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Abstract

The traditional method of specifying propeller geometry is to define a series of airfoil
sections each of which is modified by local values of the chord length, pitch, skew angle
and rake. Near the tip of the propeller, where the chord length reduces rapidly to
zero, a blade defined in this way often has surface irregularities which make meshing
for flow solvers difficult. Methods are described for smoothing the irregularities and
saving the resulting propeller geometry in the IGES format which can be read by
most flow solvers.

Résumé

La méthode classique pour établir de manière détaillée la géométrie d’une hélice
consiste à définir une série de sections de surface portante, chacune d’entre elles
étant modifiée en fonction des valeurs localisées de la longueur de corde, du pas de
l’hélice, de l’angle oblique et de l’angle d’inclinaison. Près des extrémités de l’hélice,
où la longueur de corde diminue rapidement et atteint zéro, la pale définie à l’aide
de ces éléments présente souvent une surface irrégulière, ce qui rend complexe le
maillage dans le cas des solutionneurs d’écoulement. Le présent document contient
la description de méthodes permettant de lisser les irrégularités de la surface et de
sauvegarder les résultats obtenus en matière de géométrie de l’hélice en format IGES,
lequel peut être lu par la plupart des solutionneurs d’écoulement.
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Executive summary

Smoothing propeller tip geometry for use in a RANS
solver

David Hally; DRDC Atlantic TM 2013-178; Defence Research and Development
Canada – Atlantic; October 2013.

Background: The design of propellers affects ship performance in many ways in-
cluding maximum speed, fuel consumption, wear on shafts and machinery, on-board
vibrations and radiated noise. The evaluation of propeller designs will be an im-
portant part of the projects to acquire the Arctic/Offshore Patrol Ship (AOPS), the
Joint Support Ship (JSS) and other vessels for the Royal Canadian Navy.

The use of Reynolds-averaged Navier-Stokes (RANS) flow solvers for evaluating pro-
pellers is becoming increasingly common as they have the potential to be more accu-
rate than older panel-based methods. However, before they can be used, an accurate
propeller geometry must be available so that an appropriate computational mesh can
be created around the propeller.

Principal results: This report describes a method for avoiding problems in the pro-
peller geometry near the tip which can arise when traditional methods of describing a
propeller are used. The resulting geometry is smooth, has no coordinate singularities,
and has surfaces with edges that match to very high accuracy, all properties that are
required when creating grids for flow solvers. Tight control is maintained over the
amount by which the smoothed surface can deviate from the original, ensuring that
the new geometry remains an accurate representation of the real propeller.

Significance of results: Use of the algorithms described in the report will allow
analyses of propellers to be performed with a minimum of effort. The analysis pro-
cedure will be more robust and the results more reliable. It is expected that the new
method will be used to support the acquisition of propellers for AOPS, JSS and other
vessels for the Royal Canadian Navy.
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Sommaire

Smoothing propeller tip geometry for use in a RANS
solver

David Hally ; DRDC Atlantic TM 2013-178 ; Recherche et développement pour la
défense Canada – Atlantique ; octobre 2013.

Introduction : La conception des hélices a de nombreux effets sur le rendement d’un
navire, y compris sur des facteurs comme la vitesse maximale, la consommation de
combustible, l’usure des arbres et des machines, et l’ampleur des vibrations produites
à bord du navire et du bruit rayonné. L’évaluation des modèles d’hélice constituera
un élément important des projets d’acquisition de navires de patrouille extracôtiers
de l’Arctique (NPEA), de navires de soutien interarmées (NSI) et d’autres bâtiments
de la Marine royale canadienne.

L’utilisation de solutionneurs d’écoulement basés sur l’analyse d’équations de Navier
Stokes avec moyennisation des nombres de Reynolds (RANS) est de plus en plus
courante dans le cadre d’évaluations d’hélices, car ils pourraient offrir des résultats
plus exacts que les anciennes méthodes basées sur la modélisation de panneaux. Avant
de pouvoir employer efficacement de tels solutionneurs, il faut toutefois pouvoir établir
de manière exacte la géométrie de l’hélice afin de pouvoir garantir la justesse du
maillage numérique créé autour de l’hélice.

Résultats : Le présent rapport comprend la description d’une méthode qui permet
d’éviter les problèmes associés à la géométrie de l’hélice près de ses extrémités, qui
peuvent se présenter lorsque des méthodes classiques sont employées. La géométrie de
l’hélice résultante est lisse et ne comporte pas de singularité en matière de coordon-
nées, et de plus, les bords de ses surfaces s’ajustent avec une très grande exactitude.
Les propriétés de ce type sont toutes cruciales lors de la création de grilles pour un
solutionneur d’écoulement. La méthode assure aussi une régulation serrée de la va-
riation de la surface lissée par rapport à celle d’origine, ce qui permet de garantir que
la nouvelle géométrie de l’hélice représente avec exactitude celle de l’hélice réelle.

Portée : L’utilisation des algorithmes décrits dans le présent rapport permettra
d’effectuer, avec un minimum d’efforts, l’analyse d’hélices. La technique d’analyse
sera plus robuste et les résultats plus fiables. On prévoit que la nouvelle méthode
facilitera le processus d’acquisition, par la Marine royale canadienne, d’hélices de
NPEA, de NSI et d’autres bâtiments.
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1 Introduction

Traditionally the geometry of a propeller blade is defined by specifying a series of
airfoil sections from the root of the blade to its tip. Each section is modified by the
local values of the chord length, pitch, skew angle and rake. The resulting curves
can be interpolated to provide a full geometric description of the blade. Software has
been developed at DRDC Atlantic for reading section data for a blade and generating
a geometric representation that can be used in a variety of applications [1].

Two problems arise when the propeller geometry generated in this way is used in
Computational Fluid Dynamics (CFD) programs for calculating the flow around the
propeller:

1. Commercial CFD programs do not use the DRDC Atlantic representation of
the propeller; it must be converted to a form that they can use.

