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Abstract

In Q3 of 2012, as a subtask within a Director Materiel Policy and Procedures Major Equipment

Procurement Study (New versus Used), Directorate Materiel Group Operational Research (DMGOR)

planned a study into the life cycle costing of second hand platforms (vehicles, ships, aircraft). As an

initial input into that study, DMGOR undertook the estimation of the depreciation of two classes

of frigates, the U.S. FFG-7 and the Dutch Kortenaer, from second hand sales prices. That work is

reported here. A database of both frigate classes was developed from open source, but new and used

price data were readily available only for the FFG-7s. Depreciation fit an exponential decay model,

with an average loss of 8.4%/year and a 68% (±1 sigma) confidence interval of [5.9%, 11.1%]/year.

One variable, vessel age, explained up to 56% of the second used sale price data. The data was not

sufficient to extract the portion of depreciation due to aging design/technology rather than physical

aging of the platform, but neither did it contradict published cost growth trend of 2%/year for buying

new vessels of this type.

Because of the projected growth in real cost for new defence platforms, a thorough analysis of

procurement options is becoming increasingly important, including the life cycle costing of buying

used. This is an essential part of comparing with buying new that ideally includes platform suitability,

proficiency, and timeliness of full operational capability. Existing cost models within DMGOR

can potentially be developed for buying used. Exploration of this approach entails examination

of disruptive effects due to change of ownership, the availability of data, the effect of aging de-

sign/technology on the estimation of depreciation, and the effect of value enhancing accessories such

as sensor/weapons systems, accompanying aircraft, and support services. Methods developed for

analyzing second hand purchases can potentially be adapted for other major platforms, including

other maritime vessels, vehicles, and aircraft. They can also help situate the price range for selling

assets, if the Canadian Armed Forces choose to consider this.

Résumé

Au troisième trimestre de l’année 2012, le Directeur - Recherche opérationnelle (Groupe des maté-

riels) (DROGM) a entrepris une étude sur l’établissement du coût du cycle de vie des plateformes

de seconde main (véhicules, navires, aéronefs). Cette étude était une sous-tâche de l’étude sur

l’acquisition d’équipement majeur neuf et usagé du Directeur - Politiques et procédures (Matériel).

Pour commencer cette étude, le DROGM a fait une estimation de la dépréciation de deux classes de

frégates - la Kortenaer des Pays Bas et la FFG-7 des États Unis - à partir de leurs prix de vente à

l’état usagé. Cette estimation est présentée dans le rapport. On a monté une base de données pour

les deux classes de frégates en cherchant dans des sources ouvertes. Cependant, il a été possible

de trouver les prix à l’état neuf et à l’état usagé seulement pour la FFG-7. La dépréciation a été

calculée à l’aide d’un modèle de décroissance exponentielle, et on a déterminé qu’elle s’établissait

en moyenne à 8.4% par année, avec 68% (±1 sigma) d’intervalle de confiance de [5.9%, 11.1%]

par année. L’une des variables, soit l’âge du navire, expliquait jusqu’à 56% du prix de vente à l’état

usagé. Les données n’étaient pas suffisantes pour déterminer dans quelle mesure la dépréciation était

due à l’âge du modèle et de la technologie par rapport au vieillissement physique de la plateforme,

mais rien ne réfutait l’augmentation annuelle de 2% du coût d’achat de navires neufs du même type.
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Vu l’augmentation prévue du coût réel des plateformes de défense neuves, il devient de plus en plus

important d’effectuer une analyse en profondeur des différentes options d’achat, ce qui implique

notamment de déterminer le coût du cycle de vie d’une plateforme usagée. Il s’agit là d’un élément

essentiel lorsqu’on compare l’achat d’équipement neuf à l’achat d’équipement usagé, outre la

pertinence, l’aptitude et les délais dans lesquels la capacité opérationnelle totale sera atteinte. Les

modèles de coût utilisés par le DROGM pourraient être appliqués à l’achat d’équipement usagé.

L’exploration de cette approche implique d’examiner les effets perturbateurs du changement de

propriétaire, la disponibilité des données, les effets de l’âge du modèle et de la technologie sur

l’estimation de la dépréciation, et les effets des éléments augmentant la valeur de la plateforme (p.

ex., capteurs, systèmes d’armes, aéronef de soutien, et services de soutien). Les méthodes créées pour

analyser les achats d’équipement de seconde main pourraient être adaptées pour l’analyse d’autres

plateformes majeures (autres navires, véhicules et aéronefs). Elles peuvent aider à déterminer la

fourchette de prix pour la vente d’équipement dans l’éventualité où les Forces armées canadiennes

décidaient d’envisager cette possibilité.
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Executive summary

Sale price as a component of life cycle costing for second hand
platforms : Depreciation modelling in the context of the FFG-7
frigate

Fred Ma; DRDC CORA TM 2013–227; Defence R&D Canada – CORA; December 2013.

Background: In May 2012, Director Materiel Policy and Procedures Major Equipment Procurement

initiated a study into the trade-offs of purchasing new versus used major equipment, of which cost

analysis is a major component. Quantitative methods for analyzing costs associated with buying

used can be applied to various platforms, such as frigates, support ships, destroyers, vehicles, and

aircraft. Such a financial analysis is an essential part of a comprehensive comparison that ideally

encompasses additional factors such as operational suitability of candidate second hand platforms,

i.e., do they have the required capabilities, are they proficient enough in those capabilities, and the

timeliness with which full operational capability (FOC) can be reached1.

Objectives: This report describes the preliminary planning of life cycle cost modelling for buying

second hand major platforms, and a case study in the forecasting of one major cost component, sale

price, for an example platform, the FFG-7 frigate. In this report, we treat platform depreciation as

synonymous with expected second hand sale price2.

Method: Factors potentially affecting a platform’s second hand life cycle cost pattern were identified

in the preliminary planning. A subset of these factors was used to define a small database with

which depreciation could be analyzed as a function of platform age. The main factors are age-related

(new and second hand purchase dates) and costs (new and second hand). Two naval platforms were

initially selected as candidates for which there were reasonable prospects of obtaining the data:

the Dutch Kortenaer and the US FFG-7. An open source data gathering phase was undertaken to

populate the database (new and used cost data was readily available only for the FFG-7), followed by

application of a simple exponential decay model for constant-dollar depreciation.

Method Limitations: A major limitation in this study was the difficulty in obtaining new and used

cost information for platforms that have been sold second hand. Furthermore, the second hand

purchases in this study are well in the past. In contrast, the second hand platforms on which the

Canadian Armed Forces (CAF) may need advice are future purchases. There may not be many past

instances of second hand sales of such platforms, which would exacerbate the limited availability of

data.

1 Including anticipated restorations, Canadianizations (or more generally, modifications to meet requirements specific

to the buying nation), and realistic time margins for unforeseen restorations/adaptions based on historical precedents.

Cases that exemplify the importance of these considerations are cited in this report.
2 We associate depreciation with used sales. The report discusses the distinction between depreciation versus the

overall diminishment in value with time that can characterize a particular platform.

DRDC CORA TM 2013–227 iii



Modelling depreciation addresses a single component of life cycle cost, which itself is only one

aspect of evaluating a purchase option, as indicated above. Moreover, the analysis reported here

models one determinant of depreciation (age), albeit the main one. Finally, used sales represent only

a portion of a platform’s population. Knowledge of a platform’s overall characteristic degradation

with age would allow for a more complete assessment of buying used, including risks and required

vigilance in terms of the warranted research and the depth of information to seek on the condition of

the platform. The question of the best metric or proxy for overall degradation cannot be divorced

from considerations of data availability.

Results: A database for the two classes of frigates was developed from open source information

with the assistance of DHH, CDI’s OSINT staff, and U.S. DSCA3. As mentioned, new and used cost

data was only readily available for the FFG-7s. After accounting for inflation, the real depreciation

was modelled as an exponential decay in second hand cost and found to be 8.4%/year, with a

68% confidence interval of [5.9%, 11.1%]/year. An attempt was made to estimate the portion of

depreciation that can be attributed to the aging of platform design and technology relative to evolving

military needs, but the sample was too small and spanned too narrow a time window. However, no

evidence was found in our data to contradict a reported trend of 2% growth in real cost for applicable

vessel classes bought new.

Theoretical developments in model validation are reported in the annexes.

Significance: The 2%/year growth in real cost for new purchases is actually at the low end of the

range of growth rates reported for defence equipment costs. Annualized growths of 5 to 6% are not

uncommon, and selected equipment classes can exceed 10%. With this new cost growth comes an

increasing imperative to ensure that procurement options are analyzed as thoroughly as possible

to maximize the confidence with which life cycle costs can be forecasted, including for options of

buying second hand. A simple exponential decay model for depreciation was able to explain 41% to

56%4 of the used sale price data using just one input variable (vessel age).

Future work: The input to any model is data, with higher fidelity modelling generally requiring

more data. The forecasting of used purchase cost can leverage information beyond just platform

age. Indeed, using many variables which potentially affect depreciation enables the estimation of

used purchase cost for platforms other those for which data is gathered. More data is needed for

such higher dimension modelling, but this approach has been demonstrated in the estimation of new

purchase costs (the Joint Support Ship).

To improve estimation of second hand sale price, it would be useful to establish approaches to properly

account for the value enhancements and supplementary equipment that accompany platforms that

are sold used, which increase the variance in depreciation estimates based on used sale price. It may

be possible to capture some of this dependence by augmenting a general multidimensional model

with additional, judiciously defined input variables.

3 DHH = Directorate of History and Heritage. CDI = Chief of Defence Intelligence. OSINT = open source intelligence.

DSCA = Defense Security Cooperation Agency.
4 Depending on whether a vessel that was bought for its parts was included.
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Finally, in terms of depreciation, it would be useful to further explore the separation of the component

that is due to aging design and technology relative to evolving functional requirements. This would

be particularly useful if such modelling was of sufficient sophistication to account for the propensity

of militaries to prolong the useful life cycle of platforms through betterments.

Beyond depreciated purchase cost, the entire life cycle costing of second hand platforms can

potentially borrow techniques from DMGOR5’s stochastic models for operations and maintenance

and prediction of optimal fleet renewal intervals. The disruptive transition between ownership periods

and its effect on the modelling approaches warrants further study.

As mentioned in the Background, methods developed and used for specific platforms can be adapted

and extended for use on other platforms. It can also help determine an initial price range if the CAF

was to consider selling assets.

5 DMGOR = Directorate Materiel Group Operational Research.

DRDC CORA TM 2013–227 v



Sommaire

Sale price as a component of life cycle costing for second hand
platforms : Depreciation modelling in the context of the FFG-7
frigate

Fred Ma ; DRDC CORA TM 2013–227 ; R & D pour la défense Canada – CARO ; décembre
2013.

Contexte : En mai 2012, le Directeur - Politiques et procédures (Matériel) a entrepris une étude

de comparaison des achats d’équipement majeur neuf aux achats d’équipement usagé. L’un des

principaux éléments d’une telle étude est l’analyse des coûts. On peut appliquer une méthode

quantitative d’analyse des coûts à l’achat de diverses plateformes, par exemple des frégates, des

navires de soutien, des destroyers, des véhicules et des aéronefs. Une telle analyse financière est

essentielle lorsqu’on veut faire une comparaison complète tenant compte de facteurs supplémentaires

comme la pertinence opérationnelle d’une plateforme candidate de seconde main (c.-à-d., offre-t-elle

les capacités requises, maîtrise-t-elle suffisamment ces capacités et dans quels délais la capacité

opérationnelle totale peut-elle être atteinte6).

Objectifs : Le présent rapport offre une description de l’étape préliminaire de planification de la

modélisation des coûts du cycle de vie lorsqu’on achète une plateforme majeure de seconde main.

On y présente aussi une étude de cas portant sur la prévision d’un élément de coût majeur, soit le prix

de vente d’une plateforme, en l’occurrence la frégate FFG-7. Dans le présent rapport, on considère la

dépréciation de la plateforme comme un synonyme du prix de vente d’équipement de seconde main7.

Méthode : Pendant la planification préliminaire, on a dégagé les facteurs pouvant influencer le coût

du cycle de vie d’une plateforme de seconde main. À partir d’un sous-ensemble de ces facteurs, on a

établi une petite base de données permettant d’analyser la dépréciation en tant que conséquence de

l’âge de la plateforme. Les principaux facteurs sont l’âge (dates d’achat à l’état neuf ou à l’état usagé)

et le coût (neuf et usagé). Au départ, on avait désigné deux plateformes navales pour lesquelles on

croyait être en mesure d’obtenir suffisamment de données, à savoir la Kortenaer des Pays Bas et la

FFG-7 des États Unis. On a d’abord effectué une recherche de données dans des sources ouvertes

afin d’alimenter la base de données (seuls les coûts d’achat à l’état neuf et à l’état usagé de la FFG-7

étaient faciles à trouver). Par la suite, on a employé un modèle simple de décroissance exponentielle

pour établir la dépréciation en dollars constants.

Limites de la méthode : L’une des grandes difficultés de cette étude était de trouver les coûts

d’achat à l’état neuf et à l’état usagé des plateformes de seconde main. Par ailleurs, les plateformes de

6 Cela comprend les restaurations prévues, la canadianisation (ou, en d’autres termes, les modifications à apporter en

vue de combler les exigences particulières du pays acheteur) et les délais auxquels on peut s’attendre, selon les précédents

historiques, dans l’éventualité de travaux de restauration ou d’adaptation imprévus. Le présent rapport contient des

exemples de cas montrant l’importance de ces considérations.
7 On associe la dépréciation à la vente d’équipement usagé. Dans le rapport, on établit une distinction entre la

dépréciation et la diminution générale de la valeur au fil du temps d’une plateforme particulière.
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seconde main en question ont été achetées il y a longtemps, alors que les Forces armées canadiennes

(FAC) chercheront plutôt à obtenir de l’information sur des plateformes qu’elles envisagent d’acheter.

Il est possible que l’on ne retrouve pas beaucoup d’occurrences comparables dans le passé, ce qui

compliquerait la cueillette de données.

