaco et le cheval de Troie SpyEye
(deuxième rapport). Nous espérons que ces documents serviront de guide d’apprentissage.

Bien que d’autres aient mentionné avoir effectué l’analyse de ces images mémoires publiques,
l’auteur croit que ces analyses ne sont pas assez détaillées pour servir de guide d’apprentissage.
Spécifiquement, ces analyses sont soit trop limitées dans ce qu’elle investigue ou ne donnent pas
assez de détails pour être complètement utiles. De plus, plusieurs de ces analyses font que le
lecteur a, en bout de ligne, plus de questions que de réponses étant donné le peu de détails
approfondis sur le contexte de l’investigation. L’auteur a donc déployé tous les efforts pour
s’assurer que toutes les actions et les champs d’enquête sont bien documentés et cohérents dans le
contexte, même si certains essais étaient infructueux.

Ce travail fut réalisé sur une période de plusieurs mois dans le cadre du projet "Live Computer
Forensics", qui est une entente entre RDDC Valcartier et la GRC (SRE-09-015, 31XF20).

Les résultats de ce projet seront également d'un grand intérêt pour le Centre d'opérations des
réseaux des Forces canadiennes (CORFC), le Groupe intégré de la criminalité technologique
(GICT) de la GRC, la Sûreté du Québec, ainsi que d’autres équipes d'enquêtes cybernétiques.

iv DRDC Valcartier TM 2013-177

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary .. iii
Sommaire iv
Table of contents ... v
List of tables ... viii
Acknowledgements .. ix
Disclaimer policy... x
Requirements, assumptions and exclusions .. xi
Target audience ... xii
1 Background ... 1

1.1 Objective.. 1
1.2 Why write new tutorials? ... 1
1.3 Infected memory image information ... 1
1.4 Data carving... 1
1.5 Malware and anti-virus scanners ... 2

1.5.1 Specifics ... 2
1.5.2 Caveat .. 2

1.6 Detailed list of software tools used .. 2
1.6.1 Anti-virus scanners .. 2
1.6.2 Data carving ... 3
1.6.3 Volatility .. 3

1.7 Investigative methodology .. 3
2 Memory investigation and analysis of R2D2.. 4

2.1 Background.. 4
2.1.1 Mise-en-scène .. 4
2.1.2 Context ... 4

2.2 Preliminary investigative steps .. 5
2.2.1 Safeguard the memory image .. 5
2.2.2 Preliminary anti-virus scanning results .. 5
2.2.3 Data carving and file hashing .. 5
2.2.4 Anti-virus scanning results for carved data files.. 6

2.3 Volatility analysis .. 7
2.3.1 Step 1: Background information, process listings and analysis 7

2.3.1.1 Imageinfo plugin .. 7
2.3.1.2 Pslist plugin .. 7
2.3.1.3 Psscan plugin ... 8

DRDC Valcartier TM 2013-177 v

2.3.1.4 Differentiating the output between the pslist and psscan plugins 9
2.3.1.5 Psxview plugin ... 10
2.3.1.6 Summary and analysis ... 11

2.3.2 Step 2: State-based information and analysis .. 11
2.3.2.1 Cmdscan and consoles plugins .. 11
2.3.2.2 Connscan plugin... 13
2.3.2.3 Connections plugin .. 16
2.3.2.4 Sockets and sockscan plugins .. 16
2.3.2.5 Filescan plugin ... 17
2.3.2.6 Mutantscan plugin .. 18
2.3.2.7 Handles plugin ... 19
2.3.2.8 Threads and Thrdscan plugins ... 19
2.3.2.9 Driverscan and DriverIRP plugins ... 21
2.3.2.10 Ldrmodules plugin ... 22
2.3.2.11 Summary and analysis ... 23

2.3.3 Step 3: Memory dumping and analysis of DLL and driver 24
2.3.3.1 Create data directories .. 24
2.3.3.2 Malfind plugin ... 24
2.3.3.3 Dlllist plugin .. 25
2.3.3.4 Dlldump plugin .. 26
2.3.3.5 Moddump plugin .. 33
2.3.3.6 Summary and analysis ... 34

2.3.4 Registry .. 35
2.3.4.1 Hivelist plugin .. 35
2.3.4.2 Printkey plugin ... 36
2.3.4.3 Userassist plugin .. 37

2.3.5 Step 5: Miscellaneous .. 37
2.3.5.1 Devicetree .. 37
2.3.5.2 Extract encryption keys .. 38
2.3.5.3 Summary and analysis ... 38

3 Conclusion .. 39
References 41

 Volatility Windows-based plugins .. 43 Annex A
 Anti-virus scanner logs for carved data files ... 47 Annex B

B.1 Avast .. 47
B.2 AVG .. 47
B.3 BitDefender ... 47
B.4 Comodo ... 47
B.5 F-Prot ... 47
B.6 McAfee .. 48

 NSRL file hash matches for carved data files ... 49 Annex C

vi DRDC Valcartier TM 2013-177

 Anti-virus scanner logs for dumped instances of mfc42ul.dll 53 Annex D
D.1 Avast .. 53
D.2 AVG .. 53
D.3 BitDefender ... 53
D.4 Comodo ... 54
D.5 F-Prot ... 54
D.6 McAfee .. 54

 Commonly used registry keys in a typical malware infection 57 Annex E
E.1 Recommended registry keys for use with Volatility ... 57
E.2 Scripting .. 59
E.3 Root Registry Keys .. 59

Bibliography .. 61
List of symbols/abbreviations/acronyms/initialisms ... 62
Glossary 64

DRDC Valcartier TM 2013-177 vii

List of tables

Table 1: Infected memory image metadata. .. 1

Table 2: List of anti-virus scanners and their command line parameters. 2

Table 3: Matching of potentially infected carved data file vs. scanner. .. 6

Table 4: Volatility Pslist plugin output sorted by PID. ... 8

Table 5: Volatility Psscan plugin output sorted by PID. ... 9

Table 6: Volatility Psxview plugin output sorted by PID.. 10

Table 7: Volatility Connscan plugin output. ... 13

Table 8: Volatility Sockets and Sockscan plugins output sorted by PID. 17

Table 9: Volatility Filescan plugin output for suspicious Windows DLL. 18

Table 10: Volatility Mutantscan plugin output of suspicious mutexes. .. 18

Table 11: Volatility Handles plugin output for suspicious handles. .. 19

Table 12: Volatility Driverscan plugin output of suspicious driver. ... 21

Table 13: Volatility Ldrmodules plugin output sorted by PID. ... 22

Table 14: Volatility Dlllist plugin output for PID 1956 against suspicious DLL mfc42ul.dll. 25

Table 15: Volatility Dlllist plugin output for all detected instances of mfc42ul.dll (sorted by
PID). .. 26

Table 16: Specifics concerning dumped instances of mfc42ul.dll (sorted by PID). 27

Table 17: SHA1 hashes for Dlldump-acquired instances of mfc42ul.dll (sorted by filename). 28

Table 18: Fuzzy hash matching of acquired mfc42ul.dll instances (sorted by %). 29

Table 19: Fuzzy hashes for Dlldump-acquired mfc42ul.dll instances vs. carved data files. 31

Table 20: AV scanner results for mfc42ul.dll instances. ... 32

Table 21: Metadata concerning Moddump-specific driver winsys32.sys. 33

Table 22: AV scanner detection of Moddump-based driver winsys32.sys. 34

Table 23: Volatility Hivelist plugin output.. 35

Table A.1: List of Volatility 2.2 plugins. .. 43

Table C.1: SHA1 hash vs. NSRL filename for carved data files. ... 49

viii DRDC Valcartier TM 2013-177

Acknowledgements

The author would like to thank Mr. Francois Rheaume, Defence Scientist, for peer reviewing this
text and providing helpful comments to improve it. Moreover, the author would also like to
extend his thanks to Mr. Martin Salois, Defence Scientist, for translating portions of this text.

DRDC Valcartier TM 2013-177 ix

Disclaimer policy

It must be understood from the outset that this technical memorandum examines computer
malware and that handling virulent software is not without risk. As such, the reader should ensure
that he has taken all the necessary precautions to avoid infecting his own computer system and
those around him, whether on a corporate network or isolated system.

The reader should neither construe nor interpret the work described herein by the author as an
endorsement of the aforementioned techniques and capacities as suitable for any specific purpose,
construed, implied or otherwise. Moreover, the author does not endorse the specific use of any
specific anti-virus product, the use of Volatility or any data carving technology. Many similar
software tools, utilities and scanners exist beyond those used herein. They may be commercial or
free and open source in nature and as such, the onus is on the reader to determine which software
best suits his specific needs. While the author felt most comfortable working from within a Linux
environment, the author does not specifically recommend the use of such a system for the reader.
Instead, the reader should use the environment in which he is most comfortable.

Furthermore, the author of this technical memorandum absolves himself in all ways conceivable
with respect to how the reader may use, interpret or construe this technical memorandum. The
author assumes absolutely no liability or responsibility, implied or explicit. Moreover, the onus is
on the reader to be appropriately equipped and knowledgeable in the application of digital
forensics. Due to the offensive nature of computer malware, the author is no way responsible for
the reader’s use of any malware, whether examined herein or otherwise, in any offensive or
defensive nature against any entity, even against the reader himself, for any purposes whatsoever,
for any construed reasons.

Finally, the author and the Government of Canada are henceforth absolved of all wrongdoing,
whether intentional, unintentional, construed or misunderstood on the part of the reader. If the
reader does not agree to these terms, then his copy of this technical memorandum should be
destroyed. Only if the reader agrees to these terms should he or she continue in reading it beyond
this point. It is further assumed by all participants that if the reader has not read said Disclaimer
upon reading this technical memorandum and has acted upon its contents, then the reader assumes
all responsibility for any repercussions that may result from the information and data contained
herein.

x DRDC Valcartier TM 2013-177

Requirements, assumptions and exclusions

The author assumes that the reader is altogether familiar with digital forensics and the various
techniques and methodologies associated therein. This technical memorandum is not an
introduction to digital forensics or to said techniques and methodologies. However, the author
will endeavour to ensure that the reader can carry out his own forensic analysis of a computer
memory image suspected of malware infection.

The experimentation conducted throughout this technical memorandum was carried out atop a
Fedora Core 19 64-bit Linux operating system. Six different anti-virus scanners were used
throughout this investigation. They include, in alphabetical order, AVG, Avast, BitDefender,
Comodo, FRISK F-Prot and McAfee command line scanners. As for data carving tools and
utilities, the author used Photorec version 6.14, part of the Testdisk (version 6.14) suite of data
recovery tools.

The reader is required to have permission to use these tools on his computer system or network.
Use of these tools and the analysis of virulent software always carry some inherent risk that must
be securely managed and adequately mitigated.

An in-depth study of memory analysis techniques is outside the scope of this work, as it requires
a comprehensive study of Windows operating system internals and software reverse engineering
techniques, both of which are difficult subjects to approach. Instead, this work should be
considered as a guide to using the Volatility memory analysis framework with respect to malware
infection.

When working with or examining files dumped using various Volatility plugins, the use of the
terms processes, memory sample files and memory dump files are used interchangeably.

Finally, the use of masculine is employed throughout this text to simplify it.

DRDC Valcartier TM 2013-177 xi

Target audience

The targeted audience for this technical memorandum is the computer forensic investigator who
assesses suspect computer memory images for evidence of infection. Although computer memory
analysis is a new field within the realm of digital forensics, there are those who have been
conducting malware analysis and software reverse engineering for years, long before it came to
the attention of most practitioners. Thus, those seasoned veterans are aptly skilled, taking years to
develop their abilities. As such, the Volatility framework, while capable of providing insight to
novices, is all the more capable in expert hands.

The author has written this technical memorandum for others who, like himself, are required from
time to time to conduct memory malware assessments and investigations. However, the author,
like many others, is not seasoned enough to take full advantage of Volatility’s capabilities. As
such, this technical memorandum combines both traditional forensic investigative techniques,
coupled with Volatility’s non-expert (non-reverse engineering) plugins, in order to develop an
investigative how-to for non-memory experts.

xii DRDC Valcartier TM 2013-177

1 Background

1.1 Objective

The objective of this technical memorandum is to examine how a computer forensic investigator,
without specialised computer memory or software reverse engineering knowledge, can
successfully investigate a memory image suspected of infection. More specifically, this document
provides a methodological approach novice memory analysts can use to investigate suspected
memory images.

The work carried out herein is based on the publicly available memory image 0zapftis. This
malware is also commonly known as the R2D2 Trojan and for the remainder of this document
will be referred to as such. This document, the third in a series of many, examines the
investigative techniques necessary for a novice to conduct such memory analyses on his own. The
first report in this series written by the author examined the Zeus Trojan Horse, found in TM
2013-018 [1] while the second examined Prolaco and SpyEye, found in TM 2013-155 [2].

Ultimately, these reports will provide a methodological and foundational framework that novice
memory analysts and experienced investigators alike can rely on for guidance.

1.2 Why write new tutorials?

The purpose of writing new tutorials was addressed in the first report of this series. [1]

1.3 Infected memory image information

The infected memory image for R2D2 was procured from the following location:
http://code.google.com/p/volatility/wiki/PublicMemoryImages. Its SHA1 hash, in uncompressed,
form is as follows:

Table 1: Infected memory image metadata.

Memory image

Size (MiB) SHA1 hash value

0zapftis.vmem 256 (exactly) e4d4f4d1c304919ed51e17593a56d24b37c5acd9

1.4 Data carving

An in-depth examination of data carving can be found in two memorandums written by the
author, specifically [1][3].

DRDC Valcartier TM 2013-177 1

http://code.google.com/p/volatility/wiki/PublicMemoryImages

1.5 Malware and anti-virus scanners

1.5.1 Specifics

An examination of malware and anti-virus scanner specifics can be found in [1].

1.5.2 Caveat

An analysis concerning the caveats of using malware and anti-virus scanners was conducted in
[1].

1.6 Detailed list of software tools used

1.6.1 Anti-virus scanners

This memorandum makes use of six anti-virus scanners, five of which are the same as those used
in [1][2]. The only difference is that ClamAV is no longer used and has been replaced by
Comodo Antivirus. These six anti-virus scanners continue to represent a diverse cross-section of
various detection mechanisms necessary for identifying numerous malware. Each scanner was
updated September 17, 2013, the date upon which the analysis was carried out herein. Scanner
specifics are listed in the following table:

Table 2: List of anti-virus scanners and their command line parameters.

Anti-virus scanner Command line parameters

AVG 2013 command line scanner
version 13.0.3114 avgscan -H -P -p

Avast v.1.3.0 command line scanner avast -c

BitDefender for Unices v7.90123
Linux-amd64 scanner command line bdscan (no parameters used)

Comodo Antivirus Product Version
1.1.268025.1 / Virus Signature
Database Version 16954

cmdscan -v -s

FRISK F-Prot version 6.3.3.5015
command line scanner

fpscan -u 4 -s 4 -z 10 --adware --applications
--nospin

McAfee VirusScan for Linux64
Version 6.0.3.356 command line
scanner

uvscan --RECURSIVE --ANALYZE --MANALYZE
--MIME --PANALYZE --UNZIP --
VERBOSE

2 DRDC Valcartier TM 2013-177

1.6.2 Data carving

Photorec was used for data carving. The specifics concerning program settings were examined in
[1].

1.6.3 Volatility

An examination of Volatility, its capabilities, main authors and contributors is found in [1].

A list of Windows-specific plugins currently supported by this version of Volatility can be found
in Annex A.

1.7 Investigative methodology

The original infected memory image-based investigative methodology was put forward in [1] and
lightly amended in [2] to deal with strings-based textual extraction and analyses.

DRDC Valcartier TM 2013-177 3

2 Memory investigation and analysis of R2D2

2.1 Background

2.1.1 Mise-en-scène

This analysis examines a memory image suspected of harbouring the R2D2 Trojan horse, as
based on the methodology put forward in Section 1.7. Much information could be found on the
web concerning this particular infection. What was found, [4][5][6][7][8][9][10][11][12][13][14]
[23][24] and [25] provided a wealth of information. Specifically, R2D2 is a communications
interception C&C based malware capable of spying on VoIP and a myriad of web-based
communications.

However, in contrast to previous reports by the author that examined malware memory analysis
[1][2], the various malware reports, articles and journals cited above will not be used directly in
this investigation. Instead, this information is cited for the reader so that he can better understand
the malware’s capabilities rather than rely on them for conducting this investigation. Moreover, as
with previous analyses [1][2], no use was made of existing analyses of this memory image.

Specifically, in order to gain practical experience analysing memory images, the author is of the
opinion that there is no substitute for applying keen attention to detail and spotting the “needle in
the haystack.” This approach, while intuitive in nature, is second to none when attempting to spot
out of the ordinary minutiae. Thus, this specific investigation, while applying the methodology
outlined in Section 1.7, will also point out detected anomalies that may indicate potential
indicators of compromise or other infection-based evidence.

2.1.2 Context

The Chaos Computer Club (CCC), Europe’s largest hacker association [18], first broke the story
concerning the R2D2 botnet in October 2011. Moreover, they successfully reverse engineered the
botnet and then made it publically available for analysis by others [8]. However, their malware
samples were modified from the original as they no longer point to the same hardcoded command
and control (C&C) server. The original server used IP address 207.158.22.134 and network port
4431 for its covert channel [8]. The CCC changed the IP address and port to 172.16.98.1/port
6666 [19]. The CCC refers to this malware as Staatstrojaner [18][19] although the media refers to
it as Bundestrojaner.

As already stated, this analysis makes no direct use of the publicly available literature and reports
concerning this infection. Only certain information such as the change of IP address just
mentioned are made note of throughout this memorandum.