2. The modulation of the blade sections by the chord length, rake, etc. can result
in very rapidly varying geometry near the blade tip where there is a coordinate
singularity. The geometry in this region must be smoothed to prevent prob-
lems with generating meshes for the CFD calculations, and with the results of
the calculations themselves (e.g. spurious pressure peaks caused by flow over
geometric corners that would be smoother on a real propeller).

The methods described in this report address both these problems. It describes
algorithms for modifying the propeller geometry to avoid the coordinate singularity
at the tip and to smooth it in a controlled way. The algorithms have been implemented
in the program smooth-prop [2]; it saves the smoothed propellers in IGES format [3]
which can be read by most commercial CFD programs.

2 Coordinate systems
The propeller is defined using a Cartesian coordinate system attached to the propeller
in which the origin is the point at which the propeller reference line meets the propeller
axis. The z coordinate increases from upstream to downstream along the propeller
axis. The y coordinate increases outward from the propeller axis along the propeller
reference line. The x coordinate is perpendicular to y and z such that the coordinate
system is right-handed; it increases to starboard when the tip of the reference blade
is at top dead centre. The Cartesian coordinate system is illustrated in Fig. 1.

The reference propeller blade is parameterized using ξ and η; a point on the blade
will be denoted by b(ξ, η). On all blades η increases from 0.0 at the propeller axis
to 1.0 at the blade tip. Typically there is a minimum value of η below which the

DRDC Atlantic TM 2013-178 1



x

y

z

Upstream

Downstream

Figure 1: The Cartesian coordinate system.

reference blade geometry is undefined. For convenience, the two-vector in the blade
parameter space, (ξ, η), will sometimes be denoted p.

On a right-handed blade, ξ increases along the pressure side of the blade from 0.0 at
the trailing edge to 0.5 at the leading edge, then increases along the suction side of
the blade to 1.0 at the trailing edge. On a left-handed blade ξ increases first along the
suction side, then along the pressure side. This ensures that a normal to the blade
defined by

n =
∂b

∂ξ
× ∂b

∂η
(1)

is always outward pointing.

The algorithms described in this report assume that the trailing edge of the blade
is closed (b(0, η) = b(1, η)) and blunt (the unit normal at (0, η) is equal to the unit
normal at (1, η)). The DRDC propeller geometry classes include methods for ensuring
that the trailing edge is closed and blunt: see Ref. 1, Secs. 6.2.2 and 6.2.6.

By defining b(ξ − 1, η) = b(ξ, η), the blade parameterization can be made periodic
in ξ. Since the trailing edge is closed and blunt, the resulting periodic version of the
blade is continuous and smooth across the trailing edge.

2 DRDC Atlantic TM 2013-178



leading edge
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trailing edge
surface

central surface
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Pressure Side
leading edge
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surface
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suction side

tip surface

Suction Side

Figure 2: The five surfaces on the reference blade.

3 Overview of blade smoothing
The blade tip smoothing and subsequent saving of the hull in IGES format is done
using the following steps.

1. A file is read which specifies the propeller geometry in the DRDC format (see
Ref. 1, Sec. 9.4).

2. The reference blade surface is split into five separate surfaces as shown in Fig. 2.
The tip, leading edge and trailing edge surfaces each wrap around the lead-
ing/trailing edge from the pressure side to the suction side.

3. A series of curves is calculated, each curve lying on one of the blade surfaces
passing around the leading and trailing edges. An example of the curves is
shown in Fig. 3.

4. Each curve is sampled to obtain a series of points to which a weighted Laplace
filter is applied to smooth the points near the leading and trailing edges.

5. The smoothed points are splined to generate a new sequence of curves.

6. The series of curves is then splined to generate new blade surfaces.

7. Curves are defined which mark the limits of the hub sector associated with the
reference blade with the blade footprint removed.

8. The splined blade surfaces and the trimmed hub surface are written to an output
file in IGES format.

Details of each step in the procedure are explained in the sections which follow.

DRDC Atlantic TM 2013-178 3



Figure 3: The series of curves on the blade surface passing
around the leading and trailing edges.

4 Defining the blade surfaces
The five surfaces into which the blade is split are defined using six points:

1. xLL = b(pLL), a point on the blade-hub intersection at the lower left hand
corner of the central surface on the pressure side of the blade. This point is
specified using the value of ξ alone; the value of η is determined by the constraint
that the point lies on the hub. The DRDC propeller geometry classes provide
a curve, ηh(ξ), such that b

(
ξ, ηh(ξ)

)
lies on the hub: see Ref. 1, Sec. 9.1.6.

Therefore pLL =
(
ξLL, ηh(ξLL)

)
.

2. xLR = b(pLR) with pLR =
(
ξLR, ηh(ξLR)

)
. This is a point on the blade-hub

intersection at the lower right hand corner of the central surface on the pressure
side of the blade.

3. xUL = b(pUL), a point at the upper left hand corner of the central surface on
the pressure side of the blade.

4. xUR = b(pUR), a point on the blade hub intersection at the upper right hand
corner of the central surface on the pressure side of the blade.

5. xLE = b(pLE) with pLE = (1
2
, ηLE). This is a point on the leading edge.

6. xT E = b(pT E) with pT E = b(0, ηT E). This is a point on the trailing edge.

4 DRDC Atlantic TM 2013-178
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xTE
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Pressure Side

xUR
(s)

xUL
(s)

xLR
(s)xLL

(s)

xTE

xLE

Leading edge

Trailing edge

Suction Side

Figure 4: The points used to split the blade into separate surfaces.

Each of the corner points of the central surface has a corresponding point on the
suction side of the blade obtained by changing its ξ value to 1 − ξ: i.e. x

(s)
LR =

b
(
1 − ξLL, ηh(1 − ξLL)

)
, x

(s)
LL = b

(
1 − ξLR, ηh(1 − ξLR)

)
, x

(s)
UR = b

(
1 − ξUL, ηUL

)
,

x
(s)
UL = b

(
1 − ξUR, ηUR

)
, where the superscript (s) denotes the suction side of the

blade.

The ten points are shown in Fig. 4.