La modélisation de la dépréciation touche à un seul élément du coût du cycle de vie, lequel représente

en soi seulement un des aspects d’une évaluation des options d’achat, comme cela a été mentionné

plus haut. En outre, l’analyse dont il est ici question aborde seulement un des facteurs de dépré-

ciation (l’âge), bien que ce soit le principal. Enfin, les achats de plateformes usagées représentent

seulement une fraction des achats de plateformes. En connaissant les caractéristiques générales de la

détérioration de la plateforme dans le temps, on serait en mesure de brosser un tableau plus complet

de l’achat d’équipement usagé, notamment une meilleure connaissance des risques et une meilleure

idée de l’ampleur des recherches nécessaires sur l’état de la plateforme. On ne peut d’ailleurs pas

dissocier la question des meilleurs indicateurs à employer pour mesurer la détérioration générale de

celle de la disponibilité des données.

Résultats : On a créé une base de données pour les deux classes de frégates à partir de renseigne-

ments provenant de sources ouvertes et à l’aide du DHP, des responsables de l’OSINT au CRD et

du DSCA, une agence américaine8. Comme il a été mentionné précédemment, il a été possible de

trouver seulement les coûts d’achat neuf et usagé du FFG-7. Après un rajustement en fonction de

l’inflation, on a modélisé la dépréciation réelle selon une courbe de décroissance exponentielle sur

le plan du coût de vente de seconde main pour arriver à 8.4% par année, avec 68% d’intervalle de

confiance de [5.9%, 11.1%] par année. On a tenté d’estimer la partie de la dépréciation attribuable à

l’âge du modèle et de la technologie de la plateforme par rapport à l’évolution des besoins militaires,

mais l’échantillon était trop petit et s’échelonnait sur une période trop courte. Cependant, on n’a

trouvé aucune donnée réfutant la croissance annuelle de 2% du coût réel des classes de navires visées

ayant été achetées neuves.

Les développements théoriques dans la validation du modèle sont présentés dans les annexes.

Portée : La croissance annuelle de 2% du coût des navires achetés neufs figure parmi les plus bas

taux de croissance de coût dans le domaine de l’équipement de défense. En effet, il n’est pas rare de

voir des taux de croissance annuels de 5 à 6% ; pour certaines classes d’équipement, le taux peut

dépasser les 10%. C’est pourquoi il est d’autant plus important d’analyser le plus minutieusement

possible les différentes options d’achat pour maximiser la fiabilité des prévisions des coûts du cycle

de vie, y compris pour les achats d’équipement de seconde main. Grâce à un modèle simple de

décroissance exponentielle, il a été possible d’expliquer 41% à 56%9 du prix de vente d’équipement

usagé à l’aide d’une seule variable d’entrée (l’âge du navire).

Travaux futurs : Plus on a de données, plus la modélisation sera fiable. Ainsi, il n’y a pas que l’âge

de la plateforme qui peut servir à prévoir les coûts d’achat usagé. En effet, l’utilisation de différentes

variables influençant potentiellement la dépréciation permet d’estimer le coût d’achat de plateformes

8 DHP = Direction - Histoire et patrimoine ; CRD = Chef du renseignement de la Défense ; OSINT = renseignement

de sources ouvertes ; DSCA = Defense Security Cooperation Agency.
9 Selon qu’il s’agisse d’un navire acheté pour ses pièces ou non.
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usagées autres que celle pour laquelle on a amassé des données. Pour une modélisation d’une telle

ampleur, il faut plus de données, mais cette approche a été éprouvée par l’estimation du coût d’achat

de nouvel équipement (le navire de soutien interarmées).

Pour améliorer l’estimation du prix de vente d’équipement de seconde main, il serait utile d’établir

des approches permettant de tenir compte des accroissements de la valeur et de l’équipement

complémentaire accompagnant la plateforme usagée, des éléments qui font augmenter l’écart des

estimations de la dépréciation en fonction du prix de vente à l’état usagé. Il peut être possible

de représenter cette dépendance en ajoutant à un modèle multidimensionnel général des variables

d’entrée judicieusement définies.

Enfin, pour ce qui est de la dépréciation, il serait utile d’explorer plus en profondeur la séparation de

l’élément découlant de l’âge du modèle et de la technologie par rapport à l’évolution des besoins

fonctionnels. Cela serait particulièrement utile de disposer d’une méthode de modélisation assez

sophistiquée pour tenir compte de la propension des militaires à prolonger le cycle de vie utile des

plateformes au moyen d’améliorations.

Outre la dépréciation du coût d’achat, on pourrait établir le coût du cycle de vie complet d’une

plateforme de seconde main en empruntant des techniques des modèles stochastiques du DROGM10

pour le fonctionnement et l’entretien et la prédiction des intervalles optimaux de renouvellement des

flottes. La transition désorganisée entre les propriétaires et ses effets sur les méthodes de modélisation

mérite également qu’on y consacre une étude.

Comme cela a été mentionné dans la partie « contexte », les méthodes utilisées pour des plateformes

particulières peuvent être adaptées pour d’autres plateformes. Elles peuvent également servir à

déterminer une fourchette de prix initiale dans l’éventualité où les FAC envisageaient de vendre de

l’équipement.

10 DROGM = Directeur - Recherche opérationnelle (Groupe des matériels).
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1 Introduction

In May 2012, Director Materiel Policy and Procedures (DMPP) initiated a study into the trade-offs

of purchasing new versus used major equipment [1]. High level factors being considered in the

study include purchase cost, timeliness of achieving full operational capability (FOC), and how

well the platform capabilities fit CAF operational requirements11. This report describes an analysis

of one contributor to the cost of buying used, namely sale price as a function of age. Due to the

availability of data, the method was applied to only one platform, the U.S.’s Oliver Hazard Perry-class

frigate (FFG-7) [2]. The method is not platform-specific, and therefore can be applied to any type of

platform. More sophisticated methods developed within DMGOR to model purchase price and life

cycle costs of platforms bought new can potentially be adapted to analyze second hand purchases. A

prerequisite for these analysis methods is data. In particular, new and used purchase price data seems

to be challenging to obtain.

1.1 Background: The larger plan

A larger cost modelling plan, of which this analysis was a part, has been put on hold due to the lack

of open source data on new and used purchase prices. It is described here for context, and in case

such a study is undertaken in the future.

In the preliminary planning of a model for life cycle costing of second hand platforms, a particular

pattern of costs was anticipated (Figure 1). The initial purchase cost of buying used can be much

lower than buying new. However, additional costs and delay can be expected in the initial years

to restore the platform to operational condition and for required domestic adaptions, betterments,

testing, and accreditation. Cases examined in the course of study [1] suggest that unanticipated

costs and delays for adaptions can be significant, and there is also significant risk that operational

requirements will not be met12. Beyond these up-front costs, the used platform is expected to have

higher Operations and Maintenance (O&M) costs than a new platform for the remainder of its second

life, and the life cycle will be shorter. The intent of the larger analysis plan was to develop this

template of costs into a model, stochastic or deterministic, for exploring the life cycle cost of buying

used compared to buying new. In discussions within DMGOR, it was acknowledged that costs

are one aspect of a complete comparison that ideally includes factors that were difficult to predict:

operational suitability, proficiency, and timeliness of FOC.

Two possible approaches to estimating contributing costs of buying used are the data mining methods

of reference [5, 6] for shipbuilding, and the optimal life cycle estimation of references [7, 8] for

light armoured vehicles and maritime surveillance aircraft, suitably adapted for used assets. Sales

information was expected to be most readily available for the Dutch Kortenaer-class frigate [9] and

the FFG-7. Hence, data gathering was undertaken for these two ships for this analysis.

11 Described in [1] as cost, schedule, and capability.
12 A domestic example is the prolonged service of aging Leopard 1 tanks due to incompatibility between Leopard

2’s and the CAF’s mine ploughs, bulldozer blades, and mine rollers [3]. An Australian example is the conversion of a

commercial tanker into an Auxiliary Oiler [4], ahead of schedule and under budget but without the aviation support, fuel

compatibility, speed, and manoeuvrability to fulfil its role in a task group. It will be replaced with a purpose built ship, but

in the interim, the service of a operationally suitable ship has to be extended well beyond its retirement date.
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Figure 1: Notional life cycle cost profiles for buying used (red) versus new (blue).

In references [5,6], data mining algorithms were used to estimate the ship development and construc-

tion costs for the Royal Netherlands Navy Rotterdam class and for the notional CAF Joint Support

Ship (JSS). The estimates were based on multinational data sets of dozens of somewhat similar ships.

In terms of an abstracted problem, the single output parameter of the model was the forecasted cost

of a new ship. The forecast was made based on the dependence of the cost on a wide variety of input

parameters, both technical and physical. If instead the output is taken to be used ship cost, a number

of additional input parameters could be included for its prediction. Age of the platform at the time

of sale and price-when-new were the most obvious additional input parameters, but so were selling

country, buying country, year of sale, whether the sale was intra-country, the shipyard, and the rank

in class13. While these additional fields were considered in planning a database for the input data, it

would be simple to disregard any of them in the analysis if (i) they did not explain the variance in the

output enough to warrant the extra dimensionality or (ii) there was not enough data with which to

populate the higher dimensional model.

In references [7, 8], annual O&M costs for vehicles and aircraft were treated as stochastic functions

of age. The variation in annual O&M costs was treated as geometric Brownian motion to account for

the random nature of maintenance requirements. A number of potential challenges are identified

below in the use of this method to estimate the life cycle cost of buying used. These challenges,

and solutions to them, are the potential subjects of future studies into adapting stochastic models to

second hand purchases.

1. Obtaining data: The stochastic model depends on the availability of historical O&M cost

data in order to extract the model parameters. This data corresponds to the blue cost profile

13 Experience with a ship class accumulates with ships built, making later ships less costly than initial ships. This

has been studied as a learning / cost improvement effect for aircraft [10, 11], and as a dependence on rank-in-class for

ships [5, 6].
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in Figure 1 up to the year in which the first owner ceases to operate the platform and sells it.

The red profile represents the costs for the buying nation for the second hand purchase and

subsequent adaptions and O&M costs.

2. Disruptive suspension of service: The decommissioning and recommissioning of major

equipment disrupts trends in depreciation. Platforms in continuous operation and subject to

regular inspection and maintenance degrade differently (not necessarily more) than platforms

that are simply stored for possible resale. Hence, the duration of discontinued operation could

serve as a useful input variable in the above data mining approach to forecasting the used cost.

3. Different incentives for O&M between owners: Over the first life of major assets, original

owners who intend to sell after a limited period of operation may not maintain the platform

in the same manner as owners intending to optimize the cost of ownership over a longer life

cycle. This can be likened to the "moral hazard" of economic theory, wherein parties tend to

behave less responsibly if they do not personally bear the consequences [12].

4. Memorylessness: Due to the memoryless nature of Brownian motion, it may difficulty to

model gross temporal patterns in spending that are highly plausible in a resale situation.

Brownian motion consists of a sequence of random permanent level shifts, each of which

are independent and identically distributed [13]. Applied to a platform fleet’s annual O&M

costs, if the cost is low in one of its later years, the future O&M costs are probabilistically the

same as that of a much younger fleet14. This could be problematic if there is a tendency for

first owners to curb maintenance in the final year(s) of operation, thus introducing a bias and

anomaly for the final data point from the first period of ownership. Whether this can be taken

into account in the forecasting of costs for the second period of ownership was not clear at the

time of writing, especially considering that more sophisticated models typically require more

data.

5. CAF adaptions: In contrast to new acquisitions, making used platforms operational may

require significant adaptions (anticipated or not) to meet CAF requirements.

1.2 Used purchase price versus age: The near term plan

The immediate step in the larger study was to determine trends in the used purchase price versus

age for the Kortenaers and FFG-7s. The determination of a trend should not be reduced to the

development of a depreciation formula for accounting purposes because the resulting figures would

not necessarily reflect actual operational value to the purchaser. As a reflection of operational value,

used purchase prices were extremely difficult to come by in the open literature. Most of the new

and used cost data that was gathered was for the FFG-7s, so only they could be analyzed for a

depreciation trend.

According to the open source [2] (Wikipedia), the U.S. built the majority of the existing FFG-7s,

whereas other ships based on the FFG-7 design were built by Australia; Taiwan, and Spain. However,

from the open source (described next chapter, but primarily based on reference [2]), only the U.S.

14 Such a process is known as a Martingale process [14]. At any instance t, the probabilistic future behaviour depends

only on the value at t, regardless of what the historical values of the process were prior to t.
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has sold FFG-7s used; the other nations have kept all theirs in service. Table 1 categorizes the fates

of the 55 U.S. FFG-7s. The 17 that were transferred to other nations are the ones analyzed here.

Three more transfers appear to be imminent; two of the frigates, one decommissioned and the other

soon to be, have been granted to Mexico (transfer pending), and another decommissioned frigate is

slated for foreign military sale.
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Table 1: Categorized fates of the 55 U.S. FFG-7s as per the open source [2] (Wikipedia). Cells

specifying fates are highlighted as a visual aid. The yellow cells for the McClusky indicate a ship in

transition.
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2 Data gathering

Acquiring data from open sources was a major challenge for used ship sales, and this was particularly

true for the new and used purchase prices. An Excel database was planned for used sales of both

Kortenaers and FFG-7s. New and used cost information specifically was unavailable for most of the

Kortenaers. The fields for the database are shown in Table 2.

Table 2: Data collection plan for used sales.

Data about: Fields

Platform Platform (only frigates)

Providing nation Nation

Class

Platform name

Pennant

Receiving nation Nation

Class

Platform name

Pennant

Start of first service Nation of construction

Launch date

Date of completion

First ever commission date

Transition to most recent service Preceding de-commission date

Date of sale

Handover date

Recipient launch date

Recipient commission date

Value [USD] Cost new

Used purchase price

Assessed used value

There are a number of date fields associated with the start of first life and start of second life because

of the various stages in operationalizing a vessel. These dates helped in estimating the start of

operations if the exact date was not found, and they helped reconcile information from different

sources. It was not uncommon for information to be incomplete or inconsistent between sources.

