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Défense nationale, 2014



Abstract

In May 2013 DRDC Atlantic participated in a Defence Science and Technology Or-
ganization, Australia (DSTO)-sponsored sonar automatic target recognition (ATR)
challenge. As part of this challenge, DRDC Atlantic and the other participants re-
ceived approximately 11000 Remus/Marine Sonic sonar images in bitmap format as
well as corresponding navigational information. A set of 654 sonar files and ground
truth data for minelike objects and objects of interest were supplied for training the
ATR methods. A larger set of files containing minelike and objects of interest were
then used for testing the methods. The locations of the objects in the testing set
were not known to the participants. A file with the locations of the DRDC Atlantic
ATR detections was emailed to DSTO and the results were evaluated on the basis of
the ground truth locations for the testing set. In this report, we describe our initial
processing of the data to obtain the results which were sent to Australia. The set of
sonar files provided were very challenging, including significant clutter regions and
sand ripples. The results from the test evaluation indicated a low detection rate.
After the test evaluation, Australia kindly supplied a file with the ground truth lo-
cations for the testing set. This report describes the subsequent analysis of our ATR
approach. It was found that by dropping one of the constraints originally used in the
ATR algorithm that the results were significantly improved. The results were further
improved by taking the local clutter density into account. Finally, a binary classifier,
trained with shadow/highlight features, improved the detection results even further.

Résumé

En mai 2013, Recherche et développement pour la défense Canada (RDDC) Atlan-
tique a participé à l’épreuve de reconnaissance automatique des objectifs (ATR) par
sonar tenu par la Defense Science and Technology Organization (organisation pour
les sciences et la technologie pour la défense), d’Australie. Les participants, dont
RDDC Atlantique, ont reçu environ 11 000 images sonar Remus-Marine Sonic en
format bitmap, ainsi que les données de navigation connexes. Ils ont aussi reçu un
ensemble de 654 fichiers sonar comportant des données de réalité de terrain sur des
objets d’intérêt et d’autres ressemblant à des mines, afin de leur permettre de régler
leurs méthodes d’ATR. Ces méthodes ont ensuite été mises à l’essai à l’aide d’un
ensemble plus vaste de fichiers sur d’autres objets d’intérêt ou ressemblant à des
mines, dont la position était inconnue des participants. RDDC a soumis par cour-
riel à la DSTO un fichier indiquant la position des objets détectés par ses méthodes
d’ATR ; ces résultats ont été évalués d’après les positions de réalité de terrain de l’en-
semble d’essai. Dans le présent rapport, nous décrivons tout d’abord le traitement
initial des données dont nous avons envoyé les résultats à la DSTO. L’ensemble de
fichiers sonar fourni était fort complexe, car il comprenait des zones considérablement
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encombrées et des ondulations de sable, et nous avons obtenu de piètres résultats.
Après l’évaluation, la DSTO nous a généreusement remis un fichier indiquant les po-
sitions réelles des objets à détecter dans l’ensemble d’essai. Le rapport traite aussi
de l’analyse subséquente de notre méthode d’ATR. Nous avons ainsi découvert trois
façons d’améliorer considérablement la détection des objets : surtout lever l’une des
contraintes de l’algorithme ATR, mais aussi tenir compte de la densité du fouillis local
et utiliser un classificateur binaire entrâıné à l’aide de caractéristiques ombre-lumière.
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Executive summary

Lessons learned from the DSTO Sonar ATR Challenge
John A. Fawcett, Warren A. Connors; DRDC Atlantic TM 2013-184; Defence

Research and Development Canada – Atlantic; February 2014.

Background: DRDC Atlantic and other organizations, including national research
centres, universities, contractors, were invited by Defence Science and Technology
Organization, Australia (DSTO) to participate in the “DSTO Sonar ATR Challenge”.
DRDC Atlantic agreed to participate in this challenge and over approximately one
week in May 2013 processed approximately 11000 Marine Sonic sonar images with
one of our ATR algorithms. A set of 654 sonar files was provided with ground truth
information for algorithm training purposes. The testing set was not provided with
ground truth information and hence was a blind test. Each participant provided
DSTO with a file of pixel locations for their ATR detections and the results were
evaluated by DSTO with the ground truth information. The results of the test
evaluation for the DRDC Atlantic ATR method were somewhat disappointing. The
detection rate with the testing set was low with only 39% of the minelike objects
detected. After the evaluation, DSTO provided DRDC Altantic with the testing set
ground truth allowing for an analysis of the ATR algorithm’s performance. This
analysis, which is described in this report, indicated that our performance was very
significantly improved by removing a constraint on a matched filter output which had
been used in combination with the output from a Haar-cascade face detector.