These points are use to define twelve edge curves, each using a single parameter, u,
in the range [0, 1]:

1. c1(u): the curve along the blade-hub intersection wrapping around the trailing

edge between points x
(s)
LR and xLL:

c1(u) = b

(
ξ(u), ηh

(
ξ(u)

))
; ξ(u) = (2u − 1)ξLL. (2)

2. c2(u): the curve along the blade-hub intersection between points xLL and xLR:

c2(u) = b

(
ξ(u), ηh

(
ξ(u)

))
; ξ(u) = ξLL + u(ξLR − ξLL). (3)

3. c3(u): the curve along the blade-hub intersection wrapping around the leading

edge between points xLR and x
(s)
LL:

c3(u) = b

(
ξ(u), ηh

(
ξ(u)

))
; ξ(u) = ξLR + u(ξ

(s)
LL − ξLR). (4)

DRDC Atlantic TM 2013-178 5



4. c4(u): the curve along the blade-hub intersection between points x
(s)
LL and x

(s)
LR:

c3(u) = b

(
ξ(u), ηh

(
ξ(u)

))
; ξ(u) = ξ

(s)
LL + u(ξ

(s)
LR − ξ

(s)
LL). (5)

5. c5(u): the curve on the left edge of the central surface on the pressure side.
It runs between points xLL and xUL. The method of calculating this curve is
described in Sec. 5.

6. c6(u): the curve on the right edge of the central surface on the pressure side.
It runs between points xLR and xUR. The method of calculating this curve is
described in Sec. 5.

7. c7(u): the curve on the left edge of the central surface on the suction side.

It runs between points x
(s)
LL and x

(s)
UL. The method of calculating this curve is

described in Sec. 5.

8. c8(u): the curve on the right edge of the central surface on the suction side.

It runs between points x
(s)
LR and x

(s)
UR. The method of calculating this curve is

described in Sec. 5.

9. c9(u): the curve at the top of the central surface on the pressure side. It runs
between points xUL and xUR:

c9(u) = b
(
p(u)

)
; p(u) = pUL + u(pUR − pUL). (6)

10. c10(u): the curve at the top of the central surface on the suction side. It runs

between points x
(s)
UL and x

(s)
UR:

c10(u) = b
(
p(u)

)
; p(u) = p

(s)
UL + u(p

(s)
UR − p

(s)
UL). (7)

11. c11(u): the curve at the top of the surface wrapping around the trailing edge.
It is the intersection of the blade with the plane containing the points xUL, xT E

and x
(s)
UR. The method of calculating this curve is described in Sec. 6.

12. c12(u): the curve at the top of the surface wrapping around the leading edge.
It is the intersection of the blade with the plane containing the points xUR, xLE

and x
(s)
UL. The method of calculating this curve is described in Sec. 6.

The twelve curves are shown in Fig. 5.

6 DRDC Atlantic TM 2013-178
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Figure 5: The curves used to split the blade into separate surfaces.

5 Calculating the edges of the central
surfaces

The curves along the sides of the central domains, c5(u), c6(u), c7(u) and c8(u), are
calculated such that the distance of the curve from the leading or trailing edge varies
roughly linearly along the length of the curve. Therefore, if the two end-points are
the same distance from the leading edge, the whole curve is equidistant from the
leading edge and the surface wrapping around the leading edge has a nearly constant
width. When a computational grid is created on the surface [4], this makes it easy
to maintain a nearly constant size for the computational cells near the leading edge.
This comes at the expense of more irregularity of the cells in the central domains,
but that is typically not a critical region of the flow, so greater irregularity can be
tolerated there.

To calculate the curve along the right side of the central surface on the pressure
side, c6(u), two subsidiary curves are calculated. The first is a straight line in blade
parameter space between pLR and pUR:

p1(u) = pLR + a1(u)(pUR − pLR) (8)

where a1(u) is an arclength distribution (see Ref. 5, Sec. 15) whose purpose is to
convert the parameterization to the fractional arclength along the curve.

The second runs along the leading edge between the point where the leading edge
meets the hub, ph =

(
1
2
, ηh(1

2
)
)
, and pLE:

p2(u) = ph + a2(u)(pLE − ph) (9)

DRDC Atlantic TM 2013-178 7



where a2(u) is also an arclength distribution converting the parameterization to frac-
tional arclength.

Let dLR be the distance of xLR from the point where the leading edge meets the hub
and let dUR be the distance of xUR from xLE :

dLR =
∣∣∣b(

p1(0)
)

− b
(
p2(0)

)∣∣∣; dUR =
∣∣∣b(

p1(1)
)

− b
(
p2(1)

)∣∣∣. (10)

Define the distance function

d(u) = dLR + u(dUR − dLR). (11)

For a given u, we find the point on the straight line joining b
(
p1(u)

)
and b

(
p2(u)

)
that is a distance d(u) from the leading edge:

xm(u) = b
(
p2(u)

)
+

d(u)
(

b
(
p1(u)

)
− b

(
p2(u)

))
∣∣∣∣b(

p1(u)
)

− b
(
p2(u)

)∣∣∣∣
. (12)

Notice that xm(0) = b
(
p1(0)

)
= xLR and xm(1) = b

(
p1(1)

)
= xUR. At other values

of u, xm(u) is an approximation of c6(u) but it does not lie on the blade surface. To
project it onto the blade, let the unit normal to the blade at p1(u) be n̂ and construct
a line parallel to n̂ through xm(u). Find the point where this line meets the blade on
the pressure side by solving the three components of

b(pm) = xm(u) + tn̂ (13)

for the three unknowns t and the two components of pm. This is done using the
Newton-Raphson method for N values of u yielding a sequence of parameters pi for
i ∈ [1, N ]. A cubic spline is passed through the parameters to generate the curve
p(u). The curve c6(u) is then defined by the spline composed with the blade surface:

c6(u) = b
(
p(u)

)
. (14)

The three curves c5(u), c7(u) and c8(u) are defined using a similar method.