One field, "Date of completion" was not precisely defined; hence it is simply a rough indicator

that operations started some time around the year specified by that source. Similar judgement calls

were sometimes made in determining which ship in its first life became which ship in its second
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life15. These judgement calls were informed by the weight of the evidence, e.g., the amount of the

information from various sources and their credibility, both subjectively assessed and as advised by

Chief of Defence Intelligence’s (CDI’s) Open Source Intelligence (OSINT).

The open source nature of the data meant that the database was built up in a very iterative manner.

Whenever new information was encountered, whether it consisted of a few ships (e.g., press articles)

or an entire database of ships on the web, each affected field of each affected record was re-assessed

based on all the information accumulated for that cell. Open source information can be ephemeral to

varying degrees, as can DND’s access to even established sources; therefore, every effort was made

to locally archive the source information in a repository, thus providing an audit trail and ensuring

reproducibility of the analysis in the future.

One particularly noteworthy source of uncertainty in the used price data was the value-enhancing

accessories accompanying each vessel and enhancements applied to each vessel, e.g., weapons, sen-

sors, aircraft, refurbishments. There was no information with which to separate this out. For a more

in-depth study, this would raise the question of what should be considered part of a major platform.

Sometimes, when more than one vessel was sold at a time, it was unclear what enhancements were

associated with which vessel; the vessels may be of different ages and have different used purchase

prices.

2.1 Sources of data

In addition to various sources searched by OSINT, major sources of information for the database are

shown in Tables 3 and 4. Personnel from the following organizations contributed to the open source

search:

1. Directorate of History and Heritage (DHH);

2. CDI’s OSINT; and

3. Defense Security Cooperation Agency (DSCA).

DSCA’s Excess Defense Articles (EDA) database was the source of all of the used purchase prices

for the FFG-7s.

15 The second owner typically assigns a different name and pennant. There was sometimes conflicting information

about the mapping of individual ships in their first lives to individual ships in their second lives.
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Table 3: FFG-7 data sources.

URL Organization Information

turkishNavy.net No affiliation Pennant, name, launch date, com-

mission date, buying nation

wikipedia.org Wikimedia Foundation Pennant, name, various dates,

fate, various information on ship-

specific pages

www.dsca.mil/

programs/eda/edamain.htm

Defense Security Cooperation

Agency

Cost (new, used), date of used

sale, news releases

www.globalsecurity.org Independent organization dealing

in information on defence and se-

curity

Articles

www.nvr.navy.mil The Naval Vessel Register (NVR),

official inventory of ships and ser-

vice craft

Various dates, various technical

info available
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Table 4: Kortenaer data sources.

URL Organization

janes.ihs.com IHS Jane’s Articles

wikipedia.org Wikimedia Foundation Name, pennant, various dates,

fate

www.amiinter.com AMI International (naval informa-

tion products/services)

Google linked articles with cost

www.bicc.de Bonn International Center for

Conversion

Dutch surplus weapons document

(various info on transfers)

www.hellas.org No info on host organization Pennant, name, commission date

Blocked as "Extreme, Poli-

tics/Opinion" by DRENET

www.navyleague.org The Navy League of the United

States

Assorted articles with pricing info

www.seaforces.org Seaforces online (independent

information synthesis, various

navies)

Name, possibly various dates

www.worldnavalships.com No information on host organiza-

tion

Name, various dates, pennant,

fate
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3 Inferring second hand cost versus age
3.1 Conversion of dollar values to a common year

The new and used ship costs were inflated to 1 Jan 2012 using the Consumer Price Index (CPI)

inflation percentages in Annex A [15]. Note that InflationData.com, the source of this data, calculated

inflation rates for a calendar year by arithmetically averaging the rates over the months of a given

year rather than geometrically averaging them. This is because the rate for each month is not the

inflation during the month; it is the inflation over one year between that month and the same month

of the preceding year.

For this study, the calendar year inflation rates in Annex A were applied geometrically to inflate cash

flows to 1 January 2012. The date of each cash flow was rounded to the nearest start of a calendar

year. If payment occurred in the first 6 months of a year Y , it was treated as if it occurred at the start

of the year; if payment was made in the last 6 months of a year Y , it was deemed to have happened at

the start of year Y + 1.

At the time of writing, two new sources of inflation rates that were specific to shipbuilding were

obtained from Kaluzny [16]. The first new source was the inflation index used in reference [6]: the

Historical Shipbuilding and Conversion, Navy (SCN) Total Obligational Authority (TOA) Index [17],

used within the U.S. Naval Sea Systems Command (NAVSEA). A quick check of this new data

was done to confirm that these rates was in line with the ones from [15]. Figure 2 shows the

correspondence between these two sets of inflations rates.

The second new source was a Joint (services) Inflation Calculator hosted by the Naval Center for

Cost Analysis [18]. The knowledge required to use this calculator was explored, but the calculator

was not pursued for this study. A significant amount of time, and likely some liaising with the

host organization, would be needed to become familiar with the budgeting and cost categorizations,

weighting schemes, and assumed temporal spending patterns in order to properly generate inflation

data that was suitable for this study with any degree of confidence. Furthermore, much of the

terminology and many of concepts parallelled those found in the NAVSEA data above.

Other inflation indices found online can be more suitable for ship building than the CPI. These

include:

1. Shipbuilding Indices for steel vessel contracts [19], prepared by the U.S. Bureau of Labor

Statistics (BLS) for NAVSEA

2. BLS’s Producer Price Index (PPI) for newly constructed military self-propelled ships [20]

However, these sources only go back to 1988 and 2003, respectively. For the FFG-7 data gathered,

inflation data was needed back to 1980.

Note that the greater suitability of ship building cost figures is an assumption whose validity may

depend on the context of the analysis. For example, if the option of buying used is being financially

assessed in order to decide on how best to use funds the from a budget meant exclusively for ship

procurement, then shipbuilding indices are a sensible option. However, if the budget for purchasing
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Figure 2: Comparison of inflation rates from the Consumer Price Index and SCN TOA.

second hand is among a set of budgets for various purposes, between which there is much leeway

with which funds can be shifted, then the more general CPI may be more appropriate. In this

particular study, the similarity between the indices makes the choice of little consequence. As a

general observation, however, the analysis context will determine whether a sector specific index for

an asset under study is more suitable than a general inflation index.

3.2 Analysis

In general, the simplest plausible depreciation model for a major asset is exponential decay relation-

ship

CostUsed � a · CostNew e−b·Age , (1)

where a and b are fitting constants that characterize the decay, and the approximate nature of the

model is explicitly represented. Ideally a ∈ [0, 1] and b > 0. The relative retained value at a given

Age is then

DRDC CORA TM 2013–227 11



CostUsed

CostNew
� a e−b·Age . (2)

The relative retained value is just a complementary way of representing depreciation; whatever

portion of the original value is not retained is the reduction in value, which is depreciation.

After determining a and b, a can be viewed as a drop in value if a ship was to be hypothetically

re-sold immediately after being purchased (Age = 0), similar to the immediate drop in the value of a

car the moment it is driven off a dealer’s lot. However, if there is little or no data with Age near zero,

then the fitted value for a might not satisfy a ∈ [0, 1]. For example, if a > 0, then unless there is a

specific reason why an asset would appreciate immediately after being sold, a cannot be interpreted

beyond being just a fitting parameter.

The component e−b·Age is the Age dependent decay. Being the simplest possible model of decay, the

constant value retained each elapsed year can be obtained by substituting Age = 1 year. The annual

percentage retained value is then

α � 100%e−b(1 year) , (3)

where the 100% factor merely scales the resulting fractional number so that it is expressed as a

percentage, and time unit for the 1 year is explicitly retained as per standard practice in the physical

sciences to ensure that b is properly scaled for Age expressed in years (it has units of 1/time). The

annual depreciation is then

d1yr = 100% − α . (4)

In order to evaluate (3) and (4), we work with the log transformed version of (2),

ln
CostUsed

CostNew
� ln a − b · Age , (5)

to find representative values for ln a and b using linear regression16. Table 5 shows the calculation

applied to the FFG-7 ages and resale prices, with ship-specific Age expressed in terms of n years (a

per-ship value). Under the Effective dates & age section, the New column refers to the date of the

start of a ship’s first life. It is determined from the data in the ship’s Start of first service fields (see

Table 2). Sometimes, judgement call is required, but for any given ship, the dates in these fields are

always close to each other. Similarly, the date in the Used sale field is synthesized from a ship’s

Transition to most recent service fields. The New and Used sale dates determine the Age n at the

time of the second hand sale. As mentioned, the Budget year prices (both new and used) in U.S.

dollars are from DSCA’s EDA database. The generation of the inflation columns are discussed in the

16 Because the base e is ubiquitously used for exponential decay, we use base e for all exponentiation and logarithms in

this report.
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preceding subsection, and the 2012 USD prices (CostNew and CostUsed) are obtained by applying the

appropriate inflators to the corresponding budget year prices. These are then used to calculate the

relative retained value (2) so that the log transformed regression (5) can be applied. The regression is

shown in Figure 3.

Figure 3: Geometric depreciation of FFG-7 purchase prices. The highlighted point corresponds to

an FFG-7 that was purchased as a parts hulk.

One of the FFG-7s (highlighted) was purchased at an abnormally low second hand price. Subsequent

investigation revealed that it was purchased for use as a parts hulk, i.e. it was purchased for its parts

rather than for use as an operational vessel. Because of its anomalous fate, the analysis without the

parts hulk is taken to be the default here, though results from the inclusion of the parts hulk are

selectively discussed. We did not entirely dispense with the analyses that included the parts hulk

because even if the intent is to purchase platforms for operational use, knowledge of how a particular

platform depreciates in general can give an indication of the risk in buying used for that platform,

especially if there is no guarantee that the buyer has detailed ground truth on the condition of the

platforms.

The quantitative results of the regression are summarized in Table 6 for the cases with and without
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the parts hulk. The y-intercepts have high p-values, so there is no evidence against the null hypothesis

that the intercepts are zero. Since the parts hulk is the only outlier, the annual depreciation of

8.4%/year is not much affected by its inclusion. Of the FFG-7s sold for operational use, however,

only 56% of the variance in depreciation is explained by the age of the ship (41% if the parts hulk

is included). Hence, age alone is a very rough determinant of depreciation. The remainder of the

variance in the log transformed data shows up in the standard deviation of the residuals. Normally,

this indicates how far the actual depreciation is likely to be from fitted line. Since this is in the log

domain, however, the standard deviation represents multiplicative factors after an antilog transform,

as shown in Table 6 17. As expected, there is a greater spread in the case that includes the parts hulk.

Table 6: Results of regression for FFG-7 depreciation.

With parts hulk Without parts hulk

y-intercept) in log domain -0.273 -0.231

P-value 0.61 0.56

Standard error in log domain 0.524 0.391

Variance in the log domain explained by age (r2) 41% 56%

P-value < 0.01 << 0.01

Standard deviation of residualsa in log domain 0.444 0.331

Multiplicative effect on estimated depreciation [0.6, 1.6] [0.7, 1.4]

Estimated depreciation / year (from slope) 8.5% 8.4%

Standard error in log domain 0.028 0.021

68% confidence interval [5.9, 11.1]% [6.4, 10.3]%

a
√

(sum of squared residuals)/(NPoints − 2).

As shown in Table 6, the limited explanatory power of the Age variable is also reflected in the broad

68% confidence intervals for both the initial loss and annual depreciation18. Here, too, the confidence

intervals are broader for the case that includes the parts hulk.

3.3 Normality test results

Linear regression is based on the assumption of normally distributed residuals. The results of three

normality tests are presented here. The details of the first two are contained in Annex C. Due to the

exceptional nature of the parts hulk, it was not included in the normality checks.

Figure 4 shows the normal probability plot for the residuals19. The closeness of the dots to the red

straight line is an indicator of the degree of normality in the residuals. The dots are very linear,

17 The multiplicative factors give an intuitive sense of how symmetric offsets in the log domain affect the estimated

depreciation. However, actual confidence intervals for estimated depreciation are Age-specific and are not summary

statistics [21].
18 Formulas for the standard error of the estimated slope and intercept are given in Annex B. Because of the small

sample size, confidence intervals are determined using the t-distribution. The confidence interval boundaries are in terms

of x = ln (Relative retained value) and are transformed back into depreciation as 1 − ex.
19 It is good practice to always graphically examine the data as a complement to quantitative threshold tests [22–25]
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with a coefficient of determination r2 = 95%. The pair of black rectilinear bounding lines are 95%

confidence bands which the red line must reside between. The dots exhibit none of the gross features

that indicate skewness or excess kurtosis.

Figure 4: Normal probability plot of residuals. The staircase shape of the 95% confidence bands

arises because the discrete nature of the data points is prominent for small sample sizes.

There is also no appreciable evidence against normality from the Anderson-Darling test, which

works well for small sample sizes. The test statistic for our residuals exceeds none of the available

thresholds for rejecting the null hypothesis of normally distributed residuals, up to a significance of

15%.

Finally, following reference [7], we also apply the recently developed Doornik-Hansen omnibus

normality test [26] based on the 3rd and 4th moments of the data, skewness and kurtosis. The test is

applicable to samples as small as 8. For our residuals, Table 7 contains the p-values from the test.

The high p-values indicate that there is no appreciable evidence against normality nor against the

absence of skewness and excess kurtosis.
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Table 7: Goodness-of-fit metrics from omnibus test.

H0 p-value

No skewness 0.834

No negative skewness 0.581

No positive skewness 0.419

No kurtosis 0.796

No negative kurtosis 0.602

No positive kurtosis 0.399

Data are normally distributed 0.947
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4 Sensitivity analysis

This section describes the alternative analysis conducted to confirm that additional independent

variables are not essential in the linear regression model, and that the different inflation data introduces

a small amount of uncertainty. The analysis is performed on the default case, in which the parts hulk

is excluded.

4.1 Multiple Regression

Apart from the age of the ship when it is sold second hand, the other fields in the database which

depreciation could be regressed against are:

1. calendar year when a ship is new,

2. price when new,

3. year of second hand purchase,

4. second hand price, and

5. purchasing country.

