

Architectural upport for obotics
Software rototyping and esting

D. J. Mackay G. S. Broten S. Monckton
DRDC Suffield

Defence R&D Canada – Suffield
Technical Memorandum

DRDC Suffield TM 2010-271

December

Principal Author

D. J. Mackay

Approved by

D. M. Hanna
Head/AISS

Approved for release by

R. Clewley
Head/Document Review Panel

c© Her Majesty the Queen in Right of Canada as represented by the Minister of National
Defence, 2010

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la
Défense nationale, 2010

Abstract

The development of robotics software is difficult. The sheer size and complexity of these
software systems, the interaction of robots with their environment including the potential
need for real-time operation, and the lack of accepted standards all contribute to this situ-
ation. Due to the diverse nature of robot systems, contributions from multiple researchers
with disparate fields of expertise are required and that in itself further complicates software
development.

At Defence R&D Canada Suffield, we have developed domain-specific middleware ased
upon the Miro framework, that uses the ACE/TAO implementation of CORBA. This
middleware provides infrastructure services enabling seamless communication between
software components. Using this framework enables researchers to focus their attention at a
level of abstraction close to the problem domain, for the most part ignoring the underlying
details that enable a system to work.

Over the past six years, researchers in Autonomous Intelligent Systems Section have
deve oped numerous software components f or an heterogeneous set of robotic platforms. A
key conclusion arising f rom this endeavour was the recognition that components and
middleware, although crucial enablers, do not of themselves f ully address the difficulties
associated with software reuse. Software reuse can only be realized if both the component
interfaces and the underlying data structures are stable. And, although software reuse
simplifies the process of adapting existing software to other robotic platforms, it doesn’t
obviate the need for tools and techniques that assist in prototyping and debugging. Our
middleware provides for prototyping and debugging by allowing a system to seamlessly
switch between real world data, logged data and data provided by a simulation environment.
This paper describes our implementation, provides examples that illustrate its usage, and
discusses the benefits accrued.

Résumé

DRDC Suffield TM 2010-271 i

ii DRDC Suffield TM 2010-271

Executive summary

Architectural upport for obotics: oftware rototyping and
esting

D. J. Mackay, G. S. Broten, S. Monckton; DRDC Suffield TM 2010-271; Defence R&D
Canada – Suffield; December 2010.

Background: The development of robotics software is difficult. The sheer size and
complexity of these software systems, the interaction of robots with their environment
including the potential need f or real-time operation, and the lack of accepted standards all
contribute to this situation. The diverse nature of robot systems necessitates contributions
from multiple researchers with disparate fields of expertise and that in itself f urther
complicates software development.

Over the past six years, researchers have developed numerous software
components for robotic platforms. In the parlance of Domain Engineering, a couple of
enduring business themes were identified over the course of this work: first, the need for
infrastructure services enabling communication and second, the
need for a seamless integration into a simulation environment for
prototyping and debugging. This paper describes the component-based software architecture
that has evolved and elucidates the benefits arising from its use.

Results: To address the need for infrastructure services, a component-based framework
based upon the Miro framework, using the ACE/TAO implementation of CORBA was
developed. Adoption of this communications middleware allows development under the
component paradigm to proceed close to the abstractions of the problem domain. The
developer need only be concerned with content of intermodule communication and not
the underlying mechanisms provided that allow this communication to take place. With
the addition of an interface to Gazebo, DRDC’s middleware allows components to
seamlessly switch between real world data, logged data, and data provided by the
simulation environ

Significance: The adoption of middleware to encapsulate the enduring business themes
identified during the development of DRDC’s Architecture for Autonomy has resulted in
systems that are arguably easier to prototype, debug, and maintain than would otherwise
have been possible.

DRDC Suffield TM 2010-271 iii

Sommaire

Architectural upport for obotics: oftware rototyping and
esting

D. J. Mackay, G. S. Broten, S. Monckton ; DRDC Suffield TM 2010-271 ; R & D pour la
défense Canada – Suffield ; décembre 2010.

iv DRDC Suffield TM 2010-271

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Table of contents . v

List of figures . vii

1 Introduction . 1

2 Background . 3

3 Implementation . 4

3.1 Software ramework . 4

3.2 Modelserver . 4

3.3 DRDC Components and table nterfaces 7

3.3.1 Range nterface . 7

3.3.2 Pose nterface . 8

3.3.3 Map nterface . 8

3.3.4 Arc Vote nterface . 8

3.3.5 Vehicle ommand nterface . 9

3.4 Performance vs. e-usability . 9

3.5 Inherent upport for esting and ebugging 9

3.5.1 Specific ange xample 10

3.5.2 Transitioning to the eal orld 11

4 Debugging using ogged ata . 12

4.1 Logging . 12

4.2 Data layback . 13

DRDC Suffield TM 2010-271 v

5 Prototyping with imulations . 14

5.1 Simulation ackages . 14

5.2 Using Gazebo at DRDC . 14

5.2.1 Gazebo Miro nterface . 15

5.2.2 Gazebo Modelserver compatibility 15

5.2.3 Benefits of imulation . 16

5.3 Example: Navigating a imulated orld 19

6 Summary and onclusions . 21

References . 22

vi DRDC Suffield TM 2010-271

List of figures

Figure 1: DRDC obot latforms . 3

Figure 2: Miro erived omponents . 4

5Figure 3: Current omponents, with ata tructures and nformation lows . . .

Figure 4: The symbolic relationship between bodies B1 and B2, their frames, Fj ,

and a constraint, C12. 6

Figure 5: A summarized view of the The Platform CORBA Object 7

Figure 6: Seamless ransitions between odes . 10

Figure 7: Mode ransitions for ange ata . 11

Figure 8: Hybrid mplementation . 11

Figure 9: Logging ata using LogNofity . 13

Figure 10: The Miro LogPlayer . 13

Figure 11: Gazebo XML World File . 17

Figure 12: The GazeboService ubstituted for the Raptor and ensor omponents 18

Figure 13: The Simulated Raptor Vehicle . 19

Figure 14: Comparison of a errain aps derived from eal orld ata and
Gazebo Simulation . 20

DRDC Suffield TM 2010-271 vii

This page intentionally left blank.

viii DRDC Suffield TM 2010-271

1 Introduction

The development of robotics software is difficult. Numerous factors contribute to this
situation. The sheer size and complexity of these software systems makes their design and
implementation difficult. The interaction of robots with their environment and the potential
need for real-time operation also complicates robotics software development. The situation is
further exacerbated by a lack of accepted standards. Due to the diverse nature of robot
systems, contributions from multiple researchers with disparate fields of expertise are
required and that in itself further complicates software development. Domain Engineering
(DE), with its focus on creating reusable software, offers an engineering approach to deal
with these issues [1, 2]. Using stability analysis, the enduring business themes (EBT),
corresponding to the change invariant aspects of the environment in which the software will
operate, can be identified [3, 4]. This approach, when applied to robotic systems, allows for
the reuse and adaptation of specialized knowledge in the areas of architectures and software
components [5]. Thus, DE promises an evolution in software production from a one-off
craftsman approach to a mass-production approach based upon prebuilt standard parts and
assemblies [6].