Principal results: Automatic target recognition (ATR) methods can be trained and
the various algorithm parameters varied to yield optimal performance for a particu-
lar sonar environment and sonar. It is much more challenging to obtain good ATR
performance in new environments possibly with targets not previously seen. The
DSTO sonar ATR challenge data set provided an excellent opportunity to test an
ATR method on a difficult and varied data set without much time to fine tune the
algorithms. Subsequent analysis showed that the results could be significantly im-
proved by changing the constraints and thresholds used within the ATR algorithm. In
addition, a secondary classification stage can further improve the results. Although,
these improved results were encouraging, this post-analysis emphasizes the difficulty
in choosing, a priori, good parameter values for the ATR algorithms.

Significance of results: It is shown that on a large and difficult set of Remus/Marine
Sonic data, it was possible to obtain good ATR results. However, this does require
some care in choosing the internal threshold values carefully. In general, the ATR
needs to be calibrated when entering into a new sonar environment either by human
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or computer analysis. The use of large and varied sonar data sets (with groundtruth
information) as blind test sets is a very useful exercise in testing ATR methods.

Future work: The automatic adaptation of ATR methods to new sonar environ-
ments will be investigated. As the DSTO sonar ATR challenge proved to be very
worthwhile, it is recommended that DRDC participate in similar challenges in the
future.
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Contexte : Defence Science and Technology (DSTO, ou organisation pour les sciences
et la technologie pour la défense), d’Australie, a invité Recherche et développement
pour la défense (RDDC) Atlantique, des centres nationaux de recherches, des univer-
sités et des entrepreneurs, entre autres, à participer au DSTO Sonar ATR Challenge
(épreuve de reconnaissance automatique des objectifs [ATR] par sonar de la DSTO).
RDDC Atlantique a accepté l’invitation et a traité en mai 2013 durant une semaine
environ approximativement 11 000 images sonar Marine Sonic au moyen d’un de ses
algorithmes d’ATR. On nous a remis un ensemble de 654 fichiers sonar comportant
des données de réalité de terrain, afin de régler nos algorithmes. L’épreuve, cependant,
consistait en un essai aveugle, car l’ensemble d’essai ne comportait aucune donnée de
réalité de terrain. Chaque participant a soumis à la DSTO un fichier de positions des
pixels de ses détections ATR, puis celle-ci a évalué les résultats daprès les données
de réalité de terrain. Nous avons obtenu des résultats plutôt décevants, car notre
algorithme dATR n’a détecté que 39 % des objets ressemblant à des mines. Après
l’évaluation, DSTO nous a donné les positions réelles des objets à détecter, afin que
nous puissions analyser le rendement de notre algorithme. Cette analyse, décrite dans
le présent rapport, a montré que l’on pouvait considérablement améliorer la détection
en levant la contrainte sur la sortie de filtre adapté utilisée de pair avec la sortie d’un
détecteur de visages par cascade de Haar.

Résultats : Nous pouvons obtenir un rendement optimal dans un environnement
sonar et pour un sonar particulier en réglant les méthodes d’ATR et en faisant varier
les divers paramètres des algorithmes, mais détecter automatiquement les cibles dans
de nouveaux environnements comportant potentiellement des objectifs non détectés
auparavant est plus ardu. L’ensemble de données du DSTO Sonar ATR Challenge
a été une excellente occasion de mettre à l’essai nos algorithmes d’ATR sur un en-
semble de données complexe et varié sans avoir le loisir de les régler finement. Une
analyse subséquente a montré que les résultats pourraient être grandement améliorés
en modifiant les contraintes et les seuils de l’algorithme d’ATR et en ajoutant une
étape de classification secondaire. Ces résultats améliorés sont certes encourageants,
mais l’analyse après-essai souligne la difficulté de régler adéquatement et a priori les
paramètres des algorithmes d’ATR.

Portée : L’essai a montré qu’il est possible d’obtenir de bons résultats d’ATR sur un
vaste et complexe ensemble de données Remus et Marine Sonic, mais que cela exige
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de choisir soigneusement les valeurs de seuil internes. Il faut généralement étalonner
l’ATR dès l’entrée dans un nouvel environnement sonar, au moyen d’une analyse
manuelle ou informatique. Faire l’essai aveugle de nos algorithmes d’ATR sur des
ensembles de données sonar lourds et variés, doublés des données de réalité de terrain
pour les valider, s’est montré fort utile.