Classical multiple regression finds the coefficients of dependence of the dependent variable, depre-

ciation, on the above (ideally) independent variables such that the residuals are minimized. For a

meaningful model, it is necessary to avoid multicollinearity [27, 28], where there is nontrivial corre-

lation between variables. In an extreme illustration, imagine replicating a variable x and disguising it

as a different variable y in the model. If the coefficient for x was (say) bx = 1 in the absence of y,

then introducing y into the model yields the same minimal residual regardless of whether coefficients

were {kx = 1, ky = 0}, {kx = 0, ky = 1}, or {kx = 0.5, ky = 0.5}. In practice, x and y can be significantly

correlated without being equal, yielding a subspace of solutions that are nearly optimum, where the

coefficients have high variance, and the solver may have trouble accurately solving the ill-conditioned

system. Because of possible correlation between variables selected as inputs to the model, they are

less ambiguously referred to as predictor variables (rather than independent variables, which could

be confused with the notion of statistical independence).

A number of steps were taken to vet and prepare the data for multiple regression. To avoid mul-

ticollinearity, we excluded the year of second hand purchase because it is highly correlated with

age. We also excluded the second hand price as a predictor variable, not only because it is strongly

correlated with depreciation, but also because that is what the model is intended to predict via the

depreciation. The year when a ship is new was taken relative to the earliest year in the database: 15

Dec 1979, the date taken to be when the ship with pennant FFG-8 was new. Finally, the purchasing

country could not be used directly because it is a nominal variable, having no ratio or ordinal

information. The typical way to incorporate such categorical data into regression is to define one

binary variable per nation (known as a dummy or one-hot variable) with the exception of one nation,

which is taken to be the nation that is implied when all of the binary variables are zero.

18 DRDC CORA TM 2013–227



Table 8: Correlation between predictor variables.

Variable ageYrs relYrNew usd2012new Definition

ageYrs 1.00 -0.80 0.29 Age [years] when sold

relYrNew -0.80 1.00 -0.10 Year when new, relative to 15 Dec 1979

usd2012new 0.29 -0.10 1.00 Price when new, inflated to 2012 and ex-

pressed as a factor of US$100,000,000.

The retained quantitative variables are shown in Table 8 along with their pairwise correlations. There

is significant negative correlation between the year when a ship was new (relYrNew) and the age

at which it was sold second hand (ageYrs), meaning that later ships were re-sold at an earlier age

(Figure 5 left). There is also moderate correlation between the price when new (usd2012new) and

ageYrs (Figure 5 right). We investigated the effect of including and excluding the highly correlated

relYrNew.
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Figure 5: Scatter plots of correlated pairs of variables.

Table 9 shows the predictor variables investigated and their coefficients for six models. N/A means

that the variable is not included in the model. Five of the variables are dummy variables corresponding

to the purchasing nations, so only one such variable can be be non-zero, with that non-zero value

being 1. In the case of Bahrain, N/A has meaning when the other nations are included in the model,

which is the case in three of the models. In such models, Bahrain is the implied nation if none of the

dummy variables for the other nations are non-zero. Also shown in Table 9 are figures of merits for

each model, including the explanatory power R2, the adjustment R2 of R2 to account for the number

of predictors used to achieve R2, and the root of the mean of the squared residuals (the residuals are

prediction errors and the radicand is designated MSE for mean squared error).
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In interpreting the coefficients, it rarely makes sense to interpret the magnitude of the coefficient in

isolation, as that figure depends on the scaling units of the predictor variable. The p-value is the

more reliable indicator of statistical significance. If we take p = 0.1 as the onset of evidence against

a zero coefficient, then with one marginal exception discussed below, the age of a ship is the only

variable that is significant. It is the only variable in all the models, and it is decidedly significant in

all the models. The first model in Table 9 is the simple linear regression against the age of a ship in

isolation, already presented. Each of the second through fourth models add a second variable in the

following order: (i) purchasing nation, (ii) date when the ship was new (relYrNew), and price when

new (usd2012new). The fifth model regresses depreciation against all the variables, while the sixth

and final model uses all variables except for the highly correlated relYrNew.

The second model brings in the purchasing nations, which is contrasted against the first model in

Figure 6. The actual data are shown as points, distinguished by symbology and colour according

to nation, while the predictions are shown as solid lines. Predictions are made across the age range

assuming that each nation in turn is purchasing. Since the each nation is a binary variable, the

corresponding coefficient merely introduces nation-specific vertical offset into the linear dependence

of depreciation on age. As expected, each line is centred through each nation’s data points. We

also note that the nation-specific slopes are steeper than the simple linear regression because nation-

specific sub-sets of the data points are more steeply inclined.
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Figure 6: Depreciation regressed against age of ship and purchasing nation. For comparison, the

dashed line shows the simple linear regression against age alone.

The nation-specific offsets are graphically satisfying, but with the exception of Turkey, the p-values

indicate that the nation effects are well within sampling noise. However, Turkey’s effect is marginal,

and can be understood from examination of Figure 6. The null hypothesis is that the Turkey

coefficient is zero, which would imply that its effect on the model is the same as for Bahrain, for

which all nation variables are zero. The line for Bahrain is decidedly offset from the centre and the
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line for Turkey is the furthest away in the other direction. Hence, the marginal significance of Turkey

can be seen as an artifact of the nation that is selected for the null hypothesis.

We did not consider products of ageYrs with individual nations as predictor variables because that

effectively allows different slopes for different countries. This essentially reduces to one simple linear

regression per purchasing nation. The sample size as a whole is already much smaller than desirable

without separating the data into smaller nation-specific samples. There would not be enough data for

such a model.

Note the pathological effect of incrementally adding the highly correlated relYrNew by contrasting

model 3 with 1 and 5 with 6. The apparent MSE increases despite the addition of a predictor.

Theoretically, the optimizer should be able to find the better relYrNew-free model by "finding" a zero

coefficient for relYrNew. We believe that the fact it doesn’t could be related to the inaccuracy and

ill-conditioning that can result from multicollinearity. Similar effects can be seen in the incremental

addition of the correlated usd2012new by comparing model 4 with 1. Since the correlation of

usd2012new with age is moderate, however, we decided to keep it and apply remedial techniques, to

be discussed next.

4.2 Regularization

The coefficients from regression can sometimes fluctuate a lot depending on the data sample. One

cause of this is multicollinearity. Other causes include a sample size that is too small, or the flip-side

of that problem, too man predictors in the model for the number of data points available, thus leading

to over-fitting to the specific sample. The idea behind regularization20 is to modify the optimization

function so that it doesn’t just minimize the MSE, but it also favours small coefficients for predictors

that the analyst thinks are less correlated with the dependent variable. This is done quite simply by

adding the L1 or L2 norms of the corresponding coefficients to the minimization function21, with

weights provided by the analyst. Thus, coefficients are penalized according to their magnitude. If

the some of the predictors in a model are products of other first order predictors, the higher order

predictors often qualify for such coefficient shrinkage. If the model has only first order predictors

and the variance in coefficients is due to a small sample size, then the shrinkage can also be applied

to the first order coefficients. In exchange for this bias in the estimation of the coefficients, the

coefficients determined are less sensitive to the specific samples. The coefficients are not as well

fitted to the particular sample from which they are derived because the minimization function does

not just consist of the MSE. However, the aim is for the model to perform well on new data due to

the shrinkage of undue dependencies.

Three well known schemes for regularization are22 Ridge regression, which uses the L2 norms; least
absolute shrinkage and selection operator (Lasso) regression, which uses L1 norms; and Elastic Net
regression, which uses a linear combination of L1 and L2 norms. Regularization that leans heavily

20 References for regularization abound on the internet, but intuitive introductory material can be found in references [29,

30].
21 The minimization function is taken to be the sum of the square of the residuals rather than the MSE.
22 Chapter 4 of reference [31] provides a good introduction to these regularization methods. In the literature, the

terms Ridge, Lasso, and Elastic Net appear in capitalized and uncapitalized forms, modifying both "regularization" and

"regression". Elastic Net is sometimes one word, and is sometimes used as a noun.
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toward Lasso regression can yield simpler regression models because of the known tendency to drive

some of coefficients to zero.

We applied Elastic Net to model 6 (all predictors except for the highly correlated relYrNew). For

comparison, we also applied Elastic Net to model 5, which consists of all predictors including

relYrNew. The tool used was the lasso function in Matlab�’s statistics toolbox23. It penalizes all

the predictor coefficients in the same way, based on a pair of hyperparameters described below.

Unfortunately, lasso does not generate p-values for the estimated coefficients. However, it does

estimate the MSE that can be expected when applying the resulting regression model to new data.

For a given set of hyperparameter values, the MSE is estimated by subjecting the model generation

process to cross-validation [32,33] using the sample data. Specifically, the regression coefficients are

determined from some of the data (thus training the model) and tested it on the rest. Data that is set

aside for testing, however, is done so at the expense of training data, which is problematic for small

sample sizes. Such a situation favours leave-one-out (LOO) cross-validation, which trains the model

using n − 1 out of n data and tests the model using only the one remaining data point. n iterations of

model training and testing are performed, with each data point taking its turn as the test datum. The

MSE is estimated from the resulting n prediction errors.

Matlab�’s lasso estimates the MSE in this way for a range of values in one of the two hyperparameters

that control coefficient shrinkage, generating an MSE estimate for each case. It is simple to automate

a sweep of the other hyperparameter. The best regression model is the one generated from the

hyperparameter values that yield the minimum expected MSE. In lasso, the hyperparameters for

Elastic Net are dubbed λ and α:

1. In generating a penalty, λ is the weighting factor applied to the linear combination of L1 and

L2 norms for each coefficient. A larger λ means more shrinkage.

2. α linearly controls the weighted average between the L1 and L2 norms of each coefficient.

α = 0 specifies a completely L2 norm and no L1 norm; α = 1 specifies the reverse.

Figure 7 shows the search for a good combination of hyperparameters with which to generate the

regression model, i.e., {λ, α} values that minimize the expected MSE. For each λ value, error bars

show the standard error of the MSE, as determined from the n LOO tests. The smallest MSE and

corresponding λ are marked in green. Since the object of regularization is often to reduce the number

of coefficients through shrinkage, lasso also shows in blue the largest lambda whose MSE is within

one standard error of the smallest. We can see that best MSE is relatively impervious to the value

chosen for α as long as there is a search over λ. In fact, the plots show that MSE bottoms out as

λ→ 0, suggesting that regularization is not needed.

The results of these searches are shown in the top half of Table 10 (page 20). DF refers to the degrees

of freedom, which in this context means the number of non-zero coefficients. All six predictors were

present in all four of the {α, λ} combinations found, so none of the coefficients were shrunk to zero.

This is not surprising considering the small values of λ and the minimal degree of regularization. SE
refers to the standard error of the MSE estimate from LOO cross-validation. A notable feature of the

Elastic Net results is that the coefficients do not change much, with the small exception of α = 0.01,

23Matlab� version 2013a.
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Figure 7: MSE estimates for Elastic Net regression model with relYrNew excluded.

i.e., when the regularization scheme leans toward heavily Ridge rather than Lasso. For α = 0.01, the

age coefficient diminishes slightly, the coefficient for Poland jumps by 20%, and the intercept drops

by 6%.

The figures in the top half of Table 10 should be compared with model 6 in the preceding Table 9 on

the same page, which Elastic Net was applied to. Aside from the results for α = 0.01, the regularized

coefficients are quite close to those for the unregularized model 6 in Table 9. Elastic Net’s MSE

estimates for new data from LOO cross-validation are about 24% higher than the root mean square

of the residuals for the entire sample in model 5, but these are not exactly the same metrics. Besides,

as discussed above, the regularized model is not suppose to minimize the MSE for this particular

sample.

The regularization of model 6 can be contrasted with the regularization of model 5, which includes

the highly correlated relYrNew. Figure 8 shows the hyperparameter search for regularizing model

5, the results of which are shown in the bottom half of Table 10. With the inclusion of relYrNew,

Figure 8 shows that significant degrees of regularization do improve the MSE estimates, which
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demonstrates the mitigation of the effects of multicollinearity. The nontrivial values of λ in Table 10

show that significant regularization is being relied on. From the zero coefficients, we see that variables

are progressively shrunk out of the model as α → 1 and the regularization scheme leans toward

Lasso; the DF decreases accordingly. It is interesting to see that the age coefficient is smallest when

the relYrNew coefficient is non-zero; this is the kind of trade-off that one expects from correlated

predictors. Note also that relYrNew is one of the first predictors to be shrunken out of the model.

Due to the re-apportioning of emphasis on the different coefficients as {α, λ} change, it should not be

surprising to see that the coefficients change a lot between {α, λ} values. Hence it is difficult to draw

a meaningful comparison with the unregularized model 5. For some coefficients, in fact, the signs of

the coefficients differ between the two models. As they were for the case in which relYrNew was

excluded, the MSE estimates for the regularization of model 5 is higher than the root mean square of

the residuals in model 5, and this disparity is slightly larger when relYrNew is included.
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Figure 8: MSE estimates for Elastic Net regression model with relYrNew included.

As a closing note to this sub-section, it should be mentioned that improved regularization of models

with categorical predictors has been the topic of much recent research. One area of emphasis has

been to avoid treating dummy variables as completely separate predictors, since they are actually
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mutually exclusive categories for one categorical variable, i.e., they are grouping variables. From

a cursory scan of the literature, Elastic Net initially seemed like it made accommodations for this

by treating groups of related variables in a similar fashion. However, the kind of relationship that

results in such grouping is correlation [34] rather than the mutual exclusion between the dummy

variables that correspond to a categorical variable24. A well-known recent extension of Lasso, group
lasso [35], was developed for models that include categorical variables. How best to apply it has been

the topic of ongoing research that lies beyond the scope of this study, and as one might expect for a

research frontier, many other variations have been proposed. Due to the common-ness of categorical

factors in decision support, it is an area of which it would be worthwhile to keep abreast.

4.3 Impact of different inflation data

As described in Section 3.1, budget year prices were inflated to 2012 USD using inflation rates based

on the CPI. Other sources were found at a later date, e.g., on an SCN TOA index. A subjective

comparison of the latter with the former showed them to be similar, and it was unclear whether the

sector specific SCN TOA inflation was more appropriate. As described, the latter may be more

suitable for cases in which funds are inflexibility earmarked for the acquisition of naval platforms

(but with enough flexibility to decide whether to buy new or used). Hence, it is prudent to check how

much the calculations could vary due to the choice of the CPI inflation.