1 This port is usually reserved for SSL encrypted traffic and is generally found open on firewalls. Many
malware use this port specifically because it is open. In this way, encrypted data can be sent through the
firewall without arousing suspicious, unless the firewall uses deep packet inspection, in which case
nefarious traffic might be seen, blocked and reported.

4 DRDC Valcartier TM 2013-177

Allegations of this malware having been developed by a European federal government abound.
However, as with all allegations, it is not possible to determine with any certainty how this
malware came into being. [10][11][20][21][22] and [23]

2.2 Preliminary investigative steps

The steps examined in this subsection should be considered as necessary preliminary steps for
examining a potentially infected memory image.

2.2.1 Safeguard the memory image

The memory image 0zapftis.vmem was set to immutable atop an Ext4-based filesystem. The
command used to perform this, carried out as the root user, was:

 $ sudo chattr +i 0zapftis.vmem

This results in a memory image that can no longer be modified, even by the root user. This is to
prevent accidental modifications from occurring to this file.

2.2.2 Preliminary anti-virus scanning results

Scanning only the memory image itself with the six scanners outlined in Section 1.6.1, the only
scanner that identified memory image 0zapftis.vmem as infected was Avast. Its output is as
follows:

./R2D2_Report/0zapftis.vmem [infected by: Win32:R2D2-F [Trj]]

Preliminary anti-virus scanner examination indicates that this memory image is likely infected
with the R2D2 Trojan horse. It appears that Avast was the only scanner capable of examining, at
least partially, the memory image’s internal structures. All anti-virus results were recorded and
saved.

2.2.3 Data carving and file hashing

Photorec succeeded in recovering 636 files carved from the memory image as per the
recommended Photorec settings put forward in Section 1.6.2. Ten duplicate files were found,
thereby leaving 626 unique files recovered. Of these 636 recovered files, 471 were identified as
PE-based files. Of those, 307 were identified as Windows 32-bit DLLs, while 164 were identified
as standard Windows 32-bit PEs and device drivers. No 64-bit PE-based files were found. Only
one file was identified as UPX-based. Finally, 16 files were detected as MS-DOS 16-bit
executables for Windows 3.x.

Other file types were detected but were of no immediate use. However, their types were recorded
and saved for possible future use within this analysis.

DRDC Valcartier TM 2013-177 5

All recovered files were SHA1-hashed and then validated against NSRL hash-set 2.41 (June
2013). Results were stored for future use. Twenty-eight unique SHA1 hashes were confirmed as
matching against the NSRL hash-set. NSRL SHA1-filename matches can be found in Annex C.

Finally, CTPH-based hashing (fuzzy hashing) was conducted using the ssdeep tool against the
carved data files and stored for future use.

2.2.4 Anti-virus scanning results for carved data files

Using the six scanners and combining their output through UNIX command line processing tools
(e.g. cat, sort, find, tr, strings, awk, grep, uniq, etc.), two matches were established. The first
match involved the AVG and BitDefender scanners while the second match involved the Avast,
Comodo and McAfee scanners. These matches are shown in the table below.

Specific logs for each scanner can be found in Annex B and matches are indicated accordingly
therein. Moreover, all six scanners succeeded in detecting one or more possible infections from
the carved data files.

Table 3: Matching of potentially infected carved data file vs. scanner.

Potentially infected file Detecting Scanner

 f0140472.exe AVG

 BitDefender

 f0181456.dll Avast

 Comodo

 McAfee

6 DRDC Valcartier TM 2013-177

2.3 Volatility analysis

In order to investigate this specific memory image, the use and output of various Volatility
plugins are examined.

2.3.1 Step 1: Background information, process listings and analysis

This step examines the various Volatility plugins used to provide background information and
context to the memory image. Process-based plugins are often able to provide confirmation of
computer memory infection or compromise. However, they are not particularly helpful for
determining if a computer system has been used inappropriately.

2.3.1.1 Imageinfo plugin

This Volatility plugin is used to provide basic contextual information about a suspect memory
image. This should always be the first Volatility plugin used by an investigator.

Consider the following output from this plugin, using command “volatility -f 0zapftis.vmem
imageinfo”:

Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86
(Instantiated with WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace
(/media/scratch/R2D2_Report/0zapftis.vmem)
 PAE type : PAE
 DTB : 0x319000L
 KDBG : 0x80544ce0
 Number of Processors : 1
 Image Type (Service Pack) : 2
 KPCR for CPU 0 : 0xffdff000
 KUSER_SHARED_DATA : 0xffdf0000
 Image date and time : 2011-10-10 17:06:54 UTC+0000
 Image local date and time : 2011-10-10 13:06:54 -0400

This memory image appears to be running atop a 32-bit Windows XP computer system with
Service Pack 2. It is equipped with one PAE-based processor and the memory image is 256 MiB
in size (based on the memory image’s size determined using ls -l). The memory image was
acquired October 10, 2011 at 13:06:54 EDT.

2.3.1.2 Pslist plugin

The next step is to determine which processes are running within the memory image in order to
determine if anything out of the ordinary is immediately visible. The pslist plugin provides a
detailed process listing. It makes use of virtual memory addressing and offsets. This should
always be the first process listing plugin used from Volatility.

Consider this plugin’s output, using command “volatility -f 0zapftis.vmem pslist”:

DRDC Valcartier TM 2013-177 7

Table 4: Volatility Pslist plugin output sorted by PID.

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x819cc830 System 4 0 55 162 ------ 0
 0x816d63d0 VMwareTray.exe 184 1956 1 28 0 0 2011-10-10 17:04:41

 0x8180b478 VMwareUser.exe 192 1956 6 83 0 0 2011-10-10 17:04:41
 0x818233c8 reader_sl.exe 228 1956 2 26 0 0 2011-10-10 17:04:41
 0x815e7be0 wuauclt.exe 400 964 8 173 0 0 2011-10-10 17:04:46
 0x81945020 smss.exe 536 4 3 21 ------ 0 2011-10-10 17:03:56
 0x817a34b0 cmd.exe 544 1956 1 30 0 0 2011-10-10 17:06:42
 0x816c6020 csrss.exe 608 536 11 355 0 0 2011-10-10 17:03:58
 0x813a9020 winlogon.exe 632 536 24 533 0 0 2011-10-10 17:03:58
 0x816da020 services.exe 676 632 16 261 0 0 2011-10-10 17:03:58
 0x813c4020 lsass.exe 688 632 23 336 0 0 2011-10-10 17:03:58
 0x81772ca8 vmacthlp.exe 832 676 1 24 0 0 2011-10-10 17:03:59
 0x8167e9d0 svchost.exe 848 676 20 194 0 0 2011-10-10 17:03:59
 0x817757f0 svchost.exe 916 676 9 217 0 0 2011-10-10 17:03:59
 0x816c6da0 svchost.exe 964 676 63 1058 0 0 2011-10-10 17:03:59
 0x815daca8 svchost.exe 1020 676 5 58 0 0 2011-10-10 17:03:59
 0x813aeda0 svchost.exe 1148 676 12 187 0 0 2011-10-10 17:04:00
 0x817937e0 spoolsv.exe 1260 676 13 140 0 0 2011-10-10 17:04:00
 0x81754990 VMwareService.e 1444 676 3 145 0 0 2011-10-10 17:04:00
 0x8136c5a0 alg.exe 1616 676 7 99 0 0 2011-10-10 17:04:01
 0x815c4da0 wscntfy.exe 1920 964 1 27 0 0 2011-10-10 17:04:39
 0x813bcda0 explorer.exe 1956 1884 18 322 0 0 2011-10-10 17:04:39

Looking at the above listing, nothing appears out of the ordinary. Although process alg.exe is
present and can sometimes be used to indicate the presence of malware, as a lone indicator, it is
not sufficient to warrant further investigation at this point as it is typically considered a legitimate
Windows XP process.

Perhaps the next plugin, psscan, will reveal more information.

2.3.1.3 Psscan plugin

The psscan plugin uses physical memory addressing and scans memory images for _EPROCESS
pool allocations, in contrast to the pslist plugin that uses virtual memory addressing and scans for
EPROCESS lists. The benefit of using this plugin is that sometimes it succeeds in listing
processes that cannot be found using other process listing plugins (i.e., pslist and pstree).

Consider this plugin’s output, using command “volatility -f 0zapftis.vmem psscan”:

8 DRDC Valcartier TM 2013-177

Table 5: Volatility Psscan plugin output sorted by PID.

Offset(P) Name PID PPID PDB Time created Time exited
0x01bcc830 System 4 0 0x00319000
0x018d63d0 VMwareTray.exe 184 1956 0x05e00160 2011-10-10 17:04:41

 0x01a0b478 VMwareUser.exe 192 1956 0x05e00260 2011-10-10 17:04:41
 0x01a233c8 reader_sl.exe 228 1956 0x05e00280 2011-10-10 17:04:41
 0x017e7be0 wuauclt.exe 400 964 0x05e002c0 2011-10-10 17:04:46
 0x01b45020 smss.exe 536 4 0x05e00020 2011-10-10 17:03:56
 0x019a34b0 cmd.exe 544 1956 0x05e00200 2011-10-10 17:06:42
 0x018c6020 csrss.exe 608 536 0x05e00040 2011-10-10 17:03:58
 0x015a9020 winlogon.exe 632 536 0x05e00060 2011-10-10 17:03:58
 0x018da020 services.exe 676 632 0x05e00080 2011-10-10 17:03:58
 0x015c4020 lsass.exe 688 632 0x05e000a0 2011-10-10 17:03:58
 0x01972ca8 vmacthlp.exe 832 676 0x05e000c0 2011-10-10 17:03:59
 0x0187e9d0 svchost.exe 848 676 0x05e000e0 2011-10-10 17:03:59
 0x019757f0 svchost.exe 916 676 0x05e00100 2011-10-10 17:03:59
 0x018c6da0 svchost.exe 964 676 0x05e00120 2011-10-10 17:03:59
 0x017daca8 svchost.exe 1020 676 0x05e00140 2011-10-10 17:03:59
 0x015aeda0 svchost.exe 1148 676 0x05e00180 2011-10-10 17:04:00
 0x019937e0 spoolsv.exe 1260 676 0x05e001a0 2011-10-10 17:04:00
 0x01954990 VMwareService.e 1444 676 0x05e001c0 2011-10-10 17:04:00
 0x0156c5a0 alg.exe 1616 676 0x05e001e0 2011-10-10 17:04:01
 0x017c4da0 wscntfy.exe 1920 964 0x05e00240 2011-10-10 17:04:39
 0x015bcda0 explorer.exe 1956 1884 0x05e00220 2011-10-10 17:04:39

Again, nothing appears particularly conspicuous. Moreover, this output looks very similar to the
output of the pslist plugin. However, in order to be certain, the subsequent step will examine the
differences in their output.

2.3.1.4 Differentiating the output between the pslist and psscan plugins

Distinguishing between the output of the pslist and psscan plugins may not be obvious at first
glance. For this task, shell-based text processing is of significant use. By using the following
command, it is readily possible to differentiate the output between the two plugins:

$ cat pslist.txt psscan.txt | awk '{print $2"\t"$3}' | sort |
uniq –c | grep –v “ 2”

This command results in the following output:

1 -------------------- ------
1 ---------------- ------

DRDC Valcartier TM 2013-177 9

Thus, by using these commands, it was determined that there was no discernible difference in
their output. Perhaps the next plugin, psxview, will be of more assistance.

2.3.1.5 Psxview plugin

Volatility provides an additional capability for detecting hidden running processes. The psxview
plugin provides a detailed listing of processes in a memory image by using five specific process
detection methods. These include pslist, psscan, thrdproc, pspcdid and csrss. Moreover, the
plugin makes use of physical memory addressing.

For a process to be considered hidden, it should be invisible to, at a minimum, any non-csrss
detection mechanism but may also be undetectable by subsequent process detection methods.
However, if a process is not seen by the pslist mechanism then the process is without a doubt
hidden.

Consider the following output from this plugin, using command “volatility -f 0zapftis.vmem
psxview”:

Table 6: Volatility Psxview plugin output sorted by PID.

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss
0x01bcc830 System 4 TRUE TRUE TRUE TRUE FALSE
0x018d63d0 VMwareTray.exe 184 TRUE TRUE TRUE TRUE TRUE
0x01a0b478 VMwareUser.exe 192 TRUE TRUE TRUE TRUE TRUE
0x01a233c8 reader_sl.exe 228 TRUE TRUE TRUE TRUE TRUE
0x017e7be0 wuauclt.exe 400 TRUE TRUE TRUE TRUE TRUE
0x01b45020 smss.exe 536 TRUE TRUE TRUE TRUE FALSE
0x019a34b0 cmd.exe 544 TRUE TRUE TRUE TRUE TRUE
0x018c6020 csrss.exe 608 TRUE TRUE TRUE TRUE FALSE
0x015a9020 winlogon.exe 632 TRUE TRUE TRUE TRUE TRUE
0x018da020 services.exe 676 TRUE TRUE TRUE TRUE TRUE
0x015c4020 lsass.exe 688 TRUE TRUE TRUE TRUE TRUE
0x01972ca8 vmacthlp.exe 832 TRUE TRUE TRUE TRUE TRUE
0x0187e9d0 svchost.exe 848 TRUE TRUE TRUE TRUE TRUE
0x019757f0 svchost.exe 916 TRUE TRUE TRUE TRUE TRUE
0x018c6da0 svchost.exe 964 TRUE TRUE TRUE TRUE TRUE
0x017daca8 svchost.exe 1020 TRUE TRUE TRUE TRUE TRUE
0x015aeda0 svchost.exe 1148 TRUE TRUE TRUE TRUE TRUE
0x019937e0 spoolsv.exe 1260 TRUE TRUE TRUE TRUE TRUE
0x01954990 VMwareService.e 1444 TRUE TRUE TRUE TRUE TRUE
0x0156c5a0 alg.exe 1616 TRUE TRUE TRUE TRUE TRUE
0x017c4da0 wscntfy.exe 1920 TRUE TRUE TRUE TRUE TRUE
0x015bcda0 explorer.exe 1956 TRUE TRUE TRUE TRUE TRUE

10 DRDC Valcartier TM 2013-177

Based on the plugin’s output, no hidden processes were found for this memory image.

Although some processes may be listed as hidden by the csrss method, they generally are not
hidden. Therefore any process marked as hidden (FALSE) by this method requires that another
method (pslist, psscan, thrdproc and pspcdid) confirm the suspicion. For Windows 7 and Vista
systems, the list of internal processes is not available, and in some cases where Windows XP
required memory pages might have been swapped out, the outcome of csrss may be affected. [15]

2.3.1.6 Summary and analysis

The Volatility plugins used in this step have not succeeded in finding any indicators of
compromise. Thus, subsequent plugins, specifically state-based plugins, may reveal evidence of
an infection.

2.3.2 Step 2: State-based information and analysis

This step examines state-based plugins that can be used to establish evidence of an infection.
These plugins often provide information that process listing-based plugins cannot.

2.3.2.1 Cmdscan and consoles plugins

The cmdscan and consoles plugins may reveal additional information about commands typed into
a command shell.

The cmdscan plugin is used to query the process memory of csrss.exe or conhost.exe for possible
commands that may have been entered into the system shell (cmd.exe; i.e. PID 544) or through a
backdoor or RDP session by an attacker. Specifically, it looks for COMMAND_HISTORY based
structures left behind in memory. The scanning of csrss.exe applies to Windows XP, 2003, Vista
and Server 2008 while the use of conhost.exe applies to Windows 7. The effect of this plugin
against Windows 2000, 8 and Server 2012 is not currently known and has not been attempted by
the author. [16]

The consoles plugin is similar to cmdscan except that it searches for
CONSOLE_INFORMATION based data structures instead. More specifically, it provides the
command history of commands fed to the system shell (cmd.exe; i.e. PID 544) or through
backdoors and this data structure keeps both the input and output buffers for commands found
using this plugin. [16]

To query a memory image using these two plugins, the following commands are issued:

$ volatility -f 0zapftis.vmem cmdscan

$ volatility -f 0zapftis.vmem consoles

The cmdscan plugin revealed the following, where key information has been highlighted and
bolded:

DRDC Valcartier TM 2013-177 11

CommandProcess: csrss.exe Pid: 608
CommandHistory: 0x11132d8 Application: cmd.exe Flags: Allocated,
Reset
CommandCount: 2 LastAdded: 1 LastDisplayed: 1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x4c4
Cmd #0 @ 0x4e1eb8: sc query malwar
Cmd #1 @ 0x11135e8: sc query malware

The consoles plugin revealed the following, where key information has been highlighted and
bolded:

ConsoleProcess: csrss.exe Pid: 608
Console: 0x4e2370 CommandHistorySize: 50
HistoryBufferCount: 2 HistoryBufferMax: 4
OriginalTitle: %SystemRoot%\system32\cmd.exe
Title: C:\WINDOWS\system32\cmd.exe
AttachedProcess: cmd.exe Pid: 544 Handle: 0x4c4

CommandHistory: 0x1113498 Application: sc.exe Flags:
CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x0

CommandHistory: 0x11132d8 Application: cmd.exe Flags: Allocated,
Reset
CommandCount: 2 LastAdded: 1 LastDisplayed: 1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x4c4
Cmd #0 at 0x4e1eb8: sc query malwar
Cmd #1 at 0x11135e8: sc query malware

Screen 0x4e2a70 X:80 Y:300
Dump:
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp

C:\Documents and Settings\Administrator>sc query malwar
[SC] EnumQueryServicesStatus:OpenService FAILED 1060:

The specified service does not exist as an installed service.