Recherches futures : L’adaptation automatique de méthodes ATR à de nouveaux
environnements sonar sera examinée. Étant donné que la participation de RDDC à
l’épreuve ATR par sonar de la DSTO fut jugée très profitable, il est recommandé de
répéter ce genre d’expérience à l’avenir.
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1 INTRODUCTION

In May 2013, the Defence Science and Technology Organisation (DSTO) Australia
distributed a large data set of REMUS MarineSonic images that DSTO had collected
over the years. Some of these images contained minelike objects. A total of 654
bitmap images were supplied as a training set along with an Excel file giving the
file/pixel locations of minelike objects and objects of interest. A total of 11202 bitmap
images comprised the testing set. In the case of the testing set, the groundtruth
information was not provided during the challenge. The testing images included a
wide variety of seabed and sonar conditions, including images with very significant
clutter. Four representative images from the testing set are shown in Fig. 1. Figures
1a and 1c show seabeds with significant clutter. The images of Figs. 1b and 1d are
more benign although Fig. 1d shows a significant scour mark. In Figs. 1a and 1d
there are artifacts caused by Autonomous Underwater Vehicle (AUV) turns in the
images. There is also significant altitude variation in Fig. 1a. In all images, a surface
echo can be seen with varying degrees of amplitude.

The training set was used to train a Haar-cascade[1,2] with the openCV software [3].
This cascade was then used along with a matched-filter[4,5] to detect objects in the
testing set. In order to do this, we had to make a choice as to what thresholds to use
in terms of the number of cascade-detection rectangles and the matched-filter output
associated with the pixels in the image. We chose these values by trying the method
on a few images of the testing set and observing the resulting detections. Due to the
large number of files, the processing procedure was quite lengthy and it was divided
between the two authors of this report. We performed the training and testing over a
period of about a week and did not have much time to fine tune our methods. Also,
due to the time constraint, we did not implement a secondary classification procedure
to further reduce the number of false alarms.

A text file of all detections, consisting of their x/y pixel locations for each file, was
emailed to DSTO who then evaluated the detector performance on the basis of their
groundtruth information. The evaluation was done by using a distance threshold
between the detector’s pixel locations and the groundtruth locations. The scoring was
somewhat complicated. There were groundtruth locations of minelike objects (MLO)
marked by Australian naval personnel. In addition, there were files for which a human
detection was not made but in which the minelike object should appear (according
to the geographical location of the sonar file). There were also designated objects-
of-interest in the images. From the evaluation, the DRDC results were somewhat
disappointing, the detection rate of the basic 388 MLOs was only 39%, although
there were 54 additional MLO detections in the other files.

It was clear from the low detection rate in the testing set that the values of the
thresholds we used were not appropriate. Since the evaluation, DSTO Australia has

DRDC Atlantic TM 2013-184 1



Figure 1: Four representative images from the DSTO Australia set.
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provided DRDC Atlantic with the ground-truth locations allowing for the investiga-
tion of ATR algorithm’s performance. In addition, a secondary classification process,
derived from the training set, was implemented to further reduce the number of false
alarms. Below, we describe the algorithms and the results.

DRDC Atlantic TM 2013-184 3



2 DETECTORS
2.1 Haar Cascade Detectors
The Haar-Cascade detector is commonly used in face detection in images and has
recently been applied to sidescan sonar ATR [1,2]. In this approach, windows of
the image are passed through a series of increasingly complex detector stages. Each
stage is trained to have a very high detection rate but to significantly eliminate
false alarms. If a window is rejected at an initial stage, it is not considered by the
subsequent stages. In a Haar-Cascade, the individual detectors utilize Haar-features
which can be rapidly computed. We utilize the cacscade training software in the
well-known openCV [3] software library. As well, we use the trained cascade with
the multi-scale face detection algorithm from openCV for the detection phase. This
algorithm has been modified to save its detection rectangles into a text file which can
be read into a MATLAB program.