6 Calculating a blade cut
A blade cut through the leading edge is defined as the intersection of the blade with a
plane passing through three points, x0 = b(ξ, η), x1 = b(1

2
, ηle) and x2 = b(1 − ξ, η)

with ξ < 1
2
. The point x0 is on the pressure side, x1 is on the leading edge, and x2 is

on the suction side. A normal to the plane is

n = (x1 − x0) × (x1 − x2); n̂ =
n

|n| . (15)

8 DRDC Atlantic TM 2013-178



Consider a point on the blade having blade parameters ξ and η. If it lies on the cut,
then it also lies in the plane, so that(

b(ξ, η) − x0

)
· n̂ = 0. (16)

Suppose that b(ξi, ηi) lies on the cut. Let (ξi+1, ηi+1) = (ξi +Δξ, ηi +Δη) and suppose
that b(ξi+1, ηi+1) also lies on the cut. Then

0 =
(
b(ξi+1, ηi+1) − x0

)
· n̂

≈
(
b(ξi, ηi) − x0

)
· n̂ +

(
Δξbξ(ξi, ηi) + Δηbη(ξi, ηi)

)
· n̂

=
(
Δξbξ(ξi, ηi) + Δηbη(ξi, ηi)

)
· n̂ (17)

where bξ and bη denote the partial derivatives of b with respect to ξ and η respec-
tively. Therefore, in the (ξ, η) parameter space, a tangent to the cut is:

t =
(
−bη(ξi, ηi) · n̂, bξ(ξi, ηi) · n̂

)
; t̂ =

t

|t| (18)

and
(Δξ, Δη) = αt̂ (19)

where α is the distance between the points in the parameter space.

The values of Δξ and Δη can be used as a first guess for a new point on the cut
a distance of approximately α from the previous point. Then the line in parameter
space defined by

ξ(s) = ξi+1 + sΔη; η(s) = ηi+1 − sΔξ (20)

is perpendicular to the line joining (ξi, ηi) and (ξi + Δξ, ηi + Δη). To refine the
guess, search for the point lying on the intersection of this line and the cut: i.e. the
point satisfying Eqs. (16) and (20). A Newton-Raphson search is used to find the
independent variable s.

The Newton-Raphson search will converge quickly for most points but near the tip,
where the angle between the ξ and η coordinate lines becomes very small, it may fail.
In that case a search in which ξ is the parameter is tried: i.e. a Newton-Raphson
search is used to solve [

b
(
ξ, ηi + Δη

)
− x0

]
· n̂ = 0. (21)

for ξ. If the second attempt fails, a third attempt is made using a simple bisection
search for s:

1. Find two values of s given points lying on either side of the cut plane: i.e. find
s1 and s2 such that[

b
(
ξ(s1), η(s1)

)
− x0

]
· n̂ < 0;

[
b

(
ξ(s2), η(s2)

)
− x0

]
· n̂ > 0. (22)
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2. Let s3 = 1
2
(s1 + s2).

3. If
[
b

(
ξ(s3), η(s3)

)
− x0

]
· n̂ < 0, set s1 to s3; otherwise set s2 to s3.

4. Repeat until
∣∣∣b(

ξ(s1), η(s1)
)

− b
(
ξ(s2), η(s2)

)∣∣∣ is sufficiently small.

The process can now be repeated to find another point, (ξi+2, ηi+2), further along the
cut. A collection of points along the length of the cut can then be obtained.

Since the curvature of the blade is very high at the leading and trailing edges and
quite small elsewhere, the distance between the points, α, is adjusted as the point x1

is approached.

α = 0.003

(
1 − 0.999|b(ξ, η) − x0|

|x1 − x0|

)
(23)

giving α a maximum value of 3 × 10−3 and a minimum value of 3 × 10−6. Since α is a
distance in parameter space and changing ξ or η by 1.0 causes a change in real space
of about one blade radius, R, the distance between the points in real space ranges
from roughly 3 × 10−6R to 3 × 10−3R.

Let { pi = (ξi, ηi) : i ∈ [1, N ] } denote the sequence of points in the blade parameter
space. Let m be the value of i for which the point lies on the leading or trailing edge.
A spline through the points is calculated as follows to yield a parameter curve.

1. The arclength in parameter space at each point is calculated:
a1 = 0; ai = ai−1 + |pi − pi−1| for i > 1.

2. A sequence of spline knots, ti, is calculated using

ti =
ai

aN

[
1 +

(aN − ai)(aN − 2am)

2am(aN − am)

]
. (24)

Note that t1 = 0, tm = 1
2

and tN = 1.

3. A cubic spline is calculated through the sequences (ti, ξi) and (ti, ηi) to yield the
parameter curve. Eq. (24) ensures that when the spline is evaluated at t = 1

2
,

the point returned is on the leading or trailing edge.

Notice that, because the spline is generated in parameter space, the generated blade
cut still lies exactly on the blade despite any errors due to the spline interpolation or
inaccuracies in the Newton-Raphson search for the points on the cut.

A blade cut through the trailing edge is calculated in a similar way using the periodic
version of the blade to ensure that the blade cut is continuous in parameter space as
it crosses the trailing edge.
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7 Smoothing a blade cut
A blade cut is smoothed by first sampling to generate a series of points along the
cut, then applying a smoothing filter to the points, then regenerating the curve by
passing a spline through the smoothed points. The sampled points are independent of
the points used to generate the parameter curve of the cut. This allows the number
of points to be different and their spacing to be controlled so that the smoothing
algorithm will operate effectively.

Let d be the maximum separation of the sampled points, h their separation at the
leading or trailing edge, and let p(s) be the splined parameter curve defining the cut

as defined in the previous section. Then the points are yi = b
(
p(si)

)
with

si = f
(

i − 1

N − 1

)
; f(x) =

{ 1
2
g(2x) for 0 ≤ x ≤ 1

2
;

1
2

+ 1
2
g(2x − 1) for 1

2
≤ x ≤ 1;

(25)

g(x) =
h(x)

α + (1 − α)h(x)
; h(x) =

1

2

⎡
⎣1 +

tanh
(
(x − 1

2
)Δ

)
tanh(1

2
Δ)

⎤
⎦ ; (26)

α =

√
h

d
;

sinh Δ

Δ
=

2L

(N − 1)
√

dh
; (27)

r =
L − h

L − d
; L = |x1 − x0|; N = 1 + 2

{
ln(d/h)

ln(r)

}
(28)

where the curly brackets denote ‘the closest integer to’. The function g(x) is a tanh
distribution and the function f(x) represents two tanh distributions spliced together
(see Ref. 5, Secs. 11.3 and 13). The choice for the number of points, N , makes the
tanh distributions nearly geometric; i.e. the ratio of neighbouring node intervals is
nearly constant. Eq. (27) can be solved for Δ using the method described in Ref. 5,
Annex A.5. The spacing at the leading and trailing edges, h, is normally set to d/100.