Some insight into this can be gained by comparing how the two sets of inflation compound over

the period of interest, as shown in the left half of Figure 9. The curves reflect how the budget year

price of a hypothetical $1 item changes through the years due to the two sets of inflation rates. This

must be scaled by the actual price of a specific item of interest (hundreds of thousands of dollars

for an FFG-7), but that is just a multiplicative factor. The factor by which the price appreciates

is still represented by the curves in Figure 9. The disparity between the curves provides a rough

idea of the scale of the price divergence that is possible under the two inflation data sets. For the

purpose of calculating depreciation, the actual divergence depends on when an item was new (tNew)

and when it was sold used (tUsed), which defines the period of compounded inflation that affects the

ratio CostUsed/CostNew. For convenience, one may convert CostUsed and CostNew to budget year

dollars for a year outside of [tNew, tUsed], as was done in this study, but the multiplicative effect of

inflation from the years outside of [tNew, tUsed] will be the same for both CostUsed and CostNew. Thus,

inflation outside of [tNew, tUsed] does not affect CostUsed/CostNew.

Figure 9 (right hand side) also plots the offset of the two compounded inflation curves from their

mean (not shown), normalized by this very same mean. In effect, since we don’t have concrete

and specific information with which to choose one curve over the other, we choose the average

between the two curves as a reference curve with which to normalize differences. The offset of each

curve from the average, which is half the difference between the two curves, is then expressed as a

percentage of the average. Figure 9 shows that this normalized offset peaks at 8%. Since the average

age at which FFG-7s are sold used is 18.5 years, this 8% divergence represents a typical annual

multiplicative factor of roughly 1.081/18.5, or approximately 0.4%/year. Such an offset is within the

68% confidence interval for the depreciation (Table 6, page 15).

24 The study of the correlation between dummy variables is beyond the scope of this effort.
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Figure 9: Comparison of compounded inflation from two data sets.

More explicitly, let d1 be the naive annual depreciation calculated based on a single ship that is sold

used after 18.5 years, i.e. 1 − d1 = (CostUsed/CostNew)1/18.5, where CostUsed and CostNew are the

apparent real costs in terms of whatever year and currency is adopted as a reference. Assume that this

was determined using the CPI inflation figures, and imagine that we later found out that the SCN TOA

inflations were deemed to be more suitable, for whatever reason. According to Figure 9, the figure

CostUsed is actually 8% lower (worst case scenario) than initially thought when calculating d1. If we

designate d2 as the correct depreciation, then it should satisfy: 1 − d2 = (ξCostUsed/CostNew)1/18.5,

where ξ = 0.92 to account for the 8% drop. Hence,

1 − d2

1 − d1
= ξ1/18.5 = 0.9955 . (6)

Using d1 = 8.4% = 8.4 × 10−2 from Table 6 (page 15), we get d2 = 8.8 × 10−2, which is about

0.4 percentage points greater than d1
25. Basically, the SCN TOA inflation accounts for less of the

budget year drop in price, so depreciation must be responsible for slightly more of it. The bottom

line, however, is that the worst case divergence of budget year price has a minor effect on the real

depreciation when compared to the uncertainty due to sampling noise. Because of compounding,

this remains true even if we use the full difference between compounded inflation curves to calculate

offset/mean in Figure 9 instead of the half difference (the worst case offset becomes 16% instead of

8%).

4.4 Sensitivity analysis summation

From multiple regression on various various sets of predictor variables, the age of a ship is the only

statistically significant predictor of depreciation in the unregularized models. Predictors that were

obviously correlated were vetted away. Treating the purchasing nation as a categorical variable

yielded predictions that graphically seemed to fit better with this specific data set, but the p-values

25 In fact, (6) implies that d2 − d1 = (1− 0.9955)(1− d1) = 0.45%(1− d1), which is slightly less than 0.45% for plausible

depreciations d1 and d2 regardless of the exact values.
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indicate that the nation specific dependencies are not significant. For the full model (all predictors

excluding the predictor corresponding to the highly correlated year-when-new), regularization did

not change the model much and was not needed.

The full model included a predictor for the year when a ship was new (relative to 15 December

1979), which was found to have significant negative correlation with the age of the ship when it

was sold second hand, i.e., ships built later were sold at an earlier age. This introduced significant

multicollinearity into the regression, which yielded anomalous results. The use of nontrivial degrees

of regularization improved the model in terms of the residual errors that can be expected when the

model is used on new data, though it was still higher than for the regularized models in the absence

of significant multicollinearity. Regularization also shrunk various predictors out of the model,

as expected, depending on the hyperparameter values used. The re-apportioning of dependence

among the predictors yielded coefficients that varied greatly between models that were generated

from different hyperparameter values, with some coefficients having the opposite sign from the

un-regularized model.

Due to the lack of p-values from the generation of regularized models, it is not clear whether the

coefficients in the regularized models are any more significant that those in the unregularized models.

We expect that they are similar for the full unregularized model, minus the predictor for the relative

year-when-new, since the regularized and unregularized models are so similar. Hence: (i) none of

the unregularized multiple regression models are warranted over simple linear regression; (ii) the

regularized models in the absence of significant multicollinearity are probably not much different,

at least based on the limited amount of testing thus far26; and (iii) there is no compelling reason

to recommend the regularized model with significant multicollinearity. Concerning the final point,

we are not aware of any information suggesting that significance of predictors is improved by

regularizing a model with multicollinearity, either intentionally introduced or not.

Regarding sensitivity of the depreciation modelling to the inflation data, the difference between

inflation based on the CPI versus SCN TOA index were too small to have an appreciable effect.

26Limited by the small data set
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5 Discussion
5.1 Depreciation as per used sales differs from characteristic

degradation of platform

As mentioned, the parts hulk was excluded in the normality tests. Whether a parts hulk should be

included in a model depends on whether we wish to model the depreciation of a platform in general

or to model only the instances of a platform that are resold for operational use. For this study, and

likely in all future studies, the CAF is interested in second hand platforms for operational use rather

than for parts. Even in that case, however, there may be good reasons for getting a good idea of how

the platform of interest depreciates in general. One reason is the possibility that the buyer may end

up buying a platform that becomes a parts hulk not by design. As an example of a used purchase

that did not go as planned, consider Canada’s purchase of four Victoria class submarines from the

U.K. in 1998 [36]. One of the submarines, the HMCS Chicoutimi, was beset by a fatal fire en route

to Canada and left adrift. Restoration of the Chicoutimi was completed 10 years later and it was

recently being returned to the navy for sea trials [37]. Though Chicoutimi avoided the fate of a parts

hulk, its return to service was anticipated to be at a reduced level27, and it is not hard to see how

unanticipated setbacks could relegate a used purchase to the role of a parts hulk.

There is a second, not entirely unrelated, perspective with which one can view the case for including

parts hulks in analyses, possibly as a point of comparison for analyses without part hulks. Used

sales do not include vessels that are in too poor condition to sell, nor vessels that the selling nation

keeps for its own use, which could be those that age best. Therefore, one should be wary of the

possibility that, unlike for a commodity like a car, examining used sales for major platforms could

yield a very limited indication of how a platform truly degrades with age. In other words, the

characteristic degradation of a platform differs from trends in used sale prices. If the true degradation

characteristics can be determined, such information would provide a sense of risk in buying used, is

helpful for identifying and prioritizing options and establishing initial positions in price negotiations,

and can inform decision makers on the level of diligence needed in assessing the condition of the

used platforms. While characteristic platform degradation cannot be determined from used sales data

alone (such data exists only for used sales, which is the very problem), it is possible to compound

the information shortfall by dismissing the part hulk data points outright. We chose to address this

by comparing analyses with and without the parts hulk, but taking the latter as the default case.

5.2 Physical-age and design-age contributions to depreciation

In order to get insight into the depreciation behaviour of a particular platform, it is necessary to delve

into the contributing factors of depreciation rather than simply treating depreciation as a black box

process. Without the parts hulk, the annual depreciation of roughly 8.4%/year that is indicated by the

used sale prices includes contributions from loss of utility relative to "state of the art" in addition to

the difference due to "old versus new". We will refer to these components as design-age depreciation

and physical-age depreciation, respectively. The former is due to the fact that, even if platforms

are built new, designs from many years past are less able to meet current military requirements due

to factors such as increased expectations due to advancing technology, the evolving capabilities of

27 "Chicoutimi will...be restricted to shallow-water diving for the foreseeable future" [37].
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adversaries, the evolving nature of the responsibilities that militaries are called upon to fulfil, and new

concepts of operation that require more technology-intensive coordination and communication. For

example, consider a ship that is ready for its first ever commissioning. If it could be hypothetically

kept out of operational service and prevented from physically degrading (rusting, wear and tear, etc.),

design-age depreciation captures the fact that the technology and design would still become obsolete

and misaligned with evolving demands, causing its value to decline despite the fact that it does not

physically age.

Design-age depreciation is clearly implied in Pugh’s source book of defence equipment costs [38],

which shows that the real cost of the individual classes of new platforms "built to the latest design

standards and now entering service" typically increase from 1% to 5% (and sometimes up to 10%

and more) per year. The physical-age and design-age components of depreciation are conflated in our

data and are difficult to disentangle. Hypothetically, if a nation was still building new FFG-7s with

capabilities not differing much from the existing FFG-7s at the time when they were new, we would

have data points for design-age depreciation without physical-age depreciation – potentially, these

effects could then be separated. Compounding the conflation of the two contributors to depreciation

is the fact that, in response to evolving military requirements, militaries can typically be expected to

combat design-age depreciation through betterments throughout the life cycle of platforms. Hence,

we can expect only part of the design-age contribution to be captured in typical depreciation data.

5.3 Attempted extraction of design-age depreciation

We attempted to extract a rough estimate of design-age depreciation from the FFG-7 used sales data

set. As an approximate value range, the annual growth in the real cost of a new vessel is attributed to

technology and design improvements. We emphasize that the purpose of considering the increasing

cost of newly built vessels is not to expand the scope of this study to include the option analysis of

buying new; the purpose is to estimate the design-age contribution to depreciation. The percentages

for annual growth in real cost for new vessels are taken to be year-to-year reductions in real cost

if year-to-year improvements in technology and design are not implemented. Thus they serve as

a proxies for design-age depreciation. This counter-factual analysis28 merely augments the main

depreciation analysis for insight, so we did not undertake a second wave of data gathering to obtain

costs-when-new for FFG-7s that were not sold used29.

The costs of new FFG-7s in 2012 USD were plotted against the initial service date (Annex E).

Following Pugh’s model of annualized growth in real cost, we log transformed the costs in order to

use linear regression to determine the exponential growth with time. This mirrors what was done to

calculate FFG-7 depreciation, except that the aim here is to characterize growth rather than decay.

Due to the short time interval spanned by the initial service dates (1979~1982), the estimated time

dependence from regression is very rough. In Figure E.1, the slope of -0.0371 yields an estimated

annual real cost "growth" for new FFG-7s of (e−0.0371 − 1)100% = −3.6%30. It was evident that if

Pugh’s real cost growths applied to FFG-7s, then our sample was too small and our time window too

28 A counter-factual study examines scenarios other than those that actually occurred.
29 FFG-7s in active service, disposed of, or simply decommissioned.
30 For such a rough check as this, we did not attempt to account for fact that the resulting net growth includes the effect

of decreasing cost with rank in class.
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narrow for its detection. For our data set, therefore, design-age depreciation could not be extracted

using real cost growth as a proxy.

5.4 Accounting for sampling noise in design-age depreciation

The general trend of real cost growth was not detected in our sample, but it would be prudent to

determine if the discrepancy can be attributed to sampling noise. We did this by comparing our

"noisy" estimate of "growth" rate to the most appropriate categories of ships in Pugh’s study (Pugh

refers to ship categories as classes). To identify the applicable classes, note that the ostensible function

of the FFG-7 is air defence and antisubmarine warfare (ASW) [2], and its full load displacement

of 4200 tons is approximately midway between these two "Pugh" warship classes (2500 and 7000

tons). Hence, we associate the FFG-7 with both these classes. Fortunately, the normalized new costs

for these two classes are quite close to each other compared to the other vessel classes, and Pugh’s

annual growth in real cost is 2% for both classes. Thus, we take the null hypothesis to be 2%/year

growth and determine the 95% confidence interval using the standard error of the estimated slope

from the above regression. This yields a 95% confidence interval of [-6.7%,11.5%]/year growth in

real cost31, which encompasses the -3.6% estimated from the data above. The p-value for -3.6%/year

"growth" is 0.195, which is high and indicates a dearth of evidence against the hypothesis of 2%/year.

In short, given the sampling noise, the -3.6% real "growth" in buying new is not inconsistent with

Pugh’s 2%/year growth in the cost of new ships in a similar class.

In an attempt to address the broad sampling noise and the short time span in the above regression for

new cost growth, we incorporated into the data sample two FFG-7s built in Australia32 at the much

later date of 1992 and a budget-year cost of US$385M each ($636M in 2012 USD). However, these

two data points turned out to be quite anomalous compared to the rest of the sample, which led to

less clarity on the real cost growth of buying new. A regression on the expanded sample yielded an

estimated real cost growth of 5.8%/year, but the 95% confidence interval flanking the null hypothesis

of 2%/year shrank to [-0.5%,4.6%]/year. Since this excludes the estimated 5.8%/year, it implies

that either Pugh’s quantitative generalization does not apply to FFG-7s33 or there is something very

distinguishing about these Australian FFG-7s. As a check on the data, the USD currency for this data

and the fact that the cost figures were per-ship were corroborated via multiple information articles. If

the data is not accurate, then a common error propagated to the multiple information sources. To get

a perspective on the extremeness of this anomaly from Pugh’s published trends, Annex E contains

a projection of the price range of a notional new FFG-7 in 1992, outfitted to applicable "modern"

standards, i.e., modern for 1992. The resulting quartiles define the 50% confidence interval for the

31 Since the linear regression was done in the log domain, the null hypothesis is that the slope is ln(1 + 2%/100%)/year.