In this MATLAB program the centres of all the rectangles are computed for each
file. A counting matrix C is constructed where each (i, j) location has a 1 added
to it if it corresponds to a rectangle centre. In other words, the value at each pixel
location is the number of rectangle centres at that point. This counting matrix is
then convolved with a 30 × 30 filter of ones to provide a smoothed count matrix, CS,
of the rectangles. The number of rectangles required for a detection is a parameter
which can be varied to generate a Receiver Operating Characteristic (ROC) curve.
The dimensions of the rectangles that are counted can be constrained. For the results
of this report, the width (across-track) of the rectangles were such that 16 ≤ w ≤ 100
and the heights (along-track) satisfied 12 ≤ h ≤ 30 pixels. We also computed a
normalized rectangle count. This is done by convolving CS with a filter which is
200× 150 in size, with the middle 31× 31 pixels set to zero to compute an averaged
value Cm. Then the normalized rectangle count is given by

Cn =
CS

1 + Cm

. (1)

In training a Haar Cascade, a set of “positive” images and a large set of negative
images is required. The positive images are cropped images of minelike objects while
the negative images are simply sonar images without minelike objects. The bitmap
images were read into a MATLAB program and the images were normalized - that
is, the overall range/amplitude variation was empirically removed. This was done
by computing the mean amplitudes along predicted constant grazing angles from the
sonar. To obtain the images to crop for the positive images, we used the ground-
truth locations provided by DSTO for the training set, to locate the minelike objects
and also the objects of interest. From the predicted locations in the sonar files, we
used a mouse to extract a rectangular region about both the minelike and objects of
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Parameter Value
Window Width 16
Window Height 12
Number of Stages 17

Hit Rate 0.999
Max False Alarm Rate 0.4

Haar Feat. Set ALL
Maximum Depth 2

Table 1: The parameters used for training the cascade.

interest. The number of positive images was increased by first considering the basic
extracted snippet of data and then perturbing the location of the extracted rectangle
and also by distorting the width of the original snippet. In addition, we utilize both
the normalized and unnormalized versions of the images. The maximum width of
an extracted rectangle is 40 pixels, meaning that long shadows are truncated. In
Fig. 2 we show a portion of the set of positive snippets. There was a fairly wide
variety of minelike and objects of interest. There were standard target types but also
some smaller objects and slender cylinders. The many images which did not contain
the indicated objects were taken as negative (clutter) files. We used a total of 4528
clutter images (in the TIFF format). The starboard and port sides of a sonar file
are treated as separate images. In addition, normalized and unnormalized versions,
and vertically flipped and non-flipped variants of the original images are used. The
openCV software was then used to train a Haar Cascade. The parameters of this
cascade are listed in Table I.

2.2 Matched Filtering
One aspect of a sidescan sonar image that is not accounted for in the cascade training
is the fact that a object’s shadow length grows linearly, in terms of the number of
across-track pixels, as a function of detection range. It might be possible to incor-
porate this in the Haar features but we have not attempted to modify the openCV
software for this task. However, the standard matched filtering used in sidescan or
Synthetic Aperture Sonar (SAS) ATR [4,5] is, in fact, a generalized type of Haar
filter. The concept is to construct a two-dimensional filter T with a small rectangle
of ones to model the highlight section of an object followed by a wider (in across-track
direction) rectangle of -1 to model the shadow. Let us consider an object with height
h, let us take the altitude of the sonar as a and the range (slant) of the detection is
R. Taking all units to be in metres, the length of the shadow is given approximately
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Figure 2: Some representative positive images from the training set.
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by

LS =
hR

(a− h)
, (2)

which can be converted into a pixel length according to the across-track sampling.
This length will define the extent of the shadow region for the template T . The
original image I is remapped, either in discrete or continuous fashion, into a new image
Im having positive and negative values. For the challenge, the following remapping
was used: (1) first the median ν of the image I pixel values (outside of the water
column) was determined and then (2) the remapped image

IL =
ln( I+.001

ν
)

ln(2)
(3)

was computed. The mapping of Eq.(3) corresponds to image pixel values with am-
plitudes twice the median value being mapped into the value 1, values 4 times the
median value mapped into 2, values 1/2 the median value mapped into −1, etc.
Finally, for the remapped image the negative values of IL are rescaled by 1/3 and
clipped at −1. Then the two-dimensional cross-correlation of IL with T will have a
high output when there is a good match between the remapped image and T . Using
the method of integral images [6], it is straightforward to allow the final cross-track
pixel indices of the shadow rectangle to increase as the range of the leading pixel
increases. In this report, we will consider a matched filter with the highlight and
shadow sections independently normalized, thus weighting the highlight and shadow
equally in the output value.