C:\Documents and Settings\Administrator>sc query malware

SERVICE_NAME: malware
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING

(STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

Based on the output of these two plugins, some individual, either locally or remotely, queried the
system for some service named malware. This service was found to be running and was found to
be a kernel-based driver.

12 DRDC Valcartier TM 2013-177

This information is a very important indicator of compromise as it provides several important
clues. The first is that there appears to be a malicious driver on the system providing some
unknown service, which is currently active. Moreover, any process initiated by this driver is not
visible to Volatility’s process listing plugins (i.e. pslist, psscan and psxview). Thirdly, the service
is known as malware. Taken together, these clues will help the investigator track down the
malware.

2.3.2.2 Connscan plugin

The first network-based Volatility plugin that should be used is connscan. It is used to verify the
existence of ongoing network connections and scans a memory image for current or recently
terminated connections. This plugin makes uses of physical memory addressing.

Consider plugin’s output, using command “volatility -f 0zapftis.vmem connscan”:

Table 7: Volatility Connscan plugin output.

Offset(P) Local Address Remote Address PID

0x01a25a50 0.0.0.0:1026 172.16.98.1:6666 1956

Based on this information, PID 1956 (explorer.exe) has established a connection with remote
system 172.16.98.1 using port 6666. This port is a well-known malware based port [17]. Recall
that the IP address and network port are not the original ones (see Section 2.1.2 for details). The
original IP address was 207.158.22.134 and was found communicating on port 443.

The Whois information for these two IP addresses is examined in the following subsections.

2.3.2.2.1 Whois for first suspicious address

The false remote IP address, 172.16.98.1, has been determined to belong to a private web address,
as based on the following Whois information:

NetRange: 172.16.0.0 - 172.31.255.255
CIDR: 172.16.0.0/12
OriginAS:
NetName: PRIVATE-ADDRESS-BBLK-RFC1918-IANA-RESERVED
NetHandle: NET-172-16-0-0-1
Parent: NET-172-0-0-0-0
NetType: IANA Special Use
Comment: These addresses are in use by many millions of
independently operated networks, which might be as small as a
single computer connected to a home gateway, and are
automatically configured in hundreds of millions of devices.
They are only intended for use within a private context and
traffic that needs to cross the Internet will need to use a
different, unique address.
Comment:
Comment: These addresses can be used by anyone without
any need to coordinate with IANA or an Internet registry. The
traffic from these addresses does not come from ICANN or IANA.

DRDC Valcartier TM 2013-177 13

We are not the source of activity you may see on logs or in e-
mail records. Please refer to http://www.iana.org/abuse/answers
Comment:
Comment: These addresses were assigned by the IETF, the
organization that develops Internet protocols, in the Best
Current Practice document, RFC 1918 which can be found at:
Comment: http://datatracker.ietf.org/doc/rfc1918
RegDate: 1994-03-15
Updated: 2013-08-30
Ref: http://whois.arin.net/rest/net/NET-172-16-0-0-1

OrgName: Internet Assigned Numbers Authority
OrgId: IANA
Address: 12025 Waterfront Drive
Address: Suite 300
City: Los Angeles
StateProv: CA
PostalCode: 90292
Country: US
RegDate:
Updated: 2012-08-31
Ref: http://whois.arin.net/rest/org/IANA

OrgAbuseHandle: IANA-IP-ARIN
OrgAbuseName: Internet Corporation for Assigned Names and
Number
OrgAbusePhone: +1-310-301-5820
OrgAbuseEmail: abuse@iana.org
OrgAbuseRef: http://whois.arin.net/rest/poc/IANA-IP-ARIN

OrgTechHandle: IANA-IP-ARIN
OrgTechName: Internet Corporation for Assigned Names and
Number
OrgTechPhone: +1-310-301-5820
OrgTechEmail: abuse@iana.org
OrgTechRef: http://whois.arin.net/rest/poc/IANA-IP-ARIN

2.3.2.2.2 Whois for second suspicious address

The original botnet C&C remote IP address, 207.158.22.134, has been determined to belong to
American Internet Services, a California-based ISP and web-hosting company, as per the
following Whois information:

NetRange: 207.158.0.0 - 207.158.63.255
CIDR: 207.158.0.0/18
OriginAS: AS6130
NetName: AIS-WEST2
NetHandle: NET-207-158-0-0-1
Parent: NET-207-0-0-0-0
NetType: Direct Allocation
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE.
RegDate: 1996-06-22
Updated: 2012-03-02
Ref: http://whois.arin.net/rest/net/NET-207-158-0-0-1

OrgName: American Internet Services, LLC.
OrgId: AMERI-504
Address: 9305 Lightwave Ave.

14 DRDC Valcartier TM 2013-177

City: San Diego
StateProv: CA
PostalCode: 92123
Country: US
RegDate: 2008-11-26
Updated: 2012-06-05
Ref: http://whois.arin.net/rest/org/AMERI-504

ReferralServer: rwhois://rwhois.americanis.net:4321

OrgAbuseHandle: ABUSE1714-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-858-576-4272
OrgAbuseEmail: abuse@americanis.net
OrgAbuseRef: http://whois.arin.net/rest/poc/ABUSE1714-ARIN

OrgTechHandle: AIS10-ARIN
OrgTechName: AIS
OrgTechPhone: +1-858-576-4272
OrgTechEmail: routing@americanis.net
OrgTechRef: http://whois.arin.net/rest/poc/AIS10-ARIN

OrgNOCHandle: NOC2657-ARIN
OrgNOCName: NOC
OrgNOCPhone: +1-858-576-4272
OrgNOCEmail: noc@americanis.net
OrgNOCRef: http://whois.arin.net/rest/poc/NOC2657-ARIN

NetRange: 207.158.37.0 - 207.158.37.255
CIDR: 207.158.37.0/24
OriginAS: AS6130
NetName: M5-SECURITY-NETBLK-10
NetHandle: NET-207-158-37-0-1
Parent: NET-207-158-0-0-1
NetType: Reassigned
RegDate: 2008-12-17
Updated: 2008-12-17
Ref: http://whois.arin.net/rest/net/NET-207-158-37-0-1

OrgName: M5 Computer Security
OrgId: MCS-227
Address: 3368 Governor Drive #F-124
City: San Diego
StateProv: CA
PostalCode: 92122
Country: US
RegDate: 2005-11-09
Updated: 2011-11-03
Ref: http://whois.arin.net/rest/org/MCS-227

OrgTechHandle: MMC112-ARIN
OrgTechName: McCafferty, Michael
OrgTechPhone: +1-619-985-2547
OrgTechEmail: mike@m5computersecurity.com
OrgTechRef: http://whois.arin.net/rest/poc/MMC112-ARIN

OrgTechHandle: RENWI-ARIN
OrgTechName: Renwick, James
OrgTechPhone: +1-619-800-2055
OrgTechEmail: joe@gonetforward.com
OrgTechRef: http://whois.arin.net/rest/poc/RENWI-ARIN

DRDC Valcartier TM 2013-177 15

OrgAbuseHandle: ABUSE1898-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-877-344-4678
OrgAbuseEmail: abuse@m5hosting.com
OrgAbuseRef: http://whois.arin.net/rest/poc/ABUSE1898-ARIN

RTechHandle: MMC112-ARIN
RTechName: McCafferty, Michael
RTechPhone: +1-877-344-4678
RTechEmail: mike@m5computersecurity.com
RTechRef: http://whois.arin.net/rest/poc/MMC112-ARIN

2.3.2.2.3 Summary

This plugin has clearly found evidence of a covert communication. Moreover, both IP addresses
were found to be in the continental U.S.

2.3.2.3 Connections plugin

The connections plugin can be used to find evidence of both recently terminated and ongoing
communications. It therefore makes sense to use this plugin as it may reveal additional network-
based information. Moreover, this plugin supports both physical and virtual memory addresses.

However, using command “volatility -f 0zapftis.vmem connections” yielded no output.

2.3.2.4 Sockets and sockscan plugins

Volatility offers two additional network-based plugins, sockets and sockscan. The sockets plugin
lists open sockets and may provide additional information about covert network channels, while
the sockscan plugin scans a suspect memory image for all TCP sockets. Generally, the output is
the same for both plugins with the exception of memory addresses, where the sockets plugin uses
virtual memory addressing while the sockscan plugin uses physical memory addressing.

Thus, using the following commands it will be possible to determine which processes are ready
for a connection:

$ volatility -f 0zapftis.vmem sockets > sockets.txt

$ volatility -f 0zapftis.vmem sockscan > sockscan.txt

$ cat sockets.txt sockscan.txt | awk ‘{$1=””;print}’ | sort -n |
uniq > sockets_sockscan.txt

The output of file sockets_sockscan.txt appears as shown in the following table:

16 DRDC Valcartier TM 2013-177

Table 8: Volatility Sockets and Sockscan plugins output sorted by PID.

PID Port Proto Protocol Address Create Time
4 445 17 UDP 0.0.0.0 10/10/2011 17:03:55
4 445 6 TCP 0.0.0.0 10/10/2011 17:03:55

688 0 255 Reserved 0.0.0.0 10/10/2011 17:04:00
688 4500 17 UDP 0.0.0.0 10/10/2011 17:04:00
688 500 17 UDP 0.0.0.0 10/10/2011 17:04:00
916 135 6 TCP 0.0.0.0 10/10/2011 17:03:59
964 1029 17 UDP 127.0.0.1 10/10/2011 17:04:42
964 123 17 UDP 127.0.0.1 10/10/2011 17:04:00

1148 1900 17 UDP 127.0.0.1 10/10/2011 17:04:41
1616 1025 6 TCP 127.0.0.1 10/10/2011 17:04:01
1956 1026 6 TCP 0.0.0.0 10/10/2011 17:04:39

Examining this data, the covert communication found emanating from explorer.exe (see Section
2.3.2.2 for details) is not in this output. Thus, somewhere behind explorer.exe there is clearly a
hidden communication channel in use.

2.3.2.5 Filescan plugin

If an infection is active and does not show itself via the network then the filescan plugin may be
of assistance as it may be able to find open file handles in memory. Unfortunately, no direct link
to these files is possible as the physical disk image is not available for analysis. Firstly, this
plugin makes use of physical address offsets.

The preferred method for detecting indicators of compromise is twofold. First, using keywords
(e.g. 0zapftis, infection, rootkit, worm, etc.) it may be possible to find the infection, as malware
programmers do not often using innocuous looking filenames. Of course, this is at best a hit and
miss approach. Secondly, an investigator can attempt to detect suspicious files based on their
names and locations. However, this requires that the investigator has a very good working
knowledge of the underlying operating system. Just looking blindly at filenames2 and locations
will not produce meaningful results, unless something really sticks out.

For this specific investigation, since emphasis is placed on detecting indicators of compromise
without the use of external documentation, the investigator must studiously examine this plugin’s
output. Thus, running command “volatility -f 0zapftis.vmem filescan,” after extensive verification
against a list of known Windows XP filenames, resulted in the following highly suspicious file:

2 Recall that a reliable source of filenames is the NSRL hash-set. It can be broken down manually (using
command line text processing tools) by software product and operating system.

DRDC Valcartier TM 2013-177 17

Table 9: Volatility Filescan plugin output for suspicious Windows DLL.

Offset (P) #Ptr #Hnd Access Name

0x015b8128 1 0 R--r-d \Device\HarddiskVolume1\WINDOWS\system32
\mfc42ul.dll

This file does not belong in the Windows System32 directory. While it looks valid, because many
mfc-based files can be found in a valid Windows installation, this file does not match any known
list of files (NSRL hash-set 2.41). However, file mfc42u.dll is a very close match to this
suspicious filename and is a known Windows file. This suspicious DLL has been found in
memory at address 0x015b8128 and it may have been used to carry out DLL injection.

Unfortunately, examining the output generated from this plugin can be both time-consuming and
painstaking.

2.3.2.6 Mutantscan plugin

The Volatility mutantscan can sometimes reveal interesting information about Windows thread-
based mutexes in memory. This plugin makes use of physical offset addressing.

Using command “volatility -f 0zapftis.vmem mutantscan” yielded the following pertinent
information, after pruning the output of non-pertinent mutexes:

Table 10: Volatility Mutantscan plugin output of suspicious mutexes.

Offset (P) #Ptr #Hnd Signal Thread CID Name

0x017d6f60 2 1 0 0x813b7230 1956:2000
SYS!ICP!94062

0x018d8180 2 1 1 0x00000000 SYS!IPC!79025

0x0197ef38 3 2 1 0x00000000 SYS!ICP!393-1M

0x0197efe0 2 1 -1 0x813bea80 1956:1980 SYS!IPC!79027

0x01a2eac0 3 2 1 0x00000000 SYS!ICP!393-1MR

This output indicates that at least two processes or threads labelled as PID 1956 (explorer.exe) are
using suspicious looking mutexes, SYS!IPC!. These have been highlighted in red in the above
table. Moreover, other non-PID 1956 mutexes have been isolated because they look like they are
from the same source, specifically some suspicious process or thread related to the PID 1956
mutexes listed above.

It appears the above-listed mutexes are using IPC-based synchronization and communication.

Thus, based on this information and the above table, it can be inferred that these suspicious
mutexes are working together by some process or thread related to PID 1956 to carry out the
covert communication (see Section 2.3.2.2 for details).

18 DRDC Valcartier TM 2013-177

2.3.2.7 Handles plugin

The Volatility handles plugin can reveal interesting information about processes and the
resources attached or associated to them that might not be found using previously examined
plugins. The handles plugin makes use of virtual memory addressing.

Using command “volatility -f 0zapftis.vmem handles,” the following pruned output is of interest
to the investigation and is as follows:

Table 11: Volatility Handles plugin output for suspicious handles.

 Offset (V) PID Handle Access Type Details

0x81489a40 1956 0xa8 0x1f0003 Event DUMMY!DUMMY

0x81489a40 1956 0xbc 0x1f0003 Event DUMMY!DUMMY

0x815d6f60 1956 0xc0 0x1f0001 Mutant SYS!ICP!94062

0x816d8180 1956 0x164 0x1f0001 Mutant SYS!IPC!79025

0x8177ef38 1956 0x124 0x1f0001 Mutant SYS!ICP!393-1M

0x8177ef38 1956 0xac 0x1f0001 Mutant SYS!ICP!393-1M

0x8177efe0 1956 0xa0 0x1f0001 Mutant SYS!IPC!79027

0x8182eac0 1956 0x114 0x1f0001 Mutant SYS!ICP!393-1MR

0x8182eac0 1956 0xb0 0x1f0001 Mutant SYS!ICP!393-1MR

0xe1a84680 1956 0xa4 0xf0007 Section SYS!ICP!3949-1

0xe1cc0e78 1956 0x13c 0xf0007 Section SYS!ICP!393-1

0xe1cc0e78 1956 0xb4 0xf0007 Section SYS!ICP!393-1

It is likely that other suspicious handles were present but were not flagged due to the lack of
appropriate context in which to evaluate them.

Although hundreds of entries were generated by the handles plugin, going through it was a time-
consuming process.

These specific handles were flagged because they do not appear to be legitimate for explorer.exe.
While many processes and threads communicate with other processes and threads, explorer.exe is
not a program that typically does it in this fashion. Moreover, events such as DUMMY!DUMMY
are highly suspicious, as is the number of mutexes in use by explorer.exe. Furthermore, it was
suspicious that out of all the processes on the system that only explorer.exe was found using IPC
thread-based communications. Finally, matches are readily obtained between the names of IPCs
from tables 10 and 11. These matches have been highlighted as pink in both tables.

2.3.2.8 Threads and Thrdscan plugins

Two Volatility plugins will be used in this section, specifically the threads and thrdscan plugins.
Armed with the information provided by the handles plugin, it is worthwhile investigating
potential information that could be revealed using Volatility’s threads-based plugins.

DRDC Valcartier TM 2013-177 19

The threads plugin searches for _ETHREADS and _KTHREADS data structures while the
thrdscan plugin searches for _ETHREADS data structures. The output from each plugin differs
significantly. Moreover, the former plugin uses virtual memory addressing whereas the latter uses
physical memory addressing.