Defence R&D Canada’s mandate covers both research and development thus
interests that span the gamut from basic research in robotics to the deployment of
operational systems. This broad view is a key factor driving our exploration of DE as a means
to develop reusable software components. Before commencing the development of robotic
capabilities, DRDC undertook an investigation that identified a number of aspects of robotic
systems (or EBTs in the parlance of DE) that were deemed crucial to a successful program
[7]. These aspects of robotics are invariant to systems changes, such as the targeted platform,
environment, or application. The first EBT addressed was the requirement for infrastructure
services that allow components to seamlessly exchange information via com-munications
middleware. The approach taken to address this requirement is described in [8] and is based
upon the Miro framework [9], using the ACE/TAO [10] implementation of CORBA [11].
Adoption of this communications middleware allows development under the component
paradigm to proceed close to the abstractions of the problem domain. The developer need
only be concerned with content of inter-module communication and not the underlying
mechanisms that allow the communication to occur.

Over the past six years, researchers in AISS have developed numerous software components
for a heterogeneous set of robotic platforms. This extensive usage has given us an in-depth
appreciation of the strengths and weaknesses associated with the component paradigm. A
key conclusion arising from this endeavour was the recognition that components and
middleware, although crucial enablers, aren’t a panacea for the difficulties inherent in
software reuse [12]. Using components and middleware provides an easy to use and robust
mecha-nism for intermodule data exchange, however software reuse in general is not possible
unless both the component interfaces and the underlying data structures are stable.

The second EBT DRDC identified relates to debugging and simulation services. Although
software reuse simplifies the process of adapting existing software to other robotic

DRDC Suffield TM 2010-271 1

orms, it does obviate the need for tools and techniques that assist in prototyping and
debugging. Given the complexity associated with robotics software, a seamless integration
into a simulation environment is essential. Using DE terminology, Brugali [13]
identify these issues as: “the need of abstract models to cope with hardware and software
heterogeneity” and “the need of development techniques to enable a seamless transition from
prototype testing and debugging to real system implementation and exploitation”. DRDC
has developed an approach that allows the robotics software to seamlessly switch between
real world data, logged data and data provided by a simulation environment. This paper
describes our implementation, provides examples that illustrate its usage, and discusses the
benefits accrued. Section 2 provides some background for our heterogeneous fleet of robotic
platforms. Section 3 details the implementation and highlights the importance of stable
interfaces and data structures. The crucial role that data logging plays in debugging is
discussed in Section 4. Section 5 examines the importance of simulation in testing of
prototype software capabilities. Finally, a summation is presented in Section 6.

2 DRDC Suffield TM 2010-271

(a) Raptor UGV (b) Pioneer 3 (c) STRV

DRDC Robot latforms

2 Background

Over the past 25 years DRDC has developed numerous robotic vehicles, including
teleoperated and autonomous versions. Descendants of these early implementations are
currently in service and development is still occurring. Unfortunately these legacy systems,
effectively being one-offs, were not designed with software reuse in mind; they have little
capability to systematically log data, and don’t integrate with any type of simulator. Given
their implementation, it would be difficult to incorporate any of these features and thus it is
unlikely they will ever be supported.

With the resurgence of an autonomy program in AISS, the issues mentioned above were
recognized as major impediments to an evolutionary development, testing, and deployment
of autonomous robots. Software reuse was recognized as an issue facing all developers of
robotics software. DRDC researchers believed that a framework that encouraged component
development, built upon capable middleware supporting network transparency and
distributed computing, could provide a means of address most of these issues. This approach
would lead to flexible, extensible, scalable, and portable software with well defined interfaces

would naturally support logging and could easily interface with robotics simulators.

After reviewing possible options [14], the open source Miro framework [15], built upon
ACE/TAO middleware and tailored for robotic implementations, was selected as a robotics
framework. umerous robotic capabilities have been developed under
framework, targeting a variety of platforms. Figure 1 illustrates the heterogeneous nature of
DRDC’s current fleet of robotic platforms including the Raptor Unmanned Ground Vehicle
(UGV), an indoor Pioneer 3-AT, and the Shape Shifting Tracked Vehicle (STRV).

DRDC Suffield TM 2010-271 3

3 Implementation
3.1 Software ramework

The Miro framework, building upon CORBA capabilities, allows communication under
either a publish/subscribe or a query/response paradigm. The Naming Service facilitates
data exchanges by providing phone directory-like functionality.

NAMING SERVICE

COMPONENT A

Register

Publish Event

Reply

COMPONENT B

Resolve

Consume Event

Poll

Event Channel

Miro erived omponents

Components created under the Miro framework inherit these capabilities, as shown in
Figure 2. All DRDC components register their interfaces with the Naming Service, thus
en-abling query/response data exchanges. Additionally, each component resolves the
event channel reference and registers/resolves names. With the exception of a few
graphical in-terfaces, all DRDC components rely exclusively on the publish/subscribe
paradigm via an event channel.

3.2 Modelserver

To support this software framework, DRDC developed a geometry database server,
Modelserver, to provide device positions in vehicle coordinates. Modelserver derives these
positions from Body and Assembly XML files that describe component bodies and binding
constraints, respectively. Every device is hand measured for significant frames (e.g., for a
camera: mounting points and image planes) in a local device coordinate system and stored in
a Body XML file. With all vehicles and sensor devices surveyed in this manner, new
assemblies can be quickly created or modified within a single, relatively simple Assembly
XML file. Further, any changes to a single sensor geometry are automatically propagated
through all assemblies.

Modelserver converts these XML files into three data types:

◦ a body, B,
◦ a body frame, F, and
◦ a constraint, C,

4 DRDC Suffield TM 2010-271

LASER

Range3dSensor
�→Range3dSeqEventIDL

STEREO

Range3dSensor
�→Range3dSeqEventIDL

INS

Pose
�→PoseTransformIDL

TERRAIN MAP

Map
�→MapSeqEventIDL

MODEL SERVER

Pose
⇀↽PoseTransformIDL

TRAVERSE MAP

Map
�→MapSeqEventIDL

GLOBAL MAP

PlanMap
⇀↽PlanMapIDL

TELE-OPERATION

ArcVote
�→ArcVoteIDL

HAZARD DETECTION

ArcVote
�→ArcVoteIDL

OBSTACLE AVOID

ArcVote
�→ArcVoteIDL

PATH PLANNING

ArcVote
�→ArcVoteIDL

WAYPOINT FOLLOWING

ArcVote
�→ArcVoteIDL

ARC ARBITER

Raptor
�→SetVelocityIDL

VEHICLE

Motion
⇀↽VelocityIDL

Current omponents, with ata tructures and nformation lows

accessible through a body list, LB = [Bi | i = 1 ..m], a constraint list, LC = [Ci | i = 1 .. q],
and a directed graph model, M. The relationship between these types appears in Figure 4.
A body consists of a tuple containing a unique string name identifier, sb, and a list of body
frames, LF = [Fj | j = 1 .. n], e.g., the ith body is Bi = 〈sb,LF ,i〉. “Raptor” 1 or “Flea” 2

are example body strings.