2.3 Feature-based Classifier
For the original detection results sent to DSTO, only the combination of a Cascade
and a matched-filter were used. However, for later analysis a trained kernel-regression
method[7] was also used to process the data snippets (mugshots) yielded by the ini-
tial detection phase on the training data set. From the training set ground truth,
the mugshots are assigned a label as either a MLO or non-MLO. This classifier uses
several computed shadow/highlight features. Although we have called this method
a classifier, it is being used simply to further classify mugshots or snippets of data
as minelike or clutter. In this sense, it is still considered as a detection stage. The
mugshots are first segmented[8] into a shadow and highlight region. A number of
features based upon these regions, such as estimated height of the object, the es-
timated length, the area of the shadow , the ratio of this area to the area of a fit
ellipse, are computed. These features are described in [9]. Additional features from
the detection phase are also included: (1) the number of associated rectangles (2) the
matched-filter output with the original detection (3) the normalized rectangle count
and the maximum lacunarity [4] in the detection region. The labelled set of features,
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{�fi}, are then used to train a Kernel-regression classifier,

K(i, j) ≡ exp(−|�fi − �fj|/p) (4)

and
K�a = �� (5)

where �� denotes the labels and p is a parameter which can be varied and effectively
controls the width of the exponential term of the kernel. A small scalar may be added
to the diagonal of K in Eq.(5) to regularize the solutions.

Once the coefficient vector �a has been determined from the training, then for a new
feature �fm, the predicted label value is given by

�m =
N∑

i=1

aiK(�fm, �fi). (6)
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3 RESULTS

For the results that were sent to DSTO, it was required that there be at least 6
rectangles associated with a detection and that it have a match-filtered output of at
least one. Due to the mapping of the image data into positive and negative values,
and the manner in which the matched-filter template is normalized, the matched-
filter values can often exceed unity. We ignored any detections which were within a
region designated as a turn or were in the water colum. The turn and water column
regions were automatically determined from the navigational data. For the results
sent to DSTO, there was a bug in the code for determining the detections within the
water column. This bug was corrected for the results of this report. Two text files
were constructed with the detection information, one including all the detections and
their pixel locations within the sonar image files and the second file was the same as
the first but with the number of detections in a file limited to a maximum of 5 for
each side (port and starboard). The five detections with the highest rectangle count
were used. In this latter case, we achieved about a 39% detection rate on the the
MLO with about a total of 7000 false alarms.

For the results of this report, the initial detections corresponded to those regions
where the number of rectangles are greater than or are equal to two. Within these
regions, the maximum values of the rectangle count and the other detectors, matched
filter, lacunarity, and a normalized version of the rectangle, Eq.(1) are saved as well
as the pixel indices of the detection. The detection is declared a true detection if it
is within a distance of 30 pixels from the ground truth location. Here, the ground
truth detections used are only the designated MLOs in the ground truth file. By
varying the threshold of the detectors’ outputs ROC curves are generated. In Fig. 3
the ROC curve obtained by varying the threshold on the rectangle count is shown
(blue). The same curve when a constraint (≥ 1) upon the matched-filter output is also
imposed is shown (red). Finally, the curve generated by varying the threshold upon
the normalized rectangle count is shown. The red curve corresponds, approximately,
to the parameters used for the results sent to Australia and it can be seen that it was
the constraint upon the matched-filter output which caused the low detection rates.
The value of unity as a constraint for the match-filtered output was too high and led
to a low detection rate. We can lower this threshold to obtain better detection rates,
but in general, for this particular data set, the matched filter output was not useful
in improving the detection results from the cascade detector. This may be due to
the fact that many of the false alarms were produced by rocks, coral, etc for which
the matched-filter output is relatively high. For the detection results initially sent
to DSTO, we had a rectangle threshold of 6, which on the unconstrained rectangle-
count curve corresponds to a detection rate of 85% and 40448 false alarms. Thus,
even though the ROC curve indicates good performance for the cascade approach,
the particular threshold we used initially was too low. A more appropriate threshold
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would have been 20 for which the probability of detection is 70% and there are 11555
false alarms. The normalized rectangle count was the best detector in this case,
yielding a 70% detection rate with approximately 5000 total false alarms.