Using these two plugins, the following information was obtained concerning PID 1956
(explorer.exe):

$ volatility -f 0zapftis.vmem threads | grep 1956

$ volatility -f 0zapftis.vmem thrdscan | grep 1956 | awk
‘{$2=””;$4=””;print}’

The threads plugin command resulted in the following pruned output:

ETHREAD: 0x01984238 Pid: 1956 Tid: 132
ETHREAD: 0x01a2f8e8 Pid: 1956 Tid: 124
ETHREAD: 0x813b7230 Pid: 1956 Tid: 2000
ETHREAD: 0x813bc560 Pid: 1956 Tid: 396
ETHREAD: 0x813bea80 Pid: 1956 Tid: 1980
ETHREAD: 0x813c4988 Pid: 1956 Tid: 2024
ETHREAD: 0x813c4da8 Pid: 1956 Tid: 2020
ETHREAD: 0x8148cc28 Pid: 1956 Tid: 164
ETHREAD: 0x815c24c0 Pid: 1956 Tid: 1992
ETHREAD: 0x815cbda8 Pid: 1956 Tid: 1960
ETHREAD: 0x815cdda8 Pid: 1956 Tid: 2012
ETHREAD: 0x816cf230 Pid: 1956 Tid: 2004
ETHREAD: 0x816cf658 Pid: 1956 Tid: 2008
ETHREAD: 0x816d1a80 Pid: 1956 Tid: 1996
ETHREAD: 0x816d43d0 Pid: 1956 Tid: 160
ETHREAD: 0x816dd230 Pid: 1956 Tid: 2028
ETHREAD: 0x816dda80 Pid: 1956 Tid: 2016
ETHREAD: 0x8178b658 Pid: 1956 Tid: 2032
ETHREAD: 0x81883da8 Pid: 1956 Tid: 320
ETHREAD: 0x818e72a0 Pid: 1956 Tid: 292
ETHREAD: 0x81906368 Pid: 1956 Tid: 2040

Whereas the thrdscan plugin resulted in the following pruned output:
0x015b7230 2000 2011-10-10 17:04:39
0x015bc560 396 2011-10-10 17:04:46
0x015bea80 1980 2011-10-10 17:04:39
0x015c4988 2024 2011-10-10 17:04:40
0x015c4da8 2020 2011-10-10 17:04:40
0x0168cc28 164 2011-10-10 17:04:41
0x017c24c0 1992 2011-10-10 17:04:39
0x017cbda8 1960 2011-10-10 17:04:39
0x017cdda8 2012 2011-10-10 17:04:40
0x018cf230 2004 2011-10-10 17:04:39
0x018cf658 2008 2011-10-10 17:04:39 2011-10-10 17:04:39
0x018d1a80 1996 2011-10-10 17:04:39
0x018d43d0 160 2011-10-10 17:04:40
0x018dd230 2028 2011-10-10 17:04:40
0x018dda80 2016 2011-10-10 17:04:40
0x01984238 132 2011-10-10 17:04:40 2011-10-10 17:06:48
0x0198b658 2032 2011-10-10 17:04:40
0x01a2f8e8 124 2011-10-10 17:04:40 2011-10-10 17:06:47
0x01a83da8 320 2011-10-10 17:04:45

20 DRDC Valcartier TM 2013-177

0x01ae72a0 292 2011-10-10 17:04:44
0x01b06368 2040 2011-10-10 17:04:40

From the plugins’ output, TID 1980 and 2000, highlighted in red in the above output, can be
correlated with the output from the mutantscan plugin (1956:1980 and 1956:2000) from Table 10.
Whether the remaining threads have contributed to the infection is not currently known but there
is reason to suspect that some of the additional non-exited threads may have contributed to this
infection.

2.3.2.9 Driverscan and DriverIRP plugins

The driverscan plugin scans a memory image for driver objects and uses physical memory
addressing while the driverirp plugin scans memory for driver IRP hooking. The latter plugin
uses neither virtual nor physical memory addressing; instead, it accepts KDBG and KPCR
addresses.

Through these plugins, it may be possible to find the specific driver alluded to by cmdscan and
consoles plugins (see Section 2.3.2.1 for details). The following commands were issued to query
the memory image for evidence about the malicious driver:

$ volatility -f 0zapftis.vmem driverscan

$ volatility -f 0zapftis.vmem driverirp

The output from these commands was pruned. Output from plugin driverscan was as follows:

Table 12: Volatility Driverscan plugin output of suspicious driver.

Offset (P) #Ptr #Hnd Start Size Service Key Name Driver Name

0x01a498b8 3 0 0xf9eb4000 0x1500 malware malware \Driver\malware

Clearly, this is the malicious driver and it is located at physical memory address 0x01a498b8.

Output from plugin driverirp was as follows:

DriverName: malware
DriverStart: 0xf9eb4000
DriverSize: 0x1500
DriverStartIo: 0x0
 0 IRP_MJ_CREATE 0xf9eb4d76 winsys32.sys
 1 IRP_MJ_CREATE_NAMED_PIPE 0xf9eb4d76 winsys32.sys
 2 IRP_MJ_CLOSE 0xf9eb4d76 winsys32.sys
 3 IRP_MJ_READ 0xf9eb4e00 winsys32.sys
 4 IRP_MJ_WRITE 0xf9eb4d76 winsys32.sys
 5 IRP_MJ_QUERY_INFORMATION 0xf9eb4d76 winsys32.sys
 6 IRP_MJ_SET_INFORMATION 0xf9eb4d76 winsys32.sys
 7 IRP_MJ_QUERY_EA 0xf9eb4d76 winsys32.sys
 8 IRP_MJ_SET_EA 0xf9eb4d76 winsys32.sys
 9 IRP_MJ_FLUSH_BUFFERS 0xf9eb4d76 winsys32.sys
10 IRP_MJ_QUERY_VOLUME_INFORMATION 0xf9eb4d76 winsys32.sys
11 IRP_MJ_SET_VOLUME_INFORMATION 0xf9eb4d76 winsys32.sys
12 IRP_MJ_DIRECTORY_CONTROL 0xf9eb4d76 winsys32.sys

DRDC Valcartier TM 2013-177 21

13 IRP_MJ_FILE_SYSTEM_CONTROL 0xf9eb4d76 winsys32.sys
14 IRP_MJ_DEVICE_CONTROL 0xf9eb4e46 winsys32.sys
15 IRP_MJ_INTERNAL_DEVICE_CONTROL 0xf9eb4d76 winsys32.sys
16 IRP_MJ_SHUTDOWN 0xf9eb4d76 winsys32.sys
17 IRP_MJ_LOCK_CONTROL 0xf9eb4d76 winsys32.sys
18 IRP_MJ_CLEANUP 0xf9eb4d76 winsys32.sys
19 IRP_MJ_CREATE_MAILSLOT 0xf9eb4d76 winsys32.sys
20 IRP_MJ_QUERY_SECURITY 0xf9eb4d76 winsys32.sys
21 IRP_MJ_SET_SECURITY 0xf9eb4d76 winsys32.sys
22 IRP_MJ_POWER 0xf9eb4e66 winsys32.sys
23 IRP_MJ_SYSTEM_CONTROL 0xf9eb4d76 winsys32.sys
24 IRP_MJ_DEVICE_CHANGE 0xf9eb4d76 winsys32.sys
25 IRP_MJ_QUERY_QUOTA 0xf9eb4d76 winsys32.sys
26 IRP_MJ_SET_QUOTA 0xf9eb4d76 winsys32.sys
27 IRP_MJ_PNP 0x804f320e ntoskrnl.exe

Examining the driverirp plugin’s output, it is not readily possible for non-reverse engineers to
determine which driver IRP function codes3 are typically used for standard device drivers and
which are used for malware. Unfortunately, such knowledge is not readily available in the form of
a whitelist or blacklist.

2.3.2.10 Ldrmodules plugin

The ldrmodules Volatility plugin scans a memory image for signs of unlinked files (such as
DLLs) in memory that may be indicative of a suspicious or malicious file lurking in memory.
Since an already suspicious DLL was spotted, using the filescan plugin (mfc42ul.dll), others may
be hiding. Running this plugin may help to find them. However, this plugin can also find other
possibly hidden files in memory including executables and various types of libraries.

Using command “volatility -f 0zapftis.vmem ldrmodules | grep False” generated the following
output:

Table 13: Volatility Ldrmodules plugin output sorted by PID.

PID Process Base InLoad InInit InMem MappedPath

4 System 0x7c900000 False False False \WINDOWS\system32\ntdll.dll

184 VMwareTray.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\VMwareTray.exe

192 VMwareUser.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\VMwareUser.exe

228 reader_sl.exe 0x00400000 True False True \Program
Files\Adobe\Reader9.0\Reader\reader_
sl.exe

400 wuauclt.exe 0x00400000 True False True \WINDOWS\system32\wuauclt.exe

536 smss.exe 0x48580000 True False True \WINDOWS\system32\smss.exe

544 cmd.exe 0x4ad00000 True False True \WINDOWS\system32\cmd.exe

3 An IRP function code is denoted by IRP_MJ_.

22 DRDC Valcartier TM 2013-177

PID Process Base InLoad InInit InMem MappedPath

608 csrss.exe 0x00450000 False False False \WINDOWS\Fonts\vgasys.fon

608 csrss.exe 0x4a680000 True False True \WINDOWS\system32\csrss.exe

608 csrss.exe 0x01230000 False False False \WINDOWS\Fonts\dosapp.fon

608 csrss.exe 0x01250000 False False False \WINDOWS\Fonts\cga80woa.fon

608 csrss.exe 0x01260000 False False False \WINDOWS\Fonts\cga40woa.fon

608 csrss.exe 0x010a0000 False False False \WINDOWS\Fonts\vgaoem.fon

608 csrss.exe 0x01240000 False False False \WINDOWS\Fonts\ega40woa.fon

632 winlogon.exe 0x01000000 True False True \WINDOWS\system32\winlogon.exe

676 services.exe 0x01000000 True False True \WINDOWS\system32\services.exe

688 lsass.exe 0x01000000 True False True \WINDOWS\system32\lsass.exe

832 vmacthlp.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\vmacthlp.exe

848 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

916 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

964 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

964 svchost.exe 0x02030000 False False False \WINDOWS\system32\stdole2.tlb

1020 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

1148 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

1260 spoolsv.exe 0x01000000 True False True \WINDOWS\system32\spoolsv.exe

1444 VMwareService.e 0x00400000 True False True \Program Files\VMware\VMware
Tools\VMwareService.exe

1616 alg.exe 0x01000000 True False True \WINDOWS\system32\alg.exe

1920 wscntfy.exe 0x01000000 True False True \WINDOWS\system32\wscntfy.exe

1956 explorer.exe 0x01000000 True False True \WINDOWS\explorer.exe

Upon close examination of the table’s contents, nothing was found to be out of the ordinary. In
fact, due to the specific nature of the processes involved and the types of files listed as unlinked,
nothing suspicious or malicious should be construed from this information.

2.3.2.11 Summary and analysis

The Volatility plugins used in this step of the analysis have revealed important clues concerning
the infection. It is now known that a covert communication channel was in use by some
process/thread hidden/injected under/into PID 1956 (explorer.exe). Moreover, it has been

DRDC Valcartier TM 2013-177 23

discovered that a malicious driver has been loaded and that a suspicious DLL has been found in
the Windows System32 directory.

The next section will concentrate on isolating and dumping both the suspicious kernel driver
winsys32.sys and DLL mfc42ul.dll from memory so that they can be further analysed.

2.3.3 Step 3: Memory dumping and analysis of DLL and driver

Once sufficient evidence has been established indicating that suspicious or possibly malicious
processes, DLLs or drivers may be hiding in memory, they can be dumped from memory for
further analysis. This step examines how to dump them from memory and corroborate them with
the evidence thus far obtained.

The evidence thus far indicates that one malicious driver has been loaded and that a highly
suspicious DLL has been found associated with PID 1956 (explorer.exe). Moreover, PID 1956
was found in the midst of a covert communication with some unknown remote system.

2.3.3.1 Create data directories

Create directories malfind, dlldump and moddump for storing memory samples that are to be
dumped from the memory image using Volatility. This is done using the following commands:

 $ mkdir malfind

$ mkdir dlldump

 $ mkdir moddump

2.3.3.2 Malfind plugin

2.3.3.2.1 Running the plugin

Volatility’s malfind plugin was specifically designed to search for malware hidden through code
injection. If memory address offsets are specified then they must be physical memory addresses.

Using the following commands, it was attempted to find and dump injected code associated with
PID 1956 (explorer.exe):

$ volatility -f 0zapftis.vmem malfind -p 1956 -o 0x015bcda0 --
dump-dir=malfind

This command found no indication of injected code as no output or dumped file resulted from this
command.

The following command was then run at large against the entire memory image to detect if other
processes had not been hijacked via code injection:

$ volatility -f 0zapftis.vmem malfind --dump-dir=malfind

24 DRDC Valcartier TM 2013-177

This command succeeded in dumping 10 sample files from memory. However, looking only at
the textual output generated by the malfind plugin, no indication of maliciously injected code had
been found. Nevertheless, subsequent analyses will confirm or rule out the pertinence of these
dumped files.

2.3.3.2.2 AV scanning

All 10 samples were scanned using the six aforementioned scanners. No indication of infection
was found among them.

2.3.3.2.3 SHA1 and fuzzy hashes

All 10 dumped files were hashed using the sha1sum command to determine their SHA1
signatures. No identical SHA1 hashes were identified, indicating that each memory sample was
unique. The files were then fuzzy hashed to determine if there were any similarities between
them, however, none was found.

The SHA1 and fuzzy hashes were then compared against those of the carved data files. No
identical or similar hashes were detected, respectively.

Finally, the SHA1 hashes were compared against the NSRL 2.41 hash-set but no matches were
identified.

Thus, the malfind-dumped memory samples are independent of the previously established SHA1
and fuzzy hashes for the carved data files.

2.3.3.2.4 Summary

The malfind plugin did not succeed in dumping any maliciously injected code from any identified
memory image process. Although 10 memory samples were dumped, they were all determined to
be innocuous and independent of already established (carved data files) SHA1 and fuzzy hashes.

Other memory dumping approaches will be used in the following subsections.

2.3.3.3 Dlllist plugin

The dlllist plugin is primarily used to determine which DLLs are loaded for a given process.
However, it can also be used to identify all DLLs loaded into memory. Running command
“volatility -f 0zapftis.vmem dlllist” identified, in total, 847 DLLs loaded into memory.

Based on the dlllist-determined list of loaded DLLs, suspicious DLL mfc42ul.dll was found
within the process space of PID 1956 (explorer.exe), as shown in the following table:

Table 14: Volatility Dlllist plugin output for PID 1956 against suspicious DLL mfc42ul.dll.

Base address Size Path

0x10000000 0x59000 C:\WINDOWS\system32\mfc42ul.dll

DRDC Valcartier TM 2013-177 25

However, upon much closer inspection of the list of DLLs generated by this plugin 15 instances
of this DLL were found in the memory space of other processes. Of these instances, only one was
identified as belonging to PID 1956 (explorer.exe). The following table lists all processes
identified with DLL mfc42ul.dll, including other pertinent information, as based on the dlllist
plugin output:

Table 15: Volatility Dlllist plugin output for all detected instances of mfc42ul.dll (sorted by PID).

PID Process Name DLL Base
Address

DLL Size
(in bytes)

Disk Location

184 VMwareTray.exe 0x00390000 364,544 C:\WINDOWS\system32\mfc42ul.dll
192 VMwareUser.exe 0x00390000 364,544 C:\WINDOWS\system32\mfc42ul.dll
228 reader_sl.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
400 wuauctl.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
544 cmd.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
632 winlogin.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
676 services.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
688 lsass.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
832 vmacthlp.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
848 svchost.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
964 svchost.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
1260 spoolsv.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
1444 VMwareService.e 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
1920 wscntfy.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll
1956 explorer.exe 0x10000000 364,544 C:\WINDOWS\system32\mfc42ul.dll

Based on the above list, it can be inferred that this DLL is likely conducting DLL injection.
However, the next step will be to dump these DLL instances from the memory image.

2.3.3.4 Dlldump plugin

2.3.3.4.1 Running the plugin

Volatility’s dlldump plugin was specifically designed to dump DLLs from memory to disk. If
memory address offsets are specified then they must be physical memory addresses.

Based on the information already established using the dlllist plugin, in order to dump all detected
instances of DLL mfc42ul.dll from the memory image, the following commands were used:

$volatility -f 0zapftis.vmem dlldump -p 184 -b 0x00390000 --dump-
dir=dlldump

26 DRDC Valcartier TM 2013-177

$volatility -f 0zapftis.vmem dlldump -p 192 -b 0x00390000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 228 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 400 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 544 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 632 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 676 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 688 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 832 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 848 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 964 -b 0x10000000 --dump-
dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 1260 -b 0x10000000 --
dump-dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 1444 -b 0x10000000 --
dump-dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 1920 -b 0x10000000 --
dump-dir=dlldump

$volatility -f 0zapftis.vmem dlldump -p 1956 -b 0x10000000 --
dump-dir=dlldump

In all, 15 dlldump commands were issued but only 14 instances were successfully acquired. The
instance of mfc42ul.dll from PID 632 (winlogin.exe) had been paged out.

The following is a list of the results obtained for the aforementioned dlldump commands:

Table 16: Specifics concerning dumped instances of mfc42ul.dll (sorted by PID).

Process (V) Process Name Dumped Data Filename Size (in bytes)

0x813a9020 winlogon.exe Error: DllBase is paged 360,448

0x813bcda0 explorer.exe module.1956.15bcda0.10000000.dll 360,448

0x813c4020 lsass.exe module.688.15c4020.10000000.dll 360,448

DRDC Valcartier TM 2013-177 27

Process (V) Process Name Dumped Data Filename Size (in bytes)

0x815c4da0 wscntfy.exe module.1920.17c4da0.10000000.dll 360,448

0x815e7be0 wuauclt.exe module.400.17e7be0.10000000.dll 360,448

0x8167e9d0 svchost.exe module.848.187e9d0.10000000.dll 360,448

0x816c6da0 svchost.exe module.964.18c6da0.10000000.dll 360,448

0x816d63d0 VMwareTray.exe module.184.18d63d0.390000.dll 360,448

0x816da020 services.exe module.676.18da020.10000000.dll 360,448

0x81754990 VMwareService.e module.1444.1954990.10000000.dll 360,448

0x81772ca8 vmacthlp.exe module.832.1972ca8.10000000.dll 360,448

0x817937e0 spoolsv.exe module.1260.19937e0.10000000.dll 360,448

0x817a34b0 cmd.exe module.544.19a34b0.10000000.dll 360,448

0x8180b478 VMwareUser.exe module.192.1a0b478.390000.dll 360,448

0x818233c8 reader_sl.exe module.228.1a233c8.10000000.dll 360,448

2.3.3.4.2 SHA1 and fuzzy hashes

Although 14 of the 15 instance of mfc42ul.dll were successfully dumped from the memory image,
it was expected that they would be identical to one another. However, after having generated their
SHA1 hashes using the command sha1sum, it was established that they were not at all the same.
In fact, each instance was different from every other instance, as per the following table of their
generated SHA1 hashes:

Table 17: SHA1 hashes for Dlldump-acquired instances of mfc42ul.dll (sorted by filename).