Conversely, upper and lower bounds on the 95% confidence interval for the slope are converted to a growth rate interval

via (eSlope − 1)100%. A t-distribution is used to determine the upper/lower bounds.
32 The Melbourne and the Newcastle.
33 The data points on which the Pugh’s trends are based approximately span the years [1976,2008]. This encompasses

the period [1979,1992] that is spanned by the initial service dates of the FFG-7s in our sample, including the two anomalous

Australian vessels in 1992. Based on the available information, therefore, the discrepancy cannot be dismissed as due to

disparate time periods.
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price as [$151M,$245M] 2012 USD for the notionally new FFG-7s in 199234. The apparent cost of

$636M 2012 USD for each of the two Australian FFG-7s in 1992 lies well outside this range.

34 The quartile-based interval provides a quick and rough check of the Australian data points against the projected cost

range. Other confidence intervals were not used because the quartiles are highly asymmetric about the median both with

and without a log transformation, thus ruling out a normal distribution for the null hypothesis.
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6 Conclusions and recommendations

The depreciation of used FFG-7 frigates was analyzed as part of a plan to study the life cycle

trade-offs in cost of buying major platforms second hand. While the study was put on hold in part

due to lack of data, some initial planning of the database has been documented here, and specific

approaches and challenges in modelling a change of ownership have been identified in case such a

study is pursued again. New and used cost data for used platform sales is expected to be challenging

to obtain.

Data collection was performed for both FFG-7s and Kortenaers from entirely open source, with

assistance from DHH, OSINT, and U.S. DSCA. The process was iterative, involving repeated decon-

flictions between the developing database and newly encountered data. Judgement was exercised

in determining new and used costs and transition dates not only because of variety of information

sources, but also due to the various phases that might be involved in decommissioning operations,

transferring a ship to another nation, and making them operational again. Some uncertainty in the

data arises from the fact that frigates sold used were often accompanied by value enhancements. For

traceability, as much of the source information as was practical has been captured in a repository.

While the database was fairly well populated in general, there was a lack of new and used cost data

with which to analyze the Kortenaers. Seventeen of the FFG-7s had sufficient cost data, which makes

a small sample. All costs were inflated to 1 January 2012 using inflation rates based on the U.S.

CPI, which were found to be in line with shipbuilding inflation figures. Depreciations were found to

roughly fit an exponential decay model in the sense that the residuals were normally distributed in

the log domain. After an initial drop in value of 21%, the depreciation of 8.4% / year was found to

explain 56% the variance, making it a very rough determinant of used ship cost. This explanatory

power dropped to 41% with the inclusion of an outlier associated with one frigate that was purchased

as a parts hulk. These levels of explanatory power resulted from the use of just one input variable in

the model.

The validity of the regression performed on used sale costs relies in part on normally distributed

residuals. The normal probability plot showed a good fit, devoid of indications of skewness and

kurtosis. Both the Anderson-Darling test and Doornik-Hansen omnibus test were meant for small

sample sizes, and both yielded no appreciable evidence against normality. The Doornik-Hansen test

did not reveal any significant deviations from normality in the form of skewness or excess kurtosis.

Some of the theory and intuition behind normality testing explored in annexes, including a method

to determine confidence bands on a normal probability plot for small sample sizes.

Significant sensitivity testing was done by exploring multiple regression models with and without

regularization, and determining the representative impact of an alternate set of inflation data on the

model. Multiple regression was not found to be warranted as the other variables did not show any

significance, and the simple linear depreciation model was impervious to the choice of inflation data.

The estimated annual depreciation includes physical-age and design-age contributions. An estimate

of the design-age component was attempted, but it was not detectable with the small sample size and

narrow time window. However, no evidence was found from our sample data against a published

comprehensively derived general trend of a 2%/year growth in real cost for the applicable vessel
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classes bought new. A higher fidelity estimate was attempted by including two modern Australian

FFG-7s in the data set, but they were found to be extreme outliers for reasons unknown. It is possible

for more a conclusive trend to be determined from more price data for newly-bought FFG-7s.

The statistical estimation of depreciation is a valuable input into life cycle costing in comparing the

options of buying used versus new. This approach can be applied to other major platforms, such

as support ships, destroyers, other frigates, vehicles, and aircraft. Furthermore, with appropriate

study into the modelling of the disruptive effects in changing owners, there is the potential to

adapt stochastic O&M cost modelling and data mining for purchase cost estimation to second hand

purchases. These types of financial analysis are an essential part of a comprehensive comparison

that ideally encompasses additional factors such as operational suitability, proficiency, and timely

operationalization.

The applicability of depreciation modelling is not limited to the buying of second hand platforms by

the CAF. It can also help determine an initial price range if the CAF was to consider selling assets,

e.g., the Halifax-class frigates.
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Annex A: U.S. inflation based on CPI

The following inflation rates based the U.S. Consumer Price Index were obtained from [15].

As described in the main report, the Annual inflation rate for a given calendar year is simply the

arithmetic average of the inflation rates under each month column. This is because inflation rate in

each month column is not the inflation over the duration of that month. It is the inflation between

that month and the same month of the preceding year. Therefore, only the Annual inflation rate was

used to inflate new and used frigate prices to 1 January 2012.

For example, consider the USS Estocin, which was deemed to have been new in 10 January 1981

and sold to Turkey 3 March 2003. The price when new was PBY
New
= $94, 930, 000 in budget year

USD, while the price when it was sold used was PBY
Used
= $21, 021, 143 in budget year USD. The

age at the time of sale was 22.2 years. To inflate both prices to 1 January 2012, the effective starting

dates for new and used were rounded to 1 January 1981 and 1 January 2003, respectively.

DRDC CORA TM 2013–227 41



The inflation for PBY
New

was calculated by selecting the annual inflation percentages for 1981 to 2011:

iNew =

(
1 +

10.35%

100%

) (
1 +

6.16%

100%

) (
1 +

3.22%

100%

) (
1 +

4.30%

100%

)

×
(
1 +

3.55%

100%

) (
1 +

1.91%

100%

) (
1 +

3.66%

100%

) (
1 +

4.08%

100%

)

×
(
1 +

4.83%

100%

) (
1 +

5.39%

100%

) (
1 +

4.25%

100%

) (
1 +

3.03%

100%

)

×
(
1 +

2.96%

100%

) (
1 +

2.61%

100%

) (
1 +

2.81%

100%

) (
1 +

2.93%

100%

)

×
(
1 +

2.34%

100%

) (
1 +

1.55%

100%

) (
1 +

2.19%

100%

) (
1 +

3.38%

100%

)

×
(
1 +

2.83%

100%

) (
1 +

1.59%

100%

) (
1 +

2.27%

100%

) (
1 +

2.68%

100%

)

×
(
1 +

3.39%

100%

) (
1 +

3.24%

100%

) (
1 +

2.85%

100%

) (
1 +

3.85%

100%

)

×
(
1 +
−0.34%

100%

) (
1 +

1.64%

100%

) (
1 +

3.16%

100%

)
×100% − 100%

= 173%

The inflation for PBY
Used

was calculated by selecting the annual inflation percentages for 2003 to 2011:

iUsed =

(
1 +

2.27%

100%

) (
1 +

2.68%

100%

) (
1 +

3.39%

100%

) (
1 +

3.24%

100%

) (
1 +

2.85%

100%

)

×
(
1 +

3.85%
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) (
1 +
−0.34%
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) (
1 +

1.64%
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) (
1 +

3.16%
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)
×100% − 100%

= 25%

The new and used prices in terms of 2012 USD were then calculated:

P2012
New = $94, 930, 000 × [100% + (iNew = 173%)]/100% = US$259, 158, 900

P2012
Used = $21, 021, 143 × [100% + (iUsed = 25%)]/100% = US$26, 276, 429
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Annex B: Confidence intervals for linear regression

The following confidence interval formulas for linear regression are taken from reference [39].

Consider a set of points {(xi, yi) | i = 1...n} with an estimated linear relationship y = α̂ + β̂x. The

standard error of the slope estimator β̂ is calculated as

sβ̂ =

√
1

n−2

∑n
i=1 ε̂

2
i∑n

i=1(xi − x̄)2
,

where ε̂i is the residual for point i.

Corresponding to a significance level γ ∈ [0, 1], the (1 − γ) confidence interval for β̂ is then

[
β̂ − sβ̂t

∗
n−2, β̂ + sβ̂t

∗
n−2

]

where t∗n−2
is the (1 − γ)th quantile of the t distribution with n − 2 degrees of freedom. The standard

error of the intercept estimator α̂ can then be calculated as

sα̂ = sβ̂

√
1
n
∑n

i=1 x2
i .

The (1 − γ) confidence interval for α̂ is then

[
α̂ − sα̂t∗n−2, α̂ + sα̂t∗n−2

]
.
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Annex C: Normality testing

This annex details the normal probability plot and the Anderson-Darling test for the results presented

in Section 3.3. The techniques described are established in the literature. For the benefit of analysts

for whom these may be new, they are introduced with an emphasis on intuition and a practical

overview. Notwithstanding the more advanced tests based on quantitative thresholds, the simpler

Q-Q plot is important because of its illustrative nature, and because it is good practice to always

graphically examine the data as a complement to quantitative threshold testing [22–25]. In particular,

the use of confidence bands in the normal probability plot can intuitively convey a sense of confidence

to sponsors (and to analysts). For small sample sizes, however, the effects of the discrete nature of

the data points becomes pronounced and a more rigorous approach than the common practice is

needed to generate the confidence bands. This is deferred to the next annex in order to preserve the

purpose of this annex, which is to convey intuition; the plot presented in this annex is the "quick and

dirty" version that is the prevailing norm, shown to illustrate its interpretation.

C.1 Normal probability plot

A normal probability plot [40] provides a simple visual check of the normality of a data sample,

which in our case is the set of residuals from linear regression in the log domain. It is a special

case of a Q-Q plot [41]. The idea is to plot the sorted set of n data against the n-quantiles of the

hypothesized distribution (the normal distribution here). Notwithstanding sampling noise, a very

linear plot would indicate a good correspondence with a normal distribution.

The Q-Q plot has a number of expedient features. For many distributions, including the normal

distribution, the slope and offset of the plot reflect the mean and scaling differences between the data

and the hypothesized distribution. If the hypothesized distribution is taken to be standard normal, the

mean and standard deviation for the data can be read directly from the offset and slope. The vertical

axis is usually used for the data, in which case left skew, right skew, and negative kurtosis show in

the plot up as gross concavity, convexity, and as an "S" shape35, respectively.

Conceptually, it is straightforward to determine the n-quantiles against which the data are plotted.

Consider the random variable (RV) associated with the hypothesized PDF36. It is well known that

the CDF36 provides a monotonic transformation between the hypothesized RV and an RV with the

standard uniform distribution U(0, 1) [42–45]37. So the interval [0, 1] can be partitioned into n equal

bins whose boundaries can be reverse transformed into the n-quantiles of the hypothesized PDF.

While this provides the intuitive basis for Q-Q plots, the details have "occasioned much discus-

sion" [41]. A main point of divergence concerns the pairing of each of the sorted data with the

corresponding n-quantile of the hypothesized PDF. The problem is that, by definition, quantiles mark

the boundaries of the bins to be matched with each datum. In order to match the data with the centres
of the bins, various adjustments to the boundaries have been used. As an alternative to the concept of

35 Convexity in the lower regime and concavity in the upper regime.
36 PDF = Probability density function. CDF = Cumulative distribution function.
37 This transformation is typically used, for example, in generating random data with a specific distribution in Monte

Carlo simulations.
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quantiles to guide this method, a common and less arbitrary approach is to base the method on order
statistics [46].

For an n-size random sample of our hypothesized distribution, the kth order statistic, often denoted

x(k), refers to the kth largest datum. Over repeated n-size samples, x(k) takes on its own distribution.

In principle, this distribution can be determined from the hypothesized normal distribution for our

data set. It is the median of the distribution for x(k) which our kth largest residual is plotted against.

These order statistic medians are approximated by using the inverse of the hypothesized CDF to

transform the order statistic medians of U(0, 1), similar to what was done above for quantiles. In

turn, the order statistic medians for U(0, 1) are approximated by

U(0, 1) order

statistic median
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 0.51/n, i = 1

i − 0.3175

n + 0.365
, i = 2, 3, ... , n − 1

0.51/n, i = n

Figure C.1 plots the residuals against the N(0, 1) order statistic medians generated from the above

U(0, 1) order statistic medians. The relatively linear plot has a coefficient of determination r2 = 95%

and contains none of the features that would suggest skewness or excess kurtosis38. The slope

clearly reflects the tabulated standard deviation of the residuals, 0.144. The data points are sorted, so

adjacent points are not independent. Hence, runs of consecutive data points above and below the line

of best fit are not unexpected [47, 48].

Figure C.2 shows approximate 95% confidence bands to indicate how well the residual quantiles

match those of a normal distribution. For simplicity, both axes are scaled according to the standard

deviation of the residuals. Each data point corresponds to a residual, and sample CDF would

completely match a normal CDF if the data points all fell on the y = x line (not the line of best fit).

For realistic data, which wanders off the straight line, the horizontal distances between each point

and the 95% bands represent the maximum permissible horizontal distances between the data points

and the straight line. Therefore, if the confidence bands fail to straddle the straight line at any point,

the null hypothesis that the residuals are normal is rejected at a 5% significance level. In Figure C.2,

the straight line is fully contained within the 95% bands, so there is no appreciable evidence against

normality.

The generation of confidence bands is described in Annex D. The confidence bands in Figure C.2

result from the prevailing approach found in the literature, which evaluates the confidence intervals

only at the sample data points, then interpolates between them. While this is accurate for large

sample sizes, Annex D describes the ambiguities that arose for the small sample size of this report.

The ambiguities centre around the selection of quantiles and lead to differences in results that are

more prominent for small sample sizes (a likely situation when data is hard to obtain). To resolve this,

the strict definition of the test statistic is used to avoid the ambiguity, and more rigorous confidence

38 The normal distribution has a kurtosis of three. Excess kurtosis refers to how much the kurtosis of the data differs

from three and is zero for a normal distribution.
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Figure C.1: Normal probability plot of residuals.

bands are derived from first principles. This yields a more conservative confidence bands in the sense

that they can be breached when they otherwise would not when using ad-hoc quantiles and linear

interpolation. It is the Q-Q plot in Annex D that is presented in the body of the report.