A body frame consists of a tuple containing a unique string identifier, sf , a homoge-
neous transform from the origin of the ith body to the j th frame, iAj , and pointers
to the parent body, Bi, and a constraint, C. The j th frame of ith body is Bi : Fj =〈
sf ,Bi, C, iAj

〉
. A significant frame on the Raptor body is the FrontBumperCenter (or

Raptor:FrontBumperCenter) and on the Flea body, ImagePlane (or Flea:ImagePlane).

Constraints bind distinct body:frame pairs through a simple time invariant homogeneous
transform, T k. A constraint consists of a tuple containing a unique string identifier, sc, point-
ers to the body frames, Ffrom and Fto, joined by the constraint, and the homogeneous trans-
form encapsulating the constraint. The constraint captures the direction of its transforma-
tion through the pointers to the from and to bodyframes, Ffrom and Fto, respectively. The
kth constraint is Ck = 〈sc,Ffrom,Fto, T k〉 : Ffrom �= Fto. Binding Raptor:TopCenterRail

to Flea:BottomCenter would thus represent a mounting constraint of the Flea Body to the
Raptor.

1. The Raptor is an ATV from Koyker Manufacturing Company modified by DRDC for autonomous
operation.

2. The FleaTM is an IEEE-1394 FireWire camera from Point Grey Research.

DRDC Suffield TM 2010-271 5

B1 B2

B1:F3

B1:F2

B1:F1

B2 :F3

B2 :F2

B2 :F1

C12

The symbolic relationship between bodies B1 and B2, their frames, Fj , and a
constraint, C12.

The model M, consisting of LB constrained by LC , resembles a cyclic directed graph of
Bi : Fj vertices with iAj and T k transformation connectors. The following simple rules
govern the construction of M:

1. There must be m ≥ 2 bodies. Clearly, the minimum assembly is composed of two
bodies.

2. A body must have n ≥ 1 bodyframes.

3. ∀Ck ∈ LC , Ffrom and Fto must exist. Constraints can exist only between real body
frames.

4. ∀Bi : Fj , if Fj is constrained, only one constraint may exist. In this prototype, a
bodyframe cannot be constrained to more than one other bodyframe.

Modelserver is designed to provide geometry services to client processes. In general, con-
sumers of geometry need to know the location of one frame with respect to another. In
Modelserver’s terms, the server must provide the pose for a frame of interest (FOI) in the
coordinates of some frame of reference (FOR).

The server performs a simple depth-first search, recursively constructing a transformation
between FoR and FoI vertices. Starting at the BFoR : FFoR vertex, the search compares
Bi : Fj in LF ,i against the BFoI : FFoI. Finding no match, the search will examine the next
frame unless the frame is constrained. In this case, it pushes Bi : Fj onto a path stack,
“crosses” the constraint, and examines the attached frame. If a Bi : Fj matches any in
path, a cycle exists and the search examines the next branch, popping path as necessary.
The search continues recursively until BFoI : FFoI is found. The search then unwinds the
recursion, building the transform product, FFoRTFFoI

, according to the directed graph.

The CORBA poll interface to Modelserver in Figure 5 allows clients to interrogate the
model for all available bodies through getBodyList(); framelists for any body through

getBodyFrameList(); transformations between any two body/bodyframe nodes

throughgetTransformation(). For example, the transform between the Raptor FrontBumperCenter
and the Fleas ImagePlane becomes a simple call:

6 DRDC Suffield TM 2010-271

typedef sequence<s t r i n g> StringSequenceIDL ;
i n t e r f a c e ModelServer
{

PoseTransformIDL getTransformat ion (i n s t r i n g FOI , i n s t r i n g FOR) ;
StringSequenceIDL getBodyL is t () ;
StringSequenceIDL getBodyFrameList (i n s t r i n g BodyName) ;

} ;

A summarized view of the The Platform CORBA

Object PoseTransformIDL T =

theModel−>getTransformat ion (” Flea : ImagePlane ” , ” Raptor : FrontBumperCenter ”) ;

By using relatively simple XML files for individual bodies and a single constraint assembly
file, Modelserver encapsulates the complexity of geometric model generation, maintenance,
search, and transform algebra. In so doing, the server encourages symbolic frames and, in
turn, platform agnostic algorithms that can be safely applied to a variety of vehicles with
little difficulty.

3.3 DRDC omponents and table nterfaces

Under Miro, DRDC researchers created a set of components that collaboratively imple-ment
autonomous capabilities. Figure 3 illustrates the current component configuration: the
interfaces, their data structures and information flows that have evolved from DRDC’s
experiences [12]. As can be seen, only a small number of interfaces are defined and required.
Table 1 lists the most used and stable interfaces, each of which are described in the sections
that follow.

Representation Data Storage Payload

Range3dSeqIDL Sequence 4-tuple: (X,Y, Z,R)

PoseTransformIDL Array Homogeneous transformation and covariance matrix

MapSeqEventIDL Sequence A 2D grid with a variable number of data planes

VoteIDL Array 5-tuple: veto, curvature, max. speed, vote, and confidence for each arc

VelocityIDL Array Desired steering angle and speed

Stable ata epresentations

3.3.1 Range nterface

Ranging devices are heterogeneous in nature, relying on a variety of sensing modalities.
These include laser ranging, laser triangulation, stereo vision, sonar and radar. Even within
a given class, such as laser rangefinders, data densities and formats vary significantly. DRDC
has defined a single format that is applicable to all such ranging devices. All range data is
encoded within a variable length container, a CORBA sequence, as a 4-tuple representing
the position, (X,Y, Z), and the range. Each device’s driver converts its raw sensor data to

DRDC Suffield TM 2010-271 7

this format before publishing the data as an event. In this manner, all range consumers are
able to receive and process range data arising from any ranging device and a stable interface
is maintained. The following ranging devices support this interface:

◦ SICK LMS200 laser rangefinder,
◦ Velodyne HD laser rangefinder,
◦ Hokuyo URG laser rangefinder,
◦ Point Grey Digiclops trinocular stereo vision,
◦ Point Grey BumbleBee 2 stereo vision,
◦ Point Grey BumbleBee XB3 stereo vision, and,
◦ Simulated laser rangefinder under Gazebo.