Dumped Data Filename SHA1 Hash

module.184.18d63d0.390000.dll b63af9f45fbe0e1380b8fd5143d46a468fc6e9c8

module.192.1a0b478.390000.dll 0d02b0ed777028ec352d1727927303da69508585

module.228.1a233c8.10000000.dll 81db53bf63354958ac752efab57314b9a8475493

module.400.17e7be0.10000000.dll 2e7f329664f6d207a96e0d3402c9e3412e8072de

module.544.19a34b0.10000000.dll e09c7af8150630eaeedf5cb12054fdd84a4d84bc

module.676.18da020.10000000.dll 23b69ffa9fa58c1f4581eecb6dce633350123d76

module.688.15c4020.10000000.dll 80c2ecf7951c989d524f3681fa6b0a0c3e735923

module.832.1972ca8.10000000.dll 31a699364b70d0c7cf5486375e99dd6e9b3a9d4b

module.848.187e9d0.10000000.dll c4d65618358516df348852b692f2ded6b586870a

module.964.18c6da0.10000000.dll 57f9b685009d3b52f5e2a53fe89c8b96c251a283

module.1260.19937e0.10000000.dll 0734a8e1b7773e91818bafdc0d4cef25661adf56

module.1444.1954990.10000000.dll 437e81e7e0d09750a920cdbeda8fb7cef67235af

28 DRDC Valcartier TM 2013-177

Dumped Data Filename SHA1 Hash

module.1920.17c4da0.10000000.dll 1a497bfb06f68611ddd7e8c6dd72a41f4f604531

module.1956.15bcda0.10000000.dll dc1b40e584e6ab887bc04e39331e28c56a5c78a8

Using fuzzy hashes it will be possible to determine the extent of the similarities between the
dumped memory samples, if any. To generate fuzzy-based hashes, the ssdeep command was used.
The following table lists their similarities:

Table 18: Fuzzy hash matching of acquired mfc42ul.dll instances (sorted by %).

Matched File #1 Matched File #2 Match (in %)
module.192.1a0b478.390000.dll module.184.18d63d0.390000.dll (100)
module.676.18da020.10000000.dll module.1260.19937e0.10000000.dll (100)
module.832.1972ca8.10000000.dll module.228.1a233c8.10000000.dll (100)
module.848.187e9d0.10000000.dll module.1260.19937e0.10000000.dll (100)
module.848.187e9d0.10000000.dll module.676.18da020.10000000.dll (100)
module.964.18c6da0.10000000.dll module.1260.19937e0.10000000.dll (100)
module.964.18c6da0.10000000.dll module.676.18da020.10000000.dll (100)
module.964.18c6da0.10000000.dll module.848.187e9d0.10000000.dll (100)
module.228.1a233c8.10000000.dll module.1920.17c4da0.10000000.dll (97)
module.688.15c4020.10000000.dll module.544.19a34b0.10000000.dll (97)
module.832.1972ca8.10000000.dll module.1260.19937e0.10000000.dll (97)
module.832.1972ca8.10000000.dll module.676.18da020.10000000.dll (97)
module.848.187e9d0.10000000.dll module.832.1972ca8.10000000.dll (97)
module.964.18c6da0.10000000.dll module.832.1972ca8.10000000.dll (97)
module.1444.1954990.10000000.dll module.1260.19937e0.10000000.dll (96)
module.1920.17c4da0.10000000.dll module.1260.19937e0.10000000.dll (96)
module.1920.17c4da0.10000000.dll module.1444.1954990.10000000.dll (96)
module.228.1a233c8.10000000.dll module.1260.19937e0.10000000.dll (96)
module.228.1a233c8.10000000.dll module.1444.1954990.10000000.dll (96)
module.400.17e7be0.10000000.dll module.1260.19937e0.10000000.dll (96)
module.400.17e7be0.10000000.dll module.1444.1954990.10000000.dll (96)
module.400.17e7be0.10000000.dll module.1920.17c4da0.10000000.dll (96)
module.400.17e7be0.10000000.dll module.228.1a233c8.10000000.dll (96)
module.544.19a34b0.10000000.dll module.1260.19937e0.10000000.dll (96)
module.544.19a34b0.10000000.dll module.1444.1954990.10000000.dll (96)
module.544.19a34b0.10000000.dll module.1920.17c4da0.10000000.dll (96)

DRDC Valcartier TM 2013-177 29

Matched File #1 Matched File #2 Match (in %)
module.544.19a34b0.10000000.dll module.228.1a233c8.10000000.dll (96)
module.544.19a34b0.10000000.dll module.400.17e7be0.10000000.dll (96)
module.676.18da020.10000000.dll module.1444.1954990.10000000.dll (96)
module.676.18da020.10000000.dll module.1920.17c4da0.10000000.dll (96)
module.676.18da020.10000000.dll module.228.1a233c8.10000000.dll (96)
module.676.18da020.10000000.dll module.400.17e7be0.10000000.dll (96)
module.676.18da020.10000000.dll module.544.19a34b0.10000000.dll (96)
module.688.15c4020.10000000.dll module.1260.19937e0.10000000.dll (96)
module.688.15c4020.10000000.dll module.1444.1954990.10000000.dll (96)
module.688.15c4020.10000000.dll module.1920.17c4da0.10000000.dll (96)
module.688.15c4020.10000000.dll module.228.1a233c8.10000000.dll (96)
module.688.15c4020.10000000.dll module.400.17e7be0.10000000.dll (96)
module.688.15c4020.10000000.dll module.676.18da020.10000000.dll (96)
module.832.1972ca8.10000000.dll module.1444.1954990.10000000.dll (96)
module.832.1972ca8.10000000.dll module.1920.17c4da0.10000000.dll (96)
module.832.1972ca8.10000000.dll module.400.17e7be0.10000000.dll (96)
module.832.1972ca8.10000000.dll module.544.19a34b0.10000000.dll (96)
module.832.1972ca8.10000000.dll module.688.15c4020.10000000.dll (96)
module.848.187e9d0.10000000.dll module.1444.1954990.10000000.dll (96)
module.848.187e9d0.10000000.dll module.1920.17c4da0.10000000.dll (96)
module.848.187e9d0.10000000.dll module.228.1a233c8.10000000.dll (96)
module.848.187e9d0.10000000.dll module.400.17e7be0.10000000.dll (96)
module.848.187e9d0.10000000.dll module.544.19a34b0.10000000.dll (96)
module.848.187e9d0.10000000.dll module.688.15c4020.10000000.dll (96)
module.964.18c6da0.10000000.dll module.1444.1954990.10000000.dll (96)
module.964.18c6da0.10000000.dll module.1920.17c4da0.10000000.dll (96)
module.964.18c6da0.10000000.dll module.228.1a233c8.10000000.dll (96)
module.964.18c6da0.10000000.dll module.400.17e7be0.10000000.dll (96)
module.964.18c6da0.10000000.dll module.544.19a34b0.10000000.dll (96)
module.964.18c6da0.10000000.dll module.688.15c4020.10000000.dll (96)
module.1956.15bcda0.10000000.dll module.1260.19937e0.10000000.dll (57)
module.1956.15bcda0.10000000.dll module.1444.1954990.10000000.dll (57)
module.1956.15bcda0.10000000.dll module.1920.17c4da0.10000000.dll (57)
module.228.1a233c8.10000000.dll module.1956.15bcda0.10000000.dll (57)

30 DRDC Valcartier TM 2013-177

Matched File #1 Matched File #2 Match (in %)
module.400.17e7be0.10000000.dll module.1956.15bcda0.10000000.dll (57)
module.544.19a34b0.10000000.dll module.1956.15bcda0.10000000.dll (57)
module.676.18da020.10000000.dll module.1956.15bcda0.10000000.dll (57)
module.688.15c4020.10000000.dll module.1956.15bcda0.10000000.dll (57)
module.832.1972ca8.10000000.dll module.1956.15bcda0.10000000.dll (57)
module.848.187e9d0.10000000.dll module.1956.15bcda0.10000000.dll (57)
module.964.18c6da0.10000000.dll module.1956.15bcda0.10000000.dll (57)

Of the 14 acquired instances of mfc42ul.dll, each has been determined as partially matching at
least one or more instances of the DLL, as per the above table. However, while some of the
above-listed matches have been identified as 100% similar to other instances their SHA1 hashes
tell a different story. Thus, those matches listed as 100%, while very similar (statistically close to
100%), were inevitably different by perhaps only a few bytes.

The reason none of the instances of mfc42ul.dll had the same SHA1 hash is because each DLL
was partially fragmented in memory, due to the way they were loaded4 into memory. When they
were dumped to disk using the plugin, fragmentation was not taken into account; instead, they
were dumped as they were found in memory.

Comparing the SHA1 hashes of the 14 dumped DLLs to those of the carved data files resulted in
no matches. Moreover, comparing these files against the NSRL 2.41 hash-set revealed no
matches.

While comparing the fuzzy hashes of the 14 dumped files to those of the carved data files, the
following matches were identified:

Table 19: Fuzzy hashes for Dlldump-acquired mfc42ul.dll instances vs. carved data files.

Mfc42ul.dll Instance Carved Data File Match (in %)
module.1260.19937e0.10000000.dll recup_dir.1/f0215376.dll (30)
module.1444.1954990.10000000.dll recup_dir.1/f0215376.dll (30)
module.1920.17c4da0.10000000.dll recup_dir.1/f0215376.dll (30)
module.1956.15bcda0.10000000.dll recup_dir.1/f0215376.dll (25)
module.228.1a233c8.10000000.dll recup_dir.1/f0215376.dll (30)
module.400.17e7be0.10000000.dll recup_dir.1/f0215376.dll (30)
module.544.19a34b0.10000000.dll recup_dir.1/f0215376.dll (30)
module.676.18da020.10000000.dll recup_dir.1/f0215376.dll (30)

4 Computer memory is based on pages. These pages are not only continuously swapped in and out of
memory, as per the Windows virtual memory manager, thereby contributing to fragmentation, but as
memory is used and released, free memory pages inevitably become fragmented as data is loaded/unloaded
into them.

DRDC Valcartier TM 2013-177 31

Mfc42ul.dll Instance Carved Data File Match (in %)
module.688.15c4020.10000000.dll recup_dir.1/f0215376.dll (30)
module.832.1972ca8.10000000.dll recup_dir.1/f0215376.dll (30)
module.848.187e9d0.10000000.dll recup_dir.1/f0215376.dll (30)
module.964.18c6da0.10000000.dll recup_dir.1/f0215376.dll (30)

Upon examining Table 19 and then comparing it against the scanner results obtained from the
carved data files (see Section 2.2.4), it turns out that carved data file recup_dir.1/f0215376.dll
was detected as infected by the Avast and F-Prot scanners (as found in Annex B). More
specifically, this carved data file was detected as R2D2 by Avast.

Finally, the SHA1 and fuzzy hashes of the 14 dumped instances of mfc42ul.dll were compared
against those of the malfind-dumped memory samples, but no matches were found.

2.3.3.4.3 AV scanning

After an exhaustive analysis using the aforementioned AV scanners, it can be definitively
determined that this DLL and its instances are not only malicious but are responsible for the
R2D2 infection of this computer system, as based on the following information:

Table 20: AV scanner results for mfc42ul.dll instances.

AV Scanner Detection of infection

Avast All 14 instances detected as infected

AVG All 14 instances detected as infected

BitDefender All 14 instances detected as infected

Comodo All 14 instances detected as infected

F-Prot Found no infections

McAfee All 14 instances detected as infected

Scanner log specifics can be found in Annex D. Based on these results, it is almost certain that the
botnet was emanating from these DLLs and that they were conducting DLL injection.

2.3.3.4.4 Summary

There is no doubt that the recovered DLL instances were responsible for the R2D2 infection of
this system. This subsection has examined how the DLL instances were dumped and analysed
through AV scanning and hashing (SHA1 and fuzzy) against the NSRL hash-set, carved data files
and malfind-dumped memory samples.

Although some may have preferred to have dumped all memory resident DLLs and then validate
them in the same manner, many additional hours of analysis would have been required.

32 DRDC Valcartier TM 2013-177

2.3.3.5 Moddump plugin

2.3.3.5.1 Running the plugin

Volatility’s moddump plugin was specifically designed to dump drivers from memory to disk. If
memory address offsets are specified then the Start address found in Table 12 obtained from the
driverscan plugin should be used.

To dump driver malware/winsys32.sys (see Section 2.3.2.9 for details) from the memory image to
disk, the following command was used:

$ volatility -f 0zpaftis moddump -b 0xf9eb4000 --dump-dir=moddump

The dumped driver, winsys32.sys had the following metadata:

Table 21: Metadata concerning Moddump-specific driver winsys32.sys.

Filename moddump/driver.f9eb4000.sys

Size 5,376 bytes

SHA1 hash 47628778e0cd821038e92ef83bd36979830f4871

Fuzzy hash 96:xu+J4szsciPxsYJDCs9OODexF+CLUpXfMg:Lrzkxsmt5CAEg

2.3.3.5.2 SHA1 and fuzzy hashes

The SHA1 and fuzzy hashes for driver winsys32.sys were compared against both the SHA1 and
fuzzy hashes of the carved data files. A SHA1 and fuzzy hash match of 100% were obtained for
carved data file f0181456.exe, indicating that the files are identical.

Comparing the dumped driver’s SHA1 hash against the NSRL 2.41 hash-set resulted in no
matches.

The SHA1 and fuzzy hashes of the dumped driver were compared against those of the malfind-
dumped memory samples, but no matches were found. Finally, the dumped driver’s SHA1 and
fuzzy hashes were compared against those of the dumped DLLs but again no matches were
identified.

2.3.3.5.3 AV scanning

When using the aforementioned AV scanners against the dumped driver, four of the six scanners
detected it as infected. Specifics are listed in the following table:

DRDC Valcartier TM 2013-177 33

Table 22: AV scanner detection of Moddump-based driver winsys32.sys.

Scanner Detected as

Avast Win32:R2D2-F [Trj]

AVG Trojan horse BackDoor.Badbot.C

BitDefender N/A

Comodo Backdoor.Win32.R2D2.~C

F-Prot N/A

Mcafee BackDoor-FCA!sys trojan

Based on these scanner results, there is little doubt that this driver is related to the R2D2 infection
and the aforementioned malicious DLL, mfc42ul.dll.

2.3.3.5.4 Summary

Although some may have preferred to dump all drivers from the memory image and then validate
them through AV scanning and hash analysis, this would have introduced a great deal of
analytical overhead.

There is no doubt that the recovered driver is related to the R2D2 infection. This subsection
examined how the driver was dumped and analysed with respect to its relationship with the
carved data files, NSRL hash-set, malfind-dumped memory samples and dumped DLL instances.

2.3.3.6 Summary and analysis

This step followed up on investigative clues determined through the application of various
Volatility plugins used in Step 2 (see Section 2.3.2). These plugins provided sufficient indications
that an attempt to dump, then subsequently scan and hash the suspicious DLL and driver would
prove beneficial in determining the source of the infection.

It turns out that the infection was caused by both a malicious DLL and driver, specifically
mfc42ul.dll and winsys32.sys. They are a part of the same underlying infection but each likely
carries out different tasks.

In this step, three specific Volatility plugins were used. The first, the malfind plugin, did not
succeed in detecting or dumping any maliciously injected code, thereby indicating that no such
detectable code or infection mechanism was in use in this particular investigation.

The dlllist plugin was used to determine not only the memory address of PID 1956’s instance of
mfc42ul.dll but identified, in all, 15 such instances in the memory image. Then, using the dlldump
plugin, 14 of these instances were successfully dumped to disk. It was determined that these
dumped DLL instances were not identical, but were similar to one another to varying degrees.
Moreover, some of them matched certain carved data files. Based on scanner analyses, there is no
doubt that these DLLs are part of the R2D2 infection.

34 DRDC Valcartier TM 2013-177

The moddump plugin was used to dump malicious driver winsys32.sys from memory. Analysis
has revealed it to be a part of this infection and that it is a 100% match to carved data file
f0181456.exe, indicating that data carving can be useful to help triage a memory image prior to
conducting in-depth memory analysis.

There was no point in pursuing the use of the memdump, procexedump or procmemdump plugins,
as was done in [1][2] as the clues and evidence found in Step 2 did not provide any indication that
the processes were themselves directly infected.

2.3.4 Registry

The Windows registry serves to both complicate and facilitate the investigator’s work. It is
commonly used by malware to configure system settings for permanent infection. However, the
difficulty in working with the registry lies in knowing where to look. The registry is spread out
across many data files (commonly known as registry hives) in various locations and each serves a
specific purpose with respect to system, application and user configurations. Annex E provides a
listing of registry keys commonly used by malware. The list has had several entries added to it
since report [2].

2.3.4.1 Hivelist plugin

The purpose of using the hivelist plugin is to determine which registry hives5 are available in the
memory image.

Consider the plugin’s output, using command “volatility -f 0zapftis.vmem hivelist”:

Table 23: Volatility Hivelist plugin output.