Some files produced a large number of detections (false alarms). In practice, one might
simply designate those files as “clutter” files with the corresponding geographical
locations declared as “non-huntable”. Another strategy is to limit the number of
detections per file. In this analysis the port and starboard sides are treated as separate
files . The detections retained are those with the highest detector scores. In Fig.4,
we consider the unnormalized rectangle score with no constraint on the number of
detections/file (blue), 8 detections/file(red), 4 detections/file (green), 2 detections/file
(cyan), and finally one detection/file (yellow). From Fig. 4 it can be seen that limiting
the number of detections per file has had a beneficial effect. The limit of only one
detection/side would be, in general, too restrictive - however values of 4 and 8 can
also be seen to be useful. In Fig. 5 the corresponding curves are shown when the
normalized rectangle score is used. In this case, the improvement is less significant,
although at the higher rates of detection the improvement is noticeable. Using a
normalized score effectively adjusts the threshold in terms of the number of nearby
false alarms and hence already accomplishes the concept of accounting for the number
of detections within a file.

Finally, we consider the mugshots resulting from the detections for the training set.
These detections were obtained using a rectangle threshold of 2. The corresponding
mugshots are then read into a MATLAB segmentation/feature computation program.
As well, from the detection phase, the values of the rectangle count, the normalized
rectangle count, the matched-filter output, and the lacunarity are included as features.
In total, there are 27 features for each mugshot. A kernel regression method is trained
with the parameter p in Eq.(4) equal to 10. The computed coefficients �a are then
used to compute output values, Eq.(6), for the features of the testing set and it is a
threshold on this output value which is varied to produce the ROC curve shown in
Fig. 6. As a comparison, the ROC curve for the normalized rectangle count is shown
in red. The upper plot shows the entire ROC curves while the bottom plot shows a
zoom of the 2 ROC curves for lower false alarm rates. In the upper plot, the 2 curves
appear quite similar but the bottom figure does show that, for example, at a 70%
detection level, the kernel regression method has approximately 3500 false alarms
while the normalized rectangle count has approximately 4500 false alarms. Thus, the
trained kernel method outperforms the normalized cascade method but not greatly.
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Figure 3: The ROC curves for the testing set using the rectangle count from the
Haar-cascade:(a) unnomalized count (blue) (b) unnormalized count with constraint
on match-filter output (red) (c) normalized count (green)
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Figure 4: The ROC curves for the testing set using the unnormalized rectangle count
from the match-filter output and with different numbers of limits on the maximum
number of detections per side

Figure 5: The ROC curves for the testing set using the normalized rectangle count
from the match-filter output and with different numbers of limits on the maximum
number of detections per side
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Figure 6: The ROC curves for the testing set using the output from a trained kernel-
regression method (blue) and for the normalized rectangle count (red) . In (a) the
entire curves are shown and in (b) a zoom of the lower false alarm region.
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4 DISCUSSION OF RESULTS

The Australian DSTO Sonar Challenge proved to be very interesting. The collection
of sonar images proved to challenging from an ATR perspective. There was a wide
variety of different seabed conditions and some of the targets were quite thin or
small. For a simple detection approach such as the matched-filter this resulted in
many false alarms for a high detection rate. The Challenge also highlighted the
problem of not knowing, a priori, optimal values to use for thresholds. Without having
much time to “fine-tune” ATR parameters, we quickly set what we considered to be
reasonable values for the rectangle and matched-filter thresholds. The analysis of
this report indicates that our constraint upon the matched filter output was too high
and this resulted in a low detection rate. In fact, the matched-filter output was not a
particularly useful feature for this data set. The rectangle count from the Haar-feature
face detection program performed very well on its own. A normalized rectangular
count performed even better than the unnormalized count. This is probably due to
the fact that this approach effectively adapts its threshold with respect to the amount
of surrounding clutter. However, even though the ROC curves for the Haar-detection
rectangles indicated good ATR performance, it is difficult to know at the beginning
of processing which particular threshold value to use. For our initial results sent to
DSTO, the threshold value of 6 that we used was, in fact, suboptimal and a higher
value would have been better. It was also found that applying a hard constraint
upon the number of detections per side improved the ROC curves. This approach
relies on assuming that the number of targets expected in a single sonar image will be
below some specified number. Finally, it was found that a trained kernel-regression
method, using the detection outputs and features computed for shadow/highlight
regions, yielded the best results. For the testing set of 388 MLOs we obtained about
3500 false alarms for a detection rate of 70% and about 14000 false alarms for a
detection rate of 80% with the normalized rectangle count.
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