Notice that if i is the mid-point (i.e. i = 1
2
(N + 1)), then si = 1

2
. Therefore, the mid-

point lies on the leading or trailing edge, since the blade cut parameter function p(s)
has been constructed so that p(1

2
) lies on the leading or trailing edge (see Eq. (24)).

A smoothing filter is applied to the sampled points while leaving the point on the
leading or trailing edge unaltered. With y

(0)
i = yi, the points after n smoothing

iterations are:

yn
i = yn−1

i +

{
0 if i = 1

2
(N + 1);

1
6
βi(−yn−1

i−2 + 4yn−1
i−1 − 6yn−1

i + 4yn−1
i+1 − yn−1

i+2 ) otherwise.
(29)

The smoothing factor βi is adjusted point by point so that the smoothing only occurs
within a distance de of the leading or trailing edge and within a distance dt from the
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tip. Let a be the arclength along the leading or trailing edge from x1 to the tip. Then

βi = αf(a/dt)f(|yi − x1|/de) (30)

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
Figure 6: The cubic B-spline function
with knots {−1, −1

2
, 0, 1

2
, 1} used to

modulate the smoothing.

with α a constant and f(x) a smooth
function which is non-zero only in [−1, 1]
and for which f(0) = 1 is a maxi-
mum. It is convenient to set f(x) to
the cubic B-spline function with knots
{−1, −1

2
, 0, 1

2
, 1}. It is plotted in Fig. 6.

The sequence of smoothed points,
{si, yi}, is interpolated using a cubic
spline to generate a smoothed version
of the blade cut. Note that because
the smoothed points do not all lie on
the original blade surface, the smoothed
blade cut does not have a representation
in the parameter space of the blade.

8 Calculating the curves around the leading
and trailing edges

In the vicinity of the tip, the curves around the leading and trailing edges are blade
cuts: i.e. intersections of planes with the blade. However, this cannot be extended all
the way to the hub because the intersection of the blade with the hub does not lie in
a plane. On the lower portion of the blade the curves are defined using trans-finite
interpolation between a blade cut and the intersection of the blade and hub. The full
procedure is as follows.

cLETE

sLE

sTE

s = 0 s = 1
Figure 7: The curve cLET E.

First a curve, cLET E(s), is calculated
along the trailing edge from the root to
the tip, then along the leading edge back
to the root. With the help of an ar-
clength distribution (see Ref. 5, Sec. 15),
the curve is parameterized using frac-
tional arclength, s, so that s = 0 gives
the point where the trailing edge meets
the hub and s = 1 is where the leading
edge meets the hub. The total length of
this curve is denoted by L.

The representation of cLET E(s) in blade
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parameter space will be denoted pLET E(s): i.e. b
(
pLET E(s)

)
= cLET E(s). Note that

pLET E(s) is discontinuous at the tip where the ξ-value jumps from 1
2

on the leading
edge to either 0 or 1 on the trailing edge, but that is inconsequential in the algorithm
described below. For the portion along the trailing edge, one could choose the ξ-value
of pLET E(s) to be 0 or 1. Here it is chosen to be 0, which is consistent with the value
used on the periodic blade surface used when calculating the blade cuts (see Sec. 6).

The value of s for which cLET E(s) = xLE is denoted sLE. Similarly, sT E is defined to
satisfy cLET E(sT E) = xT E and stip is the value of s at the blade tip.

The maximum allowed distance between blade cuts as measured along the leading
and trailing edge is specified; it is denoted Δc. The number of blade cuts in the upper
blade surface, Nt, is then chosen so that their separation is as close to Δc as possible
without exceeding it:

Nt =

{
L(sLE − sT E)

Δc

}
+ 1. (31)

The points defining blade cut i ∈ [1, Nt] are

x0 = c9(u); x1 = cLET E

(
sT E + u(sLE − sT E)

)
; x2 = c10(1 − u); (32)

u =
i − 1

Nt − 1
. (33)

As cLET E is parameterized using fractional arclength, the points x1 for successive
values of i are equally spaced along cLET E.

In a similar way a series of blade cuts can be defined on the leading edge surface.
We find NLE equally spaced points along curve c6, along cLET E between sLE and 1,
and along curve c7. The points along c6 become the points x0 for the blade cuts, the
points along cLET E become the points x1, and the points along c7 become the points
x2. More precisely, let i ∈ [1, NLE] denote blade cut i. This blade cut is defined using
the algorithm described in Sec. 6 using the points

x0 = c6(u); x1 = cLET E

(
1 − u(1 − sLE)

)
; x2 = c7(u); (34)

u =
i − 1

NLE − 1
. (35)

If the distance from x1 to the tip is less than dt (i.e. if (stip − 1 + u(1 − sLE))L < dt),
then the blade cut is smoothed.

Note that blade cut NLE is the upper edge of the leading edge surface and blade
cut 1 lies near the blade-hub intersection. It would be simple to require that the NLE

curves around the leading edge be equal to the NLE blade cuts but, as pointed out
above, blade cut 1 cannot be used as the lower edge of the leading edge surface as the
blade-hub intersection does not lie in a plane. Instead, one of the blade cuts is chosen
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as a transition line; let it be blade cut j. Curve i is equal to blade cut i if i ≥ j.
For i < j, curve i is defined using trans-finite interpolation between blade cut j, the
blade–hub intersection (curve c3), curve c6 and curve c7. The interpolation is done
in the blade parameter space to ensure that the resulting curves all lie on the blade
surface. Let p3(u) be the curve in parameter space corresponding to c3(u): i.e.

b
(
p3(u)

)
= c3(u). (36)

Similarly we can defined parameter curves p6(u), p7(u) and pc(u) corresponding to
curves c6(u), c7(u) and the blade cut j. It is important to note that pc(u) will not
be defined if blade cut j has been smoothed, since the smoothed cut no longer lies
exactly on the blade surface and therefore does not have a representation in the blade
parameter space. Therefore blade cut j must be far enough from the tip that it is
outside the range of smoothing.