3.3.2 Pose nterface

The pose is represented as a [4 × 4] homogeneous transform and its corresponding [3 × 3]
attitude covariance matrix. This data representation, though perhaps not a standard, is
based upon data that is available from all GPS/INS devices. Numerous GPS/INS and IMU
devices support the pose interface:

◦ Consumer Garmin GPS,
◦ Novatel Sokkia GPS,
◦ Novatel GNSS/INS SPAN 3 with an integrated Honeywell IMU,
◦ Microstrain 3DMG IMU,
◦ Crossbow RGA300 IMU, and,
◦ Simulated pose under Gazebo.

3.3.3 Map nterface

Maps are a means of representing the world in a format that is amenable to robot systems.
The MapSeqEventIDL, based upon a CORBA sequence, allows for grid based representation
of dimensions, (j, k), with i separate planes of data. This flexible interface can encode a
majority of DRDC defined maps including 21/2D terrain maps, 21/2D inferred geometry
maps and occupancy grid-like traversability maps.

3.3.4 Arc ote nterface

All modules that contribute to driving the vehicle, including

◦ Tele-operation,
◦ Hazard Detection,
◦ Obstacle Avoidance,
◦ Path Planning, and
◦ Waypoint Following,

emit Vote events. These events consist of an array of candidate arcs for the vehicle to follow;
each arc contains its curvature, a maximum forward speed, a vote, a confidence in that vote,
and a oolean veto. The ArcArbiter subscribes to all Vote events and combines them to
produce a commanded steering angle and desired speed.

3. Synchronous Position, Attitude, and Navigation

8 DRDC Suffield TM 2010-271

3.3.5 Vehicle ommand nterface

The ArcArbiter is the only module that sends commands directly to the vehicle. These
commands consist of the desired steering angle and forward speed. Currently, the following
vehicles are compatible with this interface:

◦ the Pioneer 3-AT,
◦ the Raptor UGV,
◦ their simulated analogues in GazeboClient, and
◦ the Multi-Agent Tactical Sentry (MATS) vehicle.

Performance vs. e-usability

CORBA sequences are an elegant means to enhance re-usability. They are flexible, network

transparent and run-time defined hence, well suited for scalable applications. They
do, however, consume more resources than their static counterparts. This includes a larger
memory footprint and slower data access times. DRDC has extensively investigated the
trade-offs associated with sequence based structures and found that for small to medium
sized structures, up to approximately 500Kbytes, the performance penalty is small so the
net benefits are significant [16]. For larger structures, such as imagery consisting of several
megabytes of data per frame, the use of sequences incurs a noticeable performance penalty.
Simply publishing such a large sequence can require 100 to 300ms, depending on the size
of the image. In instances like this, reverting to a static data structure reduces publication
times by an order of magnitude or more. The drawback of this approach is reduced flexibility.
A static definition is not run-time defined hence, it will necessitate a code recompilation.
Additionally, depending on the approach taken, it is possible to lose network transparency.
This can occur when the static implementation is simply a container for bytes. In this
case, if the endianness of the sending and receiving computers differs, then the data upon
reception will not be valid.

Currently the DRDC implementation runs on a dual, quad-core computer (2.2GHz), and
all communications are local. Extensive investigation into time delays introduced by event
publication has shown that this implementation is sufficient under soft real-time require-
ments [17]. Although some applications are computationally intensive, the current DRDC
autonomy suite does not stress this computer. Given that core parallelization it expected to
ramp up, with 8 core processors available in the near future, computational limits

any time soon.

3.5 Inherent upport for esting and ebugging

Support for prototype testing and system debugging must be included, as part of the archi-
tectural design, in order to ensure seamless transitions between the various developmental
phases. The popular Player/Stage project [18] has shown the effectiveness of such an ap-
proach with its inherent logging and playback capabilities [19]. Unfortunately Player/Stage,
as a device server, doesn’t provide the developer with either the middleware or framework
to develop autonomous capabilities, nor does it directly address software stability issues.

DRDC Suffield TM 2010-271 9

The Boss vehicle, winner of the DARPA Urban Challenge, also incorporated data logging
and playback facilities [20]. Although these capabilities were extensively used, the custom
C++ application framework upon which they were developed doesn’t seem to have been
disseminated to the robotics community at large.

The DRDC approach, although influenced by Player’s virtual sensors from logged data,
provides a more unified approach. It builds upon two key factors:

◦ Stable interfaces and data structures, as described in Section 3.3.
◦ Miro’s use of CORBA notification services to provide publish/subscribe capabilities.

The publish/subscribe paradigm decouples data producers and consumers. The primary
means of intercomponent communication are events that encapsulate data and are trans-
ported via CORBA notification services. If the enclosed data structures represent the stable,
unchanging aspects of the process, then alternate data producers and consumers can easily
be substituted. This level of interchangeability enables a seamless transition between pro-
totype testing, debugging and real system operation. Figure 6 graphically illustrates this
concept. Whether the system is operating on the real platform, with real sensor data, or the

Autonomous
Capabilities

Logged

Real

Simulated

Data Source

Control
Commands

Control
Commands

Event

Channel

Event

Channel

Real System

Debugging Mode

Prototype Testing

Seamless ransitions between odes

developer is debugging using logged data, or prototypical algorithms are under test with

simulated data, the code, implementing autonomous capabilities, is in use. The ease
with which the developer can transition between the various modes greatly simplifies the
development process and hence, is a major boost to productivity.

3.5.1 Specific ange xample

Using range data as a concrete example to illustrate these mode transitions, consider the
three sources of range data, shown in Figure 7. The consumer is unable to distinguish be-
tween the various sources of the Range3dSeqEventIDL event, as the event delivered via the
Event channel is generic in nature. This allows the developer to seamlessly transition be-
tween prototype testing using simulated data, debugging with logged data, and real system
operations on the physical platform.

Although the example shown in Figure 7 only highlights the Range3dSeqEventIDL structure,

10 DRDC Suffield TM 2010-271

LASER

�→Range3dSeqEventIDL

LOGGED LASER

�→Range3dSeqEventIDL

SIMULATED LASER

�→Range3dSeqEventIDL

CONSUMER

Range3dSeqEventIDL

Event

Channel

Real System

Debugging Mode

Prototype Testing

Mode ransitions for ange ata

the same principles and conclusions apply to any event-based data structure transmitted
via the event channel.