Virtual
Address

Physical
Address

Filename and Location

0x8066e904 0x0066e904 [no name]

0xe1bf6b60 0x0af3cb60 \Device\HarddiskVolume1\Documents and Settings\Administrator\Local
Settings\Application Data\Microsoft\Windows\UsrClass.dat

0xe1bb2b60 0x0accab60 \Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT

0xe1a4db60 0x08b7cb60 \Device\HarddiskVolume1\Documents and Settings\LocalService\Local
Settings\Application Data\Microsoft\Windows\UsrClass.dat

0xe1991b60 0x07d9ab60 \Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT

0xe1844458 0x07741458 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

5 A registry hive denotes the actual disk file and its location on disk.

DRDC Valcartier TM 2013-177 35

Virtual
Address

Physical
Address

Filename and Location

0xe183e008 0x076b8008 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT

0xe1544b60 0x05c63b60 \Device\HarddiskVolume1\WINDOWS\system32\config\software

0xe154db60 0x05c6fb60 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM

0xe154d008 0x05c6f008 \Device\HarddiskVolume1\WINDOWS\system32\config\default

0xe1544008 0x05c63008 \Device\HarddiskVolume1\WINDOWS\system32\config\SECURITY

0xe13b5a40 0x02463a40 [no name]

0xe1018388 0x020bf388 \Device\HarddiskVolume1\WINDOWS\system32\config\system

0xe1008b60 0x020c3b60 [no name]

2.3.4.2 Printkey plugin

Using all proposed registry keys identified in Annex E, 1078 Volatility printkey commands were
issued via a script to query the memory image for information pertaining to traces of this
malware’s activities. Building such a script takes only a few minutes. Based on the physical
memory addresses listed in the above table, used in conjunction with various command line tools
including cat, awk and sed, it is quickly assembled.

All output generated by the script was captured and stored to a text file for subsequent analysis.

After running the script, the following pertinent information concerning driver winsys32.sys was
found:

Registry: User Specified
Key name: 0000 (S)
Last updated: 2011-10-10 17:03:55

Values:
REG_SZ Service : (S) malware
REG_SZ ClassGUID : (S) {8ECC055D-047F-11D1-A537-
0000F8753ED1}
REG_SZ DeviceDesc : (S) malware2
Legend: (S) = Stable (V) = Volatile

Registry: User Specified
Key name: malware (S)
Last updated: 2011-10-10 17:03:55

Values:
REG_DWORD Type : (S) 1
REG_EXPAND_SZ ImagePath : (S)
\??\C:\WINDOWS\system32\drivers\winsys32.sys
REG_SZ DisplayName : (S) malware2

36 DRDC Valcartier TM 2013-177

The malware driver winsys32.sys was found in registry keys
ControlSet001\Enum\Root\LEGACY_malware\0000 and ControlSet001\services\malware at
memory address 0xe1018388.

After running the script, the following pertinent information concerning DLL mfc42ul.dll was
found:

Registry: User Specified
Key name: Windows (S)
Last updated: 2011-10-10 16:56:35

Subkeys:

Values:
REG_SZ AppInit_DLLs : (S) mfc42ul.dll
REG_SZ DeviceNotSelectedTimeout : (S) 15
REG_DWORD GDIProcessHandleQuota : (S) 10000
REG_SZ Spooler : (S) yes
REG_SZ swapdisk : (S)
REG_SZ TransmissionRetryTimeout : (S) 90
REG_DWORD USERProcessHandleQuota : (S) 10000

The various instances of DLL mfc42ul.dll were loaded from registry key Microsoft\Windows
NT\CurrentVersion\Windows at memory address 0xe1544b60.

Thus, the persistence of this infection was made possible through the Windows registry.

2.3.4.3 Userassist plugin

The final registry-based Volatility plugin run against the memory image was userassist. This
plugin has the potential to provide, among other things, registry-based information pertaining to
programs run and files opened by the user.

Unfortunately, this plugin did not result in any useful information concerning the infection.

2.3.5 Step 5: Miscellaneous

This final step examines two additional lines of inquiry not examined in the author-proposed
methodology (see Section 1.7 for details) as they are optional and might only be of occasional
use.

More specifically, it may be possible to determine, at least partially, the capabilities of the
malicious driver and perhaps the encryption key used by the DLL to secure its covert
communications.

2.3.5.1 Devicetree

The Volatility devicetree plugin is used to determine the relationship between drivers and their
required Windows devices. In so doing, it may be possible to determine what device, and hence

DRDC Valcartier TM 2013-177 37

purpose, of a malicious. Running command “volatility -f 0zapftis.vmem devicetree,” after pruning,
generated the following output:

DRV 0x01a498b8 \Driver\malware
---| DEV 0x816c8d80 KeyboardClassC FILE_DEVICE_KEYBOARD

Based on this output, the malicious driver malware requires a keyboard-based device. The only
logical reason for this is that the driver is a keyboard logger and by having direct access to this
device it will be able to record user keystrokes.

2.3.5.2 Extract encryption keys

It has been established that the R2D2 infection relies on not only a covert communication channel
(see Section 2.3.2.2 for details) but that it also encrypts its communications using ECB-based
AES encryption [8][24] and [25]. While references [8][24] and [25] list the actual encryption key
used for AES encryption, an investigator should know how to find and extract these keys.

Two readily useable FOSS-based encryption detection and extraction-based software includes
aeskeyfind6 and interrogate7. Both tools are easy to use. Running either command will reveal that
the AES encryption key in use by this infection is readily identifiable. The AES key has been
identified as:

4903930819949694289383046828a8f50ab994024581931fbcd7f3ad93f53293

This key corroborates the information found in [8][24] and [25]

2.3.5.3 Summary and analysis

Although this step was brief, it was demonstrated that AES encryption can be detected and
extracted from memory. In so doing, it has been confirmed that the malware infecting this
memory image is in fact R2D2.

However, encryption key detection is not limited to only AES but can include additional forms
including RSA, recovered using aeskeyfind and interrogate, while others such as BitLocker and
PGP can be recovered using Passware and Elcomsoft.

Finally, through the Volatility devicetree plugin, it was possible to discern some of the
capabilities of the device driver. It was determined that device driver malware was in fact a
keylogger.

6 Aeskeyfind can be found at https://citp.princeton.edu/research/memory/code/.
7 Interrogate can be found at https://github.com/carmaa/interrogate.

38 DRDC Valcartier TM 2013-177

https://citp.princeton.edu/research/memory/code/
https://github.com/carmaa/interrogate

3 Conclusion

What can be concluded from this work is that using sound investigative footwork, combined with
the capabilities of the Volatility memory analysis framework, investigators can readily analyse
and investigate suspected memory-based infections.

Trojan horse 0zapftis (R2D2) was the most difficult to investigate to date in this series of reports.
It was well hidden and required a keen attention to details in order to isolate it. Although it was
possible to dump the malware from memory using the dlldump and moddump plugins, getting to
this stage was not obvious. Although documentation concerning the infection was sufficient to
learn more about what was left behind in memory, this case was solved without it.

Upon having dumped both the driver and malicious DLL the cause of the infection has been
isolated. The memory image was infected by a botnet that was controlling various aspects of the
system. The DLL was loaded with various processes due to the use of registry key
Microsoft\Windows NT\CurrentVersion\Windows. Once the DLL was loaded using this registry
key, it could then begin injecting itself. It was later determined that the malicious device driver
was in fact a keylogger.

Throughout this document, based on the proposed methodology as put forward in [2], the author
has demonstrated the manner in which a forensic memory analysis can be conducted by non-
memory specialists. Thus, even novice memory investigators can successfully conduct difficult
memory analyses, when armed with straightforward tools, techniques and methodology.

Not all analyses will be able to rely on well-prepared malware reports. This is why this
investigation did not make direct use of them during the analysis of the memory image.
Moreover, as with previous analyses [1][2], no use was made of existing analyses of this memory
image. The techniques and methodology presented herein will be of use, to varying extents,
newer and more difficult to analyse malware.

This document, the third in a series of many, has guided the reader through a difficult to find
malware composed of a driver and multiple instances of a malicious DLL. It is hoped that other
similar reports will continue to be possible in order to continue building a sufficient compendium
of knowledge for memory analysis for use by novice and expert memory analysts alike. While the
degree of difficulty varies substantially from case to case, the Volatility framework, when
combined with investigative knowhow, tools, techniques and methodology is a highly adept
analysis-based framework.

DRDC Valcartier TM 2013-177 39

This page intentionally left blank.

40 DRDC Valcartier TM 2013-177

References

[1] Carbone, Richard. Malware memory analysis for non-specialists: Investigating a publicly
available memory image of the Zeus Trojan horse. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-018. April 2013.

[2] Carbone, Richard. Malware memory analysis for non-specialists: Investigating publicly
available memory images for Prolaco and SpyEye. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-155. October 2013.

[3] Carbone, Richard. File recovery and data extraction using automated data recovery tools: A
balanced approach using Windows and Linux when working with an unknown disk image
and filesystem. Technical memorandum. TM 2009-161. Defence R&D Canada - Valcartier.
January 2013. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc122/p531895_A1b.pdf.

[4] http://gbata.org/wp-content/uploads/2013/06/KeynoteSpeakers-2013.pdf.

[5] Elsevier. Network Security. Newsletter. ISSN 1353-4858. Elsevier. October 2011.
http://www.secniche.org/released/NESE_FRAME_AKS_RJE.pdf.

[6] Cluley, Graham. ‘Government’ backdoor R2D2 Trojan discovered by Chaos Computer Club.
Blog. NakedSecurity/Sophos. October 2011.
http://nakedsecurity.sophos.com/2011/10/09/government-backdoor-trojan-chaos/.

[7] Gorman, Gavin O. Backdoor.R2D2: The Long Arm of the Law? Blog. Symantec. October
2011. http://www.symantec.com/connect/blogs/backdoorr2d2-long-arm-law.

[8] Chaos Computer Club. Analyse Einer Regierungs – Malware. Technical report. Chaos
Computer Club. October 2011. http://www.ccc.de/system/uploads/76/original/staatstrojaner-
report23.pdf.

[9] Network Security Investigations. R2D2 Dropper. Sandbox incidence report. Evild3ad.com.
Unknow date. http://www.evild3ad.com/Downloads/R2D2-Dropper/NSI-Sandbox.pdf.

[10] Farivar, Cyrus. German company behind govermment spyware admits sale to Bavaria.
Online news article. DW. October 2011. http://www.dw.de/german-company-behind-
government-spyware-admits-sale-to-bavaria/a-15453150-1.

[11] Rieger, Frank. Anatomy of a digital pest. Technical paper. Feuilleton. October 2011.
http://www.edge.org/3rd_culture/FAZ2011/Trojaner_englisch.pdf.

[12] Network World. German Federal Trojan (0zapftis/Bundestrojaner) Eavesdrops On
Skype, IE, Firefox, MSN Messenger & More. Online article. October 2011.
http://www.darknet.org.uk/2011/10/german-federal-trojan-0zapftisbundestrojaner-
eavesdrops-on-skype-ie-firefox-msn-messenger-more/.

DRDC Valcartier TM 2013-177 41

http://cradpdf.drdc-rddc.gc.ca/PDFS/unc122/p531895_A1b.pdf
http://gbata.org/wp-content/uploads/2013/06/KeynoteSpeakers-2013.pdf
http://www.secniche.org/released/NESE_FRAME_AKS_RJE.pdf
http://nakedsecurity.sophos.com/2011/10/09/government-backdoor-trojan-chaos/
http://www.symantec.com/connect/blogs/backdoorr2d2-long-arm-law
http://www.ccc.de/system/uploads/76/original/staatstrojaner-report23.pdf
http://www.ccc.de/system/uploads/76/original/staatstrojaner-report23.pdf
http://www.evild3ad.com/Downloads/R2D2-Dropper/NSI-Sandbox.pdf
http://www.dw.de/german-company-behind-government-spyware-admits-sale-to-bavaria/a-15453150-1
http://www.dw.de/german-company-behind-government-spyware-admits-sale-to-bavaria/a-15453150-1
http://www.edge.org/3rd_culture/FAZ2011/Trojaner_englisch.pdf
http://www.darknet.org.uk/2011/10/german-federal-trojan-0zapftisbundestrojaner-eavesdrops-on-skype-ie-firefox-msn-messenger-more/
http://www.darknet.org.uk/2011/10/german-federal-trojan-0zapftisbundestrojaner-eavesdrops-on-skype-ie-firefox-msn-messenger-more/

[13] Meyer, Julien. R2D2, analyse d’un cheval de Troie gouvernemental. Journal article.
Actu Sécu/XMCO. April 2012. http://www.xmco.fr/actu-secu/XMCO-ActuSecu-31-R2D2-
Pharmacies_fictives.pdf.

[14] Dewald, Andreas; Freiling, Felix C. et al. Analyse und Vergleich von BckR2D2-I und II.
Journal article. Universität Mannheim, Friedrich-Alexander Universität Erlangen-Nürnberg,
Ruhr-Universität Bochum. Journal: Lecture Notes in Informatics. March 2012. ISBN: 978-
88579-289-5. http://subs.emis.de/LNI/Proceedings/Proceedings195/P-195.pdf.

[15] Volatility. CommandReference: Example usage cases and output for Volatility 2.0
commands. Online command reference. Volatility. February 2012.
http://code.google.com/p/volatility/wiki/CommandReference.

[16] Volatility. CommandReference23: Example usage cases and output for Volatility 2.3
commands. Online command reference. Volatility. Unknown date.
http://code.google.com/p/volatility/wiki/CommandReference23.

[17] SpeedGuide Inc. Port 6666 Details. Informational article. SpeedGuide Inc. 2013.
http://www.speedguide.net/port.php?port=6666.

[18] Wikipedia. Chaos Computer Club. Online encyclopaedic entry. Wikimedia Foundation
Inc. September 2013. http://en.wikipedia.org/wiki/Chaos_Computer_Club.

[19] Chaos Computer Club. Addendum Staatstrojaner. Informational article. October 2011.
Chaos Computer Club. http://www.ccc.de/de/updates/2011/addendum-staatstrojaner.

[20] DW. Several German states admit to use of controversial spy software. Online news
article. DW. October 2011. http://www.dw.de/several-german-states-admit-to-use-of-
controversial-spy-software/a-15449054-1.

[21] DW. German company behind government spyware admits sale to Bavaria. Online news
article. DW. October 2011. http://www.dw.de/german-company-behind-government-
spyware-admits-sale-to-bavaria/a-15453150.

[22] Privacy International. DigiTask. Online article. 2012. Privacy International.
http://bigbrotherinc.org/v1/Germany/DigiTask/.

[23] Thomas, Michael. Remote Forensic Software. Presentation. Digitask GmbH.
September 2008. http://cryptome.org/0005/michaelthomas.pdf.

[24] Cisco. Backdoor:W32/R2D2.A. Informational article. Cisco. October 2011.
http://tools.cisco.com/security/center/viewAlert.x?alertId=24352.

[25] Laskov, Pavel. Intrusion Detection and Malware Analysis: Course
Introduction/Overview of Security Threats. Course presentation. Wilhelm Schickard
Institute for Computer Science. October 2011. http://www.cogsys.cs.uni-
tuebingen.de/lehre/ws11/ids-malware/01-intro.pdf.

42 DRDC Valcartier TM 2013-177

http://www.xmco.fr/actu-secu/XMCO-ActuSecu-31-R2D2-Pharmacies_fictives.pdf
http://www.xmco.fr/actu-secu/XMCO-ActuSecu-31-R2D2-Pharmacies_fictives.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings195/P-195.pdf
http://code.google.com/p/volatility/wiki/CommandReference
http://code.google.com/p/volatility/wiki/CommandReference23
http://www.speedguide.net/port.php?port=6666
http://en.wikipedia.org/wiki/Chaos_Computer_Club
http://www.ccc.de/de/updates/2011/addendum-staatstrojaner
http://www.dw.de/several-german-states-admit-to-use-of-controversial-spy-software/a-15449054-1
http://www.dw.de/several-german-states-admit-to-use-of-controversial-spy-software/a-15449054-1
http://www.dw.de/german-company-behind-government-spyware-admits-sale-to-bavaria/a-15453150
http://www.dw.de/german-company-behind-government-spyware-admits-sale-to-bavaria/a-15453150
http://bigbrotherinc.org/v1/Germany/DigiTask/
http://cryptome.org/0005/michaelthomas.pdf
http://tools.cisco.com/security/center/viewAlert.x?alertId=24352
http://www.cogsys.cs.uni-tuebingen.de/lehre/ws11/ids-malware/01-intro.pdf
http://www.cogsys.cs.uni-tuebingen.de/lehre/ws11/ids-malware/01-intro.pdf

 Volatility Windows-based plugins Annex A

The following is a complete list of the default Windows-based plugins provided with Volatility
version 2.2:

Table A.1: List of Volatility 2.2 plugins.