Curve i is now defined by

cLEi(v) = b
(
p(ui, v)

)
; (37)

p(u, v) = q
(
ξ(u, v), η(u, v)

)
; (38)

ξ(u, v) = u + 4v(1 − v)
(
fu(u) − u

)
; (39)

η(u, v) = v + 4v(1 − v)
(
fv(u) − 1

2

)
; (40)

q(u, v) =
(uj − u)

uj

p3(v) +
u

uj

pc(v) + (1 − v)p6(u) + vp7(u)

− (uj − u)(1 − v)

uj

pLL − (uj − u)v

uj

p
(s)
LR

− u(1 − v)

uj

pUR − uv

uj

p
(s)
UL (41)

where ui = (i − 1)/(NLE − 1) and where the functions fu(u) and fv(u) satisfy

q
(
fu(u), fv(u)

)
= pLET E(sLEu). (42)

For a given value of u, fu(u) and fv(u) can be evaluated using a Newton-Raphson
search.

In the above expressions, the trans-finite interpolation is implemented by the function
q(u, v). Notice that because c6(0) = pLL and c7(0) = p

(s)
LR, one gets q(0, v) = p3(v)

and therefore cLE1(v) = c3(v). Similarly, q(uj , v) = pc(v). Also, for any u, q(u, 0) =
p6(u) and q(u, 1) = p7(u). On the other hand, it is not true that cLEi(

1
2
) is equal

to the value of x1 on blade cut i, a property we wish to enforce so that the location
of the leading edge can be obtained easily and so that there is no mismatch in curve
spacing as one passes from the blade cuts to the non-planar curves. For that reason
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the parameterization is modified as shown by the functional dependence of p(u, v)
on q(u, v) in Eqs. (38)–(40).

Since q
(
0, 1

2

)
= p3

(
1
2

)
= pLET E(0) (this is the blade parameter for the point where

the leading edge meets the hub), it follows that fu(0) = 0 and fv(0) = 1
2
. Similarly

we find that fu(uj) = uj and fv(uj) = 1
2
. Therefore it also follows that

ξ(0, v) = 0; ξ(uj, v) = uj; ξ(u, 0) = ξ(u, 1) = 0; (43)

η(0, v) = η(uj, v) = v; η(u, 0) = 0; η(u, 1) = 1 (44)

and therefore that

p(0, v) = p3(v), p(uj, v) = pc(v), p(u, 0) = p6(u), p(u, 1) = p7(u).
(45)

Moreover,
ξ(u, 1

2
) = fu(u); η(u, 1

2
) = fv(u) (46)

so that
p

(
u, 1

2

)
= q

(
fu(u), fv(u)

)
= pLET E(sLEu) (47)

as desired. In other words, the change in parameterization from q(u, v) to p(u, v)
does not affect the edge curves used in the trans-finite interpolation, but it does alter
the points at the leading edge so that the curves match the blade cuts there.

The value of j is obtained from a point on the leading edge specified using its parame-
ter in cLET E, which will be denoted sj. Blade cut j is the first whose leading edge point
x1 lies above this point: i.e. j is the smallest integer such that ujsLE > sj . To ensure
that blade cut j is outside the smoothing range, it is necessary that (sj − stip)L > dt

which can be rewritten as

sj > stip +
dt

L
. (48)

If sj is too close to the tip, the leading edge curves will show significant curvature:
for example, see Fig. 8. This is because the blade cuts near the tip are highly curved
in blade parameter space. The trans-finite interpolation propagates the curvature of
blade cut j to the remaining non-planar leading edge curves. Choosing sj to be about
half-way along the leading edge usually works well.

In a similar fashion, NT E curves around the trailing edge can be determined using
the curves c1, c5 and c8.

For reasons described in Sec. 9, the number of curves wrapping around the leading
edge should equal the number of curves wrapping around the trailing edge. Therefore,
NLE and NT E are defined as

NLE = NLE =

{
max(1 − sLE , sT E)L

Δc

}
+ 1 (49)

which ensures that the maximum spacing between the curves, measured along the
leading or trailing edge, is Δc.

DRDC Atlantic TM 2013-178 15



Figure 8: The effect of the location of sj (shown by the red dots) on the
leading and trailing edge curves of a highly skewed blade. When sj is close
to the tip (left) the curves can show excessive curvature; lowering sj (right)

makes a significant improvement.

9 Making spline representations of the
surfaces

The following steps are used to create the smoothed blade surfaces by splining the
curves around the leading and trailing edges.

1. Using the algorithm described below, find a single knot sequence, ξi, that allows
each of the curves to be approximated by a spline to within a given accuracy.

2. For the leading edge surface, construct a second knot sequence, ηj , using

ηj =
j − 1

NLE − 1
. (50)

For each j, sample curve j at ξi to obtain the value xij. Calculate a two-
parameter spline which interpolates the values xij at the parameters (ξi, ηj).
The spline is the leading edge surface.

The tip and trailing edge surfaces are generated in a similar way.

3. In the blade parameter space, sample the edges of the central surfaces where
the end-points of the curves meet the edges.

4. Use trans-finite interpolation to create a grid of sample points in the blade
parameter space. Note that this step requires the number of sample points on
the left edge to equal the number of sample points on the right edge: i.e. NLE

must equal NT E .
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5. Spline the sampled points and replace the central surfaces with the splined
surfaces.

Because, on their common edges, the same set of points is used for the spline of
the central surface and the leading/trailing edge surfaces, these surfaces will match
exactly along their common edge. Similarly, the central surfaces will match the upper
surface exactly along their common edges.