3.5.2 Transitioning to the eal orld

As mentioned earlier in Section 3.5, our implementation requires only a single code instance.
This is possible because of a hybrid implementation [21], which splits the non real-time from
the real-time. As shown in Figure 8 lower level controls, with real-time requirements are
implemented under a real-time operating system. For the Raptor UGV this corresponds to

an MPC555 running RTEMS 4, which controls the actuators and electronics required for
motion. Higher level capabilities, often referred to as intelligence, require only soft real-time

Intelligence

Low Level
Control

Soft Real-time under Miro

Hard Real-time

Hybrid mplementation

performance and only these capabilities operate within the Miro framework. Soft real-time
suffices because of the nature of the environment. Uncertainties in pose, especially the orien-
tation [22], sensor mount locations, sensor data such as range, time of data acquisition and
data processing into appropriate representations, all contribute to a world representation
that is far from exact. Additionally, the Raptor’s physical response to commands introduces
more variability. When commanded to stop, the interaction between the wheels and terrain
defines the stopping distance and this relationship has a fair degree of uncertainty [17].

4. Real-Time Executive for Multiprocessor Systems; an open source real-time operating system.

DRDC Suffield TM 2010-271 11

As an ensemble these real world details preclude hard real-time operation. To ensure safe
Raptor UGV operations the vehicle speed is selected with a sufficiently large safety margin
such that an emergency stop is guaranteed to avoid a collision with an obstacle and vehicle
stability is assured.

As this approach requires only one code instance, issues such as resource management and
concurrency can be addressed before real world testing. The publish/subscribe implementa-
tion employs a single event channel as shown in Figures 2 and 6. By routing all data through
a single event channel all events become sequential hence, under all modes of operation
events are published/received one at a time. This approach has advantages for debugging
and logging data, but introduces a single point of failure that can effectively cripple the

entire system 5.

4 Debugging using ogged ata

Debugging code is arguably the most arduous task that a software developer faces. Given
the difficulties associated with this process it is crucial that the developer has access to the
best tools available.

Although instances exist when debugging must occur on the real, physical platform,
instances are rare. Debugging on the physical platform is tedious as not only
requires the proper operation of numerous physical devices , but in addition the
developer has only marginal control over the environment. Thus, it is difficult to both repeat
experi-ments and to control the rates at which sensor data is received. Finally, as a general
rule, only one developer can exercise the physical platform at any given time.

4.1 Logging

The DRDC implementation, using the capabilities of the Miro framework, elegantly
addresses the debugging issue. As described in Section 3.1, all DRDC developed components
inherit publish/subscribe capabilities, allowing producers to anonymously publish data,
making it available to subscribing consumers. This event based paradigm can be viewed as a
method to distribute raw sensor data thus, the stream of events can be interpreted as a
complete trace of the system state [23]. By subscribing to desired event streams, it is easy
to log the data to file. Miro provides this generic logging capability though a facility named
LogNotify. It should be stressed that only events can be logged in this manner. Intercompo-
nent communication using the query/response paradigm cannot be captured by LogNotify.
Figure 9 shows the data logging process in the context of DRDC’s implementation. The
specification of the events to be logged occurs within a human readable configuration XML

file.

5. Within DRDC’s experience, this particular failure has rarely, if ever, occurred.

12 DRDC Suffield TM 2010-271

Laser

�→Range3dSeqEventIDL

Stereo

�→Range3dSeqEventIDL

Pose

�→PoseEventIDL

LogNotify

Range3dSeqEventIDL
Range3dSeqEventIDL

PoseEventIDL

File
Event

Channel

Logging ata using LogNofity

Data layback

The Miro LogPlayer allows logged data to be injected onto the event channel, in place of
newly acquired sensory data. Thus, the system under test can repeatedly encounter the
identical stream of input events. This ability to play back logged data is a great help in the
debugging process. The LogPlayer supports additional features:

◦ The data play back rates can be varied from slower than to faster than real-time,
◦ The single event mode allows events to be published one at a time, and
◦ Event streams can be enabled and disabled.

The LogPlayer interface is shown Figure 10. The dial specifies the play back rate and the
buttons control the play back process. Typically, during the debugging process, the user

The Miro LogPlayer

repeatedly plays back data while observing debugging outputs. , while a
debugger such as gdb is running, the user injects a single event onto the event
channel and uses the debugger’s capabilities to investigate the code’s operation. Using the
event timestamp, the LogPlayer recreates not only the original data, but the timing
associated with the various event streams.

DRDC Suffield TM 2010-271 13

5 Prototyping with imulations

Prototyping in simulation and data logging offer similar benefits for autonomous systems
development. In a simulated environment, developers can rapidly trace and modify the
operation of the system under test. By ensuring identical initial conditions between repeated
tests, simulation permits the rapid exploration of tuning parameters for the system under
test, arguably with greater precision than with real hardware where the repetition of initial
conditions is problematic. Further, re-initialization after faults or exceptions is easy in
simulation and has none of the damaging consequences that can arise in real hardware
if corrective action is not taken quickly. Significantly, in contrast to using logged data,
mechanical simulation combined with simulated sensing allows autonomous behaviours to
be exercised. For example, employing a path planner and an obstacle avoidance behaviour,
the vehicle can actually explore a simulated world, moving within it to achieve a goal.

Simulation ackages

While kinematic/dynamic simulators are relatively common mechanical design tools (e.g.
Working Model [24]) and a component of gaming toolkits (e.g. Unreal Tournament [25]),
dynamic simulations rarely include support for simulated sensors such as LIDAR and
their particular characteristics. Of many capable robot modellers available (such as USAR-
Sim [26]), two major systems have emerged to dominate the robotics community: the Play-
er/Stage/Gazebo system and Microsoft’s Robotics Studio [27]. Of these, only the Gazebo
system is open source and thus both neutral to languages, operating systems, and control
architectures and, more interestingly, mutable into additional roles beyond simulation alone.

Gazebo [28] is a multi-robot simulator for outdoor environments, a 3D version of Stage,
the original 2D simulator developed under DARPA contracts. Gazebo can simulate robots
and their sensors along with other objects in a three dimensional world. It uses the Open
Dynamics Engine (ODE) [29] to generate both realistic sensor data and physically plausible
interactions between objects. Bodies are modelled as point masses only, with extended shape
used to calculate contact forces; visual meshes and textures are used for eye candy. As a
consequence of simple bodies being point masses, in Gazebo, only composite bodies have
moments of inertia.

Given that Gazebo met DRDC’s requirements, was freely available and open source, it was
the natural choice as a simulator.