Plugin Capability (as per Volatility --help output)

apihooks Detect API hooks in process and kernel memory

atoms Print session and window station atom tables

atomscan Pool scanner for _RTL_ATOM_TABLE

bioskbd Reads the keyboard buffer from Real Mode memory

callbacks Print system-wide notification routines

clipboard Extract the contents of the windows clipboard

cmdscan Extract command history by scanning for _COMMAND_HISTORY

connections Print list of open connections [Windows XP and 2003 Only]

connscan Scan Physical memory for _TCPT_OBJECT objects (tcp connections)

consoles Extract command history by scanning for _CONSOLE_INFORMATION

crashinfo Dump crash-dump information

deskscan Poolscaner for tagDESKTOP (desktops)

devicetree Show device tree

dlldump Dump DLLs from a process address space

dlllist Print list of loaded dlls for each process

driverirp Driver IRP hook detection

driverscan Scan for driver objects _DRIVER_OBJECT

envars Display process environment variables

eventhooks Print details on windows event hooks

evtlogs Extract Windows Event Logs (XP/2003 only)

filescan Scan Physical memory for _FILE_OBJECT pool allocations

gahti Dump the USER handle type information

DRDC Valcartier TM 2013-177 43

Plugin Capability (as per Volatility --help output)

gditimers Print installed GDI timers and callbacks

gdt Display Global Descriptor Table

getservicesids Get the names of services in the Registry and return Calculated SID

getsids Print the SIDs owning each process

handles Print list of open handles for each process

hashdump Dumps passwords hashes (LM/NTLM) from memory

hibinfo Dump hibernation file information

hivedump Prints out a hive

hivelist Print list of registry hives.

hivescan Scan Physical memory for _CMHIVE objects (registry hives)

idt Display Interrupt Descriptor Table

imagecopy Copies a physical address space out as a raw DD image

imageinfo Identify information for the image

impscan Scan for calls to imported functions

kdbgscan Search for and dump potential KDBG values

kpcrscan Search for and dump potential KPCR values

ldrmodules Detect unlinked DLLs

lsadump Dump (decrypted) LSA secrets from the registry

malfind Find hidden and injected code

memdump Dump the addressable memory for a process

memmap Print the memory map

messagehooks List desktop and thread window message hooks

moddump Dump a kernel driver to an executable file sample

modscan Scan Physical memory for _LDR_DATA_TABLE_ENTRY objects

modules Print list of loaded modules

mutantscan Scan for mutant objects _KMUTANT

patcher Patches memory based on page scans

44 DRDC Valcartier TM 2013-177

Plugin Capability (as per Volatility --help output)

printkey Print a registry key, and its subkeys and values

procexedump Dump a process to an executable file sample

procmemdump Dump a process to an executable memory sample

pslist Print all running processes by following the EPROCESS lists

psscan Scan Physical memory for _EPROCESS pool allocations

pstree Print process list as a tree

psxview Find hidden processes with various process listings

raw2dmp Converts a physical memory sample to a windbg crash dump

screenshot Save a pseudo-screenshot based on GDI windows

sessions List details on _MM_SESSION_SPACE (user logon sessions)

shimcache Parses the Application Compatibility Shim Cache registry key

sockets Print list of open sockets

sockscan Scan Physical memory for _ADDRESS_OBJECT objects (tcp sockets)

ssdt Display SSDT entries

strings Match physical offsets to virtual addresses (may take a while, VERY
verbose)

svcscan Scan for Windows services

symlinkscan Scan for symbolic link objects

thrdscan Scan physical memory for _ETHREAD objects

threads Investigate _ETHREAD and _KTHREADs

timers Print kernel timers and associated module DPCs

userassist Print userassist registry keys and information

userhandles Dump the USER handle tables

vaddump Dumps out the vad sections to a file

vadinfo Dump the VAD info

vadtree Walk the VAD tree and display in tree format

vadwalk Walk the VAD tree

volshell Shell in the memory image

DRDC Valcartier TM 2013-177 45

Plugin Capability (as per Volatility --help output)

windows Print Desktop Windows (verbose details)

wintree Print Z-Order Desktop Windows Tree

wndscan Pool scanner for tagWINDOWSTATION (window stations)

yarascan Scan process or kernel memory with Yara signatures

46 DRDC Valcartier TM 2013-177

 Anti-virus scanner logs for carved data files Annex B

This following are the anti-virus scanner logs for the carved data files, carried out in Section
2.2.4.

In all, two virus matches were identified between the various scanners. These matches are
indicated below.

B.1 Avast

./recup_dir.1/f0181456.exe [infected by: Win32:R2D2-F [Trj]] <- Match 2

./recup_dir.1/f0215376.dll [infected by: Win32:R2D2-E [Trj]]

./recup_dir.1/f0148080.dll [infected by: Win32:R2D2-L [Trj]]

B.2 AVG

./recup_dir.2/f0443800.dll Virus found Win32/Heur

./recup_dir.1/f0141320.dll Virus found Win32/Heur

./recup_dir.1/f0149536.dll Virus found Win32/Heur

./recup_dir.1/f0140512.dll Virus found Win32/Heur

./recup_dir.1/f0140472.exe Virus found Win32/Heur <- Match 1

./recup_dir.1/f0148824.dll Virus found Win32/Heur

./recup_dir.1/f0148904.dll Virus found Win32/Heur

B.3 BitDefender

./recup_dir.1/f0140472.exe infected: Gen:Variant.FakeAlert.47 <- Match 1

./recup_dir.1/f0150032.exe infected: Gen:Variant.FakeAlert.47

B.4 Comodo

./recup_dir.1/f0181456.exe ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~C <-
Match 2
./recup_dir.1/f0414032.exe ---> Found Virus, Malware Name is Packed.Win32.MUPX.Gen
./recup_dir.1/f0148072.dll ---> Found Virus, Malware Name is TrojWare.Win32.FraudPack.P

B.5 F-Prot

./recup_dir.2/f0501736.dll <W32/Heuristic-COC!Eldorado (not disinfectable)>

./recup_dir.1/f0009912_ntkrnlpa.exe <W32/Heuristic-CO3!Eldorado (not disinfectable)>

./recup_dir.1/f0215376.dll <W32/Heuristic-COC!Eldorado (not disinfectable)>

./recup_dir.1/f0408232.dll <W32/MalwareHiderPatched-based!M>

DRDC Valcartier TM 2013-177 47

B.6 McAfee

./recup_dir.1/f0181456.exe ... Found the BackDoor-FCA!sys trojan !!! <- Match 2

48 DRDC Valcartier TM 2013-177

 NSRL file hash matches for carved data files Annex C

This annex provides a listing of those carved data files obtained in Section 2.2.3 that matched the
SHA1 hashes of the NSRL hash-set 2.41 (June 2013). In all, 28 unique NSRL-based SHA1-
filename matches were obtained. The NSRL hash-based filename matches are as follows:

Table C.1: SHA1 hash vs. NSRL filename for carved data files.

SHA1 hash Filename

048ABF0A35FFFEB7A43696EFB78290C2923F6069 ICMP.DLL

09105C886A83677E49CE6EF47F8CF1A047214AED 8.0.50727.762.POLICY

09105C886A83677E49CE6EF47F8CF1A047214AED MANIFEST.8.0.50727.762.68B7C6D9_1DF2_54C1_FF1F_C8B3
B9A1E18E

09105C886A83677E49CE6EF47F8CF1A047214AED UL_MANIFEST.68B7C6D9_1DF2_54C1_FF1F_C8B3B9A1E18E

09105C886A83677E49CE6EF47F8CF1A047214AED X1SW1O0K.9HI

09105C886A83677E49CE6EF47F8CF1A047214AED Z1SW1O0K.9HI

0C52F6D1FB3F253821DFB6BF4CDF7830F429F273 DXMRTP.MAN

0C52F6D1FB3F253821DFB6BF4CDF7830F429F273 X86_POLICY.5.2.MICROSOFT.WINDOWS.NETWORKING.DXM
RTP_6595B64144CCF1DF_5.2.2.3_X-
WW_CF59288D.MANIFEST

15740B197555BA8E162C37A60BA655151E3BEBAE INDEX.DAT

172E07C564B2BF0DB2333A8CEBE7EC4D8F82180C VMWAREFILTERS.TXT

2439C395AEDC84E421049775A8D2743BF6CA7AD6 GDIPLUS.MAN

2439C395AEDC84E421049775A8D2743BF6CA7AD6 X86_MICROSOFT.WINDOWS.GDIPLUS_6595B64144CCF1DF_
1.0.2600.2180_X-WW_522F9F82.MANIFEST

2E058F605FF909BFACA2676D4F5A5B59D6704E59 RTCDLL.MAN

2E058F605FF909BFACA2676D4F5A5B59D6704E59 X86_POLICY.5.2.MICROSOFT.WINDOWS.NETWORKING.RTCD
LL_6595B64144CCF1DF_5.2.2.3_X-
WW_5F924D7B.MANIFEST

305330837DE6C91E5DBA87168653C9EFD30C8385 RTCDLL.MAN

305330837DE6C91E5DBA87168653C9EFD30C8385 X86_MICROSOFT.WINDOWS.NETWORKING.RTCDLL_6595B6
4144CCF1DF_5.2.2.3_X-WW_D6BD8B95.MANIFEST

3F85EC97F05C84781219F548D253BED5464FE8FF DXMRTP.MAN

3F85EC97F05C84781219F548D253BED5464FE8FF X86_MICROSOFT.WINDOWS.NETWORKING.DXMRTP_6595B
64144CCF1DF_5.2.2.3_X-WW_468466A7.MANIFEST

40F6B4D98F237F0A1B53656659F93ECF8A249622 DEFAULT.MAN

DRDC Valcartier TM 2013-177 49

SHA1 hash Filename

40F6B4D98F237F0A1B53656659F93ECF8A249622 X86_POLICY.5.1.MICROSOFT.WINDOWS.SYSTEMCOMPATIBL
E_6595B64144CCF1DF_5.1.2600.2000_X-
WW_E037A8A.MANIFEST

50A9E047E7BFDA5A71608EDAE9086FC7C7930609 LZ32.DLL

6D239DC8A3C78670A544BEA19BB9E6B5BBE844BC GOOGLEDESKTOP.TXT

830D6459350DD1AB3B1F070135425A93395782B1 MANIFEST.8.0.50727.762.74FD3CE6_2A8D_0E9C_FF1F_C8B3
B9A1E18E

830D6459350DD1AB3B1F070135425A93395782B1 MFC80LOC_MAN.7643D2EA_8E33_4EBC_B95C_9E5DF999A5
35

830D6459350DD1AB3B1F070135425A93395782B1 UL_MANIFEST.74FD3CE6_2A8D_0E9C_FF1F_C8B3B9A1E18E

830D6459350DD1AB3B1F070135425A93395782B1 X86_MICROSOFT.VC80.MFCLOC_1FC8B3B9A1E18E3B_8.0.50
727.762_X-WW_91481303.MANIFEST

83C15BD58DFF36C08DB093F81ECFD431C404A933 SYSTEM.INI

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 0526

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 AMD64_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.0.6000.16386_NONE_8F7C8
248A32BA279_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 AMD64_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.0.6001.18000_NONE_91B34
444A016B34D_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 AMD64_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.1.7600.16385_NONE_91899
A68016A48BE_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 AMD64_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.2.8250.0_NONE_19CC16AF4
5E27012_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 AMD64_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.2.9200.16384_NONE_8E5E5
025717D780E_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 SCRIPT.FO!

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 SCRIPT.FON

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 X86_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.0.5270.9_NEUTRAL_4E7087
06B2C34447_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 X86_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.0.5384.4_NONE_6395095C1
981A3F5_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 X86_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.0.6000.16386_NONE_335DE
6C4EACE3143_SCRIPT.FON_0C43F9EC

50 DRDC Valcartier TM 2013-177

SHA1 hash Filename

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 X86_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.1.7600.16385_NONE_356AF
EE4490CD788_SCRIPT.FON_0C43F9EC

86B3D8696B5DA354EF42C8AB4A9D21CDAAF0DDA1 X86_MICROSOFT-WINDOWS-FONT-
VECTOR_31BF3856AD364E35_6.2.8250.0_NONE_BDAD7B2B
8D84FEDC_SCRIPT.FON_0C43F9EC

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 COMCTL.MAN

9537335B7EDA9AE3D1C125BE7BAC3161D5B853B8 X86_POLICY.6.0.MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.2180_X-
WW_EB84B25E.MANIFEST

AD2347170F3D50C2FB6306E61972039497AE861B RTCRES.MAN

AD2347170F3D50C2FB6306E61972039497AE861B X86_MICROSOFT.WINDOWS.NETWORKING.RTCRES_6595B6
4144CCF1DF_5.2.2.3_EN_16A24BC0.MANIFEST

B4BC7F8E9991FC3C22206DD8938289979184D97E __0X0069

C1A0C4D1030190A2D141B4E2D28D1329A8368A0A GDIPLUS.MAN

C1A0C4D1030190A2D141B4E2D28D1329A8368A0A X86_POLICY.1.0.MICROSOFT.WINDOWS.GDIPLUS_6595B641
44CCF1DF_1.0.2600.2180_X-WW_5FF735E2.MANIFEST

C5B52B71F4C5F933815D7D606175EA0BB37DC548 CONTROLS.MAN

C5B52B71F4C5F933815D7D606175EA0BB37DC548 X86_MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.2180_X-
WW_A84F1FF9.MANIFEST

CFCBB8E4E0C32500FA5BF9382B103C4199DF0276 __0X0034

CFCBB8E4E0C32500FA5BF9382B103C4199DF0276 __0X0098

CFCBB8E4E0C32500FA5BF9382B103C4199DF0276 __0X041B

D10440930CC994409E920D94C7C45F0405D60422 8.0.50727.762.POLICY

D10440930CC994409E920D94C7C45F0405D60422 MANIFEST.8.0.50727.762.63E949F6_03BC_5C40_FF1F_C8B3
B9A1E18E

D10440930CC994409E920D94C7C45F0405D60422 UL_MANIFEST.63E949F6_03BC_5C40_FF1F_C8B3B9A1E18E

D10440930CC994409E920D94C7C45F0405D60422 XXGS54WE.KJ4

D10440930CC994409E920D94C7C45F0405D60422 ZXGS54WE.KJ4

D88E50A3D3F232FB591010AB83C6D0DC3F820ECE __0X005B

D9AA29288951E94773CAA1054237D29734E79F34 CSRSS.EXE

E6499F9C89A77383456BD1F54D75753350C6F91F DEFAULT.MAN

E6499F9C89A77383456BD1F54D75753350C6F91F X86_MICROSOFT.WINDOWS.SYSTEMCOMPATIBLE_6595B64
144CCF1DF_5.1.2600.2000_X-WW_BCC9A281.MANIFEST

E9B4BDF28634345FD172530EA072CB0BDE0BAEFE __0X0461

DRDC Valcartier TM 2013-177 51

SHA1 hash Filename

E9B4BDF28634345FD172530EA072CB0BDE0BAEFE __0X0467

F081561658705610ADAD4C30E757312491EDF9E0 8.0.50727.762.POLICY

F081561658705610ADAD4C30E757312491EDF9E0 MANIFEST.8.0.50727.762.D2730D3F_3C41_5884_FF1F_C8B3
B9A1E18E

F081561658705610ADAD4C30E757312491EDF9E0 UL_MANIFEST.D2730D3F_3C41_5884_FF1F_C8B3B9A1E18E

FA8B09CDEDED6B393B160F04816354863CAABFAD VGA.DLL

52 DRDC Valcartier TM 2013-177

 Anti-virus scanner logs for dumped instances Annex D
of mfc42ul.dll

The following are the scanner logs for the dumped dlldump-based instances of mfc42ul.dll.

D.1 Avast

module.184.18d63d0.390000.dll [infected by: Win32:R2D2-E [Trj]]
module.192.1a0b478.390000.dll [infected by: Win32:R2D2-E [Trj]]
module.228.1a233c8.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.400.17e7be0.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.544.19a34b0.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.676.18da020.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.688.15c4020.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.832.1972ca8.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.848.187e9d0.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.964.18c6da0.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.1260.19937e0.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.1444.1954990.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.1920.17c4da0.10000000.dll [infected by: Win32:R2D2-E [Trj]]
module.1956.15bcda0.10000000.dll [infected by: Win32:R2D2-L [Trj]]

D.2 AVG

module.184.18d63d0.390000.dll Trojan horse BackDoor.Generic14.BTVX
module.192.1a0b478.390000.dll Trojan horse BackDoor.Generic14.BTVX
module.228.1a233c8.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.400.17e7be0.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.544.19a34b0.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.676.18da020.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.688.15c4020.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.832.1972ca8.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.848.187e9d0.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.964.18c6da0.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.1260.19937e0.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.1444.1954990.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.1920.17c4da0.10000000.dll Trojan horse BackDoor.Generic14.BBFR
module.1956.15bcda0.10000000.dll Trojan horse BackDoor.Generic14.BBFR

D.3 BitDefender

module.184.18d63d0.390000.dll infected: Gen:Variant.Barys.1660

DRDC Valcartier TM 2013-177 53

module.192.1a0b478.390000.dll infected: Gen:Variant.Barys.1660
module.228.1a233c8.10000000.dll infected: Trojan.Generic.KDV.395230
module.400.17e7be0.10000000.dll infected: Trojan.Generic.KDV.395230
module.544.19a34b0.10000000.dll infected: Trojan.Generic.KDV.395230
module.676.18da020.10000000.dll infected: Trojan.Generic.KDV.395230
module.688.15c4020.10000000.dll infected: Trojan.Generic.KDV.395230
module.832.1972ca8.10000000.dll infected: Trojan.Generic.KDV.395230
module.848.187e9d0.10000000.dll infected: Trojan.Generic.KDV.395230
module.964.18c6da0.10000000.dll infected: Trojan.Generic.KDV.395230
module.1260.19937e0.10000000.dll infected: Trojan.Generic.KDV.395230
module.1444.1954990.10000000.dll infected: Trojan.Generic.KDV.395230
module.1920.17c4da0.10000000.dll infected: Trojan.Generic.KDV.395230
module.1956.15bcda0.10000000.dll infected: Trojan.Generic.KDV.378678

D.4 Comodo

module.184.18d63d0.390000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.192.1a0b478.390000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.228.1a233c8.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.400.17e7be0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.544.19a34b0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.676.18da020.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.688.15c4020.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.832.1972ca8.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.848.187e9d0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.964.18c6da0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.1260.19937e0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.1444.1954990.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.1920.17c4da0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1
module.1956.15bcda0.10000000.dll ---> Found Virus, Malware Name is Backdoor.Win32.R2D2.~B1

D.5 F-Prot
F-Prot did not succeed in finding any infected files.