In Ref. 6, Sec. 11, an algorithm is described for defining a spline approximation to an
arbitrary curve by inserting knots into an initial knot sequence until the spline and
the curve differ by less than a specified accuracy. For the current purpose, the crucial
feature of this algorithm is that it maintains the initial knot sequence as a subset of
the final knot sequence. The algorithm can be used to construct the common knot
sequence used for each of the curves around the leading and trailing edges:

1. Choose an initial knot sequence, then use the above algorithm to find a spline
approximating the first curve to the required accuracy.

2. For each subsequent curve, use the knot sequence from the spline approximation
to the previous curve to initialize a spline approximation to the current curve.

3. Obtain the knot sequence from the final curve.

Notice that the knot sequence from the final curve contains the knot sequences used
for all the previous curves and therefore, when it is used to reconstruct spline ap-
proximations for the curves, each of those approximations will meet the required
accuracy.

10 Defining the hub surface
The hub is an axisymmetric surface specified by a curve, the spine, which is rotated
about the propeller axis. The hub is split into sectors, one for each blade. The edge
of each sector runs roughly parallel to the line on the hub joining the leading and
trailing edges of its blade, tracing a helical shape as it extends to the ends of the
hub. The intersection of the hub and the reference blade is calculated and the hub
sectors are trimmed by removing the footprints of the blades. Only the surfaces on
the reference blade and the hub sector associated with the reference blade are saved
in the IGES file: Fig. 9 shows a propeller along with the decomposition of the blade
and hub surface as saved in the IGES file. The full propeller can be generated by
making rotated copies of these surfaces.

The hub surface is parameterized using ph = (ξ, θ) where ξ is between ξlo at the
upstream end and ξhi at the downstream end. The parameter θ is the angle of rotation
around the axisymmetric hub surface. The hub surface is then denoted h(p).

The DRDC propeller geometry classes provide a curve, pb(u), such that ch0 =

h
(
pb(u)

)
lies on the intersection of the blade and hub for all u ∈ [0, 1]. This curve is

used for the inner boundary of the trimmed hub sector.
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Figure 9: The full propeller (left) and the portion saved in the IGES file
(right). Four of the five blade surfaces can be seen. The fifth is in the

centre of the other side of the blade.

The outer boundary of the trimmed hub sector is made as follows:

1. Find hub parameters at the leading and trailing edges. Call them (ξle, θle) and
(ξte, θte).

2. Extrapolate the line joining these two points to the upstream and downstream
ends of the hub to obtain two more points, (ξlo, θlo) and (ξhi, θhi), where ξlo and
ξhi are the values of hub parameter ξ at the upstream and downstream ends of
the hub. The values of θlo and θhi are required to lie in [−π, π] because the hub
surface, when stored in the IGES file, is restricted to this range.

θlo = max
(
−π, θle − 1

2
m(ξle − ξlo)

)
; (51)

θhi = min
(
π, θte + 1

2
m(ξhi − ξte)

)
; (52)

m =
θte − θle

ξte − ξle

. (53)

3. Make a Hermite spline (see Ref. 6, Sec. 8) through the four points which is
parameterized using ξ. The slope at the two end points is zero and the slope
at the leading and trailing edge points is m. This yields a curve, ph(ξ), in hub
parameter space which passes through the leading and trailing edges and meets
the lines ξ = ξlo and ξ = ξhi orthogonally.
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Figure 10: The curves delimiting the hub sector in the
hub parameter space.

4. Offset the curve by Δθ = π/Z, where Z is the number of blades, to obtain a
new curve, ph1(ξ), which passes between the blades.

ph1(u) = ph

(
ξlo + u(ξhi − ξlo)

)
+ (0, π/Z); (54)

u = ξlo +
ξ − ξlo

ξhi − ξlo

. (55)

5. The curve ph1(ξ) marks one edge of the hub sector in hub parameter space.
The opposing edge is made by offsetting ph(ξ) by Δθ = −π/Z and reversing
the parameterization so that it is oriented from the downstream end to the
upstream end:

ph3(u) = ph1(1 − u) − (0, 2π/Z). (56)

6. The ends of the curves ph1(ξ) and ph1(ξ) are joined by two straight lines in hub
parameter space:

ph2(u) = (1 − u)ph1(0) + uph3(1); (57)

ph4(u) = (1 − u)ph3(0) + uph1(1). (58)

7. The union of the four curves ch1(u) = h
(
ph1(u)

)
, ch2(u) = h

(
ph2(u)

)
,

ch3(u) = h
(
ph3(u)

)
and ch4(u) = h

(
ph4(u)

)
marks the outer edge of the hub

sector.

Fig. 10 shows the limiting curves of the hub sector in hub parameter space.
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11 Saving the geometry in an IGES file
Once the blade surfaces have been represented as two-parameter splines, they are in a
form suitable for saving in an IGES file. This can be done using the classes described
in Ref. 7. If the surfaces are C2, they will be stored as Rational B-spline Surfaces
(entity type 128); otherwise they are stored as Parametric Spline Surface Entities
(entity type 114).

The hub is also saved as a surface of revolution trimmed so that only the sector
associated with the reference blade is kept (see Sec. 10); the blade footprint is also
trimmed away. The trimmed hub is stored as Trimmed (Parametric) Surface Entity
(entity type 144) which contains a Surface of Revolution Entity (entity type 120) with
an outer bounding curve to define the limit of the hub sector, and an inner bounding
curve to define the blade footprint.

The Surface of Revolution Entity which defines the untrimmed hub contains a curve,
the spine, which is rotated about the z axis to generate the surface. The DRDC
propeller geometry classes provide a representation of the spine, but not in a form
directly compatible with the IGES format. It is first converted to a spline and saved as
a Rational B-spline Curve Entity (entity type 126) if the spine is C2, or a Parametric
Spline Curve Entity (entity type 112) if it is not. The spline is determined so that the
accuracy of the approximation is consistent with the accuracy used when calculating
the blade surfaces.