5.2 Using Gazebo at DRDC

Gazebo obtains information about the world and the simulated Raptor vehicle from XML
descriptions contained in a world file. In addition to the world description, these XML
fields contain the physical layout, steering geometry, and sensor positions of the simulated
Raptor, chosen to mimic those of the real vehicle. Joints in a model that can be controlled
are defined using controller fields like the controller:steering_position2d, shown in Figure 11,
that is used to drive the simulated Raptor. Likewise, a sensor, used to extract data from

14 DRDC Suffield TM 2010-271

the simulation, is also defined using a controller field like the controller:sicklms200_laser.

The Gazebo simulator communicates with a client via shared memory. The interface tags in
the world file determine the layout of the shared memory block. By default, the Gazebo sim-
ulator makes some data available through the unnamed SimulationIface. Gazebo’s internal
time and control of its execution is available via this interface. Additionally, one can connect
to the SimulationIface and request by name the position and orientation of any body in the
world. Further data is made available through additional named interfaces ,
such as the interface:position (named position_iface_0) tag in the
controller:steering_position2d field and the interface:laser (named laser_iface_0) tag in the
controller:sicklms200_laser field specified in the XML fragments. The client connects to these
named interfaces and can then read from and/or write to the associated sections of the shared
memory block.

Gazebo Miro nterface

The GazeboService component, shown in Figure 12, is a Gazebo simulator client. It is a con-
sumer of VelocityIDL events and a producer of PoseTransformIDL and Range3dSeqEventIDL events.
Data from the VelocityIDL events are used to set the vehicle’s commanded forward speed
and steering angle by writing to the named PositionIface, position_iface_0. GazeboService
populates the PoseTransformIDL events with data obtained by requesting the current posi-
tion and orientation of the IMU on the simulated Raptor from the SimulationIface. The
Range3dSeqEventIDL events are populated with data obtained from the named LaserIface,
laser_iface_0, interface. When GazeboService is substituted for the Vehicle component and
the Laser, Stereo, and INS sensor components, the remaining components are unaware of
the change. The traffic on the event channel is identical in content, frequency, and relative
timing to that occurring in the real hardware case.

5.2.2 Gazebo Modelserver compatibility

As depicted in Figure 12, Modelserver [30] provides vehicle and payload geometries to
clients. In simulation, Modelserver complements Gazebo by using a hierarchical database of
component frames joined through simple constraints and interrogated for static structural
relationships. Gazebo, with a less flexible database, fully models mechanisms using a pow-
erful computational engine to maintain and interrogate a dynamic model of the vehicle and
components. As a temporary measure, Modelserver was modified to generate a Gazebo vehi-
cle model, greatly simplifying an often frustrating exercise for complex vehicles. Currently,
Modelserver build a complete Gazebo vehicle model; manual editing is still necessary.
Modelserver also doesn’t have any knowledge of sensor geometries and capabilities. It is
necessary to manually check, for instance, that the maximum range of the laser rangefind-
ers and the cameras’ fields of view in the Gazebo world agree with those in the real world.
This type of consistency checking should be made entirely automatic. In the long term, it is
likely that Gazebo or one of its descendants may be enlisted as a vehicle control modeller,
providing Miro control systems with a built-in capacity for geometric self-modelling.

DRDC Suffield TM 2010-271 15

5.2.3 Benefits of imulation

The use of the Gazebo simulator has proven to be invaluable in debugging the TerrainMap
and TraverseMap components. As a source of noise-free data for debugging, LogNotify was
used to capture GazeboService’s PoseTransformIDL and Range3dSeqEventIDL events while the
simulated Raptor moved within a simple blocks world (i.e., plane walls perpendicular to
the ground) in Gazebo. Subsequently, that event stream was played back with the LogPlayer
and those events captured by the TerrainMap and TraverseMap components. The relative
simplicity of the data derived from the blocks world made it very easy to visually identify
problems in the generation of terrain and traversability data. Having first used real world
data to develop the TerrainMap and TraverseMap components, we were somewhat surprised
to discover that errors remained in the generation of terrain and traversability data that
only became apparent when using data from the Gazebo simulations. Additionally, sensor
data with added aussian noise allowed for the systematic investigation and verification of a
variance weighted technique to optimally fuse sensor readings. Verifying this performance
with real data was due to the lack of repeatability, but simulated data made
this investigation possible.

Using the Gazebo simulator has also made it possible to exercise autonomous behaviours,
like the PathPlanner and ObstacleAvoidance components, on the desktop, a much quicker
and easier undertaking than working with the real hardware. Since the autonomous be-
haviours actually drive the vehicle, any change in these components can affect the path
taken by the vehicle in moving to a goal and hence any data acquired by the vehicle’s
sensors while following that path. This obviously precludes the use of logged sensor data in
the development of these components. Thus, the entire collection of components, shown in
Figure 12, must be running to exercise the autonomous behaviour components. Although

it is possible to exercise these behaviours using real hardware outdoors 6, during the devel-
opment and testing of these components, doing so in simulation is much easier and more
convenient. Since the content and timing of events on the event channel identical in the
simulated and real world cases, the overall behaviour of the system should be similar in both
cases. Differences will exist, obviously, due to modelling errors the simplicity of
the simulated environment in comparison with the real world, a failure to capture the

dynamics of the vehicle 7, and the idealized performance of the sensors.

6. Obviously, this is the ultimate goal of the entire exercise.
7. For instance, engine induced vehicle vibration doesn’t exist in Gazebo.

16 DRDC Suffield TM 2010-271

<model :phys ica l name= ” simpleCar model ”>
<c o n t r o l l e r : s t e e r i n g p o s i t i o n 2 d name= ” a car ”>

<wheel>
< j o i n t> l e f t f r o n t w h e e l h i n g e</ j o i n t>
<type>s tee r</ type>
<torque>1000</ torque>
<steerTorque>1000</ s teerTorque>

</ wheel>
<wheel>

< j o i n t>r i g h t f r o n t w h e e l h i n g e</ j o i n t>
<type>s tee r</ type>
<torque>1000</ torque>
<steerTorque>1000</ s teerTorque>

</ wheel>
<wheel>

< j o i n t> l e f t r e a r w h e e l h i n g e</ j o i n t>
<type>d r i ve</ type>
<torque>1000</ torque>

</ wheel>
<wheel>

< j o i n t>r i g h t r e a r w h e e l h i n g e</ j o i n t>
<type>d r i ve</ type>
<torque>1000</ torque>

</ wheel>
<wheelSeparat ion>0.9</ wheelSeparat ion>
<wheelDiameter>0.8</ wheelDiameter>
<steerPD>10 0</ steerPD>
<steerMaxAngle>50</ steerMaxAngle>
< i n t e r f a c e : p o s i t i o n name= ” p o s i t i o n i f a c e 0 ” />

</ c o n t r o l l e r : s t e e r i n g p o s i t i o n 2 d>
.
.
.
<i nc lude embedded= ” t rue ”>