D.6 McAfee

module.184.18d63d0.390000.dll ... Found the BackDoor-FCA trojan !!!
module.192.1a0b478.390000.dll ... Found the BackDoor-FCA trojan !!!
module.228.1a233c8.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.400.17e7be0.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.544.19a34b0.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.676.18da020.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.688.15c4020.10000000.dll ... Found the BackDoor-FCA trojan !!!

54 DRDC Valcartier TM 2013-177

module.832.1972ca8.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.848.187e9d0.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.964.18c6da0.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.1260.19937e0.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.1444.1954990.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.1920.17c4da0.10000000.dll ... Found the BackDoor-FCA trojan !!!
module.1956.15bcda0.10000000.dll ... Found the BackDoor-FCA trojan !!!

DRDC Valcartier TM 2013-177 55

This page intentionally left blank.

56 DRDC Valcartier TM 2013-177

 Commonly used registry keys in a typical Annex E
malware infection

E.1 Recommended registry keys for use with Volatility

Based on the author’s own use and research of various Windows registry keys commonly used by
malware, the following keys are recommended for evaluation. These keys are readily integrated
into scripts using appropriate Volatility printkey plugin-based commands.

The reader’s success in using these keys will undoubtedly vary according to the underlying
Windows platform to be analysed and the malware’s propensity for using the registry.

The proposed keys have been aggregated and their preceding HKLM\Software, HKLM\System,
HKCU\Software and HKCU based information were stripped so that they can be readily scripted.

The following keys have been evaluated against R2D2. Two registry keys in the list below are
highlighted in red because they refer to possible locations for malicious driver winsys32.sys.

• Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache
• Control Panel\Desktop
• Control Panel\Desktop\ScreenSaveActive
• ControlSet001\Enum\Root\LEGACY_malware\0000
• ControlSet001\services\malware
• ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\Sta

ndardProfile\AuthorizedApplications\List
• ControlSet002\services\malware
• CurrentControlSet\Control\Session Manager\AppCertDlls
• CurrentControlSet\Control\Session

Manager\AppCompatCache\AppCompatCache
• CurrentControlSet\Control\Session

Manager\AppCompatibility\AppCompatCache
• CurrentControlSet\Control\SessionManager\Memory Management
• CurrentControlSet\Services
• Microsoft\Active Setup\Installed Components
• Microsoft\DirectPlugin
• Microsoft\Internet Explorer\CustomizeSearch
• Microsoft\Internet Explorer\Main
• Microsoft\Internet Explorer\Main\Default_Page_URL
• Microsoft\Internet Explorer\Main\Default_Search_URL
• Microsoft\Internet Explorer\Main\HomeOldSP
• Microsoft\Internet Explorer\Main\Local Page
• Microsoft\Internet Explorer\Main\Search Bar
• Microsoft\Internet Explorer\Main\Search Page
• Microsoft\Internet Explorer\Main\SearchAssistant
• Microsoft\Internet Explorer\Main\SearchURL
• Microsoft\Internet Explorer\Main\Start Page
• Microsoft\Internet Explorer\Main\Use Search Asst
• Microsoft\Internet Explorer\PhishingFilter

DRDC Valcartier TM 2013-177 57

• Microsoft\Internet Explorer\Recovery
• Microsoft\Internet Explorer\Search
• Microsoft\Internet Explorer\Search Bar
• Microsoft\Internet Explorer\Search\CustomizeSearch
• Microsoft\Internet Explorer\Search\SearchAssistant
• Microsoft\Internet Explorer\SearchURL
• Microsoft\Internet Explorer\Toolbar
• Microsoft\Internet Explorer\TypedURLs
• Microsoft\Windows NT\CurrentVersion\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\Run
• Microsoft\Windows NT\CurrentVersion\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\Runonce
• Microsoft\Windows NT\CurrentVersion\Terminal

Server\Install\Software\Microsoft\Windows\CurrentVersion\RunonceE
x

• Microsoft\Windows NT\CurrentVersion\Windows
• Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs
• Microsoft\Windows NT\CurrentVersion\Windows\Load
• Microsoft\Windows NT\CurrentVersion\Winlogon
• Microsoft\Windows NT\CurrentVersion\Winlogon\Notify
• Microsoft\Windows NT\winlogon\userinit
• Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects
• Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVisitedMRU
• Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU
• Microsoft\Windows\CurrentVersion\Explorer\RecentDocs
• Microsoft\Windows\CurrentVersion\Explorer\RunMRU
• Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
• Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
• Microsoft\Windows\CurrentVersion\Explorer\UserAssist
• Microsoft\Windows\CurrentVersion\Internet Settings
• Microsoft\Windows\CurrentVersion\Internet Settings\EnableAutodial
• Microsoft\Windows\CurrentVersion\Internet Settings\EnableHttp1_1
• Microsoft\Windows\CurrentVersion\Internet

Settings\MaxConnectionsPer1_0Server
• Microsoft\Windows\CurrentVersion\Internet

Settings\MaxConnectionsPerServer
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyEnable
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyHttp1.1
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyOverride
• Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer
• Microsoft\Windows\CurrentVersion\Internet Settings\Zones\0
• Microsoft\Windows\CurrentVersion\Internet Settings\Zones\1
• Microsoft\Windows\CurrentVersion\Internet Settings\Zones\2
• Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
• Microsoft\Windows\CurrentVersion\Run
• Microsoft\Windows\CurrentVersion\RunOnce
• Microsoft\Windows\CurrentVersion\RunOnce\Setup
• Microsoft\Windows\CurrentVersion\RunOnceEx
• Microsoft\Windows\CurrentVersion\RunServices
• Microsoft\Windows\CurrentVersion\RunServicesOnce
• Microsoft\Windows\CurrentVersion\SharedDLLs

58 DRDC Valcartier TM 2013-177

• Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad
• Microsoft\Windows\CurrentVersion\URL
• Microsoft\Windows\CurrentVersion\URL\DefaultPrefix
• Microsoft\Windows\CurrentVersion\URL\Prefixes
• Microsoft\Windows\ShellNoRoam\MUICache

E.2 Scripting

These keys can be readily integrated into scripts. For example, consider the following Volatility
printkey command:

$ volatility -f 0zapftis.vmem printkey -o 0xe1991b60 -K
“Microsoft\Windows\CurrentVersion\RunServices”

A script built using such commands requires only a few minutes to construct, based on the
physical memory addresses listed in the Table 23, used in conjunction with various command line
tools including cat, awk and sed.

E.3 Root Registry Keys

The author proposed registry keys are based on the following root registry keys:

 HKEY_CURRENT_USER

HKEY_CURRENT_USER\Software

HKEY_LOCAL_MACHINE\Software

HKEY_LOCAL_MACHINE\System

DRDC Valcartier TM 2013-177 59

This page intentionally left blank.

60 DRDC Valcartier TM 2013-177

Bibliography

Carbone, Richard. Malware memory analysis for non-specialists: Investigating a publicly
available memory image of the Zeus Trojan horse. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-018. April 2013.

Carbone, Richard. Malware memory analysis for non-specialists: Investigating publicly available
memory images for Prolaco and SpyEye. Technical Memorandum. Defence R&D Canada –
Valcartier. TM 2013-155. October 2013.

Volatility. CommandReference: Example usage cases and output for Volatility 2.0 commands.
Online command reference. Volatility. February 2012.
http://code.google.com/p/volatility/wiki/CommandReference.

DRDC Valcartier TM 2013-177 61

http://code.google.com/p/volatility/wiki/CommandReference

List of symbols/abbreviations/acronyms/initialisms

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AV Anti-Virus or Antivirus

C&C Command & Control

CCC Chaos Computer Club

CFNOC Canadian Forces Network Operations Centre

CORFC Centre d'opérations des réseaux des Forces canadiennes

CTPH Context Triggered Piecewise Hash

Sometimes known as fuzzy hash or ssdeep hash

DLL Dynamically Loaded Library

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

DW Deutsche Welle

ECB Electronic Codebook

EDT Eastern Daylight Time

EXT4 Fourth Extended Filesystem

FOSS Free and Open Source Software

FTP File Transfer Protocol

GICT Groupe intégré de la criminalité technologique

GRC Gendarmerie Royale du Canada

HKCU HKEY_LOCAL_USER

HKLM HKEY_LOCAL_MACHINE

ID Identification

IP Internet Protocol

ITCU Integrated Technological Crime Unit

MAC Mandatory Access Control

MiB Mebibyte

62 DRDC Valcartier TM 2013-177

N/A Not Available

NIST National Institute of Standards and Technology

NSRL National Software Reference Library

NTP Network Time Protocol

PAE Physical Address Extension

PE Portable Executable

PGP Pretty Good Privacy

PID Process ID

PPID Parent Process ID

R&D Research & Development

RAM Random Access Memory

RCMP Royal Canadian Mounted Police

RDDC Recherche et Développement pour la Défense Canada

RDP Remote Desktop Protocol

SHA1 Secure Hash Algorithm-1

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TID Thread ID

UDP User Datagram Protocol

UPX Ultimate Packer for eXecutables

URL Uniform Resource Locator

UTC Coordinated Universal Time

VAD Virtual Address Descriptor

VMEM Virtual Memory

DRDC Valcartier TM 2013-177 63

Glossary

_Eprocess

See Eprocess.

_Ethread

See Ethread.

_Kthread

See Kthread.

Anti-Virus

An Anti-virus, AV, or AV scanner is a software system or framework which is used to, at a
minimum, scan a given system for signs of malware infection. This software may be more
than just a scanner; it may also include system-protection and anti-malware detection and
prevention capability.

AV Scanner

See Anti-Virus.

Computer Memory Image

See Memory Image.

Context Triggered Piecewise Hash

See Fuzzy Hash.

Data Carving

Commonly known as file carving, data carving is the process or act of recovering known data
structures, generally based on recognized file patterns. Data carving only works on
contiguous data structures as the recovery of fragmented data is not supported by most of
today’s data recovery software and those that do support a very limited number of file
formats.

DLL Injection

DLL injection is a type of process injection. It is a method which allows a DLL to inject its
code into the virtual address space of another process. In so doing, the DLL hijacks the
process forcing the program to run in a manner inconsistent with its design. Under Windows,
various methods exist for implementing this, some through the registry while others are
carried out using APIs.

64 DRDC Valcartier TM 2013-177

Eprocess

The Eprocess is a kernel-based process-specific data structure that encompasses a process’
state-based information. This structure has a forward and backward pointer to active
processes.

Ethread

An Ethread is a thread/process-based management kernel-specific data structure used to
identify threads to be worked on. Its structure describes the various aspects of the process or
thread and it is a semi-opaque data structure. Unlike a Kthread structure, it is processor
agnostic.

Ext4

Ext4 is the latest Ext-based filesystem of the Linux operating system and supersedes Ext2/3.
It provides filesystem journaling and greater performance, reliability and allows for much
larger file and filesystem sizes. This filesystem is natively supported by Linux.

Fuzzy Hash

This is a specific type of file hashing which has the ability to identify file similarities, usually
represented as a percentage. It is based on Context Triggered Piecewise Hashing, first
proposed by Dr. Andrew Tridgell.

Handle

A handle is a pointer-like resource-based reference used to a specific system resource.
Handles are abstract references to resources available within a given computer operating
system. Under Windows, many types of handles exist but common examples pertain to files,
directories, registry and system based devices. It should not be confused with file handles.

Hash

A hash, commonly referred to as a file hash, is a reduced representation of some arbitrary
data produced by passing it through some cryptographic hashing algorithm. In so doing, a
unique hash value is generated by the hashing program and it can be used to identify and
authenticate a given file’s integrity and uniqueness against a set of hashes, commonly known
as a hash-set. SHA1 and CTPH hashes are examples of hashing algorithms.

IRP Hook

An IRP Hook is a kernel-based interception technique some rootkits, viruses and Trojan
horses use in order to hide themselves from detection.

Kthread

A Kthread is a thread/process-based management kernel-specific data structure used to
identify threads to be worked on. It is similar to an Ethread but contains processor-specific
data structures. Its structure describes the various aspects of the process or thread to be
worked on, including underlying processor specific features and is more opaque than an
Ethread data structure.

DRDC Valcartier TM 2013-177 65

Memory Image

A memory image or computer memory image is a bit-copy of a computer system’s RAM and
is acquired using a memory-imaging program. In virtualized environments, memory can be
acquired by an imaging program or by saving or dumping the virtual machine’s memory
state.

Mutex

A mutex is a Windows-based object used to provide exclusive access to a shared system
resource. These resources can only be accessed one at a time, thus by issuing a mutex or
mutual exclusion, a process or thread can be allocated said resource when it becomes
available for use.

SHA1 (Secure Hash Algorithm-1)

The SHA1 hash is a 160-bit cryptographic hash commonly used for forensic file
identification and authentication.

SSL (Secure Sockets Layer)

SSL is a client-server TCP/IP Application Layer protocol. It is commonly used for the
exchange of cryptographic keys that will be used to establish a “secure” communications
channel between two systems.

Strings (the command)

The strings command is a UNIX-based command used to extract 7, 8, 16 and 32-bit text
patterns from arbitrary data files that are text or binary based. 7-bit extraction represents the
first 128 ASCII characters while 8-bit extraction represents the extended ASCII character set.
16 and 32-bit strings are typically reserved for Unicode-based text. Thus, the command line
parameters required to instruct the strings command to perform 7, 8, 16 or 32-bit text
extraction are -s, -S, -l and -L, respectively.

Thread

A thread is typically a subset process. A thread contains only the code necessary to perform a
set of instructions. In single-threaded programs, a thread represents the program’s executable
code and stack while in multi-threaded applications a thread performs just one piece of the
work that is distributed across multiple threads. These threads then typically communicate
with each other through various inter-process mechanisms.

Trojan horse

A Trojan horse is a malicious non-replicating infectious computer program. It infects a
computer when the delivery software is run at which time a payload is instantiated that does
the actual infecting. However, Trojan’s do not typically infect computers the way viruses do.
As such, they do not generally infect computer files. The program delivering the payload is
known as a dropper. The payload achieves its objective by gaining some form of
administrative level privileges in the target’s operating system, typically through subversion.
A Trojan’s typical objective is to provide backdoor access but it can also be used for other
capabilities including data and information theft, arbitrary or specific data file encryption and

66 DRDC Valcartier TM 2013-177

it can inflict damage to the operating system or its data files. In rare cases, it can even
attempt to damage a system’s hardware components.

Unlinked DLL (or file)

Unlinking a DLL or other file such as an executable or library is a common method malware
and other malicious processes use to hide the fact that they may be using one of these
resources covertly. Volatility’s ldrmodules plugin supports several unlinked validation tests.
It should be used to test for the existence of unlinked files associated to a process.

UPX

UPX is an open source data compression algorithm used to compress executable files. UPX
executable file packers exist for Windows, Linux, Mac OS X and other platforms.

Vmem

A Vmem file is a VMware virtual machine-based paged memory file. It is generated when a
virtual machine’s state is saved and contains the entire RAM allocated to that virtual
machine.

Worm

Sometimes known as a computer or network worm, a worm is a malicious program designed
to spread to as many computer systems as possible, usually by means of a network. Worms
do not typically cause much, if any, damage to the underlying computer system. Instead, due
to their need to replicate they often consume not only a network’s available bandwidth but
crash underlying computer systems as they sometimes overwhelm a system’s resources as it
attempts to propagate. Worms typically spread only to systems susceptible to the
vulnerabilities necessary for their infection to take hold. Thus, unaffected systems do not
become infected.

DRDC Valcartier TM 2013-177 67

This page intentionally left blank.

68 DRDC Valcartier TM 2013-177

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

 2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)

in parentheses after the title.)

Malware memory analysis for non-specialists : Investigating publicly available memory image
0zapftis (R2D2)

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Carbone, R.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

October 2013

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

84

 6b. NO. OF REFS
(Total cited in document.)

25
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 31XF20 « MOU RCMP "Live Forensics" »

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TM 2013-177

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

This technical memorandum examines how an investigator can analyse an infected Windows
memory dump. The author investigates how to carry out such an analysis using Volatility and
other investigative tools, including data carving utilities and anti-virus scanners. Volatility is a
popular and evolving open source-based memory analysis framework upon which the author has
proposed a memory-specific methodology for aiding fellow novice memory analysts. The
author examines how Volatility can be used to find evidence and indicators of infection. This
technical memorandum is the third in a series concerning Windows malware-based memory
analysis. This current work examines the 0zapftis (R2D2) infected memory image.

Ce mémorandum technique examine comment un investigateur peut analyser une image
mémoire d’une machine Windows infectée. L’auteur investigue les techniques d’analyse
utilisant Volatility et d’autres outils tels que les utilitaires de récupération de données et les
scanneurs anti-virus. Volatility est un cadre populaire d’analyse de mémoire en source libre sur
lequel l’auteur s’appuie pour proposer une méthodologie spécifique à la mémoire pour aider ses
collègues analystes novices. L’auteur examine comment Volatility peut être utilisé pour trouver
des preuves ou des indicateurs d’infection. Ce mémorandum technique est le troisième d’une
série visant la découverte de maliciel par le biais d’une analyse de la mémoire. Le présent
travail examine l’image de mémoire infectée par 0zapftis (R2D2).

 14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

0zapftis; Antivirus; Anti-virus; Computer forensics; Digital forensics; Digital forensic
investigations; Forensics; Infection; Malware; Memory analysis; Memory image; R2D2; Rootkit;
Scanners; Trojan horse; Virus scanner; Volatility; Windows