C.2 Anderson-Darling test

The Anderson-Darling test [49] compares the empirical CDF for the data with the CDF for the

hypothesized distribution. It performs well for small sample sizes. It is similar to the Cramér-von

Mises criterion [50] in that it integrates the square of the differences between the two CDFs. However,

it weights the differences in the tails of the distributions more heavily than the centre. Since the CDF

transforms data from a given distribution to U(0, 1), the test can be seen as comparing the data’s

order statistics in the U(0, 1) domain. The comparison is between the data transformed to U(0, 1)

using the hypothesized PDF and the empirical CDF. For a sample size n, the test statistic is

A∗2 =
(
25

n2
− 4

n
− 1

) ⎛⎜⎜⎜⎜⎜⎝ n +
1

n

n∑
i=1

{
(2i − 1) lnΦ(Yi) +

[
2(n − i) + 1

]
ln
[
1 − Φ(Yi)

] } ⎞⎟⎟⎟⎟⎟⎠
where the Yi’s are the sorted z-scores of the data and Φ(·) is the standard normal CDF. We reject the

null hypothesis that the two CDFs are the same if A∗2 exceeds a threshold that depends on: (i) the

desired statistical significance and (ii) how many of the hypothesized distribution parameters are
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Figure C.2: Approximate 95% confidence bands.

asserted as opposed to estimated from the sample. In the normal PDF hypothesized here, both the

mean and variance parameters are unknown and estimated from the data.

Over the past half century, various adjustments to the formulas for A∗2 have been developed, along

with tables of thresholds for rejection of the hypothesized distribution at various significance levels39.

Table C.1 compiles thresholds for a normal distribution.

For our residuals, A∗2 = 0.516 exceeds none of the tabulated thresholds, indicating that the null

hypothesis of normally distributed residuals cannot be rejected. Note that the 1986 thresholds (second

row) use an adjusted A∗2 formula. For our residuals, this yields an adjusted A∗2 = 0.473, which still

exceeds none of thresholds. Hence, the p-value is decidedly greater than 0.15. In terms of area under

the PDF for a test statistic when H0 is true, the p-value is the portion of the tail beyond the value

corresponding to the data sample. Small p-values are further out the tail, implying that H0 is less

plausible. Weak evidence against H0 is typically considered to emerge when p-values drop to 0.1,

getting stronger with lower p-values. Therefore, the Anderson-Darling test yields no appreciable

evidence against null hypothesis that the residuals are normally distributed.

In determining whether tabulated Anderson-Darling thresholds were appropriate for our sample

size of 16, we found that it necessary to go beyond a superficial information search. The challenge

39 Thresholds for Anderson-Darling and other statistics are obtained using a variety of ways: Typically, analytically for

large sample sizes, and using Monte Carlo simulation with numerical fitting for series of small sample sizes.
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Table C.1: Anderson-Darling test statistic thresholds for the hypothesis of a normal

distribution. For any threshold exceeded by A∗2, H0 (normality) is rejected with the

associated significance level.

Source
Significance Minimum

sample

size15% 10% 5% 2.5% 1% 0.5%

Threshold 1974 [49] 0.576 0.656 0.787 0.918 1.092 ∼10

Threshold 1986 [51]a 0.561 0.631 0.752 0.873 1.035 1.159 8

Threshold [43] 0.632 0.751 0.870 1.029 Unspecified

a Chapters 4 and 9.

has to do with the empirical nature of the methods, which is the very aspect that allows the tests to

be characterized for small sample sizes. Such studies typically examine a variety of test statistics,

suites of sample sizes, and a number of different scenarios in which different amounts of information

are known about the PDF with which the data is being compared. As an example of the latter, the

scenario most frequently encountered by analysts is the need to compare data against a normal PDF

with unknown mean and variance [52], i.e., the parameters are determined from the data, as they are

in this report. Though the general message is that very small sample sizes can be characterized with

these approaches, the studies cross so many facets that it can be difficult to definitively determine

that a certain minimum sample size applies specifically to the Anderson-Darling statistic, with a

certain curve fitting, and specifically for a normal PDF with unknown parameters. At the time of

writing, even a relatively high quality source of open source information like Wikipedia, which

is subject to world-wide scrutiny, over-generalized the minimum sample size of 5 for the posted

Anderson Darling thresholds40. It is highly advisable, therefore, that original papers be consulted

for thresholds. For this report, these seem to be references [52, 53]. Reference [52] is not entirely

unambiguous, but strongly suggests a minimum sample size of 10. Reference [53] corroborates

this with its characterization of the curve fitting, though it does not examine Anderson-Darling

specifically. Fortunately, one source [51] is unequivocal about its minimum size of 8.

40It applies to normal PDFs whose means (μ’s) are known.
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Annex D: Confidence bands in normal probability plots

Confidence bands are a useful visualizing method for conveying how much one can trust a Q-Q

plot. It can give an indication of whether greater effort is needed in checking normality. Confidence

bands are based on the Kolmogorov-Smirnov (KS) test of equality between two CDFs [54–56].

This chapter describes the intuition behind the statistics used, along with an ambiguity that was

encountered in how the quantile points are chosen. The ambiguity matters more for small sample

sizes. In order to improve the confidence with which this visualization can be used in the future,

the cause of the ambiguity is graphically explored. A simple graphical solution is derived from first

principles. Figure C.2 is duplicated here as Figure D.1 for ease of comparison.

D.1 Confidence bands from the Kolmogorov-Smirnov test

Often, the CDF for a data sample, CDFSample, is being tested against a hypothesized normal CDF,

CDFH0. That is, the data sample is deemed to be the result of sampling a random variable, and H0

is the hypothesis that CDFSample is the same as CDFH0. The empirical CDFSample is defined as one

might expect:

CDFSample(x) =
{

Portion of the data sample ≤ x
}

(D.1)

The KS statistic of similarity between the CDFSample and CDFH0 is simply the maximum difference

between the two CDFs over the value range of the random variable, which we will refer to as

|ΔCDF|max. For the case that H0 is true, repeated data samples lead to a distribution for |ΔCDF|max,

allowing thresholds to be defined for various levels of significance. These thresholds are tabulated;

for a given sample size, specifying a significance level automatically determines the maximum

possible difference between CDFH0 and CDFSample in order to avoid rejection of H0. Note that, at a

given confidence level, the thresholds for |ΔCDF|max were determined for the case that CDFH0 is

within distance |ΔCDF|max of CDFSample at all data points.

Imagine that we have looked up our required threshold value for |ΔCDF|max for a sample size of 16

and significance α = 5%. Let us refer to this threshold value as |ΔCDF|thr
max. In coming up with the

confidence bounds, the path of CDFSample is taken to be the reference curve, and

CDFSample ± |ΔCDF|thr
max

then defines upper and lower bounds on the value for CDFH0 in order to avoid rejection of H0.

Hence, these bounds must straddle the CDFH0 curve. To have these bounds show up on the Q-Q

plot, they are transformed back into the domain of the random variable (which is the domain of the

Q-Q plot) by applying the reverse transform CDF−1. In this domain, the bounds must still straddle

the hypothesized distribution because CDF(·) and CDF−1(·) are monotonic and hence preserve the

inequalities that define the bounds. However, the hypothesized distribution is just a straight line on

the Q-Q plot, so the bounds must straddle the straight line. Note that, even though the confidence

bands are offset from CDFSample by a constant |ΔCDF|thr
max, they do not track the Q-Q plot with
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Figure D.1: 95% confidence bands on Q-Q plot. The line of best fit is shown in black.

Figure D.2: Q-Q plot and 95% confidence bands, using Filliben’s estimates of U(0,1) order statistic

medians for the plotting positions. The line of best fit is shown in black.
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constant horizontal offset in Figure D.1 because the reverse transformation Φ−1 from the U(0, 1)

domain is nonlinear.

D.2 Lilliefors test when distribution parameters unknown

While the above describes how confidence bands are determined on a Q-Q plot, the original KS

test is restricted in its practical application because the thresholds are for the situation in which

the parameters of CDFH0 are known. If instead the parameters are estimated from the sample data,

then CDFSample is closer to CDFH0 and |ΔCDF|thr
max is lower. The KS thresholds can be significantly

misleading. Thresholds for the case in which the CDFH0 parameters are estimated from the sample

data have been determined through Monte Carlo analysis [57,58]. Note that the calculation of the test

statistic |ΔCDF|max does not change, but the thresholds for the different confidence levels do. The

use of the adjusted thresholds is referred to as the Lilliefors test, after its developer. It is the α = 5%

value of this adjusted threshold for |ΔCDF|thr
max that was used to determine the 95% confidence bands

in Figure D.1.

D.3 Asymmetry from classical quantile boundaries

In generating confidence bands, some anomalies were encountered with the above definition of

CDFSample. In Section C.1, for the Q-Q plot without confidence bands, the data points associate

the sorted sample data with the medians of the order statistics, but there are other options. The

exact locations chosen for evaluating CDFH0 are known as plotting positions. For the order statistic

medians in the U(0, 1) domain, the approximations presented in Section C.1 are known as Filliben’s
estimate [41]. These yield a symmetric set of quantiles both in the random variable and the U(0,1)

domain, which the CDF transforms the data into. In contrast, the quantiles for the empirical

CDFSample as defined in equation D.1 is quite asymmetric – the problem has similarities to the

asymmetric offset in quantile bins described in Section C.1. In the U(0, 1) domain, the first quantile

is 1/NPoints, well away from the bottom, while last (Nth
Points

) quantile is 1 i.e., at the top end. These

are the plotting positions used in the Q-Q plot with confidence bands in the Section C.1, and in

Figure D.1.

This asymmetry is systematic, and leads to systematic asymmetry in the normal distribution quantiles,

against which the data (the residuals) is plotted. Sampling noise notwithstanding, the residuals are

not expected to have such an asymmetry unless there is something seriously wrong with the analysis.

For comparison, Figure D.2 shows the resulting Q-Q plot using Filliben’s estimate for symmetric

plotting positions. Comparing Figures D.1 and D.2 reveals that the uppermost point cannot be plotted

using the asymmetric plotting positions of Figure D.1 because the N th
Points

quantile is 1, which the

inverse transform Φ−1(1) maps to ∞. Note also that the line of best fit does not pass through the

origin in Figure D.1, due at least in part to the lost data point. Finally, compared to Figure D.2, the

remaining data points are also shifted to the right because the quantiles are biased upward. It should

be clear this half-quantile shift has a more significant impact when the sample size is small.

Figures D.1 and D.2 illustrate the strong intuitive reason for using Filliben’s estimate for the U(0, 1)

quantiles, in contrast to the asymmetric quantiles that result from the above definition of CDFSample.

However, there is a strong theoretical premise for the latter. The important inequalities that lead to the
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straddling of the normal plot by the confidence bounds follow directly from the Kolmogorov-Smirnov

statistic, which is based on the empirical CDFSample as defined above. Thus it appears to be necessary

to have the upwardly biased quantiles, despite the un-intuitiveness of this.

For this study, both of the Q-Q plots are within the 95% confidence interval for nonrejection of

normality, so the difference seems immaterial. However, the ambiguity surrounding the plotting

position needs to be resolved for the proper use of confidence bands in the future. A perusal of

discussion on plotting positions in the literature did not offer a clear answer [59, 60]. The following

sections delve into the details of confidence bands from first principles to show that neither of the

confidence bands in Figures D.1 and D.2 are strictly correct for small sample sizes. In fact, the

inaccuracies of conventional confidence bands go beyond simply choosing plotting positions. We

found that, rather than linearly interpolating between discrete quantile values, the quantiles have to

be determined from the continuous CDFs.

D.4 Confidence bands from a dense sample CDF

To get some insight into the nature of the ambiguity, Figure D.3 shows the "dense" CDFs CDFH0

and CDFSample, i.e., evaluated not just at the data sample values. While the empirical CDFSample

is typically defined as in equation D.1, this section empirically explores how ΔCDF behaves in

between the data points. CDFSample has a staircase shape because at every x location where there

is a data point, CDFSample increments by 1/NPoints. In contrast to the aforementioned practice of

taking CDFSample ± |ΔCDF|thr
max as the bounds on CDFH0, we initially take CDFH0 ± |ΔCDF|thr

max as

the bounds on CDFSample because the bounds are less noisy and easier to follow. All four curves in

Figure D.3 are plotted against CDFH0 in Figure D.4. This is a parametric plot with x (the domain

of the random variables) as the free parameter. The μ is zero because it is simply the mean of the

residuals, while σ is the residuals’ sample standard deviation.

An important feature in Figures D.3 and D.4 that is missing from the previous Q-Q plots with

confidence bands are the black bars in the middle, which are just marginally inside the bounds – this

lack of a "safety margin" is visible only if the entire CDFSample is considered rather than just the

point values in the data sample. In fact, it should be clear that CDFSample could breach the confidence

bands even if all the data samples reside inside the confidence bands, and that a plot of the dense

CDFSample is needed to see this. For small sample sizes, therefore, it is important to check all the

corner points of the "staircase" CDF, including the open and closed ends of each piecewise uniform

interval. In effect, the plot involves 2NPoints
41.

We eventually want to depict boundaries that are constant offsets from CDFSample, entirely containing

CDFH0 (or not, as the case may be). Therefore, we next take CDFSample as the reference and

CDFSample ± |ΔCDF|thr
max as the upper and lower bounds for CDFH0. Figure D.5 is a modification

of Figure D.4 to show this. The points of marginal containment are the same as in Figure D.4 (0.6

and 0.7 along horizontal axis) except that the CDFSample-based boundaries descend to meet CDFH0

rather than the CDFSample descending to meet the CDFH0-based boundaries.

41 There are doubtlessly many ways to prepare the data for this, but the simplest is to scan CDFSample(x) from left to

right, allocating a data point the beginning and ending of each line segment. There will be 2 data points with the same

x-value and 2 data points with the same y-value. For each of CDFSample and CDFSample ± |ΔCDF|thr
max, there will be twice as
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Figure D.3: CDFs for H0 (CDFH0, solid red) and the data sample (CDFSample, black). The variable

x is the domain of the random variables. The dashed lines are the 95% confidence bounds at

CDFH0 ± |ΔCDF|thr
max.