<x i : i n c l u d e h re f = ” models / s implecar . model ” />
</ i nc lude>

</ mode l :phys ica l>

<sensor : ray name= ” l a s e r 0 ”>
<rayCount>361</ rayCount>
<rangeCount>361</ rangeCount>
<o r i g i n>0.05 0.0 0</ o r i g i n>

<minAngle>−90</ minAngle>
<maxAngle>90</ maxAngle>

<minRange>0.6</ minRange>
<maxRange>15</ maxRange>
<resRange>0.05</ resRange>
<displayRays> l i n e s</ d isplayRays>

<c o n t r o l l e r : s i c k l m s 2 0 0 l a s e r name= ” l a s e r c o n t r o l l e r 0 ”>
<updateRate>37.6</ updateRate>
< i n t e r f a c e : l a s e r name= ” l a s e r i f a c e 0 ” />

</ c o n t r o l l e r : s i c k l m s 2 0 0 l a s e r>
</ sensor : ray>

DRDC Suffield TM 2010-271 17

GAZEBO SERVICE

Pose
�→PoseTransformIDL
Range3dSensor
�→Range3dSeqEventIDL

TERRAIN MAP

Map
�→MapSeqEventIDL

MODEL SERVER

Pose
⇀↽PoseTransformIDL

TRAVERSE MAP

Map
�→MapSeqEventIDL

GLOBAL MAP

PlanMap
⇀↽PlanMapIDL

HAZARD DETECTION

ArcVote
�→ArcVoteIDL

OBSTACLE AVOID

ArcVote
�→ArcVoteIDL

PATH PLANNING

ArcVote
�→ArcVoteIDL

WAYPOINT FOLLOWING

ArcVote
�→ArcVoteIDL

ARC ARBITER

Velocity
�→VelocityIDL

The azebo ervice ubstituted for the Raptor and ensor omponents

18 DRDC Suffield TM 2010-271

5.3 Example: Navigating a imulated orld

By way of a concrete example illustrating the use of Gazebo, the simulated Raptor vehicle,
shown in Figure 13, was driven through a blocks world while logging pose and laser data.
The wheelbase, track, and steering angle limits along with the positioning of the sensors on

The imulated Raptor ehicle

the vehicle mimic the real Raptor vehicle. The blue fans represent the range and angular
extent of the laser rangefinders; offset on either side of the vehicle centreline, the one on
the right looks down at 12◦ below the horizontal and the one on the left at 20◦. The blocks
world is intended to mimic the layout of buildings on an area of the DRDC range for which
logged data already exists. The upper terrain map in Figure 14 has been generated with
data from the real vehicle, travelling from right to left, the lower one was built with data
logged from the Gazebo simulation. The colours represent the height of the terrain; green is
neutral, red is below grade, and blue is above grade. The blue dot in the cross hairs denotes
the location of the vehicle. The building near the top of the frame is a trailer with a platform
and stairs out front. The Gazebo world uses two blocks as seen in Figure 13 to simulate
this building. There are obvious differences between the two terrain maps. Clearly, the scale
of the buildings is different. Also, the real world is not entirely flat whereas the Gazebo
world, with the exception of the blocks, is completely flat. Nonetheless, apart from the
source of the data, the generation of both maps was identical; the LogPlayer, ModelServer,
TerrainService, and QtMap 8 components were used in each case.

8. Used for displaying the growing map.

DRDC Suffield TM 2010-271 19

20 DRDC Suffield TM 2010-271

6 Summary and onclusions

The development of robotics software is difficult. We have shown that the adoption of a
component-based framework built upon Miro and the use of the Gazebo 3D simulator have
resulted in systems that are arguably easier to prototype, debug, and maintain than would
otherwise have been possible. The reasons for this are twofold:

1. The use of a component-based framework allows development to proceed at a level
close to the abstractions of the problem domain. The developer need only be concerned
with the content of intermodule communication and not the underlying mechanisms
provided by the framework that allow the communication to take place. In addition,
stable component interfaces further ease the burden of development, debugging, and
maintenance.

2. Execution of the system in simulation, in the real world, or using logged data from
either source proceeds with the indentical code instance. The timing and the type
of the content in an event stream is identical regardless of its source, be it the real
world, the LogPlayer, or the GazeboService. Thus, the software modules comprising
a robotic system built upon Miro are unaware of the source of the events that they
receive or, put another way, the execution of the system is unaffected by the source
of the event stream.

DRDC Suffield TM 2010-271 21

References

[1] Neighbors, J.M. (1989), Software Reusability, Volume 1: Concepts and Models, ACM
Press Frontier, Ch. Draco: A Method for Engineering Reusable Software Systems,
pp. 295–319, Addison-Wesley.

[2] O’Connor, J., Mansour, C., Turner-Harris, J., and Campbell, Jr., G.H. (1994), Reuse
in Command-and-Control Systems, Software, IEEE, 11(5), 70–79.

[3] Fayad, F. and Altman, A. (2001), An Introduction to Software Stability,
Communications of the ACM, 44(45), 95–98.

[4] Coplien, J., Hoffman, D., and Weiss, D. (1998), Commonality and variability in
software engineering, Software, IEEE, 15(6), 37–45.

[5] Brugali, D. and Salvaneschi, P. (2006), Stable Aspects in Robot Software
Development, International Journal of Advanced Robotic Systems, 3, 1.

[6] Neighbors, J. M. (1992), The Evolution from Software Components to Domain
Analysis, International Journal of Soflware Engineering and Knowledge Engineering,
2(3), 325–354.

[7] Broten, G., Monckton, S., Giesbrecht, J., Verret, S., Collier, J., and Digney, B.
(2004), Towards Distributed Intelligence - A high level definition, (DRDC Suffield
TR 2004-287) Defence R&D Canada – Suffield.

[8] Broten, G., Monckton, S., Giesbrecht, J., and Collier, J. (2006), Software Sysetms for
Robotics, An Applied Research Perspective, International Journal of Advanced
Robotic Systems, Volume 3, 1(2005-204), 11–17.

[9] Utz, H., Sablatnog, S., Enderle, S., and Kraetzschmar, G. (2002), Miro - Middleware
for Mobile Robot Applications, IEEE Transactions on Robotics and Automation, 18,
493–497.

[10] (2003), TAO Developer’s Guide, Oci tao version 1.3a ed, Vol. 1 and 2, 12140
Woodcrest Executive Drive, Suite 250, St. Louis, MO, 63141: Object Computing Inc.

[11] Henning, M. and Vinoski, S. (1999), Advanced CORBA Programming with C++,
Addison-Wesley.

[12] Broten, G., Mackay, D., S., Monckton, and Collier, J (2009), The Robotics
Experience: Beyond Components and Middleware, IEEE Robotics and Automation
Magazine, 16(2008-227), 46–54.