The inner boundary of the trimmed hub sector is the blade-hub intersection curve,
ch0. The DRDC description of the propeller provides a representation of this curve,
but not in a form understood by the IGES format. The curve is approximated by a
spline in the hub parameter space, to a similar accuracy as used by the blade splines,
which is used to define a Curve on a Parametric Surface Entity (entity type 142).

The outer boundary of the hub sector is also a Curve on a Parametric Surface Entity
with the curve in the hub parameter space defined by a Composite Curve Entity
(entity type 102) used to concatenate the four edges of the hub sector, ch1, ch2, ch3

and ch4, into a single curve. The degenerate curves at the ends of the hub are each
represented as a Line Entity (entity type 110) while the two curves delineating the
edges of the hub sector are Parametric Spline Curve Entities.

12 Concluding remarks
The algorithms describe in this report circumvent a common problem when a pro-
peller is generated in the traditional way from a series of airfoil sections: a coordinate
singularity causes the geometry to be poorly defined near the tip so that it is not
suitable for use in Reynolds-averaged Navier-Stokes (RANS) flow solvers. The al-
gorithms remove the coordinate singularity and smooth the tip in a controlled way.
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The smoothed geometry is written in the IGES format which can be used by most
commercial flow solvers. The improvements in propeller geometry allow analyses of
propellers to be performed with a minimum of effort. The analysis procedure will be
more robust and the results more reliable.
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List of symbols
α The smoothing relaxation factor.

βi Relaxation factors for the Laplace filter.

ηh(ξ) A function of blade parameter ξ such that b
(
ξ, ηh(ξ)

)
lies on the hub.

It is sufficient to define the blade/hub intersection in the blade
parameter space.

ηLE The blade parameter η for the point xLE on the leading edge.

ηT E The blade parameter η for the point xT E on the trailing edge.

θlo Hub parameter of the point at the upstream end of the hub
extrapolated from the line through the leading and trailing edges.

θhi Hub parameter of the point at the downstream end of the hub
extrapolated from the line through the leading and trailing edges.

(ξ, η) Parameters for the blade surface.

(ξh, θ) Parameters for the hub surface.

ξhi The value of ξh at the downstream end of the hub.

(ξle, θle) Hub parameters where the leading edge meets the hub.

ξlo The value of ξh at the upstream end of the hub.

ξLL The blade ξ parameter of the lower left corner of the central surface.

ξLR The blade ξ parameter of the lower right corner of the central surface.

(ξte, θte) Hub parameters where the trailing edge meets the hub.

(ξUL, ηUL) The blade parameters for the upper left corner of the central blade
surface.

(ξUR, ηUR) The blade parameters for the upper right corner of the central blade
surface.

ai(u) Arclength distributions.

ci(u) Curves used as edges for the five blade surfaces: i ∈ [1, 12].

b(p) A function returning points on the surface of the reference blade.

chi(u) Curves used as edges for the hub surface: i ∈ [1, 4].
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ci(u) Curves used as edges for the five blade surfaces: i ∈ [1, 12].

cLET E(s) A curve along the leading and trailing edges parameterized using
fractional arclength.

h(ph) A function returning points on the surface of the hub.

d The maximum separation of the points used for smoothing a blade cut.

de On a blade cut, the distance from the leading or trailing edge over
which smoothing occurs.

dLR The distance of xLR from the leading edge at the hub.

dUR The distance of xUR from xLE.

dt The distance from the tip, measured as arclength along the leading and
trailing edge, over which smoothing occurs.

f(x) Function used to modulate the amount of smoothing of a blade cut.
Also used for the distribution function governing the points sampled on
a blade cut.

h The minimum separation of the points used for smoothing a blade cut.

L Arclength around the blade outline.

NLE the number of curves around the leading edge.

NT E the number of curves around the trailing edge.

n A normal to a surface.

p A two-vector giving parameters for a point on the blade: equivalent to
(ξ, η).

pb(u) A curve in hub parameter space for the blade-hub intersection.

ph A two-vector giving parameters for a point on the hub: equivalent to
(ξh, θ).

phi(u) Curves in hub parameter space corresponding to chi(u): i.e.

h
(
phi(u)

)
= chi(u).

pi(u) Curves in blade parameter space corresponding to ci(u): i.e.

b
(
pi(u)

)
= ci(u).

pLET E(s) Curves in blade parameter space corresponding to cLET E(s).
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pLL The blade parameter for the point on the blade-hub intersection at the
lower left hand corner of the central surface on the pressure side of the
blade.

pLR The blade parameter for the point on the blade-hub intersection at the
lower right hand corner of the central surface on the pressure side of the
blade.

pUL The blade parameter for the point at the upper left hand corner of the
central surface on the pressure side of the blade.

pUR The blade parameter for the point on the blade hub intersection at the
upper right hand corner of the central surface on the pressure side of
the blade.

pLE The blade parameter for the point on the leading edge between the
leading edge surface and the tip surface.

pT E The blade parameter for the point on the trailing edge between the
trailing edge surface and the tip surface.

q(u, v) Trans-finite interpolation function used to define the parameter curves
for the leading and trailing edge curves outside the smoothing limits.

s The parameter of the curve cLET E: the fractional arclength along the
curve along the leading and trailing edges.

sLE The value of s for which cLET E(sLE) = xLE .

sT E The value of s for which cLET E(sT E) = xT E .

stip The value of s for which cLET E(stip) is the blade tip.

t A tangent to a blade cut.

xLL The point on the blade-hub intersection at the lower left hand corner of
the central surface on the pressure side of the blade.

xLR The point on the blade-hub intersection at the lower right hand corner
of the central surface on the pressure side of the blade.

xUL The point at the upper left hand corner of the central surface on the
pressure side of the blade.

xUR The point on the blade hub intersection at the upper right hand corner
of the central surface on the pressure side of the blade.
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xLE The point on the leading edge between the leading edge surface and the
tip surface.

xT E The point on the trailing edge between the trailing edge surface and the
tip surface.

yn
i Points on a blade cut after n smoothing iterations.

Z The number of propeller blades.
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