Note that the confidence bands in Figure D.5 are drawn continuously rather than as vertically

displaced copies of CDFSample. This is for ease of interpretation. Strictly speaking, the upper and

lower bounds are exact copies of CDFSample, vertically displaced by ±|ΔCDF|thr
max. However, that

was found to be visually messy and the points at which there is a lack of margin between the bounds

and CDFH0 was not immediately clear. Keeping in mind that only the upper-left corners of the steps

in the staircase plot of CDFSample ± |ΔCDF|thr
max correspond to data samples, it should again be clear

from Figure D.5 that, as in Figure D.4, the upper and lower bounds may appear to be far away from

CDFH0 if the comparison is only made at the locations of the data points. For small sample sizes,

however, this is not necessarily an adequate test of being within the confidence band. Again, all the

corner points of the steps in the staircase need to be tested.

D.5 Reverse transformation into domain of random variables

A final modification is required for confidence bands on Q-Q plots. Figures D.4 and D.5 plot CDFs

against CDFs, i.e., in the U(0, 1) domain. These probability plots are a variation of Q-Q plots known

as P-P plots. Each type of probability plot has its advantages. The advantages of Q-Q plots are briefly

described in Section C.1, and these features allow a data set to be compared to an entire family of

many points as there are residuals. It may be helpful to keep track of whether each line ending is an open or closed end.
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Figure D.4: CDFSample and CDFH0 versus the latter, with 95% confidence bands CDFH0 ±
|ΔCDF|thr

max flanking the latter (dashed lines).

distributions. Generating Q-Q plottable data requires transforming the plots from U(0, 1) domain to

x, the domain of the random variables. First, write out the boundary relationship explicitly [55]:

CDFSample(x) − |ΔCDF|thr
max ≤ CDFH0(x) ≤ CDFSample(x) + |ΔCDF|thr

max

Keeping in mind that the results apply to general shaped CDFH0
42, let us specifically consider the

normal CDFH0(x) = Φ
( x − μ
σ

)
. Then:

μ + σ Φ−1
[
CDFSample(x) − |ΔCDF|thr

max

]
≤ x ≤ μ + σ Φ−1

[
CDFSample(x) + |ΔCDF|thr

max

]
The resulting confidence bands are shown in Figure D.6, along with the Q-Q plot using the dense

CDFSample. This may seem unintuitive at first, so it is worthwhile going over exactly why the plot

takes the form that it does. First, let us examine the Q-Q plot itself, followed by the confidence

bands.

42Probability distributions are compared for more purposes than just checking normality.
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Figure D.5: CDFSample and CDFH0 versus the latter, with 95% confidence bands CDFSample ±
|ΔCDF|thr

max flanking the former (thin black boundaries).

D.6 Making sense of the Q-Q plot

The points in Figure D.6 corresponding to the data sample values are in the same positions as those

in Figure D.1, as one would expect. Since Figure D.6 doesn’t just evaluate the Q-Q plot at the

data sample values, however, there are stems emerging upward from each data point. To see why

this makes sense, it necessary to view the Q-Q plot not just as scatter plot of Npoints-quantiles for 2

distributions being compared. Instead, a "quantile" is often interpreted more liberally as an inverse

CDF – that is, the pth quantile of a distribution (p ∈ [0, 1]) is that value of a random variable X for

which P(x ≤ X) = p. Applying this to Figure D.3, a Q-Q plot is generated by a parametric variable p
scanning the range y : 0 → 1. At each value of p, this generates a matching pair of x values from

CDFH0(x) = p and CDFSample(x) = p, to be used as coordinates in the Q-Q plot. Recall that the

horizontal and vertical axes of the Q-Q plot are the quantiles of CDFH0 and CDFSample, respectively.

For a given value of p, let’s refer to the matching pair of x values as xH0 and xSample, respectively.

From Figure D.3, let us examine what is generated by CDFH0(xH0) = p = CDFSample(xSample) as

p : 0→ 1 and how this is reflected in the Q-Q plot of Figure D.6.
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Figure D.6: The dense Q-Q plot with continuous quantile and 95% confidence bands.

1. For p : 0 → (1/NPoints)
−, xH0 : −∞ → −2.4, but xSample exists only for p = 0 (where xH0 is

−∞). Hence, nothing can be plotted on the Q-Q plot for p : 0→ (1/NPoints)
−.

2. At p = (1/NPoints), xH0 takes on a single value ∼ −0.215 and xSample takes on a range of values

[−0.240,−0.210). This is exactly what shows up on the Q-Q plot.

3. For p : (1/NPoints)
+ → (2/NPoints)

−, xH0 takes on continuous finite values, but xSample does not

exist. Nothing can be plotted on the Q-Q plot.

4. At p = (2/NPoints), xH0 takes on a single value ∼ −0.155 and xSample takes on a range of values

[−0.210,−0.170). This is exactly what shows up on the Q-Q plot.

This is repeated until p = NPoints/NPoints = 1. However, the pattern that emerges in the above

walk-through is clear – an alternation between nothing and vertical line segments with open tops and

closed bottoms. This shows the following rules in the Q-Q plot of Figure D.6, which will be used to

draw the confidence bands.

1. The line spectrum taken on by xH0 follows directly from discrete nature of CDFSample, even

though CDFH0 is continuous. More specifically, it is the values of p at which the CDFSample

lines exist that determine the values of xH0 where lines exist in the Q-Q plot, i.e., the discrete

values for p = CDFSample pick out the values at which to evaluate xH0 = CDF−1
H0(p).
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2. The closed end of each line segment is at the lower end, as expected.

3. The xSample value ranges (vertical axis) of the line segments mirror their value ranges in the

CDF plot of Figure D.3.

D.7 Making sense of the confidence bands

With the above understanding of how CDFSample influences the Q-Q plot, the explanation of the

upper and lower confidence bands becomes straightforward. The upper band is simply an upward

shift of CDFSample in Figure D.3. From rule #1 above, this increases the xH0 of the corresponding

vertical line segment in Figure D.6, i.e., shifts it right. However, from rule #3, it does not change the

xSample value range that it spans, i.e., it does not move up or down in Figure D.6. Similarly, the lower

bound is a left-shifted version of the Q-Q plot. This is exactly what is shown in Figure D.6.

This more detailed manner of arriving at confidence bands is premised on the strict definitions of

CDFSample(x) (equation D.1) and the test statistic maxx
∣∣∣CDFH0(x) − CDFSample(x)

∣∣∣. It is a more

pessimistic approach than the use of ad-hoc quantiles and the linear interpolation of confidence

bands between the data points in Figures D.1 and D.2; as described, the staircase bands have corners

that can cause a breach of the straight line of ideal fit when the linearly interpolated bands do not.

This conservatism is suitable if an analyst wants to present a cautious (i.e., rigorous) view of the

confidence bands for small sample sizes.

The reader may have noticed that in order for the more detailed confidence bands to be valid,

the tables of |ΔCDF|thr
max being consulted must have been generated in accordance with the strict

definitions above, including all the corners of the staircases. The treatment in publications on

empirical CDF testing can be quite terse [51, 61, 62], and it can be unclear whether the formulas

for the test statistics account for the staircase corners of the CDFs43. Reference [63] provides

a concise and lucid treatment that makes it clear that the corners are being accounted for. The

explanation can be related to Figure D.3 as follows. Each sample data point xi (i = 1, 2, ..., n)

corresponds to a vertical step in the staircase where |ΔCDF| is evaluated both at the bottom and

top of the step as
∣∣∣CDFH0(x−i ) − CDFSample(x−i )

∣∣∣ and
∣∣∣CDFH0(xi) − CDFSample(xi)

∣∣∣. This simplifies

to
∣∣∣CDFH0(xi) − (i − 1)/n

∣∣∣ and
∣∣∣CDFH0(xi) − i/n

∣∣∣.
To recognize this in the literature, note that the maximization of the above is often presented as

D = max(D+,D−), where

D+ =max
i

∣∣∣i/n − z(i)
∣∣∣ ,

D− =max
i

∣∣∣z(i) − (i − 1)/n
∣∣∣ ,

z(i) corresponds to CDFH0[x(i)], where x(i) is the ith order statistic. Our notation simply uses xi

because we start by referring to Figure D.3, where the samples are already sorted.

43 Examples and illustrations such as Chapter 4 of [62] and Chapters 5-6 of [51] suggest that the corners are accounted

for, but this is far from an explicit statement of the important fact.
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Annex E: Increasing real cost of new FFG-7 with time

Figure E.1: Log transformed cost of a new FFG-7 in 2012 USD as a function of its date of initial

service. In this small sample of closely spaced data in time, it was not possible to detect a published

growth trend in the real cost of platforms [38]. Nor was there evidence against such a growth trend.

Table E.1: Projected cost of "modern" FFG-7 built in 1992 [2012 USD], taken as the mean between

air defence and ASW vessel classes. The "specific" cost [2006 British pounds (GBP) per ton] of

building in 2006 and 2% real cost growth are first taken from [38]. The specific cost is converted

to 2006 USD using the 2006 average of 0.5436 USD/GBP [64]. The 2% real cost growth is then

applied as a deflation to get the specific cost of building in 1992 (denomination still in 2006 USD).

U.S. inflation is then applied to get the 2012 USD specific cost of building in 1992. This is multiplied

by the FFG-7 full-load displacement to get the 1992 cost per FFG-7 in 2012 USD.
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List of abbreviations/acronyms/initialisms/symbols

ASW antisubmarine warfare

BLS (U.S.) Bureau of Labor Statistics

CDF cumulative distribution function

CDI Chief of Defence Intelligence

CAF Canadian Armed Forces

CORA Centre for Operational Research and Analysis

CPI Consumer Price Index

DF degrees of freedom

DHH Directorate of History and Heritage

DMGOR Directorate Materiel Group Operational Research

DMPP Director Materiel Policy and Procedures

DND Department of National Defence

DRDC Defence Research and Development Canada

DRENET Defence Research Establishment Network

DSCA Defense Security Cooperation Agency

FOC full operational capability

GBP Great Britain pound

KS Kolmogorov-Smirnov

Lasso least absolute shrinkage and selection operator

MSE mean of squared errors

NAVSEA Naval Sea Systems Command

NVR Naval Vessel Register

O&M operations and maintenance

OSINT open source intelligence

PDF probability density function

PPI Producer Price Index

RV random variable

SCN Shipbuilding and Conversion, Navy (budgetary category)

SE standard error (of estimated MSE)

URL Uniform Resource Locator

USD U.S. dollars

BY budget year

DRDC CORA TM 2013–227 63



This page intentionally left blank.



DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – CORA
Dept. of National Defence, MGen G. R. Pearkes Bldg.,
101 Colonel By Drive, Ottawa ON K1A 0K2, Canada

2a. SECURITY CLASSIFICATION (Overall
security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)

Sale price as a component of life cycle costing for second hand platforms : Depreciation
modelling in the context of the FFG-7 frigate

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Ma, F.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

December 2013

6a. NO. OF PAGES (Total
containing information.
Include Annexes,
Appendices, etc.)

20

6b. NO. OF REFS (Total
cited in document.)

64

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –
include address.)

Defence R&D Canada – CORA
Dept. of National Defence, MGen G. R. Pearkes Bldg., 101 Colonel By Drive, Ottawa
ON K1A 0K2, Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under
which the document was written. Please specify whether
project or grant.)

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The official
document number by which the document is identified by the
originating activity. This number must be unique to this
document.)

DRDC CORA TM 2013–227

10b. OTHER DOCUMENT NO(s). (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)
( X ) Unlimited distribution
( ) Defence departments and defence contractors; further distribution only as approved
( ) Defence departments and Canadian defence contractors; further distribution only as approved
( ) Government departments and agencies; further distribution only as approved
( ) Defence departments; further distribution only as approved
( ) Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

81



13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It is
not necessary to include here abstracts in both official languages unless the text is bilingual.)

In Q3 of 2012, as a subtask within a Director Materiel Policy and Procedures Major Equipment Pro-
curement Study (New versus Used), Directorate Materiel Group Operational Research (DMGOR)
planned a study into the life cycle costing of second hand platforms (vehicles, ships, aircraft). As
an initial input into that study, DMGOR undertook the estimation of the depreciation of two classes
of frigates, the U.S. FFG-7 and the Dutch Kortenaer, from second hand sales prices. That work is
reported here. A database of both frigate classes was developed from open source, but new and
used price data were readily available only for the FFG-7s. Depreciation fit an exponential decay
model, with an average loss of 8.4%/year and a 68% (±1 sigma) confidence interval of [5.9%,
11.1%]/year. One variable, vessel age, explained up to 56% of the second used sale price data.
The data was not sufficient to extract the portion of depreciation due to aging design/technology
rather than physical aging of the platform, but neither did it contradict published cost growth trend
of 2%/year for buying new vessels of this type.

Because of the projected growth in real cost for new defence platforms, a thorough analysis
of procurement options is becoming increasingly important, including the life cycle costing of
buying used. This is an essential part of comparing with buying new that ideally includes platform
suitability, proficiency, and timeliness of full operational capability. Existing cost models within
DMGOR can potentially be developed for buying used. Exploration of this approach entails
examination of disruptive effects due to change of ownership, the availability of data, the effect
of aging design/technology on the estimation of depreciation, and the effect of value enhancing
accessories such as sensor/weapons systems, accompanying aircraft, and support services.
Methods developed for analyzing second hand purchases can potentially be adapted for other
major platforms, including other maritime vessels, vehicles, and aircraft. They can also help
situate the price range for selling assets, if the Canadian Armed Forces choose to consider this.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Anderson-Darling
categorical variables
confidence bands
cost
depreciation
Doornik-Hansen
FFG-7
frigate
Kolmogorov-Smirnov
Kortenaer
lasso
life cycle cost
linear regression
multiple regression
normal probability plot
normality
Q-Q plot
quantile-quantile plot
regularization
used
warship

DRDC CORA TM 2013–227





DRDC  CORA

www.drdc-rddc.gc.ca