[13] Brugali, D., Agah, A., MacDonald, B., Nesnas, I., and Smart, W. (2007), Engineering
for Experimental Robotics, Ch. Trends in Robot Software Domain Engineering,
pp. 3–8, Springer Tracts in Advanced Robotics.

[14] Broten, G., Monckton, S., Giesbrecht, J., and Collier, J. (2006), Software Engineering
for Experimental Robotics, Number 2005-227, Drdc suffield sl Towards
Framework-Based UxV Software Systems, An Applied Research Perspective, p. 34,
Springer Tracts in Advanced Robotics.

[15] Utz, H. (2009), Miro Framework.
http://www.informatik.uni-ulm.de/neuro/index.php?id=301&L=0. Accessed.

22 DRDC Suffield TM 2010-271

[16] Broten, G. (2007), Enhancing Software Modularity and Extensibility: A Case for
Using Generic Data Representations, In Proceedings of the 2007 IEEE International
Conference on Robotics and Automation, Vol. 2007-019, pp. 299–304, Roma, Italy.

[17] Broten, G., Mackay, D., and Desgagnes, R. (2008), Middleware for Robotics:
Applications on Real-time Systems, In Brugali, D., (Ed.), Third International
Workshop on Software Development and Integration in Robotics2008 IEEE
International Conference on Robotics and Automation, Number 2007-088, p. 6, 2008
IEEE International Conference on Robotics and Automation.

[18] Gerkey, Brian, Vaughan, Richard T., and Howard, Andrew (2003), The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems, Proceedings of the
11th International Conference on Advanced Robotics, pp. 317–323.

[19] Vaughan, R. and Gerkey, B. (2007), Software Engineering for Experimental Robotics,
Ch. Reusable Robot Software and the Player/Stage Project, pp. 267–289, Springer
Tracts in Advanced Robotics.

[20] Baker, C.R. and Dolan, J.M. (2009), Street smarts for boss, Robotics & Automation
Magazine, IEEE, 16(1), 78–87.

[21] Pont, F., Kolski, S., and Siegwart, R. (2005), Applications of a Real-Time Software
Framework for Complex Mechatronic Systems, In Proceedings of IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA.

[22] Broten, G. and Collier, J. (2006), Continuous Motion, Outdoor, 2 1/2D Grid Map
Generation using an Inexpensive Nodding 2-D Laser Rangefinder, In Proceedings of
the 2006 IEEE International Conference on Robotics and Automation,
Number 2006-061, pp. 4240–4245, Orlando, Fl.

[23] Department of Computer Science, University of Ulm (2005), Miro Manual, 0.9.4 ed,
University of Ulm.

[24] Working Model 2D (online), Design Simulation Technologies, Inc. 43311 Joy Road,
#237 Canton, MI 48187,
http://www.design-simulation.com/WM2D/description.php (Access Date: May
25, 2009).

[25] Manojlovich, J., Prasithsangaree, P., Hughes, S., Chen, Jinlin, and Lewis, M. (2003),
UTSAF: a multi-agent-based framework for supporting military-based distributed
interactive simulations in 3D virtual environments, Vol. 1, pp. 960–968 Vol.1.

[26] Carpin, S., Lewis, M., Wang, Jijun, Balakirsky, S., and Scrapper, C. (2007),
USARSim: a robot simulator for research and education, pp. 1400–1405.

[27] Jackson, J. (2007), Microsoft robotics studio: A technical introduction, Robotics &
Automation Magazine, IEEE, 14(4), 82–87.

[28] Koenig, N. and Howard, A. (2004), Design and Use Paradigms for Gazebo, An
Open-Source Multi-Robot Simulator, pp. 2149–2154.

[29] Smith, Russell (2004), Open Dynamics Engine v0.5 Users Guide.

[30] Monckton, S., Vincent, I., and Broten, G. (2005), A Prototype Vehicle Geometry
Server: Design and development of the ModelServer CORBA Service, (DRDC Suffield
TR 2005-240) Defence R&D Canada – Suffield, Medicine Hat, Alberta.

DRDC Suffield TM 2010-271 23

This page intentionally left blank.

24 DRDC Suffield TM 2010-271

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Suffield
Box 4000, Station Main, Medicine Hat, Alberta,
Canada T1A 8K6

2. SECURITY CLASSIFICATION (Overall
security classification of the document
including special warning terms if applicable.)

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)

Architectural Support for Robotics: Software Prototyping and Testing

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Mackay, D.J.; Broten, G.S.; Monckton, S.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

December 2010

6a. NO. OF PAGES (Total
containing information.
Include Annexes,
Appendices, etc.)

6b. NO. OF REFS (Total
cited in document.)

30

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –
include address.)

Defence R&D Canada – Suffield
Box 4000, Station Main, Medicine Hat, Alberta, Canada T1A 8K6

9a. PROJECT NO. (The applicable research and development
project number under which the document was written.
Please specify whether project or grant.)

9b. GRANT OR CONTRACT NO. (If appropriate, the applicable
number under which the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The official
document number by which the document is identified by the
originating activity. This number must be unique to this
document.)

DRDC Suffield TM 2010-271

10b. OTHER DOCUMENT NO(s). (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)
(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

Unlimited

UNCLASSIFIED

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual.)

The development of robotics software is difficult. The sheer size and complexity of these software
systems, the interaction of robots with their environment including the potential need for real-time
operation, and the lack of accepted standards all contribute to this situation. Due to the diverse
nature of robot systems, contributions from multiple researchers with disparate fields of expertise
are required and that in itself further complicates software development.

At Defence R&D Canada Suffield, we have developed domain-specific middleware [8] based
upon the Miro framework [9], that uses the ACE/TAO [10] implementation of CORBA [11]. This
middleware provides infrastructure services enabling seamless communication between soft-
ware components. Using this framework enables researchers to focus their attention at a level
of abstraction close to the problem domain, for the most part ignoring the underlying details that
enable a system to work.

Over the past six years, researchers in Autonomous Intelligent Systems Section have developed
numerous software components for an heterogeneous set of robotic platforms. A key conclu-
sion arising from this endeavour was the recognition that components and middleware, although
crucial enablers, do not of themselves fully address the difficulties associated with software
reuse [12]. Software reuse can only be realized if both the component interfaces and the under-
lying data structures are stable. And, although software reuse simplifies the process of adapting
existing software to other robotic platforms, it doesn’t obviate the need for tools and techniques
that assist in prototyping and debugging. Our middleware provides for prototyping and debugging
by allowing a system to seamlessly switch between real world data, logged data and data pro-
vided by a simulation environment. This paper describes our implementation, provides examples
that illustrate its usage, and discusses the benefits accrued.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

software architecture
robotics
simulation

